A Benchmarking Tool for Evaluation of
Approximate Arithmetic Circuits in
Convolutional Neural Networks

Master’s Thesis
Albert Berg Hansen & Simon Dahl Jepsen

Electronic Systems, ES10, 05/2024

)
.

yright © A

1177/,

Master’s Thesis
Electronic Systems

AALBORG Fredrik Bajers Vej 7A
9220 Aalborg Ost
UNIVERSITY &

http://www.tech.aau.dk

Title: Abstract/Summary:

A Benchmarking Tool for Evaluation
The contents of this thesis describes the de-

velopment of a benchmarking tool capable of
taking an approximate, combinatorial arith-
Project: metic circuit and analysing the power con-
sumption, latency, error characteristics, and
implications of implementation on a given
Project period: CNN. The purpose of the tool is to bridge
the gap between approximate computing and

of Approximate Arithmetic Circuits
in Convolutional Neural Networks

Master’s Thesis

Feb 2024 to May 2024) ;) o
machine learning, leveraging the reduction in
Group: power consumption and latency, in an attempt
to make machine learning more sustainable.
ES 1023 The benchmarking tool is structured in three
steps. In step I, the arithmetic circuit is syn-
Partici . thesised and the netlist is used to count the

articipants: . . .

logic gates and their type, and by extension es-
Albert Berg Hansen timate the total amount of transistors required
Simon Dahl Jepsen for the circuit. The netlist is also used to find
Supervisors: the latency of the circuit by converting the net-
Jan @stergaard list to a directed acyclic graph and searching
for the path that results in the longest propaga-
Pages: 219 |tion delay. In step II the circuit is applied to a
Appendices: 5 |small-scale custom CNN implemented in C++.
Date of Upload: 31-05-2024 |The error characteristics are generalised in eas-

ily scalable custom CNN layers, and the C++
model is utilised to evaluate the ‘“appropriate-
ness’’ of the generalisation. Lastly, in step III
the custom layers are used in a full-scale CNN,
whereby the implications on the accuracy can
be weighed against the drop in power con-
sumption and latency. The custom layers were
applied in a full-scale example CNN, where the
potential of approximate hardware was high-
lighted: The accuracy reduced form ~ 70 % to
~ 60 %, however, with an optimistic estimate
the power consumption dropped to 10.3 %
and the latency dropped to below half.

The contents of the report are openly accessible, but publication with source reference may only occur in agreement with
the author(s).

http://www.tech.aau.dk

Preface

This Master’s Thesis was written as a part of the Electronic Systems Master’s programme at Aal-
borg University (AAU). The learning objectives for this module are summarised in the following
paragraphs.

Knowledge: Have knowledge of the highest international level of research within a selected field
of relevancy with electronic systems and comprehension w.r.t. research ethics.

Skills: Be able to argue the relevancy of the chosen problem and its context. Account for the
scientific basis of the problem and methods to solve it. Analyse and describe the problem of choice,
applying relevant theories, methods, and experimental data.

Competences: Be able to communicate scientific problems orally and in writing to specialists as
well as non-specialists. Be capable of handling complex and unpredictable situation, which require
new solutions, professional development and/or collaboration. Be able to independely initiate and
take responsibility for collaboration and profession development, and specialisation.

Reading Guide

The thesis is written in chapters following a somewhat chronological order. In chapter 1 the chosen
problem is described on a high-level basis, where the reader should be able to familiarise them-
selves with the chosen problem, and how the thesis will approach the solution. In chapter 2 the
fundamental theories and methods relevant to the development of the solution are presented as a
survey, and sections can be skipped if the reader is familiar with the subject; nothing is designed,
implemented, or tested within this chapter. In chapter 4, 5, and 6 the solution is developed, import-
ant test results are presented, and reflections w.r.t. the solutions are described. chapter 7 seeks to
discuss choices made during the development, the consequences, and possibly alternatives that
might better the solution. chapter 8 summarises the solution as a singular product and contextual-
ises the solution to the chosen problem. In chapter 9 topics and paths are highlighted, that would
have been relevant to research or develop if more time was available. The appendices describe
the most important tests performed throughout the development, however, the most important
conclusions, data, and figures have been integrated into the relevant chapters.

In GitHub References a file tree can be found. The file tree refers to the Github page holding the files,
scripts, data etc. used in the project. The GitHub directory tree is in an early stage and somewhat
unmanageable, however, when relevant/important the path of scripts, data, etc. is explicitly stated
and should be reachable from the appendix.

To improve the reading experience and provide navigation tools to the reader, references/ citations
will (if possible) be clickable. Clicking on citations will move the reader to the Bibliography, clicking

Pageii of219

Chapter 0

on links will guide the reader to a browser, and clicking an internal reference will move the reader
to the referenced item (table, figure, etc.).

This report includes a Table of Contents and a List of Figures. Every chapter, section, subsection,
and figure will be referenced with a hyperlink ensuring proper overview.

Citations will follow the Vancouver style, and will thus be numbered (starting from 1 going up) in
accordance with the order they are cited in the text. Clicking on the citation will take the reader to
the Bibliography where the title, author, and other relevant information will be provided.

Due to the subject matter acronyms are frequently used and to avoid misconceptions a list of
relevant acronyms (and their expanded forms) is present just after the bibliography (Acronyms).

The equations and formulas included in this report will follow the ISO 80000 standard whenever

e

possible, however, to avoid ambiguity from figures to text the decimal separator will be ““.”” and

[XEn2]

the thousands separator will be ““,”. Typesetting will also follow the ruleset described in Table 1 in
order to clearly distinguish between symbols and units.

