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Summary

Samples are musical audio files used by musicians in their compositions, featur-
ing sounds from instruments like guitars, basses, synthesizers, pianos, or drums.
A synthesizer, an electronic instrument that generates audio signals, can repli-
cate real instruments or create new sounds, widely utilized in Electronic Dance
Music (EDM). In the digital era, music collaboration has become effortless as
musicians can produce and distribute new samples for further composing. As
”sampling” is a common approach to music creation, musicians using Digi-
tal Audio Workstations (DAWs) accumulate extensive sample libraries, making
management a tedious task.

With the widespread use of DAWs, tools known as sample managers have been
developed to help musicians organize these samples by instrument type or char-
acteristic. They aim to alleviate the time it takes to find specific sounds, making
the musician more productive. However, as musicians create new and distinct
sound designs using synthesizers, traditional sample managers often fail to cat-
egorize these new interpretations accurately, especially for bass sounds, leading
to overly broad groupings.

Audio recognition, and specifically audio classification, has emerged as a sig-
nificant area of research within the field of artificial intelligence (AI). Audio
classification involves the categorization of sounds into predefined classes based
on their acoustic features. This thesis describes the development and imple-
mentation of a sample manager application that leverages artificial intelligence
and audio classification to improve the categorization of new bass sound de-
signs. The application focuses on seven specific bass categories: ”808”, ”acid”,
”brass”, ”growl”, ”reese”, ”slap”, and ”sub”. By utilizing AI-driven audio clas-
sification techniques, the application aims to enhance the ability to distinguish
between these different bass sounds, offering a more precise and user-friendly
sample management solution.

The research involved in this thesis encompasses both the technical develop-
ment of the AI model and the practical implementation of the sample manager
application. Overall, this thesis contributes to the field of music technology by
providing an innovative solution for sample management. The AI-driven sample
manager not only improves the organization and retrieval of audio samples but
also supports musicians in their creative processes by making it easier to find the
exact sounds they need. This advancement highlights the potential of artificial
intelligence to enhance various aspects of music production and composition,
paving the way for further innovations in the industry.
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Abstract

The purpose of this thesis was to explore the realm of sample man-
agers and deep learning techniques for automatic classification and sorting
of bass samples. A balanced dataset was made containing 210 samples,
upscaled to 34.020 using data augmentation. From this a deep learning
model, fine-tuned from the DistilHuBERT model, was developed and in-
tegrated into a user-friendly graphical interface, specifically an Electron
desktop application, capable of accurately categorizing bass sounds ac-
cording to their sonic attributes. The model was evaluated using various
performance metrics, achieving an overall accuracy of 91.3% and an AUC
score of 0.81. It demonstrated high precision and recall across multi-
ple categories such as ’808’, ’brass’, ’growl’, ’reese’, and ’slap’. Usability
testing confirmed the effectiveness and accessibility of the system. Ad-
ditionally, latency percentiles were used as an evaluation technique to
ensure the system’s responsiveness, with the longest latency for 100 sam-
ple predictions yielding 6.17 seconds. While the model showed excellent
performance, occasional misclassifications in categories like ’acid’ suggest
areas for improvement. Overall, this project successfully implemented a
high-performing, user-friendly product that enhances sample management
and classification, providing a strong foundation for future enhancements.

1 Introduction

Imagine stepping into a vast library filled with countless sounds, each whispering
its own story. Sound categorization acts as the librarian, guiding you through
this maze of audio, helping you find the perfect melody amidst the noise. Fur-
thermore, the process of sound categorization involves grouping sounds based
on their specific characteristics [34]. In music production, this practice is cru-
cial for efficiently locating desired sounds [72]. Musicians working with digital
audio workstations (DAWs) typically gather audio files, referred to as samples,
for use in their compositions [58]. Samples are isolated instances of sound that
can be manipulated by the musician to create patterns, rhythms, melodies or
bass lines within a composition [58]. They are commonly stored in digital for-
mats such as .mp3 or .wav and are often distributed in collections called sample
packs, which can be obtained for free or purchased from companies or sound de-
signers [58]. Sample packs may include various harmonic or percussive sounds,
such as drums, instruments, or synthesizers, and are typically organized within
a computer’s file system as a sample library [58]. Musicians frequently down-
load sample packs and organize them within their sample libraries by creating
subfolders to categorize similar types of sounds [82]. However, maintaining an
organized sample library can be challenging and time-consuming due to the con-
tinuous influx of new samples, resulting in difficulty locating specific sounds [82].

Companies such as XLN, Waves, ADSR, Algonaut, and Sononym have endeav-
ored to address this issue by developing sample organizer applications. These
applications are packed with a variety of features, including automatic organiza-
tion and tagging of sample libraries [37]. Upon further investigation, these tools
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demonstrate promising results for organizing drum sounds [17]. However, they
appear to fall short when it comes to organizing harmonic samples like basses
[17]. The bass samples are either organised in categories such as ’bass’, ’other’,
’genre’ or ’texture’ [17]. Nevertheless, manual keyword-based categorization
options are also available to customize the categories. Ableton, the creator of
the DAW ’Live,’ has even introduced a sample organizer in a recent update of
their product. However, this only provides options within the bass category,
such as ’Analog,’ ’Basic,’ ’Dark,’ and ’Distorted’ [16]. Although these keywords
somewhat describe the characteristics of the sound, they fail to incorporate the
specific terms commonly used in EDM bass sound design.

As music and technology have evolved, new concepts have emerged, facilitated
by innovative sound design, which refers to the synthesis of sound. Electronic
Dance Music (EDM) has experienced significant growth in sub-genres since the
turn of the millennium [19]. One such sub-genre is known as ’bass music,’ which
encompasses a wide range of styles [61]. According to a definition by ’Music
Radar’ magazine, it is characterized by the predominance of bass [61]. Addition-
ally, it typically features heavy use of synthesizers in the production, which are
manipulated, tuned, and mixed to emphasize bass design [61]. As DAWs now
are accessible to most, new interpretations of music continues to evolve. This
evolution has led to the term ’bass’ encompassing a broad spectrum within con-
temporary music [56]. Consequently, a taxonomy has emerged within the EDM
community to categorize how bass sounds are created using synthesizers [56].
This taxonomy has introduced specific terms for various bass sound designs,
such as ’acid,’ ’neuro,’ ’808,’ ’reese,’ and others [36]. In essence, distinct bass
sound designs have become nearly as recognizable as real instruments within
the EDM genre [63]. This underscores the need for improvement in organizer
tools within the bass category.

Only Ableton and Algonaut advertise the use of artificial intelligence(AI) in
their sample managers. However, state-of-the-art machine learning models have
demonstrated high performance in audio recognition tasks [81]. Thus, it appears
that these companies have omitted the bass taxonomy from their systems. For
this reason, this thesis will investigate implementing a broader bass categoriza-
tion within a sample manager system utilizing machine learning for automatic
sound categorization.

2 Analysis

2.1 Background

Understanding musicians’ tools is essential for gaining insight into their creative
process. The primary tool used in music production is a DAW, an application ca-
pable of recording, editing, and mixing audio for compositions [5]. Most DAWs
come equipped with default samples and virtual instruments, synthesizers, or
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audio effect programs, known as plugins [5]. Plugins are additional programs
that extend the functionality of the original software [30]. Moreover, users can
add and utilize third-party samples and plugins within the DAW for various
tasks [5].

Within a DAW, plugins can function as digital instruments, providing new
sounds playable via the MIDI protocol [5]. Meaning, they can be played with
external hardware like a keyboard. These sounds range from recorded piano,
guitar, or drum samples to digitally synthesized or hybrid audio. Synthesizer
plugins, for example, are instrumental in crafting bass sounds from the men-
tioned taxonomy, as they not only synthesize new sounds but also offer a variety
of pre-made sounds known as presets [54]. Another widely used plugin concept
is called effect plugins [76]. This type of plugin does usually not produce audio,
but rather shapes it. They are utilized to the user’s creative advantage and can
i.e. be filters, distortion, pitch correction, etc. [76]

In addition to plugin compatibility, users can import their sample libraries from
directories on their computers into the DAW [6]. These samples can be dragged
into compositions or samplers and arranged accordingly. Samples are typi-
cally categorized as loops or one-shots [6]. Loops, comprising melodies, chord
progressions, vocal or drum sections, are creatively manipulated and repeated,
reflecting their name [6]. They are crafted by producers or sound designers
in specific scales, tempos, and time signatures, ready for further composing.
On the other hand, one-shots are shorter segments, often percussive sounds or
single musical notes [6]. The sample packs mentioned earlier in section 1 may
contain a variety of music composition loops, one-shots, or both, drawn from
live recordings or digitally produced sources [6]. These packs frequently include
bass one-shots as well.

2.1.1 Sound selection

One of the key tasks in digital music composition is sound selection [7]. This
involves choosing or creating sounds that align with the direction of a musical
piece and is crucial to the overall quality of the music being produced [7]. When
a user loads their sample library into their DAW, a shortcut to the folder is added
within the software [1]. This folder can then be accessed to view the individual
samples contained in the library [1]. DAWs also enable users to preview their
samples in real-time when they are highlighted, facilitating the sound selection
process [18]. This preview feature allows users to assess whether the sampled
sound fits the creative vision of the composition before incorporating it into the
project.

2.1.2 Sample categorization

Categorizing samples within a sample pack is hence crucial for streamlining the
sound selection process [18]. Proper sample categorization significantly impacts
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the ability to convey the sonic attributes of a sample when musicians are search-
ing for something specific [6]. Upon downloading a sample pack, initial sorting
is typically done by the creator, but further organization falls to the customer
[6]. This organization can be achieved manually or facilitated by sample man-
agement tools. For instance, some sample packs may include a ’bass’ subfolder
containing samples not yet sorted into specific bass subcategories. Organiz-
ing these samples manually requires reviewing each one and relocating them to
appropriate subfolders within the sample library. As new files are frequently
added to the sample library, this task becomes recurrent and time-consuming.
However, several sample managers have been advertised as being a solution to
this issue.

2.1.3 Sample managers

The core function of a sample manager is to aid musicians in organizing, cata-
loging, and manipulating audio samples, consolidating them into a centralized
repository [37]. These tools often feature standalone and plugin capabilities,
compatible with both internal and external DAWs, exemplified by products
from ASDR, Algonaut, and Sononym [37]. They typically encompass a variety
of sample types, including loops, melodies, vocals, and other sound recordings
utilized in music composition [37]. Categorization is typically based on factors
such as instrument type, genre, mood, or source [37]. Furthermore, they com-
monly offer metadata tagging options such as tempo, key, instrument type, and
descriptive keywords, facilitating efficient organization and retrieval [37]. Ad-
ditionally, many provide editing functionalities such as trimming, looping, and
adjusting volume or pitch of samples [37]. Refer to Appendix A.1 and A.2 for
snapshots of Sononym and ADSR application interfaces.

However, upon review of the produts, it becomes evident that considerable
manual intervention is still necessary despite the presence of automated fea-
tures [37]. While these tools excel at automatically categorizing drum samples,
instances have been observed where harmonic bass samples are misclassified
as drum samples. Furthermore, ADSR’s Sample Manager necessitates manual
tagging or grouping of samples into specific folders, with newly added samples
requiring manual tagging as well. Additionally, Sononym and Ableton’s prod-
ucts feature a ”search for similar sounds” function, which initially performs well
in categorizing popular bass sub-categories like ’808’. However, when compared
to other bass sub-categories, the similarity range of files varies significantly.
Despite distinctions between instrument plugins and sample libraries, catego-
rization within plugins tends to prioritize harmonic sounds and warrants further
exploration.

