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Abstract:

A previously developed resisitive-capacitive
(nRnC) modeling approach was improved by in-
corporating delayed outputs, an efficient train-
ing method, and an improved scaling method
for data preparation. A physics-informed neu-
ral network (PINN) was also developed using
the trained nRnC model to generate training
data. The PINN model’s loss combined one-step
prediction of the generated nRnC data and re-
cursive prediction of the original training data,
with automatic differentiation used for error gra-
dients. Additionally, a Bayesian optimizer was
implemented for online tuning of Model Pre-
dictive Control (MPC) hyperparameters, treat-
ing the problem as a black-box optimization.
The Bayesian optimizer received performance
signal feedback, based on the analysis of MPC
performance for proposed hyperparameter val-
ues. Testing against the original nRnC model
showed improved performance for both the im-
proved nRnC model and the PINN across multi-
ple building simulations. However, the hyperpa-
rameter tuning system did not improve perfor-
mance due to misinterpretation of impact from
concurrent ambient conditions.
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Preface

The structure of this project is as follows: the overall report consists of three main parts: Project
Overview, Development, and Fvaluation. The first part, Project Overview, introduces the problem
and provides background information on how this problem has been previously addressed, serving
as the foundation for this project. The second part, Development, details the development and
implementation of the proposed solution to the problem outlined in Project Overview. The final
part is Evaluation, which presents the results of all tests conducted to determine whether the solution
developed in Development was sufficient. Additionally, this section includes a discussion on potential
areas for improvement and some of the challenges encountered during the project. Finally, a conclusion
of the project is provided.

In this report the following notation is used:

Symbol ‘ Description
Scalar

Vector

Matrix
Prediction of x

COIVETIE

Another important aspect of this report is that all illustrations and figures without citation were
created by the authors. Furthermore, all software developed for this project was written in Python
and executed on an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz with 8.0GB 2133 MHz speed RAM.

All source code can be found at:

https://github.com/Tristan0017/MasterThesis.git
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Part 1

Project Overview



1 | Introduction

In recent years, global efforts to mitigate climate change have intensified, with a particular focus
on reducing carbon emissions across various sectors. Governments, businesses, and individuals are
implementing strategies to transition towards more sustainable practices. One significant contributor
to carbon emissions is the operation of buildings, which accounted for 26% of total emissions in 2022,
according to the International Energy Agency (IEA) [1]. As outlined in the European Green Deal, the
goal is to reduce carbon emissions by 55% by 2030 and achieve carbon neutrality by 2050 [2]. However,
emissions related to buildings have unfortunately increased by an average of 1% every year since 2015
[1]. Therefore it is clear that this trend needs adressing, especially considering the projected increase in
floor area which more than offsets efficiency gains and decarbonization efforts. The emissions related

to buildings in recent years are shown in Figure 1.1
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Non-residential (direct) ® Non-residential (indirect)

Figure 1.1. Development in building emissions from 2015 to 2022. As seen on the right, the emissions
are to be halved by 2030 in order to be on track for Net Zero Emissions (NZE) by 2050 [1].

To deal with rising emissions from buildings, stringent policy measures have been put in place. Among
these are building energy codes, such as the International Energy Conservation Code (IECC) in the
United States, which mandate specific energy efficiency criteria for new constructions and major
renovations [3]. Similarly, standards like ASHRAE Standard 90.1 prescribe minimum efficiency levels
for building components and systems, which promote efforts towards improving performance and
energy savings [4]. These legislative measures not only encourage the adoption of energy-efficient
technologies but also establish clear targets and benchmarks for improving energy performance and
reducing carbon emissions in the building sector. Furthermore, incentives for green building practices
encourage developers and building owners to exceed minimum requirements and achieve higher levels
of energy performance.
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With the regulatory framework established to drive enhancements in energy efficiency, modern
Building Management Systems (BMS) assume a crucial role in meeting and exceeding these objectives.
Alongside the intensified focus on reducing carbon emissions in recent years, there has been a notable
increase in available building data. This encompasses the deployment of smart meters capable of
monitoring household natural gas or electricity consumption, among other data sources. For smart
meter implementation in Europe specifically, a recent report by the European Commission stated that
95% of distribution systems operations have implemented plans for smart meter rollout on their grids
[5]. Simultaneously, the Internet of Things (IoT) has emerged as a prominent concept, supporting
digital interconnectivity among modules and systems linked to the internet. Once interconnected, the
systems within the IoT ecosystem can be harnessed, thereby empowering the BMS to employ more

advanced methodologies [6].

The goal of a BMS depends on the needs in the building in which it is installed, but typically BMS are
implemented to control the temperature or air quality [7]. Controlling the air quality typically involves
measuring different quantifiable things in the air, such as parts per million of CO4 in the air or level of
carbon monoxide due to running engines. Adjustment of these levels typically involve ventilating the
indoor environment by introducing air from the outside. The controls for these subsystems in HVAC
setups are typically based on feedback from sensors, since the pollutants cannot be removed from
the building before they are introduced. According to a 2018 review by the U.S. Energy Information
Administration, ventilation accounted for 11% of energy use in American buildings [8]. In the same
review, heating accounted for 32% of the energy used, while cooling accounted for 9% [8]. As evident
from these numbers, the efficiency of heating systems therefore play a large role in reducing the overall
energy consumption of buildings. For control of heating subsystems in HVAC, BMS designers can
take many different approaches. A widely implemented approach is scheduling, where the heating
system is made to engage and disengage at certain times throughout the day. The schedule is typically
based on occupancy patterns, and can be carefully selected to match precisely with these patterns.
According to a review of scheduling methods, the most widely used HVAC scheduling approaches are
either basic scheduling techniques, where the entire HVAC system is turned on or off at strategic
times, or conventional techniques where the system is kept on but the temperature references are
manipulated. Common among the approaches in the review, is the improvements to energy costs and
comfort provided by pre-heating or pre-cooling the area before the building becomes occupied, since
the occupied period overlaps with the period of peak energy costs. This strategy also helps reach
temperature reference points in time for the occupied period starting. Similarly, improvements to
energy costs were found when turning off the system or relaxing the reference points towards the end
of the occupied period [9].

To implement a control system which can implement similar behaviour without the need for manual
scheduling, an element of predictive behavior is required. This is the case, since most heating or
cooling systems take a while to change the temperature inside the building. Therefore, the control
system requires knowledge about future reference set points beforehand, in order to provide anticipatory
heating or cooling actuation. One modern control method which has the ability to make predictive
actions is Model Predictive Control (MPC). This approach utilizes a mathematical model of the
building and actuators to predict future behavior, and provide control signals accordingly by solving
an optimal control problem [10]. To obtain the required model for this method, the wealth of IoT and
smart meter data can be leveraged for data-driven model discovery.
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This can aid in avoiding the reliance on knowledge of the specific dynamics of a given building,
which is usually necessary for a good mathematical model to be developed [11]. Some companies
are already working on this problem of data-driven controller synthesis for buildings, among which
is Ento [12|. Ento is a company which has worked with aggregated building data for years, where
customized recommendations and analysis of savings can be provided based on historical building
data. Recently they launched their new control product, which can utilize a sophisticated building
model to provide optimal control for costumers [13]. The authors of this report were involved in
the development of this product during the fall semester of 2023 as interns. This collaboration will
be described later in this report. However, the effectiveness of MPC also depends on the tuning of
the hyperparameters responsible for weighting the cost function used in the optimal control problem.
Careful hyperparameter tuning ensures that the model is optimized to perform well under various
conditions and scenarios, enhancing its adaptability and accuracy. Therefore a comprehensive approach
can be taken, where the wealth of data from IoT and smart meter sources is used for data-driven model
discovery, alongside the incorporation of automated hyperparameter tuning algorithms. With such an
approach, a data-driven controller synthesis could become feasible. This project will focus on these
topics.
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2 | Previous work with Ento

The problem laid out in Chapter 1 was previously worked on by the authors of this report during
fall 2023 while in an internship with the company Ento. Ento is a company founded in 2019, that
specializes in machine learning aided analysis of aggregated building data. Through this, Ento is able
to identify regular consumption patterns, and provide actionable recommendations based on these for
a given building [12]. It was decided also to use this aggregated building data for other things, and
therefore building control became a potential new service which Ento would offer to costumers. During
the internship, a framework for MPC utilizing trained data-driven models of building dynamics was
laid out. The project proved successful as a proof of concept, and the results of Ento’s further work
on the topic can be seen on their website, where costumers can now purchase ventilation and heating
control services [13]. Since this project expands upon some of the methods used, this chapter will
provide a brief synopsis of the work done by the authors during the internship.

2.1 Data driven models

In this section a brief introduction of each of the tested models and training methods will be given.

2.1.1 nRnC model

The first data-driven model attempted during the project was based on a resistive-capacitive (RC)

circuit analogous model of the thermodynamics in the building. This model assumes that the rate of

change in internal temperature (%) is controlled exclusively by the heating system in the building

(Wheating), the difference between the internal and ambient temperature (Tymp —Tint), and the ambient
solar radiation (Wgyy,). The setup is illustrated in Figure 2.1.

dTint

Rsun
Wsun —\/ rc
Tomb — Tint .—/\/\

Romb Rpeating
heating

Figure 2.1. Simplified illustration of a building modelled with an RC circuit.

Based on the inputs, the predicted rate of change in internal temperature % from the current time
step to the next is found. A forward Euler integration scheme is then applied to obtain the next
internal temperature [14] based on the rate of change.
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This model is mathematically expressed as shown in (2.1).

C. dﬂnt _ Tamb - ,Tint + Wsun + Wheating (21)
dt Ramb Rsun * Csun - Msun Rheating * Cheating * Mheating
where,
Symbol Unit | Description
Wheating> Wsun ’“98‘3”2 Heating power of heating system and solar radiation
Tinty Tomp K Internal and ambient temperatures
Rheating, Rsun | || Resistance related to heating system and solar radiation
C % Thermal capacitance of the building
Cheating> Csun [#] Specific heat capacity of the heating and sun subsystems
Mheating> Msun [kg] Mass of the materials in the heating and sun subsystems.

For brevity, the specific heat capacity and mass of the heating and solar radiation subsystems will be
collected in the term 7 = c¢-m. The data is scaled using standardization in preparation for training
the model. To train the nRnC model, the values of the parameters Ry, Rsun, Rheating and C which
allow the model to predict the internal temperature in the training data as accurately as possible,
are estimated. One approach to estimating these values would be, to attempt to predict the entire
data set with N samples using the first sample as an initial condition. However, the approach chosen
was instead to mimic the way the model is to be utilized in the MPC, where a prediction of some
moderate span of time into the future is made. During training, the model is therefore made to start
a prediction of n,s steps ahead, based on an initial condition. By iterating through the dataset and
using every sample as the initial condition for a separate n,s step prediction, the sum of the prediction
error obtained starting from every initial condition can be found. This sum is then minimized using
parameter estimation of the R and C parameters in (2.1). The minimization problem using this

approach is shown in (2.2)

N—n n
Ce a 2
o, B 2 (30 (s~ o 1) 22
j=1 k=1
subject to dﬂnt]qu _ Tambj+k - Entj+k + Wsunj+k. + Wheatingjfk (23)
dt Roymp - C Roun - C - Jsun Rheating -C- Jheating
dTint.
ﬂntj+k+1 - ,—Fint]-+k + At N % (24)
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For further clarification of the method, the code implementation of the prediction error sum can be
seen in the lines shown in Snippet 2.1.

for i in range(1l, (len(training_data)-—n_ps)):
T_predicted = np.zeros(n_ps)
T_int = T_data[i—1]
for j in range (n_ps):
T_predicted[j] = T_int + (dt * rlcl_model(T_int, C, R_amb, R_g, R_sun,
T_amb[i+j], Q[i+j], Sun[i+j]))
T_int = T_predicted[j]

cost += np.sum((T_datal[i:(i+n_ps)] — T_predicted)*x*2)

Snippet 2.1. Python code for training based on segmented prediction performance.

2.1.2 Multilayer Perceptron model

A model based on simply training a neural network to capture the dynamics of the system was also
attempted. This model took the same inputs as the nRnC model described above, namely the heating
power, the solar radiation power, and the difference between internal and ambient temperature. In
addition to these, two time-lagged measurements of site temperature were given as inputs to the
model, in order to provide the multilayer perceptron model (MLP) with knowledge regarding the
recent dynamic of the site temperature [15]. To train the weights A and biases 8 of the MLP, the
minimization problem shown in (2.5) was solved with a training set containing Ny.q, samples.

Nt'rain

mir{{inﬁlize ; <Tmtk — Tmtk> (2.5)

)

2.1.3 Neural State-Space model

Another model which was attempted was a Neural State-Space model (NSSM). The basic idea behind
this model is to replace the matrices in the classical state-space model with neural networks, which in
theory enables the state-space model to capture nonlinearities in the training data better than with
the typically linear matrices [16]. The discrete time NSSM with weights A is shown in (2.6)

dTint
dt

(k) = Ay, x(k) + Bagzu(k) + Dy, d(k) (2.6)

Here u(k) the energy input to the system from the heating system and d(k) is the disturbances to
the system, which contain the difference between ambient and internal temperature, as well as solar
radiation power. To train the model, a minimization problem including both the one-step loss and
tracking loss was solved. The one-step loss is a loss similar to the one shown in (2.5) which penalizes
errors in predicting the immediate output. The tracking loss was instead a prediction I steps ahead
obtained by feeding the predicted states into the model recursively.
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The accuracy at every step was included in the penalization. Through trial and error it was decided to
place more emphasis on the tracking loss, hence this loss is scaled with 10. The minimization problem
is shown in (2.7)

Nt'rainfl I
minimize Tint(k + 1) = Ting(k + D5+ 10> (| Tine(k + 1) — Tona(k +0)|5) (2.7
pinimige 3 (Winelh 1) = Tielh + DIE 10 3 Tl +) =Tl + 1) (27)
. dT‘mt
subject to = (k) = Ay (Tine(k)) + Bx, (u(k)) + Da, (d(k)) (2.8)

dT’int

(k1) = T (k) + 22

(k) (2.9)

2.2 Model Predictive Control

MPC operates on a principle called receding horizon, in which the current control action is obtained by
solving a finite horizon open-loop optimal control problem at each sampling instant, using the current
state of the plant as the initial state [10]. MPC determines the optimal control input sequence at a
given step by minimizing a cost function using optimization methods. The cost function is evaluated
based on a prediction of the future, which is obtained by using a trained model of the system. When
obtaining the optimal control input, the MPC cost function is defined with three horizon parameters;
H,, H, and H,. The prediction horizon H, determines how far into the future predictions should be
computed. The control horizon H, determines the final time step in the sequence where the control
input can be changed. Finally H,, determines how many time steps after initialization must elapse,
before the control input can begin to be changed. For the MPC in the previous project as well as this
one, the value of H,, = 0, and H,, = H,,. The MPC problem is computing the vector of optimal control
inputs w, containing the optimal control input at each time step k + i up to ¢« = H,. Once obtained,
the first entry in the vector is given as a control input to the plant, after which the states of interest
are measured at the next sampling time, and used as the next initial condition for the MPC.

2.3 Cost function

The cost function J in MPC is used to express the cost associated with the trajectory of different
variables during the prediction horizon. Here the cost function is based upon reference tracking
accuracy, defined as deviation in internal temperature x(k) from the reference vector r, and size
of control input change Au = u(k + i+ 1) — u(k + i) between all time steps. For the MPC used
during the project with Ento, also penalization of the sum of control inputs is included, due to the
desire to reduce energy consumption. This also provides a convenient way of tuning the emphasis
placed on occupant comfort in relation to energy consumption reduction for a given building. Finally
an increase in penalization is placed upon negative temperature deviations of more than ;4. degrees
from the reference during occupied hours. In the cost function, this lower bound value is defined as
Tiower = T — tiower, and is only included during the occupied hours. This penalization was included,
due to considerations related to the optimal control input obtained in the MPC, specifically during
switching from the temperature reference used in unoccupied and occupied hours.
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Without this penalization, the temperature curve would often be placed approximately halfway
between the two temperature references at the switching time. While this might be optimal in terms
of minimizing the distance from the reference before and after the switching time, it is not in line with
the goal of reaching a certain temperature at a certain time. The full cost function can be seen in
(2.10).

