
Summary

Synthetic data generators (SDGs) as a means of preserving data confidentiality is an active field
of research. These techniques are in high demand due to the many use cases where they can be
employed. For example, within the medical field, there is an increasing demand for generating
synthetic electronic health records (EHRs), it is showcased during the COVID-19 pandemic where
there was a rapid demand need for healthcare solutions.

In recent years, various SDGs have been proposed. These generally work by injecting noise
into the data. Many of the SDGs are built to be differentially private (DP). One such method is
PrivBayes, which utilises ε-differential privacy (ε-DP) and Bayesian networks to generate synthetic
data. Here, ε-DP is a property that allows researchers to reason about the amount of noise necessary
to inject into the data during generation to obtain private data.

The goal of differential privacy (DP) is to protect sensitive information that is contained in the
single individual’s data. However, depending on the goal of the adversary, DP may not be sufficient.

Within the medical field, where all data is considered sensitive, there is concern that an individ-
ual’s attributes may not be private given that an adversary has additional information, which might
help the adversary deduce the sensitive attribute values of said individual. This concern is induced
by the utility privacy trade-off, which deduces that any data with utility is at risk against privacy
attacks. Therefore, a more comprehensive estimation of data privacy requires the development of
other privacy metrics.

DP algorithms do not ensure that nothing about an individual can be learnt from the synthetic
data, as this can only be achieved by releasing no information. This means that if the synthetic
data has utility, it enables adversaries to extract sensitive information about individuals regardless
of their data being included, as there is a clear trade-off between utility and privacy in synthetic
data. SDGs such as PrivBayes try to balance this trade-off by using ε-DP. It has, however, been
shown that these methods are subject to the same trade-off, while making it impossible to predict
which data features are preserved in the synthetic data.

Since utility takes priority over privacy, the focus for many researchers is on utility. Current
privacy metrics often use frequentist statistics for their estimation. A Bayesian approach would,
however, allow us to model the problem in different scenarios, e.g., different knowledge being available
to an adversary. Due to this, Reiter et al. attempts to address these issues by formulating a Bayesian
estimation of the Attribute Disclosure Risk (ADR) for binary variables (i.e., the probability that
an adversary discloses sensitive values of the synthesised attributes on an individual) in synthetic
data, where an adversary can use the released synthetic data and any other information to infer
the attributes of an individual. Hornby & Hu implemented a proof of concept of Reiter et al.’s
Bayesian estimation of ADR for a mixture of discrete and continuous variables. Hornby & Hu’s
focus were on implementing these concepts as a demonstration, but with little regards to practical
applicability, like estimating the risk of attribute disclosure in synthetic data generated by, e.g., a
Bayesian DP-SDG such as PrivBayes. Therefore, in this project, we studied the following problem:

Problem statement How do we compute the ADR of continuous synthetic data generated by
PrivBayes?

To address this problem we presented a coupling between PrivBayes and Hornby & Hu where
we tested this coupling in two experiments. Experiment 1, investigate the correlation between ε
and the chance of correctly identifying an attribute value, and Experiment 2 investigate the effect
of an injected outlier, who has extreme values inside and outside the range of values in the dataset.
Here Hornby & Hu, seemed promising due to its ability to measure the risk of attribute disclosure



given, the synthetic data, real data, auxiliary information an adversary might know, and information
about the synthetic data generation, with the latter two inputs being relatively novel, considering the
domain of private synthetic data. However, despite this extra information, they only demonstrate
minor changes to the chance of guessing continuous attribute values correctly in their testing. This is
something we tested more extensively with PrivBayes as the synthesiser, and our results, like theirs,
show little change in ADR for continuous attributes, which is unexpected considering the additional
information available to the adversary. Furthermore, the results also demonstrated that the ADR
for continuous attributes was not directly influenced by the amount of noise injected by PrivBayes.
This could indicate that this additional information might be insignificant or distracting when using
PrivBayes, making guessing correctly harder. Despite this, we believe that Bayesian modelling
provides an estimation where we are able to adjust the knowledge available to the adversary, which
can provide more accurate results in the vision of protecting individuals’ sensitive attributes.
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Synthesizing is becoming ever more important as a means of providing anonymous data. However, guaranteeing the anonymity of
individuals using synthetic data is still an open problem, which is reflected by the number of synthetic data generators (SDG) and
privacy metrics that have been proposed in recent years. One mathematical framework that is often used to ensure privacy of SGDs is
differential privacy (DP) which guarantees that adding or removing any individual from a real dataset does not significantly change
the distribution. However, the guarantees provided by DP causes concern in fields where all attribute values must remain secret, as
attacks that attempts to guess an unknown attribute value of a given individual are prevalent. This reinforces the need for privacy
metrics that models this type of attack. Despite this, many privacy metrics mostly only consider an adversary’s knowledge of the
synthetic dataset, but in reality an adversary might have knowledge beyond the synthetic data, such as how the synthetic data was
generated or knowledge of an individual not included in the real dataset. A reason for this might be the use of frequentist statistics
rather than Bayesian statistics, where the latter provides the ability to continuously update one’s beliefs with new information, making
it a more natural fit for modelling of different degrees of adversary knowledge. Hornby & Hu has implemented a Bayesian variation of
calculating the risk of attribute inference attack, which accounts for an adversary’s auxiliary knowledge as well as knowledge about
the synthesisation method used. From this, we propose an implementation that couples PrivBayes, a differentially private Bayesian
SDG, to Hornby & Hu with the purpose of investigating Hornby & Hu’s ability to assess the risk of disclosing continuous attribute
values for a synthetic dataset generated by the DP method PrivBayes given two different scenarios with different datasets. One, where
we use different 𝜀-values for DP and another, where we inject outliers into the real dataset. Despite the extra information, our results
showed low risk of disclosing continuous attributes for all 𝜀-values. Furthermore, the results also demonstrated that the attribute
disclosure risk for continuous attributes was not directly influenced by the amount of noise injected by PrivBayes. Despite this, we
believe that Bayesian modelling provides an estimation where we are able to adjust the knowledge available to the adversary, which
can provide more accurate results in the vision of protecting individuals’ sensitive attributes.

1 INTRODUCTION1

Synthetic data generators (SDGs) as a means of preserving data confidentiality is an active field of research [1][2][3].2

These techniques are in high demand due to the many use cases where they can be employed. For example, within the3

medical field, there is an increasing demand for generating synthetic electronic health records (EHRs), it is showcased4

during the COVID-19 pandemic where there was a rapid demand need for healthcare solutions [4].5

In recent years, various SDGs have been proposed. These generally work by injecting noise into the data. Many6

of the SDGs are built to be differentially private (DP). One such method is PrivBayes [3], which utilises 𝜀-differential7

privacy (𝜀-DP) and Bayesian networks to generate synthetic data. Here, 𝜀-DP is a property that allows researchers to8

reason about the amount of noise necessary to inject into the data during generation to obtain private data.9

The goal of differential privacy (DP) is to protect sensitive information that is contained in the single individual’s10

data. However, depending on the goal of the adversary, DP may not be sufficient [5][6].11

Within the medical field, where all data is considered sensitive, there is concern that an individual’s attributes may12

not be private given that an adversary has additional information, which might help the adversary deduce the sensitive13

attribute values of said individual. This concern is induced by the utility privacy trade-off, which deduces that any data14
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with utility is at risk against privacy attacks [7]. Therefore, a more comprehensive estimation of data privacy requires15

the development of other privacy metrics.16

DP algorithms do not ensure that nothing about an individual can be learnt from the synthetic data, as this can only17

be achieved by releasing no information [8]. This means that if the synthetic data has utility, it enables adversaries18

to extract sensitive information about individuals regardless of their data being included, as there is a clear trade-off19

between utility and privacy in synthetic data [7]. SDGs such as PrivBayes try to balance this trade-off by using 𝜀-DP. It20

has, however, been shown that these methods are subject to the same trade-off, while making it impossible to predict21

which data features are preserved in the synthetic data [7].22

Since utility takes priority over privacy, the focus for many researchers is on utility [9]. Current privacy metrics23

often use frequentist statistics for their estimation, as elaborated in Section 2. A Bayesian approach would, however,24

allow us to model the problem in different scenarios, e.g., different knowledge being available to an adversary. Due to25

this, Reiter et al. [10] attempts to address these issues by formulating a Bayesian estimation of the Attribute Disclosure26

Risk (ADR) for binary variables (i.e., the probability that an adversary discloses sensitive values of the synthesised27

attributes on an individual) in synthetic data, where an adversary can use the released synthetic data and any other28

information to infer the attributes of an individual. Hornby & Hu [11] implemented a proof of concept of Reiter et29

al.’s Bayesian estimation of ADR for a mixture of discrete and continuous variables. Hornby & Hu’s focus were on30

implementing these concepts as a demonstration, but with little regards to practical applicability, like estimating the31

risk of attribute disclosure in synthetic data generated by, e.g., a Bayesian DP-SDG such as PrivBayes. Therefore, in this32

project, we study the following problem:33

Problem statement How do we compute the ADR of continuous synthetic data generated by PrivBayes?34

To address this, we propose a coupling between PrivBayes and Hornby & Hu. Here, PrivBayes is chosen as it also35

uses a Bayesian approach, which makes the coupling simpler. Continuous variables were chosen, as they can represent36

values of any range, thereby generally representing a greater granularity than discrete variables, making it a more37

interesting target for guessing attribute values. We then test this coupling in two experiments. Experiment 1, investigate38

the correlation between 𝜀 and the chance of correctly identifying an attribute value, and Experiment 2 investigate39

the effect of an injected outlier, who has extreme values inside and outside the range of values in the dataset. Here,40

the results show no correlation between 𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and the chance of identifying an attribute value with or without41

outliers, except for categorical values which showed surprisingly good results.42

2 RELATEDWORK43

In this Section, we investigate how the state-of-the-art model attribute inference attacks, with the goal of investigating44

whether they use Bayesian statistics and what knowledge an adversary may know beyond the synthetic dataset.45

Stadler et al. [7] present a frequentist privacy evaluation of DP-SGDs, where they quantify how much advantage the46

different SGDs give to an adversary using linkability/membership inference, and attribute inference as attack vectors.47

Here, the adversary uses machine learning along with knowledge of synthetic data to conduct the attack. Here. the48

adversary does not have any additional information. They conclude that DP, when implemented correctly, reduces the49

privacy gain of these two attacks, but at the same utility cost as traditional row level sanitization.50
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Zhang et al. [12] introduce the Synthetic Data Vault (SDV) framework for generating and testing synthetic data. They51

include multiple models for synthetic data generation and metrics like CategoricalCAP, a type of attribute inference52

risk estimation. CategoricalCAP does this by combining public and synthetic information, with public knowledge being53

a subset of the real dataset. CategoricalCAP then counts the instances of values for the same attribute as the unknown54

attribute value, where the individuals are identical to the individual that has the attribute we want to guess. It then55

gives a probabilistic score based on the frequency of attribute values as a guess of the unknown attribute value. While56

CategoricalCAP does consider auxiliary information, it is not suited for continuous variables, as it relies on repeated57

attribute values for informed guessing.58

Mehnaz et al. [13] propose multiple model attacks on classifiers, where each model attack assumes different adversary59

knowledge about the data and classifier for these attacks, e.g., knowledge of the classifier’s confusion matrix or predicted60

labels. Here, the simplest attack assumes that the adversary have knowledge of the probability distributions and guesses61

the value with the highest marginal prior. This is quite similar to how Reiter and Hornby & Hu model their attack.62

Mehnaz et al. However are not truly Bayesian as they only rely on their prior and does not attempt to update it.63

Hernandez et al. [14] introduce a synthetic tabular data evaluation pipeline in three dimensions (resemblance, utility,64

and privacy); here, privacy consists of distance and inference risk metrics, where they train a machine learning model65

on the synthetic dataset and try to predict the unknown values of sensitive attributes of the real dataset. Like other66

solutions presented, Hernandez et al. does not model an adversary with knowledge of the synthetic data generation67

process and, likewise, do not use Bayesian statistics.68

In summary, we see that some of the presented privacy attacks, model an adversary with more information than just69

the synthetic dataset. Here, Zhang et al. [5] model a subset of the real dataset that an adversary might have knowledge70

about, and Hernandez et al. [14] models an adversary, which has access to a subset of the real dataset. Which is contrary71

to Reiter et al. [10] and Hornby et al. [11] which uses Bayesian statistics to model an adversary that has information72

about the synthesisation model and information about the real dataset.73



4 Trudslev and Bachmann.

3 PROBLEM DEFINITION74

In this Section, we formally define the problem of estimating the ADR of continuous synthetic data generated by75

PrivBayes. First, we explain a Bayesian approach to private synthetic data generation. From this, we highlight one of76

the current problems with DP algorithms, after which, we elaborate on our contribution.77

3.1 Private Synthetic Data Generation78

Let 𝑦𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖ℎ) be a vector of information about an individual 𝑖 in the confidential real dataset. The entire real79

dataset is thereby denoted as 𝑦 = {𝑦1, . . . , 𝑦𝑛}. From the real dataset, a synthetic dataset can be generated. The synthetic80

dataset generation can be modelled as a Bayesian hierarchical model, illustrated by the Directed Acyclic Graph (DAG)81

in Figure 1.82

Fig. 1. DAG representing a Bayesian hierarchical model of synthetic data generation. For the representation of Bayesian hierarchical
models, we use the notation used by Christopher M. Bishop [15] where nodes are stochastic variables. Nodes with a grey fill are
the observable variables. In this case, observable refers to the available knowledge of an adversary. Furthermore, the directed edges
describe the causal relation present in the model.