2.1.4 Plugin preset categories

Silvin Willemsen, a post-doc and freelance audio plugin developer at Baby Au-
dio, mentioned that the presets for his latest plugin-project ’Atoms’ were man-
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ually categorized. He also noted that some presets were challenging to label
and were placed in broad categories. However, each company’s approach to
sound categorization varies, as there are no standardized ways of handling sub-
categories. As Willemsen suggest, it could be assumed, manual labelling might
introduce some subjective bias. Investigating categories in various instrument

Figure 1: Analog Lab Pro bass sub-categories

and synthesizer plugins such as Spectrasonics’ ’Omnisphere,’ XFer Records’
’Serum,’ and Arturia’s ’Analog Pro’ and ’Pigments’ revealed different label-
ing schemes. While they all share broad categories like ’leads,’ ’pads,’ ’keys,’
and ’bass,’ expanding the bass category unveils a variety of behavior-describing
labels. These included ’sub’, ’acid’, ’analog’, ’style’, ’characteristic’, ’texture’
and, ’genre’ as seen on figure 1. Presets labeled with ’sub,’ ’acid,’ and ’analog’
actually refer to specific bass sound designs, indicating that some plugin com-
panies have incorporated parts of the modern EDM bass taxonomy into their
preset offerings [36]. Implementing a similar approach within sample managers
could enhance bass categorization, thereby refining the sound selection process
for musicians utilizing sample libraries. However, this deserves a detailed look
into what a bass sound entail.

2.1.5 What is a bass?

The term ’bass’ serves both as an instrument and an adjective, producing or
describing low-pitched tones, respectively [85]. Synthesizers have enabled mu-
sicians to utilize low-pitched wave tables to create various bass sounds with
different timbres (see Figure 2), [77] with timbre referring to the distinct qual-
ity of the sound. This evolution has led to the creation of sound design patterns
recognized as their own category, such as the ’wobble,’ ’UK organ,’ ’jump up,’
and ’slap’ bass [36]. The term ’bass’ has become synonymous with EDM and
has altered perceptions of what a bass sound might entail [12]. Producers uti-
lize synthesizers to design sounds rooted in low-pitched tones but incorporate
techniques such as frequency modulation (FM) to introduce mid and high fre-
quencies into the sound [77]. These sound design methods are prevalent in EDM
genres such as Drum and Bass, Dubstep, Future Bass, Trap, UK Bass/Garage,
or Bass House [63].
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Figure 2: Wavetable in the Serum plugin

With this musical background established, the question arises: how can these
bass samples automatically be categorized?

2.2 Audio data

As the thesis focuses on working with bass audio data, it necessitates an under-
standing of the file contents and how to manipulate them. A sound wave, can
be defined as a continuous signal containing an infinite number of signal values
within a given time frame (see Figure 31) [28]. Converting such a continuous

Figure 3: Sound wave defined by discrete values (courtesy of CC0 deed 1.0)

sound wave into a series of discrete values is termed a digital representation
[28]. Typically, the digital representation of a bass one-shot is generated us-
ing a digital synthesizer [63]. These synthesizers employ algorithms to generate
a stream of numbers, which can subsequently be converted into analog form [35].

The most commonly used file format for storing digital representations in music

1creativecommons.org/publicdomain/zero/1.0/deed.en

11



is the .wav format due to its uncompressed nature. This means that .wav files
retain all of the original audio data without any loss of quality, unlike the .flac
and .mp3 formats [83]. Audio files are saved at a specific sampling rate, which
refers to the number of samples taken in one second, measured in hertz (Hz)
[28]. To avoid confusion between the terms ”sample” and ”sample rate,” it is
important to note that in sample rate, ”sample” refers to the exact amplitude
values comprising a digital representation [28]. However, ”sample” is also a term
used in the music community to describe an audio file [6]. Typically, a sample
rate of 44.1 kHz is chosen as it determines the highest frequency that can be
captured from the signal [28]. This principle is known as the Nyquist theorem,
which asserts that audio can be regenerated ”with no loss of information as long
as it is sampled at a frequency greater than or equal to twice per cycle,” as cited
by [74]. Since the human ear can detect frequencies up to 20,000 Hz, a sample
rate of 44,100 Hz covers this range of information [4].

As previously mentioned, each sample within the digital representation denotes
the amplitude of the audio wave at a specific point in time. Additionally, the bit
depth of a sample determines the level of precision in describing its amplitude
value. A higher bit depth leads to a digital representation that more faithfully
reflects the original continuous sound wave [28]. Typically, the most common
bit depths for exporting one-shot samples are 16-bit or 24-bit [28].

2.3 Audio analysis

Various tools can be utilized to analyze audio data. For instance, the wave-
form of a signal can visualize the amplitude relationship in the time domain.
Let’s consider two one-shots from the ’808’ and ’growl’ bass sub-categories and
compare them. Figure 4 illustrates a comparison of the amplitude waveform

Figure 4: Wave form of an 808 (left) and growl (right) bass sample

between an 808 and a growl bass one-shot. It’s evident that the waveform of
the 808 (on the left) is more spread out, while the growl (on the right) appears
densely packed together as one large block. This observation indicates that the
growl contains a greater number of frequencies in the signal, although it ob-
scures the actual presence of low frequencies. However, this characteristic can
be elucidated with a frequency spectrum, which provides a representation in
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the frequency domain. The frequency spectrum in Figure 5 reveals that despite
containing a significant amount of mid-frequency content, the growl is primar-
ily rooted in low frequencies. This characteristic arises from the production
method of the sound. However, it’s important to note that the frequency spec-
trum only presents a snapshot of the signal. To comprehensively analyze how
the sound changes over time, a spectrogram can be employed. Additionally, the

Figure 5: Frequency spectrum of an 808 (left) and growl (right) bass one-shot

spectrogram of the same one-shot can be observed in Figure 6, revealing that
the growl one-shot exhibits frequencies that vary more compared to the 808.
These characteristics highlight the unique behavior of each bass sub-category,
which a machine learning model should be capable of capturing to automatically
categorize the one-shots.

Figure 6: Spectrogram of an 808 (left) and growl (right) bass one-shot
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2.4 Audio in ML

Now, how can audio data be implemented in a machine learning (ML) context?
As defined by IBM, ”ML is a branch of AI and computer science that focuses on
using data and algorithms to enable AI to imitate the way that humans learn,
gradually improving its accuracy” [51]. This means that audio data, which essen-
tially tries to replicate reality, can be used within machines to mirror human-like
capabilities, such as recognizing and distinguishing the difference between bass
sound designs. The current landscape of audio-related ML has shown many so-
lutions that are sufficiently able to recognize and distinguish between different
types of audio, such as music, speech, and environmental sounds [55]. This is
widely known in the ML space as audio classification and is one of the most
common applications in audio and speech processing [45]. It refers to the act of
assigning one or more labels to a digital representation based on its content [45].
For instance, detecting words to interact with a smartphone, inferring keywords
for communication, and quite relevantly, automatically distinguishing between
sounds of different bass categories.

ML models cannot directly interpret audio waves, necessitating the use of dig-
ital representations. This is addressed through feature extraction techniques,
which organize audio data into meaningful representations [55]. These features
encapsulate characteristics of the audio signal, aiding models in distinguishing
between different sounds [55]. Features can span time and frequency domains, as
well as encompass statistical, pitch, tempo, or timbre aspects. Among frequency
domain features, Mel-frequency Cepstral Coefficients (MFCCs) are commonly
employed [55]. MFCCs transform raw audio into a more manageable and infor-
mative format, generating a mel-spectrogram based on human auditory percep-
tion. This process discards less relevant information based on human hearing
capabilities [55], effectively converting audio data into image data for use along-
side image detection algorithms.

However, advancements in ML algorithms now enable the utilization of raw
audio for audio classification [59]. Unlike images, raw audio data contains abun-
dant information [59]. Modern algorithms can extract meaningful features di-
rectly from the raw waveform for classification tasks [59]. Regardless of feature
extraction method, data must undergo pre-processing to be suitable for a ML
architecture.

ML algorithms, often referred to as the architecture, define how the data is
processed. The evolution of AI has introduced a hierarchy of techniques, such
as deep learning (DL), a sub-field of neural networks (NNs), which itself is a sub-
field of ML [51]. Classical ML relies more on human intervention for learning,
whereas newer DL methods can automatically determine distinguishing features
between different data categories [51]. The term ”deep” in DL simply denotes
the number of layers in a NN [51]. Additionally, DL and NNs have greatly ac-
celerated progress in computer vision, natural language processing, and speech
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recognition [51].

To summarize, an automatic audio classification model can be achieved by col-
lecting a dataset of audio samples and feeding either raw audio or extracted fea-
tures into the DL architecture to make predictions regarding the categories.[51].

3 Related work

Numerous experiments have been conducted in audio classification, spanning
speech, music genre, instrument, foley, and environmental sound classification.
Pertinent to this thesis is the work by Anubhav Chhabra et. al. [15], who
presented a drum sample classification model employing machine learning tech-
niques with samples from a drum simulator. Their study focused on drum
instruments such as bass (kick), snare drum, toms, and cymbal samples. Fea-
tures like Zero Crossing Rates, Spectral Centroid, and RMS Energies were ex-
tracted and fed into three different machine learning architectures: K Nearest
Neighbors, Random Forests, and Naive Bayes. The Naive Bayes architecture
yielded the best performance with a 96% accuracy, although the others scored
above 90% [15]. Similar results were achieved in the work of Nicolai Gajhede
et. al. [29], who tackled the same drum classification problem. They employed
mel-spectrograms and a convolutional NN (CNN) architecture, which achieved
a 97% accuracy [29]. These findings demonstrate the feasibility of accurately
classifying sounds using ML or NN techniques.

In another relevant aspect, the work of Wei-Han Hsu et. al. also becomes
pertinent with their EDM sub-genre classification model [38]. Their project
entailed the classification of 30 EDM sub-genres, utilizing a collection of 2,500
songs per sub-genre. Some of the genres included were ’dubstep’, ’drum and
bass’, ’progressive house’, among others. They extracted features such as Mel-
spectrograms (MFCCs) and tempograms as the input data for a ’short-chunk
CNN+Resnet’ DL architecture. Their results showcased a 70% accuracy in
EDM sub-genre classification [38]. It can even be assumed that some compo-
sitions included various harmonic bass sound designs, as previously mentioned.
Despite their notable work, it focused on entire compositions rather than the
isolated instances of samples used within the music. This might suggest the
possibility of achieving a much higher accuracy rate if only the bass sound de-
signs are considered, akin to the work of A. Chhabra and N. Gajhede’s teams.

Strongly connected to the drum sample classification is the work of Kleanthis
Avramidis et. al. [8]. However, their project focused on classifying polyphonic
instrument audio samples, which are audio files containing multiple instruments.
Instead of extracting features from the audio data, they directly inputted the
raw audio data into a machine learning model. The architecture of their model
employed a hybrid combination of convolutional and recurrent neural networks,
utilizing a parallel ’CNN-BiGRU’ structure. According to the article, the results
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yielded ”competitive classification scores” compared to state-of-the-art alterna-
tives [8]. This work demonstrates the capability of utilizing raw audio data for
audio classification.

4 Problem Description

The research unveiled a lack of projects focusing specifically on bass samples, al-
though some small advancements have been noted in commercial products. Nev-
ertheless, substantial evidence from other researchers supports the enhancement
of a DL model capable of broadening the traditional bass category. However, ex-
isting articles predominantly emphasize the performance of these models rather
than delving into their practical implementation. Hence, the primary problem
addressed in this thesis is the implementation of a viable model that extends
the functionality of an audio classification model with the modern EDM bass
taxonomy using bass one-shots alongside an interactive application. This led to
the following problem statement.

4.1 Problem statement

In the realm of music production, efficient sorting and classification of audio
samples have been explored for various solutions. Traditional methods often
rely on manual categorization or rudimentary keyword-based systems, which
are time-consuming and prone to subjective biases. Addressing this gap, this
thesis investigates the implementation of deep learning techniques for the

automatic classification and sorting of bass samples. The primary objective is
to design and develop a user-friendly graphical interface that integrates a

trained deep learning model capable of accurately categorizing the modern bass
taxonomy according to their sonic attributes.