HP
J(k)=> |&(k+ilk) —r(k+i)|-R (2.10a)
i=1

Hp
+ > min (&(k +ilk) — Piower (k +1),0)[ - R+ € (2.10D)
=1

Hp—1

+ > Jak+ilk)| - C (2.10¢)
i=0
Hp—2
+ ) (alk+i+1]k) — @k +ilk))* - Ca (2.10d)
=0
where,

Symbol | Unit | Description
R

['] Penalization weight of the error between the system trajectory to the reference
Tlower [°C] | Lower reference boundary
13 ['] Penalty weight scaling variable for breaching the lower reference

[

[

[

U W] | Control input
C ] Penalization weight of the control input
Cha ] Penalization weight of the change in control input

2.4 Simulation results

To verify the validity of the data driven approach, a test on a simulated building was performed.
To obtain training data for the model, first the building was simulated with a proportional feedback
controller which controls the heating system in the simulated building, by using measurements of the
internal temperature as feedback. Data was collected over 365 days of simulation. After collecting the
data, the models were trained by solving the minimization problem shown in (2.2). With a trained
model, the MPC was implemented instead of the proportional feedback control. The tuning of the R
and C' penalization weights were determined through trial and error, where emphasis was placed on
the ability of the controller to reach the reference during the rising edge of the occupied hours. The
results for the nRnC model obtained are shown in Figure 2.2
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Simulated Data
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Figure 2.2. Performance of the MPC utilizing the nRnC model during simulation. The percentage
of points above Tjyyer was 99.44%.

As seen, the MPC using the nRnC model as an internal model performs well, and achieves almost
full time in range. From the performance it can also be seen, that the model seems to be able to
capture the inertia of the building accurately enough, as to allow the MPC to raise the temperature
in anticipation of the higher reference temperature during the day. However, it can also be observed
that the model still has some degree of inaccuracy, since the steady state condition during the night
exhibits oscillating behavior. The results for the MLP model are shown in Figure 2.3

Simulated Data

5000 ... Temperature Reference

——— Energy Consumption
—— Ambient Temperature
——— Room Temperature

5000

4000

3000

Temperature

2000

Energy Consumption

1000

0 200 400 600 800 1000 1200 1400

Steps

Figure 2.3. Performance of the MPC utilizing the MLP model during simulation. The percentage of
points above Tyer Was 34.51%.
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From this performance it was evident, that the MLLP model did not capture the dynamics of the building

well enough to be used for predictive control. The results for the NSSM are shown in Figure 2.4

Temperature

Figure 2.4. Performance of the MPC utilizing the NSSM during simulation.
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----- Temperature Reference
——— Energy Consumption
——— Ambient Temperature
——— Room Temperature

Energy Consumption

The percentage of points

As seen, the NSSM was able to achieve a very convincing performance. However, the time above 7er

achieved was actually marginally worse than the one obtained with the nRnC model. However, it is

important to consider the performance of this model in context of its complexity, which caused the

time required for simulation and training of this model to be very large, when compared to the other

two models.
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2.5 Trial of MPC on costumer HVAC system

In order to choose which model to test on a costumer HVAC system, a comprehensive simulation test
was performed. The energy consumed and the TIR are calculated, and shown in Table 2.1.

Model ‘ TIR ‘ Energy Consumption Unit ‘

| nRnC | 99.44% | 2882.637 | [kJ] |
| MLP [ 35.41% | 2296.316 | [kJ] |
| NSSM [ 99.38% | 2885.307 | [kJ] |

Table 2.1. Time in range and energy consumption for the MPC simulations with the three model
types.

Based on these results, it was decided that the nRnC model was best suited for a test on a costumer
system. In collaboration with Ento, the developed system was implemented on costumer HVAC
systems. The system was implemented in the HVAC system at three different costumer sites.

One of these rooms had a heating system utilizing hydronic underfloor heating, which meant that the
system had a much slower response time to heating input. Given a longer prediction horizon, the
system was still able to provide decent performance despite this challenge. The obtained results for
one of the sites is plotted in Figure 2.5, with equally long periods with and without the new control
implemented.

Single Zone Heating

26 Ento Control Start Zone Temperature
allowed Area

25 X Reference
24 :

—_ ]

[S)

o

= 23

]

: AT N

o E I 1 |

o E
21 l l
20 W ol
19 :

2023-10-21 00:00:00 2023-11-10 00:00:00 2023-12-03 01:30:00

Timestamps

Figure 2.5. Site temperature measurements before and after control implementation with 10 minutes
intervals.

When analysing the performance qualitatively, it was concluded that the proposed MPC control system
with a data-driven model achieves good performance. However, it was difficult to give a quantitative
evaluation of the performance achieved by the systems in all three zones, due to the unfortunate fact
that the results were collected during a period, in which the ambient temperature dropped steadily.
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The time in range, defined as being above 7j,yer, for the three zones along with the ambient temperature

is shown in Figure 2.6

Percentage [%]

Key Performance Indicators
Ento Control Start

100 ~ W

80

60

40

20

" .

0p, <O, <0, <0, <0, <0, <0, <0, 0>, <03, <03, <03, <0, <Oz,
3. <. <J. <J. 3. =3 3. 3. <3, <. <. <J. A <2
‘o, Mo, o, Mo, Mo, Mo, Mo, i, oy, r lp lp p,
Og Jg 12 15 <) < <& a7 Os g i3 1> <7 <5
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—— Time in Range [Zone 1]
—— Time in Range [Zone 2]
——— Time in Range [Zone 3]
Ambient Temperature

Figure 2.6. The time above 7y, evaluated each day, before and after implementation of new

control.

Note that the heating system in Zone 8 was known to have a capacity too small for the heating needs

of the site during winter.

Chapter summary

In conclusion, the work with Ento served as a proof of concept for the feasibility of MPC controller

synthesis based on data-driven models. Furthermore, this project highlighted the difficulty of assessing

the performance of models during periods with significant change in the ambient conditions.
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3 | Prerequisites

This chapter provides an overview of the simulation environment employed in the project, with a
detailed description of each building model utilized. Additionally, a description is provided on how
building performance is formalized using collected data.

3.1 Emnergym Environment

In this project, the Energym library is utilized for simulations of controller performance. Energym
stems from the integration of two programs: EnergyPlus [17] and Modelica [18]. EnergyPlus, developed
by the U.S. Department of Energy, serves as a widely-used building simulation program, while Modelica
is a modeling language that excels in simulating complex cyber-physical systems, such as HVAC
systems. Energym combines the capabilities of both EnergyPlus and Modelica to provide a versatile
tool in the domain of building energy management, offering a comprehensive framework for simulating
and fine-tuning various control strategies. Furthermore, Energym enables users to pause simulations,
analyze real-time data, adjust control strategies, and resume simulations to assess the impact of changes
[19]. While the option to design custom building models using third-party software exists, creating
custom models is beyond the scope of this project. Therefore, the decision is made to utilize the
predefined Modelica models provided within Energym. The alternative, EnergyPlus would also have
sufficed and could be considered for future projects or alternative research objectives.

3.1.1 Environment Setup

Each simulation requires two key inputs: a building file and a weather file. The building file contains
detailed descriptions of the building model’s structural and thermal characteristics, including geometry,
materials, and HVAC systems. The weather file provides meteorological data necessary for simulating
real-world conditions [19]. The simulation environment operates with a default sampling interval of 5
minutes.

3.1.1.1 Building Models

To explore a variety of buildings, it is chosen to perform simulations with three different building
models:

SimpleHouseRad

This simulation model is a one-zone residential building, thus treated as a single thermal zone, which is
modelled based on a poorly insulated house. The zone is heated by a radiator supplied by a controllable
water pump, and does not include a cooling system [20]. A schematic overview of this building model
can be observed in Figure 3.1, where all factors influencing Zone temperature are highlighted including
the Zone itself.
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Figure 3.1. SimpleHouseRad building model schematic. Sub-systems are highlighted and linked by
color with their corresponding title.

The schematic illustrates that the Zone temperature is influenced by factors such as Solar Radiance,
Weather, Zone Volume, and the thermal energy stored in Heat Capacity. Central to these influences is
the Heating System which for this model is a radiator. It raises the Zone temperature by circulating
hot water supplied by a heat pump (heaPum).

SimpleHouseRSla

This simulation model is a similar to the SimpleHouseRad, with the only distinction being the
utilization of hydronic underfloor heating instead of a radiator [21|. This difference might cause the
time constants related to the heating system to be slower, and therefore require a model with different
capabilities. A schematic overview of the SimpleHouseRSla building model is illustrated in Figure 3.2.
The schematic uses ’sla’ to indicate the concrete slab where the underfloor heating is installed.

Page 15 of 99



ES9-928 Data-driven Modeling and Control Development for EntoLabs ApS

________________________________________ timTab

I' sunRad gaisun sunHea : preHea
t | sokr ) . W« JEoe——
. ™ L 14 B
N '
1 k=sun_heat_... 1
[ 1
_______________________________________ . e
heaCap

ES

H

g

[=]

=3
£
H
g
&
2
%
z
3
2
ﬂﬂﬂ
=
1
e
%
=
\\\

5

o

%

=

i

2

g

g

h [

Al -
% f G=therm_cond_G
ST TTTTEE e femReo ™y A
1y f 1 |
1 <} ' ! '
1 T : 1
! K& ! : !
: K thesla v _oee !
N e e e e e e e = P
( . \ R=sla.R_cisla.A_..
Solar Radiance ) N
Weather . .
5 ’ \
Heat Capacity , Y
1
Zone VOlUme : temRet temSup "
1 ]

Zone ' !

. ! 3 :
Heating System| ! 4 = - '
(Floor Heating)| o i :

' Y f '
1 El 1
1 ]
1 ]
: gaitp =P
1 1
! H{ T :
1
. k=1 y heaPum !
1
! :
1 =] 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: :
1
: gnd_temp 2 @ 1
1 ml 1
1 E 1
“ @ [T
\ ’
\ ’
M k=10 - 273.15 e

Figure 3.2. Schematic of SimpleHouseRSla with underfloor heating. Sub-systems are highlighted
and linked by color with their corresponding title.

SwissHouseRSla

The two former building models represent variations of a general house approach, while this specific
model is based on a Swiss " Minergie" house. Though it shares the same schematic as Simple HouseRSla,
its alignment with the Swiss Minergie house standards enforce a more energy-efficient design.

3.1.1.2 Weather

The weather file contains comprehensive meteorological data specific to the chosen location, including
ambient temperature, solar radiance, wind patterns, and precipitation rates. For this project, the
selected weather file is "CH BS Basel," representing the climatic conditions of Basel, Switzerland,
to match the location of all building models.
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3.2 Key Performance Indicators

As stated in Chapter 1, a goal of this project is to devise a method for automatic tuning of
hyperparameters for an MPC implemented on HVAC systems. In order to do this, a method for
assigning values to building performance throughout a day must be devised, since such values can be
used as performance signals for the tuning algorithm. In order to provide a basis for comparing good
and bad performance of the system, the chosen Key Performance Indicators (KPIs) will be described in
this section. The values will be scaled to values in the single digit range, and found as per-sample values
in order to enable analysis of multiple days at once. The data will be segmented such that a number
of whole days is analysed, and not fractions of days. It is assumed, that the KPIs obtained will be
more statistically reliable if data from several days are analyzed at once, since outliers in the ambient
conditions that occur one day will have less of an impact. However, this would also increase the time
between performance signals to the chosen hyperparameter tuning method, which might cause slower
convergence [22]. Furthermore, weighting parameters 6 will be included in order to be able to adjust
the penalty assigned to each KPI. Finally, for all KPIs it is determined that a lower value indicates a
better performance, in order to approach the hyperparameter tuning problem as a minimization. The
notation used when formulation the KPIs in this section, is the same as the one in (2.10).

3.2.1 Reference tracking related KPIs

The two arbitrary temperature curves shown in Figure 3.3 will serve as a starting point for choosing
the characteristics which are to be penalized.

Site temp

ek 3

22°C
21°CH
20°C'H
19°C 4

Figure 3.3. Example of two temperature trajectories. The red curve depicts a building which receives
heating input too late, while the blue receives excessive heating input too early.

Time below range

As usual when analysing the performance of reference tracking control, deviations from the reference
can be used for evaluation. However, when analysing performance of buildings subject to ambient
influences, just finding the deviation or MSE might sometimes be misleading, for example on a hot
summer day where the temperature outside the building is above the reference. Therefore, the chosen
reference tracking KPI will be percentage below range (PBR).
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Since the measurements included in the cost function are normalized, and the heavy penalty for points
below the reference during occupied hours in (2.10) is included, a low PBR is expected of the MPC
controller. To ensure this, the PBR-related KPI is defined such that a penalty value of one corresponds
to a PBR of 20%. The calculation performed when determining the penalty related to this KPI for an
amount of days containing V' samples is shown in (3.1).

( ZX=1(Tlow&r(k)<x(k)) ) —0.8

PBR=|1-
1-0.8

-0pBR (3.1)

Undershoot

Additionally, a KPI related to the temperature reached in the first two hours, corresponding to o
steps, during of the occupied period can be considered. The temperature measurements at these steps
are collected into a dataset Viceupied With V,, total samples. During the work with Ento described
in Chapter 2, great importance was placed on these first steps of the occupied period, since this
is the temperature the occupants will encounter first thing in the morning. This would serve as a
particularly good indicator of the hyperparameter tuning’s impact since ambient temperature usually
rise throughout the occupied period. Therefore, the first steps during the occupied period is likely less
correlated to the ambient effects, than the final steps. Similar considerations can be made regarding
the impact of occupancy on the internal temperature, since the accumulated effects of occupancy
are assumed to be more pronounced toward the end of the day. The calculation performed when
determining the penalty related to this KPI is shown in (3.2).

Vo (p .
2ok ( lowi;o(k) > z(k)) Border (3.2)

Undershoot =

Overshoot

The final reference tracking consideration made relates to overshoot of the actuator. Similarly to
the undershoot penalty described previously, overshooting of the internal temperature can be a good
indicator of faulty hyperparameter tuning. This penalty will once again be evaluated based on the
temperature during the first steps of the occupied period contained in Viccypied, Where temperatures
exceeding the reference will be penalized. The calculation performed when determining the penalty
related to this KPI is shown in (3.3).

2 (r(k) < x(k))
Vo

Overshoot = Oover (3.3)

For an example of the implementation of the rising edge related penalties, the temperature curves
shown in Figure 3.3 are now shown in Figure 3.4 with the overshoot and undershoot penalty areas
highlighted.
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Figure 3.4. Example of the penalized areas above r and below 74, during start of occupied periods,
shown in red. The horizontal width of the penalized area corresponds to 2 hours.

3.2.2 Energy consumption related KPIs

As described in Chapter 1 and Chapter 2, reducing energy consumption is a priority when implementing
optimal building control. However, when considering the energy consumption of a HVAC system, the
ambient conditions often have a large effect on the amount of heating energy required. Therefore, a
penalty on energy usage would likely be heavily correlated with ambient temperature. The described
effect is illustrated in Figure 3.5

Simulated Data

—— Ambient Temperature
—— Energy Consumption

Temperature
Energy Consumption

i }WM J

0 20k 40k 60k 80k 100k

0

Steps

Figure 3.5. Energy consumption as controlled by MPC, plotted with ambient temperature
throughout a full year.

Page 19 of 99



ES9-928 Data-driven Modeling and Control Development for EntoLabs ApS

Based on this, it is chosen to exclude this KPI. If a method of defining the KPI such that the energy
use was evaluated based on the expected energy use given the ambient conditions was implemented,
this KPI could be included.

