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Figure 1: 3DGS model of AAU Copenhagen, Jawset Postshot

ABSTRACT

Virtual production (VP) relies on efficient and accessible 3D recon-
struction techniques to seamlessly integrate real-world elements
into digital scenes. This research investigates 3D Gaussian Splatting
(3DGS) as a potential alternative to traditional photogrammetry,
with a focus on utilizing readily available tools and mid-range cap-
ture devices. A variety of props and locations were scanned using
a smartphone and a drone, and the resulting data was processed
using both a local 3DGS implementation (Jawset Postshot) and a
cloud-based platform (Luma AI). The generated 3D models were
evaluated based on geometric accuracy, texture fidelity, and real-
time rendering performance. Preliminary results indicate that both
Postshot and Luma Al offer promising alternatives to photogram-
metry, with varying strengths and weaknesses depending on the
complexity of the scanned asset and capture method. While Luma
Al excels in speed and ease of use, Postshot provides greater flexibil-
ity and customization options. This study highlights the potential
of 3DGS as an accessible and efficient tool for 3D reconstruction in
VP, and suggests future work exploring the capabilities of Neural
Radiance Fields (NeRFs) for novel view synthesis in this context.
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1 INTRODUCTION

Filmmaking is undergoing a profound transformation, thanks to the
emergence of Virtual Production (VP) — a revolutionary approach
that seamlessly merges physical and digital elements in real-time

({11, [2]). This paradigm shift is fueled by advancements in real-
time rendering engines and LED walls, enabling filmmakers to craft
immersive and visually stunning narratives by blurring the lines
between tangible sets and computer-generated environments [2].

One of the critical challenges in VP lies in the seamless inte-
gration of real-world objects (props) into digital scenes, ensuring
a cohesive and realistic visual experience [16]. Traditionally, this
integration has relied heavily on 3D reconstruction techniques like
photogrammetry, where 3D models are created from 2D images
([17], [18]). However, photogrammetry often struggles to accurately
capture intricate geometries, reflective surfaces, and scenes with
dynamic lighting conditions, which can introduce artifacts, inaccu-
racies, and time-consuming manual corrections [10].

This research explores two cutting-edge techniques that offer
promising alternatives to photogrammetry: 3D Gaussian Splatting
(3DGS) and Neural Radiance Fields (NeRFs). 3DGS, an evolution of
traditional image processing, represents scenes using strategically
positioned 3D Gaussian functions (splats) ([6], [8]). This approach
offers a computationally efficient alternative, potentially enabling
real-time or near-real-time reconstruction and rendering, making
it particularly appealing for the fast-paced nature of virtual pro-
duction [3]. NeRFs, on the other hand, leverage deep learning to
represent scenes as continuous volumetric functions, allowing for
the generation of novel views and perspectives not explicitly cap-
tured during scanning ([12], [14]). This capability, known as novel
view synthesis, opens up exciting possibilities for virtual camera
movements and creative exploration within the digital environ-
ment.

By investigating the performance of 3DGS and NeRFs in captur-
ing and representing real-world objects and environments using



Figure 2: VP set, Image courtesy of ViZARTS

readily available tools and mid-range capture devices, this study
aims to assess their suitability for a wider range of users and ap-
plications within the film industry. The research will delve into
the geometric accuracy, texture fidelity, and real-time rendering
performance of these techniques, comparing them to traditional
photogrammetry and evaluating their potential to democratize 3D
reconstruction in virtual production.

2 BACKGROUND

To understand the transformative impact of virtual production, it’s
essential to examine its rapid rise in the filmmaking industry, the
pivotal role of digital twins, and the challenges in 3D reconstruction
that this technology presents.

2.1 The Rise of Virtual Production in
Filmmaking

Virtual Production (VP) is rapidly reshaping the filmmaking land-
scape, offering an innovative approach that seamlessly integrates
physical and digital elements in real-time ([1], [2]). This paradigm
shift is driven by advancements in real-time rendering engines and
LED walls, which enable filmmakers to create immersive and visu-
ally stunning narratives by merging tangible sets with computer-
generated environments [2].

Traditionally, this integration relied heavily on chroma keying
(green screen technology), where actors performed in front of a
green backdrop later replaced with digital backgrounds in post-
production [20]. While green screens offered flexibility and cost-
effectiveness, they lacked real-time feedback, limited interaction
with virtual environments, and struggled with accurate lighting
and reflections [16].