5 System Requirements

In constructing the system outlined in Section 4, several requirements were es-
tablished for the project. Primarily, an audio classification model is necessary
to predict the category of bass samples and provide feedback. The model should
possess the capability to process multiple samples either rapidly one after the
other or simultaneously. Additionally, the model is expected to achieve a min-
imum accuracy rate of 90% for predictions, as determined by the related work
of other researchers (Section 3).

In order to interact with the model, an application with a graphical user inter-
face(GUI) should be developed to initiate the model functionality and exchange
data in between the processes. More over, the application should be able to
select, create and save references for two directories. One of them should rep-
resent the samples that should be sorted and the other one should represent
the output of the sorting. The expected output of the sorted files should be a
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directory containing sub directories for each category represented in the model.
Which means there should be some functionality implemented to handle the
creation of new sub directories within the output directory dependant on the
output of the model prediction. The user interface should in return show the
predicted output and be able to preview the audio as well as support correction
of category placement. In addition, also functionality to open the destination
folder upon completed predictions.

6 Design

6.1 Available data

In order to design the system described in Section 5, it is crucial to understand
the available data for the project. Creating a model capable of classifying bass
samples requires individual bass one-shots to feed the system, as opposed to
genre classification where entire compositions are used [45]. The expected input
for the machine learning model is also bass one-shots used within compositions,
with the output being the label of the category.

However, no specific dataset of individual bass one-shots was found, necessi-
tating the manual creation of the dataset. The chosen categories for the project
were narrowed down to ”808”, ”acid”, ”brass”, ”growl(FM)”, ”reese”, ”sub”,
and ”slap”. These categories were selected from personal resources such as sam-
ple packs and libraries, as well as presets from the Serum plugin. Additionally,
some categories overlapped with an article describing 9 crucial synth basses in
music production [36].

Each category represents a distinct sonic characteristic commonly found across
various EDM genres [36]. The label selection aims to ensure that the model
becomes adept at recognizing and classifying different types of bass sounds,
ranging from the deep and resonant tones of the 808 to the aggressive and
gritty textures of the growl(FM) bass. This variety should, in turn, enable the
model to learn nuanced features inherent to each category, enhancing its ability
to accurately classify bass sounds.

6.2 Dataset curation

When manually curating a dataset, it’s crucial to consider its impact on the
quality and effectiveness of the final model. Factors such as audio data quality,
relevance, diversity, and balance must be carefully evaluated during selection
[60]. Low data quality can affect recognition accuracy and cause the model
to respond differently to similar data of higher quality [60]. Data should be
relevant to its represented class, with well-defined boundaries enforced in the
selection process [60]. However, it’s essential to avoid excessive homogeneity
within the dataset to capture the diverse characteristics of subcategories[60].
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Put in to perspective, imagine recognizing different breeds of cats in images —
specific breed-defining traits should be represented, but variations due to dif-
ferent camera angles or environments should also be considered. Audio mixing
techniques like distortion and reverb, commonly used in bass production, may
obscure defining characteristics and should be accounted for in the dataset. Di-
versity within class boundaries enhances the variability of scenarios encountered
by the model, preventing bias and improving generalization to unseen data[60].
Furthermore, maintaining balance throughout the dataset is crucial to avoid
bias and ensure optimal performance [60].

6.3 Data augmentation

Despite the availability of resources, the data remains relatively scarce com-
pared to state-of-the-art models. However, this challenge can be addressed
through data augmentation. Data augmentation involves generating additional
data similar to the original dataset, effectively upscaling a small sample size to
a larger one. Augmented data contributes to improving model performance by
reducing overfitting, enhancing generalization, and increasing model robustness.

Popular augmentation techniques within the audio domain include polarity in-
version, which generates a copy of the original signal with inverted phase. Pitch
scaling is also commonly used to produce signals in different pitch regions, en-
suring that the model learns how the signal sounds at various pitches. Another
useful audio augmentation technique is time-stretching, which generates signal
versions that are either shorter or longer. This technique strengthens recogni-
tion capabilities, particularly in cases where a sample has a fast or slow decay
rate.

6.4 Learning methods

When working with a DL system categorizing data, two overall learning methods
are available: supervised and unsupervised learning. These methods determine
how the models are trained and the type of training data the algorithms use
[33]. The biggest difference between the methods lies in the type of data used.
Supervised learning utilizes labeled training data, whereas unsupervised learn-
ing does not [33]. In comparison, unsupervised learning figures out the nuances
of the data on its own [52].

However, when categorizing data using supervised learning, it is known as classi-
fication, whereas the unsupervised equivalent is called clustering. Since the data
are well-defined within their categories, they can be utilized as labels, making
supervised learning the preferred approach [33].
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6.5 Machine learning system

Given the expected behavior of the ML model to predict the subcategory of
individual bass samples, the predictive ML approach should be considered. Pre-
dictive ML encompasses tasks where predictions are made, such as determining
email credibility, making weather predictions, or voice recognition [32]. In con-
trast, generative ML handles tasks like generating output based on the user’s
intent, such as generating audio from a user prompt [32]. The advantage of
the predictive approach is that the output can often be easily evaluated against
reality [32].

However, the specific predictive system should be determined to ensure the
correct output. The most popular predictive ML systems are numerical and
classification [32]. The numerical system is often associated with tasks such as
stock market predictions, disease progression, and risk of complications [32]. On
the other hand, the classification system is linked to tasks such as image, object,
or audio classification [32], making it the most optimal approach to categorize
audio samples into specific categories.

Nevertheless, the output techniques should also be examined. The outputs
available in the classification system are binary, multi-class single-label, and
multi-class multi-label [32]. Binary output, for example, is used for classifying
emails as spam or not. Multi-class single-label output is used for classifying an
animal in an image, while the multi-label version is for classifying every animal
in an image [32]. Dealing with samples of only one category suggests that the
multi-class single-label output is the best fit for the project.

6.6 ML architecture

In machine learning, models are categorized into two types based on their depth:
deep or shallow [53]. The depth signifies the number of layers in a neural net-
work, defining the complexity of the model’s architecture [53]. Shallow models
are often characterized by their simplicity and small number of processing steps
[53]. They typically have limited capacity to learn complex patterns from data.
Some algorithms of shallow learning include linear regression, logistic regression,
and k-nearest neighbors [53]. They are commonly employed when the patterns
present in the data or relationships between features and outcomes are relatively
simple [53].

On the other hand, deep learning is characterized by having multiple layers
in its neural network to automatically learn intricate patterns and representa-
tions from data [53]. Algorithms in this category include convolutional neural
networks (CNNs) and recurrent neural networks (RNNs). These models are
capable of capturing complex relationships in data by progressively extract-
ing hierarchical features [53]. Over the last couple of years, deep learning has
demonstrated impressive performance in various fields such as image and speech
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recognition, and natural language processing [53]. However, training an opti-
mized deep learning model requires a much larger dataset compared to shallow
learning, in order to solidify the algorithmic capabilities of the neural network
[53]. Despite this challenge, techniques such as data augmentation can be uti-
lized to address the issue [10].

Due to multiple instances of high-performing deep learning models using smaller
datasets alongside data augmentation approaches, the deep learning architec-
ture was further explored for the implementation [73; 10; 66].

6.7 DL algorithms

In running supervised deep learning, various deep learning algorithms are avail-
able, as mentioned in Section 6.6. Apart from convolutional and recurrent neural
network (RNN) algorithms, there are Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU), both types of RNN. Additionally, there are the
Transformer, Diffusion, and Variational Autoencoder algorithms. Each of these
algorithms has demonstrated capabilities suitable for audio classification [20].

However, the Transformer algorithm has shown state-of-the-art performance in
various natural language processing tasks, which often involve sequential data
like audio. Noteworthy examples include Meta AI’s Wav2vec 2.0 [9] and Hu-
BERT [39] transformer models. This architecture efficiently captures long-range
dependencies in audio data, essential for understanding contextual information
in audio samples [31]. Moreover, the self-attention mechanism allows the model
to focus on relevant parts of the audio sequence, facilitating better feature ex-
traction and classification [14; 84]. The literature review of Siddique Latif et. al.
shows the popularity and strong performances of the transformer architecture in
speech recognition [57]. These findings highlight the effectiveness of the Trans-
former model and its potential for achieving high accuracy in audio classification
tasks. For these reasons, the transformer was selected as the architecture for
the system.

6.8 Fine-tuning

Audio classification is not a new concept in the machine learning space, as dis-
cussed in Section 3, and has been utilized for various tasks. This has led to the
release of numerous models and datasets to the public via different platforms,
which perform exceptionally well for audio classification [80; 81]. These high-
performing models can be customized for other applications than their original
version through a process known as fine-tuning [70]. Fine-tuning involves tak-
ing a pre-trained model and further training it on a new dataset to improve its
performance or adapt it to a specific domain [70]. While model training can
be time-consuming when done from scratch, fine-tuning leverages the existing
knowledge encoded in the model, ultimately saving time and computational re-
sources [70]. Technically, fine-tuning involves modifying the model’s parameters

20



through new training iterations using the new data, enabling the model to spe-
cialize in the new problem while retaining the general knowledge it gained from
the original training [70].

HuggingFace2 is a platform where researchers can release their trained models
or datasets for various machine learning concepts. These models can be freely
fine-tuned and the platform has a dedicated category for audio [41] and audio
classification [40]. One of their web courses delves into fine-tuning pre-trained
models for music genre classification [42], which is relevant to this project’s
goals. Instead of classifying genres from compositions, it should approach to
classify the category of individual bass samples.

The course suggests the use of different pre-trained audio classification models
such as Wav2Vec 2.0 [9] and HuBERT [39]. However, it ultimately recommends
DistilHuBERT, a distilled version of the HuBERT model, which has undergone
knowledge distillation. Knowledge distillation involves transferring knowledge
from a complex, larger, or collection of models to a simpler, smaller model, mak-
ing it suitable for deployment in real-world scenarios [79]. The distilled version
has resulted in a more lightweight size reduced to 75% and 73% faster training
while retaining most of its performance [13]. For optimal use, this pre-trained
model will be utilized for the project.

6.9 Validation

After fine-tuning the model, it is essential to validate its accuracy. This involves
quantifying the relationship between the model’s predictions and data it has not
seen before. This measure determines if the model is overfitting, underfitting,
or generalizing well. Overfitting means the model predicts well on training data
but poorly on new data, while underfitting means it fails to capture patterns in
the data. The goal is to achieve a balance for good generalization [62].

To validate the model’s performance, cross-validation techniques can be used
during the fine-tuning process [62]. The main techniques are the train-test split
and K-fold [62]. Train-test split involves randomly dividing the dataset into
training and validation parts, which works well with larger datasets [62]. K-fold
is useful when data is scarce [62]. It involves splitting the dataset into multiple
folds (usually 5-10). The model is trained on one fold and validated on the re-
maining folds, repeating this process for each fold [62]. The average prediction
score across all folds is the model’s accuracy.

With a medium-sized dataset using data augmentation, both techniques can
be employed to compare their performances.

2huggingface.co
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6.10 Inference API

Models hosted on the HuggingFace servers can be accessed through its Infer-
ence API [48], provided the model is an inference model. Upon reviewing the
DistilHuBERT model, it is found to be compatible with the API [43]. This
enables the exchange of HTTP requests, allowing users to receive prediction
results from HuggingFace’s servers. Essentially, the model’s functionality can
be achieved by running it on their servers. However, it’s worth noting that the
API is rate-limited, although a paid alternative named Inference Endpoints is
available for production use [44]. Despite this, the API documentation indicates
that if the free version is used and a client suddenly sends 10,000 requests, it may
result in 505 errors [47]. While the rate limit suffices for this proof-of-concept,
the production version would be necessary for a final product, depending on
its usage. Additionally, it should be mentioned that when the free version of
the Inference API is utilized, the models may become inactive after a certain
period [46]. However, given the model’s ability to interact with HTTP requests,
a web-based application can be developed as the graphical user interface of the
system.

