Summary

Industry 4.0 [13] describes a new era within manufacturing. With this new era,
machines, factories, and supply-lines are envisioned as one connected whole,
which will allow for a data-driven approach to decision-making. More than ever
before, industry needs to be able to change not only what is produced, but
also how things are produced. This calls for a more flexible approach to man-
ufacturing - an approach which must enable factories to utilise their existing
machinery and change production procedures at a whim. Central to this flex-
ibility of these cyber-physical systems is the effective planning and scheduling
of operations, which forms the backbone of manufacturing systems. In this con-
text, model-checking, simulation, and formal modelling emerges as a promising
approach to ensure the reliability, optimality, and correctness of planning and
scheduling of products for Flexible Manufacturing Systems (FMSs)[3]. By lever-
aging formal verification techniques, model-checking enables rigorous analysis
and validation of system models against specified properties, mitigating risks
and enhancing the robustness of the decision-making process during system op-
eration. Creating schedules for production across multiple machines, known as
the job-shop problem, has been examined in model-checking to establish when
each product should begin production in the next machine. To this aim, many
heuristics have been created to speed up the creation of schedules. However, the
creation of these schedules does not always capture all flexible elements of the
systems. The movement of products between machines, capacities, and require-
ments for machines are often ignored. While many models of these systems have
been explored extensively, the degree of freedom of the models have often been
severely limited due to the state-space explosion problem. This in turn makes
the modelling of the system hard. Indeed, the lack of expressiveness can lead
to an incorrect model, which in turn lead to wrong assertions about the system
and its operations. In turn, the schedules created using the models will not be
useful.

In this paper, we first present some of the current related work within mod-
elling and evaluation of FMSs. We then present the syntax and semantics of a
formal model of our own device, which we call Context-Aware Timed Flexible
Manufacturing System (CAT-FMS). Our model, rather than relying on a for-
mal or graphical modelling language, is described using the specification and
detailing of:

1. A number of machines that can be turned on, turned off, or remain active
throughout the manufacturing process,

2. a number of arms that moves products around the system,

3. protocols describing which machines each product must visit, in which order,
and for how long, and

4. a critical section of the protocol which must be traversed within a time limit.

For this model, we define the Input Arrival Problem (TAP) for which a solution
is a schedule that follows the semantics of the model.



We use our model to verify schedules created by an existing tool, and show
that the schedules can be incorrect according to the semantics. Furthermore, we
present two algorithms which, given a system model and an IAP, synthesise a
correct schedule for each of the products. For these algorithms, a verifier has
been created to ensure the produced schedules are correct. Both the verifier
and the synthesis algorithms have been implemented using C#. The algorithms
rely on search heuristics. Four of these heuristics have been explored, two of
which rely on the topology of the provided system, and gives estimates on the
remaining make-span of products in the system. The heuristics are evaluated in
terms of the number of configurations explored, the quality of the solution, and
time used to synthesise a schedule. Using the most promising of these heuristics,
a comparison of a depth-first search of the problem has been compared to a
guided-depth first approach.
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Abstract. With the rise of industry 4.0, flexible manufacturing systems
are expected to become the dominant approach to product manufactur-
ing. The intelligent and correct operations of these systems are crucial to
ensure that production occurs in a safe and time-wise feasible manner.
Model-based approaches to intelligent manufacturing promises to ensure
correctness of the manufacturing of products. In this paper, we demon-
strate how one can model Context-Aware Timed Flexible Manufactur-
ing Systems. These systems define protocols for all products that can be
manufactured, a deadline for the traversal of a subset of this protocol,
machines that are active, or state-full, arms which can reach subsets of
the machines. We use this model to define the synthesis of schedules for
products for the system. We define semantics for Context-Aware Timed
Flexible Manufacturing Systems, and use it to implement a verifier and
schedule synthesiser. We use the semantics and the implemented verifier
to show that an existing schedule synthesiser does not always create cor-
rect schedules. We then present a schedule synthesis algorithm tailored
to Context-Aware Timed Flexible Manufacturing Systems and show four
heuristic functions for the algorithm. The synthesiser, verifier and the dif-
ferent heuristic functions are implemented. The heuristic functions are
then compared to each other and an unguided depth-first search, and
one of the heuristics is selected for further examination. We then com-
pare a guided depth-first algorithm using this heuristic to the unguided
depth-first algorithm. We find that substituting schedule optimality for
synthesis speed using the guided depth-first can produce a schedule that
is more optimal than those found by an unguided depth-first search. The
results are discussed and evaluated based on the quality of the synthe-
sised schedule and the time to synthesise a solution.

1 Problem Analysis

Flexible Manufacturing Systems (FMSs) [12] is a category of production systems
characterised by their capabilities of producing multiple products utilising differ-
ent machines, each being able to perform one or more operations. To produce a
product, it is moved around in the manufacturing system, reaching one or more
machines in a specific order, where an operation is performed. The operation will
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take some amount of time and blocks other products from entering the machine.
Multiple products can be inside the FMS at the same time and might require
processing in the same machines multiple times.

Therefore, one product might idle in a machine waiting for another machine
to become available. The waiting product can block other products, in turn
leading to a deadlock of the entire FMS. As the operations on the products can
take a varying amount of time to perform, the order in which the products are
manufactured can affect the time it takes to finish the manufacturing of all of
the products.

The creation of schedules for FMSs is related to variants of the Job Shop
Problem (JSP)[20]. The problem consists of a finite number of jobs Ji,..., Jy,
each with a set of operations Oq,..., O, that needs to be performed in order,
and a number of machines M, ... M; with varying manufacturing speeds. The
goal is to create a schedule s.t the total time to perform all jobs is minimised.

The choice of modelling formalism used to represent the constraints and be-
haviour of the FMS can impact the time to find a schedule and the optimality
of the found schedule. Furthermore, FMSs come in a wide variety in terms of
characteristics. Some modelling formalisms are therefore more suited for repre-
senting FMSs than others. The model must represent the system in a manner
where it is easy to verify whether it correctly represents the system and its in-
tended behaviour, as schedules created using an incorrect model can obstruct
manufacturing.

SigmaNet ApS [1] create controllers for Flexible Manufacturing Systems. One
of these systems is characterised by

— machines having varying capacities,

— machines can be used as buffers when they are not turned on,

— robotic arms and cranes move products between machines,

— products can be processed multiple times in same machines, but for various
duration of time, and

— products can become unstable at some point during processing and become
stable again after some machine has processed the product.

SigmaNet ApS is looking for ways to create scheduling tools to produce schedules
that correctly captures all system behaviours. Ideally, the schedules should be
created in a timely manner, be safe, and obtain schedules of good quality.

They have created their own experimental scheduling tool called ST. While
the tool can produce schedules fast, the engineers at SigmaNet ApS has found
that the modelling language used in their tool is not well-suited for expressing
the characteristics of the systems. The language is constricted due to their im-
plementation relying on Google’s OR-Solver[8] and the accompanying constraint
solving language. They suspect that this lack of expressiveness will lead to incor-
rect system models, which in turn will produce incorrect schedules. Furthermore,
the tool does not guarantee optimal schedules for the systems.

In this report, we define a formalism for describing FMSs that capture the
characteristics described by SigmaNet ApS and use it to create a formal model.
The formal model is used to verify schedules created by ST and a developed
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synthesiser used to create new schedules for a model of the system. Heuristics
are devised for the synthesiser to speed up the synthesis of schedules.

1.1 Problem definition
The problem is three-fold:

1. How can we formally express the characteristics of the systems SigmaNet
ApS works with?

2. How can this formalism be used to verify schedules produced by SigmaNet
ApS’s current, experimental tool?

3. How can the formalism be used to synthesise provably correct schedules?

The report is structured as follows. First, we present work related to mod-
elling FMSs. Work examining how different search strategies can impact the
speed of schedule synthesis and the quality of the schedule is then presented.
Then we provide syntax and semantics for Context-Aware Timed Flexible Man-
ufacturing System (CAT-FMS), a model of FMSs with the characteristics pre-
sented by SigmaNet ApS. We then examine schedules created by SigmaNet ApS’s
scheduler-tool and provide examples of errors in their schedules. We then present
a developed synthesis algorithm CAT* and provide heuristics for exploring the
state-space of CAT-FMSs. Experiments are conducted using a developed synthe-
siser and the developed heuristics to establish the performance of the heuristics
in terms of runtime, number of explored configurations, and quality of the found
solution.

