Summary

In a growing digital age, more and more data is being sent through modern data networks, ap-
proaching the limits of traditional networks. Research has therefore focused on ways to decrease the
bottle-necking of traditional routing technology, instead opting for the use of light in optical fibers
to transmit data at very high bandwidth. However, while bandwidth is important, creating a failure
resilient network is just as critical in order to uphold quality-of-service standards and reliability.
While the field of failure resilience is a mature topic for traditional networks, these methods are
not one-to-one applicable in optical networks. Furthermore, existing research for failure resilience in
optical networks relies on over-allocation of resources, which hinders the overall capacity of the net-
work. As such, ensuring failure resilience with efficient resource allocation still remains a challenge
in optical networks.

In this paper, we set out to explore how to heighten the network resilience of elastic optical
networks. An elastic optical network consists of routers connected by links, where each link has a
capacity for data transmission represented by a number of spectrum slots. In the network, data is
represented by traffic demands that each has an ingress and egress router in addition to an amount of
data being transported through that demand. Given an optical network and a set of traffic demands,
the task is to find a path (sequence of links) and spectrum allocation (sequence of slots) for each
demand such that the highest used slot in the entire network is minimized. To find valid solutions
to the RSA problem, three constraints are enforced: (1) for a given demand, the spectrum allocation
must be continuous along the edges of the assigned path; (2) slots allocated to a demand must be
consecutive, and (3) any two demands cannot occupy the same slot on any link in the network.

We encode the RSA problem as a Boolean function with Boolean variable encodings of the
possible path assignments and slot allocations. The idea is that the assignments to these variables
represent valid solutions to the given RSA problem if that assignment makes the Boolean function
evaluate to true. We use the data structure Binary Decision Diagrams (BDDs) to efficiently compute
and store all valid assignments to a given Boolean function. Thereby, in contrast to previous work
on solving the RSA problem, we are able to compute and compactly represent all solutions to a
given RSA problem.

It is, however, not required to have all solutions represented for the purpose of failure resilience,
and we can thus speed up the build time for our BDDs by limiting the number of solutions that
must be represented. In particular, the baseline BDD contains redundant channel assignments that
can be pruned without losing the required solutions. Our results show that that these improvements
increase the number of demands that can be solved. Compared to ILP models, we are able to solve
for fewer demands, but this is expected, as these approaches only find singular solutions.

From solving the RSA problem, the result is a BDD that has at least one optimal solution for
each possible path assignment and it can thus be used when optical networks experience failures,
meaning some links become unavailable during transmission. Handling these failures fast is crucial
and creates a necessity for link-failure resilience. Link-failure resilience entails being able to find a
new solution (path and slot allocation) if one exists for a given failure scenario. In turn, k-link-failure
resilience entails being link-failure resilient for up to k failed links, and perfect resilience entails the
former for an arbitrary number k. Our work stands in contrast to previous work, which focuses on
single link failures or k-link failures for non arbitrary values of k.

Querying the BDD for a new solution in case of link-failures consists of two steps. (1) finding
the subtree that contains the solutions which do not use any of the failed links, (2) is finding an
optimal solution in this subtree. We implement 2 ways of the first querying step: (1) We prune invalid
solutions by disallowing all paths using failed links. (2) We use variables to directly encode in the
BDD possible edges that can fail. Querying then works by only querying on those added auxiliary



variables. Our results, show that method (2) incurs a longer build time, but drastically improves the
query time.

We also show how an intermediate step can be added to the querying process, where the subtree
can be further pruned to only contain solutions that comply with a specific property. In our case,
the property enforced is that the demands which are unaffected by the specific link failures changes
neither their path or spectrum allocation. This intermediate pruning, however, induces a longer
query time.

We implement our BDD based approaches to the RSA and k-link failover problem in a prototype
implementation of the tool ExpectAll, and compare it with an state-of-the-art ILP model on two
metrics. Firstly, the time it takes to find one solution in link failure scenarios, where it is found that
the ILP model is too slow for practical use, while both our query approaches are capable of finding
a new solution within well-established expected recovery times. Secondly, we compare the times it
takes to build the BDDs with the time to precompute the required solution for all k-link failure
scenarios. We find that the ILP approach is feasible for small k, but having to precompute for an
arbitrary high number of link failures takes too long due to the exponentially many combinations of
link failures the ILP have to find a solution for. Our approach of computing the BDD representing
many solutions at once and querying when a link failure occurs, is thus able to outperform the ILP
model for a small number of critical demands.
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Abstract. With the increasing demand for higher bandwidth and quality of service in modern
networks, how to achieve fast, resilient networks is an important field of research. Here, recent
advances in elastic optical networks have enabled fine-grained resource allocation for traffic
demands, which introduced the Routing and Spectrum Allocation (RSA) problem. State-of-
the-art methods for finding optimal solutions to the RSA problem are too slow for real-time
practical applications, such as ensuring failure resilience, and faster methods cannot guarantee
optimal resource allocation. Moreover, current methods for ensuring failure resilience in classic
networking cannot be directly adapted to optical networks, and current methods for optical
networks generally rely on over allocation of the spectrum to ensure rapid recovery. To this end,
we present the tool ExpectAll, a novel approach based on binary decision diagrams (BDDs)
to ensure failure resilience for multi-link failures without resorting to spectrum overallocation.
Our method efficiently computes solutions to the RSA problem, facilitating optimal failover
solutions for any failure scenario involving up to k links. ExpectAll surpasses state-of-the-
art methods in both the speed of finding a single optimal solution during a failure and the
preparation time required to compute sufficient solutions to ensure resilience for arbitrary
large k-link failures. Additionally, since ExpectAll can compute and represent all potential
solutions, it is adaptable for network operators to find solutions that meet specific desired
properties.

Keywords: binary decision diagrams, routing and spectrum allocation, RSA, elastic optical
network, failover, link failure resilience

1 Introduction

With more than two-thirds of the global population having access to the internet and the increasing
amount of data that follows from more and more devices being connected, modern data networks
are put under pressure, heightening the need for increased bandwidth and network resilience [1].
Traditionally, optical networks use wavelength-division multiplexing (WDM) [2] in order to split the
frequency spectrum into slots of 50 GHz. As the amount of traffic has increased and is only predicted
to increase more in the future, a new flexible paradigm has been proposed using elastic Flexgrid
technology to enable more fine-grained splitting of the bandwidth down to 6.25 GHz slots [3].

In elastic optical networks, data is transported along lightpaths, which are connections between
two access points in the network using one or more of the spectrum slots. Given a set of traffic
demands, the routing and spectrum allocation (RSA) problem involves finding a lightpath in the
form of a route through the network and a set of spectrum slots for each demand. Assuming that
a network does not utilize optical converters, a solution to the RSA problem must comply with the
constraints of:

— Continuity: A lightpath must use the same spectrum slots throughout its entire flow through
the network.

— Contiguity: The spectrum slots used on a lightpath must be consecutive.

— Non-overlapping: For each link in the network, a spectrum slot can be used by at most one
lightpath.
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With the increasing scale of networks, and the amount of data that can be transported through
an elastic optical network, the consequences of link outages become more severe [4, 5]. Examples
include loss of business revenue and disruption of safety-critical networks [6, 7, 8, 9]. It is therefore
important that networks quickly recover from link failures to reduce the consequences by finding an
alternative routing for the demands affected by the link failures [10]. Current approaches achieve
quick recovery times for link failures by creating a backup path for each demand [11, 12] through
over-allocation, thereby wasting network resources. Furthermore, this approach can only handle one-
link failures, but multiple links are likely to fail [13]; hence, preparing for only one link failures can be
inadequate. Ensuring resilience to multiple link failures with quick recovery times in elastic optical
networks therefore presents a relevant challenge in the foreseeable future.

