
Summary

Biological researchers collect clinical samples to study living organisms and quantify thousands
of proteins, the fundamental building blocks of cells, to understand biological processes. Various sta-
tistical approaches, including functional enrichment analysis, are employed to analyze these proteins
and identify pathways critical for discovering disease causes, new drugs, and specialized treatments.
Functional enrichment analysis assesses a set of proteins to determine if specific biological pathways
or processes are overrepresented, providing insights into the biological significance of the data.

However, biological research often faces the challenge of small sample sizes and numerous features
due to the high costs and time-consuming nature of sample collection. Traditional statistical meth-
ods are often inadequate in this context. To address this issue, leveraging large biological databases
is essential. Databases such as Reactome, UniProt, and KEGG are repositories of biological informa-
tion, including genetic sequences, protein interactions, pathways, and molecular structures, crucial
for understanding complex biological systems and processes.

This thesis investigates advanced methods for analyzing biological samples by utilizing Graph
Neural Networks (GNNs) combined with graph sampling techniques to manage the complexities of
large-scale graph data extracted from these databases. Specifically, a Graph AutoEncoder (GAE)
is employed for learning compact, informative node representations. The GAE consists of an en-
coder and a decoder: the encoder embeds nodes into a latent space, and the decoder reconstructs
the graph’s adjacency matrix from these embeddings. This approach ensures that the learned em-
beddings capture both topological and feature-based similarities. Additionally, a pipeline combining
GAE with graph sampling techniques, such as Random Walk with Restart, Forest Fire, and Cluster-
GAE, is proposed to manage large graph databases while preserving essential structural properties.
These methods help manage computational load and enhance the efficiency of subsequent analysis
stages.

The thesis further delves into various clustering algorithms, such as K-means and Hierarchical
Clustering, to group protein embeddings after training with the GAE. This clustering may reveal
new biological insights by identifying patterns and relationships among proteins. Additionally, the
k-Nearest Neighbors (k-NN) algorithm is proposed for analyzing these embeddings to predict classi-
fications based on the nearest neighbors in the feature space. However, it is noted that this method
requires a larger dataset for reliable evaluation to ensure accurate and meaningful predictions. The
analysis also incorporates functional enrichment analysis to identify overrepresented biological path-
ways or processes within the protein data, leveraging the context provided by biological databases
to enhance interpretability.

In conclusion, this thesis introduces a robust framework for analyzing biological data with limited
sample sizes. By integrating graph sampling and GNNs, we effectively leverage the vast information
available in biological knowledge graphs to enhance the analysis of protein data. The results demon-
strate the potential of this approach to uncover meaningful patterns, relationships, and biological
insights, paving the way for new discoveries and applications in biological research.
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Abstract—Biological research often faces challenges in ana-
lyzing protein data due to limited sample sizes, hindering the
use of traditional statistical methods. Integrating knowledge
from extensive graph databases like Reactome and UniProt can
offer valuable insights, but efficient techniques are required for
effective analysis. This thesis proposes Cluster-GAE, a novel
method that combines graph sampling techniques with Graph
Neural Networks (GNNs) to learn informative representations
from large-scale biological networks. By adapting the cluster-
GCN algorithm for graph representation learning, Cluster-GAE
addresses the computational challenges of analyzing large graphs
while preserving crucial structural information. Our evaluation,
which included a comparison with Random Walk, Forest Fire,
and No Sampling methods, demonstrates Cluster-GAE’s supe-
rior performance in preserving graph structure and generating
meaningful protein embeddings. Through t-SNE visualization
and functional enrichment analysis, we showcase the ability
of Cluster-GAE to identify distinct protein clusters and reveal
over-represented biological pathways, potentially leading to the
discovery of novel biological mechanisms. This thesis establishes
a robust framework for analyzing biological samples with limited
data, enhancing the interpretability of protein data analysis and
opening new possibilities for biological discovery.

Index Terms—Graph Neural Networks; Graph sampling;
Pathways; Graph Autoencoder.

I. INTRODUCTION

Biological researchers collect clinical samples to study
living organisms, quantifying the amounts of thousands of
proteins of interest. Proteins, serving as the building blocks of
cells, are fundamental to understanding biological processes.
Researchers utilize various statistical approaches, including
functional enrichment analysis, to analyze these proteins and
identify pathways essential for discovering disease causes,
new drugs, and specialized treatments. Functional enrichment
analysis involves assessing a set of proteins to determine if
specific biological pathways or processes are overrepresented,
thereby providing insights into the biological significance of
the data [1].

However, collecting samples can be expensive and time-
consuming, and trials often include only samples from a few
subjects, usually in the order of tens. The process of obtaining
clinical samples involves complex procedures such as patient
recruitment, ethical approvals, and meticulous sample han-
dling and processing, all of which contribute to the high costs
and lengthy durations. Consequently, researchers frequently
work with limited sample sizes. Having few data points with

numerous features (i.e., proteins) poses significant challenges
for traditional statistical analysis [1].

Our study involves an analysis of a dataset D = (X, y). In
this context, X denotes the proteins or variables derived from
the initial samples, and y corresponds to the group associated
with each variable. D comprises a notably small number of
samples. The scarcity of samples in D poses significant chal-
lenges for the deployment of conventional machine learning
algorithms, which typically require substantial data to learn
representative features effectively. Moreover, the collection of
biological samples is costly and time-consuming, with trials
often involving samples from a limited number of subjects.
This combination of few data points and numerous features
(proteins) presents substantial challenges for conventional
statistical analysis.

A possible strategy to address these challenges is centered
around subset selection, a method aimed at identifying the
most informative features within the dataset D [2]. Given the
small sample size, the direct application of a learning function
f , such as traditional machine learning methods like logistic
regression, to find the best features could lead to overfitting
or biased results.

Biological databases such as Reactome [3], KEGG [4],
UniProt [5], and other relevant resources are invaluable tools
for enhancing the analysis of biological data. Reactome is a
curated database of pathways and reactions in biology, which
provides detailed information about molecular processes [3].
KEGG (Kyoto Encyclopedia of Genes and Genomes) of-
fers a collection of manually curated databases dealing with
genomes, biological pathways, diseases, drugs, and chemical
substances [4]. UniProt (Universal Protein Resource) is a
comprehensive resource for protein sequence and annotation
data, providing extensive information on protein functions,
structures, and interactions [5]. Considering their wealth of
information, leveraging these biological databases offers an-
other approach to handle these challenges. These databases
provide valuable biological context that can be used to en-
hance the analysis of D, even with a limited number of
samples. However, the question remains: How can we use
such biological databases effectively to analyze D despite
having tens of samples in it? And how can we integrate this
external biological knowledge to improve the reliability and
interpretability of our findings?

