
SUMMARY

Data sharing has become an important aspect in the development of new predictive models. This includes, for

example, having access to real healthcare data for the development of disease detection models. However, privacy

regulations limit access to such data as to prevent private data from being exposed to the public and most importantly

from individuals with malicious intent. To allow for data sharing with privacy guarantees, there are commonly three

different ways; Policy, cryptography and anonymisation. Policy means limiting access to the data so only certain

individuals can access the data or just parts of it. Cryptography employs encryption algorithms to make the data

unintelligible and unusable for anyone without a proper decryption key. Anonymisation techniques focus on altering

or removing identifiable information from datasets while retaining their utility for analysis and research purposes.

Anonymisation techniques have shown a lot of promise, especially in the context of generative models such as GANs

(Generative Adversarial Networks) and VAEs (Variational Autoencoders). These models employ some type of privacy

mechanism in order to obfuscate the data. One of the most used mechanism is differential privacy, which introduces a

specific amount of noise into the data determined by the parameter 𝜖 . With this noise, certain guarantees are made

for the privacy of the dataset. One of the benefits of differential privacy over prior privacy mechanisms is that you no

longer need attack modeling. This means that no assumptions need to be made of what the attacker knows, rather,

a guarantee is made for how much information the attacker can gain from the anonymised data. However, for e.g.

verification purposes it may still be helpful to do attack modeling.

Despite the promise of anonymisation techniques, the literature lacks a comprehensive evaluation methodology.

Current literature predominantly focus on utility metrics, leaving the privacy aspects under-explored. Additionally,

they often have a limited scope, in terms of only evaluating a subset of privacy attack types. To address this issue, our

paper aims to evaluate the state of the art privacy metrics, encompassing relevant privacy attacks, in order to find the

most essential privacy metrics for measuring privacy of anonymised datasets.

We conduct such an evaluation with two sets of experiments. The first set of experiments aims to evaluate whether

the metrics work as expected. This entails firstly establishing upper- and lower-bound baselines and checking if all

other results fall in-between these, with which we confirm whether the metrics’ extreme-case scenarios are as expected.

After this, we check the correlation between the anonymisation parameter 𝜖 and the results of the metrics, for which

we assume that changing 𝜖 gives appropriately anonymised datasets, in order to further test the metrics. The second set

of experiments aims to select a subset of the metrics that are sufficient for evaluating the privacy of an anonymised

dataset. For this, the correlation is calculated between each pair of metrics to test if any can be excluded based on being

highly correlated with another, and clustering of the metrics is performed to identify groups of metrics that are similar.

The data used for this correlation and clustering is the full results of the prior set of experiments, which means the data

points for each metric is its result for each generated anonymised dataset, meaning we are identifying similarity based

on the outputs of the metrics.
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As a result of the experiments we went from 21 to 7 metrics, which we deem to be sufficient for evaluating the privacy

of anonymised data. The results showed that these 7 are able to capture the anonymisation level of the anonymisation

techniques to an adequate degree, including when changing 𝜖 for DP techniques. Computing the correlation between

the metrics did not help much in determining similarity between the metrics. However, the clustering results were

more helpful which further helped narrow down the metrics. Both the correlation and clustering results however do

not seem to be according to our categorisation of the metrics into attack categories.

The limitations of these results primarily come down to how well-tuned the anonymisation techniques and metrics

are, where more time could have been spent tuning them. The metric descriptions could also be improved, where fewer

initial metrics could have been sufficient, which is also found based on other reasons. Further work also includes testing

on more anonymisation techniques and datasets, and exploring e.g. Model Extraction.

With the two sets of experiments, we were able to exclude the metrics that either performed inadequately or which

use case was covered by another metric. This gave a list of 7 metrics deemed adequate for testing anonymised data,

covering all three attack categories.
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ABSTRACT

Data sharing has become a major factor in the development of robust new machine learning models, especially, in the health sector for

e.g. disease prediction. However, sharing such data presents a privacy risks for individuals present in the data. Therefore, privacy laws

have been introduced to protect such individuals, those protections being GDPR (General Data Protection Regulation) and HIPAA

(Health Insurance Portability and Accountability Act). In the context of data sharing, however, this makes it difficult to share data

between institutions. To overcome this issue anonymisation techniques has been suggested to anonymise the data.

Anonymisation techniques are essential in safeguarding sensitive data while still allowing its utilisation for research, analysis,

and other purposes. These techniques aim to remove or obscure personally identifiable information from datasets, thus reducing the

risk leaking sensitive information while preserving the data’s utility. Several anonymisation methods exist, each with its strengths,

limitations, and suitability for different data types and use cases.

Evaluating anonymisation techniques usually revolves around testing the utility and privacy of the anonymised data. However, in

the current literature not much attention has been paid to testing privacy with some papers only testing the utility of the anonymised

dataset and others only testing a limited number of privacy attacks.

Therefore, in this paper, we evaluate the state of the art privacy metrics, covering different privacy attacks, in order to establish

which privacy metrics are necessary to thoroughly test anonymised datasets.

We perform two different sets of experiments. The first is aimed at testing whether the privacy metrics work as expected, which is

measured as whether the privacy level of a given anonymisation technique correlates with the score of a given privacy metric. The

second investigates whether different privacy metrics capture different aspects in terms of the anonymisation. This is measured by

calculating the correlation between the scores of the individual privacy metrics and by performing clustering on these scores. The

experiments are conducted on two different tabular datasets; MedOnc (8,630 rows) and Texas (25,000 rows).

Through a metric selection process, the results showed that 7 out of 21 metrics (1) worked as expected to some degree and (2)

are able to capture different aspects of anonymisation. These metrics are therefore deemed sufficient for evaluating the privacy of

anonymised data in the context of tabular data.

Authors’ addresses: Astrid Melodi Hansen, Department of Computer Science, Aalborg University, Aalborg Ø, Denmark, amha17@student.aau.dk; Frederik

Stær, Department of Computer Science, Aalborg University, Aalborg Ø, Denmark, fstar19@student.aau.dk.
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1 INTRODUCTION1

Data sharing has increasingly become an important part in the search of new scientific discoveries, such as in2

disease detection research. Privacy regulations such as GDPR (General Data Protection Regulation) and HIPAA (Health3

Insurance Portability and Accountability Act) limit this to protect private information included in the data. Therefore,4

to be able to share data with others this needs to be done in a secure way. Al-Aqeeli et al. [1] define three different5

approaches to ensure this: policy, cryptography and anonymisation. Policy relates to limiting access to the data6

in the form of security roles. Cryptography revolves around encrypting the data, making it unusable for attackers.7

Anonymisation attempts to either modify the sensitive data utilising a specific technique, such as row-level sanitisation,8

or generate new anonymised data using generative models such as GANs (Generative Adversarial Networks) [2].9

Row-level sanitisation techniques however suffer from certain privacy attacks especially when a given dataset has high10

dimensionality [3]. Generative models (synthesisers) have especially shown great promise in this regard, incorporating11

privacy mechanisms such as differential privacy.12

When introducing new synthesisers, there are usually two different aspects that needs to be evaluated: utility and13

privacy. Utility refers to the data being usable e.g. it has a similar data distribution as the original data. Privacy relates to14

the data being protected in terms of an attacker not being able to infer sensitive information using privacy attacks [4].15

For simplicity only tabular data is considered in this paper, containing either categorical or numerical values. Here,16

certain EHR (Electronic Health Record) data is also included in tabular data.17

In the literature on synthesisers, there is usually more emphasis on utility, sometimes not even considering privacy18

[5, 6]. This could be due to them believing if e.g. their synthesiser employ differential privacy, then the anonymised19

data must be private. Furthermore, there exists a number of different privacy attacks an attacker can perform, but some20

of the literature only considers some of these. Therefore, no comprehensive evaluation approach is used throughout the21

literature, making it hard to compare results [7].22

Some literature [8–10] has tried to make a comprehensive evaluation framework where a number of different privacy23

metrics are included in order to test the level of privacy of a given anonymised dataset. However, they do not make an24

explicit distinction between a given privacy metric and the privacy attack it measures, and thereby potentially do not25

cover all privacy attacks. Additionally, they do not specify if a subset of privacy metrics is adequate in order to evaluate26

the privacy of the anonymised dataset. For example, instead of multiple privacy metrics, simply using one might be27

sufficient. Based on this, we have the following problem statement:28

In the context of tabular data:29

(1) how well do existing privacy metrics cover relevant privacy attacks?30

(2) do existing privacy metrics capture the privacy preservation of anonymisation techniques?31

This problem statement defines two different questions. For the first part we test this by measuring the correlation32

between the individual privacy metric scores, and here it is expected that metrics in the same attack category are more33

correlated. For the second part we experiment with a number of different synthesisers having different levels of privacy34

guarantees. Here, we expect the privacy metrics to reflect this i.e. synthesisers with high privacy guarantees getting35

good privacy scores (being more protected from attacks) and vice versa.36

To answer the problem statement we perform an experimental comparative analysis of 21 privacy metrics. The37

privacy metrics included in this paper were initially sourced through a systematic review, conducted in previous work38

[7]. After this, some metrics were removed due to not functioning well enough, and new metrics were found in further39

examination during the making of this paper.40
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1.1 Bibliographical remarks41

In this paper, we build upon the findings established in our previous work Hansen et al. [7]. Overall, the previous42

work provides a foundation for the research presented in this paper. Here, we change, extend and entirely rework43

the different sections. Our previous work investigated privacy metrics in order to determine the coverage of these in44

relation to privacy attacks, as well as which privacy metrics should be used in the context of evaluating the privacy of45

anonymised data. However, the results of the experiments conducted were partially inconclusive.46

The abstract has been slightly reworked, but overall content remains the same.47

In Section 1, we have reformulated the entire material, including a change to the problem formulation, where the48

focus of this paper is not EHR data specifically but rather tabular data in general, which includes some EHR data.49

In Section 2, we reworked the material and also added further related work, those being Hyrup et al. [11] and Lautrup50

et al [12]. Additionally, a table comparing the individual studies has been included.51

In Section 3, the definition of a dataset has been changed to clarify how attributes work and make it easier to use in52

metric definitions, and the problems studied have been simplified and defined formally.53

Section 4 has been expanded with added content describing differential privacy, anonymisation techniques and54

privacy metric types. Additionally, the privacy attack descriptions are changed in terms of introducing mathematical55

definitions and notation. The running example throughout this section has also been slightly updated in terms of being56

more clarifying of how the individual attacks work. For example a third individual for tracing attacks is introduced and57

values (e.g. naming) of the individuals have been changed.58

Section 5 has been altered in terms of excluding some old metrics as well as adding more new metrics. For the59

exclusions, this was based on them seemingly not working, and additions have been made partly to make up for this,60

and partly to increase the scope on this part. Pseudocode has been defined for the metrics, and some metadata for the61

metrics has been included, such as the type of metric.62

In Section 6, we extend the previous research by mainly restructuring and extending the experiments. Here, we63

expand the number of datasets, synthesisers and privacy metrics used in the experiments. Furthermore, what was64

Experiment 3 (now the second set of experiments) is expanded with clustering.65

Sections 7, 8 and 9 are entirely rewritten, with entirely new data.66

Section A is entirely new with an overview of how to preprocess the datasets used in the experiments, as well as the67

raw results presented again but with colours according to individual values, to aid in discussing clustering results.68

2 RELATEDWORK69

Multiple studies investigate the evaluation of synthesisers, where some provide benchmark frameworks for this70

purpose. In these, privacy metrics are also included.71

Hyrup et al. [11] investigate privacy metrics in the context of determining which privacy metrics are appropriate for72

anonymised data evaluation. They aim to find the best universal privacy metric, where a total of five privacy metrics73

are tested. According to Hyrup et al., the universality of a metric is defined by how well it lives up to the four CAIR74

(Comparability, Applicability, Interpretability, Representativeness) principles. For example, high Interpretability allows75

non-technical stakeholders to understand to which extent an anonymised dataset is private. Additionally, Hyrup et al.76

focus on a limited number of privacy metrics (specifically five) and do not consider the different privacy attacks and77

whether the privacy metrics they investigate actually capture these.78
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Yan et al. [8] evaluate five different synthesisers using a set of metrics grouped into utility or privacy, testing whether79

these metrics are adequate to measure utility and privacy. However, they do not indicate which privacy attacks they80

evaluate. They focus on EHR data whereas we have a different scope of evaluating tabular data, which includes tabular81

EHR data.82

Similar to Yan et al. is Lautrup et al. [12], which is another benchmarking framework aimed at testing the utility and83

privacy of anonymised datasets.84

Qian et al. [9] provide an open-source benchmarking framework, which covers a wide variety of tabular datasets,85

synthesisers and metrics. This is intended for full evaluation of synthesisers, defined by metrics in seven different86

aspects: sanity, statistical, performance, detection, privacy, attacks and weighted metrics. The contribution of Qian et al.87

is a framework allowing for extensive benchmarking of synthetic data.88

Similarly to Qian et al., Díaz and García [10] provide a benchmarking framework, just with a focus on anonymity.89

This framework includes metrics such as k-anonymity, l-diversity, 𝛿-disclosure privacy among others. In our paper, we90

specifically investigate synthesisers (e.g. DP-GAN) whereas Díaz and García utilise the data anonymisation tool ARX91

[13] to simply modify the sensitive sensitive data.92

Our paper differs from these primarily in the fact that we evaluate the metrics in relation to synthesisers and each93

other. More differences are shown in Table 1.94

point
Hansen
& Stær

Hyrup et
al.

