
Summary

In this project, we work within the field of de novo drug design by apply-

ing categorical and continuous diffusion models on graphs to generate new

molecules. The use of diffusion models for de novo drug design is an active

field of research seeing rapid publications improving on the previous ones. In

recent research, the focus has been on applying different representations of

molecules, using different neural networks, and tweaking the noise schedule

to improve the generated molecules. Additionally, the research has moved

to focus on generation of 3D conformations of the molecules as well. In this

project, we investigate the use of both continuous and categorical diffusion for

generating valid, unique and novel molecules. Moreover, we investigate how

the use of molecular internal coordinates rather than Cartesian coordinates for

representing the 3D conformation of a molecule affects the generation of new

molecules.

For the categorical diffusion, we follow the approach proposed by Hoogeboom,

Nielsen, et al., 2021 that is yet to be applied for de novo drug design using a

graph representation. Additionally, we propose a novel spatial graph represen-

tation that captures the molecular internal coordinates of a molecule, which we

employ in a diffusion model for generation of new molecules in 3D-space. We

evaluate the generated molecules based on well known metrics within the field

of de novo drug design: validity, uniqueness and novelty. As these metrics do

not consider the 3D conformation of a generated molecule, we use additional

metrics to evaluate the generated 3D conformations: molecular potential en-

ergy and root mean square deviation (RMSD) of the coordinates. As our spa-

tial graph representation is novel, we propose an conversion algorithm from our

representation into the well known Z-matrix that also captures the molecular

internal coordinates but is structured differently. From the Z-matrix, we can

compute the Cartesian coordinates, using NeRF (Parsons et al., 2005), that

are used for the energy and RMSD evaluation metrics.

Our experiments show that in the domain of de novo drug design and rep-

resenting molecules as graphs, the choice of noise schedule is not a major

contributing factor to the results, as the two noise schedules perform compa-

rably. When generating simple graphs without 3D conformations, our results
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show that the categorical diffusion process performs better than the continu-

ous diffusion process when looking at the validity of the generated molecules.

However, looking at uniqueness and novelty, the continuous diffusion process

shows similar results to the categorical or even outperforming the categorical

slightly. Our diffusion models working on simple graphs outperform state of

the art models when generating valid, unique and novel molecules.

Using our spatial graph representation, we are unable to, in general, gener-

ate energy minimised 3D conformations of molecules resulting in high energies

instead. However, our generated 3D conformations are close in 3D-space to en-

ergy minimised conformations based on our RMSD scores. Our high energy of

the generated 3D conformations reflects some inherent problems in our spatial

graph representation and proposed conversion algorithm.

Based on our results, we see that the categorical diffusion approach from

Hoogeboom, Nielsen, et al., 2021 is applicable when representing molecules

as graphs with our model outperforming state of the art models. Additionally,

the use of our spatial graph representation and conversion algorithm shows

great potential in generating sensible 3D conformations of molecules. During

both experiments, the use of a distribution inherent to the values being diffused

yielded better results and shorter training and convergence times.
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Chapter 1

Introduction

In recent years, both diffusion models and de novo drug design have seen

a lot of attention from the research community. The paper from Ho, Jain,

and Abbeel, 2020 showed promising results in the field of image generation

using diffusion models. Since, multiple papers regarding diffusion models have

been published (Hoogeboom, Nielsen, et al., 2021; Nichol and Dhariwal, 2021).

Diffusion models used for de novo drug design have also seen a spike in interest

and is an active area of research (Vignac et al., 2023; Guan, Qian, et al., 2023;

Guan, Zhou, et al., 2023).

Previous work within the field of de novo drug design using diffusion models

has focused on representing the molecules as graphs. Ho, Jain, and Abbeel,

2020 worked on images where each pixel is often represented using continuous

values, which means during diffusion continuous noise is applied. However,

molecules are inherently discrete, as the atoms and bonds in a molecule belong

to one of many categories, which is why papers (Vignac et al., 2023; Guan,

Qian, et al., 2023; Guan, Zhou, et al., 2023) focus on how molecules can

be represented using discrete values and applying categorical noise during the

diffusion process, as it is assumed that this is the best approach. In this project,

we investigate how representing a molecule as a graph using continuous values

and adding continuous noise compares to using discrete values and adding

categorical noise.

Guan, Qian, et al., 2023 and Hoogeboom, Satorras, et al., 2022 investigate

how Cartesian coordinates can be used to represent a molecule in 3D-space.

For a graph representation of a molecule, the Cartesian coordinates can be

implemented as node features. However, when using the Cartesian coordinates

representation of a molecule, the model and the loss have to be equivariant

to E(3) transformations to preserve the geometric symmetries of the molecule
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(Hoogeboom, Satorras, et al., 2022). Instead of using Cartesian coordinates

to represent a molecule in 3D-space, a molecule can also be represented using

internal coordinates. Representing a molecule using internal coordinates does

not have the problem of needing a model and a loss that are equivariant to

rotation and translation. Therefore, we also investigate the use of a spatial

graph representation for the internal coordinates of a molecule to generate new

molecules in 3D-space using diffusion.

In the following, we cover some preliminaries in relation to this project. First,

we cover some metrics that we use for evaluation of the generated molecules.

Second, we cover how molecules can be represented in 3D-space in different

ways with a focus on the internal coordinates representation of a molecule.

Third, we cover how we represent molecules in 3D-space as graphs with added

features needed for the internal coordinates of the molecule.

1.1 Evaluation Metrics

To evaluate the generated molecules, we define multiple metrics that cover dif-

ferent aspects of the molecules and how they relate to the training dataset. We

define the molecules used during training as the multisetMt, and the molecules

generated by the diffusion model as the multisetMg. In the following we use

[ ] when describing a multiset and the standard {} notation for sets. We define

an operation Set : [ ] 7→ {} that converts a multiset into a set by keeping only

one of each element in the multiset, e.g. Set([1, 2, 2, 3, 4, 5, 5]) = {1, 2, 3, 4, 5}.
Furthermore, we define the cardinality of a multiset |[ ]| as the sum of multi-

plicities in the multiset, e.g. |[1, 2, 2, 3, 4, 5, 5]| = 7.

1.1.1 Validity

We use RDKit1 to determine if a generated molecule is valid. For a molecule

to be valid according to RDKit, the molecule must pass a series of sanitisation2

checks. Two of the most important sanitisation checks is a valence check and a

check on the Kekule form of aromatic rings. When checking valency, the intu-

1https://www.rdkit.org/
2https://www.rdkit.org/docs/RDKit_Book.html#molecular-sanitization
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ition is that each atom must not have a too high valency, which occurs when it

binds with more atoms than chemically possible. The kekulization of the aro-

matic rings will fail if a molecule contains rings but the bonds are not marked

as aromatic or there are found chemically impossible bonds outside an aromatic

ring. The multiset of valid molecules is defined asMv = [x ∈Mg|x is valid].

The validity metric is defined as V = |Mv |
|Mg | .

1.1.2 Uniqueness

For de novo drug design, discovering new molecules is one of the most impor-

tant aspects. Intuitively, to make the discovery process efficient, the generated

moleculesMg should be diverse and unique such that each generation process

discovers as many new molecules as possible. Depending on the generation

process, the uniqueness of the generated molecules is not guaranteed in which

case the uniqueness metric is often used to report the diversity of the gener-

ated molecules. We define the unique molecules, based on the multiset of valid

molecules, as the setMu = Set(Mv). We introduce two types of uniqueness

defined as Ug = |Mu|
|Mg | and Uv = |Mu|

|Mv | . Ug is the unique and valid molecules

w.r.t. Mg, while Uv is the unique and valid molecules w.r.t. Mv. As it can

be seen from the definition of Ug and Uv, it is expected that the uniqueness

metrics will drop as the number of generated molecules increases.

In practice checking whether a molecule is unique is often done using a canon-

ical SMILES representation, such that if two or more molecules generate the

same SMILES string only one of them is considered a unique sample. Unique-

ness is also a metric that can be used to check mode collapse of a trained

generative model. Here, the generative model is said to have encountered a

mode collapse if it keeps generating the same small subset of molecules, result-

ing in a very low uniqueness score.

1.1.3 Novelty

As mentioned above, discovering new molecules in de novo drug design is

important. Novelty is a metric that measures how many of the generated

molecules Mg are actually unseen and new. Here, a molecule is considered
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new if it is not found in the molecules Mt that are used during training.

Additionally, in de novo drug design you want the novel molecules to be both

valid and unique and as such the novelty is often defined over the the set of valid

and unique molecules rather than just the set of valid molecules. Following this,

we define novel molecules as the setMn = {x ∈Mu| x /∈Mt}. Furthermore,

we introduce three types of novelty to report: Ng =
|Mn|
|Mg | , Nv =

|Mn|
|Mv | and Nu =

|Mn|
|Mu| . All three types of novelty is a measure of the number of valid, unique

and novel molecules w.r.t. to a certain set or multiset, i.e. Ng w.r.t. Mg, Nv

w.r.t. Mv, and Nu w.r.t. Mu. As with uniqueness, it is expected that the

novelty metrics will drop as the number of generated molecules increases.

In practice, determining whether a molecule is novel is often done using a

canonical SMILES representation, such that, if the SMILES string of a molecule

inMg is the same as a SMILES string of a molecule inMt then the molecule

is not novel. Additionally, novelty can be used to detect mode collapse of a

trained generative model, i.e. with a low Nu score, the model does not generate

unseen molecules.

1.1.4 Root Mean Square Deviation

Root Mean Square Deviation (RMSD) is a distance based similarity measure

between two molecules. In this project, RMSD is calculated between a gener-

ated moleculeM and a reference molecule R with 3D Cartesian coordinates

and with both molecules consisting of N atoms. The RMSD between two

molecules can be calculated as (Kufareva and Abagyan, 2012):

RMSD =

√√√√ 1

N

N∑
i=1

d2i

where di is the euclidean distance between the ith pair of equivalent atoms

from M and R. Determining which pairs of atoms are equivalent can be

hard. However, in this project, we only use the RMSD metric in contexts

where we compare a 3D conformation of a molecule with its energy minimised

conformation. Therefore, we always know which pairs of atoms are equivalent,

as the molecules we compare are the same, just with different 3D coordinates.

In this project, the RMSD score is measured in angstrom.

4



1.1.5 Energy of a Molecule

The potential energy of a specific 3D conformation of a molecule, measured

in kcal/mol, can be used to describe the stability of the 3D conformation

when compared with all possible 3D conformations of the same molecule. All

possible 3D conformations of a molecule characterise the energy surface of the

molecule, where a specific 3D conformation of the molecule is a single point

on its energy surface. When the potential energy, hereafter referred to as

just energy in this project, is at a local minima on the energy surface the

3D conformation of the molecule is considered stable. With this in mind, the

energy of a molecule can be seen as a function of its geometry in 3D-space

that considers distances between atoms, bond types, triplet angles, dihedral

angles and charges. Different definitions of the energy function exist, and

they employ different penalties for the geometry of a molecule. For example,

2 carbon atoms in a single bond usually have a distance of 1.54 angstroms

(Leach, 2001, p. 3). If the distance is different in the 3D conformation of

the molecule, it is penalised with a larger energy. For any molecule with a

specific 3D conformation, its energy can be minimised by changing the 3D

conformation (Leach, 2001, p. 4-5, 253).