VP addresses these limitations by directly displaying virtual en-
vironments on set, fostering natural interaction between actors
and their surroundings and providing instant visual feedback for
filmmakers [2]. This real-time interaction streamlines the filmmak-
ing process, promotes creative decision-making on the fly, and
enhances the overall production experience. However, seamlessly
integrating real-world objects and environments into these vir-
tual scenes remains a challenge that hinges on the accuracy and
efficiency of 3D reconstruction techniques.
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2.2 The Role of Digital Twins in Virtual
Production

In the world of VP, the concept of digital twins has emerged as
a cornerstone for achieving realism and efficiency. A digital twin
is a virtual replica of a physical object or environment, meticu-
lously crafted to mirror its real-world counterpart in both form
and function [7]. While digital twins have found applications in di-
verse industries, their significance in VP is particularly pronounced,
especially during the production phase.

During production, digital twins enhance realism and interac-
tion by allowing actors to engage with virtual objects as if they
were physically present [20]. This not only enriches the actors’ per-
formances but also streamlines the integration of real and virtual
elements, resulting in a more cohesive and believable final image.

Furthermore, digital twins facilitate real-time tracking and com-
positing, ensuring that virtual elements seamlessly align with phys-
ical objects and actors on set [1]. This real-time synchronization
is essential for achieving convincing visual effects and minimizing
the need for extensive post-production corrections.

The use of digital twins also enables virtual cinematography, em-
powering filmmakers to explore a wider range of camera angles and
perspectives [2]. By utilizing virtual cameras within the digital twin
environment, directors and cinematographers can experiment with
shots that would be physically impossible or impractical to achieve
on a traditional set. This not only expands creative possibilities but
also optimizes production timelines and budgets.

2.3 Emerging Alternatives: NeRFs and 3D
Gaussian Splatting

To overcome the limitations of photogrammetry, researchers are ac-
tively exploring emerging alternatives like Neural Radiance Fields
(NeRFs) and 3D Gaussian Splatting (3DGS). NeRFs, pioneered by
[14], employ deep learning to represent scenes as continuous vol-
umetric functions. This approach has demonstrated exceptional
capabilities in reconstructing intricate scenes with realistic lighting
and reflections ([12], [23]). Notably, their ability to generate novel
views not explicitly captured during scanning (novel view synthe-
sis) has transformative potential for virtual camera movements and
creative exploration in VP [19].

3DGS, rooted in traditional image processing techniques, rep-
resents scenes using strategically placed 3D Gaussian functions
(splats) [6], [8]. This method offers a computationally efficient alter-
native, potentially enabling real-time or near-real-time reconstruc-
tion and rendering, a critical advantage for the fast-paced nature
of VP [3]. Recent advancements in 3DGS have demonstrated its
capacity to capture and render dynamic scenes effectively, further
expanding its potential applications in VP.

While both NeRFs and 3DGS show immense promise, their prac-
tical implementation and usability within VP workflows, especially
for users with varying levels of technical expertise and resources,
remain an area ripe for exploration. Research into the performance,
accessibility, and integration of these techniques in real-world VP
scenarios is crucial to assess their potential to democratize 3D re-
construction and make it more accessible to a broader spectrum of
filmmakers.
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Table 1: Summary of capture devices, methods, and lighting conditions

Asset Capture Device

Method

Lighting Conditions

Cornelius (gnome) Samsung S22 Ultra, iPad

Photo, Video, Polycam

Ring light, Natural

Philodendron (plant) | Samsung S22 Ultra, iPad

Photo, Video, Polycam

Ring light, Natural

Contemplation room | Samsung S22 Ultra, iPad

Photo, Video, Polycam

Ring light, Natural

Bicycle Samsung S22 Ultra, iPad

Photo, Video, Polycam

Daylight

AAU Facade DJI Ryze Tello Drone

Video Daylight

3 RESEARCH OBJECTIVES

This research aims to evaluate the potential of 3D Gaussian Splat-
ting (3DGS) and Neural Radiance Fields (NeRFs) as viable alter-
natives to traditional photogrammetry for 3D reconstruction in
Virtual Production (VP) workflows. The study will prioritize the
exploration of 3DGS, leveraging readily available and accessible
tools, with the goal of democratizing this technique for a wider
range of users and applications.
The research will address the following key objectives:

o Assess the geometric accuracy and texture fidelity of 3D
models generated using 3DGS, utilizing free or online soft-
ware and mid-range capture devices (e.g., smartphones)
[6].

e Document the technical challenges and limitations en-
countered during the processing of datasets using accessi-
ble tools and workflows, aligning with the findings of [3]
regarding computational resource constraints.

e Compare the processing time and resource requirements
of 3DGS and NeRFs to traditional photogrammetry, evalu-
ating the ease of integrating 3DGS models into existing VP
pipelines, as explored by [15] and [21].

o Evaluate the real-time rendering performance of the gener-
ated models within a virtual production environment (e.g.,
Unreal Engine), building upon the work of [16] in assessing
real-time visualization capabilities.

