
Low Level Robot Control Using A

Multi Modal Foundation Model
P10 project

Master’s Thesis

Group 1052

Mahed Dadgostar & Victor Bjørholm

Aalborg University

Electronics and IT



Material Processing

Aalborg University

http://www.aau.dk

Title:

Low Level Robot Control Using A Multi

Modal Foundation Model

Theme:

Multi Modal, Foundation Model, AI

Project Period:

Spring semester 2024

Project Group:

1052

Participant(s):

Mahed Dadgostar

Victor Hagbard Bjørholm

Supervisor(s):

Dimitris Chrysostomou

Chen Li

Copies: 1

Page Numbers: 69

Date of Completion:

May 31, 2024

Abstract:

Robotic systems are often highly spe-

cialized, with little exibility for dif-

ferent tasks. In this report, we out-

line our work on implementing our

own robotic control stack in our pur-

suit to experiment on Octo, a multi-

modal foundation model, for low-level

control of a robotic manipulator. Octo

is designed for exibility, capable of

running on various robotic hardware

and performing a wide range of tasks.

We ne-tuned Octo on our own data,

recorded using tools developed for this

project. This data is in a standard-

ized format for future use in training

robotic systems. To train and run Octo,

we created a custom robot environ-

ment, integrated it with a Polymetis

server wrapped in a ZeroRPC server,

developed a VR control system for in-

tuitive robot control, and built our own

data recording tools. We modied ex-

isting Octo scripts to t our use case,

successfully ne-tuning and running

Octo in our custom environment. Our

model was trained to use two camera

inputs and a task description to pick

up an arbitrary object
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Chapter 1

Introduction

In the recent years, AI systems have become integral to everyday life, with ap-

plications ranging from machine learning (ML) algorithms driving cars to using

ChatGPT for creating recipes in the kitchen. The latter has truly exploded in us-

age, and can be used to automate many general tasks on a computer. However, the

integration of AI in robotics presents a different scenario. While many Robotic sys-

tems employ ML algorithms to achieve their goal, these systems are often highly

tailored to a specic robotic model and a specic task. Even if the systems are

made for solving various tasks, they are often tailored to a specic robotic system

and environment. Adding a new type of input, is often not possible after training.

Even with projects, trying to solve general task solving in robotics, there is a lack

of available training data for robotics in a standardized format. This is in stark

contrast to LLM systems, which can train on essentially all available text.

In this project we have worked on implementing and training Octo; a Multi Modal

Foundation Model, designed to be easily transferable between different physical

environments, robots and with various tasks. To be able to use Octo, one must

ne-tune the model rst for it to be able to use a specic physical environment

and specic observation and action spaces. To ne-tune the model, we have im-

plemented tools to record high quality training data in a standardized format -

which will be shared in an open source library for robot data. We focused on the

low-level control of a Franka Emika robot, using several ne-tuned Octo models

trained on over 100 episodes of our data. The subsequent chapters provide a com-

prehensive review of current state-of-the-art methods, detailed descriptions of our

implementation, and thorough testing of the Octo system.

1



Chapter 2

Literature review

Following the success of foundational language models, which caused a paradigm

shift in natural language processing, the same experience with a similar approach

has also started in other elds, such as computer vision and, more recently, robotics.

The approach underlines gathering vast and diverse data and training massive

networks on the given dataset. Transformer-based models are the most dominant

architecture of these networks. This chapter presents an overview of recent efforts

for the foundational models paradigm in robotics and investigates the currently

available solutions for the specied tasks.

2.1 Foundational Models in Robotics

Foundational Models(FM) are dened as models that are generally trained on

large-scale data (e.g., internet web text/image) with the capability of adaptabil-

ity to various tasks[1].

Figure2.1 illustrates some of the more impactful FM robotics projects.

2.1.1 Foundational Models Related to Robotics

Because FMs are trained on vast amounts of data, their training dataset distribu-

tion contains useful information that can be used for robotics in many ways, for

example, task planning and context and semantic information processing of the

object scene[2]. They can be used for action generation in a zero-shot manner.

Most works use FMs for task planning, as task planning requires knowledge of

other domains that FMs have. Different types of FMs can be incorporated into

robotics, such as Large Language Models, Vision Foundation Models, and Multi-

2
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Figure 2.1: Timeline of important papers pertaining to Robotics Foundational Models and related

works to foundational models paradigm.

modal Foundation Models. We highlight some important papers that leverage FMs

for robotics.

Large Language Models

Natural Language Processing(NLP) has been among the elds most beneted from

FMs. The reason for that is the amount of text data available to create data-driven

solutions for the NLP problems. Transformer-based architectures[3] have the most

success in the eld because they can exploit the parallelism in computation and

be trained at scale together with the capability of self-attention mechanism to cap-

ture relation and context between different parts of an input data sequence[1]. As

LLMs understand rule-based and structural text-rich contexts[4], we discuss a few

selected projects in which LLMs helped as a core part of the solution of the robotics

tasks.

SayCan[5] was one the rst leading papers to bring LLMs to robotics. It works by

grounding the high-level language instruction input for example, "Can you bring

something to drink on the table?", to possible lower-level sub-tasks ("1. "nd a

water" or "nd a soda can" or etc.) with a score showing that how much each sub-

task is the correct next sub-task for the next step. Then, for each possible sub-task

at hand, a trained value function or affordance function is used to measure how

likely the sub-task is to perform successfully. The skill to use is selected based

on a score, a combination of the probability of each possible valid skill from LLM

and the probability of that action being performed successfully. SayCan uses a

pre-trained set of skills and doesn’t necessarily create a new skill unless it was

developed in its training dataset.

Inner Monologue[6], in contrast to Saycan, performs better by essentially providing

environment feedback to the LLM planner. This feedback should be in text for-

mat so the LLM can interpret it. The feedback allows for replanning in case of

failed executions, improving the model’s performance. Multiple sources of feed-
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back were adopted by Inner Monologue[6] to add to the LLM prompt, Success

Detection is whether the current task is completed successfully, Passive Scene De-

scription is the semantic scene information that is done before each planning step,

and Active Scene Description provides on-demand unstructured semantic feedback.

Note that "unstructured" here means this feedback can also include human prefer-

ences as well as the output from Vision-Question-Answering(VQA) models[6]. It

is also worth mentioning that Inner Monologue employs ViLD[7] and MDETR[8]

to get scene descriptions, which are pre-trained open-vocabulary object detection

models. These are counted as Vision Language Models. However, since they are

not used as the core part of the solution of this paper, we put them inside the LLM

category.

Code As Policies(CaP)[9] incorporates LLMs differently; it investigates the code gen-

eration ability of LLMs as a robot policy generator for a mobile manipulator. CaP

formulates the task planning problem for high-level language instruction as code

generated by an LLM that can be directly executed on the robot’s workstation.

The authors achieve this by building language model-generated programs(LMPs).

LMPs are generally LLM-generated programs that can be executed on a com-

puter[9]. To generate an LMP, an LLM is prompted with a few-shot examples

of demo output in the form of Python comments; this is done to give the LLM

the proper context to get the desired behavior. Additionally, the context can also

be given directly. LLMs, mainly those trained on large amounts of codes, can use

third-party libraries, which expands their abilities to develop better and more cre-

ative codes. The results of CaP state that, by leveraging LLMs’ logical and spatial

reasoning capabilities, they could generalize and perform unseen tasks not given

in the few-shot prompt. For example, by specifying a pre-trained skill going from

place A to B function in the prompt, the LLM can draw a square without the need

to add a new skill of drawing a square[9]. Moreover, they can ground qualitative

ambiguous language instructions like "slower" to reasonable quantitative value in

the output code[9].

We also mention some of the signicant projects that were branched off from the

previously mentioned papers.

KNOWNO, also known as Robot-Help[10], tries to solve the uncertainty in ambigu-

ous situations using a statistical method. Ambiguous situations can happen when

the robot ends in an uncertain situation with respect to the scene environment. As

an example, when the user prompts "pick up the can," and in the scene description,

the robot receives "Red-Bull can" and "Coca-Cola can," based on the lack of context

from the user, the correct object might not get picked up. In such cases, the robot

should ask for clarication and intervention from the human user to resume exe-

cuting tasks. There is a trade-off here: the robot should have minimal frequency



2.1. Foundational Models in Robotics 5

of human interventions as it should handle the input instructions autonomously

and successfully. KNOWNO operates by rst few-shot prompting an LLM with

the added context of the task instruction and scene description; then the LLM gen-

erates some possible unambiguous multi-options to choose from for the new task

instructions; following that, the LLM scores these options by their level of likeliness

(certainty) given the current situation. These options are then compared against a

calibrated value obtained through Conformal Prediction (CP); if only one option

passes this threshold, this means there is no uncertainty here and that the task will

be executed; otherwise, the passed set of possible options is presented for the user

to choose from. CP guarantees that the robot asks for intervention correctly based

on a given success rate. Note that the calibration for CP needs a dataset that can

collected manually or by using heuristic methods and LLMs[10].

DROC [11] proposes an In-Context Learning (ICL) method as a task planner for

a manipulator. DROC uses a pre-trained LLM task planner that breaks a com-

plex high-level task instruction into simpler sub-tasks that are translatable to the

robot’s pre-trained skill set. While the robot is operating, DROC allows human

interventions to make corrections to the plan that the robot is following. Moreover,

to decrease the number of human corrections to complete a task, DROC consists of

three blocks: Correction Handler, Knowledge Extractor, and Knowledge Retriever.

Correction Handler deals with how to handle the correction received from the hu-

man; this correction can be a high-level task planning matter( semantic and task

constraint, e.g., if the robot has one arm and has already grasped an object, it

cannot put the object inside a closed drawer before rst opening the drawer then

open then pick up the object) or low-level( changing a skill primitive parameter

like grasp pose). It decides whether to re-plan the task or adjust the skill primi-

tive. Knowledge Extractor lters out the important information to keep as context

for future interactions. Knowledge Retriever prompts the LLMs to decide to use

past experiences that are relevant to the task. With these blocks, DROC uses the

history of interaction and corrections over time, resulting in a better performance

than baselines like CaP [9].

Up to now, the projects discussed in this section do not involve LLMs in the action

and trajectory generation part of the robot control; they might change some param-

eters of the skill function that generates the low-level control. Language Models as

Zero-shot Trajectory Generators[12] deploys the LLM more extensively for trajectory

generation. This work achieves end-effector trajectory generation without provid-

ing any in-context examples in the prompt, nor using any external trajectory op-

timizer, mainly relying on the LLM’s physical understanding of the environment,

in this case GPT-4[13]. This study proves that by giving the appropriate prompt,

the LLM can do 26 everyday manipulation tasks [12]. Note that for the perception

part of the pipeline, the LLM uses LangSAM[14] off-the-shelf, a segmentation and
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object detection open-vocabulary model.

Vision Language Models

Combining different modalities rather than just one (language) helps with un-

derstanding the physical environment[2]. Vision-Language-Models(VLMs) are the

most used multimodal models in robotics[2]. In the previous section2.1.1, in the

works we looked into, VLMs were incorporated for language-grounded perception

for object detection and segmentation[6, 9, 10, 11, 12]. A natural next step would

be to use more recently developed and advanced VLMs like GPT-4V(ision)[15] as

task planners and have them throughout the pipeline in embodied robotics appli-

cations.

"Look Before You Leap: Unveiling the Power of GPT-4V in Robotic Vision-Language

Planning"[16] introduces VILA(VIsion-LAnguage Planning), a platform which uses

GPT4-V for long-horizon planning in robotics. The paper argues that even though

LLM planners can utilize external affordance models like open-vocabulary object

detectors [9] and value functions[5] to give a grounding in the real world for them,

using language as the only modality to convey the information for the task plan-

ner faces challenges when it comes to a scene with complex relations between the

objects[16]. For example, in a scene with cluttered objects on a table or a scene

with the desired object inside a drawer, affordance models cannot see that object

to relay the information to the LLM planner, which causes the LLM not to be able

to reliably come up with the right plan to solve the task. LLM-based methods

often lack the ne details needed for these kinds of tasks. Having an inherent

vision integration to describe this scene can make it much easier than translating

all the required context into text. Commonsense knowledge about semantic in-

formation of objects, which sometimes is task-specic and spatial reasoning, are

some of the main reasons that VILA has better results over the tested LLM-based

baselines, namely SayCan[5] and Grounded-Decoding[17]. VILA has a closed-loop

architecture that allows for replanning based on visual feedback; the VLM also

acts as a success detector for the executing task, tracking whether each plan has

been performed successfully. Additionally, it works based on the assumption that

the robot has a pre-trained set of skill primitives. As an extra feature, VILA sup-

ports image goal-conditioned tasks; this adds to its versatility in handling various

situations.

"MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompt-

ing[18]" also powered by GPT-4V[15], incorporates the VLM differently, it goes fur-

thermore to use the pre-trained VLM to the point that it can be used for low-level

motion generation. It relies on the VLM itself to generate affordance representa-

tions to achieve this. This paper breaks down task planning and motion generation
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problems for manipulation applications into high-level and low-level modules that

both query the VLM. In the high-level module, the VLM is prompted to divide the

arbitrary language instruction from the user(e.g., "wipe" into easier-to-handle sub-

tasks, manifested as a list of dictionaries[18]. Each dictionary describes the details

of a subtask, including a language description of the subtask(e.g.,"Wipe the trash

to the upper side of the table using the broom"), together with detailed information

about the object to be grasped(e.g.,"the broom"), the target object to be manipu-

lated(e.g.,"the trash"), the motion description(e.g., "from down to up"), and the

objects to be ignored(e.g.,"snack package, etc."). This gives the low-level reasoning

side adequate details for generating affordance representation. For the low-level

reasoning, MOKA leverages GroundedSAM[19] for keypoints generation for the

objects highlighted in the high-level reasoning dictionary. Then, it divides the

scene RGB image taken by the camera at the start of the subtask into a chessboard-

coordinated grid. Finally, the VLM is prompted to choose the waypoints to reach

the goal of the subtask. It is worth noting that providing the VLM with two to three

in-context examples for both high-level and low-level reasoning enhances the per-

formance in the experiments. MOKA doesn’t need predened skill primitives as

opposed to VILA[16] as it can even be used as a framework to learn new low-level

policies through its policy distillation feature.