Here, 𝑌 is a stochastic variable such that 𝑌 | Φ ∼ 𝐹 , where Φ defines the parameters of some distribution 𝐹 . From 𝑌 ,83

the real dataset 𝑦 of individuals is sampled. To generate a synthetic dataset 𝑧, a SDG𝑀 is applied with the parameters 𝑌84

and Θ, where Θ represent the parameters used in synthesising, such as 𝜀 for differential privacy. Thereby, we have85

that 𝑍 = 𝑀 (𝑌,Θ) where 𝑍 is a stochastic variable, meaning that 𝑍 | 𝑌 = 𝑦 ∼ 𝐺 and 𝑀 (𝑌,Θ) | 𝑌 = 𝑦 ∼ 𝐺 for some86

distribution 𝐺 .87

3.2 Differential Privacy88

A way to protect all individuals in a real dataset 𝑦 against sensitive information leakage is to employ a method 𝑀89

compliant with differential privacy. For𝑀 to be differentially private, the following must hold:90

Definition 1. (𝜀-Differential Privacy [16]). A synthetisation method𝑀 is 𝜀-differentially private if:91

(1) ∀ real datasets 𝑦 (1) , 𝑦 (2) that differ by one individual, such that |𝑦 (1)\𝑦 (2) | = 1 ∨ |𝑦 (2)\𝑦 (1) | = 1, and92

(2) ∀ 𝑜 ⊂ 𝑂 , with 𝑂 being the set of possible outputs, we have that:93

𝑃 (𝑀 (𝑦 (1) , 𝜃 ) ∈ 𝑜)
𝑃 (𝑀 (𝑦 (2) , 𝜃 ) ∈ 𝑜)

≤ 𝑒𝜀 (1)
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Here, 𝑃 (𝑀 (𝑦 (1) , 𝜃 ) ∈ 𝑜) is the probability of an output in the set 𝑜 using method 𝑀 with parameters 𝜃 on dataset94

𝑦 (1) , in other words. "Changing a single individual’s data in the database leads to a small change in the distribution of the95

outputs" [17]. 𝜀-differential privacy therefore gives a strong guarantee of confidentiality, as an adversary cannot learn96

more about 𝑦𝑖 given that the adversary has knowledge about 𝑦 \ {𝑦𝑖 }, the SDG𝑀 and the synthetic dataset 𝑧 [18].97

3.3 ADR of Synthetic Data98

Due to the lack of guarantee from differential privacy about the adversary’s chance of disclosing a specific individual’s99

attributes, Reiter et al. [10] proposed a framework for Bayesian estimation of ADR in synthetic data. Using their100

framework, we want to know what an adversary can learn about individuals’ attribute given that the adversary has101

knowledge about 𝑧,𝑀 andΘ. The problem then becomes to estimate the density 𝑝 of the individuals𝑦𝑖 ∈ 𝑦∀𝑖 ∈ [1, . . . , 𝑛]102

given the values of 𝑧, 𝜃 and 𝜙 :103

𝑝 (𝑦 | 𝑧, 𝜃, 𝜙) = 𝑝 (𝑦, 𝑧, 𝜃, 𝜙)
𝑝 (𝑧, 𝜃, 𝜙) =

𝑝 (𝑧 | 𝑦, 𝜃, 𝜙)𝑝 (𝑦, 𝜃, 𝜙)
𝑝 (𝑧, 𝜃, 𝜙)

=
𝑝 (𝑧 | 𝑦)𝑝 (𝑦 | 𝜃, 𝜙)𝑝 (𝜃 )𝑝 (𝜙)

𝑝 (𝑧, 𝜃, 𝜙)

=
𝑝 (𝑧 | 𝑦)𝑝 (𝑦 | 𝜃, 𝜙)𝑝 (𝜃 )𝑝 (𝜙)∫

𝑝 (𝑧,𝑦, 𝜃, 𝜙)𝑑𝑦

=
𝑝 (𝑧 | 𝑦)𝑝 (𝑦 | 𝜃, 𝜙)∫

𝑝 (𝑧 | 𝑦, 𝜃, 𝜙)𝑝 (𝑦 | 𝜃, 𝜙)𝑑𝑦

(2)

104

Here, 𝑦, 𝑧, 𝜃 and 𝜙 represent the realised values of 𝑌 , 𝑍 , Θ and Φ from the DAG in Figure 1. The posterior distribution105

𝑝 (𝑦 | 𝑧, 𝜃, 𝜙) is the density of what we can learn about individuals in the real data given some observations. This can be106

calculated using the likelihood 𝑝 (𝑧 | 𝑦), which is the probability of our synthetic data given the real individual or the107

likelihood of 𝑦 given 𝑧 multiplied by our prior belief of 𝑦, 𝑝 (𝑦 | 𝜃, 𝜙), and then dividing it by the normalising constant108 ∫
𝑝 (𝑧 | 𝑦, 𝜃, 𝜙)𝑝 (𝑦 | 𝜃, 𝜙)𝑑𝑦. An example of how the ADR is calculated for continuous data can be found in Section 4.1.109

3.4 Linear Regression Synthesizer110

In the framework proposed by Hornby and Hu [11], they also provide a method for synthesis. This method is a sequential111

Bayesian synthesiser using linear regression, where if we have three attributes, a synthetic individual in the dataset is a112

sample from a probability distribution such that:113

𝑧𝑖 ∼ 𝑝 (𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3) = 𝑝 (𝑦𝑖1)𝑝 (𝑦𝑖2 | 𝑦𝑖1)𝑝 (𝑦𝑖3 | 𝑦𝑖1, 𝑦𝑖2) (3)

Here, synthesis is performed sequentially, meaning that the synthetic attributes are sampled individually. For this114

example, first a linear regression model would be fitted on the real values {𝑦𝑖1 | 𝑖 ∈ [1 . . . 𝑛]} with a constant as predictor115

to get the parameters Θ that describe the distribution. Synthetic values for the first attribute, {𝑧𝑖1 | 𝑖 ∈ [1 . . .𝑚]}, are116

then sampled from the posterior predictive distribution using a Monte Carlo approach. Second, a linear regression117

model is fitted on the real values {𝑦𝑖2 | 𝑖 ∈ [1 . . . 𝑛]} with {𝑦𝑖1 | 𝑖 ∈ [1 . . . 𝑛]} as a predictor, where synthetic data for118

the second attribute are sampled from the posterior predictive distribution using the parameters learnt from fitting119

a model as well as the synthetic values ({𝑧𝑖2 | 𝑖 ∈ [1 . . .𝑚]}). Third, the same approach is used to generate synthetic120

samples for the third attribute from the posterior predictive distribution using the synthetic values ({𝑧𝑖1 | 𝑖 ∈ [1 . . .𝑚]}121

and {𝑧𝑖2 | 𝑖 ∈ [1 . . .𝑚]}) and parameters learnt by fitting a linear model on the real values {𝑦𝑖3 | 𝑖 ∈ [1 . . . 𝑛]} with122
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{𝑦𝑖1 | 𝑖 ∈ [1 . . . 𝑛]} and {𝑦𝑖2 | 𝑖 ∈ [1 . . . 𝑛]} as predictor variables. An example of this method for synthesis using123

continuous attributes can be found in Section 4.1.124

3.5 The Problem of Applicability125

The linear regression synthesiser proposed by Hornby and Hu [11] provides a solution that allows them to have great126

control of both the method𝑀 and the parameters Θ used for synthesis, which is very useful when calculating the ADR,127

as all the necessary parameters of equation 2 are given. This is due to them being able to directly ascertain these from128

the linear regression model, as this directly gives the parameters that are used for synthesis. Thereby, their method129

actually has two outputs, such that the linear regression synthesiser provides them with both Θ and 𝑍 . However, as130

elaborated in Section 3.1, a SDG is a typical method such that 𝑍 = 𝑀 (𝑌,Θ). Therefore, due to the linear regression131

synthesiser being tailored to give necessary parameters for risk measurement, while other SDGs do not, the problem of132

applicability arises when we want to measure the ADR of synthetic data generated by any other SDG.133
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4 BACKGROUND134

This Section covers the essential methods used to calculate the ADR of continuous synthetic data generated by the DP135

method, PrivBayes. First, we present the method for estimating ADR for continuous synthetic data. Second, we present136

how continuous synthetic data is generated using PrivBayes.137

4.1 ADR of Continuous Synthetic data138

This Section presents a running example of measuring the ADR of a synthesized dataset obtained by sampling individuals139

from a joint distribution over ℎ attributes, an individual in the real dataset is on the form (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖ℎ). There exists140

a network B that describes the causal relations between these variables, such that an individual in the real dataset is141

sampled from a probability distribution in the following way:142

𝑦𝑖 ∼ 𝑝 (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖ℎ) =
ℎ∏
𝑗=1

𝑝 (𝑦𝑖 𝑗 | Π 𝑗 ), (4)

where Π 𝑗 is the parent set of attribute 𝑦𝑖 𝑗 .143

Fig. 2. A Bayesian network representing the causal relations between attributes (𝑦𝑖1 ∀ 𝑖 ∈ [1 . . . 𝑛] is the individuals’ 𝑤𝑒𝑖𝑔ℎ𝑡 ,
𝑦𝑖2 ∀ 𝑖 ∈ [1 . . . 𝑛] is the individuals’ 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 , 𝑦𝑖3 ∀ 𝑖 ∈ [1 . . . 𝑛] is the individuals’ 𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) in the real dataset. It can be
seen that 𝑤𝑒𝑖𝑔ℎ𝑡 has a causal effect on 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 and 𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 , while 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 has a causal effect on 𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 .