The goal of this project is to support biological researchers
by enriching their analyses with contextual data about pro-
teins and pathways. Such elements are described in extensive
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biological graph databases. We therefore rely on graph rep-
resentations to capture the relevant structural and semantic
information from the graph, using Graph Neural Networks
(GNN). GNNs work by iteratively updating the features of
a node by incorporating information from its neighbouring
nodes, a process known as message passing. GNNs are highly
effective in finding embeddings in high-dimensional protein
data, providing a compact, lower-dimensional representation
that captures the essential features and relationships present
in the data [6]. This process is crucial for various bioinfor-
matics tasks, including protein function prediction, interaction
prediction, and structure analysis [7].

To cope with the large scale of these databases, we
study GNN architectures to handle larger graphs efficiently.
This is optionally combined with graph sampling methods,
which offer a pathway to manage and analyze large-scale
graphs without compromising the performance or scalability
of GNNs. This thesis investigates how to effectively uti-
lize GNNs in combination with graph sampling methods to
learn and represent relevant information stored in large graph
databases such as Reactome and UniProt. This approach helps
to analyze the sparse instances within biological samples and
identify differences between groups in the samples, despite the
challenges posed by the large scale and complexity of graph
databases.

To address these challenges, we conduct a comprehensive
review of current graph sampling techniques, meticulously
examining their strengths and weaknesses to identify the most
suitable method for our project. Our analysis focuses on
methods such as Cluster-GCN, Random Walk sampling (RW),
and Forest Fire sampling (FF). By integrating these sampling
methods with GNNs, we aim to efficiently manage large-
scale graph data, ultimately enhancing the representation and
understanding of complex biological networks.

The contributions of this thesis are manifold and revolve
around advancing the state-of-the-art in the analysis of biolog-
ical data using graph-based methods and GNNs. Specifically,
the contributions can be summarized as follows:

• We propose a method named Cluster-GAE, which com-
bines graph sampling techniques specifically designed for
large graphs with GNNs to effectively learn representa-
tions in expansive graph structures.

• We leverage biological knowledge graphs such as Reac-
tome and UniProt to analyze biological samples with a
limited number of instances using GNNs, enhancing the
understanding and interpretation of these datasets.

• We employ functional enrichment analysis technique
to evaluate our proposed method, assessing the biological
relevance of the identified groups and offering potential
new insights into protein functions and interactions.

In Section II, we review related works within the prob-
lem domain, providing context and highlighting previous
advancements. Section III delves into the preliminaries and
key concepts related to the problem, including Graph Neural
Networks, Graph Convolutional Networks, and Cluster-GCN.
In Section IV, we detail the proposed method to address the

challenges outlined in the introduction. Section V describes
the dataset utilized, outlines the various experiments con-
ducted, and presents the results obtained from these experi-
ments. Finally, in Section VI, we summarize our findings and
discuss potential directions for future research.

II. RELATED WORKS

A. Knowledge Graphs

Knowledge graphs represent a compelling advancement in
the management and utilization of information, acting as
structured semantic networks that connect entities (such as
individuals, places, and things) through edges that describe
their interrelations. They encapsulate complex relationships
and attributes within data in a way that is both computation-
ally efficient and semantically rich, making them particularly
valuable for enhancing search technologies, powering recom-
mendation systems, and enabling advanced artificial intelli-
gence applications. By integrating diverse data sources into a
coherent graph structure, knowledge graphs provide a unique
framework that supports not only information retrieval but
also data inference, allowing for more sophisticated analytics
and decision-making processes. Their application ranges from
enhancing semantic search capabilities in digital assistant
technologies to improving data interoperability across dis-
parate systems, highlighting their role as a pivotal technology
in the ongoing evolution of data handling and analysis in
academic, commercial, and technological domains [8].

One notable application of knowledge graphs is in the
medical domain. They are used to integrate and interpret
vast amounts of biomedical data, facilitating breakthroughs in
research and clinical decision-making. For instance, UniProt
uses knowledge graphs to link proteins with relevant biologi-
cal information, such as functions, interactions, and pathways.
Similarly, Reactome, a database of biological pathways, em-
ploys knowledge graphs to map complex biochemical reac-
tions and processes within human biology. By doing so, these
resources enhance the understanding of molecular biology and
support the discovery of new therapeutic targets [3], [5], [8].

B. Graph Sampling Methods

Graph sampling methods are crucial for analyzing large-
scale networks efficiently by selecting representative subsets
of nodes and edges. These techniques extract subgraphs that
maintain the structural properties of the original graph, en-
abling accurate estimations of characteristics such as degree
distribution, clustering coefficients, and path lengths. Common
approaches include random node sampling, where nodes are
chosen at random; edge sampling, which randomly selects
edges; and traversal-based sampling, like Breadth-First Search
(BFS) and Depth-First Search (DFS), which systematically ex-
plore nodes starting from a random node. More sophisticated
methods like snowball sampling involve selecting a node and
then progressively adding its neighbors [9], [10].

Random walk sampling, a sampling technique, starts from
a random node and moves to a randomly chosen neighbor,
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repeating this process to form a path. This method is particu-
larly useful for capturing the local structure and connectivity
patterns within the graph. Forest Fire sampling, on the other
hand, begins with a set of seed nodes and ”burns” through
the graph by selecting neighbors with a certain probability,
mimicking the spread of a fire. This method can efficiently
sample large graphs while preserving community structures
[9].

These sampling techniques are essential in applications
where direct analysis of the entire graph is computationally
prohibitive, providing a scalable solution for data scientists
working with massive network datasets.

C. Graph Embeddings

Graph embedding is a technique in graph analysis, enabling
the transformation of complex graph-structured data into
low-dimensional vector spaces while preserving the essential
structural properties of the original graph. This technique
has gained significant attention in recent years due to its
capability to facilitate various downstream tasks such as node
classification, link prediction, clustering, and visualization
[11].

Traditional methods for graph embedding, known as matrix
factorization techniques, include Laplacian Eigenmaps and
graph factorization. These methods focus on capturing the
spectral properties of graphs, aiming to preserve their global
structure. However, they often face challenges related to scal-
ability and computational efficiency, especially when applied
to large graphs [12].