Table 1: Typesetting for equations with examples.

Numbers Ordinary 1,2, 310%

Symbols Math cursive V,A Ec,

Units Ordinary volt, V, A, N, kg
Function calls Ordinary cos (x), log(x), exp (x), arcsin (x)
Words Ordinary Ay = %

Greek letters Cursive U B,Q

Indices Ordinary Nmax, Peftectiver Vin,
Constants Ordinary ecij

When appropriate, the unit of the outcome of an equation will be placed in square brackets on the
lefthand side of the formula numbers. All equations will be left aligned to the same margin and be
followed by a description of all included variables.

Arithmetic for bit-sequences requires additional mathematical symbols to avoid ambiguity w.r.t.
the performed operations:

@ | Addition with modulo 2

o | Concatenation
— | Replace lefthand value with righthand value
A | Bitwise AND

v | Bitwise OR

The footnotes will follow MLA style and be used for tangential information. Citations will never be
presented as footnotes but will be displayed as described before.

Pageiii of219

Contents

Introduction 1
Survey 5
2.1 Neural Networks e 5
2. 1.1 Perceptrons e e e e e 6
2.1.2 Multilayer Perceptrons. L e 9
2.1.3 TrainingPerceptrons e 10
2.1.4 State-of-the-Art Neural Networks 12
2.2 Digital Design e e e 16
2.2.1 Numberrepresentation 17
2.2.2 Arithmeticin Computer Systems 19
2.2.3 The Multiply-Accumulate Unit MAC) 24
2.2.4 State-of-the-Art ArithmeticUnits 25
2.3 Approximate Computing it e e e e e e e e e 33
2.3.1 Approximate Software e 33
2.3.2 Approximate Hardware, 34
24 SummaryoftheSurvey 38
A Benchmarking Tool for Approximate Arithmetics 40
3.1 Functional OverviewoftheTool. 41
3.2 Delimitation and Research Questions 42
3.2.1 ResearchQuestions 43
Step I: Circuit Analysis 44
4.1 Gates, Transistors,andDelay 46
4.2 RTL Synthesis: Gatecount and Critical PathDelay 47
4.2.1 SynthesisFlow 48
422 CountingtheGates 50
423 CriticalPath 51
4.3 ErrorSimulation 53
4.4 Circuit Comparisonand Summaryot tiee 54
Step II: Small-Scale Approximate Neural Network 57
5.1 Exact Model - Reference System and Application 58
5.1.1 PreliminaryPhase 58
5.1.2 DesignPhase 60
5.1.3 ImplementationPhase 62
5.2 Approximate Model - Approximate Forwardpass in a Convolutional Neural Network 64
5.2.1 Convolutional Layers. 67

Pageiv of219

Chapter 0 CONTENTS
5.2.2 Fixed-Point PrecisionScaling 68

5.3 Probabilistic Model - Modelling Errors in Forward Propagation 69
5.3.1 Modelling Errors of Approximate MAC-operations 70

5.3.2 AddingErrortothe CNN. 72

5.4 Training the CNN with Approximate Arithmetic 75
5.4.1 Considerations/Reflections when Training the Approximate Model 82

5.5 Investigation of Congruency Between Probabilistic and Deterministic Modelling . 82

5.6 Summary, Reflection, and Considerations 88

6 Step III: Full-Scale CNN Error Injection 89
6.1 Interacting with the BenchmarkingTool 90
6.1.1 PerformingStepl 90

6.1.2 PerformingStepIl 90

6.1.3 PerformingStepIIl e 91

6.2 Applying the Custom Layerstoa Full-scaleCNN 91

7 Discussion 94
7.1 StepI-Circuit Analysis e e e e 95

7.2 Step II - Small-scale approximate neural network 96

7.3 Step III - Full-scale CNN Error Injection 97

8 Conclusion 99
9 Further Work 103
Bibliography 104
Acronyms 113
Appendix A Github References 115
App. B Defining small CNN for benchmarking 116
App. C Selection of Approximate Circuits for Comparing Metrics 138
App.D Training an Approximate Arithemetic Network 173
App. E Testing the Probabilistic Model 187

Pagev of219

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12

2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24

3.1

4.2
4.3
4.4
4.5

4.6

4.7

Distribution of foci from papers. L 3

Neural networks from problem identification to model deployment. 6
APerceptron e e e e e e e e e 6
Sigmoid Function e 8
Hyperbolic Tangent Function 8
ReLU Function e 9
Two-Layer Fully Connected Neural Network 10
[lustration of a two-dimensional convolution layer, using a single kernel. 13
Illustration of an example convolutional layer, using four kernels resulting in four FMs. 13
[llustration of both max- and average-pooling based on an FM with arbitrary values. . 14
Overview of best-performing networks in terms of accuracy, performing image classific-

ation on CIFAR-100 without using extra data (image taken from paperwithcode.com). 15
MACUDNIL. . . . o e e e e e e e e e 16
Intervals of representable values using 3 integer bits, no fractional bits, and signed/

unsigned e e e e e 17
IEEE 754 binary32 number representation (single-precision float) 19
2-bitadders 20
Adder consisting of a series of full-adders. 20
Long-multiplication of 32-132indecimal 21
Long-multiplication of 9-7inbinary 21
Sequential multiplier e 22
Brent-Kung Addernodes. e 26
Brent-Kung adder carrytree. e 27
Kogge-Stone adder carrytree. 28
Example of a 3:2 pseudo-adder consisting of 4 full-adders. 29
Example Wallace tree for 20 summands (Recreation of Fig. 1 from [1]). 30
The classical single-path FMA architecture from the IBM RS/6000 [2]. 32
Functional diagram of the benchmarkingtool. 41
Different levels of abstraction in digital design, inspired by Fig 1.2 from [3]. 47
Generic simulation and synthesisflow 0L, 47
Synthesis flowchart. e 48
add8se_8VQ from EvoApproxLib [4] synthesised to AND, XOR, NAND, OR, NOR and