Example 4.1. Let ℎ = 3, where 𝑦𝑖1 ∀ 𝑖 ∈ [1 . . . 𝑛] is the𝑤𝑒𝑖𝑔ℎ𝑡 attribute values, 𝑦𝑖2 ∀ 𝑖 ∈ [1 . . . 𝑛] is the 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 𝑙𝑒𝑣𝑒𝑙144

attribute values and 𝑦𝑖3 ∀ 𝑖 ∈ [1 . . . 𝑛] is the 𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 attribute values. Furthermore, we have an individual 𝑦𝐵𝑜𝑏 ,145

that has attribute values (105.3, 232.34, 130.3). The parent set contains all parent attributes such that in Figure 2, we146

have, e.g., Π3 = {𝑤𝑒𝑖𝑔ℎ𝑡, 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙}. The causal relations present in this example of a real dataset are shown in Figure147

2.148

Since there are causal relations between attributes, we can make assumptions about the distributions from which149

these are sampled. Hornby and Hu [11] assume that the attributes are sampled from a normal distribution, with the150

causal relation between attributes being a linear relation. We can, therefore, fit a generalised linear model on the real151

dataset to estimate parameters that capture the distribution of attributes and the linear relations between them. By152

fitting a generalised linear model on the real dataset, we derive a set of parameters 𝜃 = (𝜇, 𝜎1, 𝛼1, 𝛽1, 𝜎2, 𝛼2, 𝛽2, 𝛽3, 𝜎3)153
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that estimate the conditional distributions of individuals in the real dataset of our example. These parameters are154

sampled from distributions that lead to the predicted values being close to the true values of 𝑦𝑖 𝑗 . Prior to fitting the155

generalised linear model, the parameters are sampled as:156

𝜇, 𝛼𝑘 ∼𝑎𝑝𝑝𝑟𝑜𝑥 𝜙
(
1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 𝑗 , 2.5
)
,

𝜎 𝑗 ∼𝑎𝑝𝑝𝑟𝑜𝑥 𝐸𝑥𝑝 (𝜆 = 2),
𝛽𝑘 ∼ 𝜙 (0, 2),

(5)

where ∼𝑎𝑝𝑝𝑟𝑜𝑥 is the prior approximation of the distribution, which is adjusted by fitting the model on the real157

dataset. To generate synthetic data, Hornby and Hu [11] propose a sequential Bayesian synthesiser. Here, they estimate158

Θ using the generalised linear model, and sample synthetic data from the model that best capture the distribution of159

the attributes in the data such that:160

𝑧𝑖1 ∼ 𝜙 (𝜇, 𝜎1)
𝑧𝑖2 | 𝑦𝑖1 ∼ 𝜙 (𝛼1 + 𝛽1 · 𝑦𝑖1, 𝜎2)

𝑧𝑖3 | 𝑦𝑖1, 𝑦𝑖2 ∼ 𝜙 (𝛼2 + 𝛽2 · 𝑦𝑖1 + 𝛽3 · 𝑦𝑖2, 𝜎3)
(6)

Suppose we have a real dataset 𝑦 that contains 𝑖 = 1, . . . , 𝑛 = 1000 individuals (𝑦𝑖 ) such that 𝑦 = {𝑦1, . . . , 𝑦1000} with161

attributes having the same causal relations as shown in Figure 2. We then generate a synthetic dataset 𝑧 = {𝑧1, . . . , 𝑧𝑚}162

where𝑚 = 1000.163

To illustrate the ADR measurement, we assume the adversary’s target is 𝑦1000 = 𝑦𝐵𝑜𝑏 , and a worst-case scenario,164

where the adversary’s auxiliary information 𝐴 consists of knowledge about 𝑦𝑖 for all individuals in the real dataset165

except 𝑦𝐵𝑜𝑏 , such that 𝐴 = 𝑦 \ {𝑦1000}. Furthermore, the adversary also has knowledge about the synthesis process (𝑆).166

We can thereby model the knowledge an adversary has available as a Bayesian network, shown in Figure 3.167

... ...

Fig. 3. A Bayesian network representing the causal relations between the real dataset and the synthetic dataset through the parameters
in theta. From the Figure, it can be seen that Θ has an effect on both the real and synthetic individuals, while being affected by Ω
which is the variance in the estimation of parameters in Θ.
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The goal of measuring the ADR is to obtain the posterior probability of a guess 𝑝 (𝑌1000 = 𝑦∗1000 | 𝑧,𝐴, 𝑆), where 𝑌1000168

is a variable which represents an adversary’s uncertain knowledge about 𝑦1000 and 𝑦∗1000 represents the adversary’s169

guess on the true confidential value of 𝑦1000. We can then write the posterior probability in the following form:170

𝑝 (𝑌1000 = 𝑦∗1000 | 𝑧,𝐴, 𝑆) ∝ 𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆)𝑝 (𝑌1000 = 𝑦∗1000 | 𝐴, 𝑆) (7)

Here, Hornby and Hu [11] propose a solution with a uniform prior, such that 𝑝 (𝑌1000 = 𝑦∗1000 | 𝐴, 𝑆) = 1/𝑛171

for all 𝑦 in the support. By assuming a uniform naive prior, the problem then becomes estimating the likelihood172

𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆), as this is effectively equivalent to an adversary searching over all 𝑦∗1000 for the highest173

probability of 𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆). Here, Monte Carlo approximation is typically used, but as elaborated by Hornby174

and Hu [11], this is computationally expensive. Therefore, we use importance sampling [19] to estimate the likelihood175

through a function 𝑔 of 𝜃 , 𝑔(𝜃 ) = 𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆, 𝜃 ). To do importance sampling, we introduce the density176

𝑓 ∗ (𝜃 | 𝑌1000 = 𝑦1000, 𝐴, 𝑆), which is a density of the parameter 𝜃 given the real data and knowledge about the synthesis177

process:178

E[𝑔(Θ)] =
∫

𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆, 𝜃 ) 𝑓 (𝜃 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆)𝑑𝜃

=
∫

𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆, 𝜃 )
𝑓 ∗ (𝜃 | 𝑌1000 = 𝑦1000, 𝐴, 𝑆)
𝑓 ∗ (𝜃 | 𝑌1000 = 𝑦1000, 𝐴, 𝑆) 𝑓 (𝜃 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆)𝑑𝜃

=
∫

𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆, 𝜃 )
𝑓 (𝜃 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆)
𝑓 ∗ (𝜃 | 𝑌1000 = 𝑦1000, 𝐴, 𝑆) 𝑓

∗ (𝜃 | 𝑌1000 = 𝑦1000, 𝐴, 𝑆)𝑑𝜃

(8)

Here, 𝑓 ( ·)
𝑓 ∗ ( ·) is a weighting function that captures the likelihood ratio. The weighting function we use here, however,179

has a problem, as it is only known up to a proportional relation between the weighting function and the probability we180

want to measure such that:181

𝑓 (·)
𝑓 ∗ (·) ∝ 𝑞(𝜃 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆)

𝑞∗ (𝜃 | 𝑌1000 = 𝑦1000, 𝑆) (9)

To overcome this proportionality, we use the fact that we can then rewrite the weighting function, where for182

simplification, the function parameters will be shortened to 𝜃 such that:183

𝑓 (𝜃 )
𝑓 ∗ (𝜃 ) =

𝑞 (𝜃 )∫
𝑞 (𝜃 )𝑑𝜃

𝑞∗ (𝜃 )∫
𝑞∗ (𝜃 ) 𝑑𝜃

=

𝑞 (𝜃 )
𝑞∗ (𝜃 )∫
𝑞 (𝜃 )𝑑𝜃∫
𝑞∗ (𝜃 )𝑑𝜃

(10)

To estimate taking the integral in the denominators of the equation, we do as previously and introduce an 𝑓 ∗ (·)184

function to both the integrals such that the denominator becomes:185

∫
𝑞(𝜃 )𝑑𝜃∫
𝑞∗ (𝜃 )𝑑𝜃 =

∫
𝑞(𝜃 )∫
𝑞∗ (𝜃 )𝑑𝜃 𝑑𝜃 =

∫
𝑞(𝜃 )

𝑓 ∗ (𝜃 )
∫
𝑞∗ (𝜃 )𝑑𝜃 𝑓

∗ (𝜃 )𝑑𝜃

=
∫

𝑞(𝜃 )
𝑞∗(𝜃 )∫
𝑞∗ (𝜃 )𝑑𝜃

∫
𝑞∗ (𝜃 )𝑑𝜃

𝑓 ∗ (𝜃 )𝑑𝜃 =
∫

𝑞(𝜃 )
𝑞∗ (𝜃 ) 𝑓

∗ (𝜃 )𝑑𝜃
(11)

186

Therefore, this can be rewritten on a form of which importance sampling can be performed over the 𝐻 parameter187

samples from function 𝑓 ∗ (𝜃 ) to approximate the distribution such that:188
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∫
𝑞(𝜃 )
𝑞∗ (𝜃 ) 𝑓

∗ (𝜃 )𝑑𝜃 ≈ 1
𝐻

𝐻∑︁
ℎ=1

𝑞(𝜃ℎ)
𝑞∗ (𝜃ℎ)

(12)

Using this approach, we can then insert this into our equation and use this to approximate the function of interest,189

E[𝑔(Θ)] through sampling posterior parameter draws:190

E[𝑔(Θ)] ≈ 1
𝐻

𝐻∑︁
ℎ=1

𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆, 𝜃ℎ)
𝑓 (𝜃ℎ | 𝑌1000=𝑦∗

1000,𝐴,𝑆 )
𝑓 ∗ (𝜃ℎ | 𝑌1000=𝑦1000,𝐴,𝑆 )

1
𝐻

𝐻∑
𝑘=1

𝑓 (𝜃𝑘 | 𝑌1000=𝑦∗
1000,𝐴,𝑆 )

𝑓 ∗ (𝜃𝑘 | 𝑌1000=𝑦1000,𝐴,𝑆 )

, 𝜃1, . . . , 𝜃𝐻 ∼ 𝑓 ∗ (13)

Conveniently, the distribution 𝑓 ∗ (𝜃ℎ | 𝑌1000 = 𝑦1000, 𝐴, 𝑆) can be computed efficiently by fitting a linear model on the191

real dataset with the causal relations used for synthesis to get the 𝐻 posterior parameter draws. These can then be used192

in the importance sampling step in Equation 13 to approximate 𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆, 𝜃 ), efficiently.193

When we fit a generalised linear model on the real dataset with the causal relations of synthesis, we then get the𝐻 pa-194

rameter draws of Θ such that for each parameter draw we have 𝜃ℎ = (𝜇 (ℎ) , 𝜎 (ℎ)1 , 𝛼
(ℎ)
1 , 𝛽

(ℎ)
1 , 𝜎

(ℎ)
2 , 𝛼

(ℎ)
2 , 𝛽

(ℎ)
2 , 𝛽

(ℎ)
3 , 𝜎

(ℎ)
3 ).195

We can then use these parameter draws to calculate the densities in our importance sampling in the following way:196

𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆, 𝜃ℎ) =
𝑛∏
𝑖=1

(
𝜙 (𝑧𝑖1, 𝜇 (ℎ) , 𝜎 (ℎ)1 )𝜙 (𝑧𝑖2, 𝛼 (ℎ)

1 + 𝛽 (ℎ)1 · 𝑧𝑖1, 𝜎 (ℎ)2 )𝜙 (𝑧𝑖3, 𝛼 (ℎ)
2 + 𝛽 (ℎ)2 · 𝑧𝑖1 + 𝛽 (ℎ)3 · 𝑧𝑖2, 𝜎 (ℎ)3 )

)

𝑓 (𝜃ℎ | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆) = 𝜙 (𝑦∗1𝑔, 𝜇 (ℎ) , 𝜎 (ℎ)1 )𝜙 (𝑦∗2𝑔, 𝛼 (ℎ)
1 + 𝛽 (ℎ)1 · 𝑦∗1𝑔, 𝜎 (ℎ)2 )𝜙 (𝑦∗3𝑔, 𝛼 (ℎ)

2 + 𝛽 (ℎ)2 · 𝑦∗1𝑔 + 𝛽 (ℎ)3 · 𝑦∗2𝑔, 𝜎 (ℎ)3 )
𝑓 ∗ (𝜃ℎ | 𝑌1000 = 𝑦1000, 𝐴, 𝑆) = 𝜙 (𝑦𝑖1, 𝜇 (ℎ) , 𝜎 (ℎ)1 )𝜙 (𝑦𝑖2, 𝛼 (ℎ)