VLMs are not the only multimodal used in robotics; in fact, with more promising

results coming from transformer-based models[2, 1], other modalities like propri-

oception can be used as the input for dedicated robotics model[2]. To step even

further, even the control command for the robot and trajectory generation can be

produced internally by the model without needing any external trajectory opti-

mizer or pre-trained skill primitives.

2.1.2 Robotics Foundation Models

So far, we have mentioned some of the applications of foundational models that

weren’t directly designed for robotics purposes but still beneted from them. A

Robotics Foundation Model(RFM) should be able to support multi-modality for

input and solve robotics tasks; it can be manifested as low-level action control of the

robot(Action Generation RFMs) or higher-level motion planning[2]. In addition,

there hasn’t been a web-scale diverse dataset specialized for robotics developed

yet compared to the ones for known VLMs and LLMs; however, we investigate the

major projects toward this.

"RT-1: Robotics Transformer For Real-World Control At Scale"[20] was one of the rst

RFMs that could take images of the scene and the language instruction from the

user to output low-level action command for the robot. RT-1 has a transformer-

based model at its core; the RT-1[20] model architecture, as one of its primary con-
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tributions, consists of FiLM[21] conditioned EfcientNet[22], a TokenLearner[23],

and a Transformer[3].

The language instruction and a set of images from the scene are the inputs to the

model, with the images being the most recent sequence of images, which is chosen

to be the length of 6[20]. For tokenization of these different modalities for the input,

the 300× 300 input images are passed through ImageNet pre-trained EfcientNet-

B3[22] for feature extraction that results in 9 × 9 × 512 feature map. Next, this

feature map is attened to create 81 visual tokens for the next layers of the model.

To count in the effect of language instruction, it is embedded at rst using the

Universal Sentence Encoder[24]. Then, this embedding is the input for identity-

initialed FiLM[21] layers that are interweaved inside the EfcientNet to condition

it on the language task instruction input[20]. After this, TokenLearner[23] com-

presses the 81 visual tokens to 8 nal tokens for transformer layers, resulting in a

2.4x faster inference[20]. Note that the nal tokens are in place for every image in

the history; therefore, for the history of 6 images, there are 48 total tokens. In the

Transformer module, a decoder-only sequence model with 8 self-attention layers

is adopted[20]. Finally, the Transformers model gives the action tokens a vector

quantized to 256 bins for each action dimension. As RT-1 was mainly designed to

work with a mobile manipulator, this vector includes information about the arm

end-effector state(x, y, z, roll, pitch, yaw, gripper state), the mobile robot’s base(x,

y, yaw), and a discrete variable to indicate the robot’s mode(controlling arm, base,

episode termination)[20]. The total number of parameters for RT-1 is reported to be

35M[20]. During inference, it can generate action tokens at a rate of 3 Hz, which is

suitable to be deployed for real-time applications[20]. Additionally, there is a time

limit for executing each task, and at the occurrence of surpassing it, the robot’s

current task is terminated.

RT-1 mentions that the success rate of completing long-horizon tasks decreases

with the length of the task. Therefore, combining it with methods that focus on

task planning and high-level reasoning like SayCan produces a better outcome in

experiments with longer horizons(as long as 50 steps)[20]. In such cases, RT-1 is

the low-level policy of these pipelines[25, 26].

Training RT-1 involved 17 months of data collection, during which human-demonstrated

datasets were gathered across various kitchen tasks using 13 Everyday Robot[27]

mobile manipulators, making in a total of 130,000 episodes[20].

Adding simulation data for the training dataset helped the model work better

only in simulated environments, not real-world experiments[20]. Also, mixing

the training dataset with the data QT-Opt[28], which has different robot morphol-

ogy(KUKA), helps the success rate of Bin-Picking evaluation[20]. It indicates suc-
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cessful transfer between different setups. The authors of RT-1 mention that using

imitation learning as the method in this paper limits task performance to that of the

demonstrators. Additionally, they note that generalization to unseen instructions

is restricted to tasks already observed within the dataset.

"PaLM-E: An Embodied Multimodal Language Model"[25] is a general-purpose mul-

timodal RFM that can handle long-horizon complex tasks. However, it cannot

directly generate action commands and requires a low-level action generator like

RT-1[20] or another pre-trained skill set.

PaLM-E encodes language instructions, state estimates from the robot, and scene

images into a latent vector embedding. As suggested by its name, PaLM-E is struc-

tured such that the output vision tokens from the 22B Vision-Transformer(ViT)[29]

are integrated into 540B PALM[30], creating a model with 562B. To our knowl-

edge, this is still the largest RFM. Note that PaLM-E also comes with smaller scale

models, 84B, and 12B, with better generalization to more tasks as the number of

parameters increases[25].

PaLM-E’s LLM has a decoder-only architecture that only generates text output

autoregressively, meaning it can be conditioned on the multimodal input prompt.

The prompt is in VQA format, as an example, "Given <img>. Q: If a robot wanted to

be useful here, what steps should it take? A:" where "<img>" is the image embedding.

he output can be either: 1) a normal text answer to a question, or 2) a plan for

a robot, breaking the main goal into subgoals executable by pre-trained low-level

policies[25]. Each subgoal is a short-horizon task that does not independently

solve the main goal[25]. Although PaLM-E cannot generate low-level policies, it

differs from the previously mentioned VLM task planners in section 2.1.1 in the

sense that high-level task generation is done naturally inside the model, which

is trained to do this, this means that PaLM-E should search for available policies

and plan the right ones for execution. In one of the experiment setups, the low-

level policies developed in RT-1[20] are leveraged[25]. PaLM-E has a closed-loop

structure, enabling it to replan and adapt to the disturbances that are happening

in the environment.

For training PaLM-E, it used pre-trained weights of the ViT and PaLM, followed

by netuning(co-training) on data mixtures of various vision-language tasks, with

only about 10 percent of robotics-related tasks[25]. PaLM-E reports various emer-

gent capabilities, from zero-shot multimodal chain-of-thought reasoning to multi-

image reasoning, even though it was trained on single-image input. Moreover,

experiments show that this method successfully generalizes to unseen tasks and

can signicantly transfer its abilities to new robots[25].
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"RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control"[31]

is the next generation of the RT series models. RT-2 continues the RT-1 approach

of generating direct action values for running on the robot. This paper introduces

a new category of models called Vision-Language-Action (VLA) models. VLAs go

along with the capabilities of VLMs to leverage vision and language inputs; ad-

ditionally, they can generate low-level action outputs for running directly on the

robot[31]. To achieve this, RT-2 takes an already existing VLM and co-netunes

it on the mixture of robot trajectories and internet-scale vision-language data. No

new data were collected for RT-2; it utilizes the RT-1 dataset for robotic trajecto-

ries and the vision-language dataset that includes both VQA tasks and image-text

pairs from different sources[31]. In addition, since a pre-existing VLM is used for

netuning, there are no additional parameters to be trained from scratch[31].

RT-2 denes the action output vector in the delta-pose action format, indicating

how much the robot should move from its current state. The delta-pose action

format is represented in Cartesian coordinates and the Euler orientation of the

end-effector. A terminate ag and a value for the gripper extension are also con-

catenated to this to complete the action vector, yielding to this vector[31]:

"terminate, ∆posx, ∆posy, ∆posz, ∆rotx, ∆roty, ∆rotz, gripper_extension"

Similar to RT-1, each continuous dimension of the action vector in RT-2 is dis-

cretized into 256 uniformly distributed bins. However, as RT-1 used its own trans-

former block to generate action vectors, RT-2 is built on top of a VLM, requiring

a different approach. The output type of the VLMs used in RT-2’s experiments is

text, which cannot be used directly to pass to the robot. For example, a nal output

can be "1 128 91 241 5 101 127"; Tokenization of integer numbers varies between

VLMs. In some VLM like the PaLM-E[25] 12B models used in RT-2[31], there is not

a straightforward way to associate the 256 integers with their equivalent tokens in

the model. In this case, the 256 least frequent tokens are selected to be mapped

to the physically grounded values for the action vector[31]. This process is called

detokenization in the RT-2 report[31].

The robotic data is arranged in the Visual Question Answering (VQA) format to

co-netune the VLM. Multimodal inputs are the scene’s camera image(s) and the

textual task instruction. The output is the action vector representation of the equiv-

alent/least frequent tokens explained above (e.g., "Q: Given <img> what should the

robot do to <task_instruction> : A:")[31]. This robot data is then combined with

the customized web data, with the robot data comprising between 50 to 65 percent

of the mixture, resulting in improvement in generalization in the experiments done

in RT-2 [31].
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RT-2, while capable of generating low-level actions, can also function as a generalist

robot, performing chain-of-thought reasoning[31]. In essence, RT-2 combines the

low-level action generation capabilities of RT-1 with the reasoning and higher-level

planning functionalities of PaLM-E[25]. Tokens in the action vector should be valid

to be executed on a robot. Therefore, RT-2 lters out its VLM decoder’s output to

include only valid action tokens[31] when requested to generate action tasks.

Although the investigated RFMs demonstrate signicant results compared to their

baselines, they are not yet on par with the performance of state-of-the-art LLMs

and VLMs for their respective tasks. To replicate the success of VLMs and LLMs in

robotics, a large community of academic and industrial labs came to put together

and share their robotics data to create one very big dataset to train better RFMs; this

project is "Open X-Embodiment: Robotic Learning Datasets and RT-X Models"[32]. This

project investigates whether a robot policy trained across different embodiments

works better than the one trained just with that robot and setup. This isn’t limited

to different robots; it may also be different setups and tasks[32].

Open X-Embodiment has two main contributions:(1) The newest version of RT series,

RT-X models, which are the updated version of RT-1[31] and RT-2[31] trained with

the newly gathered larger dataset, and (2) The release of Open X-Embodiment(OXE)

repository, which consists of pure robotic dataset with different embodiments to-

gether with the pre-trained model checkpoints for RT-1(-X) that is trained with

OXE[32]. OXE is an ongoing effort, and new datasets can still be submitted. OXE

dataset consists of 1M+ robot trajectory with at least 22 various embodiments, with

the Franka[33] robot having the most presence[32]. This dataset is in the RLDS[34]

format.

RT-X introduces two updated versions of RT-1 and RT-2, called RT-1-X and RT-2-

X[32]. As the models’ architecture is unchanged, RT-1-X and RT-2-X were trained

with the same input and output structures as their original models[32]. Experi-

ments in OXE demonstrate that RT-1-X outperforms most models(50% on average)

specically designed for the tasks the dataset was collected for. This holds for

the experiments dealing with small-scale dataset domains RT-1[32]. For RT-2-X,

larger models work better in large-scale dataset domains, whereas RT-1-X seems

to undert.

Additionally, netuning solely on the OXE dataset did not underperform co-netuning

with web data for RT-2-X, which was not the case withRT-2[32, 31]. The reason for

that could be the OXE dataset, compared to the previous smaller dataset for RT-

2, has much more diversity[32]. Furthermore, experiments for generalization to

unseen tasks revealed that RT-2-X gets around 3x success rate compared to RT-

2; this shows that training the robot policy on X-embodiments also improves the
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generalization of the policy in unknown settings[32].

OXE is the biggest robotics community effort to provide a unied structure and

diverse dataset to build the next generation of RFMs. Since the initial release of

OXE, we have tracked two inspired papers contributing to RFM cause: (1) Octo[26],

an open-source transformer-based robot policy that leverages the OXE dataset.

(2) Droid[35], A newly multi-lab effort dataset together with the hardware code

for data collection, which the dataset compared to OXE, has much more scene

diversity as it was gathered outside of lab environments.

"Octo: An Open-Source Generalist Robot Policy"[26] is one of the recent leading de-

velopments of the RFM paradigm, which focuses on lower-level action generation

for various robotics tasks. This paper, same as RT-1, enjoys a transformer-based for

its architecture. Compared to the previous projects we investigated, it has a signif-

icantly more open-source-friendly approach for reproducing the training and ne-

tuning steps. The Octo for its inputs, rst tokenizes them; for the language input,

it uses the t5-base model[36], and for image observations and image-based goals, it

uses a shallow convolution stack then be sequentially atten. Afterwards, with a

learnable positional encoder is combines these tokens in sequential format.

One of the main strengths of Octo is its exibility to various forms of inputs.

The action output of Octo is, by default, in a delta-pose format, which is also

similar to RT-1. However, the output, which is the action head of this model, can

be netuned for both Cartesian and joint positions delta actions.

Octo for pre-training uses a selected mix of datasets in OXE, only using the datasets

that have the delta-pose action and at least one image stream. All of the datasets

were then analyzed and weighted based on diversity in tasks and environment.

High diversity datasets had double the weight of low diversity datasets. Increasing

the training dataset’s heterogeneity. They are also ranked and weighted based on

some other key metrics, like task relevance and camera resolution.

Moreover, it is one of the rst RFMs that successfully employs proprioception as

one of the input modalities. A new task for Octo to execute can be either in the

format of a goal image or a language instruction. Octo comes with two models

with different sizes, 27M and 93M,

As for our project, we have tried to be inspired by Octo[26] and Droid[35] for model

architecture and data collection throughout the way.
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2.2 Problem statement

After going through these papers, it’s clear that there is a general lack of standard-

ized and generalized robotic control. This may be in large part be a result of the

lack of high-quality training data. In this project, we aim to strengthen the eld

by implementing Octo in our environment and ne-tuning it on our own dataset,

additionally furthering the eld by contributing to the lack of robotic training data.

To achieve this, we have worked from this problem statement: "How can Octo be

used to perform low-level control of a collaborative manipulator in an unknown environ-

ment?"



Chapter 3

Methodology

3.1 Methods overview

For this project, we set out to implement Octo, along with a set of different tech-

nologies enabling Octo to be trained and run locally at the university. From a

hardware perspective, ve different components are used, a manipulator (Franka

Emika), a computer for running inference, a computer for controlling the Franka

and two cameras, one for the wrist and one for a third person view. Additionally, a

CUDA enabled GPU is also neccessary to train or ne-tune the Octo model. These

different components, except the machine used for training, can be seen on g-

ure 3.1, where the data-ows from each component can be seen, along with what

software stack runs on each computer.

The Real Time Computer (RT computer), is the one responsible for controlling the

Franka manipulator. It does this using a Polymetis server, which sends desired

joint positions to the Franka. In turn it receives the state from the Frank as well.