When comparing the energy states of two molecules, we take inspiration from

the approach by Tong and Zhao, 2021, where they calculate the Ligand confor-

mational strain energy (LCSE) between two molecules. In our case, we want

to calculate the strain energy between a generated 3D conformation of a mole

and its energy minimised counterpart. Following Tong and Zhao, 2021, this

gives us the following formula:

ELCSE = Egenerated − Eminimised

However, this formula is not normalised and to be able to compare the results,

where molecules of different sizes are used, we normalise the strain energy

based on the number of atoms in the molecule, N :

Estrain =
Egenerated − Eminimised

N
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1.2 Molecular Internal Coordinates

In de novo drug design it can be desirable that the generated molecules have

a certain conformation in 3D-space, s.t. they bind easier with certain pro-

tein target binding sites. The most prominent representation is the use of

Cartesian coordinates specified for each of the atoms. The use of Cartesian

coordinates introduces a problem in the model and loss when it comes to trans-

lation, rotation and reflection in 3D-space, E(3) transformations, as we want

to preserve the geometric symmetries of the molecules (Guan, Qian, et al.,

2023; Hoogeboom, Satorras, et al., 2022). These problems are not present

when using internal coordinates of the molecule to represent its conformation

in 3D-space.

The internal coordinates of a molecule, called the molecular internal coordi-

nates, are represented using the bond length between atoms, the angles pro-

duced by sets of 3 connected atoms and dihedral angles between 2 sets of 3

connected atoms, where 2 atoms are in common. The dihedral angle is the

angle between the 2 planes passing through the 2 sets of 3 connected atoms

in 3D-space. As such, the dihedral angle is also called the torsion angle, as it

represent how we can get the position of one atom from a second atom based

on a torsion in 3D-space. For convenience, the bond lengths are measured

in angstroms. The angles produced by the sets of 3 atoms range from 0 to

180 degrees, (0, 180), and the dihedral angles range from -180 to 180 degrees,

[−180, 180] (Leach, 2001, p. 2-4). A simple example of the molecular internal

coordinates for HOOH can be seen in Figure 1.1.

Figure 1.1: HOOH in 3D-space from different viewpoints with illustrations of
the bond lengths, b, angles between sets of 3 connected atoms, θ, and dihedral
angles, ϕ.
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In Figure 1.1, HOOH is placed in 3D-space and illustrated from three different

viewpoints. The first viewpoint gives a general view of how the atoms are

placed in relation to each other. The second viewpoint illustrates the bond

lengths of 0.9 and 1.4 between the atom pairs HO and OO, and the angle

of 105◦ between the 3 connected atoms HOO. The third viewpoint illustrates

how the plane, p1, formed by the atoms HOO and the plane, p2, formed by

the atoms OOH has a dihedral angle of 120◦.

When it comes to dihedral angles, there exists 2 different kinds in the molecular

internal coordinate representation. The difference lies in whether the non-

common atoms, in the 2 sets of 3 connected atoms, are connected to the same or

different atoms. These 2 variants of dihedral angles are seen in Figure 1.2.

Figure 1.2: The two different kinds of dihedral angles.

The first kind of dihedral angle, ϕ1 in Figure 1.2, is formed by 4 sequentially

connected atoms, as the non-common atoms are connected to different common

atoms. For the second kind of dihedral angle, ϕ2 in Figure 1.2, the non-common

atoms are connected to the same common atom to form a Y-like shape.

1.2.1 Representing the Internal Coordinates in a

Z-Matrix

A common way of representing the molecular internal coordinates is in a Z-

matrix (Leach, 2001, p. 2-4). The Z-matrix uses an ordering between atoms

identified by the rows in the matrix, and the following structure for each row
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in the matrix: label, atom1, bond length, atom2, angle, atom3, dihedral angle.

The label is an indication of the atom either by its atomic symbol or atomic

number, the atom numbers, atom1, atom2, atom3, reference specific rows in

the matrix and the bond length, angle and dihedral angle are decimal numbers.

Building the Z-matrix is done by adding one atom/row at a time, which results

in the first 3 rows being special as they do not contain all the information listed

above. This is easily seen by studying an example of the Z-matrix for hydrogen

peroxide (HOOH) (Roskilde Universitet, 2009):

1 : H

2 : O 1 0 .9

3 : O 2 1 .4 1 105 .0

4 : H 3 0 .9 2 105 .0 1 120 .0

The above Z-matrix captures the molecular internal coordinates illustrated in

Figure 1.1. In the Z-matrix, the anchor atom H is added in the first row. The

second row specifies that O is connected to atom 1, H, with a distance of 0.9

between them. In the third row, another O is added, and it is specified that

it is connected to atom 2, O, with a distance of 1.4 between them. Moreover,

the third row specifies an angle of 105.0 between atoms 1, 2 and 3. The fourth

row adds the last H, specifies a distance of 0.9 to atom 3, O, an angle of

105.0 between atoms 2, 3, 4 and a dihedral angle of 120.0 between the planes

generated by atoms 1, 2, 3 and 2, 3, 4.

1.2.2 Converting Between Cartesian and Z-Matrix

When converting from Cartesian coordinates to molecular internal coordinates,

given Cartesian coordinates for 2 atoms, a and b, the bond length is the norm

of the vector a⃗b going from a to b, ∥a⃗b∥. Given 3 sequentially connected atoms,

a, b, and c, the triplet angle needed for the molecular internal coordinates is

the angle between the vectors b⃗a and b⃗c. Given 4 connected atoms a, b, c,

and d, the dihedral angle needed for the molecular internal coordinates is the

angle between 2 planes. The first plane passing through the atoms a, b, c

and the second plane passing through the atoms b, c, d. In summary, given

4 connected atoms a, b, c, and d, the bond length, l, and the triplet angle, θ,
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can be computed as:

l = ∥b− a∥ (1.1)

θ = arccos

(
(a− b) · (c− b)
∥(a− b)∥ · ∥(c− b)∥

)
(1.2)

The dihedral angle, ϕ, can be computed as:

ϕ = arctan2(ω, ψ)

where ω =
(v0 × v1)× (v1 × v2)

∥(v0 × v1)∥ · ∥(v1 × v2)∥
· v1

∥v1∥
,

and ψ =
(v0 × v1) · (v1 × v2)

∥v0 × v1∥ · ∥v1 × v2∥

(1.3)

Here, we use 3 vectors defined by the Cartesian coordinates of the 4 atoms. If

the dihedral angle is similar to the first kind, ϕ1 in Figure 1.2, the vectors are

v0 = b− a, v1 = c− b, and v2 = d− c. If the dihedral angle has the Y-shape

of the second kind, ϕ2 in Figure 1.2, v0 and v1 are the same but for v2 we use

v2 = d− b.

One prominent way to convert back from molecular internal coordinates in a

Z-matrix to Cartesian coordinates is using the Natural Extension Reference

Frame (NeRF) method proposed by Parsons et al., 2005. The NeRF method

considers 4 cases; the first 3 cases being the first 3 rows in the Z-matrix and

the 4th case being every row after the first 3 in the Z-matrix.

The first case places the atom in the first row of the Z-matrix in the origin of

the 3D-space, a1 = (0, 0, 0). The second case places the second atom from the

Z-matrix by translating a1 by the bond length on the x-axis, a2 = (l, 0, 0). The

third case uses the bond length and triplet angle to place the third atom from

the Z-matrix on the xy-plane as follows: a3 = a2 + (l · cos(π − θ), l · sin(θ), 0),
where + is element-wise addition of the Cartesian coordinates. For the fourth

case the spherical representation, Q, of the fourth atom is first calculated as

(Parsons et al., 2005):

Q = (l · cos(π − θ), l · cos(ϕ) · sin(θ), l · sin(π + ϕ) · sin(θ))

Next, a transformation matrix, R, is calculated based on the vectors defined

by the previous 3 atoms, n1 = a2 − a1 and n2 = a3 − a2, as (Parsons et al.,
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2005):

R = [r1, r2 × r1, r2]

where r1 =
n2

∥n2∥
and r2 =

n1 × n2

∥n1 × n2∥
Using Q and R, the Cartesian coordinates for the fourth atom from the Z-

matrix is given as (Parsons et al., 2005):

a4 = R×Q+ a3 (1.4)

1.3 Graph Representation with Angles

A molecule with N atoms can be represented as a simple graphM = (V,E),

where V ∈ RN is the set of vertices/atoms, and E ∈ RN×N is the set of

edges/bonds. To extend this graph representation to molecules with internal

coordinates, we define the following injective functions that maps from ordered

sets of atoms to angle indices:

IndexA : Γ3 7→ [1, . . . , Na]

IndexD : Γ4 7→ [1, . . . , Nd]

where Na is the maximum number of triplet angles for any given atom in the

molecule, Nd is the maximum number of dihedral angles for any given atom

in the molecule, and:

Γ3 = {(v1, v2, v3) | v2 ∈ V, (v1, v3) ∈ Comb(N(v2), 2)}

Γ4 = {(v1, v2, v3, v4) | (v1, v2), (v2, v3), (vx, v4) ∈ E

∧ v1 ̸= v3

∧ (vx = v2 ∨ vx = v3)}

where N(v) = {x | (v, x) ∈ E} is the neighbourhood of v and Comb(N(v), 2)

is all combinations of unordered pairs in the neighbourhood of v.

With these functions, we represent a molecule with internal coordinates as a

spatial graphM = (V,E,A,D). Here, A ∈ RN×Na is the set of angles (triplet

angles) formed by sequentially connected triplets of vertices/atoms, and D ∈
RN×Nd is the set of dihedral angles formed by 2 sets of 3 sequentially connected
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vertices/atoms with 2 common vertices/atoms between the 2 sets. We place all

the triplet angles for triplets (vx, v2, vy) ∈ Γ3 in the row in A corresponding to

v2 and the column based on the ordering by IndexA. Similarly, we place all the

dihedral angles for 4-tuples (v1, vx, vy, vz) ∈ Γ4 in the row in D corresponding

to v1 and the column based on the ordering by IndexD.

When fixing the order of the atoms, as in a Z-matrix, we need N − 1 bond

lengths, N − 2 angles and N − 3 dihedral angles to represent the internal

coordinates of the molecule. However, with our spatial graph representation,

we do not want to impose an order of the atoms, as such we set Na and Nd

to be determined by the dataset. This allows us to capture all angles for all

orderings of atoms in valid molecules. It should be noted that Na and Nd will

not explode in size in the domain of molecules, as we represent molecules as

simple graphs with a limited amount of connections. For example, using the

QM9 dataset, we have Na = 10 and Nd = 76.

1.3.1 Converting from Spatial Graph to Z-matrix

When converting from a spatial graph,M = (V,E,A,D) with N nodes, to a

Z-matrix, we assume the graph to be connected, i.e. it does not contain any

subgraphs that are disconnected. For the conversion, we define the following

additional functions:

IndexV : V 7→ [1, . . . , N ]

Bond : E × V × V 7→ R

Next : ∅ 7→ [1, . . . , N ]× [1, . . . , N ]

where IndexV returns the index of the input atom in V , and Bond returns the

bond length between the 2 input atoms based on their atom types and the

type of bond connecting the atoms. In practice, Bond is defined as a static

lookup table based on the findings of Pyykkö and Atsumi, 2009. Next returns

the index of unvisited atom and the discovery time of the parent atom, it is

connected to, based on a depth-first traversal of the graph. We will use ⊥ for

the discovery time of the parent atom for the seed atom and whenever we do

not need said discovery time in our algorithm. The depth-first traversal that

is used internally in Next is based on our set of edges E that is considered an
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internal part of the Next function; therefore, no input is given when calling

the function. We assume the seed atom of the internal depth-first traversal to

be connected to 2 other atoms in sequence such that the seed is an endpoint

of a triplet of atoms.