Energy delta

Another consideration which can be made is regarding the rapidity of changes in the actuation, which
is similar to the penalty on Awu in Section 2.3, since such behaviour will cause undesirable wear and
tear on the equipment. Furthermore, rapid cycling of the heating system might cause a reduction in
efficiency, due to the system not reaching steady-state operation [23]. To penalize this, the change in
energy input during the days analyzed is found, and scaled down by a statistical indicator of the mean
change in energy input in the training data. The value E, used for scaling this penalty will be found
in the training data for a given building, and based on the set of samples with non-zero changes in
energy Vieita, as shown in (3.4)

E, = mean(Vyeira) + 3 - std(Vierra) (3.4)

The calculation performed when determining the penalty related to this KPI is shown in (3.5).

1%
S max(ulh + 1;) —u(k), 0)) o (3.5)
p

-1
k=1

Energya = (

3.2.3 Summary of KPIs

Based on the discussions in this section, the four KPIs which will be utilized for hyperparameter tuning

have been described. These are shown in Table 3.1.

KPI name KPI Description KPI Formula
(zle sum(ry g er (k) <z (k)) )—0.8
PBR Penalize deviations from no PBR 1-— Y3 — | -0pBRr

Vo
Undershoot | Penalize failure to reach reference at start i Sum(”‘;;””(k)>x(k)) “ Ounder

of occupied hours

>r°, sum(r(k)<az(k))

o

: ‘9over

Overshoot | Penalize exceeding reference at start of
occupied hours

( V1 max(U(k-El)—u(k)’O)> Oa

Energy A Penalize excessive variation in energy he1
= P

input

Table 3.1. List of KPIs which will be tested as penalty signals for a hyperparameter tuning system.

Chapter summary

The three buildings models used for simulation during this project have been defined to be:
SimpleHouseRad, SimpleHouseRSla, and SwissHouseRSla. These buildings feature some variety for
simulating different simple buildings. Furthermore, the KPIs which will be used for hyperparameter
tuning in this project have been formulated in Table 3.1.
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4 | Project Shaping

This chapter will outline the objective of this project by detailing the problem statement, requirements,
and finally the tests carried out to verify whether the requirements are met.

4.1 Delimitation

The development and testing of the designed system in this project will be done within the simulated
environment described in Section 3.1. However, the simulations only contain buildings consisting of a
single zone, and therefore multi-zone control is not investigated. While such an investigation might be
valuable, a single-zone modelling and control approach is also applicable in many cases, where only a
single sensor and heating system is present in a building. These types of setups were commonly seen in
Ento’s costumer portfolio. Furthermore, it has been decided not to include occupants in the modeling
of this system. Occupants affect the temperature both through their presence and their actions, such as
opening windows. Due to the difficulty of predicting human behaviour, a model for this would have to
be probabilistic in nature. Implementing this would require formulating a Stochastic Model Predictive
Control (SMPC), which involves probability constraints that allow for a trade-off between control
performance and the likelihood of violating constraints in a stochastic setting [24]. Additionally, the
impact of occupants is observed to be greatest later in the day, usually from noon onward. Therefore,
it has been decided to exclude the modeling of occupants.

4.2 Problem Statement

How can the data-driven building modelling for MPC described in Chapter 2
be further developed, and how can performance indicators be leveraged for
online tuning of MPC' hyperparameters?

4.3 Requirements
The requirements for this project is split into two subparts; modelling and hyperparameter tuning.

Modelling requirements
Compared to the original nRnC model introduced in Chapter 2, the developed model(s) must:

Req. 1 demonstrate improved predictive performance when used on training data

Req. 2 demonstrate improved key performance indicator values when used in building
simulation with MPC
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Hyperparameter tuning requirement
The implementation of automatic tuning of hyperparameters must:

Req. 3 demonstrate improved key performance indicator values when compared with
the same system utilizing constant hyperparameter values during building
simulation with MPC

4.4 Accepttest

With the requirements described in Section 4.3, tests can now be defined to evaluate whether the
designed system meets these requirements. However, first some key definitions are described.

Prediction performance evaluation

The predictive performance of the models will be assessed using a method similar to the training of the
nRnC model described in Chapter 2. Each step in the dataset will serve as an initial condition, and the
model will predict n,, samples ahead, such that a 3 hour prediction is made from each initial condition.
However, instead of summarizing the squared cost across all initial conditions and predictions as done
during training, only the final prediction will be measured as the Mean Absolute Error (MAE). The
formula for obtaining the MAE is shown in (4.1)

NSim_nps a
=0 Tintinpy = Tintiin,, (4.1)
NSim — Nps

Where,

Ngim | Total number of samples used during training
Nps Number of predicted samples ahead from initial condition

Thus, the final cost will represent the prediction error 3 hours ahead for each initial condition.
Furthermore, the tests will be carried out once for each of the building models described in Section 3.1.

Simulation length

The simulation length will be consistent for all acceptance tests performed for all requirements,
with each simulation lasting half a year. Only half a year is used,since the second half of the year
would mirror the first due to the periodicity of the seasons, and therefore contribute little additional
information. Furthermore, the first two days of each simulation will be discarded due to initial

conditions interfering with the overall performance of the simulations.

Evaluation of KPIs

For Req. 2 and Req. 3 the success criteria is based on having improved KPI values. These KPI
value are listed in Table 4.1 with a description of each. Note that these KPIs are different from the
ones described in Section 3.2, since the KPIs described in that section were specifically designed as
performance signals for hyperparameter tuning.
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KPI ‘ Description ‘

PIR Percentage of points during the simulation which are in the range of £1° of the
internal temperature reference.

‘ PBR ‘ Percentage of points during the simulation which are below 7j,er-

‘ Energy ‘ Total energy consumed during simulation.

|
|
‘ Energy A ‘ Indicator of the changes in energy input. ‘
|

‘ Energy ‘ Indicator of the changes in energy input, where outliers are emphasized.

Table 4.1. Description of KPIs used for evaluating the performance of the MPC.

With these definitions made, the acceptance tests can be described.

4.4.1 Req. 1

To evaluate whether the requirement ’The model must demonstrate improved predictive performance
when used on training data’ is met by the system, the following procedure will be tested.
Procedure

1. Train the developed models and the original nRnC model on building training data
2. Use each sample as initial condition and predict 3 hours ahead for each initial condition.
3. Compute the average MAE for the last prediction from each initial condition.

Criteria of success

The average MAE for the models must be lower than the original nRnC.

4.4.2 Req. 2

To evaluate whether the requirement ’ The model must demonstrate improved key performance indicator
values when used in building simulation with MPC” is met by the system, the following procedure will
be tested.
Procedure

1. Train and run the MPC simulation for all models with constant hyperparameters.

2. Compute the KPIs in Table 4.1 for each model
Criteria of success

The KPIs for both the models must be smaller than those of the original nRnC.
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4.4.3 Req. 3

To evaluate whether the requirement ’The implementation of automatic tuning of hyper parameters
must demonstrate improved key performance indicator values when compared with the same system
utilizing constant hyperparameter values during building simulation with MPC’ is met by the system,
the following procedure will be tested.

Procedure
1. Train and run the MPC simulation for the developed models with online hyperparameter tuning.
2. Compute the KPIs in Table 4.1 for each model

Criteria of success

The KPIs for both the improved nRnC and PINN models’” KPIs are to be smaller than those of the
original nRnC.
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5 | System Overview

This chapter will provide an overview of the system to be developed as a solution to the problem
defined in Section 4.2, while complying with the requirements in Section 4.3. The overview includes
changes made to the previous work described in Chapter 2, as well as a description of the generation
and preparation of the data used for model training in this project.

5.1 Project objective

As stated in Section 4.2, the objective is designing a data-driven model as well as implementing online
tuning of MPC cost function hyperparameters. The diagram shown in Figure 5.1 includes the different
parts of the system all these parts, and gives an overview of the proposed system.

Ambient
s Conditions
/ N F t
Model MPC Lorecas
Historical | |, Training k- -1- Trained
Site Data g Model
A
\ 4
\u .
*‘ Model Site Control
Site .
»| Prediction Output
Measull;ement : \ -
! Hyper-
parameters

Hyper-
parameter
Optimizer

KPI

Calculator

Autotuning

q Site RE—
Dynamics ¢

A
N

Figure 5.1. Diagram of the proposed system, including a model training block in green, the MPC in
blue, and the hyperparameter tuning algorithm in red. The dotted lines indicate mechanisms that do
not occur during every MPC cycle, while the solid lines indicate the main MPC cycle.
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5.2 Updated cost function

As mentioned in Section 4.2, model predictive control has been chosen for managing internal
temperature in this project. To achieve this, the cost function introduced in (2.10) is being re-employed
with some adjustments. It is decided only to penalize changes in energy input when a rise in energy
input occurs, instead of penalizing any change. The penalization of rapid changes in energy input was
originally introduced, due to considerations regarding the potential damage short-cycling can cause to
actuators [23|. Therefore, At is introduced to mitigate such risks. However, it has been observed that
including this penalty during the time of the day where the actuator is turned down leads to higher
energy consumption than necessary, since the cost of changing the actuation offsets some of the cost
of superfluous energy input. The penalization would still make short-cycling expensive without this
penalization on lowering energy input. Therefore, the penalization term A4 in (5.1d) is eliminated for
reductions in energy consumption. This is implemented by employing the 'max’ function to return the
highest of either 0 or A, since a decrease in energy input would map to 0 and disable the penalization
of the term. The cost function with this change is shown in (5.1)

HLD
J(k) =) |&(k+ilk) —r(k+i)| - R (5.1a)
=1

Hy
+Z|mln (i(k—i—l’k) _Tlower(k+i)70)‘ Rf (51b)
=1

Hp—1

+ > lak+ilk)| - C (5.1¢)
1=0

Hp—2
+ > (max(0, @k + i+ 1|k) — a(k +i|k)))* - Ca (5.1d)
=0

where,

Symbol | Unit | Description
R ['] Penalization weight of the error between the system trajectory to the reference
Tlower [°C] | Lower reference boundary
& ['] Penalty weight scaling variable for breaching the lower reference
[
[
[

U W] | Control input
C ] Penalization weight of the control input
Cha ] Penalization weight of the change in control input
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5.3 Sampling Frequency

As mentioned in Section 3.1.1, the simulation environment utilizes a sampling frequency of 5 minutes.
In the context of building temperature control, 5 minutes is a relatively short amount of time, and
therefore the possibility of a lower sampling frequency is investigated. Decreasing the sampling
frequency decreases the required computational power for MPC, but also lessens the speed at which
the MPC can react to disturbances. A 2022 paper by Zhe Wang [|25] addresses the trade-off between
sampling frequency and unnecessary waste of resources by investigating the optimal sampling frequency
for monitoring indoor temperature. It is found that any sampling period shorter than 30 minutes
achieves similar performance. In Section 3.1.1 it is stated that the three buildings simulated in the
Energym environment contain different heating systems, and consequently the time required to heat up
the building varies from building to building [26]. Thus, to accommodate for this variation in systems
a balanced sampling frequency of 15 minutes is chosen. However, the inability to modify the sampling
frequency directly in the simulation environment prevent an easy implementation of this decision. To
solve this issue, every N’th sample of the data set, generated with a sampling frequency of 5 minutes,
is utilized. Hence, to achieve a sampling frequency of 15 minutes, every third sample is used. The
choice of allowing a difference in sampling periods between the simulations and models of the buildings
cause some unforeseen effects. The difference in sampling frequencies results in a temporal resolution
disparity. As a consequence of this, some emergent dynamics might be introduced to the models of the
buildings, since these are trained with longer sampling period. For example these emergent dynamics
might arise, if the impact of a constant energy input over three simulation steps cause some nonlinear
behavior, which could be caused by thermal inertia in the heating system or building thermal mass.
This phenomenon is illustrated in Figure 5.2.

Site temp|°C)|

20 N
15 \”%\
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5

et —f—f—f—t—t—+> Time[min

! 1 1
0 5 10 15 20 25 30 35 40 45

Figure 5.2. The blue trace illustrates a sampling frequency of 5 minutes, while the green trace
illustrates a sampling frequency of 15 minutes. The red shaded area marks the mismatch.
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5.4 Data Generation

In order to utilize the simulation tool within the context of the objectives outlined in Section 5.1,
historical data for training the models is required. To achieve this, a similar method to the one
described in Section 2.4 is used, where the simulation is run for a full year with reactive control to
simulate a building with some sort of controlled heating system. For this purpose, a P controller with a
gain of 0.3 and sampling period of 15 minutes is implemented. Furthermore, the temperature reference
used for the proportional controller will be changed several times during the year, in order to generate
training with varied scenarios. The temperature references for both occupied and non-occupied hours
are generated by choosing two numbers; a and . The value of a can be interpreted as a baseline
value, from which the occupied temperature reference value is taken as a + b and the un-occupied
temperature reference value is taken as ¢ — b. The timing of the occupied hours remains consistent
at [08 : 00 — 16 : 00] across all temperature reference variations. An example of such a reference is
provided in Figure 5.3.

Site temp[°C|

A
25 e 1= " -- a+h
22 1 I | a
21+ I | - - Reference
20 === o oo oo - ————
19 4+

——t—+—F—+—+—+—+—+—+—+> Time[HH:mm|
S & O N N . S & & ' N

NN N T N N N N e M A

Figure 5.3. Example of temperature reference with a mean of 21.5 and a deviation of 1.5.

The sequence of temperature references is equal for all buildings, meaning that the sequence is only
chosen once, and then used in all building data simulations. For all training data simulations in this
project, the sequence of values a and b are selected beforehand, where the next pair of a and b values
in the sequence are used once every 30 days. The sequence of temperature references for the variable

a is selected within predefined range:

a = {19,20,21, 22, 23,24}

Similarly, for b, the sequence is selected within the predefined range:

b={1,2}
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5.5 Data Scaling

The oscillations observed when running the MPC with the model described in Figure 2.2 are a possible
case for improvements. Further investigation reveals that the oscillations observed in Figure 2.2 are
caused by the method chosen for scaling the data, which maps the data to values near zero by assuming
a normal distribution with mean zero and a standard deviation of one. This scaling method is generally
suitable for neural networks, where the sign of numbers is not crucial. However, it proves problematic
for the linear nRnC model, which is sensitive to the signs of the data. To address this, the scaling
method is switched from standardization to simply scaling the data with a scalar, in order to maintain
the original sign of the data. One of the most straightforward scaling methods is to divide all the
samples of a given feature by the numerically biggest value observed for that feature, ensuring that
the highest value of any data point is either one or minus one. However this approach is sensitive to
spikes in the data, and therefore a statistical approach is chosen instead, where the "maximum" value
of a feature Zyazimum 1s found from the feature mean u, and feature standard deviation o, as

Tmazximum = ‘,Um‘ +3-0, (52)
The scaling method then becomes as shown in (5.3).

T
Lscaled = ——— (53)

Tmazimum

To investigate if this change removed the oscillating behavior, a test simulation of the nRnC model
with the new scaling method is shown in Figure 5.4.

MPC / nRnC

----- Temperature Reference

——— Energy Consumption
4000 —— Ambient Temperature

——— Room Temperature
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Figure 5.4. Validation of new scaling method on the nRnC model in the MPC.

As observed in Figure 5.4, the oscillation observed in Figure 2.2 are no longer present, which indicates
that the new method for scaling the data alleviates the issue.
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Chapter Summary

In this chapter, the disparate parts of the system which are to be designed have been laid out, and their
interconnections have been visualised in the diagram shown in Figure 5.1. Furthermore, a description
of the method used for generating training data has been given, alongside the chosen scaling method
used to prepare the data for model training. The description of the system and training data will serve
as a starting point for the further development in this project.
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6 | nRnC

In Chapter 2 the nRnC model developed in collaboration with Ento is described. Based on evaluations
of the MPC performance achieved with this model, as well as further considerations regarding the
training and structure of this model, several changes have been made which will be described in this
chapter.