Advancements in neural network architectures have sig-
nificantly revolutionized graph embedding techniques. Graph
Autoencoders (GAEs) represent one such advancement. GAEs
learn embeddings by reconstructing the input graph from
encoded representations, effectively capturing the underlying
structure in an unsupervised manner. Additionally, Variational
Graph Autoencoders (VGAEs) introduce a probabilistic layer,
modeling the latent space with a Gaussian distribution. This
enhancement improves the model’s ability to capture complex
graph structures [13].

In bioinformatics, graph embeddings have been crucial in
analyzing protein-protein interaction networks. They facili-
tate the discovery of new biological insights and functional
annotations, highlighting their importance in advancing our
understanding of complex biological processes [14].

III. BACKGROUND

A. Graph Neural Networks

Graph Neural Networks [6], [15] are a transformative
approach in machine learning that leverage the natural graph
structure within data to perform deep learning tasks directly
on graphs. These networks are designed to capture the depen-
dencies between nodes in a graph through message passing
or neighborhood aggregation techniques, where each node

updates its state by recursively aggregating and transforming
feature information from its neighbors. This process, iterated
over multiple layers, allows GNNs to learn complex node
representations that reflect both their local graph topology and
node-specific features.

Formally, consider a graph G = (V,E) where V is the
set of nodes and E is the set of edges. Let h

(k)
v represent

the feature vector of node v at the k-th layer. The general
operation of a GNN layer can be described as:

h(k+1)
v = σ

(
W(k) · AGGREGATE(k)

(
{
h(k)
u : u ∈ N (v) ∪ {v}

}))
, (1)

where W(k) is a learnable weight matrix, N (v) denotes the
set of neighbors of node v, AGGREGATE(k) is an aggregation
function (e.g., sum, mean, or max), and σ is an activation
function (e.g., ReLU).

The flexibility of GNNs has led to their application across
a wide range of fields, from predicting protein interactions
in computational biology to optimizing network traffic in
telecommunications. In social network analysis, for instance,
GNNs can identify influential community members or predict
the evolution of social ties. Their ability to directly incorporate
relational data makes them particularly effective for tasks that
traditional neural network architectures struggle with, such as
graph classification, node classification, and link prediction
[6], [15].

1) Graph Autoencoders: Graph Autoencoders [13] are a
class of neural networks specifically designed for unsuper-
vised learning on graph-structured data. They function by
compressing the graph into a low-dimensional embedding that
captures the essence of its topology and then reconstructing
the original graph from this compressed representation. This
process involves two primary components: an encoder and a
decoder.

The encoder, typically implemented using a GNN, maps
each node vi ∈ V (or sometimes entire subgraphs) to a vector
zi ∈ Rd in a latent space, where V denotes the set of nodes
and d is the dimensionality of the latent space. The embed-
ding zi effectively captures the node’s role and connectivity
within the overall graph structure. Mathematically, the encoder
function can be expressed as:

Z = fenc(X,A), (2)

where X ∈ RN×F is the feature matrix with N nodes and F
features per node, A ∈ RN×N is the adjacency matrix, and
Z ∈ RN×d is the matrix of latent representations.

The decoder then attempts to reconstruct the graph’s ad-
jacency matrix A or some function of the graph from these
embeddings. Typically, the decoder computes the probability
of an edge between pairs of nodes (vi, vj) by applying a
function gdec on their latent representations:

Âij = gdec(zi, zj). (3)
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Fig. 1: GNN Network Overview. This figure illustrates the message passing process in a two-layer GNN. On the left, the
original graph is shown with node 0 and its neighbors. On the right, the hierarchical aggregation process is depicted where

each node aggregates messages from its neighboring nodes. The aggregation function combines the feature information from
neighboring nodes recursively across multiple layers, allowing the central node (node 0) to update its state based on the

aggregated information. This process captures both the local graph topology and node-specific features, enabling the learning
of rich node representations.

In many cases, gdec is modeled as a simple inner product:

Â = σ(ZZ⊤), (4)

where σ denotes the sigmoid function applied element-wise.
The training objective for GAEs often involves minimizing

the reconstruction loss between the original adjacency matrix
A and the reconstructed adjacency matrix Â. This can be
formulated as a binary cross-entropy loss:

Lrec = −
1

N

∑
i,j

[
Aij log Âij + (1−Aij) log(1− Âij)

]
.

(5)
Overall, GAEs provide a powerful framework for learning

compact and informative representations of graph-structured
data, facilitating various downstream tasks such as node clas-
sification, link prediction, and graph clustering. Furthermore,
by learning efficient embeddings, GAEs can also facilitate
dimensionality reduction, anomaly detection, and even graph
generation tasks [13].

The effectiveness of GAEs hinges on the ability of the en-
coder to produce meaningful latent variables and the capacity
of the decoder to reconstruct the graph’s structural properties
accurately. Enhancements in GAE architectures often focus
on improving these components through more sophisticated
GNN models, incorporating attention mechanisms, or using
variational approaches that add a regularization term to the
encoder’s output, leading to more robust and generalizable
graph representations [13].

B. Graph Convolutional Networks (GCN)

GCNs were first introduced by Kipf and Welling in their
2016 paper, ”Semi-Supervised Classification with Graph Con-
volutional Networks” [16]. The core idea is to extend the

concept of convolutional neural networks (CNNs) to graph-
structured data. In a traditional CNN, the convolutional layer
processes data by scanning a small window over the input
data, computing a dot product with learnable weights, and
summing the results. Similarly, in a GCN, the graph convolu-
tional layer processes data by scanning over the neighboring
nodes of a given node, computing a dot product with learnable
weights, and summing the results. This process is repeated
for multiple layers to capture complex relationships between
nodes. At a high level, the key idea behind GCNs is to
iteratively update the node representations by aggregating
information from neighboring nodes. This is achieved through
a graph convolution operation, where each node aggregates
feature information from its neighbors weighted by the edge
connections. By stacking multiple graph convolutional layers,
GCNs can capture increasingly complex relationships and
higher-order structures in the graph.