XNOR gates usingnetlistsvg. o i i i i i e 49
add8s_8V(Q from EvoApproxLib [4] synthesised to AND and NOT gates and visualised using

netlistsvg. e e e 50
add8s_8VQ from EvoApproxLib [4] synthesised to OR and NOT gates and visualised using

netlistsvVg. . . . v v i e e e e e e 50

Pagevi of219

https://paperswithcode.com/sota/image-classification-on-cifar-100

Chapter 0 LIST OF FIGURES

4.8 netlist.json data-structure for countinggates.. 50
4.9 Gatecountflowchart. 50
4.10 netlist. json data-structure for the criticalpath. 51
4.11 Example translation of a combinatorial logic circuitintoaDAG. 52
4.13 Visualisation of the DAG representation of Figure 4.12. 52
4.14 PMF of the error distribution of the approximate circuit in Figure4.5. 54
4.15 3D-plot of the metrics of mul8s_1KV9, mul8s_1KVM, mul8s_1L12, and mul8s_1KV6. . . 55
4.16 3D-plot of the metrics of mul8s_1KV9, mul8s_1KVM, and mul8s_1KV6. 55
5.2 5 example images from CIFAR-100 represented as 32 x 32 colour images. 59
5.3 5 example images from CIFAR-100 represented as 32 x 32 grayscale images. 59
5.5 5 example images from CIFAR-100 represented as 16 x 16 grayscale images after being
resized using LANCZOS3. 60
5.10 Reference and Approximate CNN Relationship.. 64
5.11 Class diagram of the implementation of the reference CNNinC++. 65
5.12 Object diagram of the CNN model presented in Table5.3. 66
5.13 Implementation of convolution in the approximate model. 67
5.14 Alternative convolutionmethod. 68
5.15 Signal flow diagram of a perceptron with j inputs and weights using approximate arith-
MEetiC CIFCUILS. o o e 69
5.16 Conceptual flow diagram illustrating the methods utilised for obtaining a probabilistic
model for each perceptroninthe CNN.. 72
5.17 The accumulated PMF plotted along the fitted Gaussian distribution. 73
5.18 Convolution of a 3-dimensional input and two filters. 74
5.20 Flowchart of an approximate epoch of trainingthemodel. 77

5.26 Results of the accuracy evaluation on the fest data set for themul8s_1KV8 and mul8s_1KV9. 83
5.27 Histogram of the deterministic and probabilistic error distributions, given 1000 input

IMAGES. . . o e et e e e e e e e e e e e e 85
5.28 Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV9,
given 1000 inputimages. i i i e e e e e e 86
5.29 Plot of the evolution of the KL-divergence, for progressingepochs. 87
6.2 Full-scale CIFAR-10 CNN trained with and withoutnoise. 92
B.1 5example images from CIFAR-100 represented as 32 x 32 colour images. 119
B.2 5 example images from CIFAR-100 represented as 32 x 32 grayscale images. 119
B.3 The loss as a function of epoch training the same model on differently resized datasets. 121
B.5 5 example images from CIFAR-100 represented as 16 x 16 grayscale images. 122
B.4 The accuracy as a function of epoch training the same model on differently resized
datasets. e e e e 122
B.6 The loss as a function of epochs, training the same model on the same dataset using
different optimisation algorithms. L Lo Lo oL 124
B.7 The accuracy as a function of epoch, training the same model on the same dataset using
different optimisation algorithms. oo L 124
B.8 The accuracy as a function of epochs, training the same model on the same dataset using
differentloss functions. L L 125

B.9 Accuracy as a function of epochs, training models of different depth on the same dataset.128
B.10 The accuracy as a function of epochs, training modified versions of the base model using

thesamedataset. e 128
B.16 L1 regularisation with different A-values. 133
B.17 L2regularisation with different A-values. 133

Page vii of219

Chapter 0 LIST OF FIGURES

B.18 L1L2 regularisation with different A-values. 133
B.19 L2regularisation with adjusted A-values. 134

C.1 mul8s_1L12synthesised to AND, XOR, NAND, OR, NORandXNOR gatesusingnetlistsvg.140

C.2 Visualisation of the DAG representation of Figure C.1. 141
C.3 Histogram of the error distribution of the approximate circuit in Figure C.1.. 142
C.4 mul8s_1KV9 synthesised to AND, XOR, NAND, OR, NORandXNORgatesusingnetlistsvg.143
C.5 Visualisation of the DAG representation of FigureC.4. 144
C.6 PMF of the error distribution of the approximate circuit in Figure C.4. The distribution is

plotted where each bar represents a discrete error distance. 144
C.7 mul8s_1KV8synthesised to AND, XOR, NAND, OR, NORandXNOR gatesusingnetlistsvg.146
C.8 Visualisation of the DAG representation of Figure C.7. 147
C.9 PMF of the error distribution of the approximate circuit in Figure C.7. The distribution is

plotted where each bar represents a discrete error distance. 147
C.10 mul8s_1KVMsynthesised to AND, XOR, NAND, OR, NORandXNORgatesusingnetlistsvg.149
C.11 Visualisation of the DAG representation of Figure C.10. 150
C.12 PMF of the error distribution of the approximate circuit in Figure C.10. The distribution