1.2 Related work

We now present work related to the modelling of the job-shop problem and the
synthesis of schedules that satisfy the problem.

Previously, we have conducted work were we examined a problem and model
similar to what is described in this paper [10]. We examined the use of Timed-Arc
Coloured Petri Nets and used this formalism to model Flexible Manufacturing
Systems. We found that the model can express many of the flexible aspects
ofFlexible Manufacturing Systems. However, the time it takes to synthesise a
schedule leaves much to be desired. Therefore, additional research is needed to
establish how to solve the problem in a time-wise efficient manner.

The examination of Petri Nets [23] and variants of Petri Nets combined
with an A* [11] search algorithm combined with search heuristics have been
extensively researched and promising results have been established [2, 16, 4, 17,
15, 18, 22]. B. Huang and Sun [2] show how systems relying on shared resources,
but with products traversing the system in a linear fashion, can be modelled using
Timed Petri Nets[6]. The modelled systems are simulated and their state-space
explored using an A* search algorithm with different search heuristics. While
they do show that A* can be an effective way to solve the job-shop problem for
linear systems, they do not take into account the flexible aspects some systems
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might require. Our model takes into account, that a product can be moved into
any machine without starting the machine.

Xiong and Zhou [25] present a heuristic function that is based on the estimated
time of the current marking and the minimum expected manufacturing time
remaining in the system, by adding together all the jobs each machine still have
left to do. Their approach solely takes into consideration the processing time of
the machines while it disregards the movement of parts.

Luo et al. [17] present a slightly altered version of Xiong and Zhou heuristics
function, where the cost of the current marking is the firing time of the last
transition, while the expected remaining cost of reaching a goal state is the sum
of the remaining processing time for each product in the system. This processing
time is based on a minimum processing time matrix. Both Luo et al. [17] and
Xiong and Zhou [25] heuristic functions are based on the assumptions that all
resources are available when needed and that the product always follow the path
providing the lowest processing time. This in turn means they might prioritise
transitions that are not optimal due to them hindering other products’ movement
through the system journeys. Our model does not assume resource availability,
but instead focus on the behaviour of the FMS - we model machine availability
by considering both when a machine can be turned on and if the correct amount
and types of products are present in the machine.

Lee and DiCesare [14] present two heuristic functions. The first one changes the
heuristic function to a depth component subtracting the depth of a marking
from its current cost. This means that even if a marking has a large cost, it can
be prioritised as it is assumed deeper markings are closer to finding a schedule.
The second presented heuristic allows the search algorithm to prioritise markings
where operations are closer to ending. This allows for the prioritisation of moving
products forward in their journeys as well as freeing up resources.

Sun, Cheng, and Fu [24] present an alternative version of the depth prioritising
heuristic function by adding a weight component. This change allows the user to
control the importance of the depth information, with a higher value resulting in
the prioritisation of deeper markings. However, due to the state space explosion
that occurs when trying to find a suitable schedule for larger systems [2, 18, 22,
19, 17] steps have been taken towards approaches which trades optimality for
computational improvements.

B. Huang and Sun [2] show that by implementing a cost factor and Depth-First
Search component, the search effort can be reduced by up to 70% by giving up
15% optimality.

Moro, Yu, and Kelleher [18] demonstrate an approach where a dynamic window
is used to limit the scope of the search by limiting the backtracking capabilities.
They show that a search using the dynamic window can reduce the search effort
by up to 33%. Additionally Peng et al. [22] show that improvements with a lower
optimality cost can be obtained by improving the backtracking rules. They aim to
limit the amount of good solutions the dynamic window disregards due to overly
aggressive pruning of the search space. Like [2] and [22] we also examine the
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trade-off between schedule optimality and computational time, and also examine
a dept-first component.

2 Notation

Throughout this report, we let the set of natural number N include all non-
negative integers. For cases where oo is included we use N*°.

A multi-set M over a set A is a set containing elements of A but where
duplicates are allowed. M(A) denotes all possible multi-sets over A. The size
of a multi-set M is given by |M|. For any set or multi-set S we denote that a
condition ¢ must hold over all elements of S by Vg ¢.

A sequence of elements ™ = $1-89-...-8, is an ordered, enumerated collection
of elements. The length of 7 is given by || = n. If 7 has length 0, we say that it is
empty and denote it by €. For sequences, we define the function head to give the
first element of a sequence if it has one or more elements and ¢ otherwise. The
function tail gives all elements of the sequence, except the head. For m = s; - - - sy,
head(m) = s; and tail(w) = s2 - ... - s,. Finally, the function suffiz is defined s.t
suffix(mw, i) = 8; -+ - s, if i < n and e otherwise.

3 CAT-FMS

In this section, we first introduce the notion of a Context-Aware Timed Flexible
Manufacturing Systems (CAT-FMSs) used to represent FMSs. Following this,
we provide definitions to establish the semantics of CAT-FMSs and then we
establish the Input Arrival Problem (IAP) and its solution.

The following definition is derived from information gained from a meeting
with the CEO of SigmaNet ApS and from system documentation and presenta-
tion materials provided by SigmaNet ApS. These materials have been excluded,
as they contain customer sensitive information.

Definition 1 (Context-Aware Timed Flexible Manufacturing System).
A Context-Aware Timed Flexible Manufacturing System (CAT-FMS) is a tuple
S =(d,E,M, A, Ap,reach, cap, req, prot, crit) where

— Id is a finite set of product ids,

— F is a finite set of exit location,

— M = M, W My is a finite set of machines where M, are machines that are
always active and M are machines that can be turned on or off,

— A is a finite set of arms,

— Ap: A — N is a function mapping arms to the duration it takes for them to
move products,

— reach: A — P(MUE) is a function dictating which machines and exits each
arm can reach,

— cap: M U A — N assigns each arm and machine their capacity,

— req: My — P(N) gives possible amounts of products needed in each machine
before it can be started,
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— prot: Id — (M x N x N)* is a function mapping products to a sequence
of machines and processing intervals s.t if a product with id € Id then
(m,s,e) € prot(id) defines that id must be in machine m that is turned
on or m € M, for a duration of d € [s, €], and

— crit: Id - N x N x N is a function defined over all id € Id s.t (s,e,t) =
crit(id) dictates a subsection of prot(id) starting at index s and ending at
index e that must be traversed within t time units.

The objective of a CAT-FMS is to create a schedule defining when and which
action should be executed s.t production is facilitated in an legal manner. In the
following, we provide definitions and the meaning behind these schedules and
actions.

Definition 2 (Schedule). A schedule is a sequence of pairs (t1, 1) - (tn, ap)
where t; < ... < t, which defines that action o; occurs at time t; € N, where
each a; can be either

— arrive(pt, m), meaning that products pt C Id,pt # @ arrive in machine
m € M,,

— take(a, pt, m), meaning that arm a € A picks up products with ids pt C
Id, pt # & from machine m € reach(a),m € M,

— place(a, pt, m), meaning that arm a € A places products with ids pt C
Id, pt # @ in machine or exit m € reach(a),

— start(m), meaning that machine m € My starts, or

— stop(m), meaning that machine m € M stops

for each 1 < i < mn.

Let m = (t1,1) -+ (tn, ) be a schedule. We say that each (¢,«) from 7
is a schedule step. The function arrivals(m) = (¢;, «;) - - (¢, ;) projects w to a
sub-sequence where each schedule-step is an (¢, arrive(pt, m)).

The perspective of a machine m € M under schedule 7 is the sub-sequence of
7 where each element is of type arrive(pt, m),start(m), or stop(m). The func-
tion perspective(m, ) projects 7 to this sub-sequence. We say that perspective(m, )
is the schedule 7 from the perspective of m.

For a schedule 7" = (1, 1) - - - (¢, ) we say that 7’ is operation oblivious if
it contains only actions of type arrive(pt, m), place(a, pt, m), or take(a, pt, m).
We say that 7’ is an Operation Oblivious Schedule (OOS).
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3.1 Schedule example
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(a) The sample id; has ar- (b) The arm has grabbed (¢) The arm has placed
rived in heater h. id; from the heater. id; in machine c.
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(d) The arm has grabbed (e) The arm has placed
id; from machine c. id1 in the exit location e.