C. Cluster-GCN

Cluster-GCN is a cutting-edge algorithm designed to ef-
ficiently train GCNs on large-scale graphs by leveraging
graph clustering structures. Traditional GCN training methods
face high computational costs and memory demands due to
the extensive neighborhood expansion required to compute
node embeddings. Cluster-GCN addresses these challenges by
partitioning the graph into densely connected subgraphs, or
clusters, using algorithms like METIS. During training, the
algorithm samples these clusters and restricts computations
to the subgraphs, significantly reducing memory usage and
computational overhead. This approach maintains high effi-
ciency and enables the training of much deeper GCNs, lead-
ing to improved prediction accuracy. Furthermore, Cluster-
GCN incorporates a stochastic multi-clustering framework
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that combines multiple clusters in each batch, reintroduc-
ing between-cluster links and enhancing convergence. By
focusing on dense subgraphs and stochastically reintroducing
between-cluster connections, Cluster-GCN effectively trains
deep GCNs on large-scale graphs with improved efficiency
and scalability [17].

D. Clustering

Clustering is an unsupervised learning technique in data
analysis and machine learning that involves grouping a set
of data points into clusters, such that points within the same
cluster exhibit higher similarity to each other than to those
in different clusters. This technique is invaluable for uncov-
ering underlying patterns and structures in datasets without
predefined labels. Common clustering algorithms include k-
means, hierarchical clustering, DBSCAN, and Gaussian Mix-
ture Models, each offering unique advantages depending on
the nature of the data and the specific application [10].

The applications of clustering are extensive and diverse,
spanning numerous fields such as marketing, image analysis,
bioinformatics, and anomaly detection. For instance, in cus-
tomer segmentation, clustering can help businesses identify
distinct customer groups based on purchasing behavior and
demographics, thereby enabling targeted marketing strategies.
In bioinformatics, clustering facilitates the classification of
genes and proteins, aiding in the discovery of gene expres-
sion patterns and evolutionary relationships. Evaluating the
effectiveness of clustering algorithms involves metrics such as
the Silhouette Score, Davies-Bouldin Index, Adjusted Rand
Index, and Normalized Mutual Information, which assess
the coherence and validity of the formed clusters. As data
continues to grow in complexity and volume, clustering re-
mains an essential tool for extracting meaningful insights and
supporting data-driven decisions [18], [19].

IV. METHOD

This section presents a comprehensive pipeline designed
for biological samples analysis, including some steps to fa-
cilitate effective graph representation learning using GAE. As
shown in Fig 2 and Fig 3, the pipeline incorporates various
components, including preprocessing, graph sampling, GAE
to address challenges associated with large-scale graph data.
The specific components and processes within this pipeline
will be explained below. Moreover, the proposed methodology
is summarized in Algorithm 1.

The proposed method uses graph data from the Reactome
database, processed through distinct pipelines for RW, FF, and
Cluster-GAE approaches. For RW and FF, the steps include
querying Reactome, sampling the graph, preprocessing by nor-
malizing and converting node features to tensor, and learning
the embedding using a GAE, followed by sample analysis.
The Cluster-GAE pipeline differs in preprocessing order and
sampling method. Detailed descriptions of these pipelines will
be discussed in the following subsections.

A. Graph Querying

In this step, we query the Reactome graph database using
the Cypher query language via Neo4j [20] to extract rele-
vant information. Specifically, we focus on identifying nodes
connected to the proteins listed in dataset D. By executing
these queries, we retrieve a subgraph including all relevant
nodes and their interactions, thereby ensuring that the analysis
consists of all related biological pathways and processes.

The extracted data is then integrated into a single compre-
hensive graph, resulting in a structure consisting of 50,164
nodes and 1,667,138 edges. This comprehensive graph cap-
tures the intricate network of interactions between the proteins
and their associated entities, providing a detailed representa-
tion of the biological pathways and processes.

This graph serves as a foundational dataset for subsequent
analysis and modeling. By enabling the exploration of con-
nectivity and relationships within the biological network, it
facilitates the comprehensive analysis of the samples discussed
in Section I. Leveraging Neo4j for querying ensures efficient
and precise data retrieval, taking full advantage of the robust
capabilities of the Reactome graph database. This approach
not only enhances the accuracy of the data but also optimizes
the process of integrating complex biological interactions into
our analysis framework.

The query 1 is written using Cypher, the query language for
Neo4j, and makes use of the apoc.path.subgraphAll procedure
to explore the graph. To be more specific, the query takes a
list of protein names, matches them against relevant nodes
in the Reactome database, extracts a subgraph of connected
nodes and relationships up to two levels deep, filters the nodes
to include only those relevant to the species Mus musculus,
and returns the filtered subgraph. This process ensures that
the analysis is focused on biologically pertinent information
for the specified proteins and species.

Listing 1: Neo4j query
1 UNWIND $proteinNames AS proteinName
2 MATCH (p)
3 WHERE ("EntityWithAccessionedSequence" IN

labels(p) OR "GenomeEncodedEntity" IN
labels(p)) AND ANY(name IN p.name WHERE
name = proteinName)

4 CALL apoc.path.subgraphAll(p, {
5 maxLevel: 2,
6 minLevel:1
7 })
8 YIELD nodes, relationships
9 WITH p,

10 [node in nodes WHERE "Mus musculus" IN
labels(node) OR node.speciesName = "
Mus musculus"] AS filteredNodes,

11 relationships
12 RETURN p AS protein, filteredNodes AS nodes,

relationships

B. Model Training

The model training process differs for the RW and FF
sampling methods compared to the Cluster-GAE method, as
illustrated in Figures 2 and 3 respectively.
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Fig. 3: Pipeline Architecture for Cluster-GAE

1) Forrest Fire and Random Walk Sampling:
a) Graph Sampling: The pipeline in Fig 2 after querying

the data from Reactome and transforming it to a graph
follows with the selection of a graph sampling method. Graph
sampling is an important step that aims to reduce the size
of the graph, ideally reducing computation load while retain-
ing the essential structural properties of the original graph.
Two sampling techniques are considered: Random Walk with
Restart [9], Forest Fire [9]. The RW with Restart Sampler
simulates random walks on the graph, providing a localized
view of the graph’s structure. The FF Sampler, on the other
hand, uses a probabilistic approach to create a smaller graph
that mimics the connectivity of the larger graph.

b) Preprocessing: The pipeline includes a feature pre-
processing stage. This step involves converting node labels
to integers, handling non-numeric features, and normalizing
feature vectors. The conversion of node labels to integers
standardizes node identification across different graph pro-

cessing steps. For non-numeric features, a simple placeholder
value is assigned, ensuring that all features are represented
in a uniform numeric format. Feature normalization is then
performed to scale the feature vectors, enhancing the stability
and performance of learning algorithms.

c) Graph Autoencoder: The core of the pipeline is the
GAE model, which is utilized for learning low-dimensional,
yet informative representations of the graph’s nodes. The GAE
model comprises an encoder and a decoder, with the encoder
being a GCN that embeds nodes into a latent space. The
decoder then attempts to reconstruct the graph’s adjacency
matrix from these embeddings. This process is facilitated by a
reconstruction loss function, guiding the model to capture the
essential topological and feature-based similarities between
nodes [13].