Using these functions the conversion from a spatial graph,M, to a Z-matrix,

Z, is performed using Algorithm 1.

Algorithm 1 Spatial Graph to Z-matrix

Input: M = (V,E,A,D)

Output: Z ∈ RN×7

1: for i = 1 to N do

2: if i = 1 then

3: M, Z ← [ case1(M, Z) ▷ First case of the Z-matrix

4: else if i = 2 then

5: M, Z ← [ case2(M, Z) ▷ Second case of the Z-matrix

6: else if i = 3 then

7: M, Z ←[ case3(M, Z) ▷ Third case of the Z-matrix

8: else

9: M, Z ←[ case4(M, Z, i) ▷ Fourth case of the Z-matrix

10: end if

11: end for

In Algorithm 1, we build the Z-matrix row by row, by iterating over the number

of atoms in the molecule and adding one row to the Z-matrix for each iteration.

The 4 cases of the Z-matrix described in Section 1.2.1 are identified by the if

statements checking the iteration number i. When the first 3 rows are added

in the bodies of the if statements, the remaining rows are added using logic

for the fourth case of the Z-matrix. Pseudocode for each case of the Z-matrix

is presented in Algorithm 2, 3, 4, and 5.
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Algorithm 2 Spatial Graph to Z-matrix - Case 1

1: procedure case1(M, Z)

2: v,⊥ = Next()

3: Z1 = (Vv, 0, 0, 0, 0, 0, 0)

4: returnM, Z

5: end procedure

In Algorithm 2, the first atom is inserted into the Z-matrix. As the first atom

does not have any references to other atoms, the other entries in this row of

the Z-matrix are set to 0.

Algorithm 3 Spatial Graph to Z-matrix - Case 2

1: procedure case2(M, Z)

2: v1←[ IndexV(Z1,1)

3: v2,⊥ = Next()

4: b←[ Bond((Vv1, Vv2), Vv1, Vv2)
5: Z2 = (Vv2, 1, b, 0, 0, 0, 0)

6: returnM, Z

7: end procedure

In Algorithm 3, the second row in the Z-matrix is inserted. In this case, the

bond length between the first inserted atom and a connected atom is retrieved.

Next, the second atom, reference atom, and bond length are inserted into the

Z-matrix.

Algorithm 4 Spatial Graph to Z-matrix - Case 3

1: procedure case3(M, Z)

2: v1, v2←[ IndexV(Z1,1), IndexV(Z2,1)

3: v3,⊥ ←[ Next()
4: b, a←[ Bond((Vv2, Vv3), Vv2, Vv3), IndexA(Vv1, Vv2, Vv3)
5: Z3 = (Vv3, 2, b, 1, Av2,a, 0, 0)

6: returnM, Z

7: end procedure
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In Algorithm 4, the third row in the Z-matrix is inserted. Here, we first get

the indices for the 3 connected atoms based on the previous 2 entries in the

Z-matrix and the Next function. Using these 3 atoms, we compute the bond

length and the angle index. Lastly, a new row in the Z-matrix is inserted using

the 3 atoms, bond length, and the angle.

Algorithm 5 Spatial Graph to Z-matrix - Case 4

1: procedure case4(M, Z, i)

2: v4, j ← [ Next()
3: if j = 1 then

4: z1, z2←[ 3, 2
5: else if j = 2 then

6: z1, z2←[ 3, 1
7: else

8: z1, z2←[ Zj,4, Zj,2

9: end if

10: v1, v2, v3← [ IndexV(Zz1,1), IndexV(Zz2,1), IndexV(Zj,1)

11: b←[ Bond((Vv3, Vv4), Vv3, Vv4)
12: a, d← [ IndexA(Vv2, Vv3, Vv4), IndexD(Vv1, Vv2, Vv3, Vv4)
13: Zi ←[ (Vv4, j, b, z2, Av3,a, z1, Dv1,d)

14: returnM, Z

15: end procedure

Algorithm 5 is used to insert the remaining rows of the Z-matrix. First, an

unvisited atom and the discovery time of its parent node is retrieved using the

Next function. Using the discovery time of the parent node, the atoms forming

a triplet angle and dihedral angle with the unvisited node can be found in the

Z-matrix. However, two special cases exist when the discovery time is either

1 or 2, as these entries do not contain both reference atom 1 and 2, which

we need for the triplet angle and dihedral angle. The bond length is then

calculated, and the indices for the triplet angle and dihedral angle is retrieved.

With this information, a new row is inserted in the Z-matrix.
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Chapter 2

Diffusion Models

Diffusion models are used as generative machine learning models and can be

applied to the task of de novo drug design where the models are used to gen-

erate molecules (Vignac et al., 2023; Guan, Qian, et al., 2023; Guan, Zhou,

et al., 2023). The intuition behind diffusion models is a process in two parts, a

forward process and a reverse process. For the forward process a data sample

x is gradually diffused, meaning noise is gradually applied to x. The diffusion

is performed over T timesteps, denoting x at step t as xt, where x0 is the orig-

inal un-noised data sample and xT is complete white noise. When gradually

applying noise, the amount of noise added between each step is determined

using a variance schedule, often called a noise schedule. For the reverse pro-

cess, the diffusion model learns to remove the applied noise from a noisy data

sample xt utilising a parameterised neural network. An illustration of the for-

ward process and the reverse process on molecules can be seen in Figure 2.1.

During the forward process, the atom types are changed, the type of bonds are

changed, and bonds may either be removed or added, as seen in the top row

of Figure 2.1. The reverse process tries to undo the changes in the molecule,

which most often does not result in the original molecule, as seen in the bottom

row of Figure 2.1.

Figure 2.1: Illustration of the purpose of the forward process and the reverse
process in a diffusion model.
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Diffusion models can be used for generating new data samples, x̂0, when the

complete white noise samples, xT , follow a prior probability distribution that

can be sampled from. Generation is then performed by first sampling from

the prior distribution and then performing the reverse process for T steps to

obtain the new cleaned sample, x̂0. The training objective for a diffusion model

is having the parameterised neural network optimised for denoising the data

sample, xt, in the reverse process.

Figure 2.2: Overview of the components in a diffusion model.

Figure 2.2 shows the interaction between the noise schedule, the forward pro-

cess, the reverse process and the parameterised neural network. The forward

component can be captured by the function f(xt) 7→ xt+1. The function f is

utilised iteratively, starting with the initial sample, x0, and adds one step of

noise at a time, depicted by the loop, always working with the current sample

xt and stops when xT is obtained. The reverse component can be captured by

the function r(xt, ŷ) 7→ xt−1. The function r is also utilised iteratively, starting

with the complete noisy sample, xT , and a prediction, ŷ, to clean the sample

one step at a time, depicted by the loop. It always works on the current sample

xt and a prediction ŷ, based on the current sample, and produces a sample

from the previous timestep xt−1, which becomes the new current sample for

the next iteration. The reverse process halts when x0 is obtained. In the func-

tion r, ŷ is the prediction from the neural network, and it can be a prediction

of either x0, xt−1 or the added noise from the forward process. The choice of

the prediction depends on the formulation of the reverse process. The neural

network is marked with *, as it can be interchanged with any component that
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produces ŷ in the same format as x0 and xt. The figure also shows that the

complete noisy sample, xT , follows a prior distribution that is also imposed as

a target/limit distribution on the noise. The noise distribution is imposed on

the forward and reverse processes in the diffusion model.

In this project, we focus on using diffusion models on molecules for de novo

drug design, where molecules are represented as graphs. A molecule exists in

3D-space and consists of atoms that are connected to each other by different

types of bonds. Before introducing how diffusion is applied to a molecule in 3D-

space, we first introduce how diffusion is applied on a molecule without spatial

information. We represent a molecule without spatial information consisting

of N atoms as a simple graph, M = (V,E), where V and E are the same as

introduced in Section 1.3. The processes in the diffusion model work directly

on the molecule, M, by applying each process on each element, V and E,

separately. With this approach, the goal is to generate molecules that are

valid, unique and novel.

In the following, we cover the different aspects and components of diffusion

models using continuous and categorical distributions. Section 2.1 covers the

noise schedule that is used in the forward process in Section 2.2. The reverse

process is then covered in Section 2.3 followed by the loss function for the

parameterised neural network in Section 2.4. Lastly, it is covered how to

train a diffusion model and how the trained neural network can be used for

generation of new molecules in Section 2.5 and Section 2.6, respectively.

For the diffusion processes, we let v ∈ RN×Kv and e ∈ RN×N×Ke be the one-

hot encodings of the atom types, V , and bond types, E. For the encodings,

we can use the argmax function to get the resulting category. For brevity, we

denote encoded molecules as M = (v, e). We allow the diffusion processes to

change the atom types, bond types, and number of edges. Hence, we do not

allow the processes to add or delete atoms. To handle the deletion of a bond,

we introduce an extra category for the bonds that indicates no bond between

two atoms.
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2.1 Noise Schedule

The noise schedule controls the amount of noise that is added to an input

when transitioning from timestep t−1 to t. The noise schedule is independent

from the rest of the diffusion model and can be considered as a function f(t)

that determines the step size of the noise application. The output of f(t) is

denoted as βt. βt is a scalar value that describes how much a data sample is

changed/noised for each timestep, e.g. when using a Gaussian distribution for

adding noise in the diffusion model, βt is the variance. The noise schedule is

used both in the forward process and reverse process of the diffusion model. If

the forward process can be computed in closed form, it utilises ᾱt given from

αt and βt as follows (Ho, Jain, and Abbeel, 2020):

αt = 1− βt ᾱt =
t∏

s=1

αs (2.1)

where ᾱt represents the noise accumulation on the input sample in an inverse

proportionality fashion, i.e. a small ᾱt means a large amount of noise is added

to the input sample. Both βt, αt and ᾱt are often utilised in the reverse

process when denoising the sample based on the output of a parameterised

neural network. Several variants and definitions of f(t) have been proposed for

diffusion models, e.g. the constant, linear, cosine and sigmoid schedules. Here,

we cover some of the more used definitions, namely the linear and cosine.

2.1.1 Linear

In the linear noise schedule the difference between f(t) and f(t−1) is constant.
For the linear noise schedule, a start value βmin and an end value βmax is

specified. The noise schedule is then defined as a linear interpolation from

β1 = βmin to βT = βmax using the number of timesteps T (Nichol and Dhariwal,

2021).
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2.1.2 Cosine

In the cosine noise schedule, the difference between f(t) and f(t − 1) varies

depending on t. The cosine noise schedule is specified as follows:

f(t) = cos

(
t/T + s

1 + s
· π
2

)2

α̃t =
f(t)

f(0)
βt = 1− α̃t

α̃t−1

(2.2)

where s is a variable used to prevent βt from being too small in the early

timesteps. In practice, Nichol and Dhariwal, 2021 propose to use s = 0.008

and clipping the βt values to be no larger than 0.999. Hence, computing βt,

αt and ᾱt is a three step process when using the cosine schedule. Firstly, βt

values are computed following (2.2). Secondly, the βt values are clipped to a

max value, e.g. 0.999. Lastly, the αt and ᾱt values are computed following

(2.1).