Fig. 1: The different placement of the sample id;. The active machine h € M,
is located to the west, the arm a is placed in the center, the centrifuge ¢ to the
north, and the exit e to the south.

We now present a small example to illustrate the behaviour and meaning of

the actions from Definition 2. We define a small system based on the two first
machines of one of SigmaNet ApS’s systems. The example system contains

a centrifuge ¢ € M, with cap(c) = 2 which can be started with 1, 2 or 4
products req(c) = {1,2,4},

a heater h € M, with cap(h) =1,

an exit e € F, and

a robotic arm ¢ € A with a travel time Ay (a) = 6 and capacity cap(a) =1
which can reach all the different components reach(a) = {¢, h, e}.

The system processes chemical samples - a sample id; have to first be heated
for 50-60 time units, then be centrifuged for 30 time units. This is defined by
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the protocol of the product prot(idy) = (h,50,60) - (¢, 30,30). The sample must
not get cold before centrifuged, and so must reach and be done processing in the
centrifuge before 120 time units after leaving the heater. This is defined by the
critical section of the product crit(id;) = (1,2,120).

A schedule for this system will first input id; to the heater, then move id;
to the centrifuge which will then be started. Once the sample has been in the
centrifuge for an appropriate amount of time, the centrifuge must be stopped
and the sample moved to the exit. Figure 1 shows the different locations the
sample can be placed in. When it arrives it is placed in & (Figure la), then it
is picked up by a (Figure 1b), and then placed in centrifuge ¢ (Figure 1c). The
centrifuge is then started - once done the product is grabbed by a (Figure 1d),
and finally moved to the system exit (Figure le).

For this system, a valid schedule could be
m = (0,arrive({id; }, h)) - (50, take({ids }, a, h)) - (56, place({id; }, a, ¢))-

(56, start(c)) - (86,stop(c)) - (86, take({id1}, a, ¢)) - (92, place({id1 }, a, ¢)).

The schedule shows a scenario where both a place and start action interact
with the same machine at time 56. This is still safe due to a list of operating
guarantees that holds for each of the actions. Invoking arrive, place, or stop
at time ¢ guarantees that the action is finished at time ¢,. Meanwhile, invoking
take or start guarantees that the action is executing at time #; < ¢’ < #; +1. For
this scenario, it means that arm @ has finished placing id; in ¢ before we reach
time 56. This allows ¢ to begin processing id; at time 56 as it is not blocked by
a.

The perspective of machine c is given by perspective(c, ) = (56, place({id; }, a, ¢))-
(56, start(c))-(86, stop(c))- (86, take({id; }, a, ¢)). From 7 the Operation Oblivi-
ous Schedule 7’ = (0, arrive({id; }, h))-(50, take({id, }, a, h))-(56, place({ids }, a, ¢))-
(86, take({id1 }, a, ¢)) - (92, place({id1 }, a, €)) can be achieved by excluding all
schedule steps containing a start(m) or stop(m) action.

3.2 Preliminary definitions

In this section, we provide definitions used to establish when a schedule is feasible.
In Definitions 3 and 4 we provide functions used to establish when an action
interacts with an arm or machine.

Definition 3 (Arm interaction). The set of all possible arm operations for
an arm a € A is defined by operation(a) = {place(a, pt,z)|pt C Id,z € M U
E, |pt| < cap(a)} U {take(a, pt, m)|pt C Id, |pt| < cap(a),m € M}.

Definition 4 (Machine interaction). The set of all possible actions involving
a machine m € M is given by interact(m) = {ala = place(a,pt,m) V o =
take(a, pt,m) V a = stop(m) V a = start(m), |pt| < cap(m),pt C Id, a € A}.

Definitions 5 and 6 define the state of the products of the CAT-FMS and
a mapping from system components and the products contained within them,
respectfully.
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Definition 5 (Configuration). A configuration C: Id — ((M U A) x N) U
{L, T} maps all products to a location and the number of completed steps of the
product’s protocol. If the product is not in the system, the function gives L. If the
product is placed in an exit, the function gives T. The set of all configurations
is C.

Definition 6 (Content). The function content: (M U A) x C — P(Id) is
defined by content(z,C) = {id € Id|C(id) = (z,s)}. As a shorthand we use
contente(x) to denote content(z,C) for x € MU A and C € C.

Definition 7 defines the next machine each product must be processed in and
Definition 8 the minimum and maximum time a set of products can be processed.

Definition 7 (Next protocol step). The next step of a product’s protocol
under a configuration C is given by a function next: Id x C — M x N x N and
is defined as next(id,C) = head(suffiz(prot(id), s)) where (m,s) = C(id).

Definition 8 (Legal processing interval). The function respect maps a set
of products to the highest of minimal processing times and the lowest mazximum
processing times given by the next protocol steps of the products. It is defined as
respect(pt,C) = (lp, up) with ly = maz({l|(m, !, u) = next(id,C),id € pt}) and
up = min({ul(m, [, v) = next(id,C), id € pt}) where C € C and pt C Id.

We now present schedule executions and rules for how these executions be-
have.

3.3 Schedule execution

Let s = (t1,a1) -+ (tn, apn) be a schedule. An ezecution of s is a sequence of con-

figurations separated by elements of s written as Cg (h00) C1 (t2r02) (o)

C,, where the following conditions and rules are respected. If the conditions and
rules are satisfied, we say that s and the execution of s is feasible.

Rule 1 every product can arrive at most once;

V, if a; = arrive(pt, m) then #;~,a; = arrive(pt’,m’) Apt' Npt £ @

(2

Rule 2 a machine m € M, must be stopped after it is turned on, and it cannot
be interacted with while being turned on;

v, if a; = start(m) then 3

K2

it > ti Aoy = stop(m) and

£i<k<j05k € interact(m)

Rule 3 when an arm a € A picks up products pt C Id, it holds them for exactly
Ar(a) time-units before placing them in z € M U E, and no other operation can
be performed while using the arm;

vV, if a; = take(a, pt, m) then 3, ; a; = place(aq, pt, z)

?

At + Ar(a) = tj and Bicp<jar € operation(a)

11
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Rule 4 no product exceeds its deadline before leaving its protocol’s critical
section;

V, -Viqe1q Where crit(id) = (cs, c., d) if C;(id) = (=, cs)
then 3, ,C;(id) = (z,cc+ )N —t; < d

Rule 5 once a machine is started, it is stopped within the interval defined by
all product’s minimum and maximum processing times;

V, if (a; = start(m) then 3, ; a; = stop(m)) At; — t; € [ly, up]A

7

Ip < up where (Iy, up) = respect(contentc,(m),C;)

Rule 6 once a product enters an active machine the product is taken out of
the machine before reaching maximum processing time;

V. Vigera where (m, min, mar) = next(id,C;) if (a; = place(a, pt, m)A
m € M, Aid € pt)V (o; = arrive(pt,m) Am € M, A id € pt) then

3,5, 05 = take(a', pt', m) Aid € pt' At; — t; € [min, maz].

Furthermore, the actions in the schedule must be enabled and the execution of
the actions must yield the correct configurations. For the following rules dictating
enabledness and execution of an (;, ), we assume C;(id) = C;_1(id) for any
id € Id \ pt where pt C Id are products involved in the action.

Rule 7 if a; = arrive(pt, m)) then

a) the arrival of the products does not exceed the capacity of the machine;
cap(m) > |contente,_,(m)| + |pt|,

b) the arrived product has not completed any steps of their protocol; C;(id) =
(m, 0) for every product id € pt, and

c) the products are not in the system yet; C;_1(id) = L for all id € pt.
Rule 8 if a; = take(a, pt, m) then

a) the products are in the machine; contentc, ,(m) 2 pt,

b) the arm is empty; contente, , (a) = @,

c) the arm has sufficient capacity; cap(a) > |pt|,

d) if m € M, then the number of completed steps of the moved products
are incremented; C;(id) = (a, s + 1) where (m,s) = C;_1(id) for every product
id € pt, and

e) if m € M, then the number of completed steps remain the same; C;(id) =
(a, s) where (m,s) = C;_1(id) for every product id € pt.
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Rule 9 if o; = place(a, pt, z) then

a) the product must be held by the arm; (a,s) = C;—1(id) for every product
id € pt,

b) if £ € M then the capacity of the machine is not violated; |contente,_, (x)| +
pt| < cap(a),

c) the next step of the product’s protocol is z if z € M,; next(id,C;—1) =
(z, min, maz), for every id € pt

d) the remaining protocol of the product is empty if z € E; suffiz(prot(id), s)
e where (z,s) = C;—1(id), for every id € pt

e) the product leaves the system if z € F; C;(id) = T for every id € pt,

f) the product is placed in z if z € M; C;(id) = (z,s) where (a,s) = C;_1(id)
for every id € pt, and

g) all products disappear from the arm; contentc, (a) = @.
Rule 10 if o; = start(m) then

a) the number of products in m allows the machine to start; |contentc,—1(m)| €
req(m), and

b) the next protocol step of all products must be m; next(id,C;—1) = (m, min, max)
for all id € contente, ,(m).