2) Cluster-GAE: In contrast, the Cluster-GAE method,
depicted in Figure 3, follows a different training approach.
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a) Preprocessing: Similar to the RW and FF pipelines,
this stage involves normalizing node features and converting
them to tensors. These tensors, along with the adjacency
matrix, are used to create a PyTorch geometric data object,
facilitating further graph processing.

b) Cluster-GAE Training: The Cluster-GCN algorithm
enhances computational efficiency by dividing the graph into
multiple clusters, enabling parallel processing of these com-
ponents. In our scenario, it is crucial to learn a compact
representation of the graph data (input). Therefore, instead
of using a traditional GCN within the Cluster-GCN method,
we employ a GAE model. While GCNs are typically used
for semi-supervised learning, GAEs are specifically designed
for unsupervised learning, making them more suitable for
capturing and learning latent representations of graph data.
This modification allows us to generate meaningful embed-
dings and understand the underlying structure of the graph. As
mentioned in Subsection III-C, this method divides the data
into partitions and then samples from these partitions during
the training phase. Furthermore, the GAE in the Cluster-GAE
model follows the same structure as the standard GAE with
an encoder and decoder.

C. Sample Analysis

Following the learning embedding of graph nodes using
the GAE as described in Section IV-B1c, the next phase
in our pipeline involves a thorough sample analysis through
various techniques. One such technique is clustering, which
helps identify inherent groupings within the data that are not
immediately apparent. This is particularly crucial for complex
biological datasets, where the discovery of clusters can lead to
new hypotheses about biological functions or states, as they
may represent underlying structures or functional groupings
not previously considered.

The embeddings produced by the GAE represent nodes in a
reduced-dimensional space. To exploit these embeddings for
sample analysis, we extract the desired protein embeddings
from the whole embeddings and apply clustering algorithms
such as K-means and Hierarchical Clustering to partition
the nodes into distinct groups. Each cluster represents a
group of nodes that share significant similarities, potentially
corresponding to specific biological states or functionalities.
For instance, nodes that cluster together and correspond to
similar or functionally related biological samples may reveal
new patterns and groupings within the embeddings.

In addition to clustering, another possible approach to
analyze the embeddings is to employ the k-Nearest Neigh-
bors (k-NN) algorithm as a recommender system to analyze
the embeddings [21]. The k-NN algorithm will establish a
distance function f(xk, xn) to predict the classification of
data points by identifying their nearest neighbors in the
feature space. This approach includes selecting a subset of
features determined to be the most informative through initial
exploratory model fitting using logistic regression known as
subset selection. Once these optimal features are identified,
the k-NN algorithm helps ascertain the closest neighbors to

these features, ensuring that the model finds similar proteins
in the embedding space to a given protein. However, dataset
D contains a very small number of instances, which leads to
overfitting. To mitigate this issue, we need a larger dataset of
biological samples. Unfortunately, we do not have access to
such data at this time. Consequently, it was not possible to
evaluate this analysis.

The final analysis uses a statistical approach on the clustered
embeddings known as functional enrichment analysis. Statis-
tical methods for enrichment analysis are crucial tools for
extracting biological information from biological experiments.
Although traditionally used for analyzing gene and protein
lists, the advent of high-throughput technologies for regulatory
elements necessitates dedicated statistical and bioinformat-
ics tools. Functional enrichment analysis, also referred to
as gene set analysis (GSA), is widely utilized to interpret
high-throughput experimental results. GSA aims to identify
biological annotations that are over-represented in a list of
genes relative to a reference background. These annotations
help interpret the molecular mechanisms and biological pro-
cesses associated with the experimental condition under study.
g:Profiler is a powerful tool used to analyze overrepresented
pathways and biological processes within clusters [22], [23].

Overall, the sample analysis stage is crucial for trans-
lating the computational embeddings from the GAE into
actionable biological insights, thereby allowing researchers to
draw meaningful conclusions about the underlying biological
processes represented in the graph data.

V. EVALUATION

This section presents the evaluation of the proposed method
through a series of experiments. The evaluation process in-
volves detailed descriptions of the experimental setup, the
dataset used, the metrics for assessment, the results obtained,
and a comprehensive discussion of these results.

A. Data

For the evaluation, two types of datasets are utilized. The
primary dataset comprises biological samples characterized
by y features or proteins, with a small number of instances.
Additionally, the second dataset consists of queried data from
the Reactome Graph Database. This data is transformed into
a graph structure, including entities connected to the proteins
and the relationships between these entities. Table I presents
relevant information about the graph data.

TABLE I: Graph Data Summary

Graph Property Value
Number of Nodes 50,164
Number of Edges 1,667,138
Average Degree 66.468
Graph Density 0.001
Is the Graph Directed? No
Number of Desired Proteins in the Samples
that Exist in the Graph 1,549
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Algorithm 1 Proposed Method for Analyzing Biological Samples

Require: Dataset D(x, y) containing protein names
1: procedure GRAPH ANALYSIS PIPELINE(D(x, y))
2: Np ← EXTRACTPROTEINNAMES(D) ▷ Extract protein names from the dataset D
3: GR ← QUERYREACTOME(Np) ▷ Query Reactome to get relevant nodes and edges
4: sampling method← SELECTSAMPLINGMETHOD ▷ Select graph sampling method
5: if sampling method == ”Random Walk” or ”Forest Fire” then
6: Gs ← GRAPHSAMPLING(GR, sampling method) ▷ Sample a subgraph using the selected method
7: Gp ← PREPROCESS(Gs) ▷ Preprocess the subgraph
8: E ← GRAPHAUTOENCODER(Gp) ▷ Learn node embeddings using GAE
9: else if sampling method == ”Cluster-GCN” then