2.1.3 Comparison of Noise Schedules

Figure 2.3 shows a comparison of the cosine noise schedule and the linear

noise schedule. In the figure, it can be seen that the linear noise schedule has

a steeper slope, which means that noise quickly accumulates compared to the

cosine noise schedule. The cosine noise schedule has a more even noise accu-

mulation that gives the parameterised neural network more timesteps where

the molecule is not complete noise. Additionally, using the linear noise sched-

ule results in close to complete noise when t/T > 0.7 as ᾱt ≈ 0, whereas using

the cosine noise schedule at timestep t/T = 0.7 we only have ᾱt ≈ 0.2.
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Figure 2.3: Comparison of ᾱt for the cosine noise schedule and the linear noise
schedule.

2.2 Forward Process

The forward process depends on the type of noise distribution that is used

for the atom types and bond types. In the forward process, the βt and ᾱt

values, as described in Section 2.1, are utilised. In this section, we cover how

both continuous and categorical noise distributions can be used in the forward

process of a diffusion model.

2.2.1 Continuous Distribution

For the continuous distribution, we use a Gaussian distribution for adding

noise in the forward process. Following Ho, Jain, and Abbeel, 2020, we can

define one step of the forward process as:

q(Mt|Mt−1) =
∏

xt−1 ∈ S

N (xt;
√

1− βtxt−1, βtI) (2.3)

where S = {vt−1, et−1}, I is the identity matrix, and v and e contain the one-

hot encodings at timestep t = 0, but for timestep t > 0 they are continuous

vectors that can be decoded into categories for the atom and bond types using

the argmax function. The complete forward process going from M0 to MT is
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defined as:

q(M1:T |M0) =
T∏
t=1

q(Mt|Mt−1) (2.4)

Together, (2.3) and (2.4) form a Markov chain that in this instance of the

forward process adds Gaussian noise to the input data (Ho, Jain, and Abbeel,

2020). The forward process allows for sampling ofMt in closed form (Ho, Jain,

and Abbeel, 2020):

q(Mt|M0) =
∏

x0 ∈ S

N (xt;
√
ᾱtx0, (1− ᾱt)I) (2.5)

where S = {v0, e0}. Using the reparameterisation trick on (2.5) allows us

to directly sample Mt for any timestep t from M0 as follows (Ho, Jain, and

Abbeel, 2020):

Mt(M0, ϵv, ϵe) = (h(v0, ϵv), h(e0, ϵe))

where h(x0, ϵx) =
√
ᾱtx0 +

√
1− ᾱtϵx,

and ϵv, ϵe ∼ N (0, I)

(2.6)

Note that in (2.3) and (2.5) the covariances of the Gaussian distributions are

fixed based on the noise schedule.

2.2.2 Categorical Distribution

For the forward process using a categorical distribution we follow the process

outlined by Guan, Qian, et al., 2023. Hence, we can define one step of the

forward process as:

q(Mt|Mt−1) =
∏

xt−1,Kx ∈ S

C(xt|(1− βt)xt−1 + βt/Kx) (2.7)

where S = {(vt−1, Kv), (et−1, Ke)} and C is a categorical distribution defined

by the probabilities on the right-hand side of | with Kx categories. The com-

plete forward process going from M0 to MT is defined exactly as (2.4) and,

together with (2.7), it forms a Markov chain adding categorical noise to the

input molecule. Following Guan, Qian, et al., 2023, we can sampleMt in closed

form:

q(Mt|M0) =
∏

x0,Kx ∈ S

C(xt|ᾱtx0 + (1− ᾱt)/Kx) (2.8)
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where S = {(v0, Kv), (e0, Ke)}. Using the reparameterisation trick on (2.8)

allows us to directly sample Mt for any timestep t from M0 as (Guan, Qian,

et al., 2023):

Mt = (h(v0, Kv,gv), h(e0, Ke,ge))

where h(x0, Kx,gx) ∼ argmax(gx + (ᾱtx0 + (1− ᾱt)/Kx)),

and gv,ge ∼ Gumbel(0,1)

(2.9)

where we sample from the Gumbel distribution as:

Gumbel(0,1) = − log(− log(Uniform(0,1) + 10−30) + 10−30)

2.2.3 Comparison of Noise Distributions

When working with molecules represented as graphs, which are inherently

discrete, the choice of distribution for the noise has a great effect on how the

features, atom types and bond types, are changed. This is a result of how

the features are represented using different noise distributions. For continuous

noise, the features can be represented using one-hot encoding, which can be

noised using continuous noise. The feature from the noised one-hot encoding is

obtained using argmax, where the index corresponds to a feature category, i.e.

an atom type or a bond type. The effect of the choice of noise distribution is

illustrated in Figure 2.4, where the continuous noise seldom makes changes to

any features in the beginning before radically increasing the amount of features

changed. Comparably, the categorical noise has a more smooth increase in the

amount of features changes during the forward process.
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Figure 2.4: Number of features changed during the forward process compared
to the total number of features.

Figure 2.4 also depicts the difference between the choice of noise schedule, as

explained in Section 2.1.3. Using a linear schedule results in more features

changes in the beginning of the forward process and less in the end of the pro-

cess. Comparably, as expected, using the cosine schedule results in smoother

curves in the beginning and end of the process but more changes in the mid-

dle of the process. The difference, seen in Figure 2.4, is also clearly visible

in practice. As illustrated by Figure 2.5 and Figure 2.6, both distributions

do not change the molecules in the very early stages of the forward process,

t/T = 0.02. However, the radical increase in amount of features changed with

the continuous noise is clearly visible in the t/T = 0.2, 0.4 and 0.7 stages. In

these stages, the molecule is a lot more noisy when using the continuous noise

compared with the use of categorical noise.

Figure 2.5: Illustration of the forward process using a continuous noise distri-
bution with a cosine noise schedule.
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Figure 2.6: Illustration of the forward process using a categorical noise distri-
bution with a cosine noise schedule.

In summary, when using a continuous noise in the forward process, the noise

in the molecules accumulates more radically. This can make it harder for the

denoising neural network, used in the reverse process, to learn to properly

clean the molecules.

2.3 Reverse Process

The reverse process depends on the type of prior distribution that is used for

the atom types and bond types. In the reverse process, the βt, αt and ᾱt

values, as described in Section 2.1, are utilised. In this section, we cover how

both continuous and categorical distributions can be used as a prior for the

reverse process of a diffusion model. However, independent from the type of

prior distribution, the reverse process utilises a neural network parameterised

by θ. The parameterised neural network can either be used to predict the noise

used in the forward process, ϵ̂ = ϵθ(Mt, t), or it can be used to predict the

clean molecule, M̂0 = Mθ(Mt, t), with ϵθ and Mθ being parameterised neural

networks predicting the noise and the clean molecule, respectively. For conve-

nience, we superscript the predictions with v and e to indicate the predictions

related to the atom and bond types from the parameterised neural networks,

e.g. ϵvθ and M v
θ for the predictions related to atom types.

2.3.1 Continuous Distribution

For the continuous distribution, we use a Gaussian distribution as a prior,

which means that formally one step in the reverse process can be described as
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follows (Ho, Jain, and Abbeel, 2020):

p(Mt−1|Mt) =
∏

xt ∈ S

N (xt−1;µt(xt, t), βtI)

where µt(xt, t) =
1
√
αt

(
x− βt√

1− ᾱt

ϵ

) (2.10)

where S = {vt, et}, v and e contain continuous values that can be decoded

into the atom and bond types using the argmax function, ϵ is the added noise

from (2.6), and I is the identity matrix. The complete reverse process going

from MT to M0 is defined as (Ho, Jain, and Abbeel, 2020):

p(M0:T ) = p(MT )
T∏
t=1

p(Mt−1|Mt) (2.11)

where p(MT ) = N (0, I). Together, (2.10) and (2.11) form a Markov chain

that through the neural network learns Gaussian transitions from Mt to Mt−1

(Ho, Jain, and Abbeel, 2020), and they show the formal definition of the

reverse process. During generation, the added noise ϵ is unknown; therefore,

we approximate the posterior using a parameterised neural network. We let

the neural network predict the noise, ϵ in (2.6), as ϵ̂ = ϵθ(Mt, t) = (ϵv, ϵe), and

thus parameterise µt in (2.10) as follows (Ho, Jain, and Abbeel, 2020):

µt(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵxθ(Mt, t)

)
for xt ∈ {vt, et}

(2.12)

This gives us the following parameterisation of (2.10) (Ho, Jain, and Abbeel,

2020):

Mt−1 = (h(vt, zv), h(et, ze))

where h(xt, zx) = µt(xt, t) +
√
βtzx

and zv, ze ∼ N (0, I)

(2.13)
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2.3.2 Categorical Distribution

With the categorical prior, we follow the process outlined by Guan, Qian, et

al., 2023. Hence, we define one step of the reverse process as follows:

p(Mt−1|Mt,M0) =
∏

xt,x0,Kx ∈ S

C(xt−1| c̃t(xt,x0, Kx))

where c̃t(xt,x0, Kx) = c⋆/
Kx∑
k=1

c⋆k,

and c⋆(xt,x0, Kx) = [αtxt + (1− αt)/Kx]⊙ [ᾱt−1x0 + (1− ᾱt−1)/Kx]

(2.14)

where S = {(vt,v0, Kv), (et, e0, Ke)}, ⊙ is element-wise multiplication, C is

a categorical distribution with Kx categories, and c̃t contains probabilities

for either the atom types or the bond types. The definition of the complete

reverse process, i.e. going from MT to M0, is defined exactly as (2.11), where

p(MT ) = C(vT | 1/Kv) · C(eT | 1/Ke). When generating new molecules, M0 is

not known, as such we approximate the posterior using a parameterised neural

network. We let the neural network predict M0 as M̂0 = (v̂0, ê0) = Mθ(Mt, t)

and feed M̂0 through (2.14) in place of M0. With this parameterisation of the

neural network we can sample Mt−1 as (Guan, Qian, et al., 2023):

Mt−1 = (h(vt, v̂0,gv, Kv), h(et, ê0,ge, Ke))

where h(xt, x̂0,gx, Kx) ∼ argmax(gx + c̃t(xt, x̂0, Kx)),

and gv,ge ∼ Gumbel(0,1)

(2.15)

where we sample from the Gumbel distribution as

Gumbel(0,1) = − log(− log(Uniform(0,1) + 10−30) + 10−30)

2.4 Loss Function

Different formulations of the loss function have been proposed (Ho, Jain, and

Abbeel, 2020; Guan, Qian, et al., 2023). The applied formulation depends

on the task at hand, the distributions used in the diffusion model and the

parameterisation of the neural network. In our case, we work on a dataset of

molecules represented as simple graphs, M = (V,E). As the neural network
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works on noisy molecules at a timestep, t, we construct the noisy molecules

during training using randomly sampled timesteps. The task is then to recon-

struct the molecules for the timestep, t−1, using the prediction from the neural

network. The loss is calculated based on the noisy molecules at timestep, t,

and the prediction from the neural network.

When parameterising the neural network to predict the noise applied to the

sample and working with a continuous distribution for the diffusion model, we

use the simple loss formulation proposed by Ho, Jain, and Abbeel, 2020. Ho,

Jain, and Abbeel, 2020 proposed to use an unweighted mean squared error as

a simple loss function, given as:

L = EMt,t,ϵ

[
∥ϵ− ϵθ(Mt, t)∥2

]
=

∑
ϵx,ϵxθ (Mt,t) ∈ S

EMt,t,ϵx

[
∥ϵx − ϵxθ(Mt, t)∥2

] (2.16)

where S = {(ϵv, ϵvθ(Mt, t)), (ϵe, ϵ
e
θ(Mt, t))}, Mt is calculated using (2.6) for

atoms and bonds separately, and ϵ is the noise used to calculateMt. Similarly,

a formulation for an unweighted mean squared error when predicting the clean

molecule can be used as a simple loss. However, Ho, Jain, and Abbeel, 2020

found that this formulation did not work very well.