Our Contributions. We design and implement ExpectAll [14], a novel approach using Binary Decision
Diagrams (BDDs) to ensure failure resilience in elastic optical networks. The tool efficiently finds
and compactly stores all solutions to the RSA problem, which can be leveraged to quickly provide
real-time solutions to multiple link failure scenarios. To this end, our contributions are as follows.

As our first contribution, we investigate the use of integer linear programming (ILP) for ensuring
failure resilience in optical networks without over-allocation. We experiment on two real network
topologies for multiple-link failures and show that ILP is impractical for ensuring failure resilience,
both in terms of the time for synthesizing new network configurations as well as memory require-
ments.

As our second contribution, we leverage the technology of BDDs to solve the RSA problem for
the purpose of failure resilience, culminating in the tool ExpectAll. We prove that our solution finds
all solutions and present improvements to increasing its scalability on the number of traffic demands.

As our third contribution, we showcase two applications of the BDD solution for ensuring re-
silience for multiple-link failures. The first application can handle an arbitrary number of link failures,
whereas the other application provides quicker recovery times at the cost of being able to handle at
most k link failures for a fixed k. The two applications are compared to the ILP approach, where it
is clear that both outperform the ILP when comparing how quickly they are able to recover from
link failures, as well as how they scale on the number of link failures.

Related work. The Routing and Wavelength Assignment (RWA) problem is a well-studied [15, 16,
17], NP-complete problem [18] in optical networks, dating back to the 90’s [17], where the optical
networks used Wavelength Division Multiplexing (WDM) technology [2] to partition the spectrum
into a fixed number of wavelengths. Later on, the notion of fine-grained spectrum allocation was
introduced for elastic optical networks as an improvement on the WDM optical networks. As a
result, the routing and spectrum allocation (RSA) problem comes as an extension to the traditional
RWA problem for WDM networks, due to the introduction of fine-grained spectrum allocation. The
RSA problem is relatively new, dating back to the early 2010’s, and has been proven to be NP-hard
[19]. In the first iterations of solutions to the problem, Integer Linear Programming (ILP) is applied
to formalize the lightpath constraints with the goal of minimizing the maximum slot index used
on the spectrum [19, 20, 21]. Later iterations of ILPs focus on making the ILP formulations more
concise and efficient; examples are Zhang et al. [22], which improves upon the work done in [20],
Velasco Esteban et al. [23] that introduce the notion of channels to handle the spectrum contiguity
constraint outside of their ILP formulation, and Wang et al. [24] in which they contribute with a
relaxed ILP problem to establish a lower bound. In contrast to our solution, the ILP implementations
are effective at finding a single optimal solution to a given RSA problem for a non-trivial number
of demands. However, we find all optimal solutions and exceed the ILPs in recovery time. While
ILP formulations find optimal solutions, they are generally not applicable for time-critical purposes,
such as reacting to link failures. For more scalable approaches to solve the RSA problem, heuristics
have been proposed [19, 25, 26], as well as genetic algorithms [3, 27, 28] and reinforcement learning
models [29, 30]. These approaches trade off optimality for computation speed, where the genetic
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algorithms tend to be closer to achieving optimal solutions than the heuristics and reinforcement
learning approaches at the cost of being computationally slower. In contrast to these approaches,
we are able to find all optimal solutions for path and spectrum allocations, which can prove useful
for handling changes in a network setting, such as quickly recovering from link failures.

While the study of link failure resilience in traditional networks is well-researched (see overview
in [4, 5]), the approaches cannot be applied one-to-one in elastic optical networks due to the addi-
tional complexity introduced by the aforementioned constraints. Furthermore, the approaches that
have been proposed for ensuring link failure resilience in optical networks generally only prepare for
one-link failures by introducing backup paths [11, 12, 31, 32, 33]. For example, Castro et al. [11]
propose an MILP formulation that maximizes the total bitrate recovered in case of a single-link
failure scenario by allocating a backup path for each demand such that when a demand is affected
by a link failure, it can quickly switch over to its backup path, and Singhal et al. [33] and Gao et al.
[31] expand upon this idea with the notion of the more resource-friendly cross-sharing, where groups
of demands with link-disjoint primary paths are allowed to share a backup path. These approaches
using backup paths assume one link failures, but some research (see e.g. Athe and Singh [34] and
Li et al. [35]) has been carried out to extend the failure resilience to two link and network-bound
link failures. Common for the current approaches to ensuring failure resilience is that they require
resources to always be allocated for both the primary and backup paths in the network to ensure
quick failover, which entails that they do not provide optimal solutions. Our approach finds optimal
solutions while being able to handle more than one link failures without having to resort to resource
over-allocation.

Organization. The rest of the paper is organized as follows. First, we formally define the RSA problem
and the problem of handling link failures in Section 2. Then, in Section 3, we present and evaluate
how to use an ILP formulation to handle link failures. In Section 4, we encode the RSA problem in
BDDs which we then use in Section 5 to handle link failures. Finally, in Section 6, we compare our
BDD-based approach with the ILP approach, and conclude on our work in Section 7.

2 Problem Definition

A network topology is a tuple G = (V, E, src, tgt) where V is a finite set of nodes, F is a finite set of
edges and sre,tgt : E — V denote the source and target of an edge, where src(e) # tgt(e).

Let a path be a sequence of connected edges m = ejeaes...e,, such that tgt(e;) = sre(e;41) for 1 <
i < n. Then, let e € m denote that edge e is part of path 7, the mappings first, last : Paths — F
denote the first and last edge on the path, respectively, and = N7’ denote the set of edges that two
paths share. A simple path is a path where src(e’) # src(e) and tgt(e) # tgt(e’) for all pairs of
distinct edges e, e’ € m; let Paths be the set of all simple paths in the topology G.

We assume a finite set of demands D with source and target nodes represented by the mappings
ingress,egress : D — V respectively, and size : D — N representing the amount of data of a
demand.

Furthermore, we assume a finite set of spectrum slots F' = {1, 2, .., fimaz }- Finally, a channel is a
finite set C' C F' of consecutive slots, and C is the set of all channels. Then, all possible channels for
a demand is represented by the mapping channels : D — 2C.

Definition 1 (Routing and Spectrum Allocation Problem).
Given as input

— a network topology G = (V, E, sre, tgt) with simple paths Paths,

— a set of demands D = {dy,da,...,dm},

— a mapping DPaths : D — 2P of quailable paths for each demand d € D, where for every
7w € DPaths(d) it holds that src(first(m)) = ingress(d) and tgt(last(m)) = egress(d),
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— a finite set of available slots F = {1,2, .., frmax }»
— and a modulation mapping A : Paths — N which returns the number of slots required per sent
unit of data on a path,

find a solution (P,w) to the problem, where

— P is a total function P : D — Paths such that P(d) € DPaths(d) for every demand d € D, and
— w is a total function w : D — 2F, such that w(d) € channels(d), and |w(d)| = A(P(d)) - size(d)

such that for all pairs of distinct demands d,d' € D either P(d) N P(d') =0 or w(d) Nw(d") = 0.