10: Gp ← PREPROCESS(GR) ▷ Preprocess the original graph
11: E ← CLUSTERGAE(Gp) ▷ Learn node embeddings using Cluster-GAE
12: end if
13: Ep ← EXTRACTPROTEINEMBEDDINGS(E,Np) ▷ Extract the protein embeddings
14: C ← CLUSTER(Ep) ▷ Cluster the protein embeddings
15: F ← FUNCTIONALENRICHMENTANALYSIS(C) ▷ Perform functional enrichment analysis
16: return F ▷ Return the results of functional enrichment analysis
17: end procedure

B. Evaluation Metrics

The evaluation of the sample analysis consists of three key
metrics:

• Mutual Information Score: This metric measures the
dependency between two variables, providing insight into
the comparison of two clustering algorithms. It is used to
compare the performance of k-means and agglomerative
clustering in clustering the protein embeddings across
different sampling methods. A higher mutual information
score indicates that both clustering methods agree on the
data structure, validating the reliability of the clusters
identified. This agreement can enhance confidence in the
biological insights derived from the clusters. Further-
more, it can help to evaluate which clustering method
and sampling approach best capture the data structure
[24], [25].

• Clustering metrics: These metrics evaluate the quality
of clustering results by assessing how well the identified
clusters adhere to desirable properties like compactness,
separation, and connectedness. Some commonly used
clustering metrics include:

– Silhouette Score: Measures how similar an object
is to its own cluster compared to other clusters.
A higher silhouette score indicates better-defined
clusters [26].

– Davies-Bouldin Index: Measures the average simi-
larity between each cluster and its most similar clus-
ter. A lower Davies-Bouldin index indicates better
cluster separation [27].

– Calinski-Harabasz Index: Measures the ratio of the
between-cluster dispersion to the within-cluster dis-
persion. A higher Calinski-Harabasz index indicates
denser and more well-separated clusters [28].

• Earth Mover’s Distance (EMD): EMD evaluates the
dissimilarity between two probability distributions, offer-
ing a quantitative assessment of the differences in protein

embedding matrices across different sampling methods
[29], [30].

• Frobenius Norm: The Frobenius norm can be used to
measure the difference between two matrices. In this
context, it evaluates the differences between the similarity
matrices of protein embeddings obtained from various
sampling methods. The similarity matrix represents how
similar each pair of protein embeddings is to each other.
By calculating the Frobenius norm, we can quantify
the overall deviation between the structures captured by
different sampling techniques

C. Evaluation Setup

The experiments aim to execute the proposed model,
introduced in Section IV, utilizing two distinct clustering
algorithms: K-Means and Hierarchical Clustering. These al-
gorithms have been selected to determine which one performs
better in identifying distinct protein groups. Both algorithms
require a parameter K, representing the number of clusters
to be identified. In our experiments, K will be set to 2 and
3 to explore the performance under different cluster counts.
Choosing a higher number of clusters could complicate the
interpretation of cluster representations; therefore, we are ini-
tially interested in detecting patterns that can identify specific
subgroups. Each clustering algorithm will be applied to the
latent space (embeddings) generated by the proposed models.

For these experiments, it is unnecessary to split the dataset
into training, validation, and test sets since the focus is on
representation learning. Consequently, the entire dataset will
be used without splitting. The summary of the graph data is
provided in Table I.

We compare four sampling methods: RW, FF, Cluster-GAE,
and No Sampling (baseline). Initially, we train models using
the algorithm described in Section 1 with a dimensionality
of 64 and 128. For the evaluation, we compute the cosine
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similarity matrix for each embedding and calculate the Earth
Mover’s Distance (EMD) and the Frobenius norm of the
difference between each pair of sampling methods. After
clustering using K-Means and Agglomerative Clustering al-
gorithms, we also compute the Mutual Information Score to
compare the consistency of clustering results across different
sampling methods. Additionally, we assess the clustering
quality using metrics such as the Silhouette Score, Davies-
Bouldin Index, and Calinski-Harabasz Score. These metrics
provide a comprehensive evaluation of the effectiveness of
each sampling method in preserving the graph structure and
ensuring high-quality clustering results.

For qualitative evaluations, we visualize the latent space
created by these models using t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [?], a statistical method for dimen-
sionality reduction. t-SNE will be employed when the latent
space consists of more than two dimensions. By visualizing
the latent space, we can better understand how the data is com-
pressed and why the clustering results are either satisfactory
or lacking.

The final evaluation involves functional enrichment analysis
using the g:Profiler tool [23]. Once we have the cluster labels
from K-Means and Hierarchical Clustering, we use g:Profiler
to identify over-represented pathways in each cluster. We will
then visualize plots and heatmaps to display the differences
in pathways across clusters. functional enrichment analysis
using g:Profiler involves several key steps. First, an input
list of proteins of interest is provided, typically derived from
the sample data. g:Profiler then maps these genes or pro-
teins to standardized gene identifiers using data from various
biological databases. Next, statistical enrichment analysis is
performed, utilizing this test to identify biological terms, such
as pathways, that are significantly over-represented in the
input list compared to a background set. The over-represented
pathways are then visualized using bar plots and heatmaps.

This comprehensive evaluation setup will help us deter-
mine the effectiveness of the proposed model and clustering
algorithms in identifying meaningful patterns and subgroups
within the protein data.

TABLE II: Comparison of Earth Mover’s Distance (EMD)
of Similarity Matrices between Different Sampling Methods

for Dimension d = 64

Sampling
Method

RW FF Cluster-
GAE

No
Sampling

RW — 0.229 0.431 0.481
FF 0.229 — 0.221 0.277
Cluster-GAE 0.431 0.221 — 0.081
No Sampling 0.481 0.277 0.081 —

Table II presents the Earth Mover’s Distance (EMD) values
comparing the cosine similarity matrices generated by dif-
ferent graph sampling methods: RW, FF, Cluster-GAE, and
No Sampling. Lower values of EMD indicating more similar
distributions. The EMD values in the table provide insights
into how closely the similarity matrices from each sampling
method resemble each other.

RW Sampling: The EMD values indicate that the similarity
matrices generated by RW differ significantly from those
produced by other methods. These relatively high EMD values
suggest that RW sampling, which focuses on local structures,
captures a different aspect of the graph compared to the more
global perspectives provided by the other methods and may
lose some of the information in the graph.

FF Sampling: The FF sampling method shows the low-
est EMD with Cluster-GAE (0.221) among all comparisons,
suggesting that FF and Cluster-GAE produce more similar
similarity matrices compared with RW.