6.1 Collection of denominator terms

In some terms of the nRnC model described in (2.1), the thermal capacitance of the building C,
resistance value R, specific heat capacity ¢ and mass m were included. However, the ¢ and m terms
were only included due to considerations related to units, but never assigned any meaningful values. In
practice, the parameter estimation simply estimated the product of all these terms. For simplicity, a
unique 7 parameter is therefore substituted for all the terms in the denominator of each of the different
fractions in (2.1), resulting in (6.1).

dT’int _ Tamb - Tint + Wsun + Wheating (61)

dt Tamb Tsun Theating

6.2 Consideration of inertial effects

While the C' parameter was initially incorporated into the nRnC model to represent the building’s
inertia, it became evident that relying solely on this term for capturing inertia was based on flawed
reasoning. This is even more evident now with the inclusion of the 7 parameters in (6.1). Another
attempt is made at modelling inertial effects, by including terms that introduce scaled versions of the
recent outputs, thereby giving the model knowledge of the recent temperature trajectory. The effect of
including delayed outputs is investigated in Appendix A, where it is concluded that this inclusion raises
the order of the nRnC model to be equal to the number of delayed inputs included. By incorporating
this change, (6.1) becomes (6.2)

dT:mt _ Tamb - Tint + Wsun + Wheating + Z dt (62)
dt Tamb Tsun Theating i—0
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With this addition, the minimization problem initially described for the standard nRnC model in (2.2)
is redefined as (6.3).

N—nps nps

minimize Z (Z (\ Tinty; — Tintk+j H%)) (6.3)
k=0  j=1

Tambs Tsun, Theating- Ti

. T dTintk+ _—
subject to Wintiry _ Tambysy = Tintis, + Weuni, + Wheatinges, + Z i (6.4)
dt Tamb Tsun Theating i—0 Ti
dﬂnt i
Tintys ;o1 = Tintyy, + At - —— (6.5)

dt

Having access to an unlimited number of delayed outputs (7 = oo) would be ideal, however, the
computational overhead of including every delayed output would probably become infeasible. Therefore
it is chosen to dynamically choose the amount of delayed outputs included, based on the improvement
in the fit to training data gained for every extra delayed output included. In a paper by Kasper Vinther
et. al. it is shown that two delayed outputs often captured the majority of the effects of inertia in
the system|15]. However, it is crucial to account for the diversity among building types, therefore it is
chosen to test up to a maximum of 7,,,,; = 4 delayed outputs.

6.3 Parameter constraints

Furthermore, to avoid overfitting, it is decided to enforce a constraint that ensures the impact
of past outputs lessens over time, such that newer outputs always have a higher impact on the
model. Furthermore, values of 71 below 1 are also prohibited, due to the stability results obtained
in Appendix A. The constraints are shown in (6.6) and (6.7)

l<m<m<mi<n (6.6)

0 <7ampy, 0<Tsun, 0< Theating (67)
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6.4 Training and selecting models

With the additions to the minimization problem and constraints on the 7 values established, the nRnC
model is trained with the code shown in Snippet 6.1, which is an adjusted version of the code shown
in Snippet 2.1.

if tau_amb < 0:
return lel2
if tau_q < 0:
return lel2
if tau_sun < 0:
return lel2
if any(tau < 1 for tau in tau_delayed):
return lel2
if pi > 1:
if np.min(np.diff(tau_delayed[:pi]))<0:
return lel2

for i in range(l, (len(training_data) — n_ps):

T_predicted = np.zeros(n_ps)
T_int = T_data[i — 1]
Tamb_Tint_temp = Tamb_Tint[i — 1]

delayed_output_array_temp = delayed_output_array.iloc[i — 1].values

for j in range(n_ps):

dTdt = rlcl_model(tau_amb, tau_q, tau_sun, Tamb_Tint_temp, Q[i + j —1], Sun[i + j

—1], delayed_output_array_temp, tau_delayed, pi)

T_predicted[j] = normalize(denormalize(T_int, max_x) + denormalize(dTdt, max_y),

max_x)

T_int = T_predicted[j]

Tamb_Tint_temp = normalize(denormalize(T_amb[i + j], max_d[0]) — denormalize(T_int,
max_x), max_d[2])

delayed_output_array_temp = np.insert(delayed_output_array_temp[:—1], O, dTdt)

cost += np.sum((T_datali:(i + n_ps)] — T_predicted)**2)

Snippet 6.1. Modification of the nRnC training to accommodate delayed outputs as input.
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The modification introduce a number of delayed outputs into the nRnC model, according to the value
w. The delayed outputs are stored in delayed output array temp and their associated 7 values are
stored in tau_ delayed. The nRnC model function rici_model includes the delayed outputs into the
calculation of dT'dt as shown in Snippet 6.2.

def ricl_model(tau_amb, tau_q, tau_sun, Tamb_Tint, Q, Sun, delayed_output_array,

tau_delayed, pi):

dTdt = (Tamb_Tint / R_amb) + (Q / R_g) + (Sun / R_sun)

for i in range(pi):
dTdt += delayed_output_array[i] / tau_delayed[il]

Snippet 6.2. nRnC model equation with integrated Inertia.

An algorithm has been designed to automatically train five different models with zero to four delayed
outputs, and afterwards chose the model which performs sufficiently well with fewest delayed outputs.
The steps involved in this mechanism is provided in the following list, along with a code snippet of

the implementation of each step.

1. Train five nRnC models with an incrementally increasing number of delayed out-
puts included: Train a series of five models, where each model should incorporate an increasing
number of delayed outputs corresponding to its 7 value. A code snippet demonstrating the im-
plementation of this step is provided in Snippet 6.3.

1 for i in range(pi_max):
2 min_Loss, tau_amb, tau_heating, tau_sun, tau_delayed =
nRnC_model_trainer(training_data, n_ps, i)

5 min_Loss_list.append(min_Loss)

Snippet 6.3. Step 1: Training models.

2. Determine a Performance Threshold: After training the models, identify the model with
the lowest loss (best performance) and compute a threshold as 110% of this lowest loss. This
threshold serves as a performance cut-off for selecting a model which balances complexity and
prediction performance

6 best_loss = min(min_Loss_List)
7 threshold = best_loss * 1.10

Snippet 6.4. Step 1: Define Threshold.
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3. Select a model: Review each model, starting from lowest to highest number of delayed outputs,
and select the first model where the loss does not exceed the threshold.

9 for i loss in enumerate(min_loss_values):
10

11 if loss <= threshold:

12 pi =1

13 break

Snippet 6.5. Step 1: Choosing a model.

6.4.1 Evaluation

To evaluate the effectiveness of this feature, a test is conducted to compare the performance across
all 7’th order nRnC models for all building models introduced in Section 3.1.1. The performance is
evaluated based on the MAE test described in (4.1). For each building model, each nRnC model will
be fed identical data, ensuring that any observed differences in effectiveness are directly caused by the
inclusion of delayed outputs. The obtained results of these tests are seen in Figure 6.1, Figure 6.2,
and Figure 6.3 with their corresponding training durations in Table 6.1, Table 6.2, and Table 6.3,

respectively.

=—e— (th order
—e— 1th order
—e— 2th order

3th order

0.25 —e— 4th order

Prediction Error

0.1

1 1.5 2 2.5 3

Prediction Hours

Figure 6.1. Performance test for SimpleHouseRad of m’th order nRnC models over a 3-hour prediction
horizon. This simulation, with a threshold of 110%, determined the optimal model order to be 1.
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Model Order Training duration [HH:mm:ss|

| 0 | 00:02:04 |
| 1 | 00:05:50 |
| 2 | 00:06:10 |
| 3 | 00:06:12 |
‘ 4 ‘ 00:06:10 ‘

Table 6.1. Training duration for each nRnC model order tested on Simple HouseRad

=—e— Oth order
—e— 1th order
—e— 2th order

0.25 3th order
—e— 4th order
|
o
E
5 o2
c
2
5
-
2 o015
o
0.1

1 1.5 2 2.5 3

Prediction Hours

Figure 6.2. Performance test for SimpleHouseRSla of w'th order nRnC models over a 3-hour
prediction horizon. This simulation, with a threshold of 110%, determined the optimal model order to
be 1.

Model Order Training duration [HH:mm:ss|

| 0 | 00:02:04 |
‘ 1 ‘ 00:05:10 ‘
| 2 | 00:04:21 |
| 3 | 00:05:30 |
| 4 | 00:06:14 |

Table 6.2. Training duration for each nRnC model order tested on SimpleHouseRSla
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0.009 —a— Oth order
—e— 1th order
=—e— 2th order

0.008 3th order
—e— 4th order

0.007

0.006

Prediction Error

0.005
0.004

0.003
1 1.5 2 2.5 3

Prediction Hours

Figure 6.3. Performance test for SwissHouseRSla of w’th order nRnC models over a 3-hour prediction
horizon. Note that all traces overlap with each other.

Model Order Training duration [HH:mm:ss]

| 0 | 00:01:44 |
| 1 | 00:06:08 |
‘ 2 ‘ 00:06:10 ‘
| 3 | 00:06:11 |
| 4 | 00:06:15 |

Table 6.3. Training duration for each nRnC model order tested on SwissHouseRSla

As seen in Figure 6.1 and Figure 6.2, both simulations determined their optimal model order to be 1.
This confirms that the inclusion of inertia enhances the predictive capability of the nRnC model for
those building types. However, in Figure 6.3, the third building model exhibits no significant difference
between orders 0 to 4, indicating that for certain building types, the inclusion of inertia may not be

beneficial.

Page 38 of 99



ES9-928 Data-driven Modeling and Control Development for EntoLabs ApS

6.5 Increasing training efficiency

As outlined in Chapter 2, the nRnC model is trained by predicting n,, steps ahead from each data
point. As the amount of training data Ng;,, increases, this approach quickly becomes computationally
intensive. To avoid this, the possibility of implementing a method which is less computationally
intensive, while remaining similar to the training procedure, is investigated. The proposed training
procedure involves subset of the of samples from the training data, which will serve as the initial
conditions from which the np-step prediction ahead is made. The samples will be chosen uniformly,
such that every sample is spaced evenly wrt. the closest other drawn samples. The total number of

samples involved in the computation Np,qip, is shown in (6.8).

Nrrain = Ngim - Nps - Pinit (68)

Where,

mp

Nps =
s

Nrrain | Total number of samples used during training

Ngim Number of samples in simulated data

P Percentage of original training data used as initial conditions
Nps Number of predicted samples ahead from initial condition
my Minutes to predict ahead

Mg Minutes per sample

The selection of Py, is crucial, as it significantly impacts the training process. This variable represents

the percentage of training data to be utilized, and can equivalently be interpreted as employing every
1

Pinit

selection of Pj,;, and therefore H, will degrade the training process. This is the case when H is chosen

= H’th sample. Due to the decision of spacing the initial condition samples evenly, an improper

as a linear combination of daily sample count and any whole number. The degradation occurs, because
H aligns with the daily cycle, resulting in a phenomenon observed on the left side of Figure 6.4, where
the model’s knowledge is restricted to only use the times 12 : 00 and 06 : 00 as initial conditions.
Consequently, the model training will never use data points that are not in the intervals after the
chosen initial conditions. If H is chosen properly this phenomenon is avoided, as shown on the right
side of Figure 6.4, which ensures that the training process gradually covers an entire day.
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Aligned Misaligned
12 12
9 @ 3 903
6 6
Figure 6.4. Daily cycle with a number of predictions of 90 minutes marked as arrows. Left side

shows a 12 hour sampling interval, where the right side shows a 2.5 hour sampling interval.

To prevent this phenomenon, the constraints shown in (6.9) are introduced for H.

1 4 {Spd - K4 |K1 S {W\nps < Spd}

s s
= |K € {W|K; < r’:}

Where,

Spa | Number of samples per day

With this implementation, the minimization problem is once again redefined as (6.10), building upon
the previous redefinition in (6.3), to incorporate these changes.

N—nps
H Mps
... S 2
minimize T; =T . )> 6.10
Tambs Tsun, Theating- Ti <Z <|| ”Lt(kAH)JFJ Znt(k‘H)+J||2 ( )
k=0 7j=1
dﬂnt ; Tamb L T’int ; Wsun ; Wheatin ;
. . . . . (k.
subject to (k-H)+j (k-H)+j (k-H)+j + (k-H)+j + (k-H)+j (6.11)
dt Tamb Tsun Theating
n Tint gy ji
D
i=0 T
dTint ;
) _m i (k-H)+j
Tint i myriun = Doty + A8 dt (6.12)

The code structure for this implementation is shown in Snippet 6.6, demonstrating the creation of an
array containing uniformly chosen indices within the training dataset. These indices are then used,
when training the nRnC model, to selectively utilize samples from the training dataset.

Page 40 of 99



10

11

12

13

14

16

17

18

19

20

21

ES9-928 Data-driven Modeling and Control Development for EntoLabs ApS

N = len(training_data) — n_ps

nPointsDrawn = math.floor(p_init * len(training_data))

startingPoints = np.round(np.linspace(l, N, nPointsDrawn)).astype(int)

Snippet 6.6. Creation of uniformly chosen indices array

Here, p;nit is the fraction of the training data used as initial conditions. Furthermore, startingPoints
is the array containing the indices chosen to be used as initial conditions. Implementing this into the
code shown in Snippet 6.1 results in the code shown in Snippet 6.7.

for i in range(nPointsDrawn) :

T_predicted = np.zeros(n_ps)

T_int = T_data[startingPoints[i] — 1]

Tamb_Tint_temp = Tamb_Tint[startingPoints[i] — 1]

delayed_output_array_temp = delayed_output_array.iloc[startingPoints[i] — 1].values

for j in range(n_ps):

dTdt = rlcl_model(tau_amb, tau_q, tau_sun, Tamb_Tint_temp, Q[startingPoints[i] + j

—1], Sun[startingPoints[i] + j —1], delayed_output_array_temp, tau_delayed, pi)

T_predicted[j] = normalize(denormalize(T_int, max_x) + denormalize(dTdt, max_y),
max_x)

T_int = T_predicted[j]

Tamb_Tint_temp = normalize(denormalize(T_amb[startingPoints[i] + j], max_d[0]) —
denormalize(T_int, max_x), max_d[2])

delayed_output_array_temp = np.insert(delayed_output_array_temp[:—1], 0, dTdt)

cost += np.sum((T_data[startingPoints[i]:(startingPoints[i] + n_ps)] — T_predicted)x*%*2)

Snippet 6.7. Training of nRnC model with integrated inertia and percentage chunk training.
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6.5.1 Evaluation

To evaluate the impact of these changes and to estimate a lower bound on the amount of initial
conditions chosen, the MAE test described in (4.1) will be performed to compare the performance
of the nRnC model using varying percentages of the training data. These percentages will follow a
geometric progression with a ratio of %0. However, the minimum percentage in which the training data
can be used is expressed as:

1 1
— _ ~0.0000285 6.13
Nyim 35040 (6.13)

Pz'nitmm =

Where Ng;,, represents the number of samples based on a 15-minute sampling frequency over the course
1

10°
which translates to a range of percentages from 100% to 0.01%. Furthermore, this evaluation will be

of a year. Thus, using a geometric progression with a ratio of ==, the decimal range becomes 1 to 0.0001,
performed on each building model introduced in Section 3.1.1 to validate the approach across multiple
building types. For consistency, the evaluation process will be based on second order nRnC models.
The results for the second order nRnC model across all building models are shown for SimpleHouseRad
in Figure 6.5 and Table 6.4, for Simple HouseRSla in Figure 6.6 and Table 6.5, and for SwissHouseRSla
in Figure 6.7 and Table 6.6.

Second Order nRnC model

—e— 100.0% Training data
—e— 10.0% Training data
0.35 —e— 1.0% Training data
0.1% Training data
—a— (.01% Training data

0.25

Prediction Error

0.1

1 1.5 2 2.

J
[
[}

Prediction Hours

Figure 6.5. Performance trajectory for SimpleHouseRad through decreasing percentages training
data, including a zoomed-in view for detailed analysis.
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Training data % Training Time [HH:mm:ss| |

| 100 % | 11:32:30 |
| 10 % | 00:58:00 |
| 1% | 00:06:16 |
| 0.1 % | 00:01:08 |
| 0.01 % | 00:00:35 |

Table 6.4. Training times for each incremental percentage of training data used in model training
for SimpleHouseRad.

Second Order nRnC model

—a— 100.0% Training data
—a— 10.0% Training data

0.35
—a— 1.0% Training data
0.1% Training data
0.3 —e— 0.01% Training data
L
o
=
w 0.25
c
2
e}
= 0.2
1]
;=
o
0.15
0.1

Prediction Hours

Figure 6.6. Performance trajectory for SimpleHouseRSla through decreasing percentages training
data, including a zoomed-in view for detailed analysis.