is plotted where each bar represents a discrete error distance. 150
C.13 mul8s_1KVA synthesised to AND, XOR, NAND, OR, NORandXNOR gatesusingnetlistsvg.152
C.14 Visualisation of the DAG representation of Figure C.13. 153
C.15 PMF of the error distribution of the approximate circuit in Figure C.13. The distribution

is plotted where each bar represents a discrete error distance. 153
C.16 mul8s_1L2J synthesised to AND, XOR, NAND, OR, NORandXNOR gatesusingnetlistsvg.155
C.17 Visualisation of the DAG representation of Figure C.16. 156
C.18 PMF of the error distribution of the approximate circuit in Figure C.16. The distribution

is plotted where each bar represents a discrete error distance. 156
C.19 mul8s_1KV6 synthesised to AND, XOR, NAND, OR, NORandXNOR gatesusingnetlistsvg.158
C.20 Visualisation of the DAG representation of Figure C.19. 159
C.21 3D-plot of the metrics of mul8s_1KV9, mul8s_1KVM, mul8s_1L12, and mul8s_1KV6. . . 160
C.22 3D-plot of the metrics of mul8s_1KV9, mul8s_1KVM, and mul8s_1KV6. 161
C.23 3D-plot of the metrics of mul8s_1KV8, mul8s_1KVA and mul8s_1L2J. 162
C.24 3D-plot of the metrics of mul8s_1KV8, mul8s_1KVA and mul8s_1L2J. 163
C.25 add8se_839 synthesised to AND, XOR, NAND, OR, NORandXNORgatesusingnetlistsvg.164
C.26 Visualisation of the DAG representation of Figure C.25. 164
C.27 PMF of the error distribution of the approximate circuit in Figure C.25. The distribution

is plotted where each bar represents a discrete error distance. 165
C.28 add8se_8V(Q synthesised to AND, XOR, NAND, OR, NORandXNOR gatesusingnetlistsvg.166
C.29 Visualisation of the DAG representation of Figure C.28. 166
C.30 PMF of the error distribution of the approximate circuit in Figure C.28. The distribution

is plotted where each bar represents a discrete error distance. 167
C.31 add8se_8NHsynthesised to AND, XOR, NAND, OR, NORandXNOR gatesusingnetlistsvg.168
C.32 Visualisation of the DAG representation of Figure C.31. 169
C.33 PMF of the error distribution of the approximate circuit in Figure C.31. The distribution

is plotted where each bar represents a discrete error distance. 169
C.34 add8se_8CL synthesised to AND, XOR, NAND, OR, NORandXNORgatesusingnetlistsvg.170
C.35 Visualisation of the DAG representation of Figure C.34. 170
C.36 3D-plot of the metrics of add8se_839, add8se_8VQ, add8se_8NH,and 8CL. 171
C.37 3D-plot of the metrics of add8se_839, add8se_8VQ,and 8CL. 172
D.1 Flowchart of an exact epoch of trainingthemodel. 174
D.2 Flowchart of an approximate epoch of trainingthemodel. 174

Page viii of 219

Chapter 0 LIST OF FIGURES

D.3 Accuracy of C++ network with quantisation noise, 20 bits for precision. 176
D.4 Accuracy of C++ network with quantisation noise, 8 bits for precision. 177
D.5 Accuracy of C++ network with an approximate multiplier, mul8s_1KV9. 178
D.6 mul8s_1KV9 trained using approximateepochs. 179
D.7 mul8s_1KV9 trained using approximate epochs on a pre-trained set of weights. . .. 179
D.8 mul8s_1KV9 trained using approximate epochs on a pre-trained set of weights with

SGD. . o e 180
D.9 Finetuning with different SGD learningrates. 180
D.10 Preliminary test with only 2 filters in the second layer. 181
D.11 SGD finetuning with 6 bits for precision.o oo oL, 182
D.12 Adamax finetuning with 5 bits for precision on various multipliers. 183
D.13 Adamax finetuning with varying number of precision bits on mul8s_1KV9. 183
D.14 Finetuning with 45 approximate epochs with mul8s_1KV9 using 6 bits for precision. . . 184
E.2 Testing the probabilistic modelflow. 190
E.3 The train and test accuracy for the approximate model using both the mul8s_1KV8and

mul8s_1KVO. e 190
E.4 Results of the accuracy evaluation on the fest data set for themul8s_1KV8 and mul8s_1KV9.191
E.24 Plot of the evolution of the KL-divergence, for progressingepochs. 219

Page ix of219

Introduction

Al (Artificial Intelligence) has become an inherent part of modern society. Everybody interacts daily
with systems that, to some extent, rely on the benefits of Al, e.g. recommendation algorithms on
entertainment platforms and social media, image recognition in automated vehicles, and speech
recognition in virtual assistants [5]. The concept of Al is present in the consciousness of non-experts,
partially due to the portrayal in popular culture within the last century. The often antagonistic
role of self-conscious Al-systems in science fiction has resulted in an extensive discussion within
the public domain, about ethics and ramifications of Al. However, Al or more specifically ML
(Machine Learning) algorithms have often proven very beneficial in data analysis, for clustering,
classification, and segmentation of data sets [6][7]. Al and ML have seamlessly integrated into
modern everyday life, despite the immense ethical implications of “granting” machines an extent of
human intelligence. The cause is that the current confines of ML are manifested in more application-
specific implementations, which have consistently proven a societal value.