The Polymetis server is used by the inference computer, by wrapping the Polymetis

functions in a ZeroPRC server. This server is used by the ZeroRPC client on the

Inference computer. The movement commands from the Inference computer, is

generated by the Octo Policy, which in turn uses the Gym Environment and the

two cameras, from which it receives a RGBD stream from.

14
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Figure 3.1: A block diagram of the architecture of the system running Octo inference. It shows the

tasks of the various systems, along with what kind of data gets transferred from system to system.

The blue blocks are software blocks running on physical local systems.

When ne-tuning the model, additional technologies must also be used. Besides

from using different functionality from Octo, data must also be recorded. Octo is

made to natively work with RLDS datasets, so we will use RLDS format for our

datasets in this project. To create the datasets, a different policy for controlling

the robot must also be implemented. For this, a custom VR policy was used.

Additionally, a separate server must also be used to ne-tune Octo, as VRAM

would be a blocking constraint on any laptop. This slightly different architecture

can be seen on gure 3.2
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Figure 3.2: A block diagram of the architecture of the system running Octo ne-tuning. It shows the

tasks of the various systems, along with what kind of data gets transferred from system to system.

The blue blocks are software blocks running on physical systems. The blue blocks are local systems

and the white cloud being a server for ne-tuning

3.2 Octo

For the policy part of the robot control, different systems as described in chapter 2

are available at the moment. The policy generation we used in this project is Octo.

Octo is a novel approach to make a single model capable of performing various

tasks and be compatible with virtually any type of robot, regardless of its specic

model. While ne-tuning may be required to optimize performance for a particular

setup / robot and the task, Octo is designed to function work with a wide range

of robots, from a Spot robot dog to a 14DoF WidowX manipulator with dual end

effectors. Octo is capable of performing some tasks zero-shot, i.e., without these

tasks being present in the training data[26]. The reason Octo is capable of working

across such as wide amount of different robots and

3.2.1 Modular Design of Octo

Octo’s modular design allows it to adapt to different robotic platforms and tasks,

making it a versatile tool in robotics. This exibility is achieved through a transformer-
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based diffusion policy that processes different inputs using a merged sequence of

tokens. All of the input modalities: language instructions, goal images, and obser-

vation sequences, are tokenized into a common format, using specic tokenizers

for each modality, e.g., using a CNN for tokenizing the image modality. The im-

ages are patched with 16× 16 pixels sizes for Octo.

Patch size

in pixels

Action head

used

Diffusion steps

for diffusion

action head

Prediction

Horizon

16×16 L1 20 50

History

Window

Proprio

-ception

No. Of

cameras

Partial ne-tune

(Frozen

weights)

1 Enabled 1 (3rd person) Disabled

Table 3.1: Tables showing the default values of the congurations for Octo in the ne-tuning scripts,

based on the ofcial example ne-tuning script.

Octo uses a transformer backbone with a special attention mechanism. This setup

ensures that observation tokens only use information from the same or earlier time

steps, maintaining the sequence’s order. One of Octo’s strengths is its efcient ne

tuning capability, which can retain pre-trained weights and allow for the addition

of new positional embeddings, encoders, or output heads as needed, without need-

ing to do a "full ne tune". A full ne tune, is when you ne tune the entire Octo

model i.e., the tokenizers, the entire transformer backbone and the action heads.

This modular approach enables the seamless integration of new sensory inputs

and action outputs, making Octo adaptable to different robot congurations and

tasks. Some important design choices support Octo’s modularity and scalability.

For instance, it uses shallow CNN patch encoders for image inputs, focusing com-

putational effort on the transformer backbone. This is different from other models

that use deep image encoders, making Octo more effective with large and diverse

datasets. This also enables Octo to run and train on more accessible hardware.

Additionally, Octo uses a simple channel-stacking method for goal images, to also

achieve lesser compute load[26].

3.2.2 Additional Octo components

With Octo having such a modular architecture, as described in the previous subsec-

tion, enables Octo to have a highly modiable observation space and action space.

Not only can the action space and observation space be modied to work on vir-
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tually any robot with a Gym interface, Octo also has several Gym class wrappers

for further modication of the action heads and observation heads.

Action heads

Octo has several different type of action heads. The L1 action head (uses L1 loss

function) is the default and is used in several of the examples, but did not provide

the best results[26]. The diffusion action head uses a diffusion decoder to generate

actions, and uses 20 diffusion steps. The diffusion action head was what most

of the results in the paper was based on, but it does not work well on all types

of robot setups [37]. However it should work on the Frank Emika robot, which

we use in the project. Additionally there are a couple additional action heads,

but these do either not work very well, as described in their "Things that did not

work" appendix [26], or are not described at all but present in the code. Whichever

action head is chosen for the ne-tuning can be dened in the parameters when

instantializing the action head in the ne-tuning script.

Additionally, all action heads have the capability to output a arbitrary amount of

actions from a single observation, an "action-prediction-horizon". The default value

for this is 50 in the ne-tuning script, but it is recommended to be 4 or below for

most robot setups. For using this action-prediction-horizon in inference, an object

wrapper has been made available for this purpose. All of the default congurable

values of Octo can be seen on table 3.1.

Observation space

Besides from a high level of customizability in the action heads, the observation

space in Octo also has a high degree of customizability, with built in functions to

support it. Octo can support multiple cameras, with people in GitHub claiming

to use three cameras with success. It can use basically any sensor data available,

including proprioception(information about the robot’s state). Additionally, Octo

also has support for a history window, which are previous observation instances,

which are appended to the current observation. In the rst step, no previous ob-

servation would be available, but Octo automatically zero-pads the missing obser-

vation[26]. Not much information about the History window is available, besides

from the appendix where they mention it improved performance. Additionally, in

the GitHub they recommend using a history window with a size between 0 and

5, 1 being the default. This observation space is dened when instantializing the

model, e.g., when ne-tuning a previous model for a new observation space. When

using the model, Octo also has built in object wrappers for the Gym environment,

which handles the history windows during inference.
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3.2.3 Octo Availability

Octo is a completely open source project, with open source weights as well. The

code base for Octo can be found on their GitHub, and the pre-trained Octo Models

can be found on HuggingFace. Octo has several sizes of their model on Hugging-

Face, but only two of them are documented in the GitHub and their paper; Octo

Base and Octo Small. The difference in size in these models are the amount of

parameters in the transformer backbone, with Octo Base having 93 million param-

eters and Octo Small having 27 million parameters[26]. Additionally, it is possible

to instantialize a completely new transformer backbone using the Octo code, and it

is even possible to change the amount of parameters to an arbitrary number.

3.3 Reinforcement Learning Dataset

To ofine train any neural network, training data is needed. Depending on the

type of neural network and how it is trained, the data structure will vary. A

"regular" CNN can be trained using standard image formats like PNG and possibly

an accompanying le containing annotation data, such as a JSON le, which is the

format used in COCO annotations [38].

When training RL networks ofine or doing imitation learning, the structure and

types of data needed to be saved can vary quite a bit. RLDS (Reinforcement Learn-

ing Dataset), developed by Google Research, is a standardized way to record se-

quential data from any Gym-based environment. Many previous dataset structures

were tailored to specic experiments or needs. This often resulted in necessary

information not being available for other experiments or information being inter-

preted incorrectly. This is a problem that has held back the robotic industry, as

there is a lack of general training data, and the data that exists may not be usable

due to formatting[34].

An RLDS dataset can consist of many episodes, with each episode typically con-

taining multiple steps. An episode represents a complete scenario; for example,

when recording data for picking up a brick, each time the robot resets and picks

up a brick constitutes one episode. Each episode will likely contain multiple steps.

These steps include the observation of the system (the obs variable in a gym en-

vironment) and the action generated by the policy used in the gym environment,

using the observation from the current step. Additionally, each step contains a re-

ward for training RL networks. Metadata for each step is also included, along with

metadata for each episode. The dataset itself contains metadata, which includes

details such as the number of episodes, data structuring and sharding, and the

dataset name.
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The general structure of an RLDS dataset can be seen on gure 3.3

Figure 3.3: The diagram illustrates the structure of RLDS (Reinforcement Learning Dataset). The top

section shows the dataset metadata encompassing multiple episodes. Below, Episode 1 is expanded

to reveal its structure, which includes multiple steps. Step 1 is further detailed to show the various

data elds present in a step: observation, action, reward, discount, and step metadata.

To use and build RLDS compatible datasets, Google Research has released two

different tools, EnvLogger and RLDS Creator, which can be used to create RLDS

datasets. As RLDS is based upon TFDS (TensorFlow Dataset), any RLDS dataset

can be loaded and edited using the TFDS tools.

3.4 Polymetis

For controlling the Franka Emika, some sort of real time control will be needed.

As the control will need to be unblocking, the robot will need a 1 kHz control sig-

nal[39]. Polymetis is a tool built by Meta research, and capable of handling the high

frequency control of the Franka Emika. Polymetis is an open-source robotics mid-

dleware, made to simplify the development and deployment of real-time control

algorithms. It provides a modular framework that allows for easy integration with

different kinds of robotic hardware and software stacks. Polymetis supports control
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loops with a frequency of 1 kHz, which is required to be able to keep the Franka

Emika robot stable and responsive. Polymetis has a modular architecture, separat-

ing different control components, which enables the testing and development of

individual control methods, without affecting the rest of the system. Polymetis has

built-in tools for monitoring system performance and error handling.

Figure 3.4: Diagram from Polymetis documentation [40], explaining the relationship of the different

components in Polymets

The main component of Polymetis is the Controller Manager Server with the Torch-

Script controller. The Controller Manager Server acts as the main control unit,

overseeing the various control tasks and ensuring coordinated execution. It also

responsible for interfacing with the robot hardware, handling the real-time data

communication necessary for high-frequency control. The TorchScript controller

is the part of the Controller Management Server that handles the actual robotic

calculations, from the commands received by the Controller Manager server, sent

by the User Client. The TorchScript controller, can be replaced by a custom con-

troller.

3.5 ZeroRPC

ZeroRPC is an open-source Python library designed for Remote Procedure Calls

(RPC). It is based on the ZeroMQ and MessagePack protocols, both of which are

open-source as well. An RPC service allows a program to make function calls in

a different address space. This simplies the development of distributed systems,

like the one created for this project, by abstracting the networking and communi-

cation protocols into a single library. This is useful in our project, as we will have

one computer running a real-time kernel and another running the robot environ-

ment and the policy. While it would be simpler to run inference on the computer

controlling the robot, the real-time requirements of the Franka control prohibit any

compute-intensive applications on the server, besides the Polymetis server. By using

ZeroRPC and exposing a class to control the robot’s movement on the real-time ker-

nel computer, the other computer (the inference computer) can use the objects and
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methods as if the code were running natively. ZeroRPC is also based on lightweight

protocols, keeping the system resource usage to a minimum[41].

To use ZeroRPC, the server side has to be initialized as a server. This is done by

instantiating a "server" in Python, which references an internal object. The server

is bound to a port on the server itself, then it can be run. On the client side, a client

object is instantiated and connected to the server’s endpoint. The server object

can now be used natively by the client as if the code was on the client side all

along.



Chapter 4

Implementation

In this chapter, the implementation we did for this project is described, along with

some of the challenges we encountered in the process. All aspects of the imple-

mentation are described in the chapter, from robot control and data recording to

how the training data for the training was captured.

4.1 Implementation overview

The implementation of this project has largely relied on the software aspect. As

most of the software components used in this project come from open-source

GitHub repositories, implementation was a matter of getting these components to

work with each other but also working on the specic robot used for this project,

the Franka Emika. While getting many of the systems running with the Franka

did prove troublesome, simply getting some systems running at all proved an even

greater challenge, as many open source codes stacks are badly documented.

23
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Figure 4.1: This owchart shows how the Octo model is utilized for inference. All the dashed lines

signies data being passed from component to component, with the data structure being written

near the lines

The general ow of our Octo implementation, as can be seen in gure 4.1, starts

with getting a command in natural language. After that it gets the robot’s initial

state (Cartesian position) and camera data (RGBD) from the physical environment.

It uses this data to run inference using a ne-tuned Octo model. The action output

by the Octo model is then used to move the robot. This is repeated for N steps,

and after that the inference loop will be nished. The implementation of Octo and

the preceding steps to get it implemented are documented in the coming sections.

For the cameras, two Intel RealSense D435 were used. A Lenovo T14 Gen 2 with an

Intel I5, was used for the real time computer, which was the computer controlling

the robot. For inference, a Lenovo P53 with an Intel I9 and an Nvidia Quadro RTX

4000 was used. The inference computer was also used when recording data. When

recording data, a VR policy was used. For the VR policy a Meta Quest 2 headset

was used. Finally, a Franka Emika was used as the manipulator. A picture of the

entire physical setup can be seen on gure 4.2. When ne-tuning Octo, it was done

on a server with an NVIDIA RTX A6000.



4.2. Data capture 25

Figure 4.2: This gure shows all of the different components used for recording data and running

inference, including the robot itself and the VR headset and its controller.

Figure

4.2 Data capture

4.2.1 Franka Environment

Franka Environment handles all the input and output for the Franka[33] robot. It

uses the Polymetis[40] API to communicate with the robot, which was explained

briey in section 3.4. It also includes the functions and wrappers for a robot agen-

t/policy, which sends the control commands to operate. This section explains the

"Real Time Computer" in gure3.1

We looked into various repositories to develop our Franka environment, Franka-

PolymetisEnv. We checked how others implemented their robotic control stacks,

and we took the good ideas of each implementation and applied them to our own

stack[42, 43, 35]. We are mostly inspired by Robot-Lightning[42] repository that also

implements an environment for the Franka robot. We found Robot-Lightning[42]

implementation had some good features to adopt in our implementation, among

which:(1) Modular and lightweight code, and (2) taking into account the user and

physical constraints when updating the robot joint positions, more about these
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constraints later in this section.

FrankaPolymetisEnv consists of various function wrappers for Polymetis API func-

tions written in Python. To use Polymetis, two different servers should be launched

beforehand. These servers are run inside the Realtime Computer:

• (1) Franka Arm server: This server handles conguration of the API workspace

limits (there are also soft workspace limitations in the higher-level Python

codes), frequency operation of the internal controller(default=1000Hz), stiff-

ness parameters of the impedance controller, tuning collision behavior (ad-

justing the extent of torque for a joint to prevent it from locking), and other

initialization values [40]. These parameters can be set when launching the

server.