1 + 𝛽 (ℎ)1 · 𝑦𝑖1, 𝜎 (ℎ)2 )𝜙 (𝑦𝑖3, 𝛼 (ℎ)
2 + 𝛽 (ℎ)2 · 𝑦𝑖1 + 𝛽 (ℎ)3 · 𝑦𝑖2, 𝜎 (ℎ)3 )

(14)
Here, 𝜙 (·) is a probability density function (pdf) of a normal distribution, and 𝑦∗1𝑔, 𝑦

∗
2𝑔, 𝑦

∗
3𝑔 are the guesses being197

evaluated. These guesses are from a collection of guesses {𝑦∗11, . . . , 𝑦∗1𝐺1
, 𝑦∗21, . . . , 𝑦

∗
2𝐺2
, 𝑦∗31, . . . , 𝑦

∗
3𝐺3

}, where 𝐺1, 𝐺2 and198

𝐺3 are the number of guesses for the real value of each variable, such that there are 𝐺1 ×𝐺2 ×𝐺3 number of guesses.199

The guesses are constructed such that the true confidential value triplet (𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3) is in the collection of guesses.200

Furthermore, since we use continuous variables, a neighbourhood interval of [𝑦𝑖 𝑗 × 0.9, 𝑦𝑖 𝑗 × 1.1] (i.e. within a 20%201

radius of 𝑦𝑖 𝑗 ) from which 𝐺 𝑗 equally spaced guesses are selected. Using these formulas, we can thereby estimate202

𝑔(𝜃 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆), and as mentioned previously, 𝑔(𝜃 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆) = 𝑓 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆). This means203

that we can estimate the likelihood (𝑝 (𝑧 | 𝑌1000 = 𝑦∗1000, 𝐴, 𝑆)), which given that we have a uniform prior lets us estimate204

the posterior probability 𝑝 (𝑌1000 = 𝑦∗1000 | 𝑧,𝐴, 𝑆).205

4.2 PrivBayes for Generating Continuous Synthetic Data206

For a method 𝑀 to be DP, enough noise to satisfy Definition 1 is added when generating the synthetic dataset. One207

method that theoretically is 𝜀-DP is PrivBayes [3]PrivBayes theoretically provides a 𝜀-DP method by injecting noise208

into the construction and distributions of a Bayesian network, which they then can sample from without influencing209

the property of DP. However, Stadler et. al. [7] has shown that this is not the case for the actual implementation.210

4.2.1 Noisy Network Construction. First, PrivBayes discretises the domain of continuous attributes by constructing211

a fixed number 𝑏 of equi-width bins of the domain space of the variable. These bins are binary encoded such that if212

𝑏 = 8, the bins are represented by 3 (i.e. 𝑙𝑜𝑔28) binaries such that we have the bins {(000), (001), . . . (111)}. Continuous213
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attributes are then discretised by assigning them to these binary encoded bins according to what domain they are214

categorised as. They proceed by constructing a 𝑘-degree Bayesian network B over the ℎ number of attributes in 𝑦,215

using an 𝜀1-DP method. To construct B in a differentially private manner, they start by randomly selecting an attribute216

𝑋1 from the set of attributes 𝐴𝑡𝑡 and use that as a root node such that (𝑋1,∅) ∈ B and 𝑋1 ∈ 𝑉 , where 𝑉 is the set of217

vertices in B. A set containing all possible combinations of attributes and parent pairs (Ψ) is then made, such that:218

Ψ =
{
(𝑋𝑖 ,Π) | 𝑋𝑖 ∈ 𝐴𝑡𝑡 \𝑉 ,Π ∈

(
𝑉
𝑘

)}
, (15)

where
(
𝑉
𝑘

)
denotes the set of all subsets of 𝑉 with size𝑚𝑖𝑛(𝑘, |𝑉 |). Each attribute parent (AP) pair ((𝑋𝑖 ,Π) ∈ Ψ) is then219

scored using a function 𝐹 (𝑋,Π), which intends to approximate the mutual information between 𝑋 and Π efficiently,220

such that221

𝐹 (𝑋,Π) = −1
2 min
𝑃 ⋄∈P⋄



𝑃 (𝑋,Π) − 𝑃 ⋄ (𝑋,Π)

1 , (16)

where P⋄ is the set of all maximum joint distributions for 𝑋 and Π, 𝑃 (𝑋,Π) is the joint distribution of 𝑋 and Π, and222

∥· − ·∥1 denotes the 𝐿1 distance between the two element.223

After that AP pairs (𝑋𝑖 ,Π𝑖 ) are then sampled from Ψ, such thatB = B∪{(𝑋𝑖 ,Π𝑖 )} and𝑉 = 𝑉 ∪{𝑋𝑖 } until Ψ = ∅with224

a sampling probability of any pair (𝑋,Π) being proportional to 𝑒𝑥𝑝 ( 𝐹 (𝑋,Π)
2Δ ), where Δ is a scaling factor responsible for225

the construction being 𝜀1-differentially private. Therefore, we have that Δ = (𝑑 − 1) 𝑆 (𝐹 )𝜀1
, where 𝑑 = |𝐴| and 𝑆 (𝐹 ) = 1

𝑛226

meaning that the sensitivity of function 𝐹 is 1
𝑛 , with 𝑛 being the number of tuples in 𝐷 . After sampling Ψ, we are then227

left with a noisy construction of a Bayesian network B.228

4.2.2 Noisy Conditional Distribution. Second, PrivBayes uses a 𝜀2-DP algorithm to generate a set of conditional229

distributions of 𝑌 , such that for each AP pair (𝑋𝑖 ,Π𝑖 ), the conditional distribution 𝑃 (𝑋𝑖 |Π𝑖 ) has a noisy version of it230

𝑃∗ (𝑋𝑖 |Π𝑖 ).231

To generate the noisy conditional distributions, we start by materialising the joint distribution (𝑃 (𝑋𝑖 ,Π𝑖 )). Laplace232

noise is then added to the distribution of all attributes in𝐴𝑡𝑡 to get a noisy joint distribution of each attribute 𝑃∗ (𝑋𝑖 ,Π𝑖 )233

such that:234

𝑃∗ (𝑋𝑖 ,Π𝑖 ) = 𝑃 (𝑋𝑖 ,Π𝑖 ) + 𝐿𝑎𝑝 ( 2(𝑑 − 𝑘)
𝑛𝜀2

) (17)

When generating the noisy joint distribution for each attribute, negative values are set to 0 and all values are235

normalised to maintain a total probability mass of 1. The (𝑑 −𝑘) noisy conditional distributions can then be constructed236

by deriving 𝑃∗ (𝑋𝑖 | Π𝑖 ) ∀𝑖 ∈ [1 . . . ℎ] from 𝑃∗ (𝑋,Π).237

4.2.3 Synthetic Data Sampling. Third, PrivBayes uses the Bayesian network B and the 𝑝 number of noisy conditional238

distributions to derive an approximate distribution from which they sample to generate 𝑧.239

For continuous data, we have to convert the data that was discretised in the first step back to continuous data. This240

is done by sampling the attribute values from uniform distributions given the probabilities derived from 𝑃∗ (𝑋𝑖 | Π𝑖 ),241

such that for an attribute:242

𝑧𝑖 𝑗 ∼ U(𝑏𝑖𝑛𝑎, 𝑏𝑖𝑛𝑏 ), 𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ [1 . . . ℎ − 1], 𝑏 ∈ [2 . . . ℎ] (18)

Here, 𝑏𝑖𝑛1, 𝑏𝑖𝑛2, . . . 𝑏𝑖𝑛ℎ denotes the sample space where 𝑏𝑖𝑛1 = 𝑚𝑖𝑛({𝑦𝑖 𝑗 | 𝑖 ∈ [1 . . . 𝑛]}), 𝑏𝑖𝑛ℎ = 𝑚𝑎𝑥 ({𝑦𝑖 𝑗 | 𝑖 ∈243

[1 . . . 𝑛]}), where the probability of sampling from a given bin is derived from 𝑃∗ (𝑋𝑖 | Π𝑖 ). Furthermore, U(𝑏𝑖𝑛𝑎, 𝑏𝑖𝑛𝑏 )244

denotes a uniform distribution such that 𝑏𝑖𝑛𝑎 ≤ 𝑧𝑖 𝑗 ≤ 𝑏𝑖𝑛𝑏 with equal probability over the sample space.245
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5 ADR OF DP SYNTHETIC DATA246

In this Section, we propose a solution to estimating the ADR of PrivBayes. To measure the risk, we propose a method247

for obtaining 𝜃 from the 𝜀-DP method, PrivBayes.248

When we want to estimate the ADR of PrivBayes, the problem of applicability, as mentioned in Section 3.5, becomes249

apparent. This is due to the Linear Regression Synthesizer in Section 3.4 including the parameters (𝜃 ) used for synthesis250

in its output, while PrivBayes does not. This is problematic, as the ADR measurement requires sampling 𝜃 parameters251

from the 𝑓 ∗ (·) function to perform importance sampling. However, while PrivBayes does not directly provide 𝜃 , it does252

construct the noisy Bayesian network (B) from which the synthetic data is sampled. Recall that the 𝑓 ∗ (·) actually is a253

function that captures the probability distribution 𝑝 (𝜃 | 𝑌𝑖 = 𝑦𝑖 , 𝑆). Here, 𝑆 is knowledge about the synthesis process,254

which can be derived from PrivBayes through the noisy AP pairs, where for each attribute we have AP pairs (Π) such255

that (𝑋𝑖 ,Π𝑖 ) ∀ 𝑖 ∈ [1 . . . 𝑗]. The AP pairs directly describe the conditional distributions from which the synthetic dataset256

is sampled. Therefore, we extract these as outputs from Privbayes, as shown in Figure 4.257

Fig. 4. Figure showcasing the inputs (𝑦, 𝜀 , 𝑘) to PrivBayes, as well as the modification in output (indicated by the green arrow) from
PrivBayes such that it both outputs the synthetic dataset (𝑧) and causal relations in B.

Given that we have the real dataset and the causal relations used to sample the synthetic dataset, we can use a258

generalised linear model to estimate the parameters (𝜃 ), and thereby calculate 𝑝 (𝜃 | 𝑌𝑖 = 𝑦𝑖 , 𝐴, 𝑆). This can be done, as259

fitting a generalised linear model is a process such that for each attribute, we approximate 𝑓 ∗ (𝜃 | 𝑌𝑖 = 𝑦𝑖 , 𝐴, 𝑆) by fitting260

a generalised linear model on the real dataset using the noisy conditionals of the Bayesian network from which we261

sample synthetic data. Thereby, by fitting a generalised linear model on the real dataset with the causal relations from262

PrivBayes, we can sample parameter draws from 𝑓 ∗ (𝜃 | 𝑌𝑖 = 𝑦𝑖 , 𝐴, 𝑆).263

Figure 5 showcases how we measure ADR of synthetic data from PrivBayes. The causal relations from PrivBayes,264

as well as the real dataset, are used in fitting a generalised linear model. To measure the ADR, the real dataset 𝑦, B265

and the synthetic dataset 𝑧 from PrivBayes, as well as the parameters 𝜃 from the generalised linear model fitting, are266

used as input to the ADR measurement. The ADR is then calculated as elaborated in Section 4.1 such that we get the267

posterior probability 𝑝 (𝑌𝑖 = 𝑦∗ | 𝑧,𝐴, 𝑆). This probability is assessed through multiple outputs denoted as risks in Figure268

5. As can be seen from the Figure, the model does not discriminate whether the real dataset contains non-continuous269
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Fig. 5. Figure describing the process of measuring the ADR when incorporating the outputs from PrivBayes. Here, the modification
to measuring the ADR is shown by the green arrows.

data, as the data can still be assessed. The assessment is, however, suboptimal, as the generalised linear model assumes270

a normal prior distribution, which may result in the parameters 𝜃 not being able to capture the distribution of the271

non-continuous attribute. This bad estimation of 𝜃 would then lead to a bad estimation of the true value of a synthetic272

attribute when importance sampling is performed.273

A list of the different risk assessments can be found in Table 1. Using these, we can assert 𝑝 (𝑌𝑖 = 𝑦∗ | 𝑧,𝐴, 𝑆) from274

different angles. Here, FullProb lets us observe the posterior probability of each of our guesses, while TrueMarginals275

and TrueValProb directly gives us the posterior probability of 𝑝 (𝑌𝑖 = 𝑦∗ | 𝑧,𝐴, 𝑆). RankHighest and RankTrue provides a276

different angle to the assertion, as the guesses are ranked according to their posterior probability with the guess having277

the highest probability being rank 1. Using the rank, we can e.g. assert whether some records have a indication high278

ADR for a given attribute. Another way to assert how the probability of guessing correctly is through MarginalAbsDiffs279

which provides the distance from our posterior guess to the real value.280

Table 1. A Table of the outputs obtained from ADR as well as a description thereof.