6.11 User-interface

A variety of frameworks are available for creating graphical user interfaces. One
of the application requirements is to utilize operating system-level functionali-
ties to generate directories containing sorted sample categories, as depicted in
Figure 7. Given that the model can run on the HuggingFace servers and be ac-

Figure 7: Expected folder sorting

cessed through the Inference API, a desktop web application appears to be the
most suitable choice for the project. To utilize the @huggingface/inference

Node.js framework, the web application framework should also be compatible
with Node.js. Some of the available cross-platform frameworks and tools with
native and Node.js capabilities include Electron, NW.js, Proton Native, and
Tauri. Electron was selected as the web application framework due to its cross-
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platform compatibility, easy learning curve and simple syntax. One drawback
of the framework is that it runs on the Chromium web browser and is known to
consume a lot of memory. However, it is still widely used for its compatibility
with web tools, large community, and comprehensive documentation. Addi-
tionally, a mock-up for the user interface was designed in Figma3, as shown in
Figure 8 and additional snapshots in Appendix B.1.

Figure 8: User Interface mock-up

6.12 Resources

To perform the fine-tuning of the DistilHuBERT model, several platforms have
been made available for use. These include SDU’s UCloud4, AAU’s ML work-
station5, and Google’s Colab environment6. Each platform offers computing
resources as well as instances of Jupyter notebooks or Visual Studio Code to
execute the fine-tuning process.

6.13 Programming languages and frameworks

Python will be used for fine-tuning the HuggingFace model alongside the Hug-
gingFace libraries as transformers, evaluate, datasets and PyTorch’s ma-
chine learning library. The desktop web-application will be implemented using

3figma.com
4docs.cloud.sdu.dk
5aalborg-university.gitbook.io/machine-learning-workstation
6colab.google.com
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web-based programming languages such as HTML, CSS and JavaScript. For data
augmentation, the Python library Librosa will be utilised.

7 Implementation

7.1 Collecting data

To compile data for each category, a personal sample library and ’xfer records’
synthesizer plugin, Serum, were utilized. The sample library consists of approx-
imately 200,000 audio files, each carefully selected to match the characteristics
of individual categories. Similarly, within the Serum plugin, specific presets
were chosen and exported for each category. This process resulted in a dataset
containing 30 samples per category totalling 210 samples, prepared for further
processing as required. These samples included various versions of the repre-
sented classes. This ranged from clear signals to being subjected to various
effect plugins as distortion, reverb, chorus or phase. Due to these sound effects
the sounds have similar characteristics but the underlying sound design method
remained consistent for each subcategory.

Additionally, an evaluation dataset was created using samples from the sam-
ple library and Splice, amounting to 138 samples. Importantly, none of the
evaluation data overlapped with the training dataset. However, subjective bias
is introduced with each sample being manually hand-picked as it was influenced
by a personal judgement and preference. Possibly leading to inclusion or exclu-
sion based on opinions rather than objective criteria, potentially resulting in a
lack of diversity and undermining generalization.

7.2 Data augmentation

The data augmentation process was facilitated through a Python script designed
to handle a root directory containing various subdirectories housing audio files
in the .wav format. Organizing the data into respective folders simplified the
task of maintaining category separation when utilizing the augmented data for
training. When the augmentation script was initiated, it generated four output
folders: one for overall output and three for temporary use, labeled ”inverted,”
”pitch shifted,” and ”time stretched.”

7.2.1 Polarity inversion

The first step of the data augmentation script involves polarity inverting the
samples. It begins by reading the first category of the root directory and
proceeds to the next once processing is complete. This is achieved using the
librosa.load() function to load the sample, followed by multiplying the en-
tire signal with -1 to invert its polarity. Subsequently, the polarity inverted
sample is written to the inversion folder, while a copy of the original signal is
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saved to the same folder. Before writing the inverted signal, an envelope is ap-
plied to reduce the silence in the audio. The mentioned copy serves to provide
two versions of the same signal, thus increasing the size of the dataset.

7.2.2 Envelope/threshold

The previous envelope function was implemented by taking the signal, calculat-
ing the rolling maximum of its absolute values, comparing each rolling maximum
value to a threshold, and creating a binary mask indicating whether each rolling
maximum is above the threshold or not. Finally, it returns this mask along with
the calculated rolling maximum values. The mask can then be applied to the
signal, effectively removing excess silence. This method can be reviewed on
Appendix C.1

7.2.3 Pitch shifting

The next step in the processing involved pitch shifting. Different pitches of the
audio were needed to account for classifying data with varying pitch. An array of
integers was created to select the amount of semitones to pitch shift the original
and inverted signal. The lowest semitone selection was -6, and the highest was
3, meaning the signal could be shifted down by 6 semitones and up by 3 semi-
tones. As the samples are already low pitched, extreme pitch shifts could distort
the signal. Pitching them too high would remove the low-frequency information.

The script starts by reading the samples one by one from the previously men-
tioned folder, which contains copies of the original signal and the polarity
inverted one. Then, it iterates over the amount of semitones being shifted.
The pitch shift is applied using the librosa effects library in Python with the
pitch_shift() function, using the signal, sample rate, and semitones as pa-
rameters, and the output is the pitch-shifted audio. The envelope is applied
once more to ensure there is not any additional silence present in the signal.
This process continues until all samples have been processed with each semi-
tone shift. Finally, the pitch shifted folder is filled with the shifted versions of
the original and inverted signal.

7.2.4 Time stretching

Following the pitch shifting, the script proceeded with time stretching of the
signal. An array was employed to store float values representing the percentage
of time stretching. Extreme time stretching, either too much or too low, could
corrupt the signal by losing valuable information. Hence, the lowest value cho-
sen was 80%, indicating a shorter signal, while the highest was 120%, indicating
a longer signal. In each iteration, 5% was added (80%, 85%, ..., 120%).

The pitch shifted folder served as input, reading the samples one by one and
iterating over the array of time stretching values. Time stretching was applied
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using the same effects library in librosa, specifically the time_stretch() func-
tion, with the signal and rate as parameters. Additionally, the envelope reducing
silence was applied again for safety. All of the samples were then written to the
time stretched folder.

7.2.5 Data structure

To streamline the data organization and reduce clutter, the contents of the
time stretched folder, which contained all the processed data, were copied to
a new directory. Subsequently, all the previous samples were deleted from the
output folders. This step ensured that only the processed and relevant data
remained in the output directory, minimizing confusion and improving data
management.

7.2.6 Signal length reduction

As a final processing step, signals exceeding 1 second in duration were trimmed
since the initial seconds of bass samples are highly defining of their type. This
was accomplished by utilizing the final output directory from the data man-
agement step, listing the subdirectories, and iterating over the samples in each
subfolder. The sample rate was then used to determine if the sample exceeded
1 second, and if so, it was trimmed accordingly.

This concludes the data augmentation process for this project. Additionally,
small quality-of-life components were added to provide a visual track of the
performance during processing, and a smaller version where only one category
would be augmented was also created.

7.3 Dataset preparation

Figure 9: Balance percentages of the dataset
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Through data augmentation, a dataset consisting of 34,020 audio samples
was generated. Each class contained 4.860 samples as seen on Figure 9. Lever-
aging the HuggingFace platform in the project, the dataset could be uploaded to
their platform, facilitating easier tracking of different versions used in training.
HuggingFace offers a library called datasets, which was utilized for creating
datasets in the HuggingFace standard.

The load_dataset() method is capable of loading an online or local dataset.
In this case, the local augmented dataset was loaded by specifying the path of
the augmented data directory. This function utilizes the names of the folders
and prepares them as labels for each sample, generating a dictionary structure
as depicted in Listing 1.

1 DatasetDict ({

2 train: Dataset ({

3 features: [’audio’, ’label ’],

4 num_rows: 38232

5 })

6 })

Listing 1: Dataset structure

To evaluate the model performance, the train-test split cross-validation tech-
nique was implemented. The library includes a method named train_test_split(),
which yields a dictionary comprising two random train and test subsets with
a split of 90% and 10%, respectively. The resulting dictionary is illustrated in
Listing 2. The ’test’ dataset provide evaluation during training. However, as
data augmentation was used to upscale the data, a lot of similar audio files is
present in the test split which can skew the accuracy rate. Regardless, it still
serves as valuable information while undergoing training. It is because of this
reason, the evaluation dataset mentioned in 7.1 were created can be utilised as
completely unseen data.

1 DatasetDict ({

2 train: Dataset ({

3 features: [’audio’, ’label ’],

4 num_rows: 34408

5 })

6 test: Dataset ({

7 features: [’audio’, ’label ’],

8 num_rows: 3824

9 })

10 })

Listing 2: Dataset with training split

The model expects input data to be encoded in a format that it can process,
which is facilitated by the AutoFeatureExtractor class in the transformers

library. This class automatically selects the appropriate feature extractor for
the DistilHuBERT model using the .from_pretrained()method, aiding subse-
quent learning and generalization across various process domains. Additionally,
the model requires data to have a sampling rate of 16,000 Hz, a condition han-
dled in the data augmentation script, ensuring all samples are in the correct
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sampling rate.

HuBERT-like models anticipate a float array corresponding to the digital rep-
resentation in a one-dimensional aspect, a transformation also managed in the
augmentation script. While the model expects audio in mono instead of stereo
format, meaning one channel instead of two, it’s crucial for all data to fall within
the same dynamic range to ensure optimal performance. This uniformity en-
hances stability and convergence during training by ensuring a similar range
of activation’s and gradients for all samples. This is achieved through feature
scaling or normalization of audio data, scaling each sample to zero mean and
unit variance, a process directly performed by the feature extractor.

Finally, the feature extractor returns a dictionary containing an input value
and attention mask array, utilized for input and batch processing in the Hu-
BERT model. Additionally, the DistilHuBERT model has a length threshold of
30 seconds. Since the data augmentation reduces all samples to 1 second, this
threshold constraint is not an issue.

Since the labels are mapped to integers, they must correspond to the actual
bass categories present in the dataset, allowing use in any downstream applica-
tion with the int2str() method. This was accomplished by fetching the labels
of the original classifications and applying them to the respective integer, re-
sulting in the encoded dataset.

The final step in dataset creation involved uploading the dataset to the Hug-
gingFace hub using the code depicted in Listing 3.

1 dataset_encoded.push_to_hub("profile -name/dataset -name")

Listing 3: Uploading the data to HuggingFace

7.4 Fine-tuning

The uploaded dataset was loaded using the load_dataset() function, which
included the predefined train-test set. In working with the HuggingFace frame-
work, the Trainer class from Transformers is essential as it handles the most
common training scenarios. This is achieved by loading the DistilHuBERT
model with the AutoModelForAudioClassification class, automatically adding
the appropriate classification header for the framework. Additionally, the labels
were retrieved from the dataset and used as an argument.

Next, the training arguments was defined. These include the batch size, gradient
accumulation steps, amount of training epochs, and the learning rate. Finally,
the model was initiated and trained using the .train() method. The setup of
training arguments can be seen reviewed in C.2.

Additionally, to compare the performance of different cross-validations schemes,
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the K-fold technique was implemented for the fine-tuning process. The KFold
class from sklearn.model_selection was used to create 7 splits and each fold
was used for performance validation.

7.5 Evaluation script

To evaluate the fine-tuned models on unseen data outside the data augmented
training set, two Python scripts were created to compare the accuracy of each
model and generate confusion matrices and ROC-curves. These scripts utilized
the evaluation dataset mentioned in 7.1.