• (2) Gripper server: This is the dedicated server for communication between

the gripper hand and the Realtime Computer. The gripper can be either the

main Franka Hand or any other third-party gripper. The conguration of the

gripper parameters can also be set at launch.

Termination of these servers depends on user demand, or they can also be ter-

minated if a severe communication error occurs between the Realtime Computer

and the Franka Controller or if internal hard-coded safety limitations for the arm

or gripper are violated. As indicated above, Polymetis differentiates the Franka

Arm control group and its gripper. The advantage of this is that transferring to a

new gripper’s API would be easier if using another gripper other than the default

Franka gripper.

To produce the necessary methods for the next parts of the project, most of the

functions in FrankaPolymetisEnv were developed by us, while some were inspired

by Robot-Lightning[42] and modied to meet our needs afterward. Here is a se-

lected list of these functions:

• robot_init(): Creates the robot arm(RobotInterface) and the gripper(Grip

perInterface) Polymetis API objects. The servers mentioned earlier should

be launched so this function executes successfully. Additionally, it starts the

user-selected controller, which can be a joint impedance controller, Cartesian

impedance controller, or joint velocity controller. The joint impedance controller

is the default controller used in this work. robot_init() also imports the

conguration le that contains all the constant values for safety boundaries

and coefcients that are used in FrankaPolymetisEnv.

• get_state(): Combines get_arm_state() and get_gripper_state() to re-

turn the current state of the whole robot. It also saves the previous state of



4.2. Data capture 27

the robot. Each robot state contains information about joint angles and veloc-

ities, Cartesian position and Euler orientation, gripper width, success status

of the previous command, timestamp, etc.

• go_home(): Sends the robot to the pre-set robot home position.

• reset(): Executes the go_home() function, and if randomize ag is True, it

moves the robot to a new position within the workspace boundary. It uses

uniform distribution to randomize the position.

• primitive_joint_move(): Can move the robot to the desired joint or end-

effector positions using the Polymetis joint PD controller. It is generally ap-

plied for longer actions( takes more than 0.5 seconds to complete).

• primitive_delta_move(): It is the extension of the primitive primitive_joi

nt_move() function. If the input is ∆p, and the current and nal positions of

the robot are p1 and p2 respectively, the equation p2 = p1 + ∆p should hold.

However, applications of this function are limited as each time it is executed,

it restarts the controller(policy) and causes communication errors, which is

discussed in section 4.2.1.

• solve_inv_kinematics(): We created this wrapper on top of the current in-

verse kinematics solver function to incorporate any desired inverse kinemat-

ics solvers. The reason for using a different solver other than the default one

can be that some solvers have better convergence for a stable joint angle dis-

tribution. Ideally, a good solver should keep the joints near the middle of the

joint’s angle limitations. We experienced that the default solver(Pinocchio[44])

used in Polymetis often led the robot to unstable positions and close to joints’

limit boundaries. Inspired by Droid[35], we tested dm_control[45], which

worked slightly better for us, though the solver parameters need more ne-

tuning. Other solvers should also be explored in future works.

• observation_space(): It is the dictionary of boundaries for joint angles, joint

velocities, Cartesian position, Euler orientation, and the gripper width used

in the correspondent Gym environment[42]. These boundary values are ob-

tained intuitively from tryouts.

• action_spaces(): Depending on the type of action command (delta joint an-

gles, delta Cartesian EE pose, pure joint angles, or pure Cartesian EE pose),

similar to observation_space(), it returns a dictionary for the Gym environ-

ment of the action space boundaries. The values for these boundaries are set

within the hard safety limitations.
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• update(): This function is the most imperative part of the environment be-

cause it will directly be deployed for implementing the step() in the Gym

environment4.2.3 later on. The function does these subfunctions in order for

an input:

– calculate_action(): For an input action command (can any of the

types in action_spaces()), it lters the action command recursively

step-by-step in terms of the dened soft limitations for workspace, in-

verse kinematics success, joint positions, joint delta positions(increments

on the current positions)[42]. In the case of violation of any limitation for

a value, the function clips that value and calls the calculate_action()

returns the ltered action in delta and pure positions for Cartesian EE

pose and joint angles. The output is assured to be an executable action

that satises all soft safety limitations.

– update_reference_tracker(): Updates the reference tracker, simply

an indicator for a given calculated action, ideally, what the robot state

should be after executing the action. This function is meant to be applied

when the input action type is either "delta Cartesian EE pose" or "delta

joint", because it tries to keep track of the small incremental movement

for each iteration with respect to the start of the trajectory and if the

action type is pure positions(joints or Cartesian EE pose), the function

just assigns the input value itself to the reference tracker states. More

about the necessity of this process is explained in section 4.2.1.

– update_controller(): Sends the desired positions to Franka. This is

where the robot is supposed to move. The input should be in pure po-

sition format. Depending on the selected controller type in robot_in

it(), update_controller() uses one of the functions in update_X_de

sired() to run the corresponding controller. update_X_desired() in-

cludes: (1) update_desired_joint_positions() for the joint impedance

controller; (2) update_desired_ee_pose() for the Cartesian impedance

controller; (3) update_desired_joint_velocities() for the joint veloc-

ity controller.

Moreover, to prevent occasional joint locks caused by errors from Poly-

metis[40] (such as communication errors, discussed in section 4.2.1, and

excessive torque errors), an exception handler is used. This handler

catches the error, restarts the controller, and resumes the current action

command.

• close(): Executes the closing procedure, executes go_home() and terminates

any existing running policy.
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Additionally, we developed some helper functions that are used in the main func-

tions, including:

• min_jerk_trajectory(): Exposes the Polymetis function for minimum tra-

jectory planner in XYZ space.

• forward_kinematics(): We use this function numerous times to mostly con-

vert joint space values to Cartesian+Quaternion space vector.

• quat2euler(): Many functions like this were created for converting an orien-

tation vector to our desired coordination system. They are mostly powered

by Scipy library[46].

• open_gripper() and grasp(): These two functions are the Polymetis APIs

used for working the Franka Hand. In our project, the gripper is used in a

binary context. Therefore, open_gripper() just opens the gripper, and gras

p() simply closes the gripper until it detects a certain amount of force while

it is not completely closed, which indicates an object has been grasped.

In the following section, we discuss in more depth how our update() differs from

the Robot-Lightning way.

Reference Tracker

We explain the reason for adding the reference tracker with an example. Suppose

the robot needs to execute a trajectory from EE point P1 = [0.4, 0.0, 0.3], where

units are in meters, to point P2 = [0.6, 0.0, 0.3]. In this case, the minimal jerk

trajectory function generates an almost 20 cm straight-line trajectory for the EE

to follow in a control loop. The trajectory action commands are converted from a

pure EE pose trajectory to a delta EE position format to emulate a realistic scenario.

Mathematically, this can be shown as:

min-jerk-trajectory(P1, P2) = T = (τ1, τ2, . . . , τn) such that: τ1 = P1 and τn = P2

where T is the the set of the generated sequential trajectories and τi represents each

of the trajectories. If we dene T∆ as the sequential delta-pose trajectories and δ be

each one delta-pose values, the above equation can be converted to:

T∆ = (δ1, δ2, . . . , δn−1) such that P2 = P1 +
n−1

∑
i=1

δi and δi = τi+1 − τi

Then, if we set n to be 100 and the control loop frequency to 20 Hz, and let the u
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pdate() function run the delta actions without the reference tracker (as it is out-

of-the-box from Robot-Lightning [42]), the robot does not reach P2. This can be

explained by how Robot-Lightning updates the desired position for update_contr

oller(). For each new δ received by update(), after the calculate_action(),

the robot’s current state is added to the δ value to get the desired pure joint or EE

pose position for the controller to execute. Ideally, this should correctly process

a new δ. However, at execution, during execution, the robot has millimeter-scale

accuracy errors (1-2 mm in Cartesian space). When our δ values are small enough

and within that range, the controller incorrectly assumes it has reached the desired

position earlier than expected. This has a cumulative effect over all the steps in the

trajectory that prevents the robot from completing the trajectory.

The approach we took is to make sure the robot is aware of the desired pure

positions with respect to the starting state of the trajectory. To formulate this, the

update method changes from:

Ck = δk + Sk

where Ck, Sk, and δk are action pure position, the robot’s state, and the delta all at

time-step k to:

Ck = P◦ +
k

∑
i=1

δi

where P◦ is the initial state of the trajectory. We assign the robot’s current state to P◦
at the end of the reset() function when initiating a new task. We also reinitialize

P◦ whenever a joint lock happens in the exception handler in update_controller(

) to avoid joint locks causing drifts between the desired positions and the obtained

values in our formula.

To summarize the differences of our Franka environment to Robot-Lightning: (1)

We modied the structure of the Polymetis class to be considerably more modular

and easier to add customized functions like external inverse kinematics solvers,

PyTorch controllers[40], etc.. (2) We added the Reference Tracker which leads the

robots where it is ideally supposed to be at.

Troubleshooting

During the project, we encountered "communication_constraints_violation" er-

rors in the Polymetis Arm server, which results in interruptions to the current run-

ning policy of the robot and caused erratic and junky behaviors from the robot.

FCI[39] states that this error happens when the Inference computer connected
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to the Franka Controller cannot handle more than 20 consecutive packets from

Franka. The error can have different sources, each of which can be sufcient to

reproduce it: (1) Faulty or old Ethernet cables (CAT5) used for connecting the Re-

altime Computer and the Franka Controller; (2) The CPU of the Realtime PC is

not powerful enough to manage the communication load sufciently; (3) Possible

malfunctions in the Franka Controller network module; (4) The installed real-time

kernel might cause slow performance issues.

To minimize the occurrence of the error, we took the following measures: (1) Dis-

abling CPU scaling and setting the CPU in "performance" mode and other CPU-

performance-boosting techniques. (2) After trial and error, it was observed that

the error is much more frequent in the Cartesian impedance controller mode than

in the joint impedance controller mode. Therefore, the joint impedance controller

was used as the default controller type for the update() function and other primi-

tive functions used for later usages [47]. Moreover, primitive_X_move() functions

were used minimally because of their heavy load of executions( they restart and

send policy for each call, which frequently causes the error.). (3) As the error is

most likely to happen for update_desired_joint_positions() function, putting

an exception handler to prevent the program from closing and restarting the con-

troller to resume the policy also helped deal with this issue. (4) Tested multiple

real-time kernel versions and chose the one with the best scores in the Polymetis

and FCI communication benchmarks. (5) Although selecting the internal controller

frequency from 1000 Hz to a lower value like 500 Hz decreases the chances of the

error occurring, it doesn’t solve the actual issue as the problem is processing the

packets for each step, and it is independent of the time interval between the steps.

(6) Changing to faster cables(CAT6A), turning off Bluetooth and Wi-Fi, and closing

programs unnecessary to the robot execution like browsers also helped mitigate

the issue.

Interface server

There are two ways of exposing the FrankaPolymetisEnv to be used in the Infer-

ence computer:

(1) Using the Polymetis package on the Workstation PC, which requires installing

it in the same Python environment where Octo and other packages are located,

(2) Wrapping the Polymetis class around an RPC server like ZeroRPC[41], then ex-

posing the needed functions of FrankaPolymetisEnv in the ZeroRPC server inside

the Realtime Computer, then to be used in the GPU-enabled PC by connecting to

the RPC server via its client’s API.

The problem with method (1) is the coexistence of Polymetis with other pack-

ages like Octo, JAX, etc., in a single Python environment. There are numerous

dependency issues during both installation and runtime for Polymetis packages
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to be compatible with the Inference computer. Also, the Polymetis repository

was discontinued to be maintained after early 2023. For this project, we used a

community-maintained fork of Polymetis, monometis[48], which changes the re-

quired package versions to be compatible with a newer Python version(namely

3.9). However, even with monometis, the issues were not solved.

After many attempts and tweaking the versions of infrastructure packages to make

Polymetis compatible with other packages used on the Inference computer, testing

it all to see if the environment works stably at runtime, all the tries failed either in

build-time or in runtime. It was concluded after this to go with method (2).

The concept of incorporating ZeroRPC was rst seen in Droid[35] code base, how-

ever we saw the adaptation Robot-Lighting[42] ts the best with our implementa-

tion. In order for ZeroRPC to work, there are two sides: the server side and the

client side. We outline the important details of both sides below:

• Server Environment: We create a ZeroRPC Server object, which requires F

rankaPolymetisEnv as the input. Using the common method to launch the

server, we rst bind the server object to listen to all network interfaces on

port "4242" in TCP protocol and run the server afterward. However, the Ze-

roRPC package is only compatible with Python data types ( dict, list, tup

le, etc.) and FrankaPolymetisEnv outputs contain various third-party object

types such as Numpy, PyTorch, and Gym. To solve this, we create an environ-

ment, ZeroRPCPolymetisServer, that wraps FrankaPolymetisEnv functions,

modifying their return types via a type converter function called parse_to_l

ists() to convert all non-Python types to common Python types[42]. We use

the new environment to create the ZeroRPC Server object. Overall, it runs

on the Realtime PC and allows accessing to FrankaPolymetisEnv environ-

ment, which itself is connected to the Polymetis launchers servers(Arm and

Gripper).

• Client Environment: To connect to the server from the Inference Computer

and use the FrankaPolymetisEnv as if there is no ZeroRPC process in be-

tween, we need to create a client environment where the function names

exactly match those of the main class functions. This environment, ZeroRPCP

olymetisClient, at initialization, connects to the IP address of the Realtime

PC( either wired or wireless) with port "4242". We set a static IP address to

Realtime PC to avoid issues of possible changes in the IP of the target for

a new try. With a similar logic on the server side, to use types as they are

intended, we employ the function parse_from_lists()[42]. This function

converts Python data objects to their original non-Python types (such as Num

py arrays, Gym boxes, etc.).
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One of the advantages of using this approach is once the robot is up and running

on the server, there is no downtime anymore to wait for the robot to launch on the

client side, and the client program can be run multiple times without the need to

launch the server more than once. In addition, ZeroRPC does not require any extra

packages for build or runtime.