By addressing these objectives, this research will provide valuable
insights into the potential of these new technologies for democ-
ratizing 3D reconstruction in virtual production, making it more
accessible and affordable for a wider range of filmmakers and con-
tent creators.

4 METHODOLOGY

This research investigates the potential of 3D Gaussian Splatting
(3DGS) and NeRFs in VP workflows using accessible tools and mid-
range capture devices. The study focuses on evaluating the quality,
efficiency, and suitability of the generated models for integration
into VP pipelines. Starting from 3DGS processing, the research is
intending to then delve into NeRFs processing, and compare the
results each of these approaches yielded.

4.1 Rationale for Prioritising 3DGS over NeRFs

While NeRFs predate 3DGS and have shown remarkable potential in
3D reconstruction, this research chose to prioritize the exploration
of 3DGS for two primary reasons. First, the computational demands
of NeRFs, particularly the training of neural networks, can lead
to significantly longer processing times compared to 3DGS. Given

the time constraints of this study, starting with the faster 3DGS
approach allowed for a more comprehensive exploration of its
capabilities within the available timeframe.

Second, the development of 3DGS from traditional image process-
ing techniques, specifically the concept of Gaussians, presents an
intriguing academic curiosity. Investigating how these established
methods can compete with cutting-edge AI and ML approaches
like NeRFs offers valuable insights into the evolving landscape of
3D reconstruction. By prioritizing 3DGS, this research aims to shed
light on the potential of both traditional and emerging techniques
in the context of virtual production.

4.2 Data Acquisition

To evaluate the performance of 3DGS and NeRFs under varying
conditions and levels of complexity, a diverse set of assets were
selected for scanning, progressing in order of increasing complexity.
This allowed for an iterative learning process, where insights and
techniques learned from scanning simpler assets could be applied
to more challenging ones.

The scanning process began with a simple object: a ceramic
Christmas gnome (Cornelius) chosen for its solid form, matte sur-
face, and intricate details. Next, a Philodendron plant was scanned
to explore the challenges of capturing organic forms and fine details,
as well as to address the practical issue of limited availability of 3D
plant assets for virtual production. The complexity was then fur-
ther increased by scanning the indoor contemplation room at AAU
Copenhagen, a complex scene with diverse objects and varying
textures.

Subsequently, a bicycle was scanned due to its highly reflective
surfaces and intricate geometry, known to be challenging for 3D
reconstruction techniques [16]. Finally, the facade of the AAU build-
ing in Copenhagen was scanned using a drone, pushing the limits
of the technique by attempting to reconstruct a large-scale outdoor
environment with reflective glass surfaces using limited resources.

For image and video capture of the props and the contemplation
room, a Samsung S22 Ultra smartphone was utilized. All props and
the contemplation room were also scanned using an iPad Pro (12.9",
4th generation) equipped with LiDAR technology and the Polycam
app (v3.3.1) [22]. Aerial footage of the AAU building facade was
acquired using a DJI Ryze Tello drone.

4.3 Data Processing
Each captured dataset was processed using two pipelines:
(1) Luma AI: Photos and videos were uploaded to Luma AI’s

online platform, which utilizes proprietary algorithms to
generate 3D models. Luma Al is a widely recognized and



user-friendly platform in the 3D reconstruction community,
offering a streamlined process for creating 3DGS models.
Its cloud-based approach allows for quick and convenient
processing, making it a popular choice for users seeking
rapid results.

(2) Jawset Postshot: Local processing on a dedicated worksta-
tion using Jawset Postshot software to generate 3D models
through 3D Gaussian Splatting (3DGS) [9]. Project settings
in Postshot were optimized to achieve a balance of qual-
ity and processing time (usually under 24 hours). Specific
parameters adjusted included the number of images used,
features per image, and training steps. Postshot, on the
other hand, caters to users who prioritize data security and
customization. Its local processing ensures that sensitive
data remains on the user’s machine, addressing potential
concerns in virtual production environments. Additionally,
Postshot is the first freely available software that simplifies
the implementation of 3DGS, offering a more accessible
alternative to the complex process outlined in the origi-
nal research that introduced the concept of 3D Gaussian
Splatting [9]. It provides a range of adjustable parameters,
allowing for fine-tuning of model quality and greater con-
trol over the reconstruction process.