7.5.1 Single evaluation script

The first script evaluated a specific model loaded from the pipeline library
and created a log file containing the prediction for each sample in the evaluation
dataset. It also generated a confusion matrix based on the true and predicted
labels. This was implemented by iterating over each subdirectory in the evalua-
tion dataset. The files were then read one by one using the torchaudio.load()
method, and the selected model was employed to classify the audio file. The
label with a score closest to 1 was extracted, and if it matched the subdirectory
name, it indicated a correct prediction by the model. The number of correct
predictions was stored in a variable representing the total number of correct
guesses. To calculate the accuracy of each label individually, another variable
was maintained to track the number of correct guesses for each subdirectory.
The true and predicted labels were saved to arrays for later use in generating
the confusion matrix and ROC-curve.

Each prediction was written to the log file, and in the end, a comprehensive
accuracy report was generated based on the recorded counts. This report in-
cluded the accuracy percentage for each label and the overall accuracy. Finally,
the confusion matrix was generated using the confusion_matrix() function
from the sklearn.metrics library, using the true and predicted labels.

7.5.2 Comparison script

During the fine-tuning process, additional models were created. To facilitate
quick comparison among these models, a simple script was developed to generate
only the overall accuracy score. Each model reference was loaded and iterated
over, replicating the process used in section 7.5.1.

7.6 Hyper parameter adjustments

In the process of fine-tuning, additional changes to the hyper parameters were
manually determined by using the evaluation scripts mentioned in section 7.5.
Other automated tuning methods could have been utilized, such as Bayesian
optimization, Random search, or Grid search [75]. These methods, if set up
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properly, can alleviate the tediousness of manual tuning [75]. Despite this, the
manual experiments quickly exhibited fine results. The first couple of training’s
were set at around 10 epochs with various batch sizes, gradient accumulation
steps, and learning rates. It revealed an unstable training and validation loss
throughout the epochs but maintained a high training accuracy at around 100%.
However, when tested on the unseen evaluation dataset, the performance was
deemed mediocre, scoring around a 60-80% accuracy.

After additional parameter adjustments and increasing the epochs the model
performance became worse. Then, epochs was adjusted to a lower value and en-
hancements in the model evaluation started to generalize better. It was lowered
at the epoch steps right before an increase in training and validation loss were
occurring. Moreover, as epochs were lowered, new experiments were made by
adjusting, gradient accumulation, batch size and learning rate. Increasing the
batch size revealed better generalization to the unseen data at around 80-87%
accuracy.

At last, by increasing the gradient accumulation, the model finally crossed the
90% mark as being the minimum requirement for the model accuracy. This was
true to both the train-test and K-Fold cross-validation. This performance was
achieved with around 3-4 epoch steps, 8-16 batch size, and 3-5 gradient accu-
mulation and a learning rate of 5e-05. The validation loss started at 0.0492 and
ended on 0.0024 and training loss from 0.043 to 0.001. Additionally the model
training accuracy was 99% as seen on the training results on Table 1.

Training loss Epoch Step Validation Loss Accuracy

0.0433 1.0 382 0.0492 0.9877
0.0022 2.0 765 0.0061 0.9982
0.0013 3.0 1146 0.0024 0.9994

Table 1: Training result for the highest performing train-test model

7.7 Inference API request

The HuggingFace platform provides a simple JavaScript HTTP POST request
proposition [49] to be used for communicating with uploaded models shown on
listing 4.

1 // request function

2 async function query(filename) {

3 const data = fs.readFileSync(filename);

4 const response = await fetch(

5 "api -inference -url",

6 {
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7 headers: { Authorization: "Bearer Token" },

8 method: "POST",

9 body: data ,

10 }

11 );

12 const result = await response.json();

13 return result;

14 }

15
16 // usage

17 query("sample.wav").then(( response) => {

18 console.log(JSON.stringify(response));

19 });

Listing 4: Inference API example

Since the model is tagged with audio-classification the API accepts audio
data by default in various formats. An example of the POST request made to
one of the models is shown on the following JSON data on listing 5.

1 [

2 { score: 1, label: ’slap’ },

3 { score: 1.4187427274658937e-12, label: ’growl ’ },

4 { score: 6.623589480711511e-13, label: ’acid’ },

5 { score: 6.345010237704396e-13, label: ’brass ’ },

6 { score: 2.0200807443904872e-13, label: ’808’ }

7 ]

Listing 5: JSON result

With this end-point available the only task left is to connect the InferenceAPI
with the Electron framework and handle the networking communication as well
as updating the GUI to show when the application is waiting for a response.

7.8 Electron app

The Electron framework comprises a main and renderer process [21]. The
main process serves as a Node.js backend process responsible for running the
Electron instance and managing its functionalities. This process initializes the
application window and manages system-level events and interactions [21]. Sub-
sequently, it can be employed to load existing directories and create new ones
for the output of classifications. Conversely, the renderer process is tasked
with rendering the user interface of the application using various web technolo-
gies. It facilitates displaying the results of classifications and interacting with
the model. The actual GUI can be implemented using standard HTML and CSS

code, utilizing the renderer script to alter elements during runtime.
The data flow of an Electron application is maintained by Inter-Process Com-
munication (IPC) [24], which is implemented by subscriber functions that listen
whenever a specific keyword is sent to the IPC process. These channels, known
respectively as ipcMain and ipcRenderer, can exchange data within the argu-
ments of the communication methods .on() and .send() [21].
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7.8.1 main.js process

Electron is shipped with a class called dialog, which opens the file explorer of
the operating system [22]. The parameters of the dialog class can be modified
to only include directories with file formats of .wav and .mp3. Additionally, by
passing the ’openDirectory’ keyword, the dialog window is informed to return
the chosen directory name. The directories are then saved as variables that can
be used to load the samples within the directory and create new directories for
the categories in the target directory.

To create new directories, move data from one directory to another, and load
filenames, the node:fs (filesystem) class in Node.js can be utilized [68]. It is
important to mention that Electron embeds Node.js into its binary, making the
default node modules available [25]. The selected directories could be used in
conjunction with fs.readdirSync() to retrieve the file names of the samples
[68]. However, the fs.readdirSync() only returns the actual file name and
in order to use the sample for the InferenceAPI request, the entire file path is
required. To manage the sample paths the node:path class can be put to use
[69]. The path.join() method can be used to join the selected sample folder
with the file names which finally can be passed into the InferenceAPI request.
All the paths were then connected by passing the root path with the file name
and collected in an array.

Now, with the sample paths concatenated, the request mentioned in section
7.7 could be implemented. The API is only able to handle one sample at a time
which means a request for each individual sample is required. This problem can
be handled by using the JavaScript Promise object which represents the comple-
tion of an asynchronous operation [64]. First of all, the request was implemented
with the proper headers in an async function called apiCall(filePath) which
accepts a single file path. The fs.readFileSync() method was then used in-
side the function to pass the audio data to the data argument of the request.
Another async function was then implemented called runMultipleApiCalls()

to map each file path into a Promise object of the apiCall() function. This
essentially creates a queue of requests that are able to be executed by running
the Promise.all(promises) method which is shown on listing 6.

1 async function runMultipleApiCalls(filePaths , callback) {

2 const promises = filePaths.map(filePath => apiCall(filePath

));

3 try {

4 const results = await Promise.all(promises);

5 // Call the callback function with results

6 callback(null , results);

7 } catch (error) {

8 // Call the callback function with error if any

9 callback(error);

10 }

11 }

Listing 6: Request queue function

32



Dependent on whether any errors occurred during the request process, the
method returns the JSON data shown on listing 5 in section 7.7.

The results of the response were collected in an array, which was used to unpack
the JSON data. Since the received data was a dictionary of the predicted score
and the respective label, the label and score closest to 1 had to be extracted.
An extraction function was implemented and can be reviewed in appendix C.3.
The function returns the predicted label, which could be used to create a new
sub-directory in the target folder with the same name (see appendices C.4 and
C.5). These aggregated functions can then be run for each response, copying
the samples to each category sub-folder that matches the label.

The shell class in Electron was used to implement opening the containing
folder after the samples had been sorted in a file explorer instance [27]. The
.openPath() function was used and passed the ’destinationFolder’ as the
argument.

7.8.2 renderer.js process

A simple HTML and CSS page was created to interact with the system, con-
taining elements such as labels and buttons. Additionally, it provided feedback
whenever something was executed in the program. Each button was assigned
an eventListener() in the renderer script, which waits for a click event to
occur [65]. All interactions are connected to either a ipcRenderer .send() or
.invoke()method, which notifies the main process to execute its back-end func-
tionality. .send() is specifically used for one-way communication [26], whereas
.invoke() is used for two-way communication [23]. Thus, invoking a process al-
lows data to be exchanged between the renderer and main processes within the
same function. Additionally, a loading animation screen was added to indicate
that the system was performing a time-consuming task

8 Evaluation

To conduct the evaluation various elements of the system can be assessed.

8.1 Baseline testing

Given that Sononym offers a trial period, ADSR Sample Manager is free, and
Ableton Live 12 is owned, a baseline test can be conducted. This test will involve
deploying the evaluation dataset into each system to assess their performance
and compare them with the implemented system.

8.2 Model metrics evaluation

Analyzing a DL model’s metrics reveals its prediction performance in certain
areas [11]. In classification models, common metrics include accuracy, precision,
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recall, F1 score, AUC-ROC and the confusion matrix [11]. The confusion matrix
shows actual versus predicted values. Accuracy measures overall prediction
correctness. Precision indicates how often the model is correct when predicting
a class [3]. Recall indicates whether the model can find all objects of the class
[3]. The F1 score, or F-measure, is the harmonic mean of precision and recall
[11]. The AUC score indicate how well a model can produce relative scores
to discriminate between positive or negative instances across all classification
thresholds [78].

8.3 Model performance

It is important that prediction requests sent to the HuggingFace API do not
take too long. The prediction latency of the DL model can be evaluated by
describing the distribution of prediction times [50]. This latency can be used to
calculate desired percentiles (e.g., p50, p90, p95, p99) [50]. These percentiles
define the latency experienced by users [50]. The p50 percentile is the median
measure of typical user latency, p90 represents the majority, p95 covers almost
all users, and p99 helps to understand the tail latency, ensuring that the slowest
1% of requests are within acceptable limits [50]. Additional experiments can
simulate multiple requests as the application would make, such as 50, 75, and
100 prediction requests sent to the model. Since the number of unsorted bass
samples can vary, extreme cases should be considered. The same measures are
used but account for additional requests. The latency can be timed by starting
a timer before a prediction is made and stopping it when the model is finished.

8.4 Interview & usability testing

To understand how real users interact with the system, a usability test will
be conducted. If the testers have in-depth experience with a DAW, additional
interview questions will be asked regarding music composition. The test will
begin with background questions, followed by usability tasks during which par-
ticipants will answer questions after certain tasks. Post-test questions will be
asked afterward. If the user is knowledgeable about DAWs and music composi-
tion, the interview will conclude with creative-related questions.

8.5 Listening test

Various online forums are highly passionate about music composition, with some
focusing on specific areas or sub-genres. These forums can be leveraged to
evaluate the EDM community’s ability to recognize modern bass sounds. This
will be done through an online listening test questionnaire. Participants will
listen to 7 audio files representing different bass sounds and select the correct
category from a set of multiple-choice options. The questionnaire was posted
to two Reddit communities, /r/musicproduction and /r/edmproduction, which
have 407,000 and 751,000 members, respectively.
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9 Results

9.1 Framework comparison

9.1.1 Sononym

Sononym is both a plugin and a standalone application, which means it can be
utilized within and outside of a DAW. The evaluation dataset was integrated
into the Sononym sample manager. During the application’s usage, it quickly
became apparent that it categorizes nearly all low-frequency samples into a
broad category labeled ”Bass & Low Keys,” as illustrated in Figure 10a.