Cluster-GAE: Cluster-GAE demonstrates the lowest EMD
value when compared to No Sampling, with an EMD of
0.081. This indicates that Cluster-GAE is highly effective in
preserving the overall graph structure. Additionally, the EMD
of 0.221 when compared to FF further supports the notion that
Cluster-GAE maintains a more comprehensive view of the
graph. This is because Cluster-GAE samples from different
partitions of the whole graph during the training of the GAE,
thereby capturing a broader representation of the graph. In
contrast, the EMD value of 0.431 when compared to RW
suggests that RW captures a distinctly different structure, high-
lighting the unique aspects of the graph that RW emphasizes.

No Sampling: Serving as the baseline, the No Sampling
method allows us to measure how much the other methods
deviate from the original graph structure. Cluster-GAE shows
the smallest divergence with an EMD of 0.081, followed by
FF with 0.277. RW exhibits the highest divergence with an
EMD of 0.481, highlighting its focus on local structures.

Moreover, the values in the table III represent the Frobenius
norms of the differences between similarity matrices of protein
embeddings generated by different sampling methods. These
values provide a measure of how different the similarity matri-
ces are from each other. A lower Frobenius norm indicates that
the similarity matrices (and hence the protein embeddings) are
more similar, while a higher Frobenius norm indicates greater
dissimilarity.

In this case, the pair FF vs. RW with a Frobenius norm of
543.328 indicates that these two methods produce the most
similar similarity matrices. On the other hand, the highest
Frobenius norm values indicate the most dissimilar similarity
matrices. RW vs. No Sampling and RW vs. Cluster-GAE
show the highest values, 926.857 and 921.285 respectively,
indicating that these two methods produce the most dissimilar
similarity matrices.

In summary, according to the table II and table III we
conclude that Cluster-GAE is the most effective sampling
method. It achieved the lowest Earth Mover’s Distance (EMD)
and Frobenius Norm compared to no sampling, indicating that
it preserves the graph structure very well. Additionally, FF
and RW sampling methods were found to be less effective
for learning embeddings. While training GAE without any
sampling method is infeasible for large graphs due to memory
constraints, Cluster-GAE provides a practical and efficient
solution, maintaining the integrity of the graph’s structure
while enabling scalable training.
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TABLE III: Comparison of Frobenius Norm of Differences
Between Similarity Matrices of Protein Embeddings Across

Different Sampling Methods for Dimension d = 64

Model 1 Model 2 Frobenius Norm

FF RW 543.328
FF No Sampling 754.069
FF Cluster-GAE 581.145
RW No Sampling 926.857
RW Cluster-GAE 921.285
No Sampling Cluster-GAE 730.927

According to Table V, IV, Cluster-GAE consistently per-
forms the best across both embedding dimensions (64 and
128) in terms of Silhouette and Calinski-Harabasz scores for
both K = 2 and K = 3. Additionally, it achieves the lowest
Davies-Bouldin score at an embedding dimension of 128.
Comparing no sampling with other sampling methods clearly
demonstrates that sampling methods significantly enhance
clustering quality. Furthermore, higher embedding dimensions
(128) yield similar clustering metrics to those observed with
an embedding dimension of 64, indicating that increased
dimensionality does not degrade performance and does not
necessarily lead to better clustering performance.

Table VI indicates that both the ”Cluster-GAE” and ”No
Sampling” methods exhibit higher and relatively stable mutual
information scores across different values of K, suggesting
these methods produce more consistent and reliable clustering
results. A higher mutual information score between the K-
Means and Agglomerative clustering results indicates a greater
degree of similarity between the clusters produced by these
two different algorithms, reflecting the robustness of the
clusters.

The RW method shows a significant increase in mutual
information from K = 2 to K = 3, suggesting improved
performance with a greater number of clusters. Similarly,
the FF method also shows improvement from K = 2 to
K = 3, though not as pronounced as the improvement seen
with RW. Despite their slightly lower scores, the RW and FF
methods still demonstrate reasonable consistency in clustering
results between the two algorithms for K = 3. This indicates
that while they may not be as robust as ”Cluster-GAE” and
”No Sampling,” they still maintain a reasonable degree of
reliability in producing consistent clustering outcomes with
more clusters.

D. Qualitative Analysis

To complement the quantitative metrics, qualitative analyses
were also conducted, including:

• t-SNE Visualization: The t-distributed Stochastic Neigh-
bor Embedding (t-SNE) technique [31] was used to visu-
alize the high-dimensional protein embeddings in a two-
dimensional space. This visualization aids in identifying
patterns and clusters within the protein data, offering
a more intuitive understanding of the relationships and
structures present in the dataset.

• Functional Enrichment Analysis: This analysis was
applied to the clustered data to identify overrepresented
biological functions and pathways within each cluster.
By understanding the functional roles of the proteins in
each cluster, we can gain insights into the underlying bio-
logical mechanisms and their relevance to the conditions
studied.

The t-SNE visualization shown in Figure 4 illustrates the
clustering of protein embeddings derived using the Cluster-
GAE sampling method, followed by the K-Means cluster-
ing algorithm with K = 3. This plot reduces the high-
dimensional protein embedding space into two dimensions,
enabling a visual assessment of clustering performance and
cluster separation. The clusters are well-separated, indicating
that the protein embeddings learned by the Cluster-GAE
method effectively capture distinct groups within the data.
However, Some points on the borders might appear closer
to other clusters, which can indicate overlapping features
between clusters.

The clear separation of clusters in the t-SNE plot demon-
strates that the Cluster-GAE method successfully learns mean-
ingful protein embeddings, which can be grouped into distinct
clusters. This finding shows the robustness of the Cluster-GAE
method in capturing the underlying structure of the protein
data, providing a reliable foundation for further biological
analysis and interpretation. To be more specific, the clusters
may represent groups of proteins with similar biological
functions or pathways.

This analysis can provide new insights into protein func-
tions and interactions, potentially uncovering novel biological
pathways and mechanisms. Additionally, the distinct cluster-
ing of proteins can assist in identifying potential biomarkers
for diseases, thereby guiding the development of targeted
therapies.

−60 −40 −20 0 20 40
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Fig. 4: t-SNE visualization of protein embeddings clustered
using K-means (K = 3) with Cluster-GAE.