4.4 Hardware Specifications

The dedicated workstation used for local processing comprised:

e Operating System: Windows 10 Pro

e Processor: AMD Ryzen 7 3800XT 8-Core Processor (3.89
GHz)

o Installed Memory (RAM): 32.0 GB (2 x 16 GB G.Skill Intl
DDR4 SDRAM @ 2133 MHz)

o GPU: NVIDIA GeForce RTX 3090

4.5 Evaluation and Analysis

The resulting 3D models were evaluated based on qualitative and
quantitative assessments, encompassing the following criteria:

e Geometric Accuracy: Visual inspection and comparison
to reference images, with potential use of quantitative met-
rics (e.g., mean distance to reference).

e Texture Fidelity: Visual inspection and comparison to
reference images, considering level of detail, sharpness,
and realism of material representation.

e Real-Time Rendering Performance: Preliminary tests
in Unreal Engine 5.3 using the Luma AI plugin for Gauss-
ian Splatting, assessing frame rates and visual quality. The
Luma AI plugin was chosen due to its compatibility with
3DGS models and its ability to leverage the computational
efficiency of Gaussian Splatting for real-time rendering.

e Ease of Integration: Assessment of the process of incor-
porating 3DGS models into Unreal Engine 5.3 using the
Luma Al plugin.

For each criterion, a comparative analysis was conducted between
the Postshot and Luma Al models for each asset, considering the
capture method and resolution.
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Figure 3: The import options of Jawset Postshot

5 RESULTS

This section presents the results of the 3D model reconstruction
and evaluation process using a local 3DGS implementation (Jawset
Postshot), a cloud-based 3DGS platform (Luma Al), and a mobile app
(Polycam). While the initial research plan included an exploration
of Neural Radiance Fields (NeRFs), this aspect has been deferred to
future work due to time constraints.

A total of 160 3D reconstructions were attempted across various
assets, capture methods, and settings. The analysis that follows
focuses on geometric accuracy, texture fidelity, real-time rendering
performance, and ease of integration. The two primary platforms
used for 3DGS-based 3D reconstruction, Postshot and Luma Al, of-
fer distinct approaches to the process. Postshot provides users with
a range of adjustable parameters (Figure 3), including the choice
between using all captured images or a subset of the "best" im-
ages selected automatically by the software. Users can also control
the maximum number of images used (when using the "Best Im-
ages" option), the maximum number of features per image, and the
number of training steps (iterations of the algorithm refining the
model). This flexibility allows for experimentation and potential
optimization of model quality. In contrast, Luma AI’s platform is
fully automated, requiring no user input or parameter adjustments
beyond uploading the captured data.

5.1 Cornelius the Gnome

5.1.1 Luma Al. Luma Al consistently produced high-quality mod-
els of Cornelius with good geometric accuracy and texture fidelity.
Processing time was consistently fast (30-40 minutes), regardless
of capture settings. The best results were obtained from high-
resolution photos (108 MP) and videos (FHD 30fps). However, Luma
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Table 2: Comparison of Luma Al and Postshot for 3D Reconstruction in Virtual Production

Feature

Luma AI

Postshot

Polycam

Processing Time

Consistently fast (30-40 minutes)

Varies widely (minutes to 10+
hours)

Very fast (2-3 minutes)

timization, but also more prone to
errors

Ease of Use Very High (extremely user-friendly, | High (simple interface, but requires | High (user-friendly mobile app)
minimal steps, accessible on mobile | experimentation to understand pa-
devices) rameter impact)
Customization Limited (no adjustable parameters) | High (offers control over image se- | Limited (no adjustable parameters)
lection, features, training steps)
Model Quality Generally good, occasional artifacts | Potential for higher quality with op- | Varies widely (based on the size and

type of surface scanned)

Handling of High-
Resolution Data

Limited (struggles with 8K video)

Limited (crashes with 108MP pho-
tos and some high-res videos)

Limited by LiDAR capabilities

Hardware Require-
ments

None (cloud-based processing)

Dependent on model complexity
and desired quality (can be demand-
ing on resources)

Requires LiDAR-equipped device

Ideal Use Case

Time-sensitive projects, users seek-
ing quick results, users with limited
computational resources

Projects prioritizing high quality
and detail, users willing to experi-
ment for optimal results, users with

Quick capture of objects with sim-
ple geometry, suitable for mobile
use

powerful hardware

Figure 4: Cornelius: Photo & 3DGS model, Jawset Postshot

ATI’'s models occasionally exhibited minor artifacts and inconsisten-
cies in color reproduction, particularly when using lower resolution
video with Al enhancement.