Rule 11 if o; = stop(m) then

a) the number of completed steps of all products are incremented; C;(id) =
(m, s+ 1) for all id € contentc, ,(m).

Having established the legal behaviour of CAT-FMSs and how executing the
different actions result in new configurations, the task at hand is to create a
schedule for a CAT-FMS s.t manufacturing using the system can occur. We
therefore define the Input Arrival Problem and its solution, and following this
we describe how the rules can be used to take a Operation Oblivious Schedule
and convert it into a schedule which can be verified.

Definition 9 (Input Arrival Problem (IAP)). Given an input schedule
in = (t1,arrive(pty,m1))- - (t,, arrive(pt,, m,)) synthesise a schedule m =
t1,001) (tj,04)

(tr,0q) -+ - (8, o) with feasible execution Co ( C; s.t arrivals(m) =
in, Cj(id) = T, and Co(id) = L for all id € Id. We refer to C; as being a goal
configuration. The time t; is referred to as the makespan of the solution.

Based on the semantics of CAT-FMSs, we develop a verifier, which can be
used to establish whether a provided schedule is feasible. It will be used to
establish whether a number of OOSs created using a tool developed by SigmaNet
ApS are feasible.
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4 Verification of SigmalNet ApS’s schedules

SigmaNet ApS have developed their own scheduler using Google’s tool OR-
solver [8]. However, SigmaNet ApS’s experimental tool, called ST, creates Op-
eration Oblivious Schedules (OOSs). By using ST we create three OOSs by
providing three different Input Arrival Problems (IAPs) and the example sys-
tem from Section 3.1. The tool does not respond in a deterministic manner, and
providing it with an TAP multiple times will not necessarily produce the same
0O0Ss.

For an OOS 7' = (t1, 1) - (tn, ), we say that @' is time-eligible if it is
possible to interleave 7’ with tuples (¢, start(m)) and (¢, stop(m)) s.t Rules 2
and 5 are both satisfied.

To examine whether ST creates OOSs which could be turned into a feasible
schedule, we first establish whether the produced OOS is time-eligible. We find
the times where start(m) and stop(m) actions can occur by observing when
products enters each machine. If a product enters a machine at time t; and
another product at time ¢;, then the start(m) action can occur at any time
between ¢; and t;, and stop(m) must occur at a time less than or equal to ¢; but
after ¢;. If the OOS is time-eligible, schedules are created by interleaving legal
start(m) and stop(m) actions, and the developed verifier is used to establish
whether the schedule is feasible.

4.1 First Operation Oblivious Schedule

The first schedule is created by providing ST with the IAP
in = (0,arrive({idy,id2},h)). ST responds with the OOS shown in Equa-
tion (1).
71 =(0,arrive({id, ida}, h)) - (50, take(a, {idi }, h))-
(56, place(a, {id }, ¢)) - (56, take(a, {id2}, h))-
(62, place(a, {idx }, ¢)) - (92, take(a,{id; }, ¢))- (1)
(98, place(a, {id1 }, e)) - (113, take(a, {idz2}, ¢))-
(

119, place(a, {idz2}, €))

We now establish whether 7] satisfies Rules 2 and 5 and is time-eligible. This
is done by examining the perspective of each of the machines from M;. For the
case of this system only ¢ € M;.

We construct the perspective of ¢ which is shown in Equation (2) and is
visualised on Figure 2a.

perspective(c, ) =(56, place(a, {id1 }, ¢)) - (62, place(a, {idz}, ¢))-

2
(92, take(a, {id1}, ¢)) - (113, take(a, {id2}, c)) @

By using the described approach, we examine Equation (2) and see that it is a
time-eligible OOS. A schedule which can be created by interleaving (62, start(c))
and (92, stop(c)) with Equation (2) satisfy both Rules 2 and 5. We create this
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(a) The perspective of ¢ given by
perspective(c, m1) is time-eligible and fea-

sible as the overlap of the products are
more than 30 time units.

1

(c) The perspective of ¢ given by perspective(c, 753) is time-eligible but is not
feasible because by Rule 10a machine ¢ can only be started with 1,2 or 4

(b) The perspective of ¢ given by
perspective(c, m4) is not time-eligible due
to the time-slots not overlapping for at
least 30 time units.

products.

Fig.2: Three different OOS 71,75, and 7§ from the perspective of machine ¢
from Section 3.1. The OOSs are created using ST

schedule, shown in Equation (3), and verify it using the developed verifier. The

15
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verifier correctly states that 7 is feasible.

=(0, arrive({idy, id2}, h)) - (50, take(a, {id1 }, h))-
(56, place(a, {id }, ¢)) - (56, take(a, {id2}, h))-
(62, place(a, {id2}, ¢)) - (62,start(c))-
(92,stop(c)) - (92, take(a, {id1 }, ¢))-

(98, place(a, {id1 }, e)) - (113, take(a, {idz2}, ¢))-
(119, place(a, {id2 }, €))

4.2 Second Operation Oblivious Schedule

We create the second OOS 74 in the same manner as the creation of 7}. We
supply ST with IAP in = (0, arrive({idy, ids, id3, ids}, h)). We get the OOS in
Equation (4).

=(0, arrive({idy, ida, id3, ids }, h)) - (50, take(a, {id1 }, h))-
(56, place(a, {id }, ¢)) - (56, take(a, {id2}, h))-
(62, place(a, {id2}, ¢)) - (62, take(a, {id3}, h))-
(68, place(a, {ids}, c)) - (68, take(a, {ids}, h))-
(74, place(a, {ids}, c)) - (86, take(a, {id; }, ¢))- (4)
(92, place(a, {id1 }, e)) - (113, take(a, {id2}, ¢))-
(119, place(a, {id2}, €)) - (169, take(a, {ids}, ¢))-
(175, place(a, {ids}, e)) - (243, take(a, {ids}, ¢))-
(249, place(a, {ids}, €))

The perspective of machine ¢ is then given by Equation (5) and is visualised
on Figure 2b.

perspective(c, my) =(56, place(a, {id; },
68, place(a, {ids},
86, take(a, {id; }, ¢)

169, take(a, {ids},

) - (62, place(a, {id2}, c)
) - (74, place(a, {ids}, c)

(113, take(a, {id2}, ¢))-
) - (243, take(a, {ids}, c)

):

)-

¢)
c)
). ()
¢)

—~ Y~ —~

)

From Equation (5) we see that no schedule with an execution satisfying
Rules 2 and 5 can be created by interleaving start(c) and stop(c) actions. This
can be seen, as there are no uninterrupted sections of 30 time units, which is
required by the protocol of the products. This means that no legal start(c) and
stop(c) can satisfy the duration [30, 30] given by the product’s protocol. No
feasible schedule based on Equation (4) can therefore be created, and we need
not verify any schedules.
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4.3 Third Operation Oblivious Schedule

Lastly, we provide ST with IAP in = (0,arrive({idy, idz, id3}, h)) and get the
OOS in Equation (6).