Yan et al.
Lautrup et

al.
Qian et

al.
Díaz &
García

Tabular data X ? X X X X

EHR data / ? X X X X

Assesses synthesis-

ers

/ X X X X

Evaluates utility X X X

Evaluates privacy X X X X X X

Assesses privacy

metrics

X X

Considers privacy

attacks

X /

Table 1. Which points are fulfilled, for each paper. Fulfilment is marked with "X", "/" indicates partial fulfilment and "?" refers to
unknown fulfilment.
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3 PROBLEM DEFINITION95

The datasets in this paper are inspired by tables from the relational model [14]. To define a dataset, we first specify a96

set of attributes 𝐴 = {𝑎1, ..., 𝑎𝑚}, similar to a header. Each attribute is a set of allowable values (a data type), specifically97

either R (numerical),

∑∗
for some alphabet

∑
(categorical) or {0, 1} (binary). A dataset 𝐷 is then defined as a subset of98

all combinations of attribute values: 𝐷 ⊆ 𝑎1 × ... × 𝑎𝑚 , similar to the body of a relational database. Each element of 𝐷 is99

a tuple, also commonly called a row or record. To access the values of a tuple 𝑡 ∈ 𝐷 , we index 𝑡 on the set of attributes100

we want to access, e.g. 𝑡 [𝐴] to get all the values of tuple 𝑡 ; alternatively, 𝑡 [𝑎] for an attribute 𝑎 gives the value for that101

attribute.102

LetD be the set of all datasets. Similarly to the definition proposed by Desfontaines’ [15], we define an anonymisation103

technique 𝑆 : D × Θ→ D as a function that maps a sensitive dataset 𝑌 and a set of parameters 𝜃 , to an anonymised104

dataset 𝑍 , i.e.: 𝑍 = 𝑆 (𝑌, 𝜃 ). 𝑍 is the dataset that can be released, and that is available to the data analysts (including105

potential attackers).106

A privacy metric 𝑃 : D ×D → [0, 1] maps a sensitive dataset and an anonymised version to a score in the range107

[0, 1], with a score of 0 indicating complete privacy and 1 indicating no privacy. For example, let 𝐷 be a sensitive dataset,108

and 𝑅𝑒𝑎𝑙 the identity function, in which case 𝑃 (𝐷, 𝑅𝑒𝑎𝑙 (𝐷, 𝜃 )) ≃ 1. We indicate with P the set of available metrics.109

The model of attack used in this paper is the black box model, which means that the attacker only has access110

to 𝑆 (𝐷, 𝜃 ) and some existing knowledge [16]. Existing knowledge is some known attributes about a given person,111

such as name, age and profession. This attack model reflects the data-sharing problem as mentioned in Section 1, as112

anonymisation is the focus, where a new dataset is generated and only that dataset is released.113

The problems studied in this paper are:114

(I) Do the metrics work as expected, i.e. Is it true that 𝑃 (𝐷, 𝑆1 (𝐷, 𝜃1)) ≤ 𝑃 (𝐷, 𝑆2 (𝐷, 𝜃2)) when (𝑆1, 𝜃1) is more115

anonymous than (𝑆2, 𝜃2)?116

(II) Do different metrics capture different aspects of the anonymisation? That is, for any metrics 𝑃1 and 𝑃2, is it true117

that 𝑃1 (𝐷, 𝑆 (𝐷, 𝜃 )) ≁ 𝑃2 (𝐷, 𝑆 (𝐷, 𝜃 )) for some 𝑆, 𝜃 across all 𝐷?118

4 BACKGROUND119

4.1 Differential Privacy120

DP (Differential privacy) is a mathematical notion to ensure the anonymity of individuals in a dataset [17]. Here, an121

algorithm is said to be differentially private if Equation 1 holds.122

𝑃𝑟 [𝑀 (𝐷1) ∈ 𝑆] ≤ 𝑒𝑥𝑝 (𝜖) · 𝑃𝑟 [𝑀 (𝐷2) ∈ 𝑆] + 𝛿 (1)

In Equation 1, 𝑃𝑟 [𝑀 (𝐷1) ∈ 𝑆] describes the probability that a randomised algorithm𝑀 applied to dataset𝐷1 produces123

an output in set 𝑆 , while 𝑃𝑟 [𝑀 (𝐷2) ∈ 𝑆] denotes the same for a neighbouring dataset 𝐷2. A neighbouring dataset is a124

dataset that differs by only one tuple. This inequality asserts that the impact of adding or removing an individual tuple125

on the algorithm’s output distribution is bounded by a multiplicative factor exp(𝜖) and additive value 𝛿 . This in turn126

ensures a certain level of privacy. 𝜖 is the parameter for the privacy budget, while 𝛿 defines the risk of going over this127

budget.128

An 𝜖 of 0 indicates complete protection i.e. the data is completely random. However, having the data be completely129

random makes the data unusable from a utility point of view. Therefore, a privacy-utility balance needs to be established130
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in terms of how private a given dataset needs to be for it to still be usable for a given use case. Commonly a value131

between 0.1 and 10 is used.132

𝛿 is an additional parameter specifically for handling edge cases where a different privacy guarantee is needed,133

allowing for a small probability of failure in ensuring privacy. It can be likened to permitting a degree of outliers, where134

a slight relaxation of the privacy constraint is acceptable in certain scenarios. Moreover, in applications involving135

high-dimensional data, mechanisms with 𝛿 such as Gaussian mechanisms tend to perform better, offering improved136

privacy guarantees while maintaining utility, particularly in settings where traditional differential privacy mechanisms137

may struggle to preserve privacy effectively.138

4.2 Anonymisation Techniques139

Anonymisation techniques take as input a sensitive dataset and outputs an anonymised dataset. There are two types of140

anonymisation techniques: row-level sanitisation and synthesisers.141

Row-level sanitisation revolves around editing the sensitive data using some underlying method. For example,142

k-anonymity is an approach in which the objective is to have a given row (individual) be identical to at least 𝑘 − 1143

other rows on the quasi-identifying attributes [18], therefore providing a certain level of privacy. This is commonly144

implemented by either generalisation or suppression. However, row-level sanitisation such as k-anonymity has been145

proven to not perform well against certain types of privacy attacks, especially when an attacker has external background146

information of specific individuals in a given dataset [3]. Unlike row-level sanitisation, generative techniques show a147

lot of promise in this regard.148

Synthesisers encompass approaches to generate new data, not simply modifying it. This is implemented using149

generative models such as VAEs (Variational Autoencoders) and GANs (Generative Adversarial Networks). Such models150

are trained to capture the underlying data distribution of a given dataset in order to generate a new dataset. However,151

to attain an anonymised dataset using generative techniques, some underlying anonymisation mechanism needs to be152

employed. DP is a commonly used mechanism of these, where it is integrated into the training of a given model. For153

example with the model PATE-GAN [19], a certain amount of noise is introduced to gradients when backpropagation is154

conducted, in order to achieve a specific level of anonymisation.155

4.3 Privacy attacks156

Dwork et al. [4], as well as Rigaki and Garcia [20], categorise privacy attacks in five different groups: reconstruction157

attacks, re-identification/de-anonymisation attacks, tracing attacks, correlation detection and model extraction/stealing.158

We only consider the first three, as correlation detection is not considered a privacy concern [4], and model extrac-159

tion/stealing does not follow the black-box model assumption we introduced in Section 3. These last two were described160

in the discussion by Hansen et al. [7].161

Fig. 1. Example of the general structure of a privacy attack, where existing knowledge (𝐸) is combined with an anonymised dataset
(𝑍 ) to derive the result (𝑋 ), which in a successful attack is a subset of the sensitive dataset.
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To illustrate the different privacy attacks, which are based on the generic model shown in Figure 1, we consider a162

privacy attack as having two inputs: An anonymised dataset (𝑍 ) and some existing knowledge (𝐸). Using these two163

inputs into some function 𝑓 , the output 𝑋 can be computed which is the result of the privacy attack. Formally, a privacy164

attack can be defined as a mapping function 𝑓 : 𝐸 × 𝑍 → 𝑋165

In this context, we consider the individual named John, and assume we have some existing knowledge (𝐸) of John as166

well as an anonymised dataset (𝑍 ). The anonymised dataset is generated using a synthesiser applied to the sensitive167

dataset (𝑌 ), which contains John. Imagining ourselves as attackers, we attempt to perform privacy attacks on John to168

obtain some information about John we had no prior knowledge of. Performing a privacy attack yields a result (𝑋 ),169

potentially revealing new private information about John.170

4.3.1 Reconstruction attack. Originally, the reconstruction attack was developed by Dinur and Nissim [21] as a means to171

show that statistical releases were not sufficient to protect privacy. Later, Dwork et al. [4] adapted the attack definitions172

such that a reconstruction attack attempts to determine the value of a specific attribute for a given tuple in a dataset.173

Our definition for a reconstruction attack is based on how most privacy metrics in Section 5 handle the attack. The174

difference from Dwork et al. [4] is that there may be several attributes we are reconstructing. This means an attacker175

has access to an anonymised dataset and some existing knowledge. The goal of the attacker is to infer the missing176

attribute(s) of the existing knowledge, using both the existing knowledge and the anonymised dataset.177

We define a reconstruction attack formally as:178

Definition 4.1. Given an external dataset 𝐸 = {𝑒1, ..., 𝑒𝑛1 } with attributes 𝐴 = {𝑎1, ..., 𝑎𝑚}, and an anonymised dataset179

𝑍 = {𝑧1, ..., 𝑧𝑛2 } with attributes 𝐴 ∪ {𝑎𝑚+1}, a reconstruction attack aims to infer the values of 𝑎𝑚+1 for the records180

in 𝐸. Specifically, a reconstruction attack is a function 𝑓 that takes as arguments 𝐸 and 𝑍 and returns a new dataset181

𝑋 = {𝑥1, ..., 𝑥𝑛1 } where 𝑥𝑖 [𝐴] = 𝑒𝑖 [𝐴] for each tuple in 𝐸, and 𝑥𝑖 [𝑎𝑚+1] is the predicted value associated to the record182

𝑒𝑖 for the attribute 𝑎𝑚+1.183

Fig. 2. Example of a reconstruction attack, where we have the sensitive individual John and want to find out what the value of the
missing attribute Disease is. Additionally, we have an anonymised dataset containing the individual Jack, among others. Here, it can
be inferred that since John has a Height and Age similar to the individual Jack, they probably have the same Disease attribute, Diabetes

An example of a reconstruction attack can be seen in Figure 2. For this example, the objective of the attack is to infer184

the missing attribute Disease. Implementations of such an attack tend to use an equivalence class to calculate the risk185

for each tuple in the sensitive dataset, such as a KNN algorithm in Yan et al. [8]. This is calculated for each sensitive186

tuple, and the results are combined in some way, such as by averaging to infer the missing attribute(s).187
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4.3.2 Tracing attack. Tracing attacks attempt to infer whether an individual is part of the sensitive dataset used to188

generate the anonymised dataset. This can be useful for attackers, as simply knowing whether an individual is included189

in a dataset or not can be sensitive information, which can lead to further attacks being conducted with this in mind.190

Again, an attacker only has access to some existing knowledge of an individual and an anonymised dataset.191

We define a tracing attack formally as:192

Definition 4.2. Given an external (𝐸) and anonymised dataset (𝑍 ) 𝐸 = {𝑒1, ..., 𝑒𝑛1 } and 𝑍 = {𝑧1, ..., 𝑧𝑛2 }, both with a193

subset of the attributes 𝐴 = {𝑎1, ..., 𝑎𝑚}, we want to infer whether 𝑒𝑘 ∈ 𝑍 , which is whether a given individual tuple is194

in the anonymised dataset, or more specifically if the individual was part of the sensitive dataset used to generate the195

anonymised dataset. A function 𝑓 to infer whether an individual is part of 𝑍 can be defined as 𝑓 (𝑒𝑘 , 𝑍 ) = 𝑃𝑟 (𝑒𝑘 ∈ 𝑍 ),196

with the output being a probability (𝑃𝑟 ) measure.197

Fig. 3. Example of a tracing attack. In this case we have external knowledge consisting of two tuples i.e. two sensitive individuals John
and Carol, and an anonymised dataset. We want to find out whether John and Carol are in the anonymised dataset, or rather, in the
sensitive dataset used to generate the anonymised dataset. Looking at the height, age and disease it can be surmised that John has
very close attribute values to those of the anonymised individual Jack. Therefore, we deem that John is in the dataset. No close match
was found for Carol, and it is therefore deemed that Carol is not in the dataset, completing the attack

Figure 3 depicts a tracing attack. Here we have a sensitive tuple and an anonymised dataset and want to identify198

whether the individual is in the anonymised dataset. There are a number of different approaches to infer this. Yan et al.199

[8] perform such an attack by calculating the Euclidean distance between the sensitive tuple and the anonymised tuples.200

They define a distance threshold, specifying that if the minimal distance is lower than the threshold, we can infer that201

the sensitive tuple is actually in the anonymised dataset. Note that multiple anonymised tuples could be inside this202

threshold, but regardless, the assumption remains that the sensitive tuple is in the anonymised dataset.203

4.3.3 Re-identification/de-anonymisation attack. Re-identification/de-anonymisation attempts to classify which tuple204

in an anonymised dataset belongs to a specific sensitive individual. This is done by having access to existing knowledge205

of the individual, and then perchance linking them to a specific tuple in the anonymised dataset, with the purpose of206

gaining more information about them. An important note is that the external knowledge is incomplete/partial relative207

to the anonymised dataset, meaning they do not have the exact same attributes.208

Different from tracing attacks is that re-identification/de-anonymisation attacks assume the individual is in the209

dataset, and attempts find which row(s) specifically belongs to them. We define a re-identification/de-anonymisation210

attacks formally as:211

Definition 4.3. Given an external (𝐸) and anonymised dataset (𝑍 ) 𝐸 = {𝑒1, ..., 𝑒𝑛1 } and 𝑍 = {𝑧1, ..., 𝑧𝑛2 }, both with212

attributes 𝐴 = {𝑎1, ..., 𝑎𝑚} we want to find for any 𝑘 at which 𝑗 it holds that 𝑒𝑘 = 𝑧 𝑗 . For this, a function 𝑓 can be213

defined to infer which 𝑒𝑘 = 𝑧 𝑗 , where the output is a probability (𝑃𝑟 ) measure, 𝑓 (𝑒𝑘 , 𝑍 ) = 𝑃𝑟 (𝑒𝑘 = 𝑧 𝑗 ) for each 𝑗 .214
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Fig. 4. Example of a Re-identification/de-anonymisation attack, where we have existing knowledge of the individual John and an
anonymised dataset consisting of multiple anonymised individuals. Given that the only comparative attribute between the external
knowledge and the anonymised dataset is the age, we can surmise that John potentially is Jack in the anonymised dataset.

Figure 4 depicts a re-identification/de-anonymisation attack. There exist a number of different approaches to perform215

such an attack. Yoon et al. [22] describe an approach in which a classifier is trained on the external data. The trained216

classifier can then be used on the anonymised dataset predicting the probability of a given individual in the anonymised217

dataset corresponding to a sensitive individual in the external knowledge dataset.218

4.4 Privacy metric types219

Separate from privacy attacks, privacy metrics also fall into different types, based on the approach used to measure220

privacy. The approaches identified through our investigation of the current state of the art privacy metrics are; Distance,221

Probabilistic and Statistical measurements.222

Distance aims to project the data into a space from which a distance between the individual data points can be223

computed. In manymetrics this approach is used using a KNN algorithm [23] to e.g. identify the most similar anonymised224

tuple of a given sensitive tuple.225

Probabilistic metrics aim to evaluate privacy based on the likelihood of an attacker correctly guessing or inferring226

sensitive information about individuals. These metrics often involve using machine learning classifiers that output227

probabilistic predictions. For example an MLP (MultiLayer Perceptron) can be employed to measure the re-identification228

risk by training on sensitive and anonymised datasets and then using the classifier’s probabilistic outputs to determine229

the likelihood of correctly identifying anonymised data points.230

Statistical privacy metrics rely on statistical properties and summaries of the data to assess privacy. These metrics231

often compare statistical aggregates, such as means, variances, and distributions between the sensitive and anonymised232

datasets to determine how much information has been preserved or leaked.233

For all of these types, the distance/probability/statistic may be used in e.g. a ratio or passed through further processing,234

though this does not change their type.235
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5 METRICS236

In order to conduct an investigation of the state of the art privacy metrics, we previously performed a systematic237

review of privacy metrics, where we extracted 14 metrics (Hansen et al. [7]). We used these metrics to start with,238

whereafter some were removed due to not working well enough, and more were added during the making of this paper.239

The metrics have all been implemented, where a lower score means more anonymised and vice versa. Tables 2, 3 and 4,240

provide an overview of the metrics for a given privacy attack. Here, computation time is included for each privacy241

metric as to provide an understanding of the efficiency and scalability of the given metric. The scalability can be partly242

deduced based on the differences between the datasets, which are described in Section 6.1. Note however that the243

hardware also varies by dataset, which is described in Section 6.2.244

Throughout these metrics, we often use KNN [23]. The way we use this in the algorithms is that KNN(𝑡,𝑇 ,𝐴, 𝑘 = 𝑛)245

returns the list of nearest neighbours of 𝑡 : [𝑡1, ..., 𝑡𝑛] from the dataset 𝑇 , based on the attributes 𝐴.246

5.1 Reconstruction metric algorithms247

Reconstruction metrics attempt to reconstruct a given attribute in the external knowledge (subset of the sensitive dataset)248

dataset based on the synthetic dataset. A commonality with the sourced reconstruction metrics is that key attributes249

(𝐴𝐾 ) and sensitive attributes (𝐴𝑆 ) are needed as input. Formally, they can be described as 𝐴𝐾 , 𝐴𝑆 ⊂ {𝑎1, ..., 𝑎𝑚} and250

𝐴𝐾 ∩𝐴𝑆 = ∅. An overview of these metrics is given in Table 2, after which the individual metrics are further described.251