Apart from adding our own functions and customized types to the ZeroRPC client

and server in our implementations, we based our work on the Robot-Lightning

code[42] in this part.

Figure 4.3 demonstrates an overview of our Franka environment, which contains

various components that we explained in this section.

Figure 4.3: This block diagram depicts the ZeroRPC server and client relationship, and the Polymetis

client and its recreation on the inference computer, using ZeroRPC.

4.2.2 Camera Environment

This is responsible for the perception part of our stack. It consists of cameras,

one located on the Franka Hand("wrist" camera) and one that is viewed from a

third-person viewpoint("primary" camera). "Depth Camera D435 Intel RealSense"

is the model of both cameras for this project. It is capable of capturing RGB images

together with depth images. One can use the ofcial SDK ("librealsense") Python

API or the OpenCV camera streaming feature to access the camera images. Both

methods are available in our implementation and can be used based on the context,

with a preference for using the ofcial method. The ofcial SDK has access to more

features of the camera that can be customized to our needs.
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We draw inspiration for our perception stack implementation from the following

repositories: [40, 42, 49]. The entire pipeline consists of three modules, which are

described in order from low-level to high-level:

• RealSenseEnv: This class initializes the camera and starts the camera stream-

ing pipeline. The main functions of RealSenseEnv include obtaining the

camera’s intrinsic and extrinsic parameters, receiving frames from the cam-

era (RGB-D), and visualizing the received images. An object the class maps

to only one of the cameras and runs on the main thread in Python. This

means it works in a blocking manner, which is not ideal as we need to stream

two cameras while the robot and other components run in parallel, leading

to the following environments.

• RealSenseThreaded: It creates an object of the above class and then passes

the stream pipeline on a thread using threading library. The stream of the

frames from the camera continuously updates a queue with a length of one,

so for every new frame, the queue is updated with the latest frame. In this

way, the camera can manage occasional performance dropouts and ensure

that the latest frame isn’t returned null.

• MultiCameraWrapper: It creates instances of RealSenseThreaded for both

cameras and assigns them on different threads. It has two functions that all

subsequent modules need to use the cameras.

– latest_observations(): Combines the latest frames from the cameras

and returns all the frames in a dictionary data type.

– stop_cameras(): Calling this function stops the cameras from streaming

and closes the cameras without causing a crash.

Overall, our perception pipeline, which runs on the Inference computer, assures

that the primary and wrist cameras are streamed in a thread-safe and non-blocking

approach. The default resolution of the cameras was set at 480x640, which is the

most common for the D435 model. Moreover, we have also done Eye-to-Hand and

Eye-in-Hand camera calibration during the early stages of the project, which can

be used for future phases of the project.

4.2.3 Gym Environment

This is the main environment where the Franka and the perception modules are

integrated together to complete the robot environment class. We use the standard

Gym structure to create our RobotEnv[50]. The following explains the crucial parts

of the Gym environments:
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• init(): The camera and the robot environments are instantiated using the Z

eroRPCPolymetisClient and MultiCameraWrapper classes, as introduced in

previous sections. Additionally, it denes:

– observation_space: Merges the observation_space dened inside the

main Franka class with the boundary boxes of 4 different images(depth

+ RGB for 2 cameras).

– action_space: It is a replication of the action_space dened in the

Polymetis Franka class.

• get_observation(): This function calls latest_observations() to get the

latest camera frames and get_state() to get the Franka state from their

respective environments. It then concatenates and returns them.

• reset(): Essentially, it runs Franka’s reset() function, which sends the robot

to its home state. This is executed at the start of a new task.

• step(): Given the input action obtained from the policy function, it performs

the update(). Then, after a precise wait to ensure the control loop frequency

is consistent, it calls get_observation() to update the robot’s state. If there

is a reward from the environment, it is calculated afterward. Additionally, s

tep() checks if the current step violates the time limit set(truncated) by the

user and determines if the current run should be terminated based on the

robot’s state. Finally, the function outputs a tuple consisting of the observa-

tion, reward, termination status, truncated ag, and any other information

gathered throughout the function.

The Gym environment provides a proper platform to work with such a sequentially

structured system. Assuming we have established a robot policy, the following

section discusses how to save and log relevant robot information for training a

model.

4.2.4 Envlogger

There are various ways to save and record a dataset. However, we want to use our

dataset to train a model like Octo. Moreover, Octo follows the same approach as

Open-X Embodiment(OXE) [32] to handle the dataset[26]. Therefore, we should aim

to use the same dataset structure as OXE, namely RLDS, which was introduced in

section 3.3.

One way to transform a dataset into the RLDS format is to rst collect our dataset

and serialize it using common libraries like "h5py" or "pickle" and then use OXE
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tools to convert it to the desired structure[32]. The other way, which is what we

chose to do, is using the EnvLogger[51], a library designed for this purpose created

by the same group that developed RLDS[51]. We have found that EnvLogger is less

explored in the creation of related robotics code stacks; one reason for that can be

that the package is relatively new, and OXE has just started taking off since the last

quarter of 2023. Using Envlogger prevents dataset conversion after collecting and

also the problems that come with different serializations. Furthermore, if there are

probable post-processing modications to the dataset, efcient tools for that can be

created, ensuring the datasets’ format remains consistent.

To implement EnvLogger, we modied oxe_envlogger, a repository that wraps En-

vLogger to make it easier to use with Gym environments. At the time, this reposi-

tory was unstable and couldn’t be used right away, so we modied some compo-

nents of oxe_envlogger, especially in type and image casting, to be able to be used

with our dataset features and Octo. Note that oxe_envlogger built itself mostly on

top of the examples of EnvLogger and RLDS repositories.

oxe_envlogger has two variants for EnvLogger: OXEEnvLogger and AutoOXEEnvLog

ger. They both follow the same logic to record the data; however, based on our

experience testing them, AutoOXEEnvLogger was more comfortable for us to use to

work and had few errors to deal with.

Figure 4.4: This block diagram depicts the RobotEnv and its usage of the ZeroRPCPolymetisClien

t and the MultiCameraWrapper environments. The dashed lines depict data streams. The thicker

dashed line is only a visual aid since the two data streams cross.



4.2. Data capture 37

Creating AutoOXEEnvLogger environment requires a one-line script that the current

Gym environment, dataset name, and dataset directory are passed as input, and

the return is an object the EnvLogger environment, which can be used similarly to

any Gym environments. To understand better how saving a dataset works here,

consider the scenario where the user wants to record 10 episodes for their dataset,

and each episode contains a limited series of steps that contain information about

the actions and observations of the real-world environment with which the robot

was interacting. Normally, a new episode starts or ends with the reset() function

in the Gym environment. Since EnvLogger wraps both the reset() and step()

functions, logging all inputs and outputs, every new episode is saved with each

call to reset(). Aside from that, EnvLogger allows the addition of episode and

step metadata to be saved, which is useful for language labeling applications later

on. The saved dataset les come with the "tfrecord" le extension, which is

the standard TensorFlow dataset extension. The conguration for serializing the

dataset can also be changed on-demand by the user. For example, whether each "

tfrecord" le represents an episode in the dataset or if all the les in the dataset

have the same storage size can be dened by the user.

Figure 4.4 illustrates the integration of our cameras and Franka environments to

build RobotEnv in section 4.2.3, which consequently is used to create the EnvLogge

r.

4.2.5 Data Recording

Here, we explain the recording of an episode we implemented for our dataset.

Check out section 4.2.7 regarding the robot’s policy for our dataset. The record-

ing pipeline starts with the initialization of RobotEnv, which prepares the Franka

and the cameras to run. Then, the EnvLogger is initiated. Now, the robot interac-

tions can be logged. As mentioned earlier, EnvLogger can add metadata for each

step and the entire episode. For our project, the metadata we used were "lan-

guage_instruction" and "episode_status". The rst describes the task done in this

episode, and the latter is a ag whether this episode was a "successful" or "failed"

one, which is decided by the user before starting the next episode (reset()). More-

over, as this dataset should comply with Octo structure, each step of an episode

must have "language_instruction"; we included that in each step’s metadata, not

just the episode metadata.

In parallel to EnvLogger, we added a trajectory replayer function, where we man-

ually append the actions sent to the robot to a list. At the end of the episode,

the robot can replay these actions to replicate the exact trajectory of that episode,

providing a more hands-on way to keep track of the recorded dataset.
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Furthermore, the RLDS library supports importing and merging from multiple

dataset directories. This means that the whole dataset can be divided into collec-

tions of smaller datasets. We recorded our smaller datasets in batches of 5 episodes

to build up to a larger dataset.

4.2.6 Dataset Loader and Modier

Supposing that we have a dataset using the method of the previous section. This

dataset is in raw format, and it is not yet ready to be used by Octo because we

recorded the images in full resolution for both the "wrist" and "primary" cameras.

Octo is trained with the camera images to be 128x128 and 256x256 resolutions,

respectively. For the best performance, our dataset should have the same reso-

lution. Aside from that, we should have access to solutions if needing a change

in our dataset. Therefore, we developed OfflineRobotEnv, a class that reads our

recorded RLDS dataset and transforms it into a Gym style environment. Functions

of OfflineRobotEnv are:

• reset(): It reads the episode in the dataset, then initializes an iterator for

iterating through all the steps in the episode.

• step(): Increments the iterator for reading a new step in the episode and

returns the observation of that step. It does not need an input in this class.

• get_action(): Outputs the action for the current step.

In addition, it can read multiple datasets with different directories and treat them

as a single dataset. Although it cannot directly interact with the real robot, it

enables us to replay any desired episode. To do that, we simply use the get_acti

on() values as input to our real world RobotEnv to replay trajectories. Moreover,

to replay the images of OfflineRobotEnv, we just need to visualize the output of

the step(). Overall, this approach gives us a more intuitive way to work with the

collected dataset.

Using our OfflineRobotEnv and oxe_envlogger’s RLDSLogger [52, 51], we create the

following modier functions for our dataset:

• merge_dataset(): Reads all the raw smaller datasets and then saves them as

a new RLDS format dataset. It can also skip the episodes marked as "failed",

making sure that only the "successful" ones remain in the new dataset.

• resize_image(): It goes through the dataset and resizes all images of the

observations to the custom shape dened by the user and saves it as a new

dataset.
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• change_language_embedding(): This function replaces the "language_instruction"

of the metadata with user input description.

4.2.7 Virtual Reality

To be able to move the robot and record the data, some method of robot control

had to be implemented. We decided to use a VR(Virtual Reality) policy to control

the robot when recording. VR control was chosen as it was easy to record, intuitive

to use and the hardware was available in the lab. The VR headset used was the

Meta Quest 2(Formerly known as the Oculus Quest 2). The headset relies on IR

tracking to track the controllers. The controllers position as well as their orientation

can be tracked. To get the data from the Quest headset, an APK has to be used

and installed on the Quest. This APK and the Python script used to communicate

with the APK are from an open-source project called Oculus Reader[53]. Oculus

Reader outputs a dictionary containing a 4x4 transformation matrix that captures

both translation and rotation. It’s important to note that the transformation matrix

reects the relative motion between the controller and the headset. For instance,

if the controller is moved 1 cm to the right while the headset is simultaneously

moved 2 cm to the left, the resulting data measured by the Quest headset will

indicate that the controller has moved 3 cm to the right. To avoid this, and only

use the movement of the controller, the headset itself was often placed on a table,

where it would experience almost no exterior disturbance.

Figure 4.5: Flowchart of how the _update_internal_state function updates VRController’s inter-

nal values, for later usage. The blue box is the thread that gets started, and it will run at a frequency

of 10Hz independently of other functions being called from the VRController
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In addition to the 4X4 matrix, all of the button states are also included in the

dictionary. The polling rate from the headset was set to 10 Hz, but was tested

up to 30 Hz without causing any problems. However, as recommended in the

Octo repository[26], 10 Hz was used for data collection. To use the data from the

headset, multiple scripts were created based on the Robot-Lightning repository [42].

To communicate with the Oculus Reader library, a script called vr.py was created,

which was originally based on the Robot-Lightning’s vr.py script. The vr.py script

contains a few functions implementing necessary linear algebra and a class called

VRController. As the VR control was supposed to work as the policy for the en-

vironment, when recording training data, the output of the VR function would

have to be the exact same shape and format as the Octo network’s action head’s

dened output. As previously mentioned, this is a 7-dimensional vector, consist-

ing of the end effector delta position in Euclidean space and delta rotation, using

Euler angles and absolute gripper state. [X,Y,Z, R, P,Y,G]. The positional and

rotational values are measured in cm moved since the last time step, and radians

rotated since the last time step. As the gripper is an absolute value, the value 1

will correspond to having the gripper closed, with 0 being open.

To get these values, the VRController class is used. When VRController is ini-

tialized as the policy in the data-recording script, a thread is started which runs

the internal function called _update_internal_state. This function will run at the

specied frequency, which was 10 Hz for this project.

_update_internal_state() keeps track of the state of the VR controller. It does

this by running the

get_transformations_and_buttons() function from an OculusReader object, which

returns the entire state of the right VR controller, in a Python dictionary format.

This dictionary is then parsed and all of the values from the dictionary is then

saved as internal states in the VRController object. The VRController can then

use these values in different functions. A simplied owchart of VRController

and _update_internal_state() can be seen on gure 4.5. The predict() function

of the VRController, is used to get the 7D action vector in our environment, and

takes position of the end effector as an argument. The predict() function checks

whether or not the physical VR controller is activated. The VR controller will be

activated if turned on and connected, and the right gripper button on the controller

is pressed. If it is activated and the output from the headset is valid, it will run the

function _calculate_action(), which takes the current position of the end effector

as an argument. _calculate_action() is the function responsible for calculating

the [XYZ] vector(pos_action) and the RPY vector. A owchart depicting these

functions can be seen on gure 4.6.
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Figure 4.6: Flowchart depicting the program ow when the predict() function gets called. Each

differently colored block is a separate function. All functions are functions in the VRController

class. _state is written in bold, to highlight the connection from this owchart to the thread

running in 4.5

Calculating the positional vector

The pos_action vector is calculated by subtracting two vectors from each other,

target_pos_o f f set − hand_pos_o f f set. The target_pos_offset vector, is a vector

that describes the delta movement of the VR controller from the start of activation

to the current position. Similarly the hand_pos_offset is a vector that describes

the delta movement for the end-effector(EE) from origin position to the current EE

position.
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Figure 4.7: Graphics depicting how the vector pos_action is derived, using the "VR" vector going from

VR pos(start) to VR pos(current) and the "EE" vector going from EE pos(start) to EE pos(current).