(a) Bass categories in the
Sononym App

(b) Sononym similarity
accuracy with growl bass

Figure 10: Sononym

A few of the brass samples were categorized as ”Stabs & Orchs,” referring
to orchestral sounds. However, all samples were clearly synthesized. Addi-
tionally, the brass sounds were categorized as ”Explosion & Shots.” The acid
category was very vague, with some samples being categorized as drum sounds
like ”Toms” or ”Snare,” or simply not recognized in any category. The Sononym

Figure 11: Sononym similarity accuracy of growl (left) and 808 bass (right)

app features a ”search-by-similarity” function. A growl and an 808 sample were
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selected, and a pie chart of the first 20 recommended files was created, as shown
in Figure 11. The left side shows the growl bass predictions, and the right side
shows the 808 predictions. The app did not categorize them but identified them
as similar sounding and displayed them in random order. The similarity accu-
racy for the growl ranged from 49-57%, as seen in Figure 10b, while the 808
sample showed a higher similarity range of 61-69%.

9.1.2 ADSR Sample Manager

The ADSR Sample Manager, like Sononym, functions as both a plugin and a
standalone application. Unlike Sononym, it employs a different approach to
keyword tagging, eschewing AI in favor of utilizing file and folder names. For
instance, a file named ”loop reese bass.wav” would be recognized as contain-
ing the tags ’loop’, ’reese’, and ’bass’, categorizing it accordingly. However,
generic names like ”sample 1.wav” do not yield any category registration. Con-
sequently, all evaluation dataset names were altered to remove any categorical
associations, preventing automatic sorting. Nevertheless, the ADSR Sample
Manager successfully identified samples as loops or one-shots.

When using folder names, it recognized categories such as ’808’, ’Acid’, ’Brass’,
and ’Reese’, sometimes placing them under an overarching ’bass’ category. How-
ever, if all samples are placed in a ’bass’ directory, they will all receive the ’bass’
tag indiscriminately.

9.1.3 Ableton Live 12

Figure 12: Ableton similarity accuracy with growl (left) and 808 bass (right)

The new similarity search feature introduced in Ableton Live 12, as cited by
[2], ”calculates a similarity score between sounds based on spectral and temporal
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characteristics, timbre, pitch, and other attributes”. This functionality is acces-
sible only when the DAW is launched. However, it lacks the option to exclude
specific content, meaning the entire DAW library is utilized. Nonetheless, users
can narrow down the search to ’user-added’ and ’samples’ categories. A similar
approach to Sononym was adopted, displaying the first 20 similar files of a growl
(left) and 808 (right) bass in Figure 12.

9.1.4 Model comparison

The functionality of the implemented model differs slightly from the similarity
search in other products. Predictions can be retrieved by deploying the evalu-
ation dataset to the model. Once again, the 808 and growl bass were selected
for comparison against the products. The predictions are shown in Figure 13.

Figure 13: Model predictions of growl (left) and 808 bass (right)

9.2 Model metrics

9.2.1 Accuracy

808 Acid Brass Growl Reese Slap Sub Overall

87.5% 77.78% 100% 89.47% 100% 95.24% 93.33% 91.3%
28/32 14/18 16/16 17/19 17/17 20/21 14/15 128/138

Table 2: Accuracy table

The accuracy was measured based on predictions made on the unseen dataset,
as shown in Table 2. It indicates that the best-performing labels are Brass and
Reese, achieving a 100% accuracy, while the lowest accuracy is observed for the
Acid label, with 77.78%. The overall accuracy across all labels was calculated
to be 91.3%.
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9.2.2 Confusion matrix

Figure 14: Confusion Matrix

Since accuracy solely reflects correct predictions, the confusion matrix be-
comes instrumental in analyzing the incorrect ones. Illustrated in Figure 14, the
majority of high values on the diagonal line signify correct predictions, while
numbers off the curve denote incorrect guesses. Evaluating the model’s recog-
nition performance involves deriving insights from the classes the model deems
similar, shedding light on labels that require improvement.

9.2.3 Precision, recall and F1-scores

A precision, recall, and F1-score measurement table is presented in Figure 3.
A high precision value indicates that the class labels predicted as positive are
mostly correct [11]. Similarly, a high recall value indicates that most of the
actual positives are correctly identified by the model [11]. Lastly, a high F1-
score signifies balanced performance, exhibiting concurrent high precision and
high recall values.
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precision recall f1-score support

808 1.00 0.88 0.93 32
acid 0.88 0.78 0.82 18
brass 0.80 1.00 0.89 16
growl 0.94 0.89 0.92 19
reese 0.85 1.00 0.92 17
slap 1.00 0.95 0.98 21
sub 0.88 0.93 0.90 15
accuracy 0.91 0.91 0.91 138
macro avg 0.91 0.92 0.91 138
weighted avg 0.92 0.91 0.91 138

Table 3: Precision, recall, and f1-scores

9.2.4 AUC-ROC

Figure 15: ROC curve and AUC score

The AUC-ROC (Area Under the Receiver Operating Characteristic Curve)
is a crucial metric for evaluating the performance of classification models, par-
ticularly in terms of their ability to distinguish between classes [78]. A perfect
model would achieve an AUC of 1, indicating perfect classification of all positive
and negative instances. Conversely, a model performing no better than random
guessing would yield an AUC of 0.5 [78]. In the ROC curve illustrated in Figure
15, the AUC is 0.81.
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9.3 Prediction Latency

Table 4 presents the prediction percentiles measured in milliseconds (ms) by
the implemented model. It indicates that the typical user will experience laten-
cies lower than 38.27 ms, suggesting that the model performs well for the vast
majority of use cases. The 90th and 95th percentiles of predictions are under
77.67 and 80.42 ms, respectively, indicating that the model maintains good per-
formance even under higher loads. Finally, the 99th percentile of predictions is
under 124.20 ms, with the remaining 1% possibly experiencing slower response
times.

requests p50(ms) p90(ms) p95(ms) p99(ms)

1 38.27 77.67 80.42 124.20
50 4026.14 4307.55 4360.1 4525.91
75 5998.46 6328.57 6438.35 6578.97
100 8005.75 8397.23 8523.02 8743.86

Table 4: Latency simulation of 50, 75 and 100 requests

In contrast to individual requests, additional latency simulations of multiple
requests are shown in Table 4. For instance, 50 sample predictions may take
up to 4.5 seconds or more but should perform at around 4 seconds for most
use cases. The extreme case at 100 reveals a time of 8.7 seconds. When tested
on 50 samples using the inference API, it took 2.33 seconds to complete, en-
compassing, file load, prediction latency, and networking latency. This suggests
that the HuggingFace servers may accelerate predictions, as it performs even
better than the local equivalent. Additionally, processing 100 samples using
the InferenceAPI took 6.17 seconds, as shown in Table 5. Scripts for percentile
calculations can be reviewed in Appendices C.6 and C.7.

requests latency

50 2330 ms
100 6170 ms

Table 5: Inference API latency from the web-app

9.4 Usability test

The usability test involved three participants, whose details are available in Ap-
pendix D. Participants had musical experience ranging from 7 to 16 years, with
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two having 4 to 14 years of DAW experience. Their musical tastes encompassed
genres like hip hop, metal, R&B, pop, rock, and orchestral. Only one partic-
ipant was familiar with sample managers and had experience with the XLN’s
XO sample manager plugin mentioned in Section 1, finding it too complicated.

When asked to define a bass sound, all participants described it as character-
ized by low tones on the frequency spectrum, typically ranging from 20 to 500
Hz, and noted that various instruments could produce these low notes. They
were also asked about bass categories they knew, with participants mentioning
categories like 808, growl, wide synth EDM, and analog bass, among others.

After the personal background interview, participants were introduced to the
application interface and asked to describe what they saw. All participants
noted the application title and three buttons and correctly identified their func-
tions. Usability tasks were conducted next, with all participants completing
them without issues. However, two participants initially did not realize that the
dialog box was scrollable, causing confusion until they discovered its scrollabil-
ity. The third participant recognized it immediately.

The participant with no DAW experience found the categories confusing but
understood that some sorting had occurred. Opening the output folder re-
vealed organized samples, which surprised some participants, eliciting positive
responses.

Post-test questions revealed that while some struggled with the scroll bar, they
found the application simple and fulfilling its promises. Suggestions for improve-
ment included enabling the sort button only after selecting both directories and
providing more on-screen text like a brief tutorial.

Participants with DAW experience found the application easy to use, noting
its clarity in categorizing bass samples. However, the participant with no DAW
experience found it less intuitive but still easy to use.

Suggestions for improvement included disabling the sort button until both di-
rectories are chosen, providing more on-screen text, enabling the selection and
sorting of entire sample libraries, and creating a more breathable interface.

In response to a creative-oriented question, participants with DAW experience
mentioned using Splice for gathering samples. They described methods for se-
lecting bass samples for use in music production, such as downloading samples
and using Ableton sample explorer or directly dragging and dropping samples
from Splice into their DAWs.

41



9.5 Questionnaire

The questionnaire received 21 answers. The first question revealed the wide
span of musical backgrounds of the participants seen on Appendix E.1. The
results of the 7 listening tests can be seen on Appendix E.2 and the overall
accuracy of the participants can be seen on Table 6.

808 Acid Brass Growl Reese Slap Sub

86.4% 61.9% 100% 85.7% 76.2% 90.5% 85.7%

Table 6: Participants listening test

10 Discussion

One of the primary goals of this research was to develop and evaluate a machine
learning model for classifying different types of musical sounds, including ’808’,
’acid’, ’brass’, ’growl’, ’reese’, ’slap’, and ’sub’. Specifically, the study sought to
determine the effectiveness of the model in accurately identifying these sounds
and to compare its performance against existing sample manager products.

The results demonstrate that the model trained using the train-test split cross-
validation achieved high overall performance, with an accuracy of 91.3%. Mean-
while, the model evaluated with k-fold cross-validation also performed well,
reaching an accuracy of 90.58%. Notably, the precision and recall metrics were
particularly strong for the ’slap’ and ’brass’ categories, with precision scores of
1.00 and 0.80, respectively, and recall scores of 0.95 and 1.00. The F1-scores for
these categories were also high, indicating a balanced performance in terms of
precision and recall. The high precision and recall for the ’slap’ class suggest
that the model is highly effective at identifying this type of sound, likely due
to its distinct auditory features. In contrast, while the ’acid’ category showed
a lower recall of 0.78, the precision remained relatively high at 0.88, indicating
that the model was more conservative in its predictions, potentially avoiding
false positives but missing some true positives.

However, compared to the work of A. Chhabra and N. Gajhede et. al. men-
tioned in Section 3, the overall accuracy does not perform as well. This might
attributed to the training data was selected with a personal bias. It can be as-
sumed that with access to more resources, the generalization can improve even
further. Using data augmentation may have enhanced the overall generalization,
as the original dataset only consisted of 210 audio samples, but it could also have
affected the quality of some samples. Conclusively, affecting its generalization.
Since the hyperparameters were manually configured for this project, it would be
valuable to explore the results of using automated techniques such as Bayesian
optimization, Random search, or Grid search. Additionally, only some mod-
els in the HuggingFace environment support direct regularization techniques as
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dropout-layers. However, it should be possible to add custom configurations
with non-supported models like the DistilHuBERT model but would require
further exploration. This could effectively also enhance the generalization of
the model.

One significant aspect of the model’s performance is the AUC score of 0.81. An
AUC score of 0.81 indicates that the model has a good level of discrimination,
effectively distinguishing between positive and negative classes approximately
81% of the time [78]. However, this score should be improved for a commercial
application.

The confusion matrix presented provides a detailed breakdown of the model’s
classification performance across different sound categories. This matrix helps
to visualize the true positives, false positives, false negatives, and the overall
accuracy for each class. Overall, the confusion matrix indicates a robust perfor-
mance of the model across most categories, with particularly strong results for
’808’, ’brass’, ’growl’, ’reese’, and ’slap’. The minor misclassifications suggest ar-
eas for potential improvement, particularly in distinguishing ’acid’ sounds from
’brass’ and ’growl’. These insights align with the high AUC score of 0.81, con-
firming the model’s effectiveness in distinguishing between the various classes
while also highlighting specific areas for enhancement.