Output Description
FullProb A list of posterior probabilities for each guess.
TrueMarginals The posterior probability of the correct guess.
TrueValProb The true value and the posterior probability of guessing that.
RankHighest The guess with the highest posterior probability (The highest ranking guess).
RankTrue The rank of the posterior probability of the guess being correct.
MarginalAbsDiffs The absolute difference between the guessed value and the true value.
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6 EXPERIMENTS281

In this Section, we present the experimental setupwhich includes a description of the datasets used for the experiments282

and details about how we use PrivBayes and measure ADR on the synthetic dataset. After this, we provide information283

on the individual experiments. For the following sections, we use the terms prior and posterior as shorthand for the284

prior probability of guessing correctly and the posterior probability of guessing correctly, respectively.285

6.1 Datasets286

For the experiments, we use three datasets. two datasets that contain continuous medical data about individuals and287

the dataset used in Hornby & Hu [11].288

Dataset #Tuples #Attributes Attribute types Continuous attributes
CEData [11] 2000 5 binary, categorical and continuous {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒}

OL1 1000 16 binary, categorical and continuous {𝐴𝑔𝑒, 𝐻𝑒𝑖𝑔ℎ𝑡,𝑊𝑒𝑖𝑔ℎ𝑡, 𝑁𝐶𝑃,𝐶𝐴𝐸𝐶,𝐶𝐻2𝑂, 𝐹𝐴𝐹 }
DPHP 2 1000 24 binary, categorical and continuous {𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝐿𝑒𝑣𝑒𝑙, 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒, 𝐵𝑙𝑜𝑜𝑑𝑂𝑥𝑦𝑔𝑒𝑛𝐿𝑒𝑣𝑒𝑙,

𝐵𝑜𝑑𝑦𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑊𝑒𝑖𝑔ℎ𝑡, 𝑀𝑅𝐼_𝐷𝑒𝑙𝑎𝑦,𝐴𝑔𝑒}
Table 2. The datasets used in the experiments after removing garbage attributes. Here, #Tuples and #Attributes are the number of
tuples and attributes used respectively, while Attribute types are the types of attributes in the dataset, and Continuous attributes
are the continuous attributes in the dataset.

Here, CEData is a collection of consumer expenditure data published by the U.S. Bureau of Labor Statistics. Here289

CEData has been cut from 5126 tuples to 2000 using random sampling due to computability of ADR. Furthermore, the290

attributes {𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑐𝑜𝑚𝑒𝐿𝑎𝑠𝑡𝑌𝑒𝑎𝑟,𝑇𝑜𝑡𝑎𝑙𝐸𝑥𝑝𝐿𝑎𝑠𝑡𝑄} have been removed, as {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒} are the 𝐿𝑜𝑔291

of these, meaning they would have a one-to-one correlation, which would induce problems when generating the noisy292

Bayesian network in PrivBayes as well as the measurement of ADR.293

The OL (Obesity Levels) dataset is an estimation of obesity levels for individuals from Mexico, Peru and Colombia,294

based on their eating habits and physical condition. The dataset has been cut from 2111 tuples to 1000 using random295

sampling due to computability of ADR. Here, the attribute {𝑁𝑂𝑏𝑒𝑦𝑒𝑠𝑑𝑎𝑑} has been removed, as this attribute is merely296

used as a target label for classification purposes.297

DPHP (Dementia Patient Health Prescriptions) is a dataset of risk factors, that may contribute to the onset and298

progression of dementia in patients. In this dataset, the attributes {𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛, 𝐷𝑜𝑠𝑎𝑔𝑒𝑖𝑛𝑚𝑔} have been removed, as299

these had missing attribute values, due to ADR’s inability to handle 𝑁𝑈𝐿𝐿 values.300

6.2 Experimental Setup301

For measuring ADR, we use PrivBayes to generate a synthetic variant of the real dataset (both continuous and non-302

continuous variables), as elaborated in Section 4.2. From this, we obtainB through the noisy causal relations of PrivBayes303

as well as 𝑧, where |𝑧 | = |𝑦 |.304

Here the default network degree of the noisy Bayesian network 𝑘 = 2, and the number of equally spaced values used305

for guessing the real value of an attribute in ADR is 𝐺 𝑗 = 41, and the prior 1/41 for all guesses.306

When the synthetic dataset and noisy causal relation have been obtained, we fit a linear model for each attribute307

(both continuous and non-continuous) using the noisy causal relations to estimate the posterior parameter draws 𝜃 .308

1https://www.kaggle.com/datasets/fatemehmehrparvar/obesity-levels
2https://www.kaggle.com/datasets/kaggler2412/dementia-patient-health-and-prescriptions-dataset/data
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These as well as 𝑧, 𝑦 and the noisy causal relations are then used to estimate the ADR through the outputs presented in309

Table 1 using the approach elaborated in Section 4.1.310

For each experiment, we have multiple experimental conditions, such as different 𝜀-value in Experiment 1. To account311

for potential variance that might occur, both for PrivBayes and the ADR estimation, each experimental condition is run312

three times. However, due to an oversight, this did not happen as elaborated in Section 9.313

6.3 Experiment 1: 𝜀 and ADR correlation314

In this experiment, we investigate the possible correlation, between 𝜀 and ADR. We hypothesise there is a positive315

correlation between the 𝜀-value and the risk for attribute disclosure, such that a low 𝜀-value will correspond to a low316

ADR. To test this, we generate three synthetic datasets for each 𝜀 ∈ {0, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 100,∞} using PrivBayes,317

where 0 represents our prior probability of guessing correctly, which is what we would expect our posterior probability318

being when adding infinite noise, and∞ represents PrivBayes where noise has been removed from the synthesis process.319

With these values, we measure attribute disclosure probabilities between these 𝜀-values, for all three datasets mentioned320

in 2. Using these measurements, we analyse the correlation between 𝜀 and ADR by averaging the posterior probability321

of guessing correct for each run and 𝜀. Here, the average ADR of continuous attributes for each 𝜀-value of a given real322

dataset is thereby:323

𝑎𝑣𝑔𝐴𝐷𝑅 =
1
𝑟

𝑅∑︁
𝑟=1

1
𝑛

𝑛∑︁
𝑖=1

𝑝 (𝑌𝑖 = 𝑦∗ | 𝑧,𝐴, 𝑆), (19)

where 𝑅 is the number of runs for each 𝜀-value and 𝑛 is the number of tuples in the real dataset (𝑦). From the outputs of324

ADR estimation in Table 1, the probability 𝑝 (𝑌𝑖 = 𝑦∗ | 𝑧,𝐴, 𝑆) is given in the 𝑇𝑟𝑢𝑒𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑠 variable. To analyse the325

correlation between 𝜀 and 𝑎𝑣𝑔𝐴𝐷𝑅, we will produce plots with 𝜀 as the x-axis and 𝑎𝑣𝑔𝐴𝐷𝑅 as the y-axis for each real326

dataset, and from this, the possible correlation can be analysed.327

Furthermore, another plot will be produced to estimate the correlation between ADR and 𝜀 from another point of328

view. Here, we analyse the density of the posterior probability of guessing correct from the output variable𝑇𝑟𝑢𝑒𝑉𝑎𝑙𝑃𝑟𝑜𝑏329

in Table 1 for some continuous attributes, and compare this to both the prior probability of guessing correct assuming a330

naive prior and the different 𝜀-values.331

6.4 Experiment 2: Extreme outlier injection332

Here, we investigate the effects of injecting outliers into the real dataset. More specifically by injecting we mean,333

replacing the first individual with an outlier. Here, we have two experimental conditions:334

The first experimental condition, is a fictive outlier injected into the real dataset, which has all attribute values being335

the max values of the real dataset, meaning that for the individual 𝑦𝐼𝑁 we have that:336

𝑦𝐼𝑁 =

{
max

𝑖∈[1...𝑛]
(𝑦𝑖 𝑗 ) ∀ 𝑗 ∈ [1 . . . ℎ]

}
(20)

We then produce a synthetic dataset for each 𝜀 ∈ {0, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 100,∞} using PrivBayes, where 0 represents337

our prior probability of guessing correctly, which is what we would expect our posterior probability being when adding338

infinite noise, and ∞ represents PrivBayes where noise has been removed from the synthesis process. Following that,339

we estimate the ADR of the synthetic datasets, and investigate whether this individual (𝑦𝐼𝑁 ) has a significant ADR.340

Second, we have an experimental condition where we inject a fictive outlier with attribute values outside the real341

dataset, where all continuous attribute values being the max values of the real dataset multiplied by 1.1, while also342
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introducing a new value for categorical attributes, where 𝑦𝑖 𝑗 = 𝑦𝑖 𝑗 + 1, meaning that for the continuous attributes of343

individual 𝑦𝑂𝑈𝑇 , we have that:344

𝑦𝑂𝑈𝑇 =

{
max

𝑖∈[1...𝑛]
(𝑦𝑖 𝑗 · 1.1) ∀ 𝑗 ∈ [1 . . . 𝑐𝑜𝑛𝑡]

}
∪

{
max

𝑙∈[1...𝑛]
(𝑦𝑖𝑙 + 1) ∀ 𝑙 ∈ [1 . . . 𝑐𝑎𝑡]

}
, (21)

where 𝑐𝑜𝑛𝑡 and 𝑐𝑎𝑡 are the number of continuous and categorical attributes, respectively. We then produce a synthetic345

dataset for each 𝜀 ∈ {0, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 100} using PrivBayes. Following that, we estimate the ADR of the346

synthetic datasets, and investigate whether this individual (𝑦𝐼𝑁 ) has a significant ADR.347

The significance of the ADR for fictive individuals𝑦𝐼𝑁 and𝑦𝑂𝑈𝑇 will be estimated through the output𝑇𝑟𝑢𝑒𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑠348

as well as the 𝑅𝑎𝑛𝑘𝑇𝑟𝑢𝑒 outputs in Table 1. This will be done by looking at these outputs for the individuals 𝑦𝐼𝑁 and349

𝑦𝑂𝑈𝑇 .350

We hypothesise that due to the properties of DP, the individual 𝑦𝐼𝑁 will have a low ADR for low 𝜀-values, while the351

ADR might increase as the 𝜀-value increases, as setting the 𝜀-value to high will mean that PrivBayes will no longer352

satisfy the properties of DP. In the case of individual 𝑦𝑂𝑈𝑇 , we hypothesise that it will mostly likely be the same case353

as for individual 𝑦𝐼𝑁 . There is however a possibility that there will be a higher ADR for an individual 𝑦𝑂𝑈𝑇 . This is354

due to the problems in the implementation of PrivBayes, mentioned by Stadler et al. [7]. Here, they discover that the355

implementation of PrivBayes is not 𝜀-DP due to them using information from the real dataset after introducing noise.356

This is also apparent from the description of how PrivBayes generates continuous synthetic data in Section 4.2. Here, it357

is apparent that when sampling the synthetic dataset, they sample from uniform distributions over bins, where the bins358

𝑏𝑖𝑛1 and 𝑏𝑖𝑛ℎ have access to information about the maximum and minimum attribute values. Therefore, by introducing359

the fictive outlier 𝑦𝑂𝑈𝑇 in the real dataset, we expand the sample space of the synthetic data sampling, which may lead360

to a higher ADR.361
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7 RESULTS362

In this section, we present our findings from running the experiments from Section 6. Here, we present an analysis363

of the datasets generated using PrivBayes, followed by an analysis of the results of these experiments. The results364

presented here will be further discussed in Section 8.365

7.1 Synthetic Datasets From PrivBayes366

PrivBayes, as discussed in Section 4.2, injects noise into both the construction and marginals of the Bayesian network,367

from which the synthetic data is sampled. Furthermore, they discretise continuous variables using bins, and sample368

from a uniform distribution for each bin.369
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Fig. 6. Figure showcasing the distribution of six continuous attributes for the real and synthetic datasets given different 𝜀 . Here, the
top two plots are for attributes {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 } from CEData, the next two are {𝐴𝑔𝑒,𝑊𝑒𝑖𝑔ℎ𝑡 } from DPHP and the
last two attributes are {𝐴𝑔𝑒,𝑊𝑒𝑖𝑔ℎ𝑡 } from the OL dataset.