When parameterising the neural network to predict the clean sample and work-

ing with a categorical distribution for the diffusion process, Guan, Qian, et al.,

2023 proposed to use the KL-divergence as a loss:

L = DKL(q(Mt−1|M0) ∥ p(Mt−1|Mt))

which can be computed directly for the categorical distribution as the sum of

the loss for atom and bond types (Guan, Qian, et al., 2023):

Lc =
∑

xt,x0,x̂0,Kx ∈ S

Lx(xt,x0, x̂0, Kx)

where Lx(xt,x0, x̂0, Kx) =
Kx∑
k=1

c̃t(xt,x0, Kx)k log
c̃t(xt,x0, Kx)k
c̃t(xt, x̂0, Kx)k

(2.17)

where S = {(vt,v0, v̂0, Kv), (et, e0, ê0, Ke)}.
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2.5 Training

The training of the parameterised neural network depends on the type of noise

distribution that is used for the molecules. In this section, we cover how both

continuous and categorical distributions can be used during training.

2.5.1 Continuous Distribution

When training the parameterised neural network with standard Gaussian noise,

we use the simple loss in (2.16) and follow the algorithm depicted in Algo-

rithm 6.

Algorithm 6 Training - Continuous

1: repeat

2: M0 ∼ q(M0)

3: t ∼ Choice({1, . . . , T})
4: ϵv, ϵe ∼ N (0, I)

5: Mt ←[ Mt(M0, ϵv, ϵe)

6: ϵ̂←[ ϵθ(Mt, t)

7: Take gradient descent step on

∇θ (∥ϵv − ϵ̂v∥2 + ∥ϵe − ϵ̂e∥2)
8: until converged

In Algorithm 6, we first get a molecule, M0, from the dataset, q(M0), and then

sample a timestep t randomly and the noise, ϵv and ϵe, from a standard Gaus-

sian distribution. Next, we add noise to the molecule,M0, usingMt(M0, ϵv, ϵe)

following (2.6) before using the parameterised neural network, ϵθ, to predict

the noise used in the forward process, ϵ̂. Lastly, we take a gradient descend

step using the calculated loss following (2.16). We repeat these steps until

convergence or for a given number of iterations over the dataset.

2.5.2 Categorical Distribution

When training the parameterised neural network with categorical noise, we

use the loss in (2.17) and follow the algorithm depicted in Algorithm 7.
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Algorithm 7 Training - Categorical

1: repeat

2: M0 ∼ q(M0)

3: t ∼ Choice({1, . . . , T})
4: gv,ge ∼ Gumbel(0,1)

5: Mt ←[ (h(v0, Kv,gv), h(e0, Ke,ge))

where h(x0, Kx,gx) ∼ argmax(gx + (ᾱtx0 + (1− ᾱt)/Kx))

6: M̂0 ←[ Mθ(Mt, t)

7: Take gradient descent step on ∇θ(Lv + Le)

8: until converged

In Algorithm 7, we first get a molecule, M0, from the dataset, q(M0), before

sampling the timestep, t, randomly and the noise, gv and ge, from a Gumbel

distribution. Next, we noise the molecule, M0, to sample Mt following (2.9).

Lastly, we take a gradient descent step on the loss from (2.17) based on the

prediction of the clean molecule, M̂0, passed through (2.14), replacingM0 with

the prediction. Similarly to Algorithm 6, we repeat these steps.

2.6 Generation

Generating new molecules depends on the type of prior distribution used for

the atom types and bond types. In this section, we cover how a parameterised

neural network can be used for generating new molecules with a continuous and

categorical prior. The general idea is to iteratively apply the reverse process

for T timesteps utilising the neural network as an approximator.

2.6.1 Continuous Distribution

When generating new molecules with a standard Gaussian distribution as a

prior, we utilise the neural network as an approximator for the noise in the

molecule, and feed the noise predictions of the neural network into (2.13). This

is done iteratively for T steps to remove noise from the molecule, as depicted

in Algorithm 8.
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Algorithm 8 Generation - Continuous

1: MT ∼ N (vT ;0, I) · N (eT ;0, I)

2: for t = T to 1 do

3: zv, ze ∼ N (0, I) if t > 1 else zv, ze = 0

4: Mt−1 ←[ (h(vt, zv), h(et, ze))

where h(xt, zx) = µt(xt, t) +
√
βtzx

5: end for

In Algorithm 8, we first sample noise from a standard Gaussian distribution to

get the completely noisy molecule Mt. The reverse process is then iteratively

applied for T timesteps, where zv, ze is sampled from a standard Gaussian

distribution and Mt−1 is calculated using (2.13). However, following Ho, Jain,

and Abbeel, 2020, in the last timestep, t = 1, no noise is sampled and instead

zv, ze = 0.

2.6.2 Categorical Distribution

When generating new molecules with a categorical distribution as a prior, we

utilise the neural network as an approximator for the clean molecules, and feed

the predictions of the neural network into (2.15). This is done iteratively to

remove noise from the molecule until a clean and new molecule is generated,

as depicted in Algorithm 9.

Algorithm 9 Generation - Categorical

1: MT ∼ C(vT | 1/Kv) · C(eT | 1/Ke)

2: for t = T to 1 do

3: gv,ge ∼ Gumbel(0,1)

4: Mt−1 ←[ (h(vt, v̂0,gv, Kv), h(et, ê0,ge, Ke))

where h(xt, x̂0,gx, Kx) ∼ argmax(gx + c̃t(xt, x̂0, Kx))

5: end for

In Algorithm 9, we first randomly sample a completely noisy molecule and

convert the molecule to one-hot encoding. We then iteratively apply the reverse

process for T timesteps following (2.15). Similarly to Algorithm 8, when t = 1

we consider a special case of the reverse process. Here, the implication is
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that we set [ᾱt−1x0 + (1 − ᾱt−1)/Kx] = x0 in the definition of c⋆(xt,x0, Kx)

in (2.14), i.e. the right term of c⋆ is equal to the prediction from the neural

network.

2.7 Combining Continuous and Categorical
Distributions

Our graph representation of a molecule in 3D-space, M = (V,E,A,D), in-

troduced in Section 1.3, contains both inherently discrete components and

inherently continuous components. Whereas, the atom types and bond types

are inherently discrete, the triplet angles and dihedral angles are inherently

continuous. This makes it logical to use different distributions for the different

components of the graph in the diffusion processes.

When using diffusion models, as described in this chapter, this does not pose

a problem. As it can be seen in both (2.3) and (2.7), the distribution for our

simple graphs is a product of 2 independent distributions, 1 for each of the

components in the graphs. This makes it easy to use different distributions

for the components to create a new combined distribution for the graphs. For

example, using categorical distributions for atom types and bond types, and

continuous distributions for triplet angles and dihedral angles, we can define

one step of the forward process as:

q(Mt|Mt−1) =
∏

xt−1,Kx ∈Sd

C(xt|(1− βt)xt−1 + βt/Kx)

·
∏

xt−1 ∈ Sc

N (xt;
√
1− βtxt−1, βtI)

(2.18)

where Sd = {(vt−1, Kv), (et−1, Ke)} and Sc = {at−1,dt−1}. This is an inherent

property of how diffusion models work, as it uses products and sums to com-

bine components, which is also apparent in the definition of the loss function.

Adding to the above example, we can define the loss for such a model as:

L =
∑

xt,x0,x̂0,Kx ∈ Sd

Lx(xt,x0, x̂0, Kx)

+
∑

ϵx,ϵxθ (Mt,t) ∈ Sc

EMt,t,ϵx

[
∥ϵx − ϵxθ(Mt, t)∥2

] (2.19)
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where Sd = {(vt,v0, v̂0, Kv), (et, e0, ê0, Ke)} contains the atom and bond com-

ponents and Sc = {(ϵa, ϵaθ(Mt, t)), (ϵd, ϵ
d
θ(Mt, t))} contains the triplet and di-

hedral angle components. Note that in this case the model predicts the added

noise for the triplet angles and dihedral angles but predicts the clean atom

types and bond types, ϵθ(Mt, t) = (v̂0, ê0, ϵ̂a, ϵ̂d).

When using categorical diffusion on the angles A and D, we define the cat-

egories based on a approximation of the angles by grouping the angles into

intervals. The number of groups for triplet angles is Ka and for dihedral an-

gles it is Kd. Using this logic, we let a ∈ RN×Na×Ka and d ∈ RN×Nd×Kd be the

one-hot encodings of the angles and dihedral angles, respectively. With this

approach to categorical diffusion of the angles, we use the mean of the intervals

as the angles during sampling. For example, if the reversed/cleaned molecule

contains category 1 for an angle and category 1 represents the interval [0, 5),

we use 2.5 as the angle. In summary, we can use categorical diffusion for the

angles, similarly to how we apply it on atom types and bond types.

2.8 Code Implementation

The implementation of our diffusion models can be found on the GitHub repos-

itory at https://github.com/MouritsJJ/diffgraph. Our implementation

has the following file structure:

/

README.md

experiments

Graph Framework

notebooks

The notebooks folder contains the python notebook, metrics.ipynb, we use

for running evaluation on the generated molecules. It also contains a python

file, schedule comp.py, that generates a graph comparing our implementation

of the linear and cosine noise schedules.

notebooks

metrics.ipynb

schedule comp.py
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The experiments folder contains all the configuration yaml files, we used for

running the experiments described in Chapter 3. There is a folder match-

ing each configuration of our models following the naming convention dist1_

dist2_hydrogen_schedule. For example, the folder cat con noH cosine con-

tains the yaml files for the model with categorical atom and bond types, con-

tinuous angles, implicit hydrogen atoms and the cosine noise schedule. For

configurations without spatial information we do not specify dist2.

experiments

cat H cosine

cat H linear

cat noH cosine

cat noH linear

con H cosine

con H linear

con noH cosine

con noH linear

cat cat H cosine

cat cat noH cosine

cat con H cosine

cat con noH cosine

The Graph Framework folder contains all the folders and files with code for

the diffusion processes, neural networks, conversion algorithms, and evalua-

tion metrics. Throughout the code we use the following packages: PyTorch1,

PyTorch Geometric2, NumPy3, RDKit4, and py3Dmol5.

PyTorch is used for everything concerning the neural network architecture in-

cluding the forward pass of the model and updating model parameters through

backpropagation.

PyTorch Geometric is used for accessing the dataset, pre-processing of the

dataset, and batching of graphs.

NumPy is used in our conversion algorithms when working with vectors and

matrices.

1https://pytorch.org/
2https://pyg.org/
3https://numpy.org/
4https://www.rdkit.org/
5https://pypi.org/project/py3Dmol/
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RDKit is used to build molecules from our graph representations during eval-

uation in our experiments.

py3Dmol is used in combination with RDKit to visualise molecules in 3D.

In the root of Graph Framework, we have the python files for the training loop

(main.py), generation loop (generate.py), evaluation metrics (metrics.py)

and pre-processing of the dataset (process dataset.py).

Graph Framework

main.py

generate.py

metrics.py

process dataset.py

The folders inside Graph Framework serve different purposes. The configs

folder contains template yaml files for configuration of the training and gen-

eration runs. These can be used as explanatory examples of how to setup

training of a model and generation of new samples with models using this dif-

fusion framework we have implemented. datasets contains all the datasets

we use for the experiments. In this case, all the different representations of

the QM9 dataset are defined by a single file, qm9data.py. The utils folder

contains utility files for ease of use of the framework. util.py provides func-

tions for the framework regarding models, optimisers, logging, datasets, and

checkpoints. graph utils.py provides functions for batching of graphs, en-

coding the no-edge category, mirroring of an adjacency matrix, computing

angle masks, and conversion algorithms. mol utils.py provides functions for

converting from our graph representations to RDKit molecules.