ML is a general term for statistical algorithms that can make inferences about the distribution
of datasets and is generally divided into three domains namely reinforcement- unsupervised-,
supervised-learning [6](7][8]. Common for all approaches is the learning attribute, which is a
description of the model’s ability to adapt to an environment and thereby learn over time. Russell
and Norvig [9] introduced the concept of intelligent agents as systems that perceive its environment
and induce hypotheses about the external circumstances. By falsifying the hypotheses the intelligent
agents can induce new hypotheses by exploiting previous metrics. This iteration scheme is known
as training [8][9][10]. The three approaches differ in the manner in which they learn and train.

The reinforcement learning paradigm is based on the principle of carrot and stick, meaning a
decision-making agent is performing a sequence of actions, where desired actions are rewarded
and less attractive alternatives are punished [6][9][10]. Through trial and error, the model should
iteratively approach the optimal program for the task, thereby maximising the accumulated re-
ward [11].

The unsupervised learning paradigm is based on the principle of learning without confirmation of
achievement; a common saying is that the models "learn without a teacher” [9][10]. Essentially the
goal is to find patterns and regularities in unlabelled data, to make inferences about underlying
distributions. One approach to unsupervised learning is known as clustering, which builds on
the principle of density estimation in statistics [9][11][12]. The aim is to cluster or group the data
based solely on dispersing the features within the set. The clustering can be performed without any
assumptions of underlying distribution (i.e. non-parametric) or oppositely with a priori knowledge
of the underlying distribution (i.e. parametric), which guides the clustering process based on
assumptions about the data’s distributional form. Procedures such as anomaly detection or feature
space reduction can also be approached as unsupervised learning [10].

Page 1 of219

Chapter 1

The supervised learning paradigm seeks a mapping from input to output variables. In other words,
the aim is to find a function that matches given input features to an output label [10][13]. In simple
terms, a supervised learning algorithm has two separate phases. First, a training phase where a set
of annotated data is used to derive the aforementioned input/output mapping. Last, is an inference
phase where the mapping is used to make predictions about unlabelled data [8][13]. Supervised
learning applications can generally be divided into two branches; classification and regression.
Classification tasks are to determine the label or class of an input feature, where some examples
are e-mail spam detection or image classification. Regression differs from classification in that
the inferences made in regression are concerned with predicting continuous outcomes, such as a
numerical value or a range. In contrast, classification focuses on predicting discrete class labels or
categories.

A multitude of statistical algorithms and models have been developed within the three approaches,
however, ANN (Artificial Neural Networks) or simply NN (Neural Networks) have been at the
pinnacle of machine learning algorithms for the past decades since the introduction of layer-
wise deep network training in 2006 [14], which allows for the development of advanced high-
performance models [11][15][16]. NNs are inspired by the processing abilities of the human nervous
system and are both more versatile and complex than traditional statistical approaches [7][9][17].
Traditional algorithms rely on a sparse amount of intelligent agents to induce hypotheses about the
data, why the algorithms usually are application specific [7]. The versatility of NNs comes from the
scalability of intelligent agents used in the network. The NNs can scale to model large datasets with
complex input/output relationships, and a great amount of features in the dataset [18].

The current frontiers within almost every field in science and technology rely on gathering and
generating large quantities of data. The paradigm of big data-analysis is a recurrent issue for re-
searchers and developers in the entire academic landscape; from healthcare and finance to biology
and robotics [16][18]. The growing demand for data analysis has endowed research in computer
engineering and statistics with a powerful tool, resulting in a variety of network architectures.

Associated with the progress of data analysis and machine learning is the price to pay. Financially
and environmentally the burden of the seemingly ever-increasing size of the data models bears a
toll; renting/purchasing the necessary hardware, electricity, compute time, and the environmental
ramifications of producing the hardware and electricity [19]. Research from OpenAl uncovered a
doubling of compute used to train new state-of-the-art models of around 3,4 months between 2012
and 2018 [20]. In a paper from 2019 regarding energy and policy considerations for deep learning it
is estimated that training a big transformer with neural architecture search produces around five
times the amount of CO, emissions than the lifetime of a car inclusive fuel.

Research and development of these data models are skewed toward increasing the accuracy of the
final product rather than developing efficient implementations (see Figure 1.1). The outcome of the
research is not to be understated, however, a balance must be found to ensure the sustainability
of deep learning. Meeting these demands with traditional computing approaches that prioritise
accuracy at all costs becomes increasingly challenging due to the infeasibility of Moore’s Law and
the breakdown of Dennard scaling [21]. Increasing computational load is therefore unsustainable
in terms of energy consumption, processing time, and resource utilisation [22][23].

Page 2 of219

Chapter 1

20 16
— 13 B Accuracy
4§ 0 9 ; 10 Efficiency
e A L BN Both
O 92 9 99 3 1 9 Il Other

0 .

ACL 2018 CVPR 2019 NeurIPS 2018 AAAI 2019

Figure 1.1: Distribution of foci from papers. A sample size of ~ 80 papers from four conferences is divided
into four categories based on the main contribution claimed by the authors. Data w.r.t ACL, CVPR, and
NeurIPS taken from [24] and w.r.t AAAI from [25].