Training data [%] Training Time [HH:mm:ss| |

| 100 % | 08:06:24 |
| 10 % | 00:55:49 |
| 1% | 00:04:20 |
| 0.1 % | 00:00:59 |
| 0.01 % | 00:00:35 |

Table 6.5. Training times for each incremental percentage of training data used in model training
for SimpleHouseRSla.
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Second Order nRnC model

—a— 100.0% Training data

0.012 —e— 10.0% Training data
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Figure 6.7. Performance trajectory for SwissHouseRSla through decreasing percentages training
data, including a zoomed-in view for detailed analysis.

Training data % ‘ Training Time [HH:mm:ss|

|
| 100 % \ 09:26:52 |
| 10 % \ 00:57:30 |
| 1% \ 00:06:16 |
| 0.1 % \ 00:01:07 |
| 0.01 % \ 00:00:36 |

Table 6.6. Training times for each incremental percentage of training data used in model training
for SwissHouseRSla.

As observed in Figure 6.5 and Figure 6.6, utilizing 100%, 10%, 1%, or 0.1% of the original training data,
has little to no significant impact on the predictive performance of the nRnC model. In contrast to
Figure 6.7, which demonstrates a performance impact when utilizing 0.1% of the original training data.
When comparing these performances with their respective computational times listed in Table 6.4,
Table 6.5 and Table 6.6, it becomes clear that utilizing 1% of the original training data as initial
conditions represents a good trade-off between the computation time required to train a nRnC model,
and the predictive performance of the trained model. Therefore, for all future simulations and each
simulation within Section 6.2, it is decided to utilize only 1% of the training data.
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6.6 Model Validation

With the enhancements made to the nRnC model, a validation of the model is to be made in the
form of a comparison of the former nRnC model introduced in Chapter 2. Both models are trained
using the SimpleHouseRad dataset, and their predictive performance are evaluated by comparing their
prediction with the actual data for the corresponding time period. The comparison test is shown in
Figure 6.8 along with the corresponding MSEs for each model compared to the actual data in Table 6.7.

Validation of nRnC

= Actual Data
0.1 = Improved nRnC

Qriginal nRnC

29.7k 29.75k 29.8k 29,85k 29,9k 29,95k 30k 30.05k

4 Temperature

Sample

Figure 6.8. Comparison of the two nRnC models trained on SimpleHouseRad plotted against the
actual data, demonstrating their accuracy in predicting temperature changes.

Model MSE |
| Original nRnC [ 0.00141 |
| Improved nRnC | 0.00087 |

Table 6.7. Predictive performance of the two nRnC models trained on Simple HouseRad compared
to the actual data.

Thus, Table 6.7 confirms an improvement with the changes made to the original nRnC model, nearly
doubling the predictive accuracy.

Chapter summary

In this chapter the further development of the nRnC from Chapter 2 has been described. The
development included inclusion of scaled versions of delayed outputs, a mechanism for obtaining the
number of delayed inputs to include which balances performance and complexity, and finally a method
for improving the efficiency of the training method previously used. With these changes, the nRnC
demonstrates improved predictive performance and increased efficiency. Henceforth in this project,
the version of the nRnC model described in Chapter 2 will be referred to as the original nRnC, while
the version of the nRnC described in this chapter will be referred to as the improved nRnC.
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7 | Physics-informed neural network

This chapter will describe the implementation of Physics-Informed Neural Networks (PINNs) for
learning the dynamics of the simulated buildings in this project. First the theoretical background
of this type of neural network is given, after which the training of the PINNs in this project will be
described.

7.1 Background

In recent years, the combination of deep learning techniques and traditional physics-based modeling
has paved the way for new methods in data-driven modelling. Among these innovative approaches
PINNs stand out as a promising method, combining the expressiveness of neural networks with the
foundational principles of physics. The concept of PINNs was introduced in a 2017 paper by M. Raissi
et. al. [27]. PINNs have a structure identical to a standard multi-layer perceptron (MLP), as shown
in Figure 7.1

Input Hidden Output
Layer Layer Layer

Figure 7.1. MLP with 3 inputs, 2 hidden layers with 4 neurons each, and 1 output.
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In a MLP, the input propagates through the layers from left to right. In each hidden layer of the MLP
a number of neurons are present, where the output of that neuron is generated by the input from the
previous layer, which is weighted and summed with a bias. The output produced for a given input to
a neuron, is based on an activation function, for example a rectified linear unit or sigmoid function
[28, c.7]. During the training process of a neural network, the concept of epochs plays a crucial role.
An epoch refers to a single pass through the entire training dataset. After processing all data points
in the dataset, one epoch is completed, and the process may repeat for a predefined number of epochs
or until a convergence criterion is met. Multiple epochs allow the network to progressively learn from
the data [29, p.7].

In much of the literature available regarding PINNs, the goal is to make a PINN that can approximate
the solution to a PDE which is expensive to solve using numerical methods. In a 2021 paper by F.
Arnold and R. King, an example of the use of PINNs is given, where the training objective of the
PINN is to provide approximate solutions to Burgers’ equation [30]. Here, h(p,t) denotes the solution
to the equation as obtained through utilizing numerical methods at position p and time ¢. The goal is
then to train a PINN v(p, t), such that

h(p,t) =~ ¥ (p,1)

In the mentioned article, the data collected to train the PINN is composed of boundary conditions and
collocation points, which provide solutions to the PDE at points of interest. The boundary conditions
of t consist of the initial condition at h(p,0), as well as the terminal condition at h(p, tenq). Similarly,
the boundaries of p contain the solutions to the PDE at the lower and upper spatial bounds, p;, and
Dup, Of the equation h(py,t) and h(py,t). The collocation points consist of a selection points where
the solution to h(p,t) is known within the boundaries on ¢ and p. The setup of these training points is
shown in Figure 7.2, where the blue and white points are collocation and boundary points, respectively.
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plb 1.. o .n : .O .n fo) ° .n .n .n .. .c
to Time t tend

Figure 7.2. Example of distribution of points used for training PINN in the 2021 paper by F. Arnold
and R. King. The blue points represent collocation points, and the white points represent boundary
conditions [30].
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Before training the PINN, numerical solutions to Burger’s equation at these points are obtained by
numerical solvers. Omnce the PINN has been trained on the input-output pairs, solutions to any
arbitrary point chosen within the boundary conditions can be obtained by evaluating the PINN
¥(p,t). This will be computationally cheap, when compared to a numerical solving method [30].
In this approach, incorporation of fundamental governing equations ensure that PINNs respects the
underlying physics of the system, while providing generalization capability and fast evaluation of points
within the boundary conditions.

7.2 Utilization of PINN concept for building modelling.

In this project, a similar approach is taken. As mentioned above, usually an accurate and detailed
model of some underlying physical interaction is utilized as a ground truth, which the PINN is trained
to mimic. The proposed PINN training strategy in this project will be, to use the improved nRnC
model to provide these outputs at points of interest, which will be distributed similarly to how the
data in Figure 7.2 is distributed. The similarity being, that the entire relevant input space will be
populated with points. At each of these points the improved nRnC model will provide a predicted
output, which then will be used to produce a physics training loss Lyhysics based on the difference in
the outputs of the PINN and nRnC models. However, a PINN trained only with output data given by
the improved nRnC model will only be as good as the improved nRnC model. To further improve the
accuracy of the PINN, the data obtained in the simulation described in Section 5.4 will be utilized.
This is the same data used when training the improved nRnC model, however the structure imposed
by the choice of expressions in (6.2) might omit some important details. To allow the PINN to capture
these details, the data training loss Lgq, will be obtained by use of the back-propagation through
time (BPTT) algorithm [31]. The adjustment to the weights and biases in the PINN will therefore be
chosen based on (7.1)

Etotal = ['physics + Sum(ﬁdata) (71)

7.2.1 Batching

For the data loss L4, utilizing the BPTT algorithm, a length of time with ¢ samples will be predicted
from an initial condition, and consequently the entire simulated dataset will be split into batches of
size q. Since the error used for training the PINN is L4, the data generated for L,4ysics Will also
have to be split. It is decided not to limit the size of this data to be equal to the simulation data, and
instead ensure that an equal amount of total batches is created for both losses. The error of Lpnysics
and Lgq, will consequently be found as an average across the batch, such that a large dataset for
either loss will not cause the associated error to dominate the training.

7.2.2 Physics loss

For the physics loss, first a dataset containing input samples is constructed. This dataset is constructed
in a similar manner as the one mentioned in Section 7.1, however this dataset is not constrained by
spatial and temporal boundaries, and instead constrained by statistically determined upper and lower
bounds on each input feature. The upper and lower bound for each feature is found, by finding the
mean value p and standard deviation o of the feature z in the simulated training data. The bounds T
are then defined as:
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T = [feature t5- O feature (72)

The number of input features are equal to the input size of the improved nRnC model developed in
Section 6.2. With the input size defined, a number of desired input points IV is chosen. These points
will be distributed according to the size of the input layer v, by taking the v’th root of N, N,. The
value of N, will dictate how many unique values of a given input feature will be distributed evenly
within the Z of that feature. The concept can be illustrated as shown in Figure 7.3 by considering the
case with only two features.
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Figure 7.3. lllustration of method chosen for distributing points in relevant area of input space
for two arbitrary features. The white dots represent points along the boundaries of one or multiple
features, while the blue points represents points which are not placed on the boundary of any feature.
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Once the input data has been generated, it is collected into a matrix D;,. The matrix D; is then
given sample by sample to the trained nRnC model, in order to obtain matching input and output
pairs. The outputs are collected into the vector dj. As stated previously, the data will be segmented
into batches. Therefore D), and d) are shuffled, while maintaining coherent input-output pairs, and
segmented into batches, such that the total number of batches produced from the simulated data and
physics data is equal. The length of the batches created from the physics data will be g, and the
input matrix and output vector will be named BZ, and by respectively, and are defined as:

TAmbk - Tlntk TAmb]H,l - Tlntk+1 v TAmbk+qp - T]ntk_;,_qp
Wsun, Wy . Wy,
WHeatingk WHeatingk+1 cee WHeatingk+qp
i _
Bi=| ATpy, ATrps, o AT,
ATy, AT, o AThu,,
N N . ATrntys,
AT, AT, o ATh,
b = [ATiw, ATrn., .. ATMMP]

The concurrent input-output pair at an arbitrary step is then taken as a column at the same index in
both B:f; and bg. The physics loss Lypysics for one batch is then obtained as shown in (7.3)

iy (B9[] — (By[k]))?
dp

Ephysics =

The code implementation of how the physics loss is obtained is shown in Snippet 7.1

def PINN_loss_physics(PINN, input_data, output_data):

physics_loss = torch.tensor(0.0, requires_grad=True)

for i in range(batch_size_physics):
predicted_output = PINN(input_data[i,:])
loss_term = (predicted_output — actual_output[i])**2
physics_loss = physics_loss + loss_term

return physics_loss/q_p

Snippet 7.1. Code for obtaining physics loss.
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7.2.3 Data loss

For the data loss, the simulation data is first segmented into batches. The batches will contain ¢4
temporally sequential samples, and be split into input Bé and output bil. When predicting using the
simulation data with the PINN, a prediction from an initial condition at step k is made. After the
first input, the output of the model AT}, in step k, is used to predict the internal temperature T,
at step k + 1 by applying a Forward Euler integration scheme. Tip, ,, is then used as an input for the
PINN ¢ at step k+ 1, after which the process is repeated. Similarly, the delayed outputs are updated,
such that the output at step £ will become the once-delayed output when predicting the output at
step k + 1. The setup is shown in Figure 7.4

Condition data

Tambys Wsunys Wheating,

Wsuny.s Wheating,, Wsuny+1, Wheating,+1 Wsuny+2, Wheating,+2

' ) —

Tamby, Tamby.r Tomby,,

1 Tty 1 Tinty.

Initial condition ATy, |— 121

T, |
— o ¥ % ¥
P —~— AT, — AT,
Historical >
AT, — AT,
ATingy, - AT, > \mz—) et
- — ATy, — AT,

— — —

Figure 7.4. Ilustration of the propagation of states during prediction from initial condition using
the PINN network . The condition data contains values for ambient temperature, solar radiation and
heating input.

With the method of recursively predicting the temperature trajectory in a batch illustrated, the BPTT
algorithm used to obtain the loss gradient through one batch will be described. The BPTT algorithm
is an algorithm used with recurrent neural networks (RNNs). While the PINN in this project is not
a RNN, the training method employed for the simulation data loss will be similar in concept. This
is due to the multi-step prediction error obtained by both evaluating the temperature Tine at each
intermediate prediction step in the batch and the terminal Tmtk gy 88 shown in Figure 7.4. The
BPTT algorithm aims to update the weights W of the neural network v, denoted as Wy, These
weights are updated using the weight update rule shown in (7.4).

5£data
Wiy = Wy, - W, (7.4)
Where,
Symbol ‘ nit ‘ Description
Ir [ Learning Rate
Ljata [ Batch loss
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With L4, found as the difference between the predicted and actual internal temperature at step k
as shown in (7.5)

l:data = (T]ntk - TIntk)2 (75)
To compute the gradients of L4, with respect to Wy, the chain rule of differentiation is applied

through the network unrolled over time, as illustrated in Figure 7.4. Using the chain rule, the gradient
of Lgata with respect to the weights Wy is given by (7.6) [31].

OLdata _ z‘”: Z OLata;  OATrinps ONT 1nip s .
oWy, i=1 j=0 OAT gy 8ATIntk;+j oWy,

Where Lj,1,, represents the loss at time step 4, and the summation accounts for the contributions from
each time step to the overall gradient. Thus (7.6) reflects how the gradient at time step 7 depends on
the outputs and weights of all previous time steps up to j. The weights W, are then updated based
on the loss gradient, ensuring that the model learns to minimize the loss over time. This description
covers how BPTT would be implemented for the L4, alone, however in this project the loss used
for training is instead the total loss L;yq;. To obtain the data loss L4,4, for a single batch, the true
sequence of g outputs in the training data is compared with the sequence predicted by the PINN from
the initial condition. The calculation of L4444 is shown in (7.7).

9 (ATpni. — AT )2
Edata = Zk:l( ! ;I; ! tk) (77)

The code implementation of how the data loss is obtained is shown in Snippet 7.2

def PINN_loss_data(PINN, input_data, actual_temperature, condition_data):

data_loss = torch.tensor(0.0, requires_grad=True)
for i in range(batch_size_data—1):
predicted_output = PINN(input_data[i,:])
predicted_temperature = normalize(denormalize(condition_data[i, 0], data_max[0]) +
denormalize(predicted_output, data_max[4]), data_max[0])
Tamb_Tint = normalize(denormalize(condition_datal[i,1],
max_d[0]) —denormalize(predicted_temperature, max_x), max_d[2])
loss_term = (predicted_temperature — actual_temperature[i])**2
data_loss = data_loss + loss_term

input_data[i+1, 2].data.copy_(Tamb_Tint.data.item())
return data_loss/q_d

Snippet 7.2. Code for obtaining data loss.
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7.3 Training the model

With Lphysics and Lgq¢q defined as per-batch losses, the model training will be described. The training
will be performed by utilizing the Pytorch library, which is a highly developed and commonly used
open-source machine learning framework [32]. First the two losses are combined into Lyyt4; as shown in
(7.1). To adjust the weights in accordance with the L4ytq obtained for one batch, auto-differentiation
is utilized. The .backward() function call in Pytorch is the automatic differentiation technique used in
this project to find the gradients of the PINN loss function [33|. Automatic differentiation is a method
used to obtain partial derivatives of code variables wrt. other variables, by exploiting the fact that any
computer program is constructed using a finite set of simple mathematical operations. By repeatedly
applying the chain rule of differentiation through the chain of operations, the desired partial derivative
is obtained [34|. Based on the obtained gradient, the Adam optimizer will be utilized to implement
gradient descent optimization in this project [35]. The code implementation of the PINN training is
shown in Snippet 7.3

data_loss = PINN_loss_data(PINN, batch_input_data, batch_output_data, batch_condition_data)
physics_loss = PINN_loss_physics(PINN, batch_input_physics, batch_output_physics)

loss = data_loss + physics_loss

loss.backward()
optimizer.step()

Snippet 7.3. Code implementation of autodifferetiation using Pytorch.