Subtracting the two vectors from each other will result in the pos_action vector, which is the vector

used for end effector control

The pos_action vector could also be calculated by subtracting the variables VR

Pos(prev) and VR Pos(current). In a perfect system, VR Pos(prev) would in the

gure 4.7 be placed in the same position as EE Pos(current). However, as drift can

happen, we used the aforementioned approach. In this approach, the computation

of positional offsets between the end effector (EE) and the robot’s origin, as well

as between the VR controller and its origin, is designed to address cumulative

positional errors and potential drifts within the robotic system. By recalculating

these offsets, the method aims to enhance the precision of the system’s response to

VR inputs.

Calculating the rotational vector

Initially, the rotational vector was calculated using the same methodology as the

positional vector, using offsets for enhanced accuracy. However, this proved detri-

mental as it resulted in erratic behaviour from the robot, in almost every start of

the tracking. Instead, the rotational vector was calculated solely by tracking the VR

controller’s change in rotation from previous to current step. Then that rotation

was used for the robot. While this is in theory prone to rotational drift, it should

not prove to much of a problem as a human operator could account for this drift

when doing the recordings. In practise, we did not nd this to be a perceivable

problem. A human would probably also be capable of accounting for drift in the

positional vector, but as the error correcting method worked, it was deemed to

preferable.

After the positional and rotational values of the vector have been calculated, the

gripper action is read from the eld "gripper" in the internal state dictionary used
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for the controller state. The "gripper" eld in the dictionary is updated every 100ms

in the aforementioned _update_internal_state() function. This value will be a

oat ranging from 0 to 1, and will be concatenated with the XYZRPY list. The

value can now be returned from the _calculate_action(), and the predict()

function will now in turn, return this function to the environment which uses this

policy. The predict() function and in extension the _calculate_action() func-

tion is run by the environment that hosts the VRController object. Thus they are

run independently from the _update_internal_state() function, which runs on

its own thread, and in theory they do not have to adhere to the same frequency. If

at any point, the user using the physical VR controller releases the right gripper

button, predict() will not send the 7D vector, but instead it will return a None

value. When the user presses the right gripper button again, the origin of the

VR controller and the origin of the robot position will then be updated, to reect

the origin points at the start of the button press. This functionality enables the

user to do larger ranges of motion, as they are not limited by their own physique,

e.g., they can do rotations that would have otherwise required them to rotate their

wrists more than 360 degress by pressing and releasing the button multiple times.

In addition to the previously mentioned functionality, the VRController class also

have adjustable multipliers for the rotation and the translation. Additionally, it

also has functionality for quickly changing the corresponding axis’ from the VR to

the robot, this is especially useful if the orientation of the VR headset in relation

to the robot changes, as it was found that the most intuitive way of controlling the

robot, is to use the robot as the reference point, from a user’s point of view.

4.3 Octo

When implementing a system like Octo, into a custom environment, multiple as-

pects have to be taken into account. To use Octo to generate a single policy-output

can be done in 4 lines in Python according to the Octo GitHub [26]. But this single

"policy-output" will only be around 0.1-0.4 seconds of movement. If more outputs

are required, the Octo policy has to be run multiple times, performing the action

from the output before getting new outputs. However, even doing this, Octo will

probably not be capable of generating any worthwhile action outputs. Octo will

need to be ne-tuned to any specic environment before being capable of properly

controlling a robot [26].

4.3.1 Finetuning

For the ne-tuning of Octo, a Python script was used. The ne-tuning script, was

based on the example from the Octo GitHub repository, as this script already im-

plemented all of the required features for ne-tuning. The script already had a
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dataset loader implemented - though it had to be modied to support the dataset

created for this project, a tokenizer for the text input, conguration for a new action

head and the training function, including the loss function. As there does not seem

to be any convention of how to name elds in an RLDS le, any script utilizing the

data will need to have the names of the elds of the RLDS le mapped to internal

values. In the netuning script, it is done in a dictionary called dataset_kwargs.

The dictionary, as implemented, can be seen below on the code snippet in algo-

rithm 1. Here the name and directory of the dataset is passed, along with the

names of the dataset’s elds for the two cameras, and the name for the language

instruction eld. Additionally, the dimensionality of the action space in the dataset

is also dened in the dictionary.

Algorithm 1 Pseudo code for dataset parameters

1: BEGIN dataset_kwargs

2: name ← "robotenv"

3: data_dir ← FLAGS.data_dir

4: image_obs_keys ←

5: {

6: "primary" ← "static_image",

7: "wrist" ← "on_wrist_image"

8: }

9: language_key ← "language_instruction"

10: absolute_action_mask ← [True, True, True, True, True, True, True]

11: END dataset_kwargs

Besides from changing the dictionary, few lines had to be changed to conform to

the datasets created in this project. A dictionary used to dene frame transforma-

tions (resizing of images), had to be extended to include the wrist camera, as the

example script only used one camera. Additionally the action head also had to be

changed, to have the same action dimensionality, as the example had a 14D action

space. Due to the nature of the robot used for the example, the prediction horizon

was also set to 50, which was changed in this project to 4, as is recommended in the

GitHub issues page of Octo, by the authors, for traditional one-limb robot control.

Initially the history window was set to 0, due to VRAM constraints, but was later

on changed to a size of 1.

When everything in the ne-tuning script had been set up for the RobotEnv dataset,

the Octo model could be ne-tuned for the rst time. While it was successfully ne-

tuning on the dataset, it ran signicantly slower than ne-tuning on the example

dataset with the 14D action space. The test dataset could be ne-tuned at a speed

of around 1.5 it/s(iterations per second) and sometimes hitting slightly above 2
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it/s as seen on the gure 4.8. The example dataset could be used for ne-tuning at

around 9 it/s.

Figure 4.8: First octo netuning run on a test dataset. It is running at around 1.5-2 iterations per

second, whereas the ofcial dataset ran at around 9-10 it/s. While the training speed of the does not

impact the results of the training, slower training greatly impacts the amount of iterations that can

be done in the scope of this project

After looking in to the differences of our dataset and the example, it was clear that

our dataset had too high resolution. This was both the images, at this time they

were native resolution, and the data types, e.g., instead of using float32 like the

test script, we used float64 initially. After this discovery we created functionality,

as mentioned in section 4.2.6, to downscale the entire dataset. After downscaling,

our dataset’s training speed was on par with the example.

While ne-tuning, the progress was logged and displayed in real-time using the

library called Weights and Biases (Wandb). Wandb is a machine learning platform

that provides tools for experiment tracking, model optimization, and dataset ver-

sioning to aid the development of ML models. The Wandb integration, already

implemented in many scripts in the Octo repo, requires only a Wandb account

and an API key from the Wandb website, which you paste into the terminal upon

the rst boot of the training script. It is also possible to forego live tracking by

disabling Wandb when starting the script.
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Saving ne-tuning checkpoints

The ne-tuning was performed on the server, as described in section 4.3.1, and

the model saved on the server needed to be transferred to the computer running

inference. To do this, an FTP server was set up on the aforementioned server using

the service vsftpd, enabling seamless le transfer from any computer on the same

network, while simultaneously being password-protected. FTP transfers were se-

lected for transferring large-sized checkpoints, each approximately 550MB, due to

limitations with Git and other cloud storage options. Git itself does not support

such large les, and while Git LFS (Large File Storage) can handle them, hosting

challenges remain. The free version of GitHub, for example, offers only 1GB of

LFS storage per user, effectively limiting uploads to one checkpoint per month.

Similarly, efforts to use Hugging Face, another Git-based system supporting LFS,

were thwarted by repeated upload failures and platform instability, as evidenced

by frequent ’500 - Internal Error’ messages. Consequently, local storage proved to

be the most reliable method for hosting the checkpoints.

4.3.2 Inference

Inference using Octo can be done using only 5 lines, as previously mentioned.

However, as inference needs to be run multiple times, the inference is wrapped in

a loop, with the robot environment performing the action, that is the the output of

the inference, before running inference again. The Octo repository has got multiple

examples on how to run inference.

Inference on dataset

One of the examples in the Octo repository, performs inference on a pre-downloaded

dataset. This script unpacks the dataset and uses its data as the observation for

each environment step. It then processes these steps, applying inference using the

images as observations, and subsequently displays these images alongside a com-

parison of the ground truth and Octo’s output. The ground truth is embedded

within each step’s action eld of the dataset. Adapting this script to work with

a custom dataset created for this project involved few changes of code to refer-

ence the third-person images in the dataset steps. Additionally, the dataset’s path

also needed to be change, to reect the new dataset’s path. Successfully running

this script on the custom dataset conrmed its compatibility with Octo for ne-

tuning. Additionally, the simplicity of the script was instrumental in documenting

the requirements for operating Octo, providing essential information ahead of con-

ducting online inference.
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Figure 4.9: Inference performed on the pre-recorded dataset, with orange lines representing the

ground truth and blue lines representing the predicted actions. The seven different graphs corre-

spond to the actions for X, Y, Z, Roll, Pitch, Yaw, and Gripper, respectively.

Online inference

For online inference, the Octo repo has two different examples. One example for

online inference is on a simulated robot in a gym environment. The other example

is doing inference on a physical WidowX robot. The WidowX robot is a two-limbed

14 DoF robot, which makes the script used for this robot a bit different than for

the Franka. Additionally, a lot of code in the example was unnecessary to run
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inference on the Franka, which resulted in a lot of changes from the original. In

the end, the code for running inference on the Franka ended up being around 10%

less lines, while adding additional observation spaces as the example script only

used one camera. The inference script ultimately comprised three main parts: ag

instantiation and imports, environment setup, and the inference loop. The ag

instantiation and import section consists of the rst 83 lines out of 220 (at the time

of writing), where all necessary libraries are imported. These include Octo models

and utility scripts. Subsequently, all the ags are dened, which are later used

by the model. These ags determine characteristics such as prediction horizons,

history windows, and similar parameters.

After this step, the main() function is dened and this is where the rest of the code

is written. In here, the robot environment is instantialized and the pre-trained Octo

model is loaded. The robot environment is then wrapped in the History Wrapper

from Octo. After this, the wrapped environment is wrapped once again in the

Temporal Ensemble Wrapper from Octo. The history wrapper is a Gym wrapper

from Octo, which enables the History window in the observation space. Likewise,

the temporal ensemble wrapper is a Gym wrapper from Octo, which enables the

prediction horizon when running inference. These wrappers enables us to use the

Gym environment as usual, with environment.step() functions, without having to

deal with multiple actions and historic observation space.

After the local functions have been dened, the loop that runs the Octo interface

is initiated. This loop is a while True loop, meaning it will continue indenitely

until the program is closed. At the start of the loop, the program waits for user

input to determine the robot’s task. An Octo Task object is then created. The robot

environment is reset to gather the initial set of observations. Subsequently, a while

loop executes for x steps, where x represents the number of time steps Octo uses

for a single task. Octo utilizes all allotted steps, as there is no other termination

condition for this loop. The action is then predicted using Octo, and afterward, it is

executed on the robot using the environment’s stepmethod. Performing the action

generates a new set of observations, which are used in the next iteration of the loop.

See Algorithm 2 for the pseudocode representation of the action execution based

on the policy function.

When the while loop in the previously mentioned algorithm has nished execut-

ing, the while True loop containing 2 will restart. It will then await a new task

dened by the user via text before re-initiating the Octo inference loop.
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Algorithm 2 Procedure for executing actions based on policy function

1: while t < FLAGS.num_timesteps do

2: if time.time() > last_tstep+ STEP_DURATION then

3: last_tstep ← time.time()

4: action ← np.array(policy_fn(obs, task), dtype=np.oat64)

5: obs, _, _, truncated, _ ← env.step(action/200)

6: t ← t+ 1

7: if truncated then

8: break

9: end if

10: end if

11: end while

Figure 4.10: The owchart illustrates the entire script running Octo inference. Most of the functional-

ity is contained within the main() function, shown as a light beige box. The inference loop, described

in Algorithm 2, is represented as a blue box within the main() function.
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4.4 Data collection

4.4.1 Proof of Concept using Dummy Data

After implementing Octo and establishing the data pipelines, it was necessary to

record some trajectories to collect training data for Octo. During the initial stages,

’empty’ datasets lasting 3 seconds(dummy data) were recorded. These datasets

did not involve any signicant movements, and the cameras were not attached

to the robot. However, these empty datasets proved to be sufcient for testing

the data acquisition pipeline (VR + EnvLogger), the ne-tuning script that saved

a ne-tuned model, and the ofine evaluation of the dataset alongside the ne-

tuned model. After the ofine evaluation proved successful, the online evaluation

script described in section 4.3.2 could be developed, effectively linking robot con-

trol directly to Octo’s output. For the initial test, Octo was evaluated using the

ne-tuned model. Since the model was trained solely on limited data from the

3-second episodes, the robot’s movement was erratic. Nonetheless, this served as

a successful proof of concept, demonstrating that every component of the pipeline,

from data acquisition to local inference and actual robotic action based on that

inference, was functioning as intended.

This proof of concept using dummy data was essential before commencing the

recording of actual data. It conrmed that the system was capable of handling

all necessary processes required for this project. This advancement was key in

transitioning from a development stage to a data gathering and testing stage.
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4.4.2 Recording rst dataset

Figure 4.11: The setup of the Franka and the cameras. This position of the third person camera, is

the position used for recording training data and running inference. Additionally the 4 differently

colored bricks can be seen on front of the robot, with the red brick being stacked on top of the gray

brick
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(a) Image taken using the wrist camera (b) Image taken using the static 3rd person camera

Figure 4.12: Images from the cameras used for Octo, side by side. These images show what Octo

would be able to see in the setup as shown on gure 4.11

The recording of the rst "proper" dataset could take place after the initial proof

of concept. This rst dataset was compromised of 21 episodes and recorded in 7

sessions, with 3 episodes each. As the data-recording tools did not initially have

any method of discarding a particular episode in the session, only 3 episodes were

recorded at each time, as to not risk invalidating too many episodes in a session by

having one recording going badly. These 7 sessions all resulted in a RLDS dataset

compatible with Octo. These were then merged into a single dataset using the

functionality described in section 4.2.6. Each episode was a recording of the robot

performing a task. For this dataset, the robot had to pick up a yellow Lego brick.