The field of AC (Approximate Computing) has gained immense interest in recent years as an
approach to comprehending the vast expansion of energy consumption and inference latency. The
approach of AC is to reassess arithmetic problems in applications where the introduction/increase
of error can be traded off for a disproportionate reduction in energy, resource, or time consumption.
This, of course, excludes tasks that require the highest precision, e.g. tasks like diagnosing patients
and control systems with human lives on the line. However, fault-tolerant applications like image-
and speech-processing, data analysis, sensor data processing, and ML models could potentially
benefit from utilising AC techniques. Based on the findings of Understanding and mitigating noise
in trained deep neural networks by Semenova, Larger, and Brunner NNs are effective at avoiding
the accumulation of noise and that the signal-to-noise ratio does not worsen when adding more
layers [26], which indicates that introducing some error might not affect the accuracy of the models
too much.

One of the techniques from approximate computing addresses arithmetic operations, whereby
a decrease in area and/or latency can be exchanged for a drop in the accuracy of the operations.
Methods exist wherewith circuits for addition and multiplication can be modified to automate
this tradeoff, like CGP (Cartesian Genetic Programming) . However, the ad hoc approach is still
relevant; say you have a multiplier design that is slightly too big for the implementation and you
have to remove a couple of gates. It is difficult to know how the removal of gates will affect the
circuit, i.e. how much error will be introduced. Furthermore, how will the “small”’ change affect
the higher functionalities of a system? The ad hoc approach to developing an approximate ASIC
(application-specific integrated circuit) , leaves developers with an unsystematic and ungovernable
catalogue of options.

Leon et. al. [27] propose future points of investigation in the field of AC, where broad benchmarks
are a critical point in making energy-efficient approximate systems a permanent staple in the
development of on the edge devices. A foundation for fair comparison of AC approaches is desired
for developers to determine the appropriate approximate arithmetic units for a given CNN. The
“fair comparison” lies in developing general statistical evaluation methods that are inferable with
the outcome of the CNN at hand. The statistical evaluation should ideally produce metrics related
to the application’s performance.

It is desired to present a reproducible methodology for comparing a subset of approximation
techniques applied to the netlist design of the hardware of a CNN preliminary: A benchmarking
tool for AC techniques in the CNN application capable of using any AC design. This solution differs
from the efforts in generalising approximate designs and rather embracing the ad hoc engineering
approach previously described. Such a benchmarking tool would provide developers with an option
to evaluate approximate circuit designs before implementation.

Page 3 of219

https://acl2018.org/
https://cvpr2019.thecvf.com/
https://nips.cc/Conferences/2018
https://aaai.org/conference/aaai/aaai-19/

Chapter 1

Frameworks for simulation of approximate computing techniques applied to CNNs already exist
like: TypeCNN, AxDNN, and ProxSim [28][29][30]. However, these frameworks are aimed at the
development of the CNNs and the demographic is the machine learning developer rather than the
circuit developer. Furthermore, these three proposals are limited in the sense that the scalability
and generalisation of the CNN models are of minor consideration. These methods contribute
greatly to the methodology of designing cross-layer end-to-end simulations prior to hardware
implementation but lack the interpretation of the actual outcome of a CNN model. In other words,
how are the approximations affecting the perceptual and recognisable features of the CNN?

The purpose of this project is to achieve a method of scaling and generalising the cross-layer
end-to-end approximate CNN simulations, to accommodate and interpret the raison d’étre of CNN
models prior to hardware implementation of the approximate circuits. This benchmarking system
is summed up in the following problem statement:

“How can a benchmarking tool provide an ASIC developer with relevant metrics to evaluate an
approximate arithmetic circuit as an integral part of a large scale system, i.e. a neural network,
prior to implementation?”

Page 4 of219

Survey 2

Before tackling the development of the benchmarking tool conceived in chapter 1 a survey regarding
the relevant concepts and methods is presented in this chapter. This chapter is divided into three
parts: 2.1 Neural Networks, 2.2 Digital Design, and 2.3 Approximate Computing. In 2.1 Neural
Networks the fundamental building blocks of neural networks are presented and the state-of-the-
art neural networks are investigated. Before approaching the subject of approximate computing,
specifically approximate arithmetic circuits, it is essential to understand how arithmetic logic
circuits work and why approximating the functionality can lead to faster and/or more power-
efficient circuits with leniency w.r.t. error. Lastly, 2.3 Approximate Computing presents the topic of
approximate computing in broad terms, wherefrom relevant methods are drawn to be applied in
later chapters.

2.1 Neural Networks

As described in chapter 1, NNs have been at the pinnacle of machine learning algorithms for the past
decade, but come with a high computational cost and power consumption. This project aims to in-
vestigate the prospects of approximate- and stochastic computing in reducing the aforementioned
metrics, without compromising the performance of the NNs proportionally.

The path from problem identification to the model deployment can be seen in Figure 2.1, it is the life
of a NN in broad terms. Note, this is not unique for the development of an NN, however, it is meant
as an overview. The developer identifies a problem that can be solved using a NN, data is collected,
and the representation of the data is decided (i.e. what are the dimensions of the input to the NN).
Next, the model is designed: A model is prepared by choosing architecture, optimisation algorithm,
loss function, etc. The model is trained on the dataset, and the model is tested by inference. If the
model yields satisfactory results it is ready to be deployed as a piece of software or implemented in
hardware. If the model is unsatisfactory, the hyperparameters of the model must be adjusted and a
new model will be prepared.