5.1.2  Jawset Postshot. Postshot consistently outperformed Luma
Al in terms of geometric accuracy and texture fidelity for Cornelius.
The best results were obtained from high-resolution photos (108MP)
and videos (FHD 30fps), capturing intricate details like the scratches
on the hat. However, processing times varied significantly, ranging

from 1 hour to over 8 hours depending on the chosen settings. At-
tempts to process videos in FHD 60fps and UHD 30£ps resulted in
software crashes.

High-resolution photos (108MP) processed in Postshot, using
81 images and 15 features per image, resulted in a model with a
processing time ranging from 1 hour (10k training steps) to >8 hours
(100k training steps). This model exhibited high quality but had
some minor distortions. Photos with lower resolution processed in
Postshot, using 20-100 features per image, resulted in models with
processing times ranging from 21 minutes (10k training steps) to
>22 hours (500k training steps). These models were of high quality
but still demonstrated some floaters and artifacts.

Videos in FHD 30fps processed in Postshot, using 2200 images
and 15 features per image, resulted in models with processing times
ranging from just over 1 hour (10k training steps) to >5 hours (500k
training steps). These models were of very high quality, with reflec-
tions and textures well-represented. Videos in HD 30fps processed
in Postshot, using all 2200 images and 15 features per image, re-
sulted in a model with a processing time of more than 12 hours
(10k training steps). This model was of very high quality, with few
flaws.

5.1.3 Polycam. Two LiDAR scans were performed on Cornelius
using Polycam, one using 112 frames and the other using 92 frames.
Both models were exceptionally accurate in terms of geometric
fidelity; however, the 92-frame one was more photorealistic due to
its higher texture resolution.

5.2 Philodendron Plant

5.2.1 Luma Al. Luma Al produced good results for the Philoden-
dron plant, with the best model achieved using UHD 60fps video
capture. However, some artifacts and inconsistencies in texture
representation were observed, particularly around the leaf edges.



Figure 5: Philodendron plant: 3DGS model, Jawset Postshot

5.2.2 Jawset Postshot. Postshot’s models of the Philodendron
plant showed superior geometric accuracy compared to Luma Al,
especially in capturing the subtle curvature of the leaves. However,
Postshot also struggled with artifacts and inconsistencies in texture
representation, particularly around the leaf edges. The 108MP pho-
togrammetry model exhibited high quality, but processing failures
occurred when attempting to import the full-resolution images.

5.2.3 Polycam. Two LiDAR scans were performed on the Philo-
dendron plant using Polycam, one with natural lighting and the
other one using a ring light. The model with natural lighting was
slightly better, with fewer artifacts and shadows. However, none of
the models managed to create an accurate reconstruction.

5.3 Contemplation Room

5.3.1 Luma Al. Luma Al faced difficulties in accurately represent-
ing the entire Contemplation Room, with issues such as floaters,
misplaced objects, and distortions being common. The 8K 24fps
video scan resulted in a particularly poor model. However, Luma
Al performed better in capturing individual elements within the
room, such as the slim plant and the moss wall with the log, when
scanned separately.

5.3.2 Jawset Postshot. Postshot struggled with the complexity
of the Contemplation Room, often resulting in incomplete or dis-
torted reconstructions, especially with higher resolution videos.
Processing the 8K video led to repeated failures.

Postshot also captured individual elements within the room, with
varying degrees of success. The moss-and-log scans were generally
of higher quality than the scans of the banana plant, slim plant, and
chair.

5.3.3 Polycam. The LiDAR scan of the entire Contemplation
Room using Polycam resulted in a model where everything felt
fluid and distorted, far from a photorealistic representation. The
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Figure 7: Bike: 3DGS model, Luma Al

chair had disappeared, leaving only its shadow and a hint of the
legs. Individual scans of the chair were also not photorealistic and
exhibited holes and distortions.

5.4 Bicycle

5.4.1 Luma Al. Luma ATl’s models of the bicycle generally ex-
hibited better geometric accuracy and texture fidelity compared
to Postshot, particularly in capturing the reflective surfaces and
intricate details of the bike. The best results were achieved using
high-resolution photos (108MP) and videos (FHD 60fps). Luma Al
also produced acceptable results with lower resolution videos (FHD
30fps and HD 30fps), although some artifacts were present around
the wheels and steering bar.

5.4.2 Jawset Postshot. Postshot struggled with the highly reflec-
tive surfaces of the bicycle, often producing models with artifacts
and distortions. However, Postshot’s models showed some improve-
ment with higher resolution images and increased processing steps,
indicating the potential for better results with further optimiza-
tion. Notably, attempts to process the 108MP photos of the bike in
Postshot repeatedly crashed the software, highlighting potential
limitations in handling large datasets or complex scenes.