Metric Type of metric

Applicable

attribute types

Additional inputs

required

Computation time

Attribute Inference Risk [8] Statistical Any

Attributes 𝐴, Key

attributes 𝐴𝐾 ,

Sensitive attributes

𝐴𝑆

Texas: 1297𝑠 ± 841
MedOnc: 1226𝑠 ± 14.5

Categorical ZeroCAP*
1
[24] Statistical

Any; Works

best with

categorical

Key attributes 𝐴𝐾 ,

Sensitive attributes

𝐴𝑆

Texas: 185𝑠 ± 6
MedOnc: 24𝑠 ± 0.27

Categorical GeneralizedCAP*

1
[24]

Statistical

Any; Works

best with

categorical

Key attributes 𝐴𝐾 ,

Sensitive attributes

𝐴𝑆

Texas: 1679𝑠 ± 28
MedOnc: 111𝑠 ± 0.23

Table 2. Reconstruction metrics used to conduct experiments. These are based upon the findings from the review performed in our
previous work [7], as well as metrics found in further examination during the making of this paper marked with *

Algorithm 1 computes attribute inference by first calculating the total entropy of the sensitive dataset 𝑌 , in line 2,252

and then computing attribute weights based on the entropy contribution of each attribute, in line 3. Next, from line 7 to253

14, for each tuple 𝑦 in 𝑌 , and for each attribute 𝑎 in 𝐴 (the set of all attributes), the equivalence class 𝑇𝑒𝑞 of 𝑦 in the254

anonymised dataset 𝑍 is determined. Depending on the type of attribute (𝑎 being numerical, categorical, or binary),255

1
The output of this metric has been reversed (𝑠𝑐𝑜𝑟𝑒 = 1 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑐𝑜𝑟𝑒)

2
The output of this metric has been normalised to the range [0, 1]

3
Assumes each anonymised tuple is generated from a single sensitive tuple
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the algorithm computes 𝑇𝑒𝑞 differently. Here, common for all attribute types, is the use of a KNN algorithm [23] to256

find the nearest neighbours/tuples. For numerical attributes, 𝑇𝑒𝑞 is determined by whether the attribute value is in the257

computed thresholds. For categorical and binary, it simply does an equivalence check.258

After obtaining the equivalence class, the algorithm calculates the number of true positives (𝑇𝑃 ), false positives (𝐹𝑃 ),259

and false negatives (𝐹𝑁 ) for each attribute in line 15, 16 and 17, respectively. Then, it updates the attribute inference260

score 𝐴𝐼𝑆𝑐𝑜𝑟𝑒 using the F1 score weighted by the attribute weights in line 18. Finally, it returns the final attribute261

inference score in line 21.262

Algorithm 1 AttributeInference263

Input: Set of attributes 𝐴 = {𝑎1, ..., 𝑎𝑚}, Key attributes 𝐴𝐾 , Sensitive attributes 𝐴𝑆 , Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 },264

Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }265

Output: A risk score in the range [0, 1]266

267

1: 𝐴𝐼𝑆𝑐𝑜𝑟𝑒 ← 0268

2: 𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ← CalculateTotalEntropy(𝑌 )269

3: 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 ← CalculateAttributeWeights(𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦,𝑌 )270

4: for 𝑦 in 𝑌 do271

5: 𝑇𝑒𝑞 ← {}272

6: for 𝑖 from 1 to |𝐴| do273

7: if 𝑎𝑖 is numerical then274

8: 𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0.9, 𝑢𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 1.1275

9: 𝑁𝑁 ← KNN(𝑦, 𝑍,𝐴𝐾 , 𝑘 = 1) ⊲ Get nearest neighbours using k-nearest neighbours algorithm276

10: 𝑇𝑒𝑞 ← From NN tuples, get the tuple within the thresholds for 𝑦 [𝑎𝑖 ]277

11: else if 𝑎𝑖 is categorical or binary then278

12: 𝑁𝑁 ← KNN(𝑦, 𝑍,𝐴𝐾 , 𝑘 = 1)279

13: 𝑇𝑒𝑞 ← {𝑧 |𝑧 ∈ 𝑁𝑁 ∧ 𝑦 [𝐴𝐾 ] = 𝑧 [𝐴𝐾 ]}280

14: end if281

15: 𝑇𝑃 ← |{𝑧 |𝑧 ∈ 𝑇𝑒𝑞 ∧ 𝑦 [𝐴𝑆 ] = 𝑧 [𝐴𝑆 ]}| ⊲ True positive282

16: 𝐹𝑃 ← |{𝑧 |𝑧 ∈ 𝑇𝑒𝑞 ∧ 𝑦 [𝐴𝑆 ] ≠ 𝑧 [𝐴𝑆 ]}| ⊲ False positive283

17: 𝐹𝑁 ← 𝐹𝑁 + |𝑇𝑒𝑞 | −𝑇𝑃 ⊲ False negative284

18: 𝐴𝐼𝑆𝑐𝑜𝑟𝑒 ← 𝐴𝐼𝑆𝑐𝑜𝑟𝑒 + (F1Score(𝑇𝑃, 𝐹𝑃, 𝐹𝑁 ) × 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 [𝑖])285

19: end for286

20: end for287

21: return 𝐴𝐼𝑆𝑐𝑜𝑟𝑒 ⊲ Get final attribute inference score288

22:289

23: function CalculateTotalEntropy(𝑌 )290

24: 𝑁 ← |𝑌 |291

25: 𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ← 0292

26: for 𝑦𝑖 in 𝑌 do293

27: 𝑝𝑖 ←
∑ |𝑌 |
𝑗=1

1(𝑦𝑖 = 𝑦 𝑗 ) ⊲ Number of instances of 𝑦𝑖 in 𝑌294

28: 𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ← 𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦 − 𝑝𝑖 × log2 (𝑝𝑖 ) ⊲ Calculate entropy contribution of 𝑦𝑖295
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29: end for296

30: return 𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦297

31: end function298

32:299

33: function CalculateAttributeWeights(𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦, 𝑌 )300

34: 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 ← []301

35: for 𝑦𝑖 in 𝑌 do302

36: 𝑝𝑖 ←
∑ |𝑌 |
𝑗=1

1(𝑦𝑖 = 𝑦 𝑗 ) ⊲ Number of instances of 𝑦𝑖 in 𝑌303

37: 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 ←
𝑝𝑖×log2 (𝑝𝑖 )
𝑡𝑜𝑡𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦

⊲ Calculate attribute weight304

38: Append𝑤𝑒𝑖𝑔ℎ𝑡𝑖 to 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠305

39: end for306

40: return 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠307

41: end function308

42:309

43: function F1Score(𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 )310

44: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑇𝑃
𝑇𝑃+𝐹𝑃311

45: 𝑟𝑒𝑐𝑎𝑙𝑙 ← 𝑇𝑃
𝑇𝑃+𝐹𝑁312

46: return 2·𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙313

47: end function314

Algorithm 2 Categorical Zero CAP

Input: Key attributes 𝐴𝐾 , Sensitive attributes 𝐴𝑆 , Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 =

{𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑃𝑐𝑜𝑟𝑟 = {}
2: for each 𝑦 in 𝑌 do
3: 𝑇𝑒𝑞 ← from 𝑍 , matching 𝑦 on 𝐴𝐾

4: 𝑐𝑜𝑟𝑟 ← {𝑧 |𝑧 ∈ 𝑇𝑒𝑞 ∧ 𝑦 [𝐴𝑆 ] = 𝑧 [𝐴𝑆 ]}
5: 𝑝 ← 0

6: if 𝑇𝑒𝑞 ≠ ∅ then
7: 𝑝 ← |𝑐𝑜𝑟𝑟 |

|𝑇𝑒𝑞 |
8: end if
9: 𝑃𝑐𝑜𝑟𝑟 ← 𝑃𝑐𝑜𝑟𝑟 ∪ 𝑝
10: end for
11: return 1− avg(𝑃𝑐𝑜𝑟𝑟 )
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Algorithm 2 shows the way Categorical Zero CAP works. For each sensitive tuple 𝑦, the algorithm finds the set315

of anonymised tuples 𝑇𝑒𝑞 in the equivalence class of that sensitive tuple, i.e. matching on the key attributes 𝐴𝐾 , as316

shown in line 3. For each of these equivalence classes, it calculates the probability 𝑝 of guessing the sensitive tuple’s317

sensitive attributes correctly and saves this; if 𝑇𝑒𝑞 is empty, then the algorithm sets 𝑝 to 0. Lastly, on line 11, it returns318

the average of these probabilities.319

Algorithm 3 Categorical Generalized CAP

Input: Key attributes 𝐴𝐾 , Sensitive attributes 𝐴𝑆 , Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 =

{𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑃𝑐𝑜𝑟𝑟 = {}
2: for each 𝑦 in 𝑌 do
3: 𝑇𝑒𝑞 = ∅
4: 𝜇 = |𝐴𝐾 |
5: while 𝑇𝑒𝑞 = ∅ do ⊲ Keep looking for more distant matches until found

6: 𝑇𝑒𝑞 ← from 𝑍 , matching 𝑦 on 𝐴, where 𝐴 ⊆ 𝐴𝐾 and |𝐴| = 𝜇 ⊲ match on 𝜇 attributes

7: 𝑐𝑜𝑟𝑟 ← {𝑧 |𝑧 ∈ 𝑇𝑒𝑞 ∧ 𝑦 [𝐴𝑆 ] = 𝑧 [𝐴𝑆 ]}
8: if 𝑇𝑒𝑞 ≠ ∅ then ⊲ If matches found: Save result

9: 𝑝 ← |𝑐𝑜𝑟𝑟 |
|𝑇𝑒𝑞 |

10: 𝑃𝑐𝑜𝑟𝑟 ← 𝑃𝑐𝑜𝑟𝑟 ∪ 𝑝
11: else ⊲ Else: Try matching on 1 fewer attribute

12: 𝜇 ← 𝜇 − 1
13: end if
14: end while
15: end for
16: return 1− avg(𝑃𝑐𝑜𝑟𝑟 )

Categorical Generalized CAP, described in Algorithm 3 is similar to CZeroCAP. The only difference is how it handles320

when 𝑇𝑒𝑞 = ∅, where instead of setting 𝑝 = 0, it tries to match on one fewer of the key attributes until 𝑇𝑒𝑞 ≠ ∅. This321

change is implemented with the value 𝜇 on line 4 defining how many attributes need to match, which is used in line 6,322

and if no matches are found, is decremented on line 12.323

5.2 Re-identification metric algorithms324

Re-identification metrics revolve around determining which tuple in the anonymised dataset is a given individual in325

the external knowledge (subset of the sensitive dataset) dataset. An overview re-identification metrics can be found in326

Table 3, after which the metrics are individually described.327
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Metric Type of metric

Applicable

attribute types

Additional inputs

required

Computation time

Authenticity
4
[9] Distance Any -

Texas: 1055𝑠 ± 31
MedOnc: 0.66𝑠 ± 0.02

Chi Squared Test* [9] Statistical

Any; Works

best with

categorical

Attributes 𝐴
Texas: 4.54𝑠 ± 0.46
MedOnc: 0.7𝑠 ± 0.03

Close Values Probability* [9] Statistical

Any; Works

best with

numerical

-

Texas: 4.28𝑠 ± 0.40
MedOnc: 0.65𝑠 ± 0.01

Distant Value Probability* [9] Statistical

Any; Works

best with

numerical

-

Texas: 4.33𝑠 ± 0.49
MedOnc: 0.7𝑠 ± 0.02

DetectionMLP* [9] Probabilistic Any -

Texas: 4.33𝑠 ± 0.48
MedOnc: 0.66𝑠 ± 0.02

Inverse Kullback-Leibler Di-

vergence* [9]

Statistical Any -

Texas: 4.18𝑠 ± 0.27
MedOnc: 0.72𝑠 ± 0.08

Jensen Shannon Distance* [9] Statistical Any -

Texas: 4.28𝑠 ± 0.32
MedOnc: 512.6𝑠 ± 205

Kolmogorov-Smirnov Test*

[9]

Statistical Any -

Texas: 4.51𝑠 ± 0.58
MedOnc: 0.66𝑠 ± 0

Common Rows Proportion [9] Statistical

Any; Works

best with

categorical

and binary

-

Texas: 0.26𝑠 ± 0.01
MedOnc: 0.05𝑠 ± 0

Identifiability Score [25] Distance Any -

Texas: 0.20𝑠 ± 0.01
MedOnc: 0.05𝑠 ± 0

NNDR (Nearest Neighbors

Distance Ratio)
4
[26]

Distance Any -

Texas: 1.37𝑠 ± 0.14
MedOnc: 3.83𝑠 ± 1.15

NSND (Nearest Synthetic

Neighbor Distance)
4
[9]

Distance Any -

Texas: 0.99𝑠 ± 0.03
MedOnc: 0.07𝑠 ± 0

DCR (mean Distance to the

Closest Record)
4,5

[26]

Distance Any Attributes 𝐴
Texas: 2.06𝑠 ± 0.28

MedOnc: 1.96𝑠 ± 0.03

MDCR (Median Distance to

Closest Record)* [12]

Distance

Any (numeric

simpler)

-

Texas: 211𝑠 ± 6.30
MedOnc: 12.77𝑠 ± 0.27

Table 3. Re-identification metrics used to conduct experiments. These are based upon the findings from the review performed in our
previous work [7], as well as metrics found in further examination during the making of this paper marked with *
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Algorithm 4 functions by first computing the distances to the closest neighbours in the sensitive dataset 𝑌 and vice328

versa for the synthetic dataset 𝑍 . Next the distances between each point and its second nearest neighbour in 𝑌 and329

the nearest neighbour in 𝑍 are calculated. Then, the authenticity for each sensitive data point in 𝑌 is calculated by330

comparing the distance to its second nearest neighbour in 𝑌 with its distance to its nearest neighbour in 𝑍 . Finally,331

authenticity is scored as the proportion of sensitive data points for which the synthetic neighbour is closer than the332

second nearest sensitive neighbour.333

Algorithm 4 Authenticity

Input: Sensitive dataset 𝑌 = {𝑦1, ..., 𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑆𝑒𝑛𝑠 ← KNN(𝑦𝑖 , 𝑌 , 𝐴, 𝑘 = 2) for each 𝑖 from 1 to |𝑌 |
2: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑆𝑦𝑛𝑡ℎ ← KNN(𝑧𝑖 , 𝑍,𝐴, 𝑘 = 1) for each 𝑖 from 1 to |𝑍 |
3: 𝑠𝑒𝑛𝑠𝑇𝑜𝑆𝑒𝑛𝑠 ← Dist(𝑦𝑖 , 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑆𝑒𝑛𝑠 [𝑖] [2]) for each 𝑖 from 1 to |𝑌 | ⊲ Distance to second nearest sensitive neighbour

4: 𝑠𝑒𝑛𝑠𝑇𝑜𝑆𝑦𝑛𝑡ℎ ← Dist(𝑧𝑖 , 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑆𝑦𝑛𝑡ℎ[𝑖] [1]) for each 𝑖 from 1 to |𝑍 | ⊲ Distance to nearest synthetic neighbour

5: 𝐴𝑢𝑡ℎ𝑆𝑐𝑜𝑟𝑒 ← 0

6: for 𝑖 ← 1 to |𝑌 | do
7: if 𝑠𝑒𝑛𝑠𝑇𝑜𝑆𝑒𝑛𝑠 [𝑖] < 𝑠𝑒𝑛𝑠𝑇𝑜𝑆𝑦𝑛𝑡ℎ[𝑖] then
8: 𝐴𝑢𝑡ℎ𝑆𝑐𝑜𝑟𝑒 ← 𝐴𝑢𝑡ℎ𝑆𝑐𝑜𝑟𝑒 + 1
9: end if
10: end for
11: return 𝐴𝑢𝑡ℎ𝑆𝑐𝑜𝑟𝑒

|𝑌 |

Algorithm 5 operates by iterating through each attribute in the sensitive dataset 𝑌 . For each attribute, it computes334

the observed frequencies of each attribute category in both 𝑌 and the anonymised dataset 𝑍 , as detailed in lines 3 and 4.335