Page5 of219

Chapter 2 2.1. NEURAL NETWORKS

[Preliminary Phase
[0 Design Phase

B Implementation Phase

c

Model Model Model
Preparation Training Evaluation

L

Figure 2.1: Neural networks from problem identification to model deployment. The seven steps are divided
into three phases: preliminary phase, design phase, and implementation phase. The outcome of the first phase
should be a clear blueprint of how the problem is formulated, i.e. what is the purpose, what is the relevant
data, and how is it presented. In the second phase, a neural network is designed, trained, and evaluated.
If the model is unsatisfactory, a new model may be designed based on the experience from the previous
model; the output of the second phase should be a model that meets/exceeds the expectations w.r.t. speed,
accuracy, and efficiency. The third phase takes the finalised neural network and implements it in the real
world; examples could be as a software program that analyses data or image recognition in an embedded
system.

The preliminary phase of Figure 2.1 is bound to the specifics of the chosen and immediate problem,
however, the theory behind the building blocks of the NN models are generalised and worth
investigating.

2.1.1 Perceptrons

The perceptron (also known as an artificial neuron), was initially presented by Rosenblatt [17] as a
simple model of a biological neuron, designed to mimic some of the functions of the human brain’s
neural network, and is the building block of ANNs [31][32]. Concisely, the perceptron perceives an
input, which can be from the environment or other perceptrons. Each input is assigned a scalar
called synaptic weights. All scaled inputs are accumulated and processed through an activation
function, which introduces non-linearity to the output [10][13]. A bias can be added as a synaptic
connection before the activation function. An illustration of a perceptron is seen in Figure 2.2.

Perceptron

®

Figure 2.2: [llustration of a perceptron receiving j inputs, all scaled by an assigned synaptic weight w;. All
scaled inputs are accumulated in a summing junction along with a bias (by). The output of the summation
uy is used as input in an activation function p(uy). The scalar output yy of the kth perceptron is obtained.

Page 6 of219

Chapter 2 2.1. NEURAL NETWORKS

The perceptron is divided into a linear and non-linear part. The output of the linear (affine) contri-
bution uy is formally described as a MAC (multiply-accumulate) operation as shown in Eq. (2.1).

J
up = by + Z Wy, - Xn (2.1

n=1
where:

ur | The output of the MAC operation of the k™ perceptron
by | The bias contribution
%, | The n™ input
wy | The n™ synaptic weight
Jj | The total number of inputs

The MAC operation can also be written as the inner product of a vector of the inputs and synaptic
weights:

up = wx’ (2.2)

where:

w | The vector [1 wy w; ... wjl
X | The vector [by x1 X2 ... Xj]

The weights of the MAC-operation is aj-dimensional hyperplane, which can be used as a linear
binary classifier [33]. The advantageous part of a NN is the non-linear contribution of the perceptron:
the activation function. The activation function enables the perceptron to classify non-linearly
separable sets and perform non-linear regression [34]. Multiple activation functions exist that can
yield different results depending on the task of the network.

The most common realisations of the activation function are briefly presented with particular
regard to the application that each function benefits. The following explanations are based on the
surveys by Sharma et. al. [34], Dubey et. al. [35], and Nwankpa et. al. [36].

The sigmoid is one of the earliest activation functions known for being a bounded, differentiable
function with positive real derivatives [36]. The main advantage of the sigmoid is that it yields
smoothly transitioned output between 0 and 1, making it suitable for probabilistic interpretations.
This bounded property also secures numerical stability [35]. In a historical context, the sigmoid is
important, but compared to more modern approaches it is outperformed [35]. This is mainly due
to a concept known as vanishing gradient. The issue is that the parameterised gradient becomes
close to zero for large inputs, yielding undiminishable changes when training the NN.

The sigmoid function is given in Eq. (2.3).

1
Psigmoid(uk) = m 2.3)

where:

Psigmoid(*) | The sigmoid activation function
a The slope factor

The graph of Eq. (2.3) is shown in Figure 2.3.

Page 7 of 219

Chapter 2 2.1. NEURAL NETWORKS

1 T T T T

T T

0.8 |-

0.6 -

Yk

0.2 +

t

Uy,

Figure 2.3: Plot of the sigmoid activation function, where the slope factor («) is set to unity.

The hyperbolic tangent is similar in structure to the sigmoid because it is also a bounded, differen-
tiable function with positive real derivatives. The difference is the hyperbolic tangent yields outputs
between 1 and -1. The problem with a vanishing gradient is also present for the hyperbolic tangent,
resulting in slow convergence while training the model [35]. Both the sigmoid and hyperbolic
tangent activation functions rely on calculating the exponential function, which is computationally
expensive.

The hyperbolic tangent activation function is shown in Eq. (2.4) and its graph is plotted in Figure 2.4.

etk — e~ Uk
Up) = ———— 2.4
Ptanh (ug) olik + o Uk (2.4)
Hyperbolic Tangent
1 T T T T T T T
0.5 - o
s ot :
0.5 4
-1 ! I I I 1
-5 -4 3 2 3 4 5

U

Figure 2.4: Plot of the hyperbolic tangent activation function.

The RELU (Rectified Linear Unit) is the most widely used activation function since its introduc-
tion (by Nair and Hinton in 2010 [37]) [35]. The RELU is the identity function if the input (uy) is
positive and zero otherwise. This is shown in Eq. (2.5).

PReLU (Ux) = max(0, uy) (2.5)

The RELU function provides a simple computational structure for calculating its gradient; 0 for
negative inputs, 1 for positive, and undefined at 0 (how it is handled is up to the implementation).
A plot of the ReLU function is shown in Figure 2.5.

Page 8 of219

Chapter 2 2.1. NEURAL NETWORKS

Ug

Figure 2.5: Plot of the ReLU activation function.