Different metrics have been used to define optimal solutions to the RSA problem, such as mini-
mizing unserved bandwidth of demands [23], the number of frequency slots used [19], and the highest
frequency slot index used by any demand [21]. Since we focus on a set of few but critical demands, that
should be allocated in such a way that there is amble room for the remaining less critical demands,
we choose the latter. For a given w we can find the highest used slot as usage(w) = mag maz w(d). A

network optimal solution is then a solution to the RSA problem (P,w) where usage(w) < usage(w’)
for any other solution to the RSA problem (P’,w’).

Example 1. Figure la illustrates a simple example of the RSA problem with a small network topol-
ogy consisting of six nodes and seven edges and a spectrum width of two. There are two demands
di and dsz, both having size 1. Demand d; has nodes v; and vy as its source and target respec-
tively, whereas demand ds has vy and vg as its source and target respectively. Each demand has
two possible paths. If demand d; uses path 71, then it must be allocated two frequency slots due to
modulation. The same holds true for demand ds if it uses path m3. Hence, there are three different
possible channels for both demands, as seen on Figure la. An example of an optimal solution to
this RSA problem is RSA Solution 1 where demand d; is assigned path 7y and channel w(d;) = {1}
while demand ds is assigned path my and channel w(d;) = {1}.

Having defined the RSA problem, we now formally define the problem of handling up to k link
failures for a given RSA problem.

Definition 2 (RSA k-Link Failover Problem).
Given as input o set of link failures Erqyq C E where |Efqu| < k, we want to find a solution (P,w)
to the RSA problem where P(d) N\ Efqyq =0 for all d € D.

Example 2. An example of the k-link failover problem is shown on Figure 1a where the link between
node v2 and node vg has failed. The goal is to find a solution (P,w) where no demand is assigned
a path that uses the failed link. RSA solution 1 from Figure 1la is now not a valid solution, as dy is
assigned path mo which uses the failed link. However, RSA solution 2 is a valid solution, as demand
ds is assigned path w3 which does not use the failed link, and demand d; is also assigned a path that
does not use the failed link. This solution becomes an optimal solution in this failure scenario.

The goal is now to be capable of handling all possible k-link failure scenarios. In the next section,
we present how one can do this using a state-of-the-art ILP formulation of the RSA problem.

3 Using ILP to Assure Failure Resilience

The main motivation behind this paper is to be able to provide an optimal solution in any failure
scenario, avoiding over allocation in the network. In accordance with the Metro Ethernet Forum [10],
we aim for an average recovery time of less than 50 ms with an upper limit of 200 ms when link
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D = {di,d>} ?;rm)j

size(dr) = size(d) =1 | P(dy) = mo

P(ds) = o

DPaths(d1) = {mo, ™1} w(dy) = {1}

DPaths(ds) = {m, w3} w(dy) = {1}

am = {3 s oo

F={1,2} Pldi) = mo

C={{1}, {2}, {1.2}} Pldo) =y

channels(dy) = {{1},{2},{1,2}} | “(4) = {1}
channels(ds) = {{1},{2},{1,2}} |*(@2) = {1, 2}

(a) Example of RSA problem and two corresponding solutions. Solution 2 is highlighted in yellow, and uses
2 slots. Solution 1 uses only 1 slot. In the case where the thick red edge fails, only solution 2 is valid.

(d) rsa-all = assignment A
b) noClash. c) asstgnment. noClash.
( g

Fig.1: BDDs noClash, assignment, and rsa-all for the example shown in Figure la. The red
highlighted path in lc shows the path assignments P(d;) = m and P(dz) = w3, and the channel
assignments w(dy) = w(d2) = {1,2} in which the two demands can clash. It can be seen that these
path and channel assignments have disappered in the BDD rsa-all. The yellow highlighted path
in 1d corresponds to two solutions, one being Solution 2 from Figure la and the other being the
same as Solution 2 except that w(dy) = {2}.
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failures occur. For this, we first examine how to use an adapted version of the ILP formulation
from Miyagawa et al. [21] to ensure that we can handle any k-link failure scenario. We have chosen
this specific ILP formulation as it is a state-of-the-art formulation that uses the same optimisation
quality of minimizing the highest used slot in the network as we do. To adapt the ILP formulation,
we simply relax the constraint from [21] that demands must always be bidrectional, as it is not a
part of the RSA problem as defined in this paper. Otherwise, the ILP formulation is unmodified.
The ILP formulation uses the integer variables z4-; € {0,1} where Tarf = 1 signifies that demand d
uses path m € DPaths(d) with start index f € F. Additionally, it uses the parameters ng, to denote
the number of frequency slots demand d needs to be transmitted along path m € DPaths(d), i.e.
ngx = size(d) - A(w). The ILP formulation is as follows:

minimize fmaz (1)

S may =1, vd € D (2)

fEF neDPaths(d)

>y >y <1, Vee E\Nf€F (3)

deD € DPaths(d) f'er

eer f—na-+1<f'<f
> (f + nar = 1) - Tang < fmaas Vd € D,V € DPaths(d) (4)
fEF

Constraint 2 assigns a single path and start slot for each demand. Constraint 3 ensures that
there is no clashing between demands on any edge of the paths. Finally, Constraint 4 ensures that
the slots used by the demands are below f,,qz.

When link failures occur in the network, the ILP formulation can be used to compute a new
solution that does not use the failed links. We evaluate this approach through an experiment, using
the Gurobi ILP solver in Python [36], and run the experiment on a Ubuntu 18.04.5 cluster with
2.3 GHz AMD Opteron 6376 processors, with a memory limit of 30GB. For the experiment, we use
the Deutsche Telecom Backbone (DT) and Kanto 11 network topologies (see Figure 2), wherein
nodes have a population size, corresponding to the actual populations of the cities referenced from
[37, 38, 39]. Using the population sizes, demands are generated using a gravity model as follows.
First, a demand size is uniformly picked between 1 to 30, whereafter the source and target of the
demand are chosen based on a population-based probability distribution. This process is repeated
until |D| demands are generated; see Appendix 1 for further details. Two shortest paths are gen-
erated for each demand using the semi-disjoint path generation algorithm from [40], and candidate
channels are generated based on a 320 slot spectrum capacity [41] with modulation A(w) = 1 for
all 7 € Paths. Lastly, we simulate a k-link failure scenario by randomly failing £ links in the network.

Figures 3a and 3b show box plots of the time it takes to find a new solution for 1-5 link failures
for 3, 6, and 9 demands in the DT network and Kanto network respectively. We see that the ILP is
incapable of finding a solution in less than 200 ms for 6 or 9 demands and only rarely for 3 demands
in both networks. Hence, using the ILP formulation to compute a new solution when link failures
occur is too slow to be used for a timely recovery of critical demands.

A different approach is to precompute all possible solutions for any k-or-fewer link failures such
that a solution can be provided instantaneously when the link failures occur. Thus, for each possible
combination of failed edges E¢.y; € E, where |E,;| < k, we find a solution using the ILP formulation
where no demand is assigned a path 7 that uses any edge e € Eyqy. Table 1 shows for 3, 6, and
9 demands how long it takes to compute for all 1 < k£ < 5 possible link failures in the DT and
Kanto networks. The computation time is measured by simulating 1000 k-link failures and then
extrapolating the results to all % k-link failure scenarios for a graph with edges F.
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(a) Deutsche Telecom Backbone Network (DT) [42]. (b) Kanto 11 Network [42].