The algorithm then calculates the total count of frequencies for both datasets. Within a nested loop, it iterates through336

each category of the attribute, computing the expected frequency and updating the chi-squared statistic accordingly337

(lines 7-10). After computing the chi-squared statistic for all attribute categories, it calculates the degrees of freedom338

and the corresponding p-value using a chi-square distribution function [27]. The computed p-values for each attribute339

are appended to the 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 list (line 13). Finally, the algorithm returns the mean of the computed p-values as the risk340

scoring metric.341

4
The output of this metric has been reversed (𝑠𝑐𝑜𝑟𝑒 = 1 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑐𝑜𝑟𝑒)

5
The output of this metric has been normalised to the range [0, 1]

6
Assumes each anonymised tuple is generated from a single sensitive tuple
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Algorithm 5 ChiSquaredTest

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }, Attributes 𝐴 = {𝑎1, ..., 𝑎𝑚}
Output: A risk scoring in the range [0, 1]

1: 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 ← []
2: for 𝑖 from 1 to |𝐴| do
3: 𝑜𝑏𝑠𝐹𝑟𝑒𝑞𝑆𝑒𝑛𝑠 ← Get observed frequencies of all given categories of attribute 𝑎𝑖 in 𝑌

4: 𝑜𝑏𝑠𝐹𝑟𝑒𝑞𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 ← Get observed frequencies of all given categories of attribute 𝑎𝑖 in 𝑍

5: 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡 ← Count(𝑜𝑏𝑠𝐹𝑟𝑒𝑞𝑆𝑒𝑛𝑠) + Count(𝑜𝑏𝑠𝐹𝑟𝑒𝑤𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐) ⊲ Total count of frequencies for sensitive

and synthetic datasets

6: 𝑐ℎ𝑖 ← 0

7: for 𝑗 in range |𝑜𝑏𝑠𝐹𝑟𝑒𝑞𝑆𝑒𝑛𝑠 | do ⊲ For each category

8: 𝑒𝑥𝑝𝐹𝑟𝑒𝑞 ← 𝑜𝑏𝑠𝐹𝑟𝑒𝑞𝑆𝑒𝑛𝑠 [ 𝑗 ]+𝑜𝑏𝑠𝐹𝑟𝑒𝑞𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 [ 𝑗 ]×𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡
𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡

⊲ Calculate the expected frequency

9: 𝑐ℎ𝑖 ← 𝑐ℎ𝑖 + (𝑜𝑏𝑠𝐹𝑟𝑒𝑞𝑆𝑒𝑛𝑠 [ 𝑗 ]−𝑒𝑥𝑝𝐹𝑟𝑒𝑞)
2

𝑒𝑥𝑝𝐹𝑟𝑒𝑞
⊲ Calculate chi square

10: end for
11: 𝑑 𝑓 ← |𝑜𝑏𝑠𝐹𝑟𝑒𝑞𝑆𝑒𝑛𝑠 | − 1 ⊲ Compute degrees of freedom

12: 𝑝𝑉𝑎𝑙𝑢𝑒 ← ChiSqare(𝑐ℎ𝑖, 𝑑 𝑓 )
13: Append 𝑝𝑉𝑎𝑙𝑢𝑒 to 𝑝𝑣𝑎𝑙𝑢𝑒𝑠

14: end for
15: return Mean(𝑝𝑣𝑎𝑙𝑢𝑒𝑠 )

Algorithm 6, functions by first initialising, in line 1 a threshold value at 0.2 to establish the proximity criteria. Iterating342

through each tuple 𝑦 in 𝑌 , it computes the minimum distance to tuples 𝑧 in 𝑍 (line 3-14). If this distance is within the343

threshold, it increments a counter variable, 𝑐𝑙𝑜𝑠𝑒𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡 . Finally, it returns the ratio of 𝑐𝑙𝑜𝑠𝑒𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡 to the344

total number of tuples in 𝑌 (line 15).345
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Algorithm 6 Close Values Probability

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0.2

2: 𝑐𝑙𝑜𝑠𝑒𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 0

3: for 𝑦 in 𝑌 do
4: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ←∞
5: for 𝑧 in 𝑍 do
6: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← Distance(𝑦, 𝑧)
7: if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
8: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

9: end if
10: end for
11: if 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
12: 𝑐𝑙𝑜𝑠𝑒𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 𝑐𝑙𝑜𝑠𝑒𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡 + 1
13: end if
14: end for
15: return𝑐𝑙𝑜𝑠𝑒𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡|𝑌 |

Algorithm 7 Distant Values Probability

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0.8

2: 𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 0

3: for 𝑦 in 𝑌 do
4: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ←∞
5: for 𝑧 in 𝑍 do
6: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← Distance(𝑦, 𝑧)
7: if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
8: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

9: end if
10: end for
11: if 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
12: 𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡 + 1
13: end if
14: end for
15: return 1 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠𝐶𝑜𝑢𝑛𝑡

|𝑌 |
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Algorithm 7 functions by assessing the dissimilarity between tuples in the sensitive dataset 𝑌 and their farthest346

counterparts in the anonymised dataset 𝑍 . A threshold value of 0.8 is defined in line 1 to set the remoteness criteria347

and tracks the number of tuples in 𝑌 with distant matches in 𝑍 . The algorithm iterates through each tuple 𝑦 in 𝑌 ,348

calculating the minimum distance to tuples 𝑧 in 𝑍 (lines 3-14). If this distance exceeds the threshold, it increments a349

counter variable (lines 7-9). Finally, in line 15 the ratio of the counter variable to the total number of tuples in 𝑌 is350

returned as the risk scoring metric.351

Algorithm 8 functions as an MLP feedforward neural network. First we define the labels, after which from line 3-5, 𝑌352

and 𝑍 are gathered both in terms of the raw data and labels, in order to split all the data into separate folds i.e. multiple353

sets of training and tests sets. Next, from line 7 to 12, the folds are iterated on, where a MLP classifier is trained on the354

training data. Next the classifier is employed on the test data, whereafter area under curve can be calculated. Finally, in355

line 13, the average AUC score is returned.356

Algorithm 8 DetectionMLP357

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }358

Output: A risk scoring in the range [0, 1], Number of folds 𝑘359

360

1: 𝐿𝑌 ← [1, ..., 1] of length |𝑌 | ⊲ Sensitive dataset labels361

2: 𝐿𝑍 ← [0, ..., 0] of length |𝑍 | ⊲ Anonymised dataset labels362

3: 𝐷 ← 𝑌 ∪ 𝑍363

4: 𝐿 ← 𝐿𝑌 ∪ 𝐿𝑍364

5: Split 𝐷 and 𝐿 into K-folds i.e. 𝐾 train and test sets ⊲ Number of folds is 𝑘365

6: 𝐴𝑈𝐶𝑆 ← []366

7: for (𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑡𝑒𝑠𝑡 , 𝐿𝑡𝑟𝑎𝑖𝑛, 𝐿𝑡𝑒𝑠𝑡 )) in K-folds do367

8: Train MLP classifier 𝐶 on 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐿𝑡𝑟𝑎𝑖𝑛368

9: 𝑃 ← C(𝐷𝑡𝑒𝑠𝑡 )369

10: 𝐴𝑈𝐶 ← ROCAUC(𝐿𝑡𝑒𝑠𝑡 , 𝑃)370

11: Append 𝐴𝑈𝐶 to 𝐴𝑈𝐶𝑆371

12: end for372

13: return avg(𝐴𝑈𝐶𝑆)373

374

14: function ROCAUC(𝐿𝑡𝑒𝑠𝑡 , 𝑃 )375

15: 𝑁𝑝𝑜𝑠 ← count(𝐿𝑡𝑒𝑠𝑡 = 1) ⊲ Number of positive samples376

16: 𝑁𝑛𝑒𝑔 ← count(𝐿𝑡𝑒𝑠𝑡 = 0) ⊲ Number of negative samples377

17: Sort 𝑃 in descending order, with corresponding 𝐿𝑡𝑒𝑠𝑡378

18: 𝑇𝑃𝑅 ← [0], 𝐹𝑃𝑅 ← [0]379

19: 𝑇𝑃 ← 0, 𝐹𝑃 ← 0380

20: for each (𝑙𝑎𝑏𝑒𝑙, 𝑠𝑐𝑜𝑟𝑒) in sorted (𝐿𝑡𝑒𝑠𝑡 , 𝑃) do381

21: if label = 1 then382

22: 𝑇𝑃 ← 𝑇𝑃 + 1383

23: else384

24: 𝐹𝑃 ← 𝐹𝑃 + 1385
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25: end if386

26: Append
𝑇𝑃
𝑁𝑝𝑜𝑠

to 𝑇𝑃𝑅387

27: Append
𝐹𝑃
𝑁𝑛𝑒𝑔

to 𝐹𝑃𝑅388

28: end for389

29: Append 1 to 𝑇𝑃𝑅 and 𝐹𝑃𝑅390

30: 𝐴𝑈𝐶 ← 0391

31: for i from 1 to length of 𝑇𝑃𝑅 do392

32: 𝐴𝑈𝐶 ← 𝐴𝑈𝐶 + (𝐹𝑃𝑅 [𝑖 ]−𝐹𝑃𝑅 [𝑖−1] )×(𝑇𝑃𝑅 [𝑖 ]+𝑇𝑃𝑅 [𝑖−1] )
2

393

33: end for394

34: return 𝐴𝑈𝐶395

35: end function396

Algorithm 9 mainly works by computing inverse KLD (Kullback-Liebler Divergence) [23] for each 𝑌 and 𝑍 attribute,397

individually. The score is then the average of these individual inverse KLDs, as seen in line 9. Overall, the metric398

functions as a means to check for similarity between the two datasets.399

Algorithm 9 Inverse Kullback-Leibler Divergence

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑓 𝑟𝑒𝑞𝑠 ← Get frequency histograms for 𝑌 and 𝑍

2: 𝑖𝑛𝑣𝐾𝐿𝑠 ← []
3: for 𝑎 in 𝐴 do
4: 𝑌𝑓 𝑟𝑒𝑞, 𝑍 𝑓 𝑟𝑒𝑞 ← 𝑓 𝑟𝑒𝑞𝑠 [𝑎] ⊲ Get frequency distribution for the given attribute 𝑎

5: 𝐾𝐿 ←𝐾𝐿𝑑𝑖𝑣 (𝑌𝑓 𝑟𝑒𝑞 , 𝑍 𝑓 𝑟𝑒𝑞 ) ⊲ Calculate KLD for the sensitive and anonymised attributes

6: 𝑖𝑛𝑣𝐾𝐿 ← 1

1+𝐾𝐿 ⊲ Get inverse KLD

7: Append 𝑖𝑛𝑣𝐾𝐿 to 𝑖𝑛𝑣𝐾𝐿𝑠

8: end for
9: return avg(𝑖𝑛𝑣𝐾𝐿𝑠) ⊲ Get average inverse KLD

Algorithm 10 functions much like Algorithm 9 by employing a similarity measurement on a given 𝑌 and 𝑍 attribute400

individually. In this case Jensen-Shannon distance [28] is used as seen on line 5, which utilises KLD to measure the401

similarity between two probability distributions. The Jensen-Shannon distance works by first calculating the average402

distribution𝑀 = 1

2
(𝑃 +𝑄) of the two input distributions/attributes, 𝑃 (from dataset 𝑌 ) and 𝑄 (from dataset 𝑍 ). It then403

computes the KLD of each distribution with respect to 𝑀 . The Jensen-Shannon divergence is the average of these404

two KL divergences. This is done for each attribute, where finally, on line 8, the average Jensen-Shannon distance is405

computed.406
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Algorithm 10 Jensen Shannon Distance

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑓 𝑟𝑒𝑞𝑠 ← Get frequency histograms for 𝑌 and 𝑍

2: 𝑑𝑖𝑠𝑡𝑠 ← []
3: for 𝑎 in 𝐴 do
4: 𝑌𝑓 𝑟𝑒𝑞, 𝑍 𝑓 𝑟𝑒𝑞 ← 𝑓 𝑟𝑒𝑞𝑠 [𝑎] ⊲ Get frequency distribution for the given attribute 𝑎

5: 𝑗𝑠𝑑 ← JensenShannonDistance(𝑌𝑓 𝑟𝑒𝑞, 𝑍 𝑓 𝑟𝑒𝑞 ) ⊲ Compute Jensen-Shannon distance on a given attribute 𝑎

6: Append 𝑗𝑠𝑑 to 𝑑𝑖𝑠𝑡𝑠

7: end for
8: return 1− avg(𝑑𝑖𝑠𝑡𝑠)

Algorithm 11 functions much like Algorithm 9 and 10 in that a similarity measurement is employed for attributes407

separately. In this case it is KST (Kolmogorow-Smirnow Test), which specifically is employed in line 3. Here, KST408

quantifies the maximum vertical distance between the ECDFs (Empirical Cumulative Distribution Functions) of the409

attribute 𝑎 in 𝑌 and 𝑍 . In line 4 the resulting KST value is subtracted from 1 as to indicate greater similarity between410

the distributions the higher the value. Finally, the average of the similarity scores for all attributes is computed in line 6.411

Algorithm 11 Kolmogorov-Smirnow Test412

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }413

Output: A risk scoring in the range [0, 1]414

415

1: 𝑟𝑒𝑠 ← []416

2: for 𝑎 in 𝐴 do417

3: 𝑘𝑠 ← ksTest(𝑌 [𝑎], 𝑍 [𝑎]) ⊲ Compute Kolmogorov-Smirnov test statistic for attribute 𝑎 for each datasets418

4: Append (1 − 𝑘𝑠) to 𝑟𝑒𝑠419

5: end for420

6: return avg(𝑟𝑒𝑠)421

422

7: function ksTest(𝑠𝑒𝑛𝑠𝐶𝑜𝑙𝑢𝑚𝑛, 𝑎𝑛𝑜𝑛𝐶𝑜𝑙𝑢𝑚𝑛)423

8: Sort 𝑠𝑒𝑛𝑠𝐶𝑜𝑙𝑢𝑚𝑛 and 𝑎𝑛𝑜𝑛𝐶𝑜𝑙𝑢𝑚𝑛 in ascending order ⊲ Construct ECDFs for both columns424

9: 𝑎𝑙𝑙𝐶𝑜𝑙𝑢𝑚𝑛 ← 𝑠𝑒𝑛𝑠𝐶𝑜𝑙𝑢𝑚𝑛 concatenated with 𝑎𝑛𝑜𝑛𝐶𝑜𝑙𝑢𝑚𝑛425

10: 𝐹sens =
getInsIdx(𝑠𝑒𝑛𝑠𝐶𝑜𝑙𝑢𝑚𝑛[𝑖 ],𝑎𝑙𝑙𝐶𝑜𝑙𝑢𝑚𝑛)

|𝑠𝑒𝑛𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 | for each 𝑖 from 1 to |𝑠𝑒𝑛𝑠𝐶𝑜𝑙𝑢𝑚𝑛 |426

11: 𝐹anon =
getInsIdx(𝑎𝑛𝑜𝑛𝐶𝑜𝑙𝑢𝑚𝑛[𝑖 ],𝑎𝑙𝑙𝐶𝑜𝑙𝑢𝑚𝑛)

|𝑎𝑛𝑜𝑛𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 | for each 𝑖 from 1 to |𝑎𝑛𝑜𝑛𝐶𝑜𝑙𝑢𝑚𝑛 |427