7.3.1 Determining Network Size

With the training method and loss functions defined, the PINN can be trained and tested. However,
first the width and depth of the network has to be defined. While simply choosing a very large
network size would allow the PINN to model the dynamics very accurately, however such a large
network would take longer to train, be more prone to overfitting, and take longer to evaluate. This
reduction in evaluation speed would become relevant when used in combination with the MPC, since
the operation of MPC requires a very large amount of model evaluations every time the optimal control
problem is solved. Therefore, the desired size of the PINN is the size, where the network is just big
enough to accurately model the dynamics of the building. To ensure this, an approach similar to the
method in Section 6.2 is used. Specifically a value L., which is initialized as zero, is used to control
this size, by determining the amount of neurons 7, in each layer according to (7.8)

Yo =245 (mod(Le,2)) + 5 - [Le/ /2] (7.8)

And the amount of hidden layers ; in the network as shown in (7.9)

0=1+[Le/ /2 (7.9)
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This method of expanding the network was defined based on heuristic considerations, namely that the
network size should not shrink when adding additional layers. As seen, first the amount of neurons
in every hidden layer is increased by 5 when incrementing L. once. The next increment of L. adds
another layer with the same amount of neurons. By training the PINN with increasing values of Le,
a systematic exploration of different network shapes will be made. To evaluate the trained PINN,
20% of the simulation data batches constructed will be used as validation data and the remaining 80%
will be used as training data. Once a network has been trained, the MSE between the output in the
validation data and the output calculated by the PINN when fed the validation data inputs will be
found. The systematic network size increase will follow the procedure shown below:

Train the PINN with ~; hidden layers and -, neurons per layer
Calculate validation loss as MSE of PINN output compared with validation dataset output
Compare with previous best validation loss

Ll

If the obtained validation loss is more than 1% less than the best validation loss, increment L,

and repeat from step 1.

5. If the validation loss improvement does not exceed the threshold, but the most recent iteration
before the current provided an improvement, increment L. and repeat from step 1.

6. If the validation loss has failed to improve twice in a row, end the training and select the network

which the last two networks were compared with.

As shown, the improvement between consecutive trained PINN networks has to be above a threshold of
1%. This is a tuning value, which has been chosen based on a weighting between network performance
and training time.

7.3.2 Determining Learning Rate

The weights in the PINN network are randomly initialized, with a large initial learning rate. However,
a large learning rate will probably prohibit the weights of the PINN from converging fully. To address
this, a scheduler is introduced. The role of a scheduler is to monitor a loss for improvement. If no
improvement is detected over a set number of epochs, it decreases the learning rate, which causes
the training algorithm to take smaller steps. This scheduling mechanism is implemented using the
‘torch.optim.Ir _scheduler library’, specifically the ’'ReduceLROnPlateau’ function. While this
function offers several adjustable parameters, for this purpose, only the following are utilized [36]:

torch.optim.lr _scheduler.ReduceLROnPlateau(optimizer,
mode="min’,
factor=0.1,

patience=2)
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In this context, the ‘'mode’ parameter determines whether the learning rate should increase or decrease.
Here, the setting 'min’ indicates that a decrease is desired. The ’patience’ parameter dictates the
number of epochs to wait, before adjusting the learning rate. Lastly, the 'factor’ parameter specifies
the magnitude of change in the learning rate, calculated as [36]:

{rnew = lr - factor

With this implementation, the PINN model commences with randomly initialized weights and

progressively decreases step sizes as it approaches convergence.

7.4 Model Validation

To evaluate the performance of the PINN model, the MAE test described in (4.1) is conducted
to compare its predictive performance with the improved nRnC model developed in Chapter 6.
The test will be performed for all three building models: SimpleHouseRad, SimpleHouseRSla, and
SwissHouseRSla. Additionally, the training duration for the PINN model is provided. Unlike the
nRnC model, the training duration of the PINN model is not reliant on model order, but rather on
the ability to find a suitable minimum that satisfies the threshold. The variability in finding this
minimum stems from, among others, the randomized initialization of weights in the neural network
of the PINN, as detailed in Section 7.3.2. To address this variability, the PINN is trained five times
with a model order of 1, allowing for a comparison of duration variations specific to this model. The
predictive performance plots for each building model are displayed in Figure 7.5, Figure 7.6, and
Figure 7.7. Additionally, the training duration and network size for five PINN trainings on a single
building model, SimpleHouseRad, are presented in Table 7.1.

Run # Network Size [Neurons:Layers:Epochs| Training Duration [HH:mm:ss|

1] 7:2:77 \ 00:37:22 |
2 ] 7:2:89 \ 00:44:29 |
3 ] 7:2:52 \ 00:26:57 |
| 4 ] 12:2:96 \ 00:49:10 |
5 ] 7:2:61 \ 00:29:32 |

Table 7.1. Network size, epochs, and training duration for SimpleHouseRad, highlighting the training
process parameters during the optimization process.
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Predictive Performance of Models for SimpleHouseRad
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Figure 7.5. Predictive performance comparison between the 7th order improved nRnC and PINN
models on the SimpleHouseRad dataset.

Predictive Performance of Models for SimpleHouseRSla
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Figure 7.6. Predictive performance comparison between the 7th order improved nRnC and PINN
models on the SimpleHouseRSla dataset.
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Predictive Performance of Models for SwissHouseRSla
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Figure 7.7. Predictive performance comparison between the 7th order improved nRnC and PINN
models on the SwissHouseRSla dataset.

Chapter summary

In this chapter the development of a PINN, which utilizes a combination of the predictions made by the
improved nRnC model, described in Chapter 6, and predictions over consecutive steps during training.
Furthermore, a method for dynamically determining the size of the network and the learning rate
based on prediction performance on verification data is described. Finally, the predictive performance
of the PINN is compared with the performance of the improved nRnC, where the PINN demonstrates
better performance in the buildings Simple HouseRad and Simple HouseRSla, while the performance in
SwissHouseRSla is almost identical between the models.

Page 57 of 99



8 | Auto-tuning of hyperparameters

This chapter will describe the selection of a system for online tuning of the hyperparameters in the
MPC cost function described in (5.1). The designed system will use the KPIs described in Section 3.2
as performance signals to aid the tuning. Additionally, the implementation of the chosen system will
be described, after which a demonstration of the system used in a building simulation will be given.

8.1 Problem definition

As seen in the MPC cost function described in Section 2.3, multiple hyperparameters are present. The
H,, and H. hyperparameters are set to constant values, zero and H), respectively, regardless of the
characteristics of the current building in this project. H,, is also relatively simple to determine, where
the value is initially set based on a priori assumptions regarding how long it typically takes to heat
up a building. The value can then be raised, if for example the heating system is not able to raise the
temperature in time for the rising edge of the occupied hours, even with high actuation throughout the
prediction horizon. Finally the £ parameter is chosen as a constant value. Based on this, only the R,
C and Ca will be chosen as the hyperparameters to be tuned by the system described in this chapter.
However, a trade-off is present between the R and both the C and Ca hyperparameters, which can help
simplify the problem if exploited. The trade-off being, that the cost of energy input into the system
is weighted against the cost of deviating from the reference in the minimization problem solved in the
MPC. Since these two costs are weighted linearly by the scalar values R and C, a ten-fold increase in
both values would make no difference to the optimal control input found. A similar consideration can
be made regarding R and Ca. Based on this, it is chosen to find the optimal values of C' and Ca given
a specific R.

8.1.1 Choice of strategy

A decision has to be made regarding whether a model of the interaction between chosen
hyperparameters and measured KPI values will be made. Such a model would have to include the
disturbances caused by variations in ambient conditions. The severity of these disturbances would
depend on the specific building, and have to be known in advance in order for the model to accurately
account for them. However, the task of defining a building-specific transfer function which takes
hyperparameters as inputs and outputs KPIs would be in conflict with the problem statement in
Section 4.2. One possible solution would be to train a model of this interaction based on historical
data. However this would require a systematic search of the hyperparameter space with corresponding
output values, which is difficult to obtain due to the stochastic nature of the impact of ambient
conditions. Therefore, it is chosen to treat the problem as a black-box optimization problem, which
implies that the transfer function between the hyperparameter inputs and the resulting KPIs is not
explicitly defined.
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8.2 Candidate methods

With the problem specified as a black-box optimization problem, the possible candidates for solving
such a problem will be described in this section.

8.2.1 Sampling methods

A simple approach to this problem is choosing the best performing point observed, based on a sampling
of the space of possible hyperparameter values. Grid search or random sampling are examples of
methods which uses this approach [37]. Common for these methods is, that a large amount of
hyperparameter values have to be tested in order to provide a solid basis for choosing the best set
of hyperparameters. As stated in Section 3.2, the fact that each set of hyperparameter values requires
at least one full day of measurements before KPI values can be produced, makes these methods poorly
suited. Furthermore, the changing ambient conditions also impact the problem, which causes points
previously sampled to become less reliable over time.

8.2.2 Metaheuristic methods

Metaheuristic methods offer an alternative approach to tackling this problem. Unlike traditional
sampling methods, they systematically explore the search space with the flexibility to make
assumptions about the problem. This enables them to focus on promising areas of the hyperparameter
space rather than exhaustively examining every possibility [38, p.2]. In these methods, an initial broad
sampling of the hyperparameter space is conducted. The most successful points from this sampling
guide further exploration. For instance, in particle swarm optimization particles move through the
hyperparameter space, adjusting their positions based on performance feedback [39, c.1|. Similarly,
genetic algorithms select new values to explore based on combinations of evaluated points with good
performance, and discards poor points in order to iteratively refine the search [40, c.1|. These
approaches have the potential to reduce the number of evaluations needed compared to traditional
sampling methods, especially if an efficient initial exploration is performed. However, sparse initial
sampling may overlook promising areas in the hyperparameter space.

8.2.3 Surrogate-assisted methods

Surrogate-assisted methods are a type of sequential method, where points in the hyperparameters
space which have been evaluated, are used to approximate a surrogate model of the black-box function.
Optimization techniques can then be used on the surrogate model, in order to obtain a suggestion for
a new optimal point to evaluate [41]. Over time, as new points are suggested by the model, and
subsequently evaluated in the black-box, the number of known points available for constructing the
surrogate model increases. Due to this, these methods are very sample-efficient, since each additional
evaluation aids the process by increasing the information captured by the surrogate model [42]. One
popular surrogate method is Bayesian Optimization (BO), which is based on Bayesian inference. BO
is a popular and effective method for hyperparameter optimization in neural networks, to the extent
that a variation of BO was the winning algorithm in the "black-box optimization challenge" at the
2020 NeurIPS conference [43]. Furthermore, frameworks like AutoMPC, which implement automatic
hyperparameter tuning, utilize BO techniques for this task [44].

Page 59 of 99



ES9-928 Data-driven Modeling and Control Development for EntoLabs ApS

8.2.4 Selection of black-box optimization method

As mentioned, there is a high cost associated with evaluation of the black-box function, since a proposed
set of hyperparameter values has to used in the HVAC of a building for at least a full day, before KPIs
can be calculated using the functions in Table 3.1. Based on this, it is desired to select a method which
is as sample-efficient as possible. Therefore BO is chosen as the black-box optimization method in this
project.

8.3 Bayesian optimization

With BO chosen as the black-box optimization method in this project, a description of the method
will be given. As described, BO utilizes a surrogate model to capture the assumed behaviour of the
objective function. By applying a so-called acquisition function to this surrogate model, a surface
of the value assigned to choosing a given point in the surrogate model is obtained. By applying
optimization techniques to this surface, a suggested point which either minimizes or maximizes the
acquisition function is chosen. The setup is illustrated in Figure 8.1.

C, Chpeita KPIs
- Delt MPC ~

Acquisition Surrogate
Function Model

Figure 8.1. Illustration of a BO with a surrogate model representing the knowledge of the objective
function, which in this project is the MPC, and an acquisition function used in combination with
optimization techniques to determine points of interest. The colors indicate where the described
components of BO are to be found in the system diagram in Figure 5.1

For clarity, a step-by-step description of Bayesian Optimization is given. The Bayesian Optimization
algorithm proceeds as follows:

Initialize a surrogate model of the objective function with initial data points.

Assign value to the surrogate function using an acquisition function.

Select the next point for evaluation by applying an optimizer to the acquisition function output.
Evaluate the objective function at the selected point.

Update the surrogate model with the new data.

SN

Either repeat step 2 to 4 until a stopping criteria is met.
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The stopping criteria mentioned in step 5 of this procedure is chosen to fit the specific problem which
is solved. BO is often used for determining the size and shape of neural networks, and in that context
a stopping criteria could for example be a performance threshold. In this project no stopping criteria
is defined, where BO is simply allowed to operate throughout the simulation. However, in a real
world building implementation which utilizes BO for hyperparameter tuning, the BO algorithm could
be turned off after multiple years of historical data has already been collected. As described, the
surrogate model plays a crucial role in BO. In this project Gaussian Process (GP) regression is chosen
for obtaining such a model, which is a common choice for BO [45]. A description of (GP) regression
will be given below.

8.3.1 Gaussian Process Regression

GP regression is a powerful tool for constructing surrogate models in Bayesian Optimization. It
defines a distribution over functions, allowing the BO to capture uncertainty and make probabilistic
predictions about the objective function f(x). The distribution over functions is defined by assuming
the observations of the objective function f(z) are all originating from the same function evaluated at
a point z. This function can be thought of as an infinite vector, specifying the value of the function at
any chosen point . Therefore any finite set of observations would only partially describe the function.
Fortunately, Gaussian inference allows predictions of the behaviour of the function at a finite set of
points of interest to be determined based on a finite set of observations, and the results obtained will
be the same as those obtained, if all the infinite points not evaluated were included [46, p.2]. More
specifically, it is assumed that the observations from the objective function at point = are obtained as
noisy observations, shown in (8.1)

v = f(x) + €, € ~ N(0,0%) (8.1)
To construct the GP, first the following declarations are made for a GP with v features:

Symbol | Description

2

p Variance of the observation noise.

o
(zi,yi)Y | Set of N observations

(z)M Set of M test inputs

7

X Nxv Matrix with evaluated inputs, each row represents one input

XM | Matrix with test inputs, each row represents one input

yVx1 Observed noisy outputs at the inputs X

Fx1 True function value at the inputs X

f*M><1 True function value at the test inputs X™*

KQJN Cross-correlations between evaluated points, obtained with a chosen kernel function as
/ﬂ(.%’i, T j)

Ki];*M Cross-correlations between evaluated points and test points, obtained as k(z;, )

Ki\f;N Cross-correlations between evaluated points and test points, obtained as k(z}, z;)

K i\f ;iw Cross-correlations between test points, obtained as k(z}, a:;‘)
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The GP assumption then is, that the observations y and the true function values at the test points
f* are jointly distributed as an N + M dimensional multivariate normal [46, p.14]. The distribution

Km:c 062 Km x*
- (e ) .