Graph Framework

configs

template train.yml

template generate.yml

datasets

qm9data.py

utils

util.py

graph utils.py

mol utils.py
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The models folder in Graph Framework contains a folder for each of the mod-

els that can be used in the framework and an example folder modelname. All

folders must contain three files, model.py, train.py, and sample.py. To

avoid repetition, we only show the files for modelname. model.py is the file

containing the machine learning model as a PyTorch Module. train.py is the

file used during training of the model and must contain the function loss fn

that uses a dataset sample, the diffusion processes and the model to calcu-

late the loss used in backpropagation. Moreover, the file must contain the

function val fn that runs validation after a user specified number of epochs.

sample.py is the file used during generation of molecules and must contain

the function sample batch that is used to sample a random batch, and the

function sample reverse that reverses the sampled batch one step. Lastly, the

file must contain the function sample mols that converts the reversed graphs

into RDKit molecules.

Graph Framework

models

modelname

model.py

train.py

sample.py

nncon

nncat

nncombrad

nncombcat

The diffusion folder contains code for the categorical and continuous diffu-

sion processes described in this chapter. con diffusion.py implements the

continuous version and cat diffusion.py implements the categorical version.

As the choice of noise schedule is independent from the diffusion processes, we

implement the different schedules inside noise schedules.py.

Graph Framework

diffusion

con diffusion.py

cat diffusion.py

noise schedules.py
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Every line of code in the implementation has been written by us. However,

in some places we have taken inspiration from published literature. Regarding

the neural network architecture, we take inspiration from Vignac et al., 2023

for the general architecture and use functionality proposed in other literature,

as detailed in Section 3.1.2 and 3.2.2. For the diffusion processes, we base

our implementation on the equations presented in this chapter. Additionally,

for the loss in the categorical diffusion process we take inspiration from an

implementation made by our external supervisor, Alessandro Tibo.
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Chapter 3

Experiments

In this chapter, we report on the experiments that we conduct to evaluate

2 aspects of our diffusion models. First, how a continuous diffusion model

compares to a categorical diffusion model when working with graphs, which

are inherently discrete, and how different noise schedules affects these models.

The second aspect covers the generation of 3D conformations using our spatial

graph representation. In both experiments, we train the models for 1000 epochs

with a validation run every 5 epochs. During a validation run, 1000 molecules

are generated, and the validity, uniqueness, and novely metrics in Section 1.1

are reported. We use the metrics from the validation runs to determine the

best model for the generation process. In the generation process, we generate

10,000 molecules 10 times and calculate the mean and standard deviation

over the evaluation metrics. In the following, we cover various details of the

experiments to ensure the reproducibility of the presented results.

3.1 Testing Distributions and Noise
Schedules

In this experiment, we use the simple graph representation without angles,

M = (V,E). We focus on comparing the continuous and categorical versions

of the diffusion model and how these are affected by different noise schedules.

Additionally, we conduct the experiment with implicit and explicit hydrogen

atoms following the approach by Vignac et al., 2023 and Le et al., 2023. To

evaluate the generated molecules and compare our models, we use the validity,

uniqueness and novelty metrics presented in Section 1.1, as we focus on how

these diffusion models work in the domain of de novo drug design. When com-

paring our models with models proposed by others, we only use the V , Uv, and

Nu metrics from Section 1.1, as these are reported for the other models.
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3.1.1 Setup

For the parameters in the noise schedules, we use the same parameters for

both the continuous and the categorical version of the diffusion models. For

the linear noise schedule, we use βmin = 10−4 and βmax = 0.02. For the

cosine noise schedule, we use the proposed values of s = 0.008, βmin = 0.0 and

βmax = 0.999 (Nichol and Dhariwal, 2021). When working with the categorical

version of the diffusion model, we convert the encodings to a log soft one-hot

encoding following the implementation by Hoogeboom, Nielsen, et al., 2021.

This encoding replaces the 0’s in the one-hot encoding with 10−30 and applies

the log function to the encoding. We use the encoding when applying Gumbel

noise in (2.9) and (2.15).

The dataset used in the experiment is the QM9 dataset (Wu et al., 2017)

which is accessed through PyTorch Geometric (PyG). QM9 consists of close

to 130,000 small molecules that only use the heavy atoms carbon, nitrogen,

oxygen, and flour with each molecule having up to 9 heavy atoms. For the

QM9 dataset we use the first 100k molecules for the training data. To convert

a molecule from the QM9 dataset into a graphM = (V,E), we use the atom

types, bond types, and edge list, which are all included for each molecule.

Using the to dense adj function from PyG, we can convert the bond types

and edge list into a categorical adjacency matrix. In the adjacency matrix,

each entry is either 1 if the atoms are not connected or the category for the

bond type if the atoms are connected. Here, we use category 0 as padding,

such that the neural network can differentiate between the category for no

bond between existing atoms, 1, and the category for bonds for non-existing

atoms, 0.

3.1.2 Denoising Neural Network

For this experiment, we use the neural network shown in Figure 3.1 and Fig-

ure 3.2. For a forward pass through the neural network, we first embed the

graph using MLPs, one for each component of the representation. Next, we

apply 6 graph transformer layers, before decoding the features using different

MLPs. This is shown in the left part of Figure 3.1. Each graph transformer

layer first consists of a self-attention block and MLPs that utilise dropout and
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layer normalisation, as shown to the right in Figure 3.1.

MLP

Graph Transformer
Layer

Graph Transformer
Layer

MLP

Self-Attention

MLP

Figure 3.1: Left: Neural network architecture with repeating graph trans-
former layers. Right: Structure of a graph transformer layer.

The encoding and decoding MLPs consists of several linear layers with ReLU

activation functions in between. For the categorical diffusion model, we first

apply a learnable embedding for the atom types and bond types and a fixed

positional embedding (Vaswani et al., 2023) of the timesteps t as part of the

encoding MLPs. Additionally, we softmax encode the output of the decoding

MLPs, when using categorical diffusion.

The self-attention block computes attention scores based on the atom types, V,

and the bond types, E, as shown in the left part of Figure 3.2. The attention

scores are used for updating every component of the graph except the timestep

embedding, which is updated in a separate block. As the attention scores

have the same dimensions as our bonds, E, we use summation to reduce the

dimensions to fit the dimensions of the atom types, V. The updated atom and

bond types are obtained by flattening the heads of the corresponding scores and

incorporating the timesteps t into the result. In the self-attention block, we
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utilise FiLM as proposed by Perez et al., 2017, and defined as FiLM(Y1,Y2) =

Y1W1+(Y1W2)⊙Y2+Y2 for 2 sets of learnable weights W1 and W2.

Linear Linear

Product +
Scaling

FiLM

Softmax

Sum

Linear

Flatten

FiLM

Linear

Flatten

FiLM

Linear

PNA PNA Linear

Sum

Linear

Figure 3.2: Overview of the self-attention block of our graph transformer layer.

The timestep embedding is updated as shown in the right part of Figure 3.2.

Here, we only work with the timesteps, t, as a global feature but other features

can be added without the need for additional changes to the updating block. In

the block, we let the atom types, V, and bond types, E, influence the update.

We utilise PNA blocks as proposed by Corso et al., 2020 to let atom and bond

types influence the timesteps. PNA is defined as the concatenation of 4 aggre-

gations of the input, PNA(Y) = cat(max(Y),min(Y),mean(Y), std(Y))W

for learnable weights W.

In this experiment, for the continuous diffusion models we let the neural net-

work predict the added noise in the graph: (V′,E′) = (ϵ̂v, ϵ̂e). For the cat-

egorical diffusion models, we let the neural network predict the clean graph:

(V′,E′) = (v̂0, ê0).
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3.1.3 Results

The validity and uniqueness scores of our diffusion models for molecule gener-

ation without spatial information can be seen in Table 3.1. From the scores it

is clear that high validity and uniqueness is obtainable with our models, but

there is not a single model that outperforms the others across all the scores.

Training on molecules with implicit hydrogen atoms seems to improve the va-

lidity and the number of valid and unique molecules, Us. However, it also

affects the number of unique molecules compared with the valid molecules, Uv,

with a slight drop in the scores. In short, using implicit hydrogen for train-

ing seem to be the slightly better approach for this dataset with our models.

An added benefit of using implicit hydrogen is that the training and generat-

ing time is reduced threefold, even for QM9 which only contains very small

molecules.

Distribution Schedule V Us Uv

Categorical
Cosine 88.75 ± 1.01 87.35 ± 1.01 98.43 ± 0.15

Linear 89.59 ± 0.65 88.57 ± 0.62 98.86 ± 0.13

Continuous
Cosine 77.83 ± 2.23 76.25 ± 2.08 97.98 ± 0.19

Linear 74.40 ± 3.48 73.44 ± 3.36 98.72 ± 0.14

Categorical (No H)
Cosine 97.24 ± 0.19 90.64 ± 0.24 93.21 ± 0.20

Linear 97.22 ± 0.15 89.76 ± 0.19 92.33 ± 0.27

Continuous (No H)
Cosine 95.81 ± 0.16 91.61 ± 0.11 95.62 ± 0.14

Linear 95.47 ± 0.17 92.26 ± 0.30 96.63 ± 0.22

Table 3.1: Validity and uniqueness scores of the different diffusion models
used for molecule generation without spatial information. The best results are
marked in bold.

Looking at the choice of noise schedule, it can be seen from Table 3.1 that the

use of either the linear or cosine noise schedule is similarly effective. The choice

of noise schedule does not provide any benefit for the training or generation

time either.

In Table 3.2 the novelty scores for our different models can be seen. Similar

to Table 3.1, the choice of noise schedule does not seem to improve any of the

novelty scores for our models.
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Distribution Schedule Ns Nv Nu

Categorical
Cosine 49.27 ± 1.09 55.54 ± 1.79 56.42 ± 1.82

Linear 53.39 ± 1.44 59.60 ± 1.99 60.29 ± 2.00

Continuous
Cosine 51.73 ± 0.80 66.50 ± 1.49 67.87 ± 1.44

Linear 52.98 ± 1.64 71.26 ± 1.35 72.19 ± 1.32

Categorical (No H)
Cosine 39.39 ± 0.34 40.51 ± 0.37 43.46 ± 0.35

Linear 39.35 ± 0.58 40.47 ± 0.60 43.84 ± 0.59

Continuous (No H)
Cosine 52.31 ± 0.40 54.59 ± 0.46 57.10 ± 0.45

Linear 53.03 ± 0.50 55.55 ± 0.53 57.48 ± 0.52

Table 3.2: Novelty scores of the different diffusion models used for molecule
generation without spatial information. The best results are marked in bold.

A comparison of our models with state of the art models can be seen in Ta-

ble 3.3. Here, we compare our models with DiGress (Vignac et al., 2023) and

EQGAT (Le et al., 2023). In this comparison, we fix the noise schedule to

the cosine variant and use the models trained with explicit hydrogen. The

superscript h in the Nh
u indicates that the novelty is calculated with explicit

hydrogen atoms, and the absence of said h indicates that implicit hydrogen

atoms are used. The results show that EQGAT is superior when it comes to

validity and uniqueness, V and Uv, but this is also expected, as they use post

processing in their evaluation pipeline that improves their validity and unique-

ness scores. Looking at the novelty scores, both the categorical and continuous

version of our model largely outperforms DiGress and EQGAT.