The plots in Figure 6 show that, in general, PrivBayes is able to produce synthetic datasets where the distribution of370

attributes deviates more than the distribution from the real dataset when 𝜀 → 0+. When attributes have distributions371

similar to a normal distribution, we observe that the distribution becomes more uniform for 𝜀 → 0+, which is expected372

when noise is injected. For attributes with a more uniform distribution, we see that the distribution fluctuates more and373

therefore deviate from the distribution of the real dataset given that 𝜀 → 0+. Given these observations, we see that374

using PrivBayes to work as expected.375
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7.2 Experiment 1: 𝜀 and ADR correlation376

For Experiment 1, we hypothesised that there is a correlation between the average probability of guessing correctly377

(𝑎𝑣𝑔𝐴𝐷𝑅) and 𝜀.378
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Fig. 7. Average probability (avgProb = 𝑎𝑣𝑔𝐴𝐷𝑅) of guessing continuous variables correctly, for real and synthetic data using various
𝜀 for the CEData dataset. Here the first data point (𝜀 = 0) in the graph is our prior (1/41), and the last point is 𝜀 = ∞ meaning that,
there is no noise from PrivBayes injected via. 𝜀 .

However, Figure 7 shows a general flat trend in the 𝑎𝑣𝑔𝐴𝐷𝑅 as 𝜀 = 0+ → ∞ with some variance between data379

points. Therefore, it is not apparent whether there is a correlation between the average probability of guessing correctly380

(𝑎𝑣𝑔𝐴𝐷𝑅) and the 𝜀-value.381
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Fig. 8. Density of the probability of guessing continuous variables correctly for attributes 𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒 (left) and 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒
(right) for the CEData dataset, which have been synthesised using different 𝜀 . Here the red vertical line (𝜀 = 0) is our prior ( 1

41 ), and
𝜀 = 𝑖𝑛𝑓 (𝜀 = ∞) meaning that, there is no noise from PrivBayes injected via. 𝜀 .

Similarly, Figure 8 shows a lack of correlation with the density of the probability of guessing correctly for individual382

attributes in the CEData dataset. Here, we observe that using PrivBayes with no injected noise (𝜀 = ∞), the ADR383

performs worse than the prior ( 141 ). Comparing this performance to the results from Hornby & Hu, who obtained a384

greater probability of guessing correctly, using a synthetic dataset from their linear regression synthesiser. This gives385

us some hints as to the reasoning behind ADR’s performance, which will be discussed in Section 8.386
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Fig. 9. Average probability (avgProb = 𝑎𝑣𝑔𝐴𝐷𝑅) of guessing continuous variables correctly, for real and synthetic data using various
𝜀 for the DPHP dataset. Here the first data point (𝜀 = 0) in the graph is our prior (1/41), and the last point is 𝜀 = ∞ meaning that,
there is no noise from PrivBayes injected via. 𝜀 .

For the 𝑎𝑣𝑔𝐴𝐷𝑅 of the DPHP dataset, Figure 9 shows a generally flat trend with some variability between data points387

except for attributes 𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝐿𝑒𝑣𝑒𝑙 and 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒 where high seemingly random variance between points. Here, for388

the 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒 attribute, it is debatable whether the attribute is continuous, because there only exists 41 unique values389

in the real dataset, which affects the estimation of 𝑔(Θ), as elaborated in Section 8.390
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Fig. 10. Distribution of continuous attribute 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒 from the DPHP dataset and for each 𝜀 used produce the synthetic version
(left). As well as the density of the probability of correctly guessing a continuous attribute 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒 of the DPHP dataset, which
have been synthesised using different 𝜀 values (right). Here the red vertical line (𝜀 = 0) in the graph is our prior between the 41
guesses ( 1

41 ), and 𝜀 = 𝑖𝑛𝑓 (𝜀 = ∞) meaning that, there is no noise from PrivBayes injected via. 𝜀 .

From the density of the posterior for the attribute 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒 of the DPHP dataset, as shown in Figure 10, we see391

generally better performance, although there is no observable correlation between 𝜀 and 𝑎𝑣𝑔𝐴𝐷𝑅. Despite this, the392

densities of our posterior are still significantly higher for 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒 when 𝜀 ∈ {0.5, 1}. This may be due to run bias, as393

elaborated in Section 9, which means that this may be due to a good seed for this exact run.394
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Fig. 11. Average probability (avgProb = 𝑎𝑣𝑔𝐴𝐷𝑅) of guessing continuous variables correctly, for real and synthetic data using various
𝜀 for the OL dataset. Here the first data point (𝜀 = 0) in the graph is our prior (1/41), and the last point is 𝜀 = ∞ meaning that, there
is no noise from PrivBayes injected via. 𝜀 .

For the 𝑎𝑣𝑔𝐴𝐷𝑅 of the OL dataset, as shown in Figure 11 we again see a flat trend, with minor variations between395

data points, except for the attribute 𝐹𝐴𝐹 , where we see a high 𝑎𝑣𝑔𝐴𝐷𝑅 for all 𝜀-values. We suspect this may be due to396

the same reasons as for the other datasets.397
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Fig. 12. Distribution of continuous attribute 𝐹𝐴𝐹 for the real OL dataset and synthetic variations using various 𝜀 (left). As well as the
density of the probability of correctly guessing a continuous attribute 𝐹𝐴𝐹 of the OL dataset, which have been synthesised using
different 𝜀 values (right). Here the red vertical line (𝜀 = 0) in the graph is our prior between the 41 guesses ( 1

41 ), and 𝜀 = 𝑖𝑛𝑓 (𝜀 = ∞)
meaning that, there is no noise from PrivBayes injected via. 𝜀 .

Furthermore, for the 𝐹𝐴𝐹 attribute, we observe that the distribution is mostly concentrated on four exact values, i.e.398

0, 1, 2, 3, with some other in-between values, as shown in Figure 12. Thereby, we suspect that 𝐹𝐴𝐹 has the same issues399

as the 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒 attribute i DPHP.400

Summarizing Experiment 1, we see no correlation between the value of 𝜀 and the probability of guessing correctly,401

suggesting that our hypothesis should be rejected. A possible reason could be computational, as small datasets and402

parameter values lead to faster but less accurate results. We further discuss this in Section 9. We also observe that,403

for most attributes, the posterior does not differ in a statistically meaningful way compared to the prior. This minor404

difference in probabilities for the prior and posterior, correlate with Hornby & Hu [11], who also demonstrated results405

of similar magnitude.406
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7.3 Experiment 2: Extreme outlier injection407

For this experiment, we hypothesised that, like in Experiment 1, there is a correlation between epsilon and ADR for408

individuals, but that the ADR for outliers 𝑦𝐼𝑁 , 𝑦𝑂𝑈𝑇 would be significantly higher than the normal individual. Here,409

we suspect that the ADR for an individual 𝑦𝑂𝑈𝑇 might be higher than 𝑦𝐼𝑁 , due to how PrivBayes handles sampling, as410

elaborated in Section 6.4.411
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Fig. 13. average probability of guessing continuous variables correctly, for real and synthetic data using various 𝜀 for the CEData
dataset the individual 𝑦𝐼𝑁 (left) and 𝑦𝑂𝑈𝑇 (right). Here the first data point (𝜀 = 0) in the graph is our prior (1/41), and the last point
is 𝜀 = ∞ meaning that, there is no noise from PrivBayes injected via. the 𝜀-value.

From Figure 13, we can see that there is no significant difference in the 𝑎𝑣𝑔𝐴𝐷𝑅 compared to the 𝑎𝑣𝑔𝐴𝐷𝑅 for the CE-412

Data dataset without𝑦𝐼𝑁 and𝑦𝑂𝑈𝑇 .When observing the𝑇𝑟𝑢𝑒𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑠 for continuous attribute {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒},413

we see no increase in the probability of guessing correctly for individuals 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 when compared to the 𝑎𝑣𝑔𝐴𝐷𝑅414

of the CEData dataset without the individuals. Even though this is the case, when estimating the ADR, we did it for all415

attributes.416
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Fig. 14. The probability (avgProb = 𝑎𝑣𝑔𝐴𝐷𝑅) of guessing variables of the specific individuals 𝑦𝐼𝑁 (left) and 𝑦𝑂𝑈𝑇 (right) correctly
for synthetic datasets using different 𝜀 for the CEData dataset with the individuals included. Here the first data point (𝜀 = 0) in the
graph is our prior (1/41), and the last point is 𝜀 = ∞ meaning that, there is no noise from PrivBayes injected via. 𝜀 .

As can be seen in Figure 14, the probability of guessing the correct values for continuous attributes of individuals417

𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 is not influenced by the individuals being outliers or the 𝜀-value used for synthesis. It is, however, not418

the case for guessing correctly for categorical attributes. Here, we are able to correctly guess the attribute values of 𝑦𝐼𝑁419

and 𝑦𝑂𝑈𝑇 in almost all instances, where our average probability of guessing correctly for the attribute𝑈𝑟𝑏𝑎𝑛𝑅𝑢𝑟𝑎𝑙 is420

nearly 100% for 𝑦𝑂𝑈𝑇 .421
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Fig. 15. Average probability (avgProb = 𝑎𝑣𝑔𝐴𝐷𝑅) of guessing continuous variables correctly for the synthetic variations, using
different 𝜀 for the DPHP dataset with 𝑦𝐼𝑁 (left) and 𝑦𝑂𝑈𝑇 (right). Here the first data point (𝜀 = 0) in the graph is our prior (1/41),
and the last point is 𝜀 = ∞ meaning that, there is no noise from PrivBayes injected via. 𝜀 .

Figure 15 shows that there is a difference in the 𝑎𝑣𝑔𝐴𝐷𝑅 of the dataset with 𝑦𝑂𝑈𝑇 , while there is an insignificant422

difference in 𝑎𝑣𝑔𝐴𝐷𝑅 of the dataset with 𝑦𝐼𝑁 , when compared to the 𝑎𝑣𝑔𝐴𝐷𝑅 for the DPHP dataset without 𝑦𝐼𝑁 and423

𝑦𝑂𝑈𝑇 . From this, we observe a decrease in 𝑎𝑣𝑔𝐴𝐷𝑅 for the dataset with 𝑦𝑂𝑈𝑇 . This could be due to a bad seed, as424

elaborated previously. It could, however, also be due to the sampling used in PrivBayes, where we make the number of425

unique values for attributes larger by injecting the outlier 𝑦𝑂𝑈𝑇 .426
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Fig. 16. The probability (avgProb = 𝑎𝑣𝑔𝐴𝐷𝑅) of guessing variables of the specific individuals 𝑦𝐼𝑁 (left) and 𝑦𝑂𝑈𝑇 (right) correctly
for synthetic datasets that have been synthesised with different 𝜀 values of the DPHP dataset with the individuals in them. Here the
first data point (𝜀 = 0) in the graph is our prior (1/41), and the last point is 𝜀 = ∞ meaning that, there is no noise from PrivBayes
injected via. the 𝜀-value.