With this definition, a GP is fully specified by its mean function p(z) and covariance function (kernel)
k(x,2’). Formally, a GP is denoted as shown in (8.3)[46, p.15-16]

is shown in (8.2)

F1Xy ~ N(pge,03) (8.3)
where:
Symbol ‘ Equation
:U’f* Ka:*,a:[KaZ,:l: —+ Uz}_ly.
0120* Ka:*,w* - Ka:*,cc[ch,a: + J?]ilKa:,m*-

For evaluating a single test point x*, as will be done in this project, the cross-correlation matrices can
be compactly defined as vectors of covariances k*. The equations for p s« and O‘J%* then become as
shown (8.4) and (8.5)[46, p.17]

ppe =k (Kyg+02)ly (8.4)
012:* = k(z*,2") — " (Kgp +02) k> (8.5)

8.3.1.1 Kernel function

The choice of kernel in this project was between the Radial Basis Function (RBF) and the Matérn
kernel. While the Matérn kernel provides good robustness to outliers, the generality of the RBF
kernel was deemed as the better choice, since assumptions regarding the characteristics of the noise
in the functions described in Table 3.1 were not made [46, p. 83-85|. The RBF kernel assumes that
the function values become less correlated as the distance between the input points increases, and it
provides a smooth interpolation between observed data points. Furthermore the RBF kernel is more
computationally efficient, which makes for a scalable implementation. The RBF kernel is defined as
shown in (8.6)[46, p.84]

n_ 2 Cx =X
krpr(x,x') = ﬁfaf exp 2(V20)? (8.6)

where:

Symbol | Description

aj% Signal variance, controlling the overall variance of the function.
l Length scale parameter, which determines the distance over which the function values are
correlated.
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8.3.2 Acquisition Functions in Bayesian Optimization

In Bayesian optimization, acquisition functions are critical for guiding the search for the optimal
solution. These function assign value to the surrogate function surface based on the mean from (8.4)
and variance from (8.5) by balancing exploration, which promotes searching new areas with high
uncertainty, and exploitation, which focuses on areas where good function values have been observed
and the uncertainty is low. In order to select an acquisition function for this project, some possible
choices for these functions will be described. The descriptions will be formulated for maximizing as
in [47], however once an acquisition function has been selected the conversion to minimization will be

described.

8.3.2.1 Probability of Improvement (PI)

The Probability of Improvement (PI) acquisition function focuses on the likelihood that a new sample
will yield a better result than the current best observation |47, p.681|. It is defined as:

ppe(x) — f@h) —w

PI(z) =& (8.7)
/o2 (z)
f
where:
Symbol | Description
o(4) Cumulative distribution function of the standard normal distribution.
[fe Predicted mean of the objective function at point x.

U?* Square root of the GP covariance.

f(xt) | Current best observation.

K Exploration parameter.

The PI function prioritizes points that have a high probability of improving upon the best known value,
thus focusing on exploitation. Since the uncertainty of the prediction made with (8.3) increases as the
distance from a known point does, the denominator of (8.7) also increases. Therefore, this acquisition
function sometimes becomes "greedy" and avoids exploring areas that might yield even better results

but have low certainty. However, tuning of the x parameter can adjust this behaviour.
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8.3.2.2 Expected Improvement (EI)

The Expected Improvement (EI) acquisition function considers not only the probability of
improvement, but also the magnitude of the improvement. It is designed to find points that provide
the greatest expected improvement over the current best observation [48, p.82-85|. It is given by:

BI(x) = (up-(2) = f(@*) = 0)B(2) + | o3 (2)6(2) (8:8)

given by:
() — F(rt) —
O'J%* (z)
where:
Symbol ‘ Description
o(+) ‘ Probability density function of the standard normal distribution.

The EI function is effective at balancing exploration and exploitation, because it takes into account
both the uncertainty (through \/an* (z)) and the potential reward (through gz« (z) — f(zT)). It tends
to select points where the model predicts both a high mean and high uncertainty. Due to this, the
improvement obtained with the acquisition function is both an improvement in terms of potentially
finding a point with a high function value, but also an improvement in terms of reducing the total
uncertainty of the surrogate model [48, p.82-85].

8.3.2.3 Upper Confidence Bound (UCB)

The Upper Confidence Bound (UCB) acquisition function explicitly controls the trade-off between
exploration and exploitation by considering both the predicted mean and the uncertainty of the
prediction [47, p.682|. It is defined as:

UCB() = g (x) + iy [ () (8.10)

A higher value of k encourages exploration by placing more emphasis on the uncertainty (higher aj%*),

while a lower value of x encourages exploitation by focusing more on the mean (pr+(x)). This flexibility
allows UCB to be tailored to different optimization problems, but the choice of « is crucial and can
significantly affect the performance of the optimization process.
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8.3.2.4 Summary and selection of acquisition function

In summary, these three acquisition functions have different ways of balancing exploration and
exploitation. A summary of the functions is given below:

e Probability of Improvement (PI): Simple and focuses on the probability of improvement,
but may be overly exploitative.

e Expected Improvement (EI): Considers both the improvement in terms of reducing
uncertainty and obtaining good function values.

e Upper Confidence Bound (UCB): Explicitly controls the exploration-exploitation trade-off
through the parameter k, offering flexibility but requiring careful tuning.

In this project the UCB acquisition function is chosen. This is the case, since an exhaustive exploration
of the hyperparameter space is not required, instead it is desired to implement and acquisition function
which will exploit a proven set of hyperparameters once such a set has been observed. This excludes
the EI acquisition function, since this acquisition function explicitly assigns value to exploration, which
might in turn lead to poor occupant comfort. The choice between PI and UCB came down to how
the exploration parameter x is used in each formula, where it is evaluated that the implementation in
UCB is more intuitive. As described, the formulations are described in the context of maximization.
To convert the UCB to minimization, and therefore Lower Confidence Bound (LCB), the formulation
instead becomes as shown in (8.11):

LOB(z) = py-(z) — H\/UTQM(:C) (8.11)

8.4 Implementation

The BO in this project will be a single-objetive Bayesian optimizer, meaning that the KPIs will be
summed during evaluation of a proposed set of hyperparameter values. The BO is implemented using
the Scikit-Optimize library [49]. As shown, the limited memory Broyden—Fletcher—Goldfarb—Shanno
optimization algorithm is chosen as the optimizer in the BO implementation in this project due to its
popularity and availability in the Scikit library [47, p.679]. The implementation is shown in Snippet 8.1

kernel =
gp = GaussianProcessRegressor(kernel=kernel)
result = gp_minimize (MPC,
param_space,
acq_func= ,
acg_optimizer= ,
kappa=1,
n_initial_points=3,
n_calls=(int(final_sim_days —
((initialIters*paramTuningInterval)+1))//paramTuningInterval),
x0=[obs[0] for obs in observations],

y0=[obs[1] for obs in observations])

Snippet 8.1. nRnC model equation with integrated Inertia.
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Neither the parameter o2 in

In this code, the observations contains the observed points (zi,yi)N
the GP noisy measurement assumption in (8.1) or the ch% from the RBF kernel definition in (8.6)
will be specified here, since the Scikit library implementation is able to estimate these values from
the observations automatically. Similarly the length scale £ is also determined by the library, since
a manual tuning of this parameter requires many observations. In a full implementation, parameters
like these could be estimated after first running the system for a while, since a good ¢ parameter value
is often found through fitting the surrogate model to historical observations. As mentioned, the BO
implementation will input hyperparameter values to the MPC controlling the simulated buildings in
this project, after which the sum of the KPIs described in Table 3.1 will be calculated and returned
to the BO.

8.4.1 Determining x

With this decision made, four SimpleHouseRad building simulations with the MPC using the
improved nRnC and different x parameter values for the UCB acquisition function are run for 80
days from January 1st, to investigate the impact of this tuning parameter. Table 8.1

Simulationrun k= R 0pgr  bunder

[ ‘ Oa Range of allowed C and Cyep, values

01500 1 [ 4 [ 2 [1] [0.0,2000.0] |
05[500[ 1 [ 4 [ 2 [1] [0.0,2000.0] |
1L0J500] 1 [ 4 [ 2 [1] [0.0,2000.0] |
20[500] 1 [ 4 [ 2 J1] [0.0,2000.0] |

Table 8.1. Parameter values used during test of different k values.

The simulation is made to gather data over three days at every suggested hyperparameter value, before
analyzing the performance and producing KPI values. To initialize the BO, first some initial points
have to be manually tested to initialize the GP regression. For this purpose, three days with a C' and
Clelta value of 1900 is run, followed by three days with a value of 950, and finally three days with a
value of 0. After this, the BO algorithm controls the value of the hyperparameters for the remainder of
the simulation. The x parameter value is made to vary from the 0.1 to 2, since these values represent
small and large « values. The results observed can be seen in Figure 8.2, Figure 8.3, Figure 8.4 and
Figure 8.5
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Plot of BO performance
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Figure 8.2. Performance with a kK = 0.1. As observed, the hyperparameters tend towards stable
values after roughly 8 iterations.
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Figure 8.3. Performance with a k = 0.5. As observed the C'a hyperparameter tends toward a stable
value after roughly 12 iterations, while C' is not stable until iteration 20.
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Plot of BO performance
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Figure 8.4. Performance with a k = 1. As observed, the hyperparameters does not stabilize for
longer periods, but does have short periods of stability.

Plot of BO performance

2000 —— C_delta
7 — keI
- g
I 1500
=
= 5
w
2 -
o 3
4 ©
% 1000 E
S x
s 3
O
S
T s00 2
1
0
0
0 5 10 15 20 25
Iterations

Figure 8.5. Performance with a x = 2. It can be observed that the hyperparameters seem to stabilize
after roughly 20 iterations.

Page 68 of 99



ES9-928 Data-driven Modeling and Control Development for EntoLabs ApS

To evaluate the results, the sum of KPIs in each simulation is found and shown in Table 8.2. The
value of this sum can be seen as the overall penalty during the 80 day simulation, and therefore a good
indicator of performance.

BT o [ 05 [ 1 | 2

SIS IR 103.172 | 111.57 | 113.12 | 104.936 |

Table 8.2. Table showing the KPI value summed over all iterations at different values of «.

As seen, the variation over iterations in the proposed hyperparameter values increase, as the value of
K does. In all the simulations except Figure 8.3, it appears that the hyperparameters stabilize at a
value of C' of around 1000, and a low Cls, of around 100. Based on the inconclusive results shown
in Table 8.2, a k value of 1 is chosen. This choice is made, since no value of x clearly stood out
as the best in this test. Therefore a choice of a high or low x value would be arbitrary, where low
values potentially cause the BO to avoid exploration of better hyperparameters given changes to the
ambient conditions, and higher values might be exceedingly sensitive to noise in the KPI functions in
Section 3.2.
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9 | Acceptance tests

In this chapter the tests described in Section 4.4 will be performed. For each test, first the setup of the
test is described, after which the results of the test is shown for each of the three buildings described
in Section 3.1. Finally a brief evaluation of the results is given. For the tests related to simulation of
a building with MPC, plots of the performance during the same four days in each simulation is shown
in Appendix B, to enable visual inspection of the performance.

9.1 Test of Req. 1

The following test results relate to the requirement:

Compared to the original nRnC model introduced in Chapter 2, the model(s) must demonstrate improved
predictive performance when used on training data

9.1.1 Setup

To perform this test, the procedure described in (4.1) is used. The results of this procedure are shown,
in order to investigate the predictive performance of the models on training data. A fourth trace
is included, which serves as a baseline and demonstrates the prediction errors obtained if the initial
condition value is unchanged and no model is utilized. The model order determined with Section 6.2
and the size of the PINN network determined with Section 7.3.1 in each building are shown in Table 9.1

Parameter
Building

SimpleHouseRad

Model order | Network width Network depth

SimpleHouseRSla
SwissHouseRSla

Table 9.1. Chosen nRnC model order, network size for each building in the tests.
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9.1.2 Results

Predictive Performance of Models
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Figure 9.1. Results for "SimpleHouseRad" of the MAE test, for all three models including a fourth
initial condition trace.
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Figure 9.2. Results for "SimpleHouseRSla" of the MAE test, for all three models including a
fourth initial condition trace.
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Predictive Performance of Models
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Figure 9.3. Results for "SwissHouseRSla" of the MAE test, for all three models including a fourth
initial condition trace.

9.1.3 Evaluation

As seen, the predictive performance of the original and improved nRnC model are very similar
across all the tests. However, the PINN demonstrates superior predictive performance in this
test for the SimpleHouseRad and SimpleHouseRSla buildings. The results obtained for
SwissHouseRSla are less conclusive, where each model attains almost exactly the same predictive
performance. Therefore it is evaluated that the requirement is fulfilled for the SimpleHouseRad and
SimpleHouseRSla buildings, but failed for SwissHouseRSla.
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9.2 Test of Req. 2

The following test results relate to the requirement:

Compared to the original nRnC model introduced in Chapter 2, the model(s) must demonstrate im-
proved key performance indicator values when used in building simulation with MPCwhen compared to

the original nRnC' introduced in Chapter 2

9.2.1 Setup

To perform this test, each building is simulated with each model without BO enabled. The
hyperparameters H,, C' and Ca were therefore manually tuned. The values chosen are shown in
Table 9.2. Furthermore, the models used for this test are the same as those in the first test, and
therefore the order of the improved nRnC model, as well as the network size of the PINN can be seen
in Table 9.1.

Parameter

Building H C CAr | R

TR 5 [ 400 [ 00 [ 500 [ 10]
ISR & [ 100 [ 100 [ 00 [ 10]
S0 [0 [0l

Table 9.2. Chosen hyperparameters for MPC across all building models.

9.2.2 Results

Model KEL PIR PBR  Energy [J] Energy, Energya Time [HH:MM:ss]

ORTEITIRNEIONN 63.08% | 1.48% | 335 E7 | 12E6 | 829 ES8 01:02:49
IO 48.53% | 0.52% | 4.07E7 | 1.52E6 | 528 E8 | 01:08:58 |

47.17% [ 0.47% | 4.06 ET | 1.08 E6 | 4.96 E8 | 08:26:10 |

Table 9.3. KPIs obtained for the building model SimpleHouseRad for all three models, including
their simulation duration.

KPI

Model PIR PBR  Energy [J] Energy, Energyda  Time [HH:MM:ss]

528% [3.21% | 338E7 | TA1E5 [ 1.8E8 | 00:51:23 |
60.31% [ 1.1% [ 3.33E7 | 985E5 | 357E8 |  01:05:56 |

42.08% [ 0.75% | 3.69E7 | 151 E6 | 1.04E9 | 08:10:02 |

Table 9.4. KPIs obtained for the building model SimpleHouseRSla for all three models, including
their simulation duration.
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KPI

Model PIR PBR Energy [J] Energy, Energyi  Time [HH:MM:ss]

23.79% [ 413% | 73E6 [ 654E5 | 4.18E8 | 00:50:25
25.77% [ 1.87% | 6.98E6 | 7.32E5 | 59E8 | 00:50:40 |

26.92% | 0.00% | 6.09E6 | 1.35E6 | 24E9 | 12:05:57 |

Table 9.5. KPIs obtained for the building model SwissHouseRSla for all three models, including
their simulation duration.

9.2.3 Evaluation

As observed, the KPIs obtained through simulating the MPC with all three models on all three
buildings, the PBR have improved compared to the original nRnC model for all PINN and improved
nRnC models. This indicates, that the improved nRnC and the PINN model both have an increased
ability to accurately include the inertia of the buildings in the model. However, the remaining KPIs
show very similar performance, compared to the original nRnC model, and therefore it is concluded
that the requirement is fulfilled for all buildings.
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9.3 Test of Req. 3

The following test results relate to the requirement:

The system must demonstrate improved key performance indicator values when compared with the same
system utilizing constant hyperparameter values during building simulation with MPC

9.3.1 Setup

To perform this test, each building is simulated with the BO algorithm enabled. The results obtained
are then compared with the simulations from Section 9.2, where the BO algorithm was disabled. For
ease of comparison, the results are therefore repeated in the tables in this section. As mentioned in
Section 3.2, weighting parameters 6 were present in the KPIs used for BO penalty signals. The values
these were set to are shown in Table 9.6. Once again, the order of the improved nRnC model and the
network size of the PINN can be seen in Table 9.1.

Parameter

Building 0pBrR  Ounder Oover O R H, & Days per iteration.

DT ¢ [ i [ 2 [ ! [500] 6 [10]
T |+ | [ [o0[ 0] 5 |

SwissHouseRSla 1 | 4 | 2 | 1 |500| 8 |10| 3 |

Table 9.6. Chosen hyperparameters across all building models.

9.3.2 Results

Model KEL PIR PBR Energy [J] Energyy Energyda  Time [HH:MM:ss]

nRnC without BO RERGYA | 0.25% | 4.11 E7 01:08:58

| | | |
47.17% [ 0.47% | 4.06 ET | 1.08 E6 | 4.96 E8 | 08:26:10 |
| | | 00:53:07 |
| | |

WRORVTIINEIONN 46.11% | 1.46% | 4.02E7 | 1.35E6 | 1.36 E9
SINNRTINEORN 47.06% | 1.28% | 4.02E7 | 1.93E6 | 3.73E9 | 08:57:25

Table 9.7. KPIs obtained for the building model SimpleHouseRad for the PINN and improved
nRnC model with BO enabled and disabled, including their simulation duration.