Model V Uv Nh
u Nu

Categorical 88.75 ± 1.01 98.43 ± 0.15 75.28 ± 0.41 56.42 ± 1.82

Continuous 77.83 ± 2.23 97.98 ± 0.19 85.93 ± 0.41 67.87 ± 1.44

DiGress 89.8 97.8 33.4

EQGAT 98.96 100.00 64.03

Table 3.3: Comparison of our models and other proposed models using the
validity, uniqueness, and novelty scores also reported by the other proposed
models. Metrics from other proposed models are presented without validation
directly from the literature. Missing values indicate that the authors do not
report these metrics. The best results are marked in bold.
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Table 3.4 shows the percentage of valid, unique and novel molecules out of all

the generated molecules for the different models. Here, both our models per-

forms slightly better than EQGAT when using explicit hydrogen. Compared

to DiGress that uses implicit hydrogen, both of our models perform better.

Both EQGAT and DiGress generate 10,000 molecules multiple times to report

the mean.

Model Nh
s Ns

Categorical 65.76 ± 0.67 49.27 ± 1.09

Continuous 65.52 ± 1.88 51.73 ± 0.80

DiGress 29.33

EQGAT 62.71

Table 3.4: Comparison of our models and other proposed models using the
average percentage of valid, unique and novel molecules generated. Metrics
from other proposed models are presented without validation directly from
the literature. Missing values indicate that the authors do not report these
metrics. The best results are marked in bold.

The drop in novelty from using explicit hydrogen atoms to implicit hydrogen

atoms, seen in both Table 3.3 and Table 3.4, is a result of some of the generated

molecules with explicit hydrogen atoms being charged molecules. As QM9 does

not include charged molecules, all of the generated charged molecules will be

considered novel. Removing the hydrogen atoms and making them implicit

removes the charge from the molecules and results in fewer molecules being

novel. An illustration of the scenario can be seen in Figure 3.3.

Figure 3.3: Left: generated molecule. Middle: molecule without hydrogen.
Right: molecule from dataset.

Comparing the molecules in the left and right of Figure 3.3, it is clear that

the generated molecule to the left is missing 3 hydrogen atoms compared with

the molecule from the dataset to the right. Two of the hydrogen atoms are

missing in the left part of the generated molecule and one hydrogen atom is
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missing in the right part. However, removing the hydrogen atoms from both

the generated molecule and the molecule from the dataset results in the same

molecule, seen in the middle of Figure 3.3.

3.2 Testing Molecule Generation in
3D-space

In this experiment, we evaluate the 3D conformations of the generated molecules

using our spatial graph representation,M = (V,E,A,D). We test both a con-

tinuous and categorical version of the angles, A and D, but fix the atom and

bond types, V and E, to use categorical diffusion. Additionally, we fix the noise

schedule to the cosine schedule. The fixing of the distribution and noise sched-

ule is based on the results from the previous experiment where there is only a

small difference between the combinations of distribution and noise schedule.

Taking this into account, we refer to the models based on the distribution used

for the spatial information, i.e. when reporting the results, categorical refers

to the diffusion model using categorical diffusion for the angles.

For evaluation of the 3D conformations of the generated molecules, we use

the energy measures and RMSD score from Section 1.1. When calculating

the RMSD, we compare the 3D conformation of the generated molecule with

the 3D conformation of the energy minimised version of the same generated

molecule. We use RDKit with the MMFF94 setting to compute the energy

minimised conformations and the energy of the 3D conformations.

3.2.1 Setup

As described in Section 3.1.1, we use s = 0.008, βmin = 0.0 and βmax = 0.999

for the cosine noise schedule, and we employ a log soft one-hot encoding

when using categorical diffusion. Additionally, we also use QM9 for this

experiment. In addition to the atom types, bond types and edge list men-

tioned in Section 3.1.1, the molecules in QM9 includes Cartesian coordinates

in 3D-space. To convert each molecule into our spatial graph representation,

M = (V,E,A,D), we perform the same transformations for V and E, as de-

scribed in Section 3.1.1, and use the calculations described in Section 1.2.2 to
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get A and D from the Cartesian coordinates and the edge list.

3.2.2 Denoising Neural Network

For this experiment, we extend the neural network shown in Figure 3.1 with

the angles A and D from our spatial graph representation. This extension is

shown in Figure 3.4.

MLP

Graph Transformer
Layer

Graph Transformer
Layer

MLP

Self-Attention

MLP

Figure 3.4: Left: Neural network architecture with repeating graph trans-
former layers. Right: Structure of a graph transformer layer. Both extended
with spatial information.

In the neural network in Figure 3.4, we employ MLPs for encoding and de-

coding the input and output at the beginning and end of the network, and

we utilise 6 graph transformer layers in the middle. Similarly, when working

with categorical diffusion, we use learnable embeddings for V, E, A, and D

and fixed positional embedding to the timesteps, t, for the encoding MLPs.

Likewise, we use softmax at the end of the decoding MLPs.
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The extended self-attention block can be seen in Figure 3.5. As shown, the

block for updating the timestep embedding is unchanged compared to the block

presented in Figure 3.2. Similarly, the updating of the atom and bond types,

V and E, are unchanged and not influenced by the extension with angles.

When updating the angles, A and D, in the self-attention block, we utilise

the attention scores from the atom types and bond types. We employ a FiLM

module between the current attention scores and the angles, before reducing

the dimensions, using the mean, to fit the dimensions of A and D. Lastly, we

flatten the heads of the scores and incorporate the timesteps t to finish the

update of the angles.

Linear Linear

Product +
Scaling

FiLM

Softmax

Sum

Linear

Flatten

FiLM

Linear

Flatten

FiLM

Linear

FiLM FiLM

Flatten

FiLM

Linear

Flatten

FiLM

Linear

Mean Mean

PNA PNA Linear

Sum

Linear

Figure 3.5: Overview of the self-attention block of our graph transformer layer
extended with angles.

When using continuous diffusion for the angles, we let the neural network

predict the added noise to the angles: (V′,E′,A′,D′) = (v̂0, ê0, ϵ̂a, ϵ̂d). When

using categorical diffusion for the angles, we group the angles into intervals of

5 degrees to get the categories and let the neural network predict the clean

angles: (V′,E′,A′,D′) = (v̂0, ê0, â0, d̂0). The grouping into intervals of 5

degrees results in Ka = 37 categories for the triplet angles and Kd = 74

categories for the dihedral angles. During generation, we will use the mean of

the intervals as the angle.
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3.2.3 Results

The validity and uniqueness in Table 3.5 have seen small changes compared

to the results in Table 3.1. Additionally, comparing with the novelty scores

in Table 3.2, we see a notable improvement. Importantly, there is no notable

drop in the measures when adding the spatial information to the graph repre-

sentation.

Model V Uv Nh
u Nu

Categorical 84.68 ± 0.69 99.33 ± 0.06 92.21 ± 0.29 90.23 ± 0.30

Continuous 92.92 ± 0.55 98.42 ± 0.16 97.42 ± 0.14 89.83 ± 0.54

Categorical (No H) 97.99 ± 0.12 97.27 ± 0.13 86.64 ± 0.27

Continuous (No H) 97.52 ± 0.14 97.58 ± 0.19 86.44 ± 0.33

Table 3.5: Validity, uniqueness and novelty scores for our models trained with
spatial information. The missing novelty entries is due to the models being
trained without hydrogen atoms. Therefore, we cannot compute the novelty
with hydrogen atoms. The best results are marked in bold.

In Table 3.6, we present the energy metrics and the RMSD for our models.

It can clearly be seen that we do not in general generate 3D conformations

that are minimal energy conformations, and we generate 3D conformations

with energies several order of magnitudes larger than the dataset. However,

when the 3D conformations are energy minimised, we match the dataset more

closely. Looking at the RMSD for the generated molecules, only small changes

are needed for the generated 3D conformations to be transformed into the

energy minimised conformations. Here, we consider small changes equivalent

to an RMSD score below 2 angstroms following Ding et al., 2016.

Model E Emin Estrain RMSD

Dataset 33.02 ± 36.68 22.66 ± 34.41 0.61 ± 0.82 0.24 ± 0.23

Categorical 125880 ± 5771 28.66 ± 1.66 7141 ± 322 1.54 ± 0.00

Continuous 61241 ± 5440 22.86 ± 0.75 3407 ± 310 1.31 ± 0.01

Categorical (No H) 79446 ± 9342 13.37 ± 0.43 9175 ± 1164 1.14 ± 0.00

Continuous (No H) 67649 ± 6879 14.13 ± 0.26 7620 ± 783 1.11 ± 0.00

Table 3.6: Energy metrics (kcal/mol) and RMSD (Å) for our models working
on graphs with spatial information.
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The RMSD also indicates that the models are able to generate good 3D con-

formations, but considering the energy as well, it is not the general case that

the 3D conformations are great. Figure 3.6 shows some of the sensible gen-

erated 3D conformations for each of the models, where we see no clashes of

atoms, no stretched bonds and low energies. From left to right in Figure 3.6,

the energy of the molecules are 137.60, 35.93, 43.46, and 35.56. Similarly, the

RMSD score for the molecules are 0.85, 0.36, 0.89, and 0.46.

Figure 3.6: Showing examples from the generated molecules with sensible 3D
conformations with the energy minimised versions being shown in green. From
left to right the generated molecules are from the model: Categorical, Contin-
uous, Categorical (No H), Continuous (No H).

Figure 3.7 shows examples of generated molecules where small errors in the 3D

conformations result in very high energies. From left to right in Figure 3.7, the

energy of the molecules in millions are 0.12, 3.33, 22.26, and 1.64. Similarly,

the RMSD score for the molecules are 1.26, 0.99, 1.57, and 1.44.

Figure 3.7: Showing examples from the generated molecules where the models
generated sensible 3D conformation with only 1-2 small errors resulting in
very high energies. The energy minimised versions are shown in green. The
small errors are marked with orange circles. From left to right the generated
molecules are from the model: Categorical, Continuous, Categorical (No H),
Continuous (No H).
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Other examples of small errors greatly increasing the energies can be seen in

Figure 3.8. These examples show how some molecules have stretched bonds

between two atoms while the remaining molecule have a sensible 3D confor-

mation with more sensible bond lengths. This structure is the most commonly

found error in the generated molecules. From left to right in Figure 3.8, the

energy of the molecules in millions are 0.44, 1.45, 0.34, and 2.08. Similarly,

the RMSD score for the molecules are 1.10, 2.10, 1.45, and 1.81.

Figure 3.8: Showing examples from the generated molecules where the bond
lengths are stretched, with the energy minimised versions being shown in green.
From left to right the generated molecules are from the model: Categorical,
Continuous, Categorical (No H), Continuous (No H).
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Chapter 4

Discussion

In this chapter, we cover some interesting points from our experiments based

on the presented results. Additionally, we discuss whether our results show any

basis for choosing one distribution over another in the diffusion process. Lastly,

we elaborate on several problems revolving around our choice of representation

for the spatial information in a molecule and the algorithms we employ with

this representation.

4.1 Experiment Results

Usually for a classification task in machine learning, the loss function reflects

part of, if not the complete, goal, such that the neural network is in some

way knowledgeable about the metrics it will later be evaluated and tested on.