Fig. 2: Networks used for the evaluation. The numbers labeled on the edges indicate the distance
between the nodes in kilometers.
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Link failures Link failures
—— 3 Demands - 6 Demands —-—= 9 Demands —— 3 Demands - 6 Demands -—= 9 Demands
(a) DT. (b) Kanto.

Fig. 3: Boxplots of ILP query times based on 1000 random link-failure scenarios for the DT and
Kanto 11 network topologies; lines are shown for 50 ms and 200 ms.

As seen in Table 1, k-link failures for & > 3 takes multiple days to compute in the DT network,
and it takes close to or more than a day in the Kanto network for 6 or more demands. Hence,
the problem with this approach is that the number of possible link failure scenarios grows quickly
with regards to k, which means that the time to compute the required solutions also grows quickly.
Additionally, the memory required to store all these solutions grows just as fast on the number of link
failures. Precomputing solutions to link failures using ILP is thus not feasible and other approaches
must be explored. In the next sections, we present our solution for efficiently computing and storing
all solutions to a given RSA problem and how to leverage these to provide resilience against multiple
link failures in a time-critical manner.

4 BDD Encoding of RSA

The first rendition of Binary Decision Diagrams (BDDs) was introduced by Lee [43] and Akers [44]
as a data structure to efficiently represent and manipulate Boolean functions. The concept was later
refined by Bryant [45] with more efficient Boolean operations. As such, BDDs are generally good at
representing finite state problems [46] and have been applied in various problem domains [4, 5, 47,
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Table 1: Extrapolated times for precomputing solutions for failure resilience using ILP.

Demands

3 6 9
42s/23s | 2m/2m |3m/3m
17m/7m{40m/19m|2h/35m

5h/2h | 11h/4h |17h/6h
2d/10h | 5d/23h | 8d/2d
10d/3d | 30d/5d |60d/8d

DT/Kanto 11

Failures

Y | W N =

Table 2: Variables used in the BDD encodings.

Variables Description

c? =[c?,ct_y,...,cf] where n = [log,(|channels(d)|)]|Binary encoding for channels in channels(d)

p? = [p¢,pl_1,...,p}] where n = [log,(|DPaths(d)|)]|Binary encoding for the paths in DPaths(d)

48, 49]. In this paper, we show how to apply BDDs to compute and represent all solutions to a given
RSA problem and provide operations for finding new solutions when link failures occur.

Formally, a BDD is a directed, acyclic graph structure used to compactly represent Boolean
functions [50]. Within a BDD, non-leaf nodes are labeled with Boolean variables, while leaf nodes
are labelled with truth values 0 (False) or 1(True). Each non-leaf node v has two outgoing edges
denoted as low(u) and high(u) corresponding to its label variable being False or True respectively.
These edges are commonly visualized by using a solid line for high(u) and a dotted line for low(u).
A BDD is ordered (OBDD) if the variables in the BDD come in the same order x1 < x5 < ... <
on all paths of the BDD [50]. An OBDD can be reduced by merging nodes with identical subgraphs,
and by deleting nodes where the subgraphs for low(u) and high(u) are equivalent. Such a BDD is
called a reduced OBDD (ROBDD) [50]. In the rest of the paper, we use the short form BDD in
place of ROBDD. Lastly, we note that we use BDDs that support first-order quantifiers and that
are closed under both Boolean operations and quantifiers [47].

4.1 Representing a set as a Boolean Function

Given a finite set S = {so, 51, ..., 5|5)—1}, let X = [Xx, ..., X1] be a vector of Boolean variables where
k = [log2(|S])]. Then, any truth assignment « to X can be interpreted as a natural number n(«) € N
written in binary notation. Thus X encodes the n(«)’th element of S. Let X(s) denote the Boolean
expression over X with just the single truth assignment corresponding to {s}. Lastly, given some
Boolean expression b(X), let [b(X)] denote the encoded subset {s,)|a satisfies b(X)} C 5, such
that [b(X)] is a set consisting of the elements, that are encoded by the Boolean assignments which
satisfy the Boolean expression b.

Ezample 3. Considering the set of paths {mg, 71,72, 73} from Figure la, we need two boolean vari-
ables P = [p2,p1] to encode any of the given paths. For instance, we encode the path {mg} by
P(m) = —p2 A —p1. In a Boolean expression such as b = pq, where the variable ps is free, the
Boolean function b(P) is satisfied both when [p2 — 0,p1 — 1] and [p2 — 1,p1 — 1], which means

[6(®P)] = {m1,ms}.
4.2 Construction of BDDs

As shown in Table 2, for each demand d, we use a vector of Boolean variables p? to encode the path
assigned to demand d, and another vector of Boolean variables ¢ to encode the channel assigned to
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demand d. To encode a solution (P,w) to the RSA problem described in Definition 1, we use the vector

of vectors pP = [pdl,E, ...,p%P1] to encode P and the vector of vectors P = [071, c, ..., cdipi]
to encode w.

Ezample 4. We can see that the BDD assignment shown in Figure 1c represents all 32 = 9 possible
combinations of P and w for the running example. As an example of how to interpret the BDD, we see
that the specific assignment P({d1,d2}) = {71, 73} and w({d1,d2}) = {{1,2},{1,2}} is highlighted
in red.

We now define three BDDs which enforce that p? and ¢ must only encode valid solutions
to the RSA problem. Specifically, the BDDs must ensure that each demand d is assigned a path
7 € DPaths(d) and a channel C' € channels(d) such that |C| = A(n) - size(d), and that, whenever
a demand shares an edge with another demand, they cannot be assigned overlapping channels.

To enforce that no two demands are allowed to clash, we define the BDD noClash (Figure 1b)
as

noClash(pP,cP) =

d,d' €D, we€DPath(d), Céechannels(d),
d#d' w'€DPaths(d’), C'echannels(d’),
mNa' £ |Cl=A(7)-size(d),
|C'|=A(r")-size(d'),
CNC'#D

that satisfies (P,w) € [noClash(pP,cP)] iff for all d,d’ € D where d # d' either P(d) N P(d') = 0
or w(d) Nw(d') = 0.

Ezxample 5. Consider again the network from Figure la. There is only one way the two demands
can clash. The BDD noClash therefore has to encode that it is satisfied by all path and channel
assignments, except when d; and ds are assigned the paths m; and w3 respectively, and the channels
w(dy) = w(de) = {1,2}. As shown in Figure 1b, the BDD noClash encodes exactly this, as the only
way not to satisfy this BDD is taking the right-most path down to the node labeled c3, and then
setting the value of the Boolean variable ¢3 to True, which corresponds to the clashing assignment.

Having defined the BDD noClash, we must enforce that each demand d is assigned a correct
path and channel assignment pair. To this end, we define the BDD assignment as

assignment (pP,cP) = /\ \/ (I)d(w)/\( \/ cd(C))> (6)

deD weDPath(d) Céechannels(d),
|Cl=A(7)-size(d)

and clearly, (P,w) € [assignment (pP,cP)] iff for all d € D, it holds that P(d) € DPaths(d),
w(d) € channels(d) and |w(d)| = A(P(d)) - size(d).