7y =(0, arrive({id,, ids, id3 }, h))-
(50, take(a, {idi }, h)) - (56, place(a, {id; }, ¢))-
(79, take(a, {ids}, h)) - (85, place(a, {ids}, ¢))-
(96, take(a, {id2}, h)) - (102, place(a, {id2}, ¢))- (6)
(132, take(a, {id; }, ¢) )
(138, take(a, {idz2}, ¢) )
( ) )

(a,
245, take(a, {id3},

) - (138, place(a, {id; }, e
) - (144, place(a, {id2}, e
) - (251, place(a, {ids}, e

)
)

Again, we construct the perspective of ¢, which is given by Equation (7) and
is visualised on Figure 2c.

perspective(c,m4) =(56, place(a, {id1 }, ¢)) - (85, place(a, {ids}, c))-
(102, place(a, {id2}, ¢)) - (132, take(a, {id; }, ¢))- (7)
(138, take(a, {id2}, ¢)) - (245, take(a, {ids}, ¢))

We see that we cannot interleave (56,start(c)) and (84,stop(c)) because this
would violate Rules 2 and 5, as the protocol of id; would be violated. This applies
for any stop(c) occurring before time 85. We cannot interleave (85, start(c)) and
(102, stop(c)) as this would violate the protocol of ps. But we can interleave
(102, start(c)) and (132,stop(c)) to get an execution which satisfies Rules 2
and 5. This schedule is shown in Equation (8) We then try to verify w3 using
the verifier, which responds with an error; executing start(c) at any time where
three products are placed in ¢ will violate Rule 10a, and therefore a feasible
schedule cannot be created from 7.

102, place(a, {id2}, ¢)) - (102, start(c))-
132, stop(c¢)) - (132, take(a, {id; }, ¢))-
(138, take(a, {ida}, ¢)) - (245, take(a, {id3}, ¢))

We have now found that two of the three OOSs could not be used to create a
feasible schedule. Thus, ST produces schedules which, if executed in any manner,
may not always guarantee correct operation of the manufacturing system, as
defined by the semantics in Section 3.3. We therefore develop a synthesiser called
CAT-Synth which integrates with the verifier. The synthesiser can be used to
create schedules which are verifiably feasible. In the following section, we present
a synthesis algorithm based on the exploration of CAT-FMSs as well as different
heuristics which the algorithm can use.

w3 =(56, place(a, {id; }, ¢)) - (85, place(a, {ids}, ¢))-
(
( (8)

17
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5 CAT-FMS Synthesis

We have now established that SigmaNet ApS’s tool ST does not always produce
feasible schedules. The task at hand is now to synthesise feasible schedules which
are verifiably correct and as fast as possible.

Given an TAP p and CAT-FMS s, we need to synthesise a feasible schedule
by executing actions defined in Definition 2 while adhering to Rules 1 to 11.

We present a search algorithm called CAT™*. The algorithm is a variation
of the A* algorithm [11, 21] adapted to CAT-FMSs. CAT* searches for a goal
configuration by maintaining a priority queue of configurations, where the pri-
ority is given by the function f(C) = ¢(C) + h(C) where C € C. The heuristic
function h(C) estimates the time-wise distance from the given configuration to
the goal configuration, while ¢(C) is the time used to reach the given configura-
tion. This is visualised on Figure 3. The algorithm also maintains pointers from

(t(1+1 , C‘lJ

Cil—l-l T
(t,2) () . / : —

m /
N g (3 1,a™) i+1
9(C;) =t Hl L . )

h(Cii1)

Co

Fig. 3: Illustration showing how CAT* explores new configurations and evaluates
them based on the heuristic function. For C',; the priority is given f(Cj ;) =
ti +h(C 1)

a configuration back to its predecessor. The pointers from a configuration C; can
(t1,01) o (tig1,0i41)

be traversed to create an execution of the form Cj
which is also shown on Figure 3.

The algorithm tracks which configurations have been reached before, and may
re-explore a configuration if it is reached in a cheaper manner than previously.
If this occurs, the predecessor pointers are adjusted accordingly.

To progress the search for a goal configuration, the algorithm must construct
i+1 7ai+1)

Ci+1a

all possible executions by extending the current execution with C; (*
Ci+1, and then select which configuration to explore next based on the configu-
rations’ f value. This is repeated until all possible configurations are explored or
a goal configuration is reached. As shown on Figure 3, an infinite number of new
configurations may be reached by executing an action « under C; in a manner
dictated by Rules 7 to 11.
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To bind the number of possible schedule steps to a finite amount, an upper
bound for ;41 is computed by considering the following limiting factors:

Limiting Factor 1 If any arm a has taken any product, the upper bound is
limited by the remaining time until a placement must occur (Rule 3).

Limiting Factor 2 1If a product is within the critical section of its protocol, then
the time to reach it’s deadline sets an upper limit (Rule 4).

Limiting Factor 8 If any machine is started or a product is placed in an active
machine, the upper bound is limited by the protocol of the product (Rules 5
and 6).

Limiting Factor 4 Any (t,,arrive(pt, m)) from the given Input Arrival Problem
sets an upper bound of t, if ¢; < t,.

The upper bound of ;1 is then the minimum of Limiting Factors 1 to 4. In
case non of these factors sets an upper limit, the action must occur at t;41 = ¢;.

Theorem 1. For any feasible schedule there exist another feasible schedule that
satisfies Limiting Factors 1 to 4 and with an equal or better makespan.

19
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Proof

Let m = (t1,a1) - (t2,2) - - (tn, ) be a feasible schedule that
solves TAP p. We show how to construct a restricted solution
satisfying Limiting Factors 1 to 4. The execution of 7 satisfies

— Limiting Factor 1 because if this is not the case and there
exists a reached configuration s.t the time difference between
a place(a, pt, m) and a take(a, pt, m) is greater than Ar(a),
then this contradict the feasibility of m by breaking Rule 3.

— Limiting Factor 2 because if this is not the case and there
exists a reached configuration s.t the time since a part has
entered its critical state is greater than it’s deadline, then
this breaks Rule 4 and m would not be feasible.

— Limiting Factor 3 because if this is not the case and there
exists a reached configuration s.t the time difference between
a place(a, pt, m) and take(a,pt, m) where m € My or an
start(m) and stop(m) is greater than what is dictated by
any relevant product’s protocol, then this contradicts the
feasibility of m by breaking Rule 5 or Rule 6.

— Limiting Factor 4 because if this is not the case then 7 does
not solve p, since p defines when arrive actions must occur
and any schedule delaying past any of these would not solve

p.

We show that when non of Limiting Factors 1 to 4 applies, a
solution of equal or better quality can be created.

tig1,0it1) tn,Qn .
Let mgup = C; W—L“> Cix1--+ g C,, be an execution of a

sub-sequence of m where ¢; 11 # t; and let C; 1 be a configuration

where Limiting Factors 1 to 4 does not apply.

ipy . . . . tit1—d,o;
Shifting all times in mg,, to the execution C; w>

(t2—d,a2) (tn—d,an)

Cit1 C,, will not break any rules be-

cause:

— Rule 1: If any arrive(pt, m) must occur at time #; > ¢; then
Limiting Factor 4 applies, and an upper bound exists.

— Rule 2: If a start(m) has occured without a subsequent
stop(m) then Limiting Factor 3 applies, and an upper bound
exists.

— Rule 3: Shifting all times by d means that any pair of
take(a, pt, m) and place(a, pt, m’) will be shifted an equal
amount, and Rule 3 is not violated.

— Rule 4: By Limiting Factor 2, if a product is within the crit-
ical section of its protocol, then an upper bound exists.

— Rule 5: Shifting all times by d means that any pair of
start(m) and stop(m) will be shifted an equal amount, and
Rule 5 is not violated.

— Rule 6: If Rule 6 is relevant, then Limiting Factor 3 applies
and an upper bound exist.

— Rules 7 to 11 are all vacuous as they do not include time
constraints.



Scheduling for Timed Context-Aware Flexible Manufacturing Systems

Having established how CAT* restricts the generation of new configurations
to a finite amount we now describe a number of heuristic functions which can

be used by CAT*.

5.1 Heuristics

Heuristic functions are used to guide the search of CAT™*. The more precise a
heuristic function can estimate the cost to reach a goal configuration, the faster
a solution can be found. However, an optimal solution is only guaranteed if the
heuristic is admissible.

Definition 10 (Admissible heuristic function). A heuristic function h: C —
R is admissible iff Yoo h(C) < h*(C) where h*(C) is the evact cost to reach the
goal configuration. [11]

Theorem 2 ([11]). If an admissible heuristic h is used, then A* finds an
optimal solution.