The default resolution photos processed in Postshot, using 15-
100 features per image, resulted in models with processing times
ranging from 31 minutes (10k training steps) to over 18 hours (300k
training steps). These models exhibited varying degrees of quality,
with some being potentially usable if placed in the background,
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while others suffered from floaters, artifacts, and an oil-painting-
like appearance.

5.4.3 Polycam. The LiDAR scan of the bike using Polycam re-
sulted in a low-quality model with the wall being scanned better
than the bike itself. This suggests that Polycam might not be the
most suitable tool for capturing objects with complex geometries
and reflective surfaces.

5.5 AAU Building Facade

5.5.1 Luma Al. Luma Al produced surprisingly good results for
the AAU building facade, considering the challenges posed by its
large scale and reflective glass surfaces. Initially, processing each
of the two drone video datasets individually did not yield satisfac-
tory results. However, when the datasets from both flights were
combined, the resulting model exhibited good overall quality and
clarity. The lettering on the facade was clear, and the reflections
were well-represented.

5.5.2 Jawset Postshot. Similar to Luma Al, the two separate
datasets captured by the drone failed to yield quality results when
processed individually in Postshot. However, when combined, the
resulting model captured the overall structure and some details of
the facade, but suffered from more noise and artifacts compared
to Luma AI's model. The limited resolution of the drone footage
(720p) likely contributed to these limitations.

6 DISCUSSION

The preceding sections have detailed the methodology and results
of the experiments conducted to evaluate the potential of 3D Gauss-
ian Splatting (3DGS) as an alternative to photogrammetry in virtual
production. This section will delve deeper into the comparative
analysis of the two primary 3DGS pipelines used (Luma Al and
Jawset Postshot), interpreting the findings, discussing their implica-
tions for virtual production workflows, and identifying limitations
and avenues for future research.

6.1 Comparative Analysis and Interpretation

The results presented in Section 5 reveal both the potential and
limitations of Jawset Postshot and Luma Al for 3D reconstruction in
virtual production. Both techniques demonstrated varying degrees
of success in capturing geometric accuracy and texture fidelity,
depending on the complexity of the scanned asset and the capture
settings.

Simpler Objects (Cornelius the Gnome): For simpler objects,
both Postshot and Luma AI produced high-quality models. How-
ever, Postshot consistently performed better, particularly when
utilizing high-resolution photos or videos. This suggests that Post-
shot, with its ability to leverage more input data and user-defined
parameters, might be more adept at capturing intricate details and
subtle variations in surface geometry. Luma Al, while generally
producing good results, occasionally exhibited minor artifacts and
inconsistencies, especially with lower-resolution inputs. This could
indicate that its fully automated approach might not always be
optimal for capturing the nuances of complex textures or lighting
conditions.

Complex Organic Objects (Philodendron Plant): The Philo-
dendron plant, with its complex leaf structures, posed a greater
challenge for both techniques. While Postshot maintained its advan-
tage in geometric accuracy, both platforms struggled with artifacts
and inconsistencies in texture representation, particularly around
leaf edges. This suggests that capturing fine details and organic
forms remains a challenge for 3D reconstruction techniques, regard-
less of the underlying algorithm. Notably, the failure of Postshot to
process the full-resolution 108MP photogrammetry model indicates
potential limitations in handling large datasets.

Complex Scenes (Contemplation Room): The Contemplation
Room, with its diverse objects and varying lighting conditions,
proved to be the most challenging asset for both techniques. Luma
Al struggled with the overall scene reconstruction, producing a
particularly poor model from the 8K video. However, it performed
better when capturing individual elements within the room, high-
lighting its potential suitability for reconstructing isolated objects
rather than complex scenes. Postshot also faced difficulties with
the complexity of the scene, often resulting in incomplete or dis-
torted reconstructions, especially with higher resolution videos.
This suggests that both Postshot and Luma Al might require fur-
ther optimization or specialized techniques to effectively handle
highly complex scenes.

Highly Reflective Objects (Bicycle): The bicycle, with its highly
reflective surfaces and intricate geometry, presented a significant
challenge for both techniques. Luma AI’s models generally out-
performed Postshot in capturing the reflections and fine details,
particularly when using high-resolution photos and videos. Post-
shot struggled with reflections, often producing artifacts and distor-
tions. However, Postshot showed some improvement with higher
resolution images and increased processing steps, suggesting that
further optimization could yield better results. The repeated crashes
encountered when processing 108MP photos in Postshot highlight
potential limitations in handling large datasets or complex scenes
with this software.