Finally, we use assignment and noClash to define the BDD rsa-all as

rsa-all(p?,cP) = assignment (pP,cP) A noClash (pP,cP). (7)

Ezample 6. For the running example in Figure la, we see in Figure 1d how 7rsa-all contains all
valid solutions for the given RSA problem. All the assignments from the BDD assignments are valid
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solutions, except the assignment that is marked red in Figure 1c, since it is the only assignment that
does not satisfy the BDD no-clash, as noted in Example 5. Hence, this is the only assignment that
does not appear in rsa-all. The highlighted path in rsa-all corresponds to two valid solutions,
one solution being Solution 2 from Figure la, the other being the same as Solution 2 except that
demand d; is assigned channel {2} instead of channel {1}.

Theorem 1. The pair (P,w) is a solution to the RSA problem iff (P,w) € ﬂrsa—all(p, ciD)]]

Proof. "= Assume (P,w) is a solution to the RSA problem. By Definition 1, the encodings pP,cP
of (P,w) satisfy both the constraints enforced by assignment and noClash, and it thus follows that
(P,w) € [rsa-all (pP,cP)].

" Let (P,w) € [rsa-all (p?,cP)]. By the constraints enforced by assignment we know that
each demand has been assigned a valid path and channel combination given the used modulation,
and due to the constraints enforced by noClash we know that the path and channel assignments
given to each demand result in a solution, with no clashing between any of the demands. Hence
(P,w) is a solution to the RSA problem. O

With the representation of all solutions in rsa-all (F, ciD), it is possible for a network operator
to query it to find for example an optimal solution or a solution matching any particular properties
desired by the operator.

For the k-link failover problem, there is no need to have all solutions represented, as we need
only to represent the optimal path and channel assignment for each possible scenario of up to k link
failures. To limit the set of solutions represented, we first see that the solution space is bloated with
channel assignments that are fragmented. A fragmented channel assignment contains gaps of slots
between the assigned channels, and intuitively, an optimal solution cannot contain these gaps. Thus,
to remove gaps, we require that a channel assignment w must assign all slots below usage(w) to at
least one demand. This is enforced by specifying that the channel assigned to a demand either uses
the first slot, or follows directly after a channel assigned to another potentially path-overlapping
demand.

Definition 3 (Gap-free). A solution to the RSA problem (P,w) is gap-free if for all d € D, either
min(w(d)) = 1 or there exists a d' € D,n’ € DPaths(d’) and m € DPaths(d) s.t. 107" # 0 and
min(w(d)) = maz(w(d)) + 1.

The gap-free property can be imposed on the solutions encoded by the BDD rsa-all using the
BDD gapfree, which is defined as

gapfree(cP) = (8)
/\(( VoGV V cd(@Acd'(C'))) (9)
deD Céechannels(d), d'eD, Céechannels(d),

min(C)=1 JreDPaths(d), C'€echannels(d’),
3Ir’€DPaths(d’), min(C)=maz(C’)+1
mAr' £0

and we have w € [gapfree(cP)] iff w satisfies the gap-free channel property as described in Def-
inition 3. Additionally, since the gap-free property preserves an optimal solution for each routing
assignment, it can handle the same link failure scenarios as rsa-all.

Theorem 2. If (P,w) is a solution to an RSA problem, then there exists a gap-free solution (P,w'),
s.t. usage(w’) < usage(w).
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Proof. Assume a channel assignment w for demands d1, da, ..., d, such that d; < d; if min(w(d;)) <
min(w(d;)). A new w’ can now be constructed, such that w’ is gap-free. For d;, let D; be the set of
demands dy, < d; where w(dy) Nw(d;) = 0 and there exists 7, € DPaths(dy) and 7; € DPaths(d;)
s.t. mp Nm; # (0. Let ' initially be undefined for all demands. We now add each demand to w’ one
by one in the specified order, such that if D; = () then w'(d;) = {1, ..., |w(d;)|}, otherwise let the
highest slot assigned by w’ to a demand in D; be 2 = Zré%x(mam(w'(d))) and then the new channel

of d; is specified as w'(d;) = {2+ 1,2+ 2,...,2 + |w(d;)|}. Tt follows that usage(w’) < usage(w)

since at any step min(w'(d;)) <1+ |J w(d)]. O
deD;

We now define a new BDD rsa-gapfree using gapfree to reduce the number of encoded solutions

compared to rsa-all. The BDD rsa-gapfree is defined as

rsa-gapfree (pP,cP) = assignment (pP, cP) A gapfree(cP) A noClash (pP,cD) (10)

and clearly (P,w) € [rsa-gapfree(p?,cP)] iff (P,w) is a valid solution to the RSA problem as
described in Definition 1, and w satisfies the gap-free property. Since assignment, gapfree and
noClash are just Boolean expressions, their order in the three-way conjunction is semantically irrel-
evant. In the implementation, the conjunction is evaluated in a left-to-right order, since this results
in the best performance.

In addition to removing gaps, any optimal solution requires at most a spectrum width of max; =

> maz (A(rw)-size(d)) and thus all channels where maz(C) > max; can be disregarded. By
de DTEDPaths(d)

enforcing this upper limit, we effectively prune the candidate channels for each demand without losing
optimality. A more greedy approach to approximate the candidate channels is to assign channels
based on an established ordering of the demands. The idea is to remove symmetry in the channel
assignments by imposing the property of limited as defined in Definition 4; the property is imposed
on the mapping channels in the definition of gapfree in Equation 9.

Definition 4 (Limited). Given demands D = {di,da,...,dn}, a solution to the RSA problem
(P,w) is limited if min(w(d;)) < €maz + Y- |w(d;)| for all d; € D, where cpaq = Zzeag\w(dﬂ.
7<t

We note that the greedy approach will in some instances make it impossible to find a channel
assignment for a particular path assignment (see counter example in Appendix 2). This means that
a BDD with this property imposed cannot generally be said to contain an optimal solution for all
link failure scenarios. However, from running a trial on all topologies in the standard benchmark
topology collection, Topology Zoo [51], with demands ordered from largest to smallest, we did not
find any instance where a counter example was encountered. We therefore argue that for all intents
and purposes of this paper that the property limited preserves an optimal solution for each link
failure scenario. o

Henceforth, we will use rsa (p?,c?) to refer to any BDD that represents only valid solutions to
a given RSA problem.

4.3 Finding the Optimal Solution

Once we have a BDD representing only valid solutions to an RSA problem, we are interested in finding
an optimal solution. To this end, we introduce a new vector of variables s¥ = [s1,ss,...5¢,,..]. We
say that s encodes a subset F' C F s.t. sy is true iff f € F'.

The intuition behind the use of these variables is that if a variable sy is false, then we know that
no demand has been assigned a channel with a slot greater than or equal to f, meaning that the
usage is at most f — 1. We can enforce this using the BDD rsa-slotBound defined as
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rsa-slotBound (pP,cP, st (11)

:'r*sa(pD,cD)/\</\ \/ (cd(C)/\ A sf)> (12)

deD Cechannels(d) f<maxz(C)

and clearly (P,w, F’) € [rsa-slotBound (p?,cP,sF)] iff (P,w) € [rsa(pP,cP)] and F’ con-
tains all f < usage(w).

An optimal solution can now be found by identifying the smallest value of f € F' such that there
exists a solution (P,w, F') € [rsa-slotBound (pP,cP,st")] where the corresponding variable s; can
take the value false, i.e. f ¢ F”, since it can then be inferred that the usage(w) = f —1 < usage(w’)

for all other (P’,w’, F"') € [rsa-slotBound (p?,cP, s")].