Theorem 3 ([5]). If h(C) =0 for all C € C the search turns into an unguided
search until an optimal solution is found.

Many of the our developed heuristics examine the minimum time it takes
to reach each machine and arm, and compute the minimum remaining process-
ing times to establish the cost of a configuration. We now define a number of
functions used in the heuristics. The multi-set of minimum remaining processing
times of a configuration is given by

Mintimes(C) = {tmin|(z, 8) = C(id), (M, tmin, tmaz) € suffix(prot(id), s)
for all id € Id}

The multi-set of minimum remaining processing times of a configuration
with the addition of travel times for each product uses a reachability graph.
This directed graph is defined as

Giravel = {(, a,0)|z € reach(a),a € A}U

a,xr AT(G)
(a2, 20

)|z € reach(a),a € A}

Each (z,2',n) € Girver describes that an edge of weight n exists between z
and z’. The reachability graph assumes the most direct path to each element can
be used, and that no blocking occurs along this path. It also assumes that the
arm utilises all of its capacity. To establish the pair-wise shortest path of all arms,
exits, and machines, the Floyd-Warshall algorithm [7] is used to create a lookup
table. This look-up is defined by function distn: (AUMUE)x (MUAUE) — R.
For a protocol prot = (my,t1,t]) - (mp, tn, t,) the amortised travel time cost
of the protocol is given by distseq(prot) = distmin(ma, me) + distyin(me, ms) +
oo+ distpin (Mp—1, my,).

21
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We combine the remaining minimum processing time with the time to tra-
verse protocols using the function

MiNgimes+iravel (C) = {tmin + distseq(remain)|(z, s) = C(id),

remain = suffix(prot(id), s), (M, tmin, tmaz) € remain for all id € Id}

Maximum Remaining Processing Time (MRPT) is based on an admissi-
ble heuristic presented by B. Huang and Sun [2] and uses the minimum process-
ing time for each products’ remaining protocol to estimate the cost of reaching
the goal configuration. The heuristic assumes that all products can be processed
in parallel, and the transportation between different machines occurs instanta-
neously. The heuristic is given by

MRPT(C) = maz(mingmes(C)) (9)

Maximum Remaining Processing Time w. Transportation (MRPT-T)
is based on MRPT but tries to account for the time it takes to reach the different
machines. The heuristic is given by

MRPT — T(C) = max(mintimeertravel(C)) (10)

Remaining Processing Time (RPT) uses the minimum processing time
for each products’ remaining protocol to estimate the cost of reaching the goal
configuration. The heuristic prioritise configurations where the sum of remaining
processing times are reduced as much as possible.

The heuristic is given by

RPT(C) = Mitimes(C) (11)

Remaining Processing Time w. Transportation (RPT-T) is similar to
RPT in that it accounts for an optimistic estimate of the total remaining process-
ing time for a configuration, but tries to consider travel times between machines.
RPT-T is defined as

RPT — T(C) = Z mintimes+t’r‘av6l (C) (12)

5.2 RPT and RPT-T are not admissible

The heuristic functions RPT and RPT-T are not admissible, and are therefore
not guaranteed to find optimal solutions. This is best shown using an example.
Imagine a system with two machines my, ms € Mg, one exit e € E, one arm
a with reach(a) = {e,m1, my}, Ar(a) = 1, and cap(a) = 1. Let prot(id;) =
(4,4, m1) and prot(ide) = (4,4, ms). Let C be the current configuration reached
in time 0, and let id; and idy be products placed in m; and my respectfully.
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We see that RPT(C) = > {4,4} = 8 and that MRPT —T(C) = > {4+1,4+
1} = 10. However, we see that the execution

(0,start(m;)) (0,start(mz)) (4,take(a,{id1},m1))
C C1 CZ

c (5,take(a,{id2},m2)) (6,place(a,{id2},€))
4

just 6 time units.

(5,place(a,{idy },e))

Cs

Cg reaches a goal configuration in

Cs

6 Experimental evaluation of synthesis

In this section, we describe an experimental evaluation of a number of synthesis
algorithms and heuristics used to solve different Input Arrival Problems (IAPs).
The algorithm from Section 5 and the heuristics from Section 5.1 have been
implemented in a C# program called CAT-Synth (CAT-Synth). A verifier estab-
lishing whether a schedule adheres to Rules 1 to 11 has also been implemented,
and every schedule found has been verified. The implementation can be found on
GitHub[9] The experiments were run on a Linux machine with the Ubuntu 20.04
operating system. The machine was set to use 2 AMD EPYC 7642 processors.
A timeout of 10 minutes were used.

First, we examine which of the heuristics for CAT* gives the most promis-
ing results, in terms of time to synthesise a feasible schedule and number of
configurations explored when finding it. We then compare the makespan of the
solutions found by CAT* to that of the an implemented DFS algorithm. The
DFS prioritise the immediate execution of action over a delayed execution.

As problem input, we scale the length of the input sequence, the frequency
of arrivals, and how many products arrive at the same time. We examine three
CAT-FMSs and define protocols and critical sections for them. The CAT-FMSs
definitions used in these experiments are described in Appendices A.1 and A.2
and the IAPs instances are described in Appendix A.

On Figure 4a we see that CAT* finds schedules with lower makespans in
the instances where it is possible. On Figure 4b we see that for all the IAP,
the heuristic functions guide CAT* to solutions with a lower makespan than
the DFS. This trends continues on Figure 4¢ where the found solutions have a
substantially lower makespan. However, the number of problems solved by the
DFS far surpasses that of CAT™.

We now select on of the heuristics based on the time it took to find a solution
and the amount of solutions found, and then use it as a heuristic for a guided
DFS algorithm called CAT}pg.

CAT}gg is inspired by B. Huang and Sun [2]. The intuition behind the algo-
rithm is to create a guided depth-first traversal of the CAT-FMS. This is done
by maintaining a record of depth for each configuration and selecting a subset of
configuration which yields an adequate f-value decided using a constant value e.
The deepest configuration in this subset is then examined to generate reachable
configurations. Again, a prioritisation of the immediate execution of action is
done. A higher e value allows for the exploration of worse configuration, while

23
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Fig. 4: Cactus plots showing the makespan for the three systems defined in Ap-
pendices A.1 to A.3

a smaller € will yield results closer to that of CAT™*. The slack in f values are
decided by the formula f(C) x (1 + ).

Tables 1 to 4 in Appendix B show the time it took and the number of con-
figurations explored before finding a solution or timing out. The comparison of
the different heuristic functions in terms of time and number of configurations
explored are shown on Figures 5 and 6 respectfully. We see that, the heuristic
RPT-T yields the best results in terms of configurations explored and feasi-
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Fig.5: Cactus plot showing the number of searched configurations for each of
the different heuristics.
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Fig.6: Cactus plot showing the time before running out of memory, exploring
all configurations, or synthesising a feasible schedule.
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ble schedules found. In the next experiments, we will use RPT-T to guide the
CAT} g algorithm.

300 | —® Cat*-RPTT .
—m— DFS y
—— E=5.00 ."
250 |
,
L
200 1
c
©
Qo
w
[
£ 150
=
100 A
50
0

0 10 20 30 40 50 60
Index

Fig. 7: Cactus plot showing the makespans of synthesised schedules found using
DFS, CAT* and CAT},pg with e =5 using RPT-T.

We now compare CAT},pg with different € values to the DFS and CAT™*. For
the experiments epsilon values of 1.00, 1.25,1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00,
3.50,4.00,4.50, 5.00 were used. We found that an € value of 5 is needed to compete
with DFS in terms of number problem instances solved.

Figure 7 show the difference in makespan for CAT*, CAT} g with € = 5, and
DFS. Figure 8 shows the time it took for each algorithm to synthesise a feasible
schedule. Note that each algorithm does not necessarily solve the same problem
instances. We see that for smaller, less complex problems, DFS beats CAT}pg
in terms of makespan and configurations explored. For complex problems, the
solutions found using CAT} g yields remarkably lower makespans, but require
a longer time to synthesise the solution.