Large-Scale Environments (AAU Building Facade): The AAU
building facade, captured using a drone, presented unique chal-
lenges due to its large scale and reflective glass surfaces. Both Luma
AT and Postshot produced usable results when combining footage
from multiple drone flights. Luma AI's model exhibited slightly
better overall quality and clarity, while Postshot’s model suffered
from more noise and artifacts. This suggests that Luma AI’s cloud-
based processing might be more adept at handling large datasets
and complex scenes, while Postshot might require more powerful
hardware or further optimization for such scenarios.

In summary, the comparative analysis reveals that both Luma Al
and Postshot offer viable alternatives to traditional photogramme-
try for 3D reconstruction in virtual production, each with its own
strengths and weaknesses depending on the specific use case. Luma
AT’s speed and ease of use make it a compelling option for time-
sensitive projects and users with limited resources, while Postshot’s
flexibility and customization potential cater to those prioritizing
high quality and detail. The choice between the two platforms ul-
timately depends on the specific requirements and constraints of



the virtual production workflow. Further exploration of these tech-
niques, including their real-time rendering performance, will shed
light on their broader applicability and potential to democratize 3D
reconstruction in the film industry.

6.2 Real-Time Rendering Performance

Preliminary tests in Unreal Engine 5.3 using the Luma Al plugin for
Gaussian Splatting, chosen for its compatibility with 3DGS models
and efficient real-time rendering capabilities (Luma AI Documen-
tation), indicate that both Postshot and Luma Al models generally
perform well in terms of real-time rendering. The average frame
rates for both Luma AT and Postshot models were consistently above
30fps, meeting the typical requirements for real-time rendering in
virtual production. While these results suggest that while 3DGS
models can achieve real-time rendering performance, optimization
may be necessary for more complex or high-resolution assets.

During initial testing, an issue with flickering 3DGS assets was
encountered when importing them into Unreal Engine. This oc-
curred only on the dedicated virtual production workstation (equipped
with rear projection and VIVE trackers) and not on other machines.
Troubleshooting steps, including reinstalling software and drivers,
did not resolve the issue. However, it was discovered that importing
the model into the tracked scene in Unreal Engine eliminated the
flickering. The exact cause of this issue remains unclear, but the
workaround allowed for the successful use of 3DGS models in the
VP environment.

6.3 Ease of Integration and Processing Time

Both 3DGS and Luma AI models were seamlessly integrated into
Unreal Engine 5.3 using the Luma Al plugin for Gaussian Splatting.
Postshot models, exported in the PLY format, were directly compat-
ible with the plugin, requiring no additional format conversion or
material adjustments. The integration process involved importing
the PLY file into Unreal Engine, assigning materials, and adjusting
lighting and rendering settings as needed.

6.4 Implications for Virtual Production

The findings of this research have several implications for the adop-
tion and utilization of 3DGS in virtual production workflows. The
speed and ease of use of Luma AI’s online platform make it a com-
pelling option for time-sensitive projects or situations where com-
putational resources are limited. Its ability to consistently produce
usable results within a short timeframe, regardless of the complex-
ity of the asset, is a significant advantage in fast-paced production
environments. However, the lack of customization options may
limit its appeal for users who require greater control over the re-
construction process or seek to achieve the highest possible quality
for specific assets.

Conversely, Postshot’s 3DGS implementation, while more time-
consuming and computationally demanding, offers greater flexi-
bility and control through its adjustable parameters. This allows
for fine-tuning of the reconstruction process to prioritize specific
aspects of model quality, such as geometric accuracy or texture
fidelity. The ability to experiment with different settings and op-
timize for specific needs could be invaluable for projects where
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achieving the highest possible quality is paramount, even at the
expense of longer processing times.

The choice between Luma Al and Postshot, therefore, depends
on the specific requirements and constraints of the VP workflow.
For projects with tight deadlines or limited resources, Luma AI’s
speed and simplicity might be the deciding factor. However, for
projects that prioritize customization and have the resources to
invest in longer processing times, Postshot’s 3DGS implementation
could be a more suitable choice.

The results also highlight the importance of selecting appropri-
ate capture methods and settings for optimal results. While video
capture generally yielded better texture fidelity than photogram-
metry for both techniques, the optimal resolution and frame rate
varied depending on the specific asset and the desired level of detail.
High-resolution images and videos, while potentially leading to
better geometric accuracy, also increased processing times and, in
some cases, caused software instability. This suggests that users
need to carefully consider the trade-offs between quality, efficiency,
and the limitations of their hardware and software when choosing
capture settings.

Furthermore, the challenges encountered in capturing complex
scenes like the contemplation room underscore the need for further
research and development in 3DGS techniques. While both tech-
niques showed promise in capturing individual elements within the
room, their performance in reconstructing the entire scene was less
satisfactory. This suggests that capturing complex scenes with di-
verse objects and lighting conditions remains a challenge for 3DGS,
and further advancements are needed to improve its robustness
and accuracy in such scenarios.