The problem of vanishing gradients from both the sigmoid and hyperbolic tangent functions also
exists for the ReLU as the gradient for negative values is zero. For this reason, a broad selection of
ReL.U variations exists that tries to accommodate this issue, e.g. the leaky ReLU (a special case of
the parametric ReLU), where instead of forcing negative values to zero they scaled by a factor of
0.01 [35]; the problem of the vanishing gradient is thus overcome since the gradient will be 0.01.
However, neither the accuracy of the developed models nor the convergence time significantly
improved by implementing these alternatives [35].

2.1.2 Multilayer Perceptrons

The perceptron is the building block of a DNN (Deep Neural Network) and especially MLP
(Multilayer Perceptrons) , essentially a structure of layered perceptrons, where inputs to one
perceptron are the output of a previous [8]. The perceptrons in an NN are also referred to as neurons
or computational nodes. The following presentation focuses on fully connected NNs, which have
multiple perceptrons asserted parallelly in hidden layers. The parallelism of the perceptrons in a
fully connected NN allows the modelling of different features within the stimulus, as the same input
is assigned multiple synaptic weights [32][33]. By adding hidden layers a hierarchical organisation
of features allows the network to capture more abstract and context-dependent patterns in the
data, leading to improved generalisation and robustness [11][15][31].

The notation of parameters within the NN used throughout this thesis is presented in Table 2.1.

Table 2.1: This table lists the symbols and notations used to represent parameters of a NN throughout the
thesis. An understanding of these notations facilitates interpretation and comprehension of the following
algorithms.

] The index describes the layers, with the input layer being / = 0 and the index
incrementing by one as the network propagates forward.

The number of nodes in the previous adjacent layer.
The index describes the individual nodes of the previous adjacent layer.

The index describes the individual nodes of the current layer.

Continued on next page

Page9 of219

Chapter 2 2.1. NEURAL NETWORKS

Table 2.1: (Continued)

Wl The synaptic weight between the output of the n" node in layer — 1, and the
nk input of node k in layer /.
b;c The bias of node k in layer /.

To illustrate the hierarchical structure of an NN and the notation of synaptic weights as parameters
an example is shown in Example 2.1.1.

Example 2.1.1: Two-Layer Feed-Forward Neural Network

A fully connected NN example is shown in Figure 2.6. The illustration proposes a NN structure
that has two hidden layers, an input signal x, and three output nodes. To demonstrate the
notation of synaptic weights presented in Table 2.1, two specific examples are provided,
namely w§,3 and wg’l. To keep a simple and comprehensible illustration, the bias to every
node is 0 and hence not displayed in the figure.

Input Layer Hidden Layer Hidden Layer Output Layes

1=0 1=1 1=2 1=3

Figure 2.6: Illustration of a two-layer fully connected NN. The index of each layer is indicated as /. The
synaptic weights are implicitly referenced as arrows and two specific synaptic weights illustrated as
enlarged blue arrows are indexed as wg'g and wil respectively.

2.1.3 Training Perceptrons

Previously in this thesis, introductory remarks were made on training a NN, however, a more
detailed presentation is provided, specifically regarding supervised learning tasks. As previously
mentioned the training of the model refers to finding the synaptic weights (and biases) that yield
a desired output. The training of a neural network is usually an online learning scheme, i.e. the
network model is trained on a single input signal at a time [8][9]. Online learning aids the network’s
robustness to divergent inputs as the synaptic weights are stored between each iteration, and are
updated from previously learned weights [38][39].

The training of a NN can be separated into steps, beginning with an initialisation of the synaptic

Page 10 of 219

Chapter 2 2.1. NEURAL NETWORKS

weights, which is assumed to be random for simplicity. An input is then propagated through the
network and an output is obtained.

Loss Function

In a supervised learning application, the desired output is known in advance and a measure of the
model’s accuracy on a given input signal can be assessed. This measure is formally known as a loss
function, which varies depending on the application. The loss function L(§,) is a function of the
desired output (y) and the output found by propagating the input through the network (j) [9](38].
The MSE (mean-square error) is an example of a discernible and widely used loss function and is
shown in Eq. (2.6).

N 1

N
Lyse (7,5) = X (vi = 71)° (2.6)

1=

—

where:

Lyvse(?) | The MSE loss function

y The desired output vector

The obtained output vector
The length of the output vector

2 <n<

Error Back-Propagation

With a mathematical description of the loss function, it is possible to compose a minimisation prob-
lem. It is desired to minimise the loss by adjusting the synaptic weights of the network. Provided
that the problem is minimisable, minimisation will require the partial derivative of the loss func-
tion w.r.t. the synaptic weights. Intuitively the partial derivatives describe the relation between a
perturbation in a synaptic weight and the change in the output of the loss function [6][8][33].

The desired derivatives relative to the synaptic weights are seen in Eq. (2.7).

0L
1
Own’ r

(2.7)

Since the layered structure of perceptrons introduces non-linearity and parallelism, it can be
challenging to attain these derivatives. To attain these partial derivatives, the BP (Back-Propagation)
algorithm is introduced. The algorithm was originally presented by Rumelhart et. al. in [40] and
employs the chain rule to propagate the metric evaluated by the loss function backwards through
the network.

The first step is to find the gradient of the loss function (L), with respect to the output of the forward
pass (¥) of an input (¥). The loss is propagated backwards from the output layer. The gradient of
the loss is found with respect to the pre-activation outputs (iz}) (which will be denoted &' for later
convenience), using the chain rule as shown in Eq. (2.8) [15].

o, OL oL oy' oL ,
= =0T 5=750p @) 2.8)
oa! oyl oul 09y

where:
©® | The Hadamard product

Further propagation of the loss