12: return 𝐷 = max𝑖 (𝐹sens [𝑖] − 𝐹anon [𝑖]) ⊲ Maximum vertical distance between the two ECDFs428

13: end function429

430
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14: function getsInsIdx(𝑡𝑜𝐼𝑛𝑠, 𝑖𝑛𝑠𝐿𝑖𝑠𝑡 )431

15: for 𝑖 from 1 to |𝑖𝑛𝑠𝐿𝑖𝑠𝑡 | do432

16: if 𝑖𝑛𝑠𝐿𝑖𝑠𝑡 [𝑖] ≥ 𝑡𝑜𝐼𝑛𝑠 then433

17: return 𝑖434

18: end if435

19: end for436

20: end function437

Algorithm 12 functions simply by performing an intersection check between 𝑌 and 𝑍 , meaning the tuples they have438

in common. The resulting score is the proportion of tuples relative to the total number of tuples in 𝑌 . Additionally,439

1 × 10−8 is added as to prevent division by zero.440

Algorithm 12 Common Rows Proportion

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑌 ∩ 𝑍
2: return |𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ||𝑌 |+1×10−8 ⊲ 1 × 10−8 is added to avoid division by zero

Algorithm 13 Identifiability Score

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

⊲ Find nearest neighbours for sensitive and anon datasets

1: 𝑁𝑁𝑠𝑒𝑛𝑠 ← KNN(𝑦𝑖 , 𝑌 , 𝐴, 𝑘 = 2) for each 𝑖 from 1 to |𝑌 | ⊲ Compute 2 nearest neighbours for each data point in 𝑌

2: 𝑁𝑁𝑎𝑛𝑜𝑛 ← KNN(𝑧𝑖 , 𝑍,𝐴, 𝑘 = 1) for each 𝑖 from 1 to |𝑍 | ⊲ Compute 1 nearest neighbour for each data point in 𝑍

⊲ Compute re-identification score

3: 𝑑𝑖 𝑓 𝑓 ← {}
4: for 𝑖 ← 1 to |𝑌 | do
5: 𝑑𝑖𝑠𝑡𝑠𝑠𝑒𝑛𝑠 ← []
6: for 𝑗 ← 1 to 2 do ⊲ Loop over the 2 nearest neighbours of data point 𝑖 in 𝑌

7: 𝑑𝑖𝑠𝑡𝑠𝑠𝑒𝑛𝑠 [ 𝑗] ← Dist(𝑦𝑖 , 𝑁𝑁𝑠𝑒𝑛𝑠 [𝑖] [ 𝑗]) ⊲ Compute distance between 𝑦𝑖 and its 𝑗-th nearest neighbor

8: end for
9: 𝑑𝑖𝑠𝑡𝑠𝑎𝑛𝑜𝑛 ← Dist(𝑧𝑖 , 𝑁𝑁𝑎𝑛𝑜𝑛 [𝑖] [1]) ⊲ Compute distance between 𝑧𝑖 and its nearest neighbour

10: 𝑑𝑖 𝑓 𝑓 [𝑖] ← 𝑑𝑖𝑠𝑡𝑠𝑎𝑛𝑜𝑛 − 𝑑𝑖𝑠𝑡𝑠𝑠𝑒𝑛𝑠 [2]
11: end for
12: return Sum(𝑑𝑖 𝑓 𝑓 <0)

𝑛1
⊲ Sum over number of instances where 𝑑𝑖 𝑓 𝑓 < 0

Algorithm 13 provides an overview of the Identifiability Score, which quantifies the re-identification risk of individuals441

in 𝑍 based on their nearest neighbours in both datasets. In line 1 and 2 KNN is employed to find the nearest neighbours442

of each datasets. Next, from line 4-11 the re-identification score is computed. For each 𝑖 from 0 to |𝑌 |, the distance443
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between 𝑦𝑖 and its 2nd nearest neighbour is computed as well as the distance between 𝑧𝑖 and its nearest neighbour.444

Using this approach, it is determined whether the nearest neighbour in 𝑍 is closer to 𝑧𝑖 than the 2nd nearest neighbour445

in 𝑌 , which could indicate a risk of re-identification. Finally, in line 12, the resulting Identifiability Score is computed as446

the division of the number of instances where the nearest neighbour in 𝑍 is closer than the 2nd nearest neighbour in 𝑌 ,447

by the total number of tuples in 𝑌 .448

The way NNDR works is described in Algorithm 14. The first step here is to project both datasets down to two449

numeric dimensions [29]. After this, inside the loop on line 5 it computes the closest and second-closest sensitive tuple450

for each anonymised tuple. Using this, it computes for each anonymised tuple the ratio between these two distances; if451

both have a distance of zero we define the ratio as 1. Lastly, these ratios are averaged and the result is 1 minus this452

average, to make more private data give a lower score.453

Algorithm 14 NNDR

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑐𝑜𝑜𝑟𝑑𝑌 ← project(𝑌, 𝑛_𝑑𝑖𝑚 = 2) ⊲ Project data down to 2 numeric dimensions

2: 𝑐𝑜𝑜𝑟𝑑𝑍 ← project(𝑍,𝑛_𝑑𝑖𝑚 = 2)

3:

4: 𝑟𝑎𝑡𝑖𝑜𝑠 ← []
5: for 𝑖 from 1 to 𝑛2 do ⊲ for each anonymised tuple, find the 1st and 2nd closest sensitive tuple

6: 𝑁𝑁𝑠 ← KNN(𝑐𝑜𝑜𝑟𝑑𝑍 [𝑖], 𝑐𝑜𝑜𝑟𝑑𝑌 , 𝐴, 𝑘 = 2)

7: 𝑑𝑖𝑠𝑡1 ← 𝑁𝑁𝑠 [1]
8: 𝑑𝑖𝑠𝑡2 ← 𝑁𝑁𝑠 [2]
9: if 𝑑𝑖𝑠𝑡2 = 0 then ⊲ avoid division by zero

10: Append 1 to 𝑟𝑎𝑡𝑖𝑜𝑠

11: else
12: Append

𝑑𝑖𝑠𝑡1
𝑑𝑖𝑠𝑡2

to 𝑟𝑎𝑡𝑖𝑜𝑠

13: end if
14: end for
15: return 1− avg(𝑟𝑎𝑡𝑖𝑜𝑠)

Similar to NNDR is NSND, as described in Algorithm 15. The key difference is that instead of it being a distance454

ratio, it is more simply a distance from each sensitive tuple to its closest anonymised tuple, as is calculated in the loop455

on line 2. Because it isn’t a ratio, it is normalised to the range [0, 1] in the loop on line 8, after which the distances are456

again averaged and it returns 1 minus this average for the same reason as before.457
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Algorithm 15 NSND

Input: Real dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }
Output: A risk scoring in the range [0, 1]

1: 𝑑𝑖𝑠𝑡𝑠 ← []
2: for 𝑦 ∈ 𝑌 do ⊲ Compute distances for each sensitive tuple to its nearest anonymised tuple

3: 𝑁𝑁𝑠 ← KNN(𝑦,𝑌,𝐴, 𝑘 = 1)

4: 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 ← 𝑁𝑁𝑠 [1]
5: Append 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 to 𝑑𝑖𝑠𝑡𝑠

6: end for
7: 𝑑𝑖𝑠𝑡𝑠_𝑛𝑜𝑟𝑚 ← []
8: for 𝑖 from 1 to |𝑑𝑖𝑠𝑡𝑠 | do ⊲ Normalise to [0,1]

9: 𝑑𝑖𝑠𝑡_𝑛𝑜𝑟𝑚 ← 𝑑𝑖𝑠𝑡𝑠 [𝑖 ]−𝑚𝑖𝑛 (𝑑𝑖𝑠𝑡𝑠 )
(𝑚𝑎𝑥 (𝑑𝑖𝑠𝑡𝑠 )−𝑚𝑖𝑛 (𝑑𝑖𝑠𝑡𝑠 ) )+1×10−8 ⊲ 1 × 10−8 is added to avoid division by zero

10: Append 𝑑𝑖𝑠𝑡_𝑛𝑜𝑟𝑚 to 𝑑𝑖𝑠𝑡𝑠_𝑛𝑜𝑟𝑚

11: end for
12: return 1− avg(𝑑𝑖𝑠𝑡𝑠_𝑛𝑜𝑟𝑚)

In Algorithm 16 the DCR metric is described. Firstly, it projects the datasets down to two numeric dimensions. Then,458

on line 5 and inside the loop, it finds the closest fake coordinate for each sensitive coordinate. These distances are then459

averaged, and the result is as shown on line 10, which uses the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑙𝑜𝑔 functions.460

Algorithm 16 DCR

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }, Attributes 𝐴 = {𝑎1, ..., 𝑎𝑚}
Output: A risk scoring in the range [0, 1]

1: 𝑐𝑜𝑜𝑟𝑑𝑌 ← project(𝑌, 𝑛_𝑑𝑖𝑚 = 2) ⊲ Project data down to 2 numeric dimensions

2: 𝑐𝑜𝑜𝑟𝑑𝑍 ← project(𝑍,𝑛_𝑑𝑖𝑚 = 2)

3:

4: 𝑑𝑖𝑠𝑡_𝑎𝑟𝑟 ← []
5: for 𝑖 from 1 to |𝑌 | do ⊲ For each sensitive coord, find closest fake coord

6: 𝑑𝑖𝑠𝑡 ←𝑚𝑖𝑛 𝑗 ( |𝑐𝑜𝑜𝑟𝑑𝑌 [𝑖] − 𝑐𝑜𝑜𝑟𝑑𝑍 [ 𝑗] |)
7: Append 𝑑𝑖𝑠𝑡 to 𝑑𝑖𝑠𝑡_𝑎𝑟𝑟

8: end for
9: 𝑎𝑣𝑔 = avg(𝑑𝑖𝑠𝑡_𝑎𝑟𝑟 )

10: return 1− sigmoid(log(𝑎𝑣𝑔))

In Algorithm 17, MDCR works similarly to DCR (in Algorithm 16), though with some differences: (1) it does not use461

projection for the data, (2) it also calculates the distances within-dataset (on line 5) and (3) the final calculation differs,462

including using𝑚𝑒𝑑𝑖𝑎𝑛 instead of 𝑎𝑣𝑔.463
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Algorithm 17 MDCR

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛}, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛}
Output: A risk scoring in the range [0, 1]

1: 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑠 = []
2: 𝑤𝑖𝑡ℎ𝑖𝑛𝑠 = []
3: for 𝑖 from 1 to 𝑛 do ⊲ Calc. the min. distances between- and within-dataset

4: Append𝑚𝑖𝑛 𝑗 ( |𝑧𝑖 − 𝑦 𝑗 |) to 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑠
5: Append𝑚𝑖𝑛 𝑗, 𝑗≠𝑖 ( |𝑦𝑖 − 𝑦 𝑗 |)) to𝑤𝑖𝑡ℎ𝑖𝑛𝑠
6: end for
7: 𝑚𝑒𝑑𝑖 =

median(𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑠 )
median(𝑤𝑖𝑡ℎ𝑖𝑛𝑠 )

8: return 3 − sigmoid(𝑚𝑒𝑑𝑖)

5.3 Tracing metric algorithms464

The last category of metrics considered is tracing metrics, which attempt to infer whether a given tuple in the external465

knowledge (subset of the sensitive dataset) dataset was part of the dataset used to create the synthetic dataset. The466

overview for these can be seen in Table 4, after which again the metrics are described individually.467

Metric Type of metric

Applicable

attribute types

Additional inputs

required

Computation time

NNAA (Nearest neighbour ad-

versarial accuracy) [12]

Distance-

based

accuracy ratio

Any (numeric

simpler)

-

Texas: 406𝑠 ± 7.24
MedOnc: 27𝑠 ± 0.17

Membership Inference Risk

[12]

Distance-

based

accuracy

Any (numeric

simpler)

distance threshold 𝑑𝑡
Texas: 16.59𝑠 ± 3.32
MedOnc: 26.91𝑠 ± 0.49

Hidden Rate
7,8,9

[26]

KNN

accuracy
9

Any -

Texas: 1.74𝑠 ± 0.09
MedOnc: 2.04 ± 0.03

Hitting Rate* [12] Duplicate scan Any Attributes 𝐴
Texas: 149𝑠 ± 5.61

MedOnc: 15.39𝑠 ± 0.24
Table 4. Tracing metrics used to conduct experiments. These are based upon the findings from the review performed in our previous
work [7], as well as metrics found in further examination during the making of this paper marked with *

7
The output of this metric has been reversed (𝑠𝑐𝑜𝑟𝑒 = 1 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑐𝑜𝑟𝑒)

8
The output of this metric has been normalised to the range [0, 1]

9
Assumes each anonymised tuple is generated from a single sensitive tuple
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The pseudocode for NNAA is in Algorithm 18. It uses a distance function as defined on line 1, which finds the468

minimum distance from tuple 𝑖 in dataset𝐷1 to any tuple in𝐷2; if the same datasets are given as input, the second-closest469

tuple is used (i.e. not checking the tuple against itself). On line 14, we go through each index in 𝑌 and 𝑍 , and for each470

of these datasets, we keep count of the number of times it is more distant (i.e. less accurate) to use the opposite dataset471

than it is to use the same dataset. These values are then combined and averaged on line 22, giving a sort of ratio of the472

accuracy between-dataset against within-dataset. Lastly the value is inverted so lower values indicate more private data473

(lower accuracy between-dataset), which happens on line 25.474

Algorithm 18 NNAA
10

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛}, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛}
Output: A risk scoring in the range [0, 1]

1: function Dist(𝐷1, 𝐷2, 𝑖) ⊲ Returns min. dist. from tuple 𝑖 in 𝐷1 to any tuple in 𝐷2

2: {𝑟1, ..., 𝑟𝑛} ← 𝐷1

3: {𝑡1, ..., 𝑡𝑛} ← 𝐷2

4: if 𝐷1 = 𝐷2 then ⊲ Avoid checking tuple against itself

5: return𝑚𝑖𝑛 𝑗, 𝑗≠𝑖 |𝑟𝑖 − 𝑡 𝑗 | ⊲ distance between 𝑟𝑖 and 𝑡 𝑗

6: else
7: return𝑚𝑖𝑛 𝑗 |𝑟𝑖 − 𝑡 𝑗 |
8: end if
9: end function
10:

11: function 𝐴𝐴𝑌𝑍 (𝑌, 𝑍 )
12: 𝑆𝑢𝑚𝑌𝑍 ← 0

13: 𝑆𝑢𝑚𝑍𝑌 ← 0

14: for 𝑖 ← 1 to 𝑛 do ⊲ Sum no. of times between-dataset is more distant than within-dataset

15: if Dist(𝑌, 𝑍, 𝑖) > Dist(𝑌,𝑌, 𝑖) then
16: 𝑆𝑢𝑚𝑌𝑍 ← 𝑆𝑢𝑚𝑌𝑍 + 1
17: end if
18: if Dist(𝑍,𝑌, 𝑖) > Dist(𝑍, 𝑍, 𝑖) then
19: 𝑆𝑢𝑚𝑍𝑌 ← 𝑆𝑢𝑚𝑍𝑌 + 1
20: end if
21: end for
22: return 1

2· |𝑍 | · (𝑆𝑢𝑚𝑌𝑍 + 𝑆𝑢𝑚𝑍𝑌 )
23: end function
24:

25: return 1− 𝐴𝐴𝑌𝑍 (𝑌, 𝑍 )

10
The original metric includes a holdout dataset, but the implementation by Lautrup et al. [12] includes a version without a holdout, which is the one used.
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Membership Inference Risk works similarly to NNAA (Algorithm 18), in that it also uses distance to calculate an475

accuracy, but is significantly simpler and can be seen in Algorithm 19. On line 2 it goes through each sensitive sample;476

based on the closest anonymised sample to this, in the next two lines it guesses whether the sensitive sample was used477

to generate the anonymised dataset. With this it counts up the true positives 𝑇𝑃 and false negative 𝐹𝑁 , which is used478

on line 10 to calculate the recall of these guesses, which is then the value returned.479

Algorithm 19 Membership Inference Risk
11

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }, distance threshold 𝑑𝑡
Output: A risk scoring in the range [0, 1]

1: 𝑇𝑃, 𝐹𝑁 ← 0, 0 ⊲ True/False, Positives/Negatives (for recall)

2: for 𝑦 ∈ 𝑌 do ⊲ Is a true sample

3: 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ←𝑚𝑖𝑛 𝑗 |𝑦 − 𝑧 𝑗 | ⊲ Minimum Euclidean distance

4: if 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ≤ 𝑑𝑡 then ⊲ Guesses true sample

5: 𝑇𝑃 ← 𝑇𝑃 + 1
6: else ⊲ Guesses false sample

7: 𝐹𝑁 ← 𝐹𝑁 + 1
8: end if
9: end for
10: 𝑟𝑒𝑐𝑎𝑙𝑙 ← 𝑇𝑃

𝑇𝑃+𝐹𝑁
11: return 𝑟𝑒𝑐𝑎𝑙𝑙

Next, Algorithm 20 shows how Hidden Rate works. First, it projects the datasets down to two numeric dimensions. It480

then uses these coordinates on line 6 for each sensitive sample, to predict which fake sample was based on this. On the481

next line it then checks if this prediction is correct, and if correct it counts 𝑛_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 up by one. Lastly it returns the482

ratio of samples guessed correctly.483

11
The metric from Lautrup et al. [12] is based on an F1 score, but includes a version based on recall, which is the one used.