6.5 Limitations and Future Work

This research provides valuable insights into the potential of 3DGS
for 3D reconstruction in virtual production, but it is not without
limitations. The scope of this study was constrained by the lim-
ited number and types of assets scanned, which may not fully
represent the diversity of objects and environments encountered
in real-world virtual production scenarios. The selection of assets
primarily focused on static objects and indoor environments, with
limited exploration of dynamic scenes or large-scale outdoor envi-
ronments. Additionally, the use of a single smartphone for capture
and a single dedicated workstation for processing could introduce
biases and limit the generalizability of the findings. Future research
could address these limitations by expanding the dataset to include a
wider variety of assets, such as dynamic objects, humans in motion,
and diverse outdoor environments. Exploring the performance of
3DGS with different capture devices, including professional-grade
cameras and specialized 3D scanners, could also provide valuable
insights into the scalability and adaptability of this technique.

Furthermore, while this study focused on 3DGS, future research
should revisit the investigation of Neural Radiance Fields (NeRFs)
for novel view synthesis in virtual production, as originally planned.
The ability of NeRFs to generate photorealistic novel views from
a limited set of input images could be a game-changer for virtual
production, enabling greater flexibility and creative control in scene
composition and camera movement.
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Additionally, exploring the potential of other cutting-edge tech-
niques could open up new avenues for 3D reconstruction in VP.
For instance, Dynamic Gaussian Splatting, which aims to improve
the representation of dynamic scenes ([5], [13]), could address the
limitations of 3DGS in capturing objects in motion. SMERFs (Sparse
Multiscale Encoding of Radiance Fields), which have shown promis-
ing results in reconstructing high-quality 3D scenes from sparse
input views [4], could be particularly relevant for virtual production
workflows where capturing dense image sets might be impractical
or time-consuming. The concept of Vast Gaussians, introduced by
[11], offers a potential solution for reconstructing large-scale scenes,
as demonstrated in the AAU building facade experiment, where
combining multiple datasets was necessary to achieve satisfactory
results.

By continuing to investigate and refine these cutting-edge meth-
ods, we can unlock new possibilities for 3D reconstruction and
further enhance the creative potential of virtual production.

6.6 Potential for Democratization of 3D
Reconstruction

The findings of this research suggest that 3DGS, particularly through
accessible tools like Luma Al and Postshot, has the potential to de-
mocratize 3D reconstruction in virtual production by making it
more accessible to users with limited resources and technical ex-
pertise. The use of readily available tools and mid-range capture
devices, coupled with the relatively fast processing times and ease
of integration, could empower a wider range of filmmakers and
content creators to incorporate high-quality 3D models into their
virtual productions.

However, further research and development are needed to ad-
dress the limitations of 3DGS, particularly in handling complex
scenes and high-resolution data. Additionally, the development
of more user-friendly interfaces and streamlined workflows could
further enhance the accessibility and usability of these tools for
non-experts.

7 CONCLUSION

This research successfully explored the potential of 3D Gaussian
Splatting (3DGS) and Luma Al as accessible alternatives to tradi-
tional photogrammetry for 3D reconstruction in virtual production.
The results demonstrate that both techniques offer promising re-
sults, with 3DGS (implemented in Postshot) often achieving higher
geometric accuracy and texture fidelity for simpler objects, while
Luma Al excels in speed and ease of use, making it ideal for time-
sensitive projects. Both techniques faced challenges with complex
objects and environments, highlighting the need for further re-
search and development in this area.

The findings of this research suggest that tools like Jawset Post-
shot and Luma AI have the potential to democratize 3D recon-
struction in virtual production by making it more accessible and
affordable for a wider range of filmmakers and content creators.
The use of readily available tools and mid-range capture devices,
coupled with the relatively fast processing times and ease of inte-
gration, could empower a wider range of individuals and studios to
incorporate high-quality 3D models into their virtual productions,
fostering greater creativity and innovation in the field.

Future work will focus on evaluating the potential of Neural
Radiance Fields (NeRFs) for novel view synthesis in virtual produc-
tion, as well as exploring other emerging techniques like SMERFs.
By continuing to investigate and refine these cutting-edge methods,
we can unlock new possibilities for 3D reconstruction and further
enhance the creative potential of virtual production.

In conclusion, this research contributes valuable insights into
the evolving landscape of 3D reconstruction in virtual production,
paving the way for a more accessible, efficient, and creative future
for filmmakers.
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