5 Using BDDs to Ensure Failure Resilience

Having defined the BDD rsa to find solutions to the RSA problem, we now show how to extract
solutions from the BDD for the purpose of providing time-critical responses to multiple links failing.
In particular, the BDD rsa as defined in Section 4.2 contains at least one solution for all failure
scenarios, if such a solution is possible. Furthermore, we know that at least one of these solutions
is optimal under the corresponding failure scenario. To extract these solutions, we present two ap-
proaches. The first method supports an arbitrary number of link failures based on the idea of deleting
solutions that use invalid paths given the link failures. The second method uses pre-computation
in which link failures are directly encoded in the BDD when constructed, which allows for more
efficient path pruning times.

5.1 Finding Failover Solutions

Pruning by Deletion Solutions encoded in the BDD rsa that use invalid paths based on the set
of link failures Fq4 are no longer valid solutions. The invalid solutions must therefore be deleted,
which we do using the BDD path-pruned-rsa defined as

path-pruned-rsa(pP,cP) = rsa(pP,cP) A /\ /\ —pd(7) (13)
deD nreDPaths(d),
Je€FEfqil,
ecm

and clearly (P,w) € [path-pruned-rsa(pP,cP)] iff (P,w) € [rsa(pP,cP)] and it holds for all
d € D that P(d) N Efqi = (. Since there is no limitation on the size Efq41, this pruning method can
be used to prune the BDD for any 0 < k < |E| link failures.

Pruning by Precomputation Accounting for larger k link failures generally gives diminishing
returns, since the risk of that many links failing at the same time becomes increasingly small. We
can thus use this to our advantage by constructing a parameterized BDD with additional variables
representing the failed edges; these can be specified to retrieve the valid solutions for any given link
failure scenario up to some sufficiently large k.

We define the new set B, = E U {eynuseqa} Where the auxiliary edge eynuseqd signifies a non-
failed link. Then, for a given k-link failover problem, we introduce a vector of k variable encodings
ek = [el,...,eF] such that ei = [e,el,_,,...,ei] for i € K = {1,2,....,k}, where n = [log,(|E.|)].
The variable e? thus either encodes a specific link-failed edge or the auxiliary edge €ynyseq signifying
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that it does not encode any link failing. This makes it possible to encode up to k link failures, rather
than being limited to exactly k links failing.

We can now define the BDD path-edge-overlap to associate each path with its constituent
edges

path-edge- ove’rlap \/ \/ \/ pY( (14)

deD neDPaths(d) ee™

and clearly (P, e) € [path-edge-overlap (pP,€)] iff there exists a 7 € P(D) such that e € 7.
Using this, we define the BDD failover® to encode the valid path assignments for every com-
bination of k or fewer link failures as

failoverk(piD,ciD, k) = rsa(pﬁD, cD)A (15)
\/ /\ (g(ei) A —path-edge-overlap (piD, g))/\ /\ e (unused)- (16)
E'={e1,e2,....,em }C E,1<i<m m<j<k
|E'|<k

Theorem 3. Let Eyqey C E be a subset of failed edges where |Efqy| < k, and let the vector
of variable encodings €K encode the set Efai. Then, (P,w,Efqi) € [failover®(pP,cP, eK)] iff
(P,w) € [rsa(pP,cP)] is a solution to the k-link failover problem for link failures Eq.

Proof. "==" Let a solution be (P,w, Ef.i) € [failover®(pP,cP, eK)] where |Efqi| < k. From
Condition 15, we know that (P,w) € [rsa(p?,cP)] and thereby is a valid solution to the RSA
problem. Furthermore, as ek encodes F tail, We know that for every edge e in Ef,; that there exists
a variable encoding e’ from eX that encodes e. Additionally, we know that for all e in Ey4 that

(P,e) ¢ [path-edge—overlap (pP,e?)] and thus none of the paths assigned to the demands contain
any of the failed edges, which means that (P,w, Et) is a solution.

7 Let (P,w) € [rsa(p?,cP)] be a solution to the k-link failover problem for a set of failed
edges Etq C E where |Efq;| < k, and demands D. By Definition 2, we know that for all 7 € P(D)
that 7 N Efay = 0. Hence, the BDD —path-edge-overlap (pP,ei) is satisfied for all e. As such,
Condition 16 is satisfied and (P,w, Eti) € [fatilover®(pP,cP,eK)]. O

Using the BDD failover®, we define the BDD path-pruned-rsa which encodes the valid
solutions given a set of specific link failures E,; where |Efqu| < k

path-pruned-rsa(pP,cP) = (17)
ek ( A )N A\ & (Cunusea)| Afaslovert (pP, P eK)  (18)
ei€Efqa={e1,e2,..., em} m<j<k

and clearly (P,w) € [path-pruned-rsa(p?,cP)] iff (P,w) € [rsa(p?,cP)] and it holds for all
d € D that P(d) N Efqau = 0, where |Efqi| < k. Note that we reuse the name path-pruned-rsa
from Equation 13 since the BDDs represent the exact same solutions for the given failure scenario.

5.2 Finding Lightpath-preserving Solutions

A property that is often desirable when finding a solution to a k-link failover problem, is that the
new path and channel assignment should only differ from their old counterparts on the demands,
that are directly affected by the link failures. The reason for this is to minimize the number of
physical changes that must be performed in the network during the failover operation. We call this
type of solution lightpath-preserving.
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Fig.4: The time it takes to query for an optimal solution for 5 link failures. The boxplot is drawn
based on 1000 queries. Lines are shown for 50 ms and 200 ms.
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Fig. 5: The time it takes to query for an optimal lightpath-preserving solution for 5 link failures. The
boxplot is drawn based on 1000 queries. Lines are shown for 50 ms and 200 ms.

Definition 5 (Lightpath-preserving). A solution (P’,w’) is a lightpath-preserving solution to
the RSA solution (P,w) for link failures Efq; iff P(d)NEfquq =0 = P(d) = P'(d) Aw(d) = w'(d)
for alld € D and (P’,w') is a solution for the k-link failover problem for Egq.

Given a solution (P,w) to a given RSA problem, we find lightpath-preserving solutions in any BDD

that encodes the valid solutions to said RSA problem, using the BDD rsa-1lightpath-preserving,
which is defined as

rsa-lightpath-preserving (pP,cP) = (19)

path-pruned-rsa (pP,cP)
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and (P',w') € [rsa-lightpath-preserving (pP,cP)] iff (P',w’) is a lightpath-preserving solution
to the given RSA solution (P,w) for link failures Eyq;.
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Fig. 6: The plots show how the number of link failures affects the time it takes to prepare the BDDs
used for querying using the approaches Deletion and Precomputation respectively compared to how
long it takes to compute k-link resilient solutions using the ILP approach described in Section 3.
The different symbols represents the results with 7,8 or 9 demands respectively.

6 ExpectAll Implementation and Evaluation

We implemented the BDD encoding of the RSA problem presented in Section 4.2 and the two
approaches for solving the k-link failover problem from Section 5 in the tool ExpectAll, using all
the improvements suggested in Section 4.2. We implemented ExpectAll in Python using a Cython
wrapper [52] of the library CUDD [53] to perform BDD operations. The source code of ExpectAll
and our experimental artefacts, allowing for the experiments to be rerun, is available in [14].

We now evaluate the two BDD approaches to the k-link failover problem against the ILP approach
from Section 3. The BDD approach using path-deletion pruning is called deletion, and the one
using precomputation pruning is called precomputation. We compare their query times for finding
an optimal solution and an optimal lightpath-preserving solution, by simulating 1000 random k-link
failure scenarios. Results are shown in Figures 4 and 5 respectively for 5 link failures, with additional
results for 1-4 link failures in Appendix 4 and 5.