A Comparison of Privacy Metrics for Synthetic Data Generation 29

Algorithm 20 Hidden Rate

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛}, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛}
Output: A risk scoring in the range [0, 1]

1: 𝑐𝑜𝑜𝑟𝑑𝑌 ← project(𝑌, 𝑛_𝑑𝑖𝑚 = 2) ⊲ Project data down to 2 numeric dimensions

2: 𝑐𝑜𝑜𝑟𝑑𝑍 ← project(𝑍,𝑛_𝑑𝑖𝑚 = 2)
3:

4: 𝑛_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ← 0

5: for 𝑖 from 0 to |𝑌 | do
6: 𝑁𝑁𝑠 ← KNN(𝑐𝑜𝑜𝑟𝑑𝑌 [𝑖], 𝑐𝑜𝑜𝑟𝑑𝑍 , 𝐴, 𝑘 = 1) ⊲ Predict with KNN

7: if 𝑁𝑁𝑠 [1] = 𝑖 then
8: 𝑛_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ← 𝑛_𝑐𝑙𝑜𝑠𝑒𝑠𝑡 + 1
9: end if
10: end for
11: ⊲ Check indices and count up 𝑛_𝑐𝑙𝑜𝑠𝑒𝑠𝑡

12: return 𝑛_𝑐𝑙𝑜𝑠𝑒𝑠𝑡
𝑛

Lastly, Hitting Rate is described in Algorithm 21. On line 1, the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set to 100%

30
of the attribute’s sensitive-data484

range. What is meant by this is that for whichever attribute 𝑎 this 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is applied to, the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 will be equal485

to (𝑚𝑎𝑥𝑖 (𝑦𝑖 [𝑎]) −𝑚𝑖𝑛𝑖 (𝑦𝑖 [𝑎])) · 1

30
, which is roughly 3% of that attribute’s total range in the sensitive data. Next, the486

attributes are split into the numerical and categorical attributes. these are then used on line 4, where the subset of 𝑍 that487

"hits" some sensitive tuple is calculated; In order to "hit" a tuple, it needs to exactly match on the categorical attributes,488

and be within the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of that tuple for each numerical attribute. lastly, the ratio of ℎ𝑖𝑡𝑠 to |𝑌 | is returned.489

Algorithm 21 Hitting Rate

Input: Sensitive dataset 𝑌 = {𝑦1, ...𝑦𝑛1 }, Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛2 }, Attributes 𝐴 = {𝑎1, ..., 𝑎𝑚}
Output: A risk scoring in the range [0, 1]

1: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 100%

30
of the attribute’s sensitive-data range

2: 𝐴𝑛 ← numerical attributes of 𝐴

3: 𝐴𝑐 ← categorical (and binary) attributes of 𝐴

4: ℎ𝑖𝑡𝑠 ← from 𝑍 , where some 𝑦 matches on 𝐴𝑐 and is within 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 on 𝐴𝑛

5: return |ℎ𝑖𝑡𝑠 ||𝑌 |
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6 EXPERIMENTS490

In this section, we describe the experiments, including the setup thereof, what the objectives are, and what our491

hypothesis is for each experiment. These relate to the problems defined in Section 3, with an outlook on answering the492

questions posed.493

6.1 Datasets494

For these experiments we use two datasets: MedOnc (Medical Oncology) [30] and Texas
12

[31]. These are the sensitive495

datasets, with the anonymised datasets being generated based on these, as will be described in Section 6.3.496

The MedOnc dataset comprises medical oncology records from patients diagnosed with malignant tumors and treated497

at Aalborg University Hospital’s Department of Oncology. The file we use from this is498

medonc_patient_multi_measures.csv, which has a total of 162,411 tuples, though we use all tuples without NA values,499

which consists of 8,630 tuples.500

The Texas Hospital Inpatient Discharge Public Use Data (Texas dataset, File 2013 Q1-Q4) is a public dataset from the501

Texas Department of State Health Services, Austin, Texas. The full dataset contains 100,000 tuples with 6 numerical502

attributes and 12 categorical attributes. The part of the dataset we used contains 25,000 samples uniformly sampled503

from a pre-processed dataset
12

[16]. The reason for choosing 25,000 samples is due to computation time limitations.504

A summary of the datasets is in Table 5.505

Dataset Full dataset tuples Tuples used Columns

Texas 100,000 25,000 18

MedOnc 162,411 8,639 11

Table 5. Datasets summary

For each of the datasets, three separate runs are conducted, which entails generating three different anonymised506

datasets for a single synthesiser, and then running all metrics on each of the three generated datasets. This is done to507

also calculate deviation, with some confidence in what that deviation is. In some cases the deviance in the results may508

be high - in these cases we continue with additional runs until the deviance is low enough. The reason this decreases509

deviance is that we use SEM (Standard Error of the Mean) [32] to calculate the deviance, which signifies the uncertainty510

in the true mean of the results.511

12
via https://github.com/spring-epfl/synthetic_data_release, accessed 12-03-2024. In our code the first 25,000 rows are chosen, in order of the file sequence,

which is effectively also uniformly distributed.
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6.2 Hardware512

The hardware used for running the experiments differs relative to the datasets. This is mainly due to MedOnc containing513

private health data, which we are not allowed to store locally. Here, the high-performance computing cloud environment514

UCloud
13

is used allowing us to perform the experiments through their infrastructure.515

For Texas the experiments were simply run on a local machine.516

An overview of the hardware used can be seen in Table 6517

Table 6. Hardware specifications used for experiments

Hardware Processor model # of Threads Graphics Card RAM

UCloud Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz 16 None 96GB

Local Intel(R) Core(TM) i7-9750H CPU @ 2.50GHz 12 NVIDIA GeForce GTX 1660 Ti 16GB

6.3 Synthesisers518

Aside from baselines, four synthesisers to generate data are used to conduct the experiments. Multiple synthesisers are519

used as to be able to generalise the results and not be dependent on one given synthesiser. These are separated into520

privacy- and non-privacy-focused synthesisers. Privacy-focused synthesisers are defined as having a type of explicit521

privacy mechanism incorporated into their framework, whereas non-privacy-focused synthesisers do not have such a522

mechanism.523

Two baselines are used: Real and Random. The Real baseline works as the identity function where the output dataset524

is identical to the input dataset, consisting of the sensitive data. Real functions as the worst-case scenario where the525

metric scores are expected to be ∼1. In a theoretical point of view, 𝜖 for Real can be approximated to infinity.526

The Random synthesiser generates a random dataset of the same format as the sensitive dataset. Random functions527

as a best-case scenario with the metric scores being expected to be ∼0.528

Pseudocode describing Random is provided in Algorithm 22. Generally, this synthesiser only differentiates between529

categorical and numerical values, where for categorical values there may be introduced more categories, and for530

numerical values there is extremely high noise. Ideally Random should have an 𝜖 of zero, though this implementation531

derives some metadata from the dataset, giving it a non-zero 𝜖 value, similar to the original implementation of PrivBayes532

[16]. This metadata for Random is, for each attribute: The set of unique values for that attribute (line 3), and for533

numerical attributes, the interval (line 6).534

13
https://cloud.sdu.dk



32 Hansen, Stær

Algorithm 22 Synthesiser: Random

Input: Set of attributes 𝐴 = {𝑎1, ..., 𝑎𝑚}, Sensitive dataset 𝑌 = {𝑦1, ..., 𝑦𝑛1 }
Output: Anonymised dataset 𝑍 = {𝑧1, ..., 𝑧𝑛1 }

1: 𝑍 ← 𝑌

2: for each 𝑎 in 𝐴 do ⊲ For each attribute, replace all values in Z

3: 𝑣𝑎𝑙𝑢𝑒𝑠 ← {𝑦 [𝑎] | 𝑦 ∈ 𝑌 }
4: 𝑛𝑜𝑖𝑠𝑒 ← [] ⊲ For each tuple, what noise to add at the end, if numerical

5: if 𝑎 is numerical then ⊲ Numerical attribute handling

6: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ←𝑚𝑎𝑥𝑖 (𝑦𝑖 [𝑎]) −𝑚𝑖𝑛𝑖 (𝑦𝑖 [𝑎])
7: 𝑠𝑐𝑎𝑙𝑒, 𝑙𝑜𝑐 ← 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 0

8: for 𝑘 ← 1 to 100 do
9: 𝑠𝑐𝑎𝑙𝑒 ← 𝑠𝑐𝑎𝑙𝑒 +𝑚𝑎𝑥 (1, 𝑛 ∼ Laplace(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 10 · 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙))
10: 𝑙𝑜𝑐 ← 𝑙𝑜𝑐 +𝑚𝑎𝑥 (1, 𝑛 ∼ Laplace(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 10 · 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙))
11: end for
12: 𝑛𝑜𝑖𝑠𝑒 ← [𝑛𝑠1, ..., 𝑛𝑠𝑛1 ] where 𝑛𝑠1, ..., 𝑛𝑠𝑛1 ∼ Laplace(𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)
13: end if
14: if 𝑎 is categorical then ⊲ Categorical attribute handling

15: 𝑛𝐶𝑎𝑡𝑠 ← |𝑣𝑎𝑙𝑢𝑒𝑠 |
16: 𝑛𝐶𝑎𝑡𝑠𝑁𝑒𝑤 ←𝑚𝑎𝑥 (100, 𝑛𝐶𝑎𝑡𝑠) + Laplace(0,𝑚𝑎𝑥 (10, 𝑛𝐶𝑎𝑡𝑠

10
)))

17: 𝑛𝐶𝑎𝑡𝑠𝑁𝑒𝑤 ← ⌈𝑚𝑎𝑥 (2, 𝑛𝐶𝑎𝑡𝑠𝑁𝑒𝑤)⌉
18: if 𝑛𝐶𝑎𝑡𝑠𝑁𝑒𝑤 < 𝑛𝐶𝑎𝑡𝑠 then
19: 𝑣𝑎𝑙𝑢𝑒𝑠 ← 𝑉𝑎𝑙𝑠 ∈ {𝑉 |𝑉 ⊂ 𝑣𝑎𝑙𝑢𝑒𝑠 ∧ |𝑉 | = 𝑛𝐶𝑎𝑡𝑠𝑁𝑒𝑤}
20: else
21: for 𝑖 ← 1 to (𝑛𝐶𝑎𝑡𝑠𝑁𝑒𝑤 − 𝑛𝐶𝑎𝑡𝑠) do
22: 𝑣𝑎𝑙𝑢𝑒𝑠 ← 𝑣𝑎𝑙𝑢𝑒𝑠 ∪ (𝑒𝑙𝑒𝑚 ∈ {𝑣 |𝑣 ∈ 𝑎 ∧ 𝑣 ∉ 𝑣𝑎𝑙𝑢𝑒𝑠})
23: end for
24: end if
25: end if
26: for 𝑗 ← 1 to 𝑛1 do ⊲ Generating new data for the attribute

27: 𝑧 𝑗 ← 𝑒𝑙𝑒𝑚 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠
28: if 𝑎 = R then
29: 𝑧 𝑗 ← 𝑧 𝑗 + 𝑛𝑠 𝑗
30: end if
31: end for
32: end for
33: return Z

34:

35: function Laplace(𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)

36: 𝑓 (𝑥) = 1

2·𝑠𝑐𝑎𝑙𝑒 · 𝑒
− |𝑥−𝑙𝑜𝑐 |

𝑠𝑐𝑎𝑙𝑒

37: return 𝑓 (𝑥)
38: end function
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The privacy-focused synthesisers are: PATE-GAN and PrivBayes. PATE-GAN [19] (Private Aggregation of Teacher535

Ensembles Generative Adversarial Network) applies the PATE framework [33] on a GAN setup. Due to utilising the536

PATE framework, PATE-GAN is ensured DP guarantees [34]. PrivBayes [35] employs DP in a Bayesian network,537

specifically by injecting noise into a set of low dimensional marginals of the sensitive dataset. Then using the noisy538

marginals and a Bayesian network, an anonymised dataset is generated.539

As a note, all privacy-focused techniques incorporate DP. For PrivBayes, delta is fixed: 𝛿 = 0, while for PATE-GAN it540

varies by dataset
14
: For Texas, 𝛿 = 2.53 · 10−7, while for MedOnc 𝛿 = 1.25 · 10−6.541

The non-privacy focused synthesisers are: CTGAN and TVAE. CTGAN [36] (Conditional Tabular Generative Adver-542

sarial Network) generates tabular data and also allows specifying certain conditions/constraints in order to generate543

data with certain features (e.g. generate data for individuals in a specific age bracket). TVAE [9] (Tabular Variational544

Auto Encoder) is a variational autoencoder focused on generating tabular data.545

6.4 Metric sanity test experiments546

These experiments revolve around testing whether the metrics from Section 5 work as intended, as specified by Problem547

(I) in Section 3. This entails that the metrics should output a score relative to the anonymisation level of the anonymised548

dataset it receives as input. How this is tested is split into two experiments.549

6.4.1 Experiment 1.1: Synthesiser-Metric analysis. For this first experiment, the objective is to test whether the outputs550

of the metrics follow the anonymisation level of a synthesiser. To test this we assume that the Random and Real baselines551

provide the best and worst level of anonymisation, respectively. All other synthesisers lie between these baselines, no552

matter the parameters for the technique. If a metric’s results do not reflect this, then the metric does not pass the sanity553

test.554

Our hypothesis with this experiment is that the metrics will reflect this ordering of synthesisers in terms of the555

level of anonymisation. This is because Random has close to no data leakage, while Real has full data leakage, and the556

anonymisation level should be inversely proportional to this.557

6.4.2 Experiment 1.2: Parameter-Metric analysis. In this experiment, we study the correlation between privacy metric558

scores and 𝜃 values. This is done by varying the 𝜃 values of a given synthesiser and then applying the metrics. The559

synthesisers used are PATE-GAN and PrivBayes. These employ DP, therefore having 𝜖 and 𝛿 as parameters. Most560

relevant for this experiment is the 𝜖 value, as we want to adjust the privacy budget; The 𝜖 values used are [0.2, 1, 2, 10].561