The latency results indicate a well-performing model with generally fast re-
sponse times, which is promising for real-time applications. Response time is
highly dependent on the number of samples the user wants to sort. For exam-
ple, it took 6.17 seconds using the Inference API to sort 100 samples, but users
could likely surpass this amount. Sorting many samples will eventually exceed
10 seconds. As researchers have found, users lose interest after 10 seconds [67],
so it might be beneficial to include a progress bar for additional user-friendliness
when processing takes longer. Despite this, a study in the realm of AI-based
task management tools suggests that users appreciate the enhanced productivity
and efficiency these tools offer, which can justify longer wait times [71]. Users
would likely start the sorting algorithm and gladly wait while doing other things
in the meantime, especially when the AI adds significant value or enhances the
user experience.

Comparing the quality of commercial products revealed that their automatic
organization features failed to subcategorise the provided bass samples inde-
pendently. Manual tagging, sorting, and labeling are required to sort the bass
samples correctly. With this in mind, the implemented system far outshines
the competitors in terms of autonomous subclass organization. This superi-
ority was demonstrated by the web app’s ability to categorize every sample
with few misclassifications. However, the ”search-by-similarity” function avail-
able in Ableton and Sononym provided some comparable results. It should
be noted that this function is different from automated organization since it
only temporarily recommends similar-sounding samples. Nevertheless, it still
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provides insights into whether the function can recognize bass samples in the
same subcategory. Ableton showed similar performance in recommending sam-
ples in the 808 category, with the implemented system achieving around 85%
accuracy. Sononym, however, only achieved an accuracy of close to 50%. The
differences between the systems were particularly evident with the growl bass
sample. Ableton and Sononym recommended similar samples with accuracies
of 10% and 21.1%, respectively, while the implemented system scored 89.5% for
the growl bass. This demonstrates that even the ”search-by-similarity” function
is outperformed by the implemented system.

As additional research for the project, empirical evidence was gathered to as-
sess how well the modern bass taxonomy is recognized by the EDM community.
The data collected through the questionnaire indicates a significant proficiency
among EDM musicians in distinguishing between different sound categories.
Participants consistently identified and categorized sounds with a high degree
of accuracy. Specifically, brass received a 100% score, indicating that this sound
is more recognizable due to its association with an acoustic instrument, despite
being synthesized. The 808 and sub categories also scored well, as these are
widely known synthesized basses. The growl bass showed a similar result, as its
distinct sound sets it apart from others. The sound recognized the least was the
acid bass, suggesting that this sound design technique is not as widely known in
the community. Overall, this research demonstrates that musicians in the EDM
community possess the ability to accurately distinguish sounds based on their
categorical characteristics and respective modern terms.

The other goal of the study was to implement a user-friendly interface evaluated
with thorough usability testing. Initial reactions found the interface intuitive
with some room for improvement as adding more descriptive text for buttons
and labels and highlighting the ability to scroll through sorted samples dialog
box. The usability tests proved that participants with DAW experience quickly
understood the purpose. The tests included remarks like despite making some
misclassifications the app would most likely assist musicians in sorting their bass
samples. As it was suggested having the bass sample sorted to some accurate
degree is still better than not sorting them at all. Ultimately showing accep-
tance of mishaps in the algorithm. Though a difference in usage of bass samples
were revealed as one stated they mostly use plugin presets for bass sounds. This
could be attributed to plugins presets provide more customization than a sam-
ple. Though, it ultimately comes down to the individual musicians workflow.
The implemented web-app proves leverage in the sound selection process for
musicians that tends to use bass samples rather than the use of plugins.

11 Conclusion

The purpose of this thesis was to explore the realm of sample managers and deep
learning techniques for automatic classification and sorting of bass samples, as
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well as implementing a user-friendly graphical interface that integrates a deep
learning model capable of accurately categorizing the modern bass taxonomy
according to their sonic attributes.

Through comprehensive evaluation, the deep learning model demonstrated ex-
cellent performance metrics. The model achieved an accuracy of 91.3% and an
AUC score of 0.81, indicating a strong ability to distinguish between different
classes of bass sounds. Additionally, the precision and recall scores across vari-
ous categories such as ’808’, ’brass’, ’growl’, ’reese’, and ’slap’ were notably high,
underscoring the model’s robustness and reliability in real-world applications.

Usability testing of the graphical interface also yielded positive results, con-
firming that the system is not only effective but also accessible and intuitive for
users. The integration of the deep learning model within this interface allows
users to efficiently manage and classify their bass samples with minimal effort,
enhancing both productivity and user satisfaction.

Despite these successes, there is room for improvement. Some categories, such
as ’acid’ sounds, exhibited occasional misclassifications, suggesting that further
refinement of the model and additional training data could enhance overall ac-
curacy. Additionally, ongoing user feedback will be essential in iterating on the
interface design to ensure it meets the evolving needs of users.

In conclusion, this project has successfully implemented a high-performing, user-
friendly product that significantly advances the field of sample management and
classification. While there are areas for further development, the foundation laid
by this thesis provides a strong basis for future enhancements, ensuring that the
system remains both cutting-edge and highly functional.

12 Further work

While this thesis successfully developed and evaluated a deep learning model for
the classification and sorting of bass samples, several avenues for future research
and development can enhance the system’s performance and usability. Enhanc-
ing the training dataset with more diverse samples could improve the model’s
generalization capabilities. Exploring different architectures or fine-tuning ex-
isting ones, such as experimenting with larger or more complex versions of the
DistilHuBert model, could yield better performance. Focused efforts to reduce
misclassifications, particularly in categories like ’acid’, can involve refining fea-
ture extraction methods or using ensemble methods to combine predictions from
multiple models. Implementing techniques like model pruning, quantization, or
using more efficient inference engines can help reduce prediction latency. Ex-
ploring a local model runtime instead of being dependant on the InferenceAPI
as well as hardware acceleration options such as GPUs can significantly decrease
prediction times.
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Integrating real-time feedback mechanisms to provide users with immediate
insights on their samples can improve usability. Allowing users to customize
classification parameters or add new categories dynamically can make the sys-
tem more flexible and user-friendly. Conducting more extensive usability testing
with a broader range of users, including professional sound engineers and ca-
sual users, can provide deeper insights into the interface’s strengths and areas
for improvement. Integrating plugin compatibility with DAWs can streamline
workflows for music producers even further. Extending the classification capa-
bilities to other types of sound samples, such as instruments, vocals, or effects,
can broaden the system’s applicability. Implementing similar techniques for the
classification of genre or mood can open up new research and application areas.
By addressing these areas, the project can evolve into a more robust, versatile,
and user-friendly tool that meets the diverse needs of its users. Future work in
these directions will not only enhance the current system but also contribute to
the broader field of audio classification and music technology.
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A Sample Manager Interface

A.1 Sononym interface

A.2 ADSR Sample Manager interface
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B UI mockup

B.1 Web App Design

Figure 16: Web app waiting on request

Figure 17: Web app finished fetching predictions and sorting samples
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C Code examples

C.1 Envelope method

1 def envelope(y, rate , threshold):

2 mask = []

3 y = pd.Series(y).apply(np.abs)

4 y_mean = y.rolling(window=int(rate /20),

5 min_periods =1,

6 center=True).max()

7 for mean in y_mean:

8 if mean > threshold:

9 mask.append(True)

10 else:

11 mask.append(False)

12 return mask , y_mean

C.2 Training arguments

1 training_args = TrainingArguments(

2 f"{model_name }-{pre_name}",

3 evaluation_strategy="epoch",

4 save_strategy="epoch",

5 learning_rate =5e-5,

6 per_device_train_batch_size=batch_size ,

7 gradient_accumulation_steps=gradient_accumulation_steps ,

8 per_device_eval_batch_size=batch_size ,

9 num_train_epochs=num_train_epochs ,

10 warmup_ratio =0.1,

11 logging_steps =5,

12 load_best_model_at_end=True ,

13 metric_for_best_model="accuracy",

14 fp16=False ,

15 push_to_hub=True ,

16 )

Listing 7: Dataset with training split

C.3 Label extraction

1 function findClosestTo1(arr)

2 {

3 // Initialize variables to store the closest object and its

distance from 1

4 let closestObj = arr [0];

5 let minDistance = Math.abs(arr [0]. score - 1);

6
7 // Loop through the array to find the object with a score

closest to 1

8 for (let i = 1; i < arr.length; i++) {

9 // Calculate the absolute difference between the

current object ’s score and 1

10 let distance = Math.abs(arr[i].score - 1);
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11
12 // If the current object ’s score is closer to 1 than

the previous closest object , update the closest

object and the minimum distance

13 if (distance < minDistance) {

14 minDistance = distance;

15 closestObj = arr[i];

16 }

17 }

18 console.log(closestObj.label);

19 return closestObj;

20 }

C.4 Prediction handling

1 function handlePrediction(filePath , result) {

2 console.log(result);

3 prediction = findClosestTo1(result);

4
5 const categoryPath = path.join(_destinationFolder ,

prediction.label);

6 console.log(categoryPath);

7
8 if (folderExistsOrCreate(categoryPath)) {

9 copyFileToDirectory(filePath , categoryPath);

10 } else {

11 return;

12 }

13 }

C.5 File copying

1 function copyFileToDirectory(filePath , destPath)

2 {

3 // Get the filename from the filePath

4 const fileName = path.basename(filePath);

5
6 // Construct the destination path

7 const finalDestination = path.join(destPath , fileName);

8 console.log(finalDestination);

9
10 // Copy the file to the target directory

11 fs.copyFile(filePath , finalDestination , (err) => {

12 if (err) {

13 console.error(’Error copying file:’, err);

14 return;

15 }

16 console.log(‘File ${fileName} copied to ${destPath}‘);
17 });

18 }
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C.6 Single latency script

1 for sample in os.listdir(eval_dir):

2 waveform , sample_rate = torchaudio.load(f"{eval_dir }/{

sample}")

3
4 if sample_rate != 16000:

5 resampler = torchaudio.transforms.Resample(sample_rate ,

16000)

6 waveform = resampler(waveform)

7
8 waveform_np = np.array(waveform [0]) # convert to numpy

array and cut channel

9
10 start_time = time.time()

11 _ = model(waveform_np) # classify sample

12 end_time = time.time()

13 latency = (end_time - start_time) * 1000 # Convert to

milliseconds

14 latencies.append(latency)

C.7 Multiple latency script

1 def simulate_multiple_requests(latency_distribution ,

num_requests =1000, num_predictions =100):

2 total_latencies = []

3 for _ in range(num_requests):

4 simulated_latencies = np.random.choice(

latency_distribution , num_predictions)

5 total_latency = np.sum(simulated_latencies)

6 total_latencies.append(total_latency)

7
8 total_latencies = np.array(total_latencies)

9
10 p50 = np.percentile(total_latencies , 50)

11 p90 = np.percentile(total_latencies , 90)

12 p95 = np.percentile(total_latencies , 95)

13 p99 = np.percentile(total_latencies , 99)

14
15 return p50 , p90 , p95 , p99
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D Evaluation interviews

D.1 Person A

The goal of this project is to enhance sample managers’ ability to distinguish
between harmonic bass samples categories by using artificial intelligence to au-
tomatically sort them. Your tasks will involve performing specific actions and
providing feedback on your observations or any unexpected results. But first of
all we will start with some questions.

D.1.1 Pre-questions

1. Q: How many years of musical experience do you have?

2. A: 15 years experience

3. Q: How many years of experience do you have using a digital
audio workstation?

4. A: 4 years experience

5. Q: Do you know what a sample manager is?

6. A: No, not really

7. Q: If yes, could you try to explain it?

8. A:

9. Q: What genres of music do you listen to?

10. A: Hip hop, Metal, EDM, Pop, Rock, Orchestral, Folk

11. Q: How would you define a bass sound?

12. A: Sound that are based on frequencies in the low end of the frequency
spectrum around 0-500 Hz. Low octaves. Placed to the left of middle C.