It can be seen in Figure 4 that both BDD approaches significantly outperform the ILP model in
the time it takes to find an optimal solution. The query time using the deletion method, however,
increases with the number of demands, exceeding the 200 ms threshold at 8-9 demands, which indi-
cates limited scalability. The precomputation method in contrast has lower variance and maintains
query times well below 50 ms for most scenarios, making it highly reliable for rapid recovery.

Furthermore, the results in Figure 5 show that while the ILP approach is slightly faster at finding
an optimal lightpath-preserving solution than a general optimal solution, both BDD approaches are
still able to find an optimal lightpath-preserving solution faster than the ILP approach for seven
or fewer demands and the precomputation approach remains consistently under 50 ms for up to
nine demands. It is important to note that the experiments are performed on BDDs with all three
improvements mentioned in Section 4.2. Thus, not all solutions to the RSA problem are represented
in the BDD, which means that some lightpath-preserving solutions might be missed. Our findings
show that as the number of demands increases, the risk of missing a lightpath-preserving solution
also increases. However, for scenarios with four or fewer demands, we consistently find a lightpath-
preserving solution. Full details of this are found in Appendix 3.
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6.1 Measuring Build Time

Comparing the time it takes to find a single solution when k links fail, we see that our BDD based
approaches outperform the ILP approach. However, we must also evaluate how long it takes to build
the underlying BDDs in order to understand their applicability. We thus measure the time it takes
to build the BDDs used for querying, which we compare with the computation time required for
computing an optimal solution for every link failure scenario using ILP as described in Section 3.
We performed the experiment on the same machine used for the previous experiment with a timeout
of 24 hours. Within this timeout we could build BDDs for RSA problems with up to nine demands
in the DT and Kanto network topology. For the ILP we estimate the build time, as described in
Section 3.

The results, presented in Figure 6, indicate that the ILP computation time grows exponentially
with the number of failed links. In contrast, the build time for the deletion method remains nearly
constant because the BDD always represents the same number of solutions, rendering the method
independent of the number of link failures. The build time of the precomputation method increases
with the number of link failures, especially with fewer demands. As the number of demands increases,
the time to construct the basic BDD becomes significantly larger, diminishing the impact of the
marginal increase in build time due to additional link failures. Therefore, for a higher number of
demands, the scalability issue of the precomputation method with regards to link failures becomes
less pronounced.

Finally, the results in Figure 6 indicate that the threshold value k, beyond which the BDD-based
approaches become advantageous to the ILP approach, depends on both the number of demands
and the complexity of the network topology in terms of its number of links.

7 Conclusion

We have presented EzpectAll, a tool that can efficiently compute and represent all possible solutions
through Binary Decision Diagram (BDD) technology; a task that is practically infeasible with state-
of-the-art tools relying on Integer Linear Programming (ILP) to find singular solutions. Moreover,
we demonstrated how this comprehensive representation of solutions can be applied to provide re-
silience against an arbitrary number of concurrent link failures for critical demands.

Our experiments with the prototype implementation of the tool FxpectAll demonstrate its ca-
pability to facilitate network recovery within well-established time frames. This shows that our
approach can be used as a novel method for enhancing network survivability. By eliminating the
necessity to establish and allocate resources for backup lightpaths solely for specific link failure sce-
narios, our method reduces redundancy and optimizes resource usage. It is important to note here,
that our work only concerns a subset of demands in the network, which can be classified as criti-
cal. This means that some work must be done to determine how all the remaining demands in the
network should be handled. For this, we propose, that these non-critical demands can be scheduled
using a heuristic method that places them as far towards the end of the spectrum as possible. This
way we minimize the risk of critical demands channel overlapping with the non-critical demands
during any k-link failure scenario.

There are two primary directions for future research to broaden the applicability of our work: (1)
Developing techniques to represent solutions for RSA problems with a larger number of demands us-
ing BDDs will be crucial for practical deployment; (2) Generalizing the methods for finding optimal
and lightpath-preserving solutions will be highly beneficial. This involves constructing and querying
BDDs to support efficient searches for solutions with any properties expressible as Boolean expres-
sions. Such advancements will enhance the flexibility and applicability of our tool across various
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networks and requirements.

Bibliographic Remark We note that the general introduction of BDDs in Section 4 and the defini-
tion of the binary set encoding in Subsection 4.1 are slightly modified versions of the corresponding
sections in our pre-specialization work, that was defended in January of 2024 [54].



Epilogue

From our findings of applying BDDs to support optimal failover protection, it is evident that im-
proving the scalability of the BDDs is an area of interest in order to be able to handle a larger
number of critical demands in a network. In this secondary part of our work, we present our findings
on improving the scalability of the presented BDDs. We present two of the methods that we have
explored and discuss how these methods can not be part of our primary work, as they require that
we make comprises in regards to efficient resource usage or ensuring k-link failure resilience.

Clique-bound Channels

We are able to further limit the candidate channels for each demand, by estimating an upper bound
for what slots the channels can have, since it is known what other demands the demand may possibly
share an edge with. Let I" be a graph where the nodes represent a demand d in D. Given two distinct
demands d,d’ € D, add an edge between the two nodes in I” if there exists two paths 7¢ € DPaths(d)
and 7 € DPaths(d’), and the two paths overlap on any edge. Based on I', we can find cliques,
where cliques represent subsets of demands that potentially overlap with one another on their paths.
Let maxClique : D — 2P represent the maximum clique in I which demand d is part of.

Definition 6 (Clique-bound). A solution to the RSA problem (P,w) is clique-bound iff for all
d € D, maz(w(d)) < > |C|.

max
d’€mazClique(d) Céechannels(d’)

It must be noted that the property clique-bound in some circumstances will find that no channel
assignment is possible for a path assignment, even though a valid non cligue-bound channel assign-
ment does exist. An example of this occurs if some of the paths always overlap such that they form
a Myecielski graph in I" [55].

We can combine the clique-bound property with the limited property. First, we introduce the
mapping cliques such that cliques(d) is the set of all cliques that demand d is a part of, using
the same definition of a clique as the mapping maxClique. Then, for each demand d, we assume
an ordering on the demands in maxClique(d) such that for d’',d" € maxClique(d),d < d" if
|cliques(d’)| < |cliques(d’)|. Based on this ordering, we enforce the limited property on the largest
clique of each demand. If a demand is part of more than one of the largest cliques, we pick the
limited constraint that allows the most channel assignments for that demand.