These episodes were recorded using a human operator, sitting on the right side

of the robot, tele-operating it using the VR controller. Each episode was around

10-20 seconds long. At the beginning of each episode the Lego brick was placed

randomly on the table in front of the Robot. The third person camera was also

placed in front of the robot, so as to allow the camera to observe the entire work

table and most of the robot manipulator. To ensure that the third person camera

would always be in the same location when recording or running inference, the

position of the tripod was marked using Duct-Tape on the ooring. The position

of the robot and the cameras can be seen on gure 4.11. This merged dataset

was then used to ne-tune Octo. The ne-tuning of Octo was performed on the

previously described server with a NVIDIA RTX A6000. It was trained for 5000

iterations, saving a checkpoint of the model for each 1000 iterations. This took

around 11 minutes of the server. The training progression can be seen below on

gure 5.1. The action head used for this specic model was an L1ActionHead,

which can be seen described in section 3.2
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Figure 4.13: Training MSE Over Time: This graph illustrates the performance of Octo during train-

ing, showcasing the mean squared error (MSE) metric. The MSE starts at a high of around 6 and

steadily decreases, indicating improved model accuracy as the training progresses to 5,000 steps.

This graph was generated using WandB with a smoothing parameter of 0.7, using an exponential

running average. The solid blue line represents the smoothed data, while the faded gray line shows

the actual data points. Data was logged every 100 iterations

After ne-tuning Octo for 5000 iterations, the newly ne-tuned model, was then

tested on the Franka robot positioned in the lab. The small dataset of 21 episodes

proved to greatly improve the performance of the Octo, with the robot deliberately

going in the direction of the yellow Lego brick. Even if the yellow Lego brick was

moved during inference, the robot would immediately change trajectory towards

the Lego brick. During some runs, the robot would go towards the general direc-

tion of the Lego brick, but go to far towards the right and go out of bounds. This

would cause an error in the Polymetis server. These movements, while not doing

as expected in every test-run, were still a large improvement over the model ne-

tuned using the dummy data. This test using 21 episodes, were done as part of

additional verication of the Octo system. When ne-tuning Octo on a new setup,

such as the one in the report, one should aim to record around 50-100 episodes as

per the authors of Octo [54]. Additionally, when doing advanced tasks or with a

lack of training data, then the random start position of the Lego brick is also not

ideal. A xed position would be easier to ne-tune for. While 21 episodes are a

fair bit below 100 episodes, the time constraints of this project made it difcult to

record 100 episodes for a lot of different tasks.

While the robot’s movements often did not take very long, saving the episode after

completion would take at least 2 minutes, depending on the length of the episode.
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These 2 minutes were completely idle from the operator’s point of view, requiring

the operator to watch the computer console until the message "Episode x is ready"

appeared.

Additionally, the output of the VR controller was inconsistent and often mirrored

when reinitializing the dataset recorder. This inconsistency caused movements

that should have made the robot move in a positive direction along the X-axis to

instead make it move in a negative direction. This issue also affected the Y axis

but never the Z axis. When this error occurred, the headset had to be turned 180

degrees. There were also instances where the input was rotated by 90 degrees,

causing movements along the X axis to be registered as movements along the Y

axis. This was resolved by rotating the headset 90 degrees. These inconsisten-

cies and necessary adjustments added to the time required for recording data, as

the VR controls often needed the headset’s position to be changed with each new

dataset being recorded. As previously mentioned, 7 initial datasets were recorded

with 3 episodes each.

After the second proof of concept using the 21 episodes, additional episodes were

recorded. These episodes were still the same kind of task, with the task being

a pick-up task. However, multiple bricks with different colors were introduced.

When recording this additional data, each dataset contained 5 episodes, as to cut

down on time we spent on re-orientating the VR headset per episode. An even

mix were recorded using the new colored bricks, with separate natural language

instruction, e.g., "pick up the red brick" or "pick up the gray brick". Of these new

colored brick episodes, 83 new were recorded, with a dataset size of 5. However

we introduced a new functionality which allowed us to discard specic episodes

in a dataset when recording, this feature is also described in section 4.2.4. These

new dataset were combined with the 7 initial datasets that was used in the proof

of concept. In total the new combined dataset contained a little over 100 episodes

with the same task, although with some variance in brick color. This single dataset

containing 100 episodes were then used to ne-tune a pre-trained model. The new

model was trained for 70.000 steps, which was then used for testing. Besides from

recording more data, additional congurations of the model was also tried, with

different action heads and history window was also introduced later on. What was

the same through all ne-tunes was the model used, Octo Small. As Octo small

already used around 42GB of VRAM out of 48GB available, it was unfortunately

not possible to ne-tune the larger model. We later found out that the high usage

of VRAM used was partially due to having a too large buffer size and doing a

"full ne-tune". As mentioned in the Solution chapter, a full ne-tune means to

ne-tune the transformer backbone as well as the input and output layers, instead

of just the input and output layers. We decreased the buffer size between some of
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the ne-tunes we did, but kept doing a "full ne-tune", as we only discovered the

ag enabling it just before hand-in, after the testing.



Chapter 5

Testing

To nd out whether or not we achieved the goal, that we set out for us in the

problem statement each trained model that we have created was tested. For each

model, the performance is described in relation to some of the key metrics of the

specic model and training distribution used.

5.1 Testing conguration

When we tested the performance of the Octo system, the physical setup was the

same as described in the previous chapter. We used three differently colored plas-

tic bricks and placed the cameras in the same locations as during the data record-

ing. We tried many different congurations of Octo ne-tunes, along with various

amounts of training data. These different congurations and the corresponding

amounts of training data are shown in Table 5.1.

56
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Model ID
Action

Head Type

Prediction

Horizon

History

Window
Iters MSE Model Epi

H0 L1 4 0 0 N/a
Octo

Small
0

H1 L1 4 0 5,000 0.571
Octo

Small
21

H2 L1 4 0 30,000 0.648
Octo

Small
104

H2X L1 4 0 70,000 0.612
Octo

Small
104

H3 Diffusion 4 1 50,000 0.563
Octo

Small
104

H3X Diffusion 4 1 100k 0.314
Octo

Small
104

H4 Diffusion 4 1 100k 0.592
Octo

Small
124

H5 L1 4 1 100k 0.266
Octo

Small
124

Table 5.1: This table shows the different congurations of the trained models. Five models were

trained, and their respective MSE can be seen at the end of training. "Iters" is short for iterations

and "Epi" is short for episodes. An ID ending in X indicates that the model is the same as the one

without an X, but has been trained more. All of the ne-tunes are "full ne-tunes". All ne-tunes

used two images and proprioception was disabled, otherwise all values not mentioned in this table

have been left at default

While the types of action heads were changed, the observation space also changed

when we switched from L1 action heads to diffusion. A history window with a

size of 1 was added to the observation space. This was not done in the initial tests

due to issues with memory management, which we resolved when we switched to

diffusion action heads.

5.2 Tests of different models

All the tests we conducted were designed to closely mimic the training data. This

involved maintaining the same camera placement, using the same color of bricks,

and using the same natural language commands.

5.2.1 H1 test

The rst ne-tune of Octo we created was trained on only 21 episodes where the

robot moved a yellow Lego brick, comprised of 8 smaller Lego bricks. This ne-
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tune was never meant to actually perform the tasks but merely serve as a proof

of concept. The H0 model, the pre-trained Octo model from HuggingFace, had

already been tested. As mentioned in the papers and on GitHub by the authors,

it cannot be expected to perform on a new setup without any ne-tuning. H0

moved erratically, and the behavior did not seem to respond to the task or the

environment. As a proof of concept, we recorded 21 episodes and ne-tuned the

model with 5,000 steps, creating the ne-tune with the ID H1.

H1 seemed to better control the Franka arm, with less erratic movements, and it

often steered towards the Lego brick. It never closed the gripper, but it proved that

the entire Octo pipeline was working, marking a tremendous success for what it

was.

5.2.2 H2 test

H2 was the second ne-tuned model we created for this project. Since H1 was

successful in its own right, it was clear that we needed more training data for better

performance. According to the authors, a completely new model should have 50-

100 episodes of new training data to ne-tune properly to a new environment

[26]. With this knowledge, we recorded an additional 83 episodes and trained a

pre-trained Octo model for 30,000 iterations. When testing this in the physical

environment, the performance was signicantly better than H1. The robot moved

more deliberately towards the Lego brick, and since multiple colors of Lego bricks

were in the training set, it could also move towards specic colors. It did manage

to close the gripper, but never around a Lego brick. While closing the gripper was

a sign of improvement, Octo still seemed far from the performance shown in the

paper.

5.2.3 H2X test

As H2 did not achieve the envisioned performance, we trained the same model for

an additional 40,000 iterations. The Mean Squared Error (MSE) decreased slightly

from 0.648 to 0.612, indicating that the model had nearly stopped converging to-

wards zero. However, the Franka robot controlled by Octo managed to grab a Lego

brick once and lift it slightly before dropping it. Out of 10 tests, the robot managed

to lift the brick once but approached the brick in 7 out of 10 tests.

5.2.4 H3 test

While H2X successfully grabbed a Lego brick, it struggled to do so consistently.

Both H1 and H2 used an L1 action head, which is expected to have lower per-

formance than their diffusion counterparts[26]. We then switched to a diffusion

action head, which should result in better actions. Additionally, we resolved a
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memory allocation issue caused by the large training-data buffer and enabled a

history window to further improve performance. H3 was trained for 50,000 itera-

tions, and the MSE was lower than H1, H2, and H2X, indicating potentially better

performance. However, the model moved erratically and did not perform much

better than H0.

5.2.5 H3X test

H3X is essentially the same model as H3, but trained for an additional 50,000

iterations. It did not perform any better than the base H3, despite having the

lowest MSE of all models at the time. The movements remained erratic, and it did

not seem to respond much to the environment.

5.2.6 H4 test

As the desired performance of the models had not yet been achieved, we theo-

rized that the mixed colors of the bricks in the dataset might be the issue. We then

recorded an additional 20 episodes of the robot lifting the black brick, resulting in a

dataset with a 35/34/55 distribution of red, yellow, and black bricks, respectively.

This ensured that the black brick task met the soft requirement of 50 episodes. We

then trained a new model with all 124 episodes for 100,000 iterations, using a dif-

fusion action head.

The performance did not improve over the previous diffusion head tests.
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Figure 5.1: The Franka Emika robot at the end of the rst trial run using the H5 ne-tune. It is in

the process of grabbing the brick for a second time, as it stopped due to having used all 200 steps

permissible

5.2.7 H5 test

As the diffusion heads did not seem to work for us, we trained a new model with

the L1 action head. This model was the rst L1-based ne-tune with a history

window. Additionally, it was the most trained model of all the L1-based ne-

tunes. It also used all 124 episodes and had an MSE of 0.266, the lowest of all the

models.

When testing H5, only the black brick was used, and the others were not present on

the table. Due to time constraints, only ve test runs could be performed with this

ne-tuned model. However, it managed to grab the black brick twice in the rst

run, lifting it up, dropping it, and then lifting it again. In the last run, it grabbed

the brick again. The end-effector moved deliberately towards the black brick in 4

out of 5 runs, making it the best performing ne-tune compared to the rest of the

ne-tunes we had created.
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Discussion

During the process of making this project we encountered several difculties and

experienced various levels of success. While implementing Octo did not seem to

be too difcult at rst, we quickly discovered how large of a pipeline we had to

make rst. This entailed everything from implementing a real time robot control

system (Polymetis) to implementing a custom VR policy for data recording using a

custom data recording script. While implementing the entire pipeline by ourselves

provided us with great understanding and control of the entire system, the amount

of time it took was greatly underestimated, leaving a very small amount of time

for the actual training and testing of our Octo implementation. While we never

got the Franka Emika to satisfactorily grab the bricks every time, we managed to

fully ne-tune Octo and see a tremendous amount of progress in Octo’s capabil-

ity in grabbing. We observed a clear improvement in Octo’s performance as we

increased the number of episodes in the training data and training iterations. The

improvement from 0 to 21 episodes, made the change from random movements

to the robot clearly responding to the environment at specic test runs. Going

from 21 to 104 episodes and from 5,000 iterations to 30,000, made the movements

more deliberate and it responded even clearer to the environment. Using the same

amount of episodes and simply training more further enhanced the performance

of Octo. While the diffusion heads did not seem to work for us, adding a his-

tory window and 20 more episodes for the last ne-tuned model also proved to

help tremendously, with the robot now grabbing the black brick in 2/5 runs; prov-

ing that Octo can do low-level control of a Franka manipulator using only a text

command and two camera streams.
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6.1 Key thoughts and ndings

In this section, we describe some of our personal theories and observations regard-

ing Octo’s performance in relation to key metrics.

Amount of training data

According to the authors of Octo, ne-tuning Octo to run on a new environment

requires 50-100 episodes of new training data for ne-tuning. We did see a clear

improvement from going from 0 to 21 episodes and also a massive improvement

going from 21 to 104 episodes. Going to 124 episodes also seemed to help a lot, but

a lot of other factors also changed in this conguration. Unfortunately, due to time

constraints it was not possible to do further testing of congurations to gure out

what exactly made the improvement for the H5 ne-tune. Additionally, adding

more training data to the diffusion head did not seem to make any difference to

the performance.

Quality of training data

Once again, due to time constraints, the quality of training data may leave some

parts to be desired. The system was prone to communication errors between the

robot and the Polymetis system. This would often give big delays as systems would

sometimes have to be restarted. Additionally, recording an episode with RLDS

would take around 2-3 minutes of processing time, where the operator would have

to wait for the system to nish processing. These problem points resulted in many

non-optimal episodes being used for ne-tuning data, as recording more was not

feasible in the time frame. This included episodes with non-optimal movements,

episodes where the robot would jerk violently due to communication issues. Ad-

ditionally, the VR controls also got inverted 180 degrees in the beginning of some

episodes. This would sometimes result in minute movements in the wrong di-

rection. The operator would then turn the headset 180 degrees, and continue the

recording.