The result of functional enrichment analysis is shown in
Figures 5 and 6. The bar plot in Figure 5 shows the top
enriched pathways for each cluster derived from the K-Means
clustering method. The x-axis represents the -log10 p-value,
which indicates the significance of enrichment, with higher
values suggesting more significant enrichment. The y-axis
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0 1 2
Cluster

Metabolic pathways

carbohydrate derivative metabolic process

catalytic activity

cytoplasm

cytosol

intracellular anatomical structure

intracellular organelle

organelle

protein-containing complex

small molecule metabolic process

Pa
th

wa
y

-0 -0 13

-0 -0 11

-0 61 28

1.2e+02 86 20

-0 50 -0

92 62 -0

73 -0 -0

71 -0 -0

1.2e+02 -0 -0

-0 49 25
0

20

40

60

80

100

120

-lo
g1

0 
p-

va
lu

e

Fig. 6: Top 10 over-represented pathways in the clusters after doing the functional enrichment analysis
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TABLE IV: Comparison of Clustering Metrics for Different Embedding Dimensions and Sampling Methods for K = 2 using
K-means. Metrics include Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index, evaluated for embedding

dimensions of 64 and 128.

Sampling Method Embedding Dimension = 64 Embedding Dimension = 128

Silhouette Calinski-Harabasz Davies-Bouldin Silhouette Calinski-Harabasz Davies-Bouldin

RW 0.672 791.043 0.866 0.417 1130.384 1.083
FF 0.432 1068.283 0.972 0.460 1261.628 0.969
Cluster-GAE 0.551 2138.868 0.736 0.534 2026.599 0.775
No Sampling 0.369 784.169 1.281 0.226 394.942 1.922

TABLE V: Comparison of Clustering Metrics for Different Embedding Dimensions and Sampling Methods for K = 3 using
K-means. Metrics include Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index, evaluated for embedding

dimensions of 64 and 128.

Sampling Method Embedding Dimension = 64 Embedding Dimension = 128

Silhouette Calinski-Harabasz Davies-Bouldin Silhouette Calinski-Harabasz Davies-Bouldin

RW 0.502 1141.947 0.777 0.420 904.776 0.943
FF 0.513 1433.257 0.707 0.497 1129.500 0.805
Cluster-GAE 0.576 1794.486 0.770 0.556 1615.266 0.761
No Sampling 0.438 864.572 0.918 0.270 454.419 1.493

TABLE VI: Mutual Information Scores between Clustering
Algorithms (K = 2 and K = 3)

Sampling
Method

K-Means vs
Agglomerative (K = 2)

K-Means vs
Agglomerative (K = 3)

RW 0.231 0.688
FF 0.481 0.667
Cluster-GAE 0.568 0.715
No Sampling 0.596 0.742

lists the pathways, and the different colors represent the three
clusters (0, 1, and 2).

The heatmap in Figure 6 provides a detailed visualization
of the enrichment levels for each pathway across the three
clusters, with the color scale representing the -log10 p-value.
Lighter colors indicate higher enrichment significance.

Both visualizations indicate that in Cluster 0 ”Cytoplasm”
and ”protein-containing complex” pathways exhibit the high-
est -log10 p-values, indicating very strong enrichment. Other
pathways such as ”intracellular anatomical structure”, ”intra-
cellular organelle”, and ”organelle” also show high enrichment
levels in this cluster.

In Cluster 1, the ”catalytic activity” pathway shows sig-
nificant enrichment, along with ”cytoplasm”, ”intracellular
anatomical structure” and ”cytosol”.

Cluster 2 exhibits lower enrichment levels compared to
clusters 0 and 1. The top enriched pathways in this cluster in-
clude ”catalytic activity,” ”small molecule metabolic process,”
and ”cytoplasm.”

Understanding these enriched pathways helps to explain the
functional landscape of the protein clusters, offering potential
targets for further biological investigation and research.

VI. CONCLUSION AND FUTURE WORKS

This thesis explored the application of GNNs and graph
sampling methods to analyze biological sample datasets, par-
ticularly focusing on proteins with limited sample sizes. Our

proposed method, Cluster-GAE, combined graph sampling
techniques with GNNs to effectively learn representations in
large graph structures.

We evaluated four sampling methods: RW, FF, Cluster-
GAE, and No Sampling (baseline). Metrics such as Earth
Mover’s Distance, Frobenius Norm, Mutual Information
Score, and various clustering metrics were used to assess
the similarity and quality of protein embeddings. Cluster-
GAE consistently preserved graph structure most effectively,
demonstrated by low EMD and Frobenius Norm values, and
had the highest Mutual Information Score and the best results
in clustering metrics, indicating reliable clustering. Addition-
ally, higher embedding dimensions yielded clustering metrics
similar to those observed with an embedding dimension of
64, suggesting that it does not necessarily improve clustering
quality. Notably, Cluster-GAE is particularly advantageous for
larger graph sizes, maintaining its effectiveness in handling
complex data structures. Training very large graphs with GAE
without any sampling method is impractical, as it cannot
fit into memory, highlighting the necessity and efficiency of
Cluster-GAE for scalable training.

Qualitative evaluations with t-SNE visualizations and func-
tional enrichment analysis supported our quantitative findings.
t-SNE provided intuitive clustering insights, while functional
enrichment analysis identified over-represented pathways in
each cluster, highlighting the biological relevance of our
method. Our approach enhances the ability of biological
researchers to uncover meaningful patterns and interactions
within protein data, offering valuable insights for future re-
search.

For future work, several directions can be pursued to build
upon our findings. Firstly, expanding the size of the graph
dataset by incorporating more proteins from Reactome could
provide a richer and more comprehensive analysis. Collabo-
rations with biological researchers will be crucial to validate
and interpret the model’s results, ensuring that the discovered
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patterns and insights are meaningful and biologically relevant.
Additionally, the GAE used in our method could be replaced
with a Variational Graph Autoencoder to evaluate its effec-
tiveness in capturing more complex latent structures within
the data. These enhancements will further refine our method,
potentially leading to novel discoveries and applications in the
analysis of biological networks.
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[24] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimat-
ing mutual information. Physical review E, 69(6):066138, 2004. 9

[25] Scikit learn Developers. https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.mutual info score.html. Accessed: 2024-06-
09. 9

[26] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics, 20:53–65, 1987. 9

[27] David L Davies and Donald W Bouldin. A cluster separation mea-
sure. IEEE transactions on pattern analysis and machine intelligence,
(2):224–227, 1979. 9
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