Definition 7 (Limited Clique-bound). A solution to the RSA problem (P,w) is limited clique-
bound iff for all d € D, min(w(d)) < mazx mazx |C].

d’ED, . d"” emaxClique(d’), Cechannels(d')
demaxClique(d’) d'<d

Subspectrums

We can split a given RSA problem into n RSA subproblems by splitting the spectrum of slots F'
into n disjoint subspectrums, i.e. F = J;_, F;, and the demands D into n disjoint sets of demands,
ie. D =J;_, D;. Thus, a demand d € D; may only use the channels contained in its subspectrum
such that C € channels(d) iff min(F;) < min(C) and maxz(C) < max(F;). Using this approach,
each RSA subproblem can be solved independently, decreasing the complexity of the original RSA
problem at the cost of a higher usage of the spectrum. We solve the RSA subproblem for D; and
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F; by computing the BDD rsa’ for all 1 < < n and then conjugate all these BDDs into one BDD
rsa-sub which encodes solutions to the original RSA problem, i.e.

rsa-sub (pP,cP) = /\ rsa’(pDi,cDi) (21)

i<n

and clearly, if (P,w) € [rsa-sudb (p?,cP)] then (P,w) € [rsa(p?,cP)], as a channel assignment
encoded by rsa® can never have overlapping channels with a channel assignment from rsa?,i # j.
We note that the performance of rsa-sub depends on the number of splits n as well as the distribu-
tion of slots and demands among the splits. Currently, we split the spectrum F' into k equally sized
subspectrums, adding any remaining slots to the last subspectrum F,, if an even split is not possible.
We then assign each demand a subspectrum sequentially based on how the given demand can overlap
on its paths with other demands that have already been assigned a subspectrum. Specifically, we
place a given demand d € D; if D; contains the fewest number of demands which d can overlap with
on one of its paths. Additionally, if n > |D|, then we only make |D| splits.

Understanding the Trade-offs

The methods have been implemented in the BDDs rsa-clique and rsa-sub respectively, and they
are compared to the BDD from Section 4.2 which uses both gapfree, limited and upper bound. Using
these implementations, we conducted an experiment on all topologies in the Topology Zoo [51] to
evaluate how the methods compare in different aspects.

In Figure 7a, it can be seen that the maximum number of demands that can be solved for the
RSA problem is significantly higher when using rsa-sub compared to using rsa-clique and the
baseline rsa. However, as shown in Figure 7b, the resource usage for five demands is also significantly
higher with rsa-sub, making it unsuitable for our main work due to the importance of resource
efficiency. Conversely, using rsa-clique does not lead to a significant increase in resource usage.
Using rsa-clique thus appears promising from the perspective of preserving optimality, but we also
measured its performance in terms of k-link failure scenarios. Specifically, we evaluated how many
scenarios were actually solved by the BDD out of of all 3-link failure scenarios where a solution
is possible for six demands. As seen in Figure 7c, for most topologies, the solutions in rsa-clique
were fully 3-link failure resilient. However, for a notable number of instances, it was not 3-link failure
resilient. Given the inability to generally guarantee k-link failure resilience, rsa-clique is also not
viable for use in our main work.
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1 Demand Generation

The procedure for generating demands is described by Algorithm 1.

Algorithm 1 Demand generation algorithm

Input: Topology G = (V, E, src, tgt), gravity function gravity, number of demands k, max demand size

Output: Set of demands D.

1: procedure GENERATEDEMANDS(G, gravity, k, m)

2 D+

3 totalGravity = Y, o\, gravity(v)

4 fori =1to k do

5: size <— n, where n is randomly chosen in range 1 <n <m
6 source < s € V, chosen by probability distribution %

7 gravity(t)
totalGravity—gravity(source)
8

target <— t € (V' \ source), chosen by probability distribution
: D « D U {(source, target, size)}
9: end for
10: return D
11: end procedure

As input, the algorithm takes a network topology, a gravity function that maps a node from the
network topology G = (V, E, src, tgt) to the population size of the city represented by the node, the
number of demands to generate k, and the maximum size m of any demand. It then outputs a set
of demands D where max size of any demand d € D is m and the source and target node of each
demand is chosen based on the gravity function. On lines 2-3, the set of demands is initialized as
an empty set, and the integer variable totalGravity is initialized to the sum of all population sizes
for the nodes. Lines 4-8 iteratively add one demand to the set of demands D until £ demands have
been generated. For iteration 1 < ¢ < k, we uniformly choose a size 1 < n < m for demand d; on line
5. Then, on line 6-7, we pick a source s € V and target t € V', s # t, with respect to a probability
distribution that is based on the mapping gravity and the population total gravityTotal. Specifically,
nodes with large population sizes have a greater chance of being picked as a source or target node
than nodes with smaller population sizes. Finally, on line 8, we add demand d; with source s, target
t and size n to the set of demands D. After the k iterations, we output the set of demands D.

2 Limited counter example

Figure 8 shows a RSA problem, and the candidate channels for each demand, when limited is applied.
The problem is solvable without limited because when dg and d; uses the first four and last four slots
respectively, there are 12 consecutive slots available on all the other edges that they share with the
other demands, allowing them to utilize the spectrum completely. Using the channels generated by
limited, d; can only use up to slot 12, which means that there are not 12 consecutive slots available on
the edges with other demands. Due to how the other demands are constructed with lowest possible
product being 12, we can only solve the problem if there are 12 consecutive slots available for them
all.
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channel(dy) = {{1, 2, 3,4},{2,3,4,5},...,{5,6,7,8}}
channel(d,) = {{1, 2, 3,4},{2,3,4,5},...,{9,10,11,12}}
fmaac =16

ds,..,ds ds,..,dn
size(dz) =...= size(ds) =4 size(ds) =...= size(d1;) = 3

ds,..,d7 . = e digyydis

size(ds) =...= size(d7) = 4 size(dyp) =...= size(d15) = 3

Fig. 8: Counter example of limited using 16 demands, with the demand ordering dy, d1, ....d15.

3 Lightpath-preserving solution tables

Tables showing the percentage of times that the BDDs could find a lightpath-preserving failover
solution as well as the percentage of overall feasible lightpath-preserving solutions for 1000 queries,
1-9 demands, and 1-5 link failures. For instance, on DT for 9 demands, 5 link failures, the BDD
found the lightpath-preserving solution in 63% of the failure scenarios.

Table 3: DT

BDD% / |Failures

Possible% |1 2 3 4 5
1/100 / 100{100 / 100|100 / 100{99 / 99(98 / 98
2[100 /10099 / 99 |96 / 96 |94 / 94]89 / 89
31100 / 10098 / 98 |94 /94 |91 / 91|84 / 84
4[100 / 100[98 /98 |93 /93 |87 / 87|78 / 78

Demand|5[100 / 100]96 / 96 |80 /89 |83 / 8372 / 72
6
7
8
9

91 /100 (82 /95 [69 /84 |57 / 76|48 / 63
91 /100 (82 /95 |67 /82 |52/ 71|42 ] 56
82 /100 68 /95 |54 /82 |40 / 71|31 / 56
86 /100 |72 /94 |55 /80 |43/ 69(34 / 54




Table 4: Kanto

BDD% / |Failovers

Possible% |1 2 3 4 5
1100 / 100/100 / 10099 / 99[98 / 98]96 / 96
2100 / 10099 / 99 |96 / 96|92 / 92|89 / 89
3[100 /10099 /99 |96 / 96|91 / 91|87 / 87
/100 / 100{96 / 96 |91 / 91|80 / 80|74 / 74

Demand|[5[92 / 100 |82 /96 |71 / 88|61 / 7849 / 71
6[92 /100 [79 /93 |65 / 82|51 / 63]37 / 56
7[84 /100 |67 / 93 |54 / 82[40 / 67|28 / 56
8[86 /100 [71 /93 |58 / 82[44 / 67|35 / 56
987 /100 (69 /93 |53 / 82(39 / 67|26 / 56
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4 Optimal Query time graphs
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Fig. 9: Boxplots of query time to find an optimal solution for 1000 queries on DT and Kanto 11.
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Fig. 10: Boxplots of total query time to find an optimal lightpath-preserving solution for 1000 queries

on DT and Kanto 11.
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