13. Q: To the best of your recollection, can you name any bass sound
categories?

14. A: growl, 808, el-bass, contrabass, MIDI-bass, sang-stemme bass, stor-
tromme

Now I’m gonna show you the interface of the sample manager application.
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D.1.2 Interface exposure

1. Q: With the exposure of the graphical interface what do you see
on the screen?

2. A: I see 3 buttons, 2 dark and one white. I assume that the two first button
is for finding folder which contains audio samples. The destination one is
probably the folder where the sorted versions appear.

Now the tasks begin, your goal is to select a folder on the computer filled
with bass samples and sort in relevance to their specific characteristic defining
behavior. However, we will do this in small steps.

D.1.3 Usability tasks

• TASK 1: Select the first directory from the desktop called ”un-
sorted samples” containing various sound samples.

• TASK 2: Select the second directory from the desktop called
”sample folder” a output target directory for the sorted samples.

• TASK: 3 Submit your selection.

• Q: What do you see on the application now?

• A: It has taken the samples I gave to the AI and it has sorted it for me,
in the various categories. The closer it is to 808, the more it is recognised
as a 808 bass. The button underneath will probably open the folder with
the sorted samples.

• Q: How would you interact with the application to see if the rest
of the files?

• A: Ahh, this make more sense. I would like a indicator that I could actually
scroll through the samples. Now it show the application has sorted all the
samples in the various categories (So he didn’t find the scroll function at
first, and one acid bass was placed in the brass category)

• TASK 4: Open the output folder from the application.

• A: Ahh nice, the application actually made folders for all the categories.
That’s smart, I didn’t expect that. I didn’t realise at first that, that was
what it did. But it makes great sense in a technical way in how it is done.
I would like the folders to be capitalized

• TASK 5: Close the file explorer.

• TASK 6:Return to the previous directory selection page.
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D.1.4 Post-questioning

• Q: Did anything unexpected happen or areas where you felt restricted?

• A: The scroll thing. I felt like the concept was very intuitive. I already feel
like I know how to use it. It pretty much did what it promised. I like this
because programs are always filled with so many functions, social media
advertisements, and analytics that they are tedious to use. But it is really
cool the applications is straight on the problem, like ”I only do this”. It
almost feels foreign because I’m used to so many functions at a time, but
i really enjoy the simplicity of this app.

• Q: Could you try to explain why you had to select two different
folders?

• A: I needed to choose the destination folder because i don’t want to clutter
the original folder. Since the first folder isn’t categorised with folder. How-
ever, you could just pick the same folder and then the application would
sort the files in that instead. But if I want to select a specific folder to sort
it to it is nice to know where it goes. It feels a bit like winraw for audio
files, like having different possibilities of unfolding audio data in different
ways. It is really nice as if you have a sample library you can just select
the destination folder to the sample library and then it would sort and
make it easier for me to organise my files. This is actually amazing. This
is a much better instead of manually creating folders.

• Q: Should the application only have one folder selection?

• A: No, i actually prefer the possibility to set the specific destination as i
know exactly where it goes at the same time. Then I don’t have to manually
drag it to my samples library. I think the button should say something like
”Select your library” - then i would assume it would nudge the users to
choose their existing library.

• Q: Do you think this would help musicians organizing their audio
files?

• A: It would 100 percent make it much easier. Especially since other ex-
amples almost have too specific categories, or are really bad categorised.

• Q: How satisfied are you with the overall usability of the appli-
cation?

• A: I’m satisfied. It is easy, and a huge contrast to other programs. Really
easy and remind me of the ”Windows Deeploader” application. It’s nice
it only embraces the sorting of samples problem. It could be nice if I could
just select my sample library and it would sort all of my samples at once.
But it is also because mine is incredible unsorted and confusing.
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• Q: Could you think of any elements that could be improved in
the application to your opinion?

• A: I know there is not a lot of functionality to it could be nice to spread
the items a bit more making it a more breathable interface.

D.1.5 Creative questioning

• Q: Imagine you’re starting a new track. How would you typically
go about selecting bass samples to use?

• A: I typically use a sample, drum-loop, or a song that i feel like could be
cool to reproduce. I use Splice for the samples, or like-minded distributors.
I use Ableton’s file hiearchy but also the Splice library. Actually i find the
place where the downloaded samples are placed in Splice and drag them to
my own sample library. It would make it easier if i could use this (Wavize)
instead. I also search for specific samples when i make music in specific
bpm as such. And also i use Splice to find other samples which works
really great. But I drag the files from Ableton’s file system. If i i.e. want
a saturated piano Splice tags are just better. It could be really nice if you
could take the application and just go through my entire sample library.
I want a program that quickly could unfold the folders to other specific
folders

D.2 Person B

D.2.1 Pre-questions

1. Q: How many years of musical experience do you have?

2. A: 7 years

3. Q: How many years of experience do you have using a digital
audio workstation?

4. A: None really, but I know what the program does and have used it a few
times.

5. Q: Do you know what a sample manager is?

6. A: No

7. Q: What genres of music do you listen to?

8. A: Everything, besides pop, rap, and EDM

9. Q: How would you define a bass sound?

10. A: 100 Hz low frequent. Can play a higher keys on a bass with higher
overtones. Something without too much overtones.
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11. Q: To the best of your recollection, can you name any bass sound
categories?

12. A: Brass, String, electro acoustic instruments. Kick drum. Percussion
instruments using the low keys, like bells and bars are able to make bass
tones.

Now I’m gonna show you the interface of the sample manager application.

D.2.2 Interface exposure

1. Q: With the exposure of the graphical interface what do you see
on the screen?

2. A: There are three buttons, a text and title. It shows that you can select a
folder where the files are located and the other is where the files ends. The
last one is the button that starts the algorithm.

Now the tasks begin, your goal is to select a folder on the computer filled
with bass samples and sort in relevance to their specific characteristic defining
behavior. However, we will do this in small steps.

D.2.3 Usability tasks

• TASK 1: Select the first directory from the desktop called ”un-
sorted samples” containing various sound samples.

• TASK 2: Select the second directory from the desktop called
”sample folder” a output target directory for the sorted samples.

• TASK: 3 Submit your selection.

• Q: What do you see on the application now?

• A: Dialog box, an open folder button. Then it shows some file names. As
I don’t really know the labels and categories it is quite confusing.

• Q: How would you interact with the application to see if the rest
of the files?

• A: (He wasn’t able to see that the dialog box could scroll).

• TASK 4: Open the output folder from the application.

• A: I can see folders of the categories and the folders contain the files.

• TASK 5: Close the file explorer.

• TASK 6: Return to the previous directory selection page.
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D.2.4 Post-questioning

• Q: Did anything unexpected happen or areas where you felt restricted?

• A: It sorted and acid bass as brass.

• Q: Could you try to explain why you had to select two different
folders?

• A: Input and output made great sense. But it could be good with some
indication of what is supposed to happen.

• Q: Should the application only have one folder selection?

• A: No I think it is fine like this, I can’t relate to what it should be used for
but seems like it is fine. But if you just wanted to select the same folder
it could be fine with one folder.

• Q: Do you think this would help musicians organizing their audio
files?

• A: I think so.

• Q: How satisfied are you with the overall usability of the appli-
cation?

• A: With my understanding, it don’t feel as intuitive, but it is probably
because I don’t really know what it should be used for. I think the ”sort
samples” button should be disabled before you choose the folders. Then a
subtitle could be nice that tells what the application’s purpose it.

• Q: Could you think of any elements that could be improved in
the application to your opinion?

• A: (See last question)

D.3 Person C

D.3.1 Pre-questions

1. Q: How many years of musical experience do you have?

2. A: 16 years

3. Q: How many years of experience do you have using a digital
audio workstation?

4. A: 14 years

5. Q: Do you know what a sample manager is?

6. A: Yes
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7. Q: If yes, could you try to explain it?

8. A: Use it to categorize samples and it is often used for drum samples.
They categorize the samples in the type of drum it is like snare or kick
drum. Also sometimes they categorize them as soft or harsh, depending
on the samples transients. I would say the XO plugin is a sample manager
which I used, but it felt like it was too complicated and took too much time
to get into.

9. Q: What genres of music do you listen to?

10. A: Hip hop and R&B

11. Q: How would you define a bass sound?

12. A: It is a sound that dominates the lower frequencies and they can be en-
tirely different. Bass sound often maintain a constant rhythm in contrast
to the higher harmonic sounds like keys which is more used for melodies.

13. Q: To the best of your recollection, can you name any bass sound
categories?

14. A: 808 in Hip Hop, wide synth EDM style basses, an also like analog bass

Now I’m gonna show you the interface of the sample manager application.

D.3.2 Interface exposure

1. Q: With the exposure of the graphical interface what do you see
on the screen?

2. A: I see three buttons, the first is where I can select my samples and then
the other one should be were the sorted samples are placed.

Now the tasks begin, your goal is to select a folder on the computer filled
with bass samples and sort in relevance to their specific characteristic defining
behavior. However, we will do this in small steps.

D.3.3 Usability tasks

• TASK 1: Select the first directory from the desktop called ”un-
sorted samples” containing various sound samples.

• TASK 2: Select the second directory from the desktop called
”sample folder” a output target directory for the sorted samples.

• TASK: 3 Submit your selection.

• Q: What do you see on the application now?

• A: The application have sorted the samples in different categories.
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• Q: How would you interact with the application to see if the rest
of the files?

• A: (The person knew that the dialog box was able to be scrolled through)

• TASK 4: Open the output folder from the application.

• A: Now I see the categories of the folders with the samples.

• TASK 5: Close the file explorer.

• TASK 6:Return to the previous directory selection page.

D.3.4 Post-questioning

• Q: Did anything unexpected happen or areas where you felt restricted?

• A: It does exactly what you ask it to and it seems to be usable in this case
where it did not make any mistakes.

• Q: Could you try to explain why you had to select two different
folders?

• A: Because you would want the original sample set. I think it is great just
in case. But I would want it to do it like this instead of just removing the
original folder.

• Q: Should the application only have one folder selection?

• A: I don’t think so, as you could just choose the same folder.

• Q: Do you think this would help musicians organizing their audio
files?

• A: Definitely, I would say that. If you have a large sample library it would
make it much easier just to use this as it is so simple. Even if it made
some mistakes, it is still better than being totally unsorted. I personally
use Splice for most of my samples. But if I took my samples in a folder,
this would help a lot.

• Q: How satisfied are you with the overall usability of the appli-
cation?

• A: Very simple, it does exactly what you ask it to do. I feel like it is very
intuitive. There could be some more text on the screen, like telling what
it does. Like a little tutorial saying what it does and how it does it.

• Q: Could you think of any elements that could be improved in
the application to your opinion?
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• A: Nothing really specific, but it would be really nice if it was able to
sort more than just bass samples if you have a cluttered sample library.
Another feature could be if you could exclude something that wasn’t a bass.
But hopefully it is able to sort all samples in the future. Could be very
nice as other sample managers are filled with so many functions it makes
it very confusing and overwhelming.

D.3.5 Creative questioning

• Q: Imagine you’re starting a new track. How would you typically
go about selecting bass samples to use?

• A: I use logic as my DAW - but usually I do not use samples for basses.
I often use synthesizers or plugins. But if I do i drag and drop them from
Splice into a sampler. I do not use the logic sample previewer. Also I can
search for kick on the system and preview the samples like that, and scroll
through the different samples on the hard disk.
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E Questionnaire results

E.1 Musical experience

Figure 18: Musical experience of attendants
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E.2 Listening test

Figure 19: Results from the listening test
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