The value of 𝛿 is 0 for PrivBayes, while for PATE-GAN it depends on the dataset: for Texas 𝛿 = 2.53 · 10−7, while for562

MedOnc 𝛿 = 1.25 · 10−6, as described in Section 6.3.563

We hypothesise that anonymised datasets generated with low 𝜖 values produce better (lower) privacy metric scores,564

meaning the dataset is more anonymised. With higher 𝜖 values we presume this to be the opposite. Therefore, a565

monotonic increase for the metric scores are expected, as we go from lower 𝜖 values to higher ones.566

14
In the code it is automatically calculated as 𝛿 = 1

𝑛∗
√
𝑛
, where 𝑛 is the size of the dataset
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6.5 Metric selection experiments567

These experiments aim to assess whether the metrics capture different aspects of anonymisation, as specified by Problem568

(II) in Section 3. This is done by evaluating the similarity between individual metrics’ outputs, meaning that if two569

specific metrics have highly similar outputs, it indicates that they capture the same aspects, in terms of anonymisation.570

We perform this assessment using two experiments. The data for both of these experiments is all of the experimental571

data from Experiment 1.1, averaged across runs. This means there will be twelve data points for each metric: The two572

baselines’ values, the two non-privacy-focused synthesisers’ values, and four values for each of the two DP-enabled573

synthesisers. The reason for averaging is to reduce noise, and we use all the data because we want to capture any574

differences between the metrics, which we expect to be better captured using more synthesisers.575

6.5.1 Experiment 2.1: Spearman. The first approach to measure the correlation between the metrics is Spearman576

Correlation [37]. In our previous work (Hansen et al. [7]) we used Pearson Correlation, but this has been changed to577

Spearman as this is less influenced by outliers. Spearman Correlation measures the monotonic relation between two578

variables. The monotonic relationship determines how the scores evolve in relation to each other. With this, a score is579

produced in the range [−1, 1], where 1 indicates a perfect positive monotonic relationship, where if one score increases,580

the other does as well. −1 is a perfect negative monotonic relationship whereas one score increases, the other decreases.581

0 indicates no monotonic relationship. Spearman Correlation is calculated using Equation 2.582

𝜌 = 1 −
6

∑
𝑑2
𝑖

𝑛(𝑛2 − 1)
(2)

In Equation 2, 𝑛 is the number of data points and 𝑑𝑖 is the difference in the values of a given rank between two583

privacy metrics. Rank refers to the way Spearman Correlation assigns a position to a given data point. For example in584

[2.5, 1, 0, 3], the rankings would be [3, 2, 1, 4]. This is equivalent to Pearson Correlation for the ranks of the points.585

Using Equation 2, the Spearman Correlation is calculated for each pair of metrics.586

We hypothesise that metrics of the same privacy attack type are more correlated than those of different attack types.587

6.5.2 Experiment 2.2: Clustering. The second approach to measure the correlation between the metrics is clustering.588

With clustering we cluster the metrics using the density-based OPTICS (Ordering Points To Identify the Clustering589

Structure) [38] algorithm. OPTICS was chosen as it is an established clustering algorithm with an easily available code590

implementation. Additionally, it is highly flexible and does not require specifying the number of clusters beforehand.591

Generally, clustering involves grouping similar data points according to certain criteria. In OPTICS, a distance592

measure (e.g., Euclidean distance) is employed to identify the nearest neighbouring data point with the highest density.593

We use all the data for this clustering, averaged across runs.594

We hypothesise that metrics of the same privacy attack type are clustered together, and we expect there to be three595

clusters, matching the number of privacy attack types considered.596
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7 RESULTS597

In this section, we present the results of the experiments and an analysis of the implications thereof. We evaluate598

these results to study the hypothesis, and provide more analysis for the results that were unexpected.599

7.1 Experiment 1.1: Synthesiser-Metric analysis600

The hypothesis for this experiment is that Random will perform best (lowest scores), Real will perform worst (highest601

scores), and thereby all other methods will fall inbetween.602

First, we discuss the results for the Texas dataset. As expected, in Figure 5 we see that generally, metrics behave as603

expected: Random gets the best (lowest) metric scores, and Real similarly gets the worst scores, with other values lying604

inbetween. For Random, the final number of runs was 15, due to the high variance of CloseValueProb, DistantValueProb605

and NearestSynNeighborDistance. For PATE-GAN, the final number of runs was 5 due to the variance of MDCR (up to606

0.18, which is the highest) and MemInf.607

There are a few metrics that do not follow this, though. For MDCR, the highest score is for TVAE, and for Near-608

estSynNeighborDistance it is CTGAN that gets the highest score. The Random method does not get the lowest score609

for ChiSquaredTest and Hidden Rate, for which TVAE and PATE-GAN (𝜖 = 0.2) get the lowest scores, respectively.610

Furthermore, Random has rank-ties for AttrubuteInference, CZeroCAP and CommonRowsProportion. For Real, there is611

a rank tie on DistantValueProb.612

The metrics; CZeroCAP, CommonRowsProportion and IdentifiabilityScore and Hidden_rate all get a score ∼ 1 for613

Real, and 0 for all other synthesisers. This is unexpected as only random is expected to have a score ∼ 0 and then all614

other synthesisers above it to some degree.615

The metrics CloseValueProb, ChiSquaredtest, NearestSynNeighbourDistance, DistantValueProb, InvKullbackLieb616

and JensenShannonDist do not work as expected, where random gets a high score, which is not ∼ 0. However, for most617

of them Random still gets the lowest value. This could indicate an implementation error or that the metrics needs to be618

tuned for the Texas dataset to work better.619

This leaves a total of 13 out of 21 metrics that behave as expected when using the Texas dataset. It is, however,620

notable that for the exceptions, the results are usually close to each other, meaning that for most of the exceptions, the621

hypothesis is almost true. The only major exception is ChiSquaredtest, where Random performs measurably worse622

than CTGAN, TVAE and PrivBayes (𝜖 = 0.2). The next-largest exception is the MDCR metric where Real performs623

measurably better than TVAE. (Measurably referring to outside deviance)624
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Fig. 5. Rank-derived privacy metric scores on anonymised datasets generated from the Texas dataset. In each cell, the value at the
top is the average of the runs, while the value below is the deviance, specifically SEM. For each metric, the methods are ranked from
best to worst, and this ranking determines the colour of each cell for that metric, with the highest score (worst) being red, and lowest
score (best) being blue. The green lines indicate the boundaries between different attack categories
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Fig. 6. Rank-derived privacy metric scores on anonymised datasets generated from the MedOnc dataset. In each cell, the value at the
top is the average of the runs, while the value below is the deviance, specifically SEM. For each metric, the methods are ranked from
best to worst, and this ranking determines the colour of each cell for that metric, with the highest score (worst) being red, and lowest
score (best) being blue. The green lines indicate the boundaries between different attack categories
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In Figure 6, the results for MedOnc can be seen. Differently from Figure 5, the results here are not as expected with625

Random only getting the lowest or tied for lowest scores on 8 out of 21 of the metrics with TVAE and PrivBayes 𝜖 = 0.2626

getting similar performance. However, Real functions as expected with it being the worst case scenario (highest score627

for each metric). The problem with Random could be attributed to the MedOnc dataset not containing as much data as628

Texas and the Random algorithm itself (discussed in Section 8.3).629

An interesting observation is the scores for PATE-GAN 𝜖 = 0.2, PATE-GAN 𝜖 = 1 and PATE-GAN 𝜖 = 2, which630

are almost identical. PATE-GAN 𝜖 = 10 gets extremely similar scores, but with slight variance. This pattern can to631

some degree also be likened to Figure 5. Therefore, it can be suspected that the implementation of PATE-GAN does not632

function as intended or it could be attributed to MedOnc not having enough data for PATE-GAN to learn and generate633

varying data. On the other hand, with PrivBayes there is way more variance between the individual configurations.634

Also differently from Figure 5, there are more rank-ties, such as AttributeInference, Authenticity, ChiSquaredTest,635

CloseValueProb, Common Rows Proportion and NNAA. There are also fewer metrics that work as expected for MedOnc,636

due to Random often not performing well. For Medonc, only 5 of 21 metrics perform as expected due to this.637

To summarise, the hypothesis for Experiment 1.1 seems to be mostly true. For Texas, in almost all cases, Random638

performs best and Real performs worst. For MedOnc, Random has varied results, while Real performs worst in all cases.639

Furthermore, in most of the cases where this ordering does not hold, the results are close. As a breakdown per-metric,640

we deem that across the two datasets, the metrics perform according to Table 7.641

Works adequately

• CGeneralizedCAP

• DetectionMLP

• Hitting Rate

• MemInf

Sometimes works

• Attribute Inference

• CZeroCAP

• Authenticity

• DCR

• IdentifiabilityScore

• InvKullbackLieb

• JensenShannonDist

• KSTest

• MDCR

• NNDR

• Hidden Rate

• NNAA

Inadequate functionality

• ChiSquaredTest

• CloseValueProb

• CommonRowsProportion

• DistantValueProb

• NearestSynNeighborDistance

Table 7. Metric functionality breakdown for Experiment 1.1
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7.2 Experiment 1.2: Parameter-Metric analysis642

Similar to Experiment 1.1, the hypothesis is that for the methods with privacy-adjusting parameters in 𝜃 , the metrics’643

results align with adjustments to these parameters.644

Fig. 7. Metric results for PrivBayes on Texas with different values of epsilon, with logarithmic 𝜖 axis. The endpoints for 𝜖 , however,
are the Random and Real results, with 𝜖 set to 0.01 and 200, respectively. The exact choice of these endpoint 𝜖 values was mostly for
visual purposes; theoretical values are discussed in Section 6.3. The deviation is SEM, and is shown with the translucent areas around
each line

For PrivBayes on Texas (Figure 7), the Random and Real results have been added to each end of the graph, to further645

show how the results lie inbetween the baselines. Looking at the graph for this, the results seem to mostly follow the646

hypothesis, in the sense that all of the metrics increase from one end to the other, and it seems to be mostly monotonic.647

Only ChiSquaredTest deviates from this past the deviation boundaries, though AttributeInference has higher deviance648

than than it changes between 𝜖 values of 0.2 and 10.649

This means that 19 of the 21 metrics follow the hypothesis in this test, though there is a great spread in how accurately650

they capture the further expectation that the greatest change should happen around the middle of this graph. The651

metrics that are closest to capturing this are DCR and particularly MemInf. A few of the results also have somewhat652

high deviance, which is suboptimal as it reduces result confidence, with almost half of the metrics showing little to no653

measurable increase within the middle four values of 𝜖 .654
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Fig. 8. Metric results for PATE-GAN on Texas with different values of epsilon, with logarithmic 𝜖 axis. The deviation is SEM, and is
shown with the translucent areas around each line

Next, the results for PATE-GAN on Texas (Figure 8) seem much less indicative of the hypothesis. The majority of655

the metrics show little to no variance between the values of 𝜖 . The only metric that could indicate an increase outside656

variance is MDCR, though it has a high SEM. The endpoints of Random and Real are not included in this figure to657

clarify this lack of variation with changing values of 𝜖 .658

As a summary for the Texas dataset, the hypothesis seems to mostly hold true with the PrivBayes method, with659

PATE-GAN showing mostly no effect from changing 𝜖 . Here, also ChiSquaredTest decrease significantly from 𝜖 = 2 to660

𝜖 = 10. In this case it however also includes DetectionMLP.661
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Fig. 9. Metric results for PrivBayes on MedOnc with different values of epsilon, with logarithmic 𝜖 axis. The endpoints for 𝜖 , however,
are the Random and Real results, with 𝜖 set to 0.01 and 200, respectively. The exact choice of these endpoint 𝜖 values was mostly for
visual purposes; theoretical values are discussed in Section 6.3. The deviation is SEM, and is shown with the translucent areas around
each line

The results for MedOnc with PrivBayes in Figure 9 show that most of the metrics lie in between the ends (Random662

and Real) except for CloseValueProb, NearestSyntheticNeighbourDistance, ChiSquaredTest, IdentifiabilityScore and663

InvKullbackLieb.664

DetectionMLP and Membership Inference seems to capture the expected tendency the most, i.e. being between the665

ends and having a big change in the middle of the graph.666
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Fig. 10. Metric results for PATE-GAN on MedOnc with different values of epsilon, with logarithmic 𝜖 axis. The deviation is SEM, and
is shown with the translucent areas around each line

For PATE-GAN in Figure 10, there is not much variance between the individual metric scores for the different 𝜖667

configurations. For ChiSquaredTest and DetectionMLP from 𝜖 = 2 to 𝜖 = 10 there is a significant drop in the mean as668

well as extremely high deviation for both. With the rest of the metrics only slight deviation can be seen.669

To summarise, the MedOnc dataset results are mostly the same as the Texas dataset, with the hypothesis mostly670

holding true for PrivBayes, but not with PATE-GAN, which displays no significant change between the individual 𝜖671

configurations.672

This means that for Experiment 1.2, PrivBayes confirmed the hypothesis, which showcased a clear monotonic increase673

for most of the metrics. PATE-GAN did not confirm it, where most metrics showed no change across the different 𝜖674

configurations. This we believe to be an implementation error. Excluding the results showcased with PATE-GAN, we675

deem the following metrics to work as showcased by Table 8. This was determined based on both Figure 7 and Figure 9.676
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Works adequately

• CGeneralizedCAP

• DetectionMLP

• MemInf

• DCR

Sometimes works

• Hitting Rate

• Authenticity

• InvKullbackLieb

• KSTest

• MDCR

Inadequate functionality

• Attribute Inference

• CZeroCAP

• IdentifiabilityScore

• JensenShannonDist

• NNDR

• Hidden Rate

• NNAA

• ChiSquaredTest

• CloseValueProb

• CommonRowsProportion

• DistantValueProb

• NearestSynNeighborDistance

Table 8. Metric functionality breakdown for Experiment 1.2
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7.3 Experiment 2.1: Spearman677

The hypothesis for Experiment 2.1 is that metrics within the same attack category will have a stronger correlation than678

those of different categories, indicating that the categorisation is meaningful in terms of the outputs of the metrics.679

Fig. 11. Correlation matrix for the metrics run on the Texas dataset, using Spearman correlation. Each square is coloured according to
its own value, and on each axis the attack category boundaries are shown with green lines

In Figure 11, the correlation matrix for metrics using the Texas data is shown. Almost all metric pairs have positive680

correlations, which is expected. However, there seems to be no clear difference in (1) the correlation strength within an681

attack category and (2) the correlation strength between different attack categories. We expected to see that the top-left,682

middle and bottom-right areas (as outlined by the green lines) would have higher correlation than the other areas, but683

if this is present it is not nearly as clear as expected.684
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Fig. 12. Correlation matrix for the metrics run on the MedOnc dataset, using Spearman correlation. Each square is coloured according
to its own value, and on each axis the attack category boundaries are shown with green lines

For MedOnc, the correlation matrix for the metrics is shown in Figure 12. Once again most of the metrics have a685

positive correlation, as expected, though the attack category boundaries do not seem to be reflected in the correlations.686

To summarise Experiment 2.1, the hypothesis here seems to be disconfirmed. This means that the categorisation of687

the metrics is not reflected in their results, seeing as the correlation does not seem to differ between (1) metrics within688

the same category and (2) metrics from different categories.689
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7.4 Experiment 2.2: Clustering690

The hypothesis for this experiment is that the metrics will cluster according to the attack categories considered, and691

thereby form three clusters. In any case, clustering of metrics could help to further indicate which metrics behave692

similarly, and thereby which ones are unnecessary to test. Similar to Experiment 2.1, this would indicate that the693

categorisation of the metrics is reflected in the metrics’ results.694

Outliers:

• ChiSquaredTest

Cluster 0:

• AttributeInference

• DetectionMLP

• NNDR

• Hitting_rate

• MemInf

• NNAA

Cluster 1:

• CGeneralizedCAP

• Authenticity

Cluster 2:

• CZeroCAP

• CommonRowsProportion

• Hidden_rate

Cluster 3:

• CloseValueProb

• DCR

• DistantValueProb

• IdentifiabilityScore

• InvKullbackLieb

• JensenShannonDist

• KSTest

• MDCR

• NearestSynNeighborDistance

Table 9. Clustering results for the Texas dataset

The clustering results for the Texas dataset are shown in Table 9. To reiterate, this clustering is based on the full695

results, i.e. what is shown in Figure 5. However, that figure shows colours based on the ranking of each method, for696

each metric. In order to better visualise how these clusterings make sense, in Appendix A.2 this figure of full results is697

shown again, but where the colours are based directly on the value shown. For Texas, this is Figure 13.698

The way OPTICS works is essentially by clustering based on the density of points. As an example, from Figure 13 we699

can see that the results for CZeroCAP, CommonRowsProportion and Hidden rate are close to equal. This means that700

those three points have high density, and they are therefore clustered together in cluster 2. Because the density is so701

high, CGeneralizedCAP and Authenticity are not included in this cluster, despite their results also being close. The702

other clusters are not as obvious, and are therefore not discussed further in-depth.703

Aside from outliers, four clusters are identified by OPTICS. This does not quite match the hypothesis, but is close. It704

is however unexpected that there would be an outlier, specifically ChiSquaredTest. From Figure 13 it is not clear why705

this was calculated to be an outlier - perhaps another form of visualisation could help, though it may simply be difficult706

due to the somewhat high dimensionality (12D) of the data being clustered.707



A Comparison of Privacy Metrics for Synthetic Data Generation 47

Outliers:

• ChiSquaredTest

• DetectionMLP

• AttributeInference

Cluster 0:

• Hitting_rate

• CommonRowsProportion

• CZeroCAP

Cluster 1:

• Hidden_rate

• MDCR

Cluster 2:

• MemInf

• NNAA

• IdentifiabilityScore

• NNDR

• CGeneralizedCAP

Cluster 3:

• KSTest

• Authenticity

• InvKullbackLieb

• DCR

Cluster 4:

• CloseValueProb

• NearestSynNeighborDistance

Cluster 5:

• DistantValueProb

• JensenShannonDist

Table 10. Clustering results for the MedOnc dataset

In Figure 10 the clustering results for MedOnc can be seen. Here, six clusters in total were located with ChiSquaredTest,708

DetectionMLP and AttributeInference as outliers.709

Some of the clusters seem well grouped. This includes cluster 0, where it can be observed from Figure 14 that the710

metric scores are very similar. In cluster 1 however, Hidden_rate and MDCR seem quite distant. The remaining clusters711

are not discussed as they are not easily interpretable due to the somewhat high data dimensionality again.712

From there being six clusters and three outliers, the clustering for MedOnc is not as indicative of the hypothesis713

being true.714

In summary, the hypothesis for Experiment 2.2 can not be confirmed in respect to the metrics being clustered715

according to their attack category. However, the produced clusters ended up being quite similar between the two716

datasets. Here, the same metrics were mostly clustered between the datasets, which e.g. includes CZeroCAP and717

CommonRowsProportion.718
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7.5 Experimental summary719

Now that all results have been showcased, we want to be able to conclude, which metrics are adequate to evaluate720

privacy of anonymised data, based on our findings. We determine this by looking at the results of each experiment and721

then eliminating individual metrics.722

We start by removing the metrics that show inadequate functionality in either of the first set of experiments, which723

are displayed as Inadequate functionality in Tables 7 and 8. The remaining metrics after this are in Table 11.724

Reconstruction metrics

• CGeneralizedCAP

Re-identification metrics

• DetectionMLP

• DCR

• Authenticity

• InvKullbackLieb

• KSTest

• MDCR

Tracing metrics

• MemInf

• Hitting Rate

Table 11. List of metrics after 1st round of exlusions

Reconstruction metrics

• CGeneralizedCAP

Re-identification metrics

• DetectionMLP

• DCR

• Authenticity

• MDCR

Tracing metrics

• MemInf

• Hitting Rate

Table 12. List of metrics after 2nd round of exlusions

For choosing between these, the Spearman correlations do not seem to give much insight, as the pairs of metrics with725

high correlation have no overlap between Figures 11 and 12. Using the clustering, however, some metrics are clustered726

together for both of the datasets. From cluster 2 in MedOnc, we could select between MemInf or CGeneralizedCAP, but727

seeing as both of these are categorised as working well in the first set of experiments, we deem that both should be728

kept. From both Texas cluster 3 and MedOnc cluster 3, DCR, InvKullbackLieb and KSTest are present. Out of these, only729

DCR is deemed to work well, and as such we can exclude InvKullbackLieb and KSTest. Then from cluster 1 in Texas,730

Authenticity could be excluded as it it deemed less functional than CGeneralizedCAP, though for MedOnc they are not731

clustered together and it is therefore kept, with a few other similar cases being present. This leads to the list in Table 12732

containing the metrics the results deemed to be necessary to evaluate privacy of an anonymised dataset. From this list733

we can see that all attack categories are represented.734
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8 DISCUSSION AND FUTUREWORKS735

8.1 Results736

For the first set of experiments (Experiments 1.1 and 1.2), the results showed some variation between the datasets737

where some metrics performed as expected in one dataset, but not in the other. Ultimately, for both Experiments 1.1738

and 1.2, four metrics were found to work adequately (though not the exact same). For Experiment 1.2, the results for739

varying 𝜖 using PrivBayes show promise, especially with the Texas dataset. Even this result is far from ideal though,740

as we would expect that the largest difference happens around an 𝜖 value of 0.2 to 10, whereas most metrics show741

little difference within this range. Part of this likely comes down to our tuning of the metrics. This could have been742

improved in several ways, such as implementing fewer metrics and spending more time tuning each metric. As opposed743

to PrivBayes, PATE-GAN showed no significant change between the different 𝜖 configurations, which could be caused744

by an implementation error. This means we only had PrivBayes as a functioning DP synthesiser. We had also intended745

to include more methods, alongside other limitations regarding anonymisation techniques.746

For the second set of experiments (Experiments 2.1 and 2.2), the results were not as expected. With the Spearman747

correlation we did not gain much insight as the results did not indicate any clear pattern of correlation between the748

metrics. Generally, the metrics were correlated, but not in a discernible pattern and ultimately did not help much749

in the final selection of metrics in Section 7.5. However, with clustering, we were able to further narrow down the750

metrics where some similarity was showcased between the clustering for Texas and MedOnc. It could perhaps have751

been better to cluster based on the rankings of the metric scores, rather than the raw metric outputs. In this case the752

clusterings would moreso reflect the Spearman correlations shown in Experiment 2.1. For Texas e.g. DistantValueProb753

and IdentifiabilityScore are considered very distant (see Figure 13), despite them having a Spearman correlation of 0.64754

which is fairly high (see Figure 11 and 5).755

Using the results of the two experiments, we were able to narrow down the list of metrics from 21 to 7. These final 7756

covers all attack categories ensuring a comprehensive evaluation of privacy risks. The list could be further narrowed757

down, including Authenticity and Hitting Rate, but we ultimately decided not to do so as the clusterings of the two758

datasets were contradicting. Therefore, it would be good to have a third dataset cluster analysis which we could use in759

the metric selection process to help further rule out metrics in such instances. Another idea, that could have helped the760

metric selection process, could be to exclude inadequate metrics already after Experiment 1.1. This could help simplify761

the later experiments, improve accuracy of the results, as well as making the following figures easier to interpret.762

The problem statement defined in Section 1 was answered, where we were able to extract a list of privacy metrics763

which cover the relevant privacy attacks. These metrics are able to capture the privacy level of a given synthesiser,764

regardless of the synthesiser having privacy mechanisms or not.765

8.2 Scope766

In Section 3, we intended to include a term for additional inputs to the metrics, such that the definition of the privacy767

metrics could cover the need for additional input requirements. This could for example be the set of attributes 𝐴, but768

should also cover e.g. being able to input the method used to generate the synthetic data. This would be a requirement769

for some metrics such as those by Stadler et. al. [16].770

The algorithms in Section 5 could also be more polished, though further improvement to this was infeasible within771

the scope due to the number of metrics and many of them being complex. If we had known this earlier in the making of772
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this paper, we would likely have opted to include fewer metrics in favor of improving the quality of the algorithms and773

descriptions.774

We had also planned to include the MIMIC dataset [39], but decided to remove it from the experiments, to get more775

runs and thereby more accuracy with the other two datasets, at the cost of generalisability.776

For the MedOnc dataset, there may have been better ways to sample it. As mentioned in Section 6.1, we used all777

tuples without NA values, though this was only a small portion of the full dataset. Instead one could e.g. replace NA778

values with other valid values (Imputation), and then use a sampling technique to choose a subset of the patients, and779

using all the tuples associated with those patients. This could yield a larger dataset used in the experiments, which may780

improve the accuracy of the results. Furthermore, it could be that there is a bias as to which rows contain NA values,781

which this technique could reduce or eliminate, and is therefore a good contender for future work.782

For the Spearman correlation experiment, we could also have calculated a form of variation, such as confidence783

intervals. This could for example be by using the Jackknife Euclidean likelihood approach [40]. This could help to784

identify how certain we are in the correlation values and thereby whether it would make sense to perform more runs to785

increase accuracy for this.786

8.3 Anonymisation techniques787

We had initially planned to include more anonymisation techniques to get more generality, but excluded some partly788

due to difficulties with the code, and partly due to computation limitations, therefore favoring more runs with fewer789

methods. For methods with a privacy mechanism, we had intended to include DPGAN [41] and ADS-GAN [42], but790

in our code both of these had issues similar to those seen with PATE-GAN in Figure 8 where the privacy-adjusting791

mechanism seems to have little to no impact on the results. For methods without an explicit privacy mechanism, we792

intended to include PAR [24] and Bayesian_network [9], but both of these also had implementation/adjustment issues.793

For PAR the problem is that it specifically generates time series data where some kind of sequence id is required (e.g.794

patient id). For Bayesian_network it simply produced invalid data, which the metrics could not accept as input.795

Our Random baseline could have been simpler and performed better. The best option for this may have been to ask796

an expert who is independent of the dataset about the possible set of values for each attribute, and then randomly797

generate values within those sets of values. For example for dates, we could ask which range of dates is possible, and798

generate randomly within that range. However, this was discovered fairly late in the process, at which point we had799

already run a large part of the experimental data for the Random baseline, and it was also uncertain what time would be800

required to get this information. The reason for the complexity of the algorithm used is in part due to it being a further801

development of the Random baseline used in our prior work [7]. It seems the results with MedOnc may have been802

negatively impacted by this, as in Figure 6 Random does not seem to perform the best, with notably PrivBayes (𝜖 = 0.2)803

often performing better. This could however also be in part due to inadequate metric tuning as discussed in Section 8.4.804

For all of the methods used, they could likely have been better tuned for the datasets. This could for example include805

changing the exact details of networks for GANs, but this was a low priority as this paper focuses more on the metrics.806

8.4 Metrics807

For this paper one of our goals was to test with more metrics than in our prior work [7], as metrics are once again the808

focus. This goal has partially been met, though most of the additions have been to the reidentification category which809

already had the largest number of metrics. This is because it has been difficult to find more privacy metrics in the other810

two categories, and it has been difficult to get them working well enough to include them. For example, we attempted811
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to include the "Linkability privacy game" and "Attribute inference privacy game" by Stadler et. al. [16], but transferring812

their metric code to our codebase turned out to be too difficult due to rather different codebase structures, and likewise813

for transferring our anonymisation technique code, datasets and more into their codebase.814

We have also categorised the metrics according to the privacy attack we deem they most closely measure the risk of,815

based on how the metric works. During the process of writing we gained more insight into how the metrics work, with816

which we discovered, for example, that Hidden Rate seems to have been categorised wrongly. It was categorised as a817

Tracing metric (i.e. checking if each sensitive tuple is included in the anonymised dataset), but it functions by checking818

for each sensitive tuple whether that is closest to its (assumed) associated anonymised tuple, which should have been819

categorised as a Reidentification metric. The reason for not changing it upon discovering the error is due to it being820

discovered late in the experimentation. Furthermore, categorising the metrics has often proven difficult, as they may821

not clearly fall into one category or another. This is also part of the reason for introducing the clustering experiment,822

where we make no prior assumption about which category each metric is associated with.823

As with the methods, some of the metrics also require tuning to work properly and again the metrics could likely824

be tuned better. In this case it has been a balancing act between tuning the metrics better for accuracy and adding825

more metrics for generality. For example, in Figure 7 there is great discrepancy in the 𝜖 value around which the metric826

changes most, where many of the metrics have the greatest change at one of the extreme ends of the graph. For this827

tuning we could also have used an automated approach, similar to hyperparameter tuning, which could be material for828

future works.829

9 CONCLUSION830

In conclusion, we set out to investigate the state-of-the-art of privacy metrics used to evaluate the privacy of831

anonymised data. We found that the current literature does not have a common privacy evaluation methodology which832

makes it hard to compare the results. Additionally, not much attention is paid to privacy evaluation as most of the833

focus is on utility. Therefore, our goal was to investigate which privacy metrics are needed in order to adequately834

evaluate privacy of anonymised data. To study this, we performed two sets of experiments; The first set, which examined835

whether the metrics works as intended, i.e. whether the metric would output a score that is relative to the privacy level836

of a given anonymised data and the seconds set, which tested whether different metrics capture different aspects of837

anonymisation of a given dataset. Here, the second set of experiments was used to see if some metrics were behaving838

the same in terms of their scores and if so, whether we could exclude them, further narrowing down the list of metrics.839

Spearman correlation and clustering analyses were used for this purpose.840

In the end, we were able to provide a list of seven metrics which we deemed to be sufficient for evaluating anonymised841

data, based on our results. This list covers all privacy attacks relevant to our scope. Further work can be conducted to842

generalise the results such as introducing a third dataset to the experiments.843
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A APPENDIX924

A.1 Dataset preprocessing925

For all the datasets, adjustments may be made to whether they are comma- or semicolon-delimited.926

We acquired MedOnc from the Aalborg University hospital Oncology Department through the UCloud platform,927

with the help of our supervisors. The preprocessing of MedOnc consists of:928

• Converting the date format to Unix time929

• Adjusting decimal values to have a "." instead of ","930

• Removing rows containing no values or "NA" values931

We acquired the Texas dataset from the public Github repository: https://github.com/spring-epfl/synthetic_data_932

release. This was accessed 12-03-2024. For Texas, we did not do any preprocessing.933

A.2 Full results, linear instead of ranking based934

In Section 7.1 the full results are shown, with colours based on the ranking of the methods, for each metric. In this935

appendix, they are shown again but with the colours based on the individual metric values, to aid in comparison936

between metrics.937

https://github.com/spring-epfl/synthetic_data_release
https://github.com/spring-epfl/synthetic_data_release
https://github.com/spring-epfl/synthetic_data_release
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Fig. 13. Privacy metric scores on anonymised datasets generated from the Texas dataset. In each cell, the value at the top is the
average of the runs, while the value below is the deviance, specifically SEM. The value in each cell determines the colour of for that
cell, with the highest score (1) being red, and lowest score (0) being blue. The green lines indicate the boundaries between different
attack categories
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Fig. 14. Privacy metric scores on anonymised datasets generated from the MedOnc dataset. In each cell, the value at the top is the
average of the runs, while the value below is the deviance, specifically SEM. The value in each cell determines the colour of for that
cell, with the highest score (1) being red, and lowest score (0) being blue. The green lines indicate the boundaries between different
attack categories
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