These problem affects maybe a bit less than 1/4 episodes. However, even the

episodes with some jerky movements were for the most part sufcient except for

a few steps out of up to 500 steps in each episode. We also randomized the start-

ing position of the robot and the brick in each episode, which strengthens the

variability of the training data, which should in theory make the system better at

generalizing the task.



6.1. Key thoughts and ndings 63

Signicance of iterations and MSE

The amount of iterations seemed to make somewhat of a large difference in per-

formance. The difference from H2 and H2X, while somewhat small, was still no-

ticeable. When going towards the brick, the robot moved in straighter lines and it

even managed to grab the brick once with H2X. H5 used 100,000 iterations, and

was by far the best model. However, as previously mentioned, multiple factors are

probably part of this performance. Training the models for longer also helped in

lowering the MSE of the model. However, MSE did not prove to be a great indi-

cator of the performance of the model. While H5 had the lowest MSE and best

performance, the second lowest MSE was H3X’s. This model performed as bad as

H0 did. The second lowest MSE of the L1 based models was H1. It also archived

this low MSE on only 5,000 iterations. Coupled with the fact that it only had 21

episodes for ne-tuning, over-tting was possibly the reason behind the second

lowest L1 MSE but the worst L1 performance. When more episodes were added

to the mix, making the dataset more versatile, the lower MSE in H2X vs H2 did

seem to fall in line with slightly better performance. H5’s MSE was more than

50% lower than any other L1 based model, despite only being ne-tuned for 30,000

iterations more than H2X. At the same amount of iterations as H2X, H5 had a MSE

of 3.77 which is still signicantly lower. We believe that the addition of the history

window and the even more versatile dataset helped it generalize the task better

between the different colors.

Model conguration

The conguration of the Octo model varied slightly between H1, H3 and H5. They

all used the same prediction horizon, 4, which was the recommended size. They

all used Octo Small as that was the only one we could traing due to constraints in

VRAM. H1, H2 and H5 used a L1 action head, while H3 and H4 used diffusion.

We never got diffusion to work, even though it supposedly was the best action

head according to the paper. Howerver, in the GitHub issues, people seem to be

having problems with the diffusion head’s performance. Models H0-H2 had 0

history window, even though it is recommended to use a history window of at

least 1. This was due to VRAM constraints, introduced because the buffer size

was too large. This was xed in H3, but as previously mentioned, H3 and H4

did not seem to work. However, the history window might have had a part in the

improved performance of the H5 model. Fine-tuning the Octo Small model used

around 42GB of VRAM, with 48GB being available. This kept us from ne-tuning

the Octo Base model, which might have performed signicantly better. However,

we discovered after nishing all testing, that we had performed a full ne-tune by

accident every time. This means the transformer backbone of Octo was also ne-

tuned. As mentioned in the Solution chapter, Octo is designed to be partially ne-
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tuned where the transformer backbone’s weights are frozen. This is designed this

way to cut down on VRAM usage, allowing Octo Base to be trained on consumer

level hardware. We did not think too much into our high usage of VRAM, as the

authors on GitHub mentioned a bug causing too high VRAM consumption.

Doing a small ne-tune might have also cut down on the required amount of itera-

tions and possibly also the amount of training data needed, as only the tokenizers

and action head would be ne-tuned. Using Octo Base might also have helped

reducing the amount of training data needed, as bigger transformer models are

generally better at generalizing. This is why many transformer based models are

in the billions of parameters, while Octo Base has 93 million and Octo small only

having 27 million parameters. However, when doing a full-ne tune, a larger net-

work may require more data, as can also be seen in the world of LLM’s where the

biggest models train on the most data.

Final observations

When we tested a lot of the models, the environment were also substantially differ-

ent as these test were done at around 23:00 in the evening. The training data was

created in the timespan from 08:00 till 17:00 usually. While segmenting the obser-

vation images should help with this problem, it might still be a cause of instability.

Having more time to record data would also have allowed us to become better at

using the VR controls for recording data. When reviewing the older datasets and

the newer, it is clear that the operator has gotten more used to controlling the robot

which results in higher quality training data as the movements are more precise.

This might also contribute a lot to the performance gain in H5 vs H2.
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Conclusion

For this project, we set out to integrate Octo and ne-tune it on a custom dataset to

help advance the eld of robotics. We successfully created an entire pipeline, start-

ing from the Polymetis server controlling a Franka Emika manipulator to running

Octo inference using a model ne-tuned on our dataset for a new task.

We developed tools for recording data required for ne-tuning, including writing

our own VR controller to effectively control the robot during the data collection.

This data was recorded in a standardized format, making it ready for submission

to the Open X Embodiment Dataset. This submission aims to support further

research in robotics by addressing the current lack of standardized training data.

Before submitting, we plan to enhance the data quality further by applying camera

calibration to the images, as we have already performed a full calibration on both

cameras, although it is not yet applied to the images.

We trained several variations of the Octo model, experimenting with different ob-

servation spaces and action heads. Our results varied, with the diffusion action

heads not performing as well as expected, while the L1-based action heads showed

clear success. Ultimately, we trained Octo to use two cameras and a text command

to pick up a black plastic brick from random locations on a work table. This was

achieved without any programming specically related to the task, demonstrating

the capability of a generalized Multi-Modal Foundation Model to perform the task

with only 124 episodes of training data.

Initially we set a problem statement: How can Octo be used to perform low-level control

of a collaborative manipulator in an unknown environment? Using this, we have man-

aged to implement an entire pipeline of data capturing and training to allow us to

succesfully use Octo for low level control of a Franka Emika manipulator.

65



Bibliography

[1] Rishi Bommasani et al. “On the opportunities and risks of foundation mod-

els”. In: arXiv preprint arXiv:2108.07258 (2021).

[2] Yafei Hu et al. “Toward general-purpose robots via foundation models: A

survey and meta-analysis”. In: arXiv preprint arXiv:2312.08782 (2023).

[3] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706 . 03762

[cs.CL].

[4] Fanlong Zeng et al. Large Language Models for Robotics: A Survey. 2023. arXiv:

2311.07226 [cs.RO].

[5] Michael Ahn et al. Do As I Can, Not As I Say: Grounding Language in Robotic

Affordances. 2022. arXiv: 2204.01691 [cs.RO].

[6] Wenlong Huang et al. Inner Monologue: Embodied Reasoning through Planning

with Language Models. 2022. arXiv: 2207.05608 [cs.RO].

[7] Xiuye Gu et al.Open-vocabulary Object Detection via Vision and Language Knowl-

edge Distillation. 2022. arXiv: 2104.13921 [cs.CV].

[8] Aishwarya Kamath et al. MDETR – Modulated Detection for End-to-End Multi-

Modal Understanding. 2021. arXiv: 2104.12763 [cs.CV].

[9] Jacky Liang et al. “Code as Policies: Language Model Programs for Embod-

ied Control”. In: 2023 IEEE International Conference on Robotics and Automation

(ICRA). 2023, pp. 9493–9500. doi: 10.1109/ICRA48891.2023.10160591.

[10] Allen Z. Ren et al. “Robots That Ask For Help: Uncertainty Alignment for

Large Language Model Planners”. In: Proceedings of the Conference on Robot

Learning (CoRL). 2023.

[11] Lihan Zha et al. Distilling and Retrieving Generalizable Knowledge for Robot Ma-

nipulation via Language Corrections. 2024. arXiv: 2311.10678 [cs.RO].

[12] Teyun Kwon, Norman Di Palo, and Edward Johns. Language Models as Zero-

Shot Trajectory Generators. 2023. arXiv: 2310.11604 [cs.RO].

[13] OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL].

66



Bibliography 67

[14] GitHub - luca-medeiros/lang-segment-anything: SAMwith text prompt— github.com.

https://github.com/luca-medeiros/lang-segment-anything. [Accessed

14-05-2024].

[15] https://openai.com/contributions/gpt-4v/. [Accessed 16-05-2024].

[16] Yingdong Hu et al. Look Before You Leap: Unveiling the Power of GPT-4V in

Robotic Vision-Language Planning. 2023. arXiv: 2311.17842 [cs.RO].

[17] Wenlong Huang et al. Grounded Decoding: Guiding Text Generation with Grounded

Models for Embodied Agents. 2023. arXiv: 2303.00855 [cs.RO].

[18] Fangchen Liu et al. MOKA: Open-Vocabulary Robotic Manipulation through

Mark-Based Visual Prompting. 2024. arXiv: 2403.03174 [cs.RO].

[19] Tianhe Ren et al. Grounded SAM: Assembling Open-World Models for Diverse

Visual Tasks. 2024. arXiv: 2401.14159 [cs.CV].

[20] Anthony Brohan et al. RT-1: Robotics Transformer for Real-World Control at Scale.

2023. arXiv: 2212.06817 [cs.RO].

[21] Ethan Perez et al. “Film: Visual reasoning with a general conditioning layer”.

In: Proceedings of the AAAI conference on articial intelligence. Vol. 32. 1. 2018.

[22] Mingxing Tan and Quoc Le. “Efcientnet: Rethinking model scaling for con-

volutional neural networks”. In: International conference on machine learning.

PMLR. 2019, pp. 6105–6114.

[23] Michael Ryoo et al. “Tokenlearner: Adaptive space-time tokenization for videos”.

In: Advances in neural information processing systems 34 (2021), pp. 12786–12797.

[24] Daniel Cer et al. “Universal sentence encoder”. In: arXiv preprint arXiv:1803.11175

(2018).

[25] Danny Driess et al. PaLM-E: An Embodied Multimodal Language Model. 2023.

arXiv: 2303.03378 [cs.LG].

[26] Octo Model Team et al. Octo: An Open-Source Generalist Robot Policy. https:

//octo-models.github.io. 2023.

[27] Home | Everyday Robots — everydayrobots.com. https ://everydayrobots.

com/. [Accessed 20-05-2024].

[28] Dmitry Kalashnikov et al. “Scalable deep reinforcement learning for vision-

based robotic manipulation”. In: Conference on robot learning. PMLR. 2018,

pp. 651–673.

[29] Mostafa Dehghani et al. Scaling Vision Transformers to 22 Billion Parameters.

2023. arXiv: 2302.05442 [cs.CV].

[30] Aakanksha Chowdhery et al. PaLM: Scaling Language Modeling with Pathways.

2022. arXiv: 2204.02311 [cs.CL].



Bibliography 68

[31] Anthony Brohan et al. RT-2: Vision-Language-Action Models Transfer Web Knowl-

edge to Robotic Control. 2023. arXiv: 2307.15818 [cs.RO].

[32] Abdul Rehman Abhiram Maddukuri Abhishek Gupta Ajay Mandlekar Ben

Burgess-Limerick Chelsea Finn Coline Devin Deepak Pathak Fei Xia Jean-

nette Bohg Ken Goldberg Li Fei-Fei Pieter Abbeel Sergey Levine Trevor

Darrell Wolfram Burgard Yuke Zhu et al. Embodiment Collaboration Abby

O’Neill. Open X-Embodiment: Robotic Learning Datasets and RT-X Models. 2024.

arXiv: 2310.08864 [cs.RO].

[33] Homepage — franka.de. https://franka.de/. [Accessed 23-05-2024].

[34] Sabela Ramos et al. RLDS: an Ecosystem to Generate, Share and Use Datasets in

Reinforcement Learning. 2021. arXiv: 2111.02767 [cs.LG].

[35] Alexander Khazatsky et al. “DROID: A Large-Scale In-The-Wild Robot Ma-

nipulation Dataset”. In: (2024).

[36] Colin Raffel et al. “Exploring the limits of transfer learning with a unied

text-to-text transformer”. In: Journal of machine learning research 21.140 (2020),

pp. 1–67.

[37] seann999. GitHub Issue 43. 2024. url: https://github.com/octo-models/

octo/issues/43.

[38] Eric Hofesmann. How to work with object detection datasets in COCO format.

https://towardsdatascience.com/how-to-work-with-object-detection-

datasets-in-coco-format-9bf4fb5848a4. 2024.

[39] LFranka Robotics GmbH. Franka Control Interface Documentation. https://

frankaemika.github.io/docs/requirements.html. 2023.

[40] Yixin Lin et al. Polymetis. https://facebookresearch.github.io/fairo/

polymetis/. 2021.

[41] zerorpc. zerorpcs. http://www.zerorpc.io/. 2024.

[42] Joey Hejna "jhejna". robot-lightning. url: https : / / github . com / jhejna /

robot-lightning.

[43] GitHub - AGI-Labs/manimo: A Modular interface for robotic manipulation. https:

//github.com/AGI-Labs/manimo. [Accessed 24-05-2024].

[44] Pinocchio: fast forward and inverse dynamics for poly-articulated systems. https:

//stack-of-tasks.github.io/pinocchio.

[45] GitHub - dm_control: Google DeepMind Infrastructure for Physics-Based Simula-

tion. https://github.com/google-deepmind/dm_control. [Accessed 28-05-

2024].

[46] SciPy - — scipy.org. https://scipy.org/. [Accessed 31-05-2024].



Bibliography 69

[47] Cartesian Impedance Controller FREQUENTLY Dies. https://github.com/

facebookresearch/fairo/issues/1190. [Accessed 27-05-2024].

[48] GitHub - hengyuan-hu/monometis — github.com. https://github.com/hengyuan-

hu/monometis. [Accessed 24-05-2024].

[49] Hanxiao Jiang et al. “RoboEXP: Action-Conditioned Scene Graph via Interac-

tive Exploration for Robotic Manipulation”. In: arXiv preprint arXiv:2402.15487

(2024).

[50] Mark Towers et al. Gymnasium. Mar. 2023. doi: 10.5281/zenodo.8127026.

url: https://zenodo.org/record/8127025 (visited on 07/08/2023).

[51] GitHub - google-deepmind/envlogger: A tool for recording RL trajectories. https:

//github.com/google-deepmind/envlogger. [Accessed 30-05-2024].

[52] GitHub - rail-berkeley/oxe_envlogger: Robot Env logger for open-x-embodiment —

github.com. https://github.com/rail-berkeley/oxe_envlogger. [Accessed

30-05-2024].

[53] RAIL Berkeley. Morphological Transformations. url: https://github.com/

rail-berkeley/oculus_reader.

[54] apirrone. Random behavior after ne tuning octo on new robot 29. https : / /

github.com/octo-models/octo/issues/29. 2024.