7 Conclusion

In this paper, we document a formal model which is used to describe Flexible
Manufacturing Systems with the same characteristics of the systems SigmaNet
ApS develops controllers for. The formal model called CAT-FMS was derived
from information gained from a presentation by the CEO of SigmaNet ApS
and technical documentation. We define schedules, how these schedules are ex-
ecuted, and how execution changes the state of the CAT-FMS. This is shown
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Fig. 8: Cactus plot showing time to synthesise a feasible schedule for DFS, CAT*
and CAT},pg with € = 5 using RPT-T.

first through an example, and then formally through semantic rules describing
when a schedule is feasible. We then define the Input Arrival Problem and its
solution.

The model has been used to develop a verifier in C# capable of verifying
whether a given schedule is feasible. The verifier has been used to explore and
Operation Oblivious Schedule schedules synthesised by SigmaNet ApS’s experi-
mental tool ST, and we showed that the synthesised Operation Oblivious Sched-
ule could not always be turned into a feasible schedule.

Additionally, the model has been used to describe an A* algorithm, and we
showed how one can limit the number of generated CAT-FMS configurations to a
finite amount. This algorithm has been used to develop a synthesiser called CAT-
Synth. The synthesiser integrates with the developed verifier, and implements
the three algorithms CAT*, DFS, and CAT},rg, and the four search heuristics
defined in Section 5.1.

We then examine the effectiveness of the developed heuristics and algorithms
in terms of schedule quality, synthesis time, and configurations explored. This
was done by comparing CAT* with DFS. We found that DFS is able to solve
more problems before reaching a timeout, but that the makespans of the solutions
are worse. We then showed how CAT}, g can use a heuristic and various e-values
in a guided depth-first approach and find an equal amount of solutions to that
of DFS while improving the quality of the solutions.
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8 Discussion & Future works

In Section 4 we verify Operation Oblivious Schedules (OOSs) produced using
SigmaNet ApS’s tool ST. This was done by creating time-eligible Operation
Oblivious Schedules by manually annotating the Operation Oblivious Sched-
ules with start(m) and stop(m) actions. Annotating the Operation Oblivious
Schedules with start(m) and stop(m) actions by hand reduced the number of
OOSs that could be examined, as the process of creating time-eligible OOSs
was time consuming. Furthermore, this places limitations on the complexity of
systems and problem instances which could be annotated due to human-errors
being likely to occur as complexity grows. One could instead automate this an-
notation. As ST uses an entirely different formalism, the translation between
that of ST and CAT-FMS might not be straight-forward. To fully explore the
capacities of ST, a translation between the formalism’s should be described and
implemented.

In Section 6 we saw that a non-admissible heuristic solved more problem
instances than that of the admissible heuristic. We suspect that this is due to
the used admissible heuristic being designed around a system where all products
are inside of the system from the beginning. Our problem model instead inputs
products into the system over time, which means that only when all products
are placed in the system, the f-values can change. This might severely limit the
heuristic function’s ability to guide the search early in the exploration. Therefore
we suggest that better admissible heuristics should be developed for CAT-FMS.
We suggest the examination of heuristics where

— the number of products required before a machine can be started is examined,

— the cost of the entire system is taken into account as this showed promising
results when evaluating RPT. However, for this to be admissible one must
take into account concurrent behaviour of the system.

Our implementation of CAT},¢ and DFS prioritise the immediate execution
of actions over a delayed execution. During preliminary evaluation of CAT}pg
and DFS, implementations where the immediate execution of actions were not
prioritised over a delayed execution were explored. However, these implementa-
tions showed a substantial decrease in the number of solutions found within the
time limit. These were therefore not examined further. To better establish the
effect of heuristics, a two-level randomisation could be created s.t more experi-
ments could be performed while still finding solutions within the time limit. We
imagine a randomisation on the order of actions, while still prioritising immedi-
ate execution, to ensure a more random execution comparable to what we have
tested.

The experiments performed in Section 6 show that scaling of the IAP for
CAT-FMSs is hard, and that the synthesis of schedules leaves much to be desired
for these systems. Approaches which could speed up the synthesis of feasible
schedules should be explored. One such example could be the decomposition of
the TAP into smaller sub-problems, which are solved separately and then merged
together into a single solutions.
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A Experiment Setups

For the experiments we use subsets of Id = {idy, ... ids, idy, ..., id12} and create
several systems. We fix topology, protocols and critical section of the protocol for
the systems, and examine the time it take to synthesise feasible schedules, crash,
reach a timeout, or examine all configurations. Experiments were performed on
the following TAP instances:

1.

2.

10.

11.

12.

13.

14.

15.

16.

(0,arrive({idy, id2}, min))
(0, arrive({idy, ids}, mi,))
(0,arrive({idi }, mi,)) - (6, arrive({ida}, msy,))

(0,arrive({idr}, mi,)) - (6, arrive({ids}, msy))

. (0,arrive({idy, ids}, mi,)) - (6, arrive({idy, idio}, min))

(0, arrive({idy, idy}, mi)) - (6, arrive({ids, ids}, min))
(0, arrive({idy, idy}, mi)) - (6, arrive({idy, ids}, min))

(0, arrive({ids }, my,)) - (6, arrive({idy}, my,)) - (12, arrive({ids}, ms,))

(0, arrive({ids}, my,)) - (6, arrive({ids}, my,)) - (12, arrive({ido }, ms,))

(0, arrive({idy }, mi))-(6, arrive({idy }, my,))- (12, arrive({ids }, mi,))-(18, arrive({ids}, ma,))

(0,arrive({id; }, mi,))-(6, arrive({idy }, mi,))-(12, arrive({id; }, m;,))-(18, arrive({ids }, m;,))

(0, arrive({id; }, mi,))- (6, arrive({ids}, mi,))-(12, arrive({idy }, m;y))-(18, arrive({idio}, msn))

(0,arrive({id, ida }, min))-(6, arrive({ids, ids }, m;y))- (12, arrive({ids, ids }, msy,))

(0,arrive({id, ida}, min))-(6, arrive({ids, ids }, min))- (12, arrive({idy, idg }, m;y,))

(0,arrive({idy, id2}, min))-(6, arrive({idr, ids }, mi,))-(12, arrive({ido, id1o }, min))

(0,arrive({id, ida}, min))-(6, arrive({id;, ids}, m;))- (12, arrive({ids, ids }, msy,))
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17. (0, arrive({idz, idg}, m;n))-(6, arrive({idy, ida }, mi,))- (12, arrive({ido, idio }, min))
18. (0, arrive({idy, idg}, m;,))-(6, arrive({idy, idio }, min))- (12, arrive({idy, ida }, min))

19. (0, arrive({idy, idg}, m;,))-(6, arrive({idy, idio}, min))-(12, arrive({idi1, idi2 }, min))

20. (0, arrive({idy, id7}, min))-(6, arrive({ids, ids}, mn)) (12, arrive({ids, idy }, msn))

21. (0,arrive({id; }, mi,))-(6, arrive({ids}, m;n)) (12, arrive({ids}, m;y,))-(18, arrive({ids }, mi,))-
(24, arrive({id;}, mi,)) - (30, arrive({ids}, min))

22. (0,arrive({id; }, mi,))- (6, arrive({ida}, m;y,)) (12, arrive({ids}, ms,))- (18, arrive({ids }, min))-
(24, arrive({ids}, mi,)) - (30, arrive({ids}, min))

23. (0, arrive({id; }, mi,))-(6, arrive({ids}, m;,)) (12, arrive({id; }, m;y,))- (18, arrive({ids }, mi,))-
(24, arrive({idy }, mi,)) - (30, arrive({idio}, msn))

24. (0,arrive({id;}, min))-(6, arrive({ids}, m;,)) (12, arrive({idy }, m;y,))-(18, arrive({idio }, min))-
(24, arrive({idi1}, min)) - (30, arrive({idi2}, min))

A.1 System 1

Topology E = {e}, My = {c}, M, = {min}, A={a}, Ar(a) =1, reach(a) =
{e, ¢, min}, cap(c) =4, req(c) = {2,3,4}.

Protocols prot(idy) = prot(idy) = ... = prot(ide) (min,1,34) - (¢,3,4),
’2’

prot(id;) = prot(idg) ... prot(idiz) = (M, 1,34) - (¢, 2,4).

Critical section crit(idy) = crit(ids)...crit(idg) = (0,1,20) and crit(id;) =
erit(ids) = ... crit(idi2) = (1,2, 20).