When looking at the 𝑇𝑟𝑢𝑒𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑠 for the continuous attributes, we do not observe any increase in the probability427

of guessing correctly for individuals 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 when compared to the 𝑎𝑣𝑔𝐴𝐷𝑅 of the DPHP dataset without the428

individuals. From Figure 16, we experience similar results as for the CEData dataset with outliers 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 in it, as429

we see a high probability of guessing the categorical outlier attribute values, although there is no significant influence430

when 𝜀 → 0+.431
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Fig. 17. Average probability (avgProb = 𝑎𝑣𝑔𝐴𝐷𝑅) of guessing continuous variables correctly for the synthetic variations, using
different 𝜀 for the OL dataset with 𝑦𝐼𝑁 (left) and 𝑦𝑂𝑈𝑇 (right). Here the first data point (𝜀 = 0) in the graph is our prior (1/41), and
the last point is 𝜀 = ∞ meaning that, there is no noise from PrivBayes injected via. 𝜀 .

As can be seen in Figure 17, there is no significant difference in the 𝑎𝑣𝑔𝐴𝐷𝑅 compared to the 𝑎𝑣𝑔𝐴𝐷𝑅 for the OL432

dataset without 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 . When inspecting the 𝑇𝑟𝑢𝑒𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑠 for continuous attributes, we also observe no433

increase in the probability of guessing correctly for individuals 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 when compared to the 𝑎𝑣𝑔𝐴𝐷𝑅 of the434

OL dataset without the individuals.435
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Fig. 18. The probability (avgProb = 𝑎𝑣𝑔𝐴𝐷𝑅) of guessing variables of the specific individuals 𝑦𝐼𝑁 (left) and 𝑦𝑂𝑈𝑇 (right) correctly
for synthetic datasets using 𝜀 values for the OL dataset with the individuals in them. Here the first data point (𝜀 = 0) in the graph is
our prior (1/41), and the last point is 𝜀 = ∞ meaning that, there is no noise from PrivBayes injected via. the 𝜀-value.

From Figure 18, we observe that the probability of guessing the correct values for continuous attributes of individuals436

𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 is not significantly influenced by the individuals being outliers or by the 𝜀 used. It is, however, apparent437

that this is not the case for guessing correctly for categorical attributes. Here, we are able to correctly guess the attribute438

values of 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 in almost all instances, where the average probability of guessing correctly for the categorical439

attributes {𝑆𝑀𝑂𝐾𝐸, 𝑆𝐶𝐶} is almost 100% for both 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 .440

Summarizing the results for Experiment 2, we see that injecting outliers𝑦𝐼𝑁 and𝑦𝑂𝑈𝑇 did not provide any significant441

increase in the 𝑎𝑣𝑔𝐴𝐷𝑅 nor our probability of guessing continuous attribute values of𝑦𝐼𝑁 and𝑦𝑂𝑈𝑇 . This was, however,442

not the case for categorical attributes for these individuals, as the 𝑎𝑣𝑔𝐴𝐷𝑅 of these attributes is able to accurately guess443

the correct attribute values for most attributes, while the 𝜀-value used for synthesis did not significantly decrease the444

𝑎𝑣𝑔𝐴𝐷𝑅 when 𝜀 → 0+ as with the results for Experiment 1.445
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8 DISCUSSION446

In terms of the estimation of ADR of synthetic datasets generated by PrivBayes, as elaborated in Section 4.2, PrivBayes447

samples a synthetic dataset from multiple bins of uniform distributions. This could have a great effect on the utility448

of the synthetic dataset, as the statistical properties of the distribution of attributes will lose nuance, when injecting449

unnecessary uniform noise through bin sampling. This means that when we estimate ADR, as elaborated in Section 4,450

it is more difficult to observe the influence of 𝜀 when using the synthetic datasets from PrivBayes. This is apparent451

when estimating 𝑔(Θ), as 𝑝 (𝑧 | 𝑌𝑖 = 𝑦∗𝑖 , 𝐴, 𝑆, 𝜃 ) influences our estimation, as shown in Equation 14. This is due to the452

possible problem that when sampling the density 𝑓 ∗ (𝜃 | 𝑌𝑖 = 𝑦∗𝑖 , 𝐴, 𝑆), the fact that we sample parameter draws using453

a generalised linear model fitted on the real data may mean that these parameter draws possibly do not contain the454

necessary information to estimate 𝑔(𝜃 ). Furthermore, Hornby & Hu produce their synthetic dataset directly from455

the model fitted on the real dataset. Meaning that they store information about the distribution of both the real and456

synthetic datasets in Θ. This will typically result in better estimates of the attributes in the real dataset, given the457

synthetic dataset through Θ. This we are unable to do, as we do not sample data directly from the fitted linear model,458

which could explain a lower posterior. Therefore, we encourage better estimation of Θ, where one could incorporate459

the noise injected into the SDG in the estimates. Here, one could look into what is done by Mehnaz et al. [13], where460

they try to estimate sensitive attributes by learning parameters of a model.461

For both Experiment 1 and Experiment 2, we chose 𝜀 ∈ {0, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 100,∞}, where 𝜀 = 0 was our462

prior, and 𝜀 = ∞ was when no noise was injected in PrivBayes. This aligns with how larger corporations seem to use463

𝜀-values within the same range for privacy preservation [20]. The scale of the data they protect, however, is numbers of464

magnitude larger than the datasets we tested. This means that two neighbouring datasets from our testing will vary465

significantly more in distribution than the datasets of the companies. Therefore, we suspect that even the lowest 𝜀-value466

used in the experiments (0.05) might not inject enough noise to preserve privacy, and that, smaller 𝜀-values are worth467

investigating.468

The results that we obtained from running these experiments presented in the Section 7, showed us that coupling469

PrivBayes to Hornby & Hu, produced results that show a mostly insignificant change between guessing randomly,470

and the guessing performed in ADR. This aligns with results that Hornby & Hu provide in their paper. Reflecting471

back on Hornby & Hu, it becomes apparent that their work had many issues when estimating ADR for continuous472

attributes. First, they demonstrate limited testing by only documenting one execution of their package for one dataset,473

and therefore does not demonstrate that their results are consistent and repeatable. Second, is their low experimental474

performance in which their prior and posterior only differ by a statistically insignificant amount, which our results also475

demonstrate in Section 7. Last is their incomplete documentation, where one example was that there was no single file476

for executing the code, and that we had to piece together code snippets, to be able to run their code.477

In Experiment 2, while we were unable to guess continuous attribute values, we observed that we were able to478

correctly guess most categorical attribute values of both 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 . This is in accordance with our hypothesis479

for these individual. This observation tells us that the problems observed by Statler et al. [7] of a DP violation in the480

synthetic data sampling of PrivBayes may be correct. Therefore, a better sampling for PrivBayes should be researched.481

Regarding the limitations mentioned in Section 9, the calculation of ADR is slow, which apprehended us from482

calculating ADR for larger datasets. The usage of larger datasets could help us provide estimates of the ADR in different483

scenarios, where the adversary would have more knowledge about 𝐴. Here, we could, e.g., investigate the influence of484

outlier injection on various dataset sizes. Furthermore, this also resulted in the inability to perform tests using a high485
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number of iteration of the ADR estimation, where we have used the same number as Hornby & Hu (40). Since we were486

unable to test this, we can not conclude with certainty that this will improve the results.487

9 LIMITATIONS488

In this section, we discuss the limitations and the impact they had on the results.489

Due to an oversight on our part, the seed for PrivBayes was a fixed value meaning that the variance for synthetic490

data generation was not captured, meaning that there is almost no variation in 𝑎𝑣𝑔𝐴𝐷𝑅 between the three runs. This491

could explain why there was no observed correlation between 𝜀 and the chance of guessing correctly.492

In Experiment 2, the outliers replaced an individual, instead of being appended, this makes the outlier datasets less493

comparable to the original real datasets, as you could be replacing an outlier with another outlier for one dataset, and494

an individual with the most common attribute values for another dataset. Were we to redo the experiment, the outlier495

would be appended to the dataset instead of replacing an individual.496

Another limitation is the computation speed of Hornby & Hu, as it lacks GPU and/or multithreading support. R as a497

language is generally considered slow, making it a poor choice for a Bayesian privacy metric, as functions typically498

used within Bayesian statistics like Monte Carlo estimation are computationally expensive, which limits our ability to499

test on larger datasets.500
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10 CONCLUSION501

In this paper, we presented a coupling between PrivBayes and Hornby & Hu. Hornby & Hu, seemed promising502

due to its ability to measure the risk of attribute disclosure, given the synthetic data, real data, auxiliary information503

an adversary might know and information about the synthetic data generation, with the latter two inputs being504

relatively novel in the domain of private synthetic data. However, despite this extra information, they only demonstrate505

minor changes to the chance of guessing continuous attribute values correctly in their testing. This is something we506

tested more extensively with PrivBayes as the synthesiser, and our results, like theirs, show little change in ADR507

for continuous attributes, which is unexpected considering the additional information available to the adversary.508

Furthermore, the results also demonstrated that the ADR for continuous attributes was not directly influenced by the509

amount of noise injected by PrivBayes. This could indicate that this additional information might be insignificant or510

distracting when using PrivBayes, making guessing correctly harder. Despite this, we believe that Bayesian modelling511

provides a promising estimation where we are able to adjust the knowledge available to the adversary, which can512

provide more accurate results in the vision of protecting individuals’ sensitive attributes.513

11 FUTURE WORKS514

In our estimation of ADR, we assume that the prior probability 𝑝 (𝑌1000 = 𝑦∗1000 | 𝐴, 𝑆) is uniform such that 𝑝 (𝑌1000 =515

𝑦∗1000 |𝐴, 𝑆) = 1/𝑛 for all𝑦 in the support. This, however, means that our (as well Hornby & Hu’s) prior lacks information516

about 𝐴 and 𝑆 . Such information might be useful in the estimation process, as it could make the attack stronger. The517

additional information could be modelled in various ways to simulate different scenarios. Therefore, an interesting area518

of exploration would be to estimate a prior that incorporates information about 𝐴 and 𝑆 into the estimation of ADR.519

Even though our estimation of ADR focused on continuous attributes, we see that ADR performed well on categorical520

attributes, where for some cases it got a nearly 100% accurate guess of the real attribute values of the fictional outliers521

(e.g., the 𝑈𝑟𝑏𝑎𝑛𝑅𝑢𝑟𝑎𝑙 attribute in CEData). Therefore, it seems that ADR is able to identify certain attribute values522

that should remain private under DP, We therefore encourage further research into the estimation of ADR for both523

continuous and categorical attributes that have been synthesised by a DP-SDG.524

In terms of the computation speed of estimating ADR, we suspect that there is ample room for optimization. Therefore,525

investigating Hornby & Hu’s speed, scalability and accuracy in the context of other attribute inference attacks, like526

those presented in related work, could provide insight into what knowledge is the most significant for an adversary527

when executing an attribute inference attack, which is useful for developing stronger privacy attacks.528

Furthermore, due to ADR’s general poor performance in speed as well as accuracy despite the access to auxiliary529

information and information about the synthesisation method, investigating these aspects in context of other attribute530

inference metrics, could give insight on how to strengthen attribute inference attacks and what information is the most531

significant.532

For DP, it remains unknown whether the increase in privacy preservation imposed by the properties of DP is533

cancelled out by the loss of utility these impose. There are no guidelines for the choice of the 𝜀-value, as estimating 𝜀534

imposes many difficult challenges. We however believe that Bayesian analysis poses a promising step in the direction535

of estimating the 𝜀-value, and we thereby encourage others to work towards this goal. Here, we also encourage an536

investigation of other DP-SDGs, as it was apparent that the synthetic data sampling violated DP by observing the min537

and max values, and that the utility of the synthetic data, was negatively affected by the sampling.538
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A APPENDIX577

In this Section we include figures that were not included in the report due to their lesser importance as the figures578

included.579

A.1 Full ADR Model580

Fig. 19. Figure showcasing the whole process of measuring the ADR as well as the modification done to the output from PrivBayes.