However in our case, the goal is to generate valid, unique, and novel molecules,

but this goal is not directly reflected in the loss functions in Section 2.4. The

loss functions are instead tailored to train the neural network to be a good

approximator of the distribution over the dataset. With this in mind, it is

assumed that training on a dataset with valid and unique molecules, the de-

noising neural network will learn to be a good approximator for generating

valid and unique molecules. The novelty is then obtained by the randomness

of the generation process as explained in Section 2.6. Looking at the results

in Section 3.1.3, it can be seen that high scores in the 3 metrics are achiev-

able even with this assumption and not using the metrics in the loss functions

directly.

Between the validity, uniqueness and novelty from the first experiment, Ta-

ble 3.1 and Table 3.2, and the second experiment, Table 3.5, we see an im-

provement, especially concerning the uniqueness and novelty. This may seem
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a bit counter-intuitive, as these metrics only consider the atoms and their con-

nectivity. However, we believe the addition of the spatial information allows

the deniosing neural network to better learn valid molecular structures without

being tied to generating molecules from the dataset.

Similar to the validity, uniqueness, and novelty scores, the energy and RMSD

metrics are not part of the loss functions, when training the diffusion models

for the graphs with spatial information. Again, it is assumed that the model

will learn to perform well on these metrics as it learns the distribution over

the training data. While we saw this for the validity, uniqueness, and novelty

metrics, it does not seem to work as well for the energy and RMSD metrics

using our spatial graph representation. It could be that integrating the metrics

directly in the loss will improve the results, otherwise another representation

for the spatial information might be needed.

4.2 Continuous vs. Categorical

In Section 3.1.3, we see the results of using a categorical and continuous distri-

bution in our diffusion model working with molecules as simple graphs. Com-

paring the results from the two distributions, it seems, based on the validity

measure, that using a categorical distribution for discrete features such as atom

and bond types is the better choice. However, for our goal of generating valid,

unique and novel molecules, the choice between the use of a categorical or con-

tinuous distribution is not important. This is clear as using either distribution

we generate roughly the same valid, unique, and novel molecules.

An area where the use of a categorical distribution instead of a continuous

distribution for the atom and bond types has its benefits, is convergence time.

During our experiment presented in Section 3.1, the categorical diffusion mod-

els converged after approximately 200-300 epochs, where the continuous diffu-

sion models usually needed approximately 800-900 epochs. This is a notable

difference that favours the categorical diffusion models when training time is

an important aspect of the task at hand.

In Section 3.2.3, we see the results of generating molecules in 3D-space using

our spatial representation, M = (V,E,A,D) of a molecule. In this experi-
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ment, we fixed the distribution of V and E to be categorical, but we tested

how using categorical or continuous diffusion on A and D affected the results.

Comparing the use of the two distributions for the angles, it seems that the

use of continuous diffusion for the angles is slightly better than categorical.

At least based on the non-minimised energy and the RMSD scores from Ta-

ble 3.6. This is probably due to angles being inherently continuous values,

and, therefore, the denoising neural network might be able to learn a more

precise approximation of the good angles for the 3D conformations.

The difference between the use of continuous and categorical diffusion for the

angles might be due to our grouping of angles into intervals of 5 degrees. This

grouping looses some precision of the angles for the categorical diffusion, but

it is uncertain whether grouping into smaller or larger intervals will improve

the generated 3D conformations. The grouping into intervals of 5 degrees was

chosen to keep the number of categories relatively small during training. Addi-

tionally, training and convergence time is an area where the use of continuous

diffusion for the angles is better. Training times for continuous without hy-

drogen atoms is 3 times faster than categorical without hydrogen atoms, while

training times for continuous with hydrogen atoms is 10 times faster than cat-

egorical with hydrogen atoms. Moreover, we see convergence for the use of

continuous angles at around 200-300 epochs while convergence for categorical

angles happens at around 800-900 epochs. Note, for this experiment the atom

and bond types are fixed to categorical diffusion and only the distributions for

the angles are varied.

Based on the results from our experiments in Section 3.1.3 and Section 3.2.3,

it seems that using a distribution for the diffusion process that follows the

inherent distribution of an element yields better results. For example, using

categorical diffusion for discrete values and continuous diffusion for contin-

uous values. It also seems that doing this results in faster convergence, as

described above. The first experiment saw faster convergence with categorical

diffusion for the atom and bond types, while the second experiment saw faster

convergence with continuous diffusion for the angles and the fixed categorical

diffusion for the atom and bond types.
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4.3 Spatial Graph Representation

When choosing a representation for molecules in 3D-space, the spatial informa-

tion can be captured either with external or internal coordinates. For external

coordinates, the Cartesian representation is often used, and for internal co-

ordinates, the Z-matrix is often used. In this project, we propose another

representation of the internal coordinates, the spatial graph representation.

In the Z-matrix only one ordering of the atoms is considered, and the same

molecule can be represented by multiple different Z-matrices. The same is true

for Cartesian coordinates, where any E(3) transformation on the Cartesian co-

ordinates is still the same molecule, just transformed in 3D-space. Therefore,

one needs to make sure that the model is equivariant to E(3) transformations

(Guan, Qian, et al., 2023; Hoogeboom, Satorras, et al., 2022). To avoid the

problem of needing an equivariant model and only considering one ordering

of the atoms, as in a Z-matrix, we propose the spatial graph representation,

M = (V,E,A,D), where for each molecule we consider multiple different

triplet angles and dihedral angles. However, our spatial graph representation

introduces a new problem by imposing a dependency between E and A, and

E and D. These dependencies are contained in the functions IndexA and

IndexD. The functions are used to index angles, triplets and dihedral, in a

row in either A or D such that a molecule can be constructed in 3D-space

from our spatial graph representation. Naturally, a triplet angle consists of

3 atoms, and a dihedral angle consists of 4 atoms, but angles in A and D

are retrieved by a single reference atom and the index from either IndexA or

IndexD. This means that the functions IndexA and IndexD have to specify

an order of the angles, which we do based on E, creating the aforementioned

dependencies. To avoid the dependencies, the naive approach would be to use

a matrix of size RN×N×N for A and RN×N×N×N for D. However, the size of

such matrices will explode for large molecules, and they would be extremely

sparse matrices, as an atom is generally only connected to 1-4 other atoms in a

molecule. A different approach would be to investigate if any alternative graph

representations exists, where the angles are not represented in rows for a single

reference atom. A non-conventional graph representation with angles could be

to consider triplets of atoms as the smallest unit instead of atoms. With this

representation, we remove the dependencies and do not have an exploding rep-

resentation as for the naive approach above. However, due to time constraints
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of the project, we were unable to experiment with such a representation and

will leave that for future works.

When converting from our spatial graph representation to Cartesian coordi-

nates, we first convert our representation to a Z-matrix, and the Z-matrix is

converted to Cartesian coordinates using the NeRF method. The Z-matrix

only specifies each atom once, each atom has its own row, in relation to 1

other atom with a bond length. This becomes a problem when generating

new molecules, as all atom orderings of the generated spatial graphs does not

result in a unique 3D conformation of a molecule in a Z-matrix. This is due

to the inherent randomness of the generation process using diffusion and the

allowed degree of ordering freedom our spatial graph representation has for the

angles. In our case, the ordering is based on the Next function, which means

changing the ordering inside the Next function would result in different 3D

conformations with different energies for the generated molecules. The order-

ing is especially important when an atom is connected to more than 1 other

atom, as when inserting an atom in the Z-matrix, only one of its bond lengths

will be represented. As such, the bond lengths of the other bonds can easily

be violated by either shrinking or stretching the bonds. This problem is the

one we found occurring the most and is illustrated in Figure 3.8. A naive way

to counteract this problem would be to change our conversion algorithm to

compute the Cartesian coordinates directly from our spatial graphs. However,

in such an algorithm, finding a set of Cartesian coordinates that adheres to all

the bonds, triplet angles and dihedral angles quickly explodes computation-

ally as the number of atoms in the molecules increases. Additionally, we would

like the model to generate 3D conformations that are sensible instead of using

a computationally expensive algorithm to check for orderings that result in

sensible 3D conformations. Moreover, with such a computationally expensive

algorithm, one could use a random starting point instead of the output of a

machine learning model, making the model obsolete.
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4.4 Neural Network Architecture

Inside the self-attention block of the neural network seen in Figure 3.5, it can

be seen that the angles do not influence the atom types, bond types or the

timestep embeddings in a forward pass. Normally, every component would

influence the computed attention scores in a transformer. However, when con-

ducting experiments with an architecture that used the angles for computing

the attention scores and updating the timestep embeddings, every metric dur-

ing evaluation dropped tremendously. Therefore, we chose to exclude the an-

gles from the attention scores and updating of the timestep embeddings.

The drop in the evaluation metrics, when using the angles in the attention

scores, is most likely a result of how we represent triplet angles and dihedral

angles. In our spatial graph representation of a molecule in 3D-space, M =

(V,E,A,D), the triplet angles, A, and dihedral angles, D, are represented in

rows based on a reference atom. However, in reality A and D are not solely

based on a single reference atom as angles are formed by either triples or 4-

tuples. To counteract this problem, we would need another representation for

the angles, as discussed in Section 4.3.

When we batch the graphs in our diffusion models, we use the largest graph,

based on the number of nodes, to determine the size of the matrices. We then

pad the matrices for the smaller graphs to fit the dimensions of the largest

graph, essentially representing non-existing nodes in the smaller graphs. As

such we need to mask these non-existing nodes in the smaller graphs during

the diffusion processes and inside the neural network. This is also the case for

non-existing edges in our adjacency matrix, E, and the angles in our A and

D matrices. As we allow the diffusion process to add and delete edges in E,

and we base our representation of the angles, A and D, on our edges, E, we

run into masking problems inside our self-attention block found in Figure 3.5.

Inside the self-attention block the edges, E, are embedded; therefore, we cannot

calculate the number of angles for each reference node and mask the angles

accordingly. This makes it impossible for the denoising neural network to know

which angles are relevant and which are not. To allow for correct masking of

the angles inside the neural network, while keeping the current spatial graph

representation, we would need to change the architecture of the neural network

to handle the edges separately from the angles.
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Chapter 5

Conclusion

In this project, we have shown how different factors affect a diffusion model

within the domain of generating molecules using graphs. We have shown how

a continuous diffusion model compares to a categorical version, when working

with de novo drug design, and how these models are affected by the use of

different noise schedules. Using categorical diffusion for de novo drug design

following the approach by Hoogeboom, Nielsen, et al., 2021 outperforms the

use of continuous diffusion, when representing molecules as simple graphs, by

producing similar results in a shorter amount of time. The use of different

noise schedules clearly affects the diffusion models, but for this domain the use

of one schedule instead of another does not ensure improved results across all

reported metrics, i.e. validity, uniqueness and novelty.

In addition to the comparison of a continuous and categorical approach to

diffusion, we also present a novel approach to generating 3D conformations of

molecules. We introduce a spatial graph representation, M = (V,E,A,D),

that extends the common graph with triplet angles, A, and dihedral angles,

D, to capture the molecular internal coordinates. With the use of both contin-

uous and categorical diffusion, we can utilise this spatial graph representation,

alongside presented conversion algorithms, to generate new 3D conformations

of molecules. During experimentation, we found that the use of continuous dif-

fusion for the angles, A and D, greatly improves training and generation time,

but only slightly improves on the presented metrics. Our approach shows great

promise for molecule generation in 3D-space, but introduces a few problems

inherent to the logic of the representation. To counteract these problems,

we would like, for future works, to experiment with different representations

for the molecular internal coordinates that could solve these problems either

partly or entirely.
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