Model REL PIR PBR  Energy [J] Energy, Energyda  Time [HH:MM:ss]

nRnC without BO R{URINZ | 1.1% | 3.38 E7 01:05:56

| | | |
42.08% [ 0.75% | 3.69 E7 | 1.51E6 | 1.04 E9 | 08:10:02 |
| | [ 00:53:07 |
| | |

nRnC with BO 53.37% | 5.38% | 3.39 E7 1.11 E6 1.08 E9
DIl 52.53% | 0.45% | 391 EB7 | 157E6 | 128E9 | 112415

Table 9.8. KPIs obtained for the building model SimpleHouseRSla for the PINN and improved
nRnC model with BO enabled and disabled, including their simulation duration.
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KPI

Model PIR PBR  Energy [J] Energyy Energya Time [HH:MM:ss|

nRnC without BO PANE&Z | 1.87% | 6.98 E6

00:50:40

5.9 E8

7.32 E5

nC wi | | | |
26.92% | 0.00% | 6.09E6 [ 135E6 | 24E9 | 12:05:57 |
23.57% [ 35.19% | 4.3E6 | 292E5 | 1.67ES | 00:29:15 |
SINNRUTTINEONN 22.33% | 34.11% | 3.97E6 | 396 E5 | 6.88 E8 | 08:02:19 |

Table 9.9. KPIs obtained for the building model SwissHouseRSla for the PINN and improved
nRnC model with BO enabled and disabled, including their simulation duration.

9.3.3 Evaluation

As observed, the inclusion of BO unfortunately does not improve the performance of the MPC with
neither the improved nRnC or the PINN model for any building. Therefore this requirement is failed.
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10 | Discussion

10.1 Test results

This section will describe points of discussion for the test results shown in Chapter 9.

10.1.1 SwissHouseRSla

When manually tuning the hyperparameters for this building, it became evident that this buildings
was very different from the others. This could be due to the Swiss "Minergie” building regulations
used when constructing this building model. Upon inspection of the training data, it became clear
that this building required little energy, and reacted quickly to heating input. Because of this, the
statistical method chosen for obtaining a value with which to scale the data described in Section 5.5
caused some problems. Specifically, the cost associated with energy input and changes to the energy
input in the cost function described in (5.1) became large. This is the reason for choosing C' = 0 and
CA = 0 as tuning parameters for this building. While unfortunate, this provided an opportunity to
illustrate the advantage of the BO algorithm in Figure 10.1. As seen, the BO algorithm is able to
eventually reach the value where the MPC was able to provide acceptable heating inputs. Overall, the
characteristics of this building made it difficult to evaluate the performance of the models and BO.

Plot of BO performance

2000 —cC
— C_delta
8 — KPI
i 1500
=
= 6
z -\ wi
@
4;_.‘j 3
£ 1000 z
el 4 7
o
a >3
ju—
@
o
o
T 500
/ |
RN /\/\ AV/\
0 L= _ M,
0 10 20 30 40 50 60
Iterations

Figure 10.1. Trajectory for hyperparameters and KPIs from Section 3.2.
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10.1.2 Test of Req. 2

When comparing the results obtained with the original nRnC with those obtained with the improved
nRnC and PINN models, an improvement in performance was observed. However for PIR specifically,
it can be observed that the original nRnC sometimes performed better than the other models. Upon
inspection, it became clear that this result is related to the increased PBR of this model, which caused
the trajectory of the temperature to enter the range later, and therefore accrue more time in range
before exceeding the upper limit.

10.1.3 Hyperparameter space

When manually tuning the hyperparameters for all building models in Chapter 9, the values chosen for
each building were quite distinct from one another. Thus, the choice of defining the space of possible
hyperparameters values for online tuning as [0.0, 2000.0| for all the buildings might have been a bad
decision. This is the case, since the exploration performed by the BO would have to search a large
range of unnecessary values which are likely to cause poor performance for the SimpleHouseRSla and
SwissHouseRSla buildings.

10.1.4 Computation Time

The developed PINN model provided an increase to predictive performance, even when compared to
the improved nRnC, demonstrating a consistently lower PBR in the tests described in Chapter 9.
However, when weighing the computation time required to obtain these results with the comparatively
lower computation time for the improved nRnC, the need for a faster PINN is evident. For example,
automatic differentiation techniques can be used to find the gradients of the PINN and cost function
in the MPC, in order to utilize gradient descent optimization.

10.2 Improved nRnC model

This section will describe points of discussion for the adjustments made to the original nRnC model
introduced in Chapter 6.

10.2.1 Choice of P,,;

As described in Section 6.5, a choice was made to only select every ﬁ = H’th sample as an initial
condition during training, and constraints on specific values which would degenerate the training
process were derived. However, when considering the H = 100 value chosen in this project and the
sampling interval of 15 minutes (Sp,q = 96), it becomes clear that only a difference of one hour will
pass between the instances chosen as initial condition over two consecutive days. Due to this, the
initial condition time during a day will have a period of 24 days. While this choice still causes some
misalignment, as desired, a number which is further from 96 might have been better.
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10.2.2 Impact of delayed outputs

As described in Section 6.2, the inclusion of previous outputs was motivated by the poor performance of
the original nRnC model on buildings with dynamics that feature a significant amount of inertia. The
inclusion provided little, if any, benefit to predictive performance on training data, when analyzed with
the test described in (4.1). However, when utilizing the improved nRnC model as the predictive model
in MPC for the acceptance tests, the improved nRnC indeed demonstrated improved ability to reach
the reference at the start of the occupied period. Furthermore, as shown in Table 6.7 the improved
nRnC model demonstrated drastically improved performance when used for one-step prediction.

10.3 Physics-informed neural network

This section will describe points of discussion for the PINN described in Chapter 7.

10.3.1 Physics data generation strategy

The method utilized for generating PINN training data based on statistically generated input samples
and a trained nRnC model shown in (7.2) and Figure 7.3 proved effective for producing a generalizable
model, especially when compared to the attempt with a MLP in Figure 2.3. However, for some features
this approach might have to be amended slightly. Specifically in this project, it was observed that
the range of energy input values obtained with (7.2) for some buildings included negative values,
due to a relatively low mean and high variance. Upon further investigation, it was discovered that
the many days during summer, which often required zero heating, impacted the mean value obtained
significantly. Especially for the SwissHouseRSla building this effect was noticeable, due to the very low
average energy consumption. To avoid such effects, the statistical values for energy consumption could
be found based on a dataset, where zero and near-zero entries of energy consumption are removed.

10.3.2 Effect of local minima during training

When training the PINN model repeatedly on the same data, the method of dynamically adjusting the
network depth and width described in Section 7.3.1 was observed to sometimes cause the training to
terminate prematurely. A proposed cause for this might be, that the training enforced weights which
overfitted the model to the training data, at the cost of predictive performance on the verification
data, which triggers the early stopping mechanism.

10.4 Hyperparameter tuning

This section will describe points of discussion for the Bayesian optimizer described in Chapter 8.

10.4.1 Online tuning of BO parameters

Future work for the BO could be the implementation of a mechanism to tune the strategy chosen for
trade-off between exploration and exploitation in the BO algorithm. One proposed strategy could be
to analyze the variance of the recent ambient conditions, and based on the analysis prioritize either
exploitation or exploration.
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10.4.2 Effect of noise on BO

The variability in the weather is currently a problem for the BO in this project, since the BO cannot
discern between sudden changes in weather which negatively effect the KPI values, and a bad choice of
parameter values. Specifically, the noise ¢; ~ N(0,02) might be too large, and moreover not normally
distributed around zero. To amend this behaviour, one possible strategy could be to save separate
)N in the BO based on discretization of the ambient conditions. With this method, a
historical dataset of similar conditions could be used for creating more relevant surrogate models. The

datasets (x;, y;

choice of surrogate model would then come down to the weather forecast.
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11 | Conclusion

This project addresses the following problem statement:

How can the data-driven building modelling for MPC' described in Chapter 2 be further developed, and
how can performance indicators be leveraged for online tuning of MPC hyperparameters?

To answer the first part of this problem statement, the nRnC modelling approach described in
Chapter 2 was further developed. The development included the inclusion of delayed outputs in the
model, a revised training method which emphasized efficiency during training, as well as a change to
the method used for scaling during data preparation. Furthermore, a physics-informed neural network
was developed, which utilizes the trained nRnC model to generate training data. When training the
PINN model, the loss was obtained from a combination of one-step prediction of the generated nRnC
data and recursive prediction of the original data used for training the nRnC model. To train the
model based on the obtained loss, automatic differentiation was utilized to obtain error gradients.

To answer the second part of this problem statement, a Bayesian optimizer was implemented for online
tuning of the MPC hyperparameters. The problem was specified as a black-box optimization problem,
where the Bayesian optimizer received performance signals generated based on analysis of the MPC
performance at a chosen set of proposed hyperparameters values.

The developed models were tested against the nRnC model described in Chapter 2 in simulation
three Modelica building models. The tests for the models showed improved performance for both
the improved nRnC model and the physics-informed neural network across multiple building models.
The developed hyperparameter tuning system was tested against simulation models implementing
manually tuned constant hyperparameter values. The test for the hyperparameter tuning system
did not provide an increase in performance, where it was observed that the effect of concurrent
ambient conditions was often misinterpreted in the hyperparameter tuning system. Overall, the
models developed in this project provided good results, however the improved performance gained from
utilizing the PINN model instead of the improved nRnC might not outweigh the significant increase
in training time and computational effort demonstrated when used with MPC. Furthermore, the
developed hyperparamter tuning system did not provide satisfactory results, and further development
is required before implementation on real buildings can be made.
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Part IV

Appendices



A | Effect of including delayed outputs in
nRnC model

To investigate the effect of including past outputs as states in the nRnC model, the impact of these

inclusions in a state space formulation of the nRnC will be analyzed. In this formulation, the state

vector x(k), and therefore also the output y(k), will only be the output of the model, d%'t”t at step

k. Without any inclusions, the explicit time-invariant discrete time state space representation of the
nRnC model is as shown in (A.1)

Tamb — Tint
w(k + 1) - |:Oi| m(k) + |:Ta1nb Tsin T}Lealtingi| WS’LL’I’L (Al)
Wheatz'ng

y(k) = [1] 2(k)

The matrices here reflect the definition of the model from (6.1), where the output is solely defined as
a sum of the inputs scaled by the corresponding 7 values. As shown, the output of the model y(k)
is taken simply as the state x(k), which is the derivative of the internal temperature T;,;. The state
space model for the extended nRnC model shown in (6.2) is defined, by extending the state vector
(k) of the model to include the m previous values of z(k). The extended state space model of the
nRnC model with, for example, 7 = 2 previous values of z(k) then becomes the one shown in (A.2).

For clarity, the state vector & will be written out explicitly.

- T, —T;
1 1 1 1 1 amb int
x(k + 1) _ ,7_71 E w(k) + Tamb Tsun Theating W (A2)
(k) 1 0| |z(k-1) 0 0 0 W -
L heating

_ 1| =(k)
y(k) = [1 0] [x(k—l)]

To analyse the impact of the inclusion of the previous inputs, the discrete time transfer function

H(z) = 58 will be derived from the state space model. For brevity during the derivation, the

matrices in (A.2) will be substituted as shown in (A.3)

x(k+1) = Axz(k) + Bu(k) (A.3)
y(k) = Cz(k)

First the Z-transform is applied [50]
zx(k) = Az (k) + Bu(k)
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y(k) = Cx(k)

Next, the state vector x(k) isolated, such that it can be inserted in the output equation y(k) = Cx(k).
These steps are shown below

zx(k) — Ax(k) = Bu(k)
(zI — A)x(k) = Bu(k)
x(k) = (21 — A)"' Bu(k)
Inserting this definition of (k) into the output equation we obtain
y(k) = C(zI — A)"'Bu(k) (A.4)

To invert the term (zI — A)~!, first the matrix (2 — A) is found
1 _1
(2 —A)= [z 1 72]

The inverse of this matrix is found by using the the method of matrix inversion shown with an arbitrary
matrix in (A.5)

1
W= ———adj(W) (A.5)
e
Applying this to (A.4) yields

1
1 z N
—1 _—
(=1 - A) :2_21[ 721]

T1 T2 T

Inserting this into (A.4) and reintroducing the original input and output matrices B and C' yields

1 P 1 1 1 1 Tamb - Tlmt
y(k) = [1 0} pepmpras PR S Woun
1 72 m Wheating

Performing the matrix multiplications and multiplying with i%z to ensure causality yields the desired
transfer function, shown in (A.6)

z*l( 1 + 1 + 1 : )
H(Z) — Tamb Tsun Theating (A6)

As seen, this transfer function has an order of two. It can be derived from this result, and observations
regarding the determinant one would obtain from the term (2I — A)~!, that the order of the transfer
function obtained from (A.2) would always correspond to the amount of delayed inputs included in the
calculation of y = % in this project. For further investigation, the poles of the obtained transfer
function are found by applying the quadratic formula on the denominator polynomial. The resulting

roots are shown in (A.7)
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1 12 4
iV T (A7)

As seen, the value of 71 is very important for the stability of the system, since a 7 approaching zero
would quickly move both the poles out of the unit circle. Furthermore, a low value of 7 will also cause
instability, however the constraint in (6.6) prohibits the value of 75 from becoming less than 7;. From
this it can be determined that the system becomes unstable when either 7, becomes too small, or both
71 and 79 become too small. If only 71 is considered, the 7 value at which a pole of the system lies
directly on the unit circle is 7; = 1, with values of 71 < 1 causing the system to become unstable.
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B | Plots of building control performance

In this appendix, plots of the controller performance for the same day across the three models will
be shown. Furthermore, for the improved nRnC and the PINN, plots of the performance with MPC
implementing BO during those specific days are also shown.

B.1 Performance without BO

B.1.1 Performance on SimpleHouseRad

MPC / Original nRnC
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— Ambient Temperature
——— Room Temperature
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2000
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Energy Consumption
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9.6k 9.8k 10k 10.2k 10.4k 10.6k

Steps

Figure B.1. Results for "SimpleHouseRad" with original nRnC.
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MPC / Improved nRnC
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Figure B.2. Results for "SimpleHouseRad" with improved nRnC.
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Figure B.3. Results for "SimpleHouseRad" with PINN.
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B.1.2 Performance on SimpleHouseRSla

MPC / Original nRnC
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Figure B.J. Results for "SimpleHouseRSla" with original nRnC.
MPC / Improved nRnC
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Figure B.5. Results for "SimpleHouseRSla" with improved nRnC.
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MPC / PINN
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Figure B.6. Results for "SimpleHouseRSla" with PINN.

B.1.3 Performance on SwissHouseRSla
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Figure B.7. Results for "SwissHouseRSla" with original nRnC.
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Figure B.8. Results for "SwissHouseRSla" with improved nRnC.
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Figure B.9. Results for "SwissHouseRSla"

10.6k

with PINN.

=sss= Temperature Reference
——— Energy Consumption
—— Ambient Temperature
——— Room Temperature

Page 96 of 99



ES9-928 Data-driven Modeling and Control Development for EntoLabs ApS

B.2 Performance with BO

B.2.1 Performance on SimpleHouseRad
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Figure B.10. Results for "SimpleHouseRad" with improved nRnC and BO.
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Figure B.11. Results for "SimpleHouseRad" with PINN and BO.
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B.2.2 Performance on SimpleHouseRSla
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Figure B.12. Results for "SimpleHouseRSla" with improved nRnC and BO.
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Figure B.13. Results for "SimpleHouseRSla" with PINN and BO.
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B.2.3 Performance on SwissHouseRSla
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Figure B.14. Results for "SwissHouseRSla" with improved nRnC and BO.
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Figure B.15. Results for "SwissHouseRSla" with PINN and BO.
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