Here, we showcase the full model used to measure the ADR for synthetic dataset generated by PrivBayes. This Figure581

capture the same process as showcased when combining Figure 4 and Figure 5.582
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A.2 Density Plots for Continuous Attributes in the Different Datasets583

In this section, we include figures showcasing the distributions of continuous attributes of the three different datasets,584

as well as the distributions where we have injected outliers 𝑦𝐼𝑁 and 𝑦𝑂𝑈𝑇 .585

A.2.1 Density Plots for CEData.
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Fig. 20. Figure showcasing the distribution {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 } from CEData for the real and synthetic datasets given
different 𝜀 .
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Fig. 21. Figure showcasing the distribution {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 } from CEData for the real and synthetic datasets given
different 𝜀 , where we injected 𝑦𝐼𝑁 .
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Fig. 22. Figure showcasing the distribution {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 } from CEData for the real and synthetic datasets given
different 𝜀 , where we injected 𝑦𝑂𝑈𝑇 .
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A.2.2 Density Plots for DPHP.
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Fig. 23. Figure showcasing the distribution {𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝐿𝑒𝑣𝑒𝑙, 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒, 𝐵𝑙𝑜𝑜𝑑𝑂𝑥𝑦𝑔𝑒𝑛𝐿𝑒𝑣𝑒𝑙, 𝐵𝑜𝑑𝑦𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑊𝑒𝑖𝑔ℎ𝑡,𝑀𝑅𝐼_𝐷𝑒𝑙𝑎𝑦,𝐴𝑔𝑒 }
from DPHP for the real and synthetic datasets given different 𝜀 .
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Fig. 24. Figure showcasing the distribution {𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝐿𝑒𝑣𝑒𝑙, 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒, 𝐵𝑙𝑜𝑜𝑑𝑂𝑥𝑦𝑔𝑒𝑛𝐿𝑒𝑣𝑒𝑙, 𝐵𝑜𝑑𝑦𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑊𝑒𝑖𝑔ℎ𝑡,𝑀𝑅𝐼_𝐷𝑒𝑙𝑎𝑦,𝐴𝑔𝑒 }
from DPHP for the real and synthetic datasets given different 𝜀 , where we injected the individual 𝑦𝐼𝑁 .
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Fig. 25. Figure showcasing the distribution {𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝐿𝑒𝑣𝑒𝑙, 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒, 𝐵𝑙𝑜𝑜𝑑𝑂𝑥𝑦𝑔𝑒𝑛𝐿𝑒𝑣𝑒𝑙, 𝐵𝑜𝑑𝑦𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑊𝑒𝑖𝑔ℎ𝑡,𝑀𝑅𝐼_𝐷𝑒𝑙𝑎𝑦,𝐴𝑔𝑒 }
from DPHP for the real and synthetic datasets given different 𝜀 , where we injected the individual 𝑦𝑂𝑈𝑇 .
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A.2.3 Density Plots for OL.
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Fig. 26. Figure showcasing the distribution {𝐴𝑔𝑒,𝐶𝐴𝐸𝐶,𝐶𝐻2𝑂, 𝐹𝐴𝐹,𝐻𝑒𝑖𝑔ℎ𝑡, 𝑁𝐶𝑃,𝑊𝑒𝑖𝑔ℎ𝑡 } from OL for the real and synthetic
datasets given different 𝜀 .

588



34 Trudslev and Bachmann.

0.000

0.025

0.050

0.075

20 30 40 50 60
Age

D
en

si
ty

epsilon

0.05

0.1

0.2

0.5

1

10

100

5

inf

real

DensityPlot

0

1

2

3

0 1 2 3
CAEC

D
en

si
ty

epsilon

0.05

0.1

0.2

0.5

1

10

100

5

inf

real

DensityPlot

0.00

0.25

0.50

0.75

1.00

1.0 1.5 2.0 2.5 3.0
CH2O

D
en

si
ty

epsilon

0.05

0.1

0.2

0.5

1

10

100

5

inf

real

DensityPlot

0.0

0.2

0.4

0.6

0 1 2 3
FAF

D
en

si
ty

epsilon

0.05

0.1

0.2

0.5

1

10

100

5

inf

real

DensityPlot

0

1

2

3

4

1.5 1.6 1.7 1.8 1.9 2.0
Height

D
en

si
ty

epsilon

0.05

0.1

0.2

0.5

1

10

100

5

inf

real

DensityPlot

0

1

2

3

4

1 2 3 4
NCP

D
en

si
ty

epsilon

0.05

0.1

0.2

0.5

1

10

100

5

inf

real

DensityPlot

0.000

0.005

0.010

0.015

60 90 120 150
Weight

D
en

si
ty

epsilon

0.05

0.1

0.2

0.5

1

10

100

5

inf

real

DensityPlot

Fig. 27. Figure showcasing the distribution {𝐴𝑔𝑒,𝐶𝐴𝐸𝐶,𝐶𝐻2𝑂, 𝐹𝐴𝐹,𝐻𝑒𝑖𝑔ℎ𝑡, 𝑁𝐶𝑃,𝑊𝑒𝑖𝑔ℎ𝑡 } from OL for the real and synthetic
datasets given different 𝜀 , where we injected the individual 𝑦𝐼𝑁 .
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Fig. 28. Figure showcasing the distribution {𝐴𝑔𝑒,𝐶𝐴𝐸𝐶,𝐶𝐻2𝑂, 𝐹𝐴𝐹,𝐻𝑒𝑖𝑔ℎ𝑡, 𝑁𝐶𝑃,𝑊𝑒𝑖𝑔ℎ𝑡 } from OL for the real and synthetic
datasets given different 𝜀 , where we injected the individual 𝑦𝑂𝑈𝑇 .
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A.3 Density of Probability of Guessing Correctly Plots for Continuous Attributes in the Different Datasets589

In this section, we include figures showcasing the density of the probability of guessing attribute values correctly for590

continuous attributes of the three different datasets as well as the distributions where we have inject outliers 𝑦𝐼𝑁 and591

𝑦𝑂𝑈𝑇 .592

A.3.1 Probability of Guessing Correctly Plots for CEData.
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Fig. 29. Figure showcasing the density of our posterior probability of guessing correct for {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 } from
CEData for the real and synthetic datasets given different 𝜀 .
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Fig. 30. Figure showcasing the density of our posterior probability of guessing correct for {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 } from
CEData for the real and synthetic datasets given different 𝜀 , where we injected 𝑦𝐼𝑁 .
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Fig. 31. Figure showcasing the density of our posterior probability of guessing correct for {𝐿𝑜𝑔𝐼𝑛𝑐𝑜𝑚𝑒, 𝐿𝑜𝑔𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 } from
CEData for the real and synthetic datasets given different 𝜀 , where we injected 𝑦𝑂𝑈𝑇 .
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A.3.2 Probability of Guessing Correctly Plots for DPHP.
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Fig. 32. Figure showcasing the density of our posterior probability of guessing correct for
{𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝐿𝑒𝑣𝑒𝑙, 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒, 𝐵𝑙𝑜𝑜𝑑𝑂𝑥𝑦𝑔𝑒𝑛𝐿𝑒𝑣𝑒𝑙, 𝐵𝑜𝑑𝑦𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑊𝑒𝑖𝑔ℎ𝑡,𝑀𝑅𝐼_𝐷𝑒𝑙𝑎𝑦,𝐴𝑔𝑒 } from DPHP for the real
and synthetic datasets given different 𝜀 .

594



38 Trudslev and Bachmann.

0

20000

40000

60000

0.02425 0.02435 0.02445 0.02455 0.02465
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

2500

5000

7500

0.024 0.025 0.026 0.027
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0e+00

1e+05

2e+05

3e+05

0.02437 0.02438 0.02439 0.02440
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

30000

60000

90000

0.0243 0.0244 0.0245
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

300

600

900

1200

0.02 0.03 0.04 0.05
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

500000

1000000

1500000

0.024350 0.024375 0.024400 0.024425
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

20000

40000

60000

80000

0.0241 0.0242 0.0243 0.0244 0.0245
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

Fig. 33. Figure showcasing the density of our posterior probability of guessing correct for
{𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝐿𝑒𝑣𝑒𝑙, 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒, 𝐵𝑙𝑜𝑜𝑑𝑂𝑥𝑦𝑔𝑒𝑛𝐿𝑒𝑣𝑒𝑙, 𝐵𝑜𝑑𝑦𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑊𝑒𝑖𝑔ℎ𝑡,𝑀𝑅𝐼_𝐷𝑒𝑙𝑎𝑦,𝐴𝑔𝑒 } from DPHP for the real
and synthetic datasets given different 𝜀 , where we injected the individual 𝑦𝐼𝑁 .
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Fig. 34. Figure showcasing the density of our posterior probability of guessing correct for
{𝐴𝑙𝑐𝑜ℎ𝑜𝑙𝐿𝑒𝑣𝑒𝑙, 𝐻𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒, 𝐵𝑙𝑜𝑜𝑑𝑂𝑥𝑦𝑔𝑒𝑛𝐿𝑒𝑣𝑒𝑙, 𝐵𝑜𝑑𝑦𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑊𝑒𝑖𝑔ℎ𝑡,𝑀𝑅𝐼_𝐷𝑒𝑙𝑎𝑦,𝐴𝑔𝑒 } from DPHP for the real
and synthetic datasets given different 𝜀 , where we injected the individual 𝑦𝑂𝑈𝑇 .
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A.3.3 Probability of Guessing Correctly Plots for OL.
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Fig. 35. Figure showcasing the density of our posterior probability of guessing correct for
{𝐴𝑔𝑒,𝐶𝐴𝐸𝐶,𝐶𝐻2𝑂, 𝐹𝐴𝐹,𝐻𝑒𝑖𝑔ℎ𝑡, 𝑁𝐶𝑃,𝑊𝑒𝑖𝑔ℎ𝑡 } from OL for the real and synthetic datasets given different 𝜀 .
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Fig. 36. Figure showcasing the density of our posterior probability of guessing correct for
{𝐴𝑔𝑒,𝐶𝐴𝐸𝐶,𝐶𝐻2𝑂, 𝐹𝐴𝐹,𝐻𝑒𝑖𝑔ℎ𝑡, 𝑁𝐶𝑃,𝑊𝑒𝑖𝑔ℎ𝑡 } from OL for the real and synthetic datasets given different 𝜀 , where we
injected the individual 𝑦𝐼𝑁 .



42 Trudslev and Bachmann.

0e+00

1e+05

2e+05

3e+05

0.02420 0.02425 0.02430 0.02435
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0e+00

5e+04

1e+05

0.019 0.021 0.023
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

50000

100000

150000

0.02375 0.02400 0.02425
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

200

400

600

0.0 0.2 0.4 0.6
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

50000

100000

150000

0.0239 0.0241 0.0243
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

2500

5000

7500

10000

0.0175 0.0200 0.0225 0.0250
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

0

20000

40000

60000

0.02425 0.02430 0.02435 0.02440 0.02445
Probability of guessing correctly

D
en

si
ty

b

inf

0.05

0.1

0.2

0.5

1

5

10

100

Fig. 37. Figure showcasing the density of our posterior probability of guessing correct for
{𝐴𝑔𝑒,𝐶𝐴𝐸𝐶,𝐶𝐻2𝑂, 𝐹𝐴𝐹,𝐻𝑒𝑖𝑔ℎ𝑡, 𝑁𝐶𝑃,𝑊𝑒𝑖𝑔ℎ𝑡 } from OL for the real and synthetic datasets given different 𝜀 , where we
injected the individual 𝑦𝑂𝑈𝑇 .