A.2 System 2

Topology E = {e}, M, = {c,d}, My, = {min}, A = {a}, Ar(a) = 1,
reach(a) = {e, ¢, d, my}, cap(c) = 4, cap(d) = 1, req(c) = {2,3,4}, req(d) =
{1}

Protocols prot(idy) = prot(idy) = ... = prot(ids) = (msn, 1,10) - (d,6,7) -
(07374)a

prot(id;) = prot(idg) ... prot(idiz) = (M, 1,34) - (¢, 3,4) - (d,6,7).
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Critical section crit(id;) = crit(idy) ... crit(ids) = (0,1,20) and crit(id;) =
erit(ids) = ... crit(idiz) = (1,2, 20).

A.3 System 3

Topology E = {e}a M = {c7 d7}a M, = {min,m}7 A= {a17a2}7 AT(al) =
1, reach(ay) = {c¢,d,min}, Ar(az) = 1, reach(az) = {m,d,e}, cap(c) = 4,
cap(d) =1, cap(m) =1, req(c) = {1,2,4}, req(d) = {1}, req(m) = {1}

Protocols prot(idy) = prot(idz) = ... = prot(ids) = (min,3,34) - (¢, 1,2) -
(d,1,1) - (m,1,2)
prot(id;) = prot(idg) .. .prot(idiz) = (min, 1,34) - (¢,1,2) - (d,1,2) - (m,1,2).

Critical section crit(idy) = crit(ids) ... crit(ids) = (0,3,15) and crit(id;) =
crit(ids) = ... crit(idiz) = (0,1, 5).
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B Result tables

Time (seconds)
System 1 System 2

Instancel MRPT |MRPT-T| RPT |[RPT-TMRPT|MRPT-T|RPT |RPT-T
1 0.10 |0.10 0.09 |0.10 0.35 |0.43 0.25 ]0.18
2 0.10 |0.10 0.9 0.10 2.00 1.99 1.25 0.86
3 0.11 0.11 0.10 |0.11 0.54 ]0.49 0.30 10.20
4 0.10 |0.11 0.10 |0.10 2.01 2.13 1.57 |1.29
5 1.219 [0.95 054 [0.43 |T/O |T/O  |T/O |100.91
6 0.79 10.78 0.44 10.36 NS NS NS |[NS
7 0.93  |0.82 056|043 |[T/O |T/O  |T/O [4.92
8 0.82 |0.83 0.70 |0.66 4.69 |4.54 1.95 |1.61
9 1.10  {0.99 0.93 |0.76 NS NS NS |NS
10 2.73 2.59 241 241 154.38 [166.38 10.91|2.06
11 2.93 |3.02 2.52 |2.42 T/O |T/O 19.16|1.60
12 346  [3.17 287 [2.67 |T/O |T/O  |T/O |42.83
13 6.36 [5.47 3.21 |2.19 NS NS NS |NSF
14 790 16.84 3.99 |2.25 NS NS NS |NS
15 1258 |10.00  |4.65 [2.43 |T/O |T/O  |T/O|T/O
16 11.41 [9.02 143 [213 |T/O |T/O T/O |T/O
17 15.62 |12.16  |5.33 [2.65 |T/O |T/O T/O |T/O
18 2198 [1541  |5.84 |2.68 |T/O |T/O  |T/O |T/O
19 23.90 |16.50  |6.75 [2.67 |T/O |T/O _ |T/O|T/O
20 149.48 [103.01 [34.30 |14.08 |T/O |T/O T/O |T/O
21 126.36 [122.13 94.83 |94.50 |T/O |T/O T/O (3.63
22 93.66 |95.68 73.32 |79.28 |T/O |T/O T/O |7.00
23 170.44 |166.13  |130.67|123.96 [T/O |T/O _ |T/O [97.90
24 179.87 [171.64 |134.65129.89 [T/O |T/O  |T/O |T/O

Table 1: Evaluation of time before running out of memory, exploring all con-
figurations, or synthesising a feasible schedule per IAP instance, system, and
heuristic.
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Time (seconds)
System 3

Instance|l MRPT |MRPT-T|RPT |RPT-T
1 0.24 |0.25 0.21 |0.22
2 1.70 1.43 1.40 |1.10
3 0.40 |0.39 0.34 0.36
4 1.53 1.47 141 |1.13
5 T/O |T/O T/O |T/O
6 12.70 (12.02 6.05 |6.8
7 |T/O |T/O  |229.33|70.22
8 11.22 |11.44 10.51 |10.67
9 65.16 |61.04 23.52 |5.81
10 |T/O |T/O 289.01/T/O
11 |T/0 |T/0  |T/O |[34.95
12 |T/O |T/O T/O |223.59
13 |T/O |T/O T/O |T/O
14 |T/O |T/O T/O |T/O
15 |T/0 |T/0  |T/O |T/O
16 |T/O |T/O  |53.67 |14.74
17 |T/O |T/O T/O |T/O
18 |T/O |T/O T/O |195.06
19 |T/O |T/O T/O |T/O
20 |T/O |T/O T/O |T/O
21 |T/O |T/O T/O |T/O
22 |T/O |T/O T/O |T/O
23 |T/O |T/O T/O |T/O
24 |T/O |T/O T/O |T/O

Table 2: Time (seconds) for System 3 across different instances and algorithms
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Number of configurations

System 1 System 2
Instance MRPT|MRPT-T| RPT |RPT-T| MRPT [MRPT-T| RPT |RPT-T
1 79 73 60 52 1603 1724 1028 |486
2 79 73 61 53 14890 |14887 5764 (2822
3 143 138 118 111 2262 1879 1012 [526
4 163 148 124 110 18131 |17400 9810 |4614
5 3567 2676 1497 952 T/O T/O T/O 1623743
6 2929 |2377 1512|945 NS NS NS NS
7 2910 |2376 1519 |943 T/O T/O T/O [50513
8 3064 |2842 2750 |2381 |47004 |42965 14332 |7959
9 3729 |3251 3132 |2522 NS NS NS NS
10 21995 |21000 18605 ({16046 [1075034|1130524 [106207|{10997
11 24118 |21834 19298 15971 |T/O T/O 97527 |7500
12 29526 [26560 23394 (19023 |T/O T/O T/O ]322043
13 57800 [46758 26932 |11382 |NS NS NS NS
14 57824 146504 27046 (11326 |NS NS NS NS
15 90154 |65952 29007 [11374 |T/O T/O T/O |T/O
16 90442 65450 29784 (11190 |T/O T/O T/O |T/O
17 13129394981 43275 (13224 |T/O T/O T/O |T/O
18 174676119764 |43858 |13427 |T/O T/O T/O |T/O
19 175741|119492 44070 (13302 |T/O T/O T/O |T/O
20 720021(521560 [224138|77645 |T/O T/O T/O |T/O
21 616056573206 |486981|428581 |'T/O T/O T/O |20445
22 561626|542389 |568117|427791 |T/O T/O T/O |52885
23 821671762216 |647055|539765 |'T/O T/O T/O 1425247
24 854911799345 |668347|570704 |'T/O T/O T/O |T/O

Table 3: Evaluation of number of configuration searched before reaching the
timeout or establishing no solution exists.
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Number of configurations
System 3

Instance|l MRPT | MRPT-T|RPT |RPT-T
1 383 377 295 241
2 3771|3314 2961 |1684
3 768 763 584 534
4 3401 3421 2844 (1553
5 T/O |T/O T/O |T/O
6 49969 42697 23977 19480
7 T/O |T/O 482660(161257
8 41099 |38953 37881 |35010
9 189419180757 {83092 |16405
10 |T/O |T/O 512257|T/O
1 |T/O |T/O T/O |74206
12 |T/O |T/O T/O [322329
13 |T/O |T/O T/O |T/O
14 |T/O |T/O T/O |T/O
15 |T/O |T/O  |T/O |T/O
16 |T/O |T/O 151614[40844
17 |T/O |T/O T/O |T/O
18 |T/O |T/O 446267|'T/0O
19 |T/O |T/O T/O |T/O
20 |T/O |T/O T/O |T/O
21 |T/O |T/O T/O0 |T/O
22 |T/O |T/O T/O |T/O
23 |T/O |T/O T/O |T/O
24 |T/O |T/O T/O0 |T/O

Table 4: Evaluation of number of configuration searched before reaching the

timeout or establishing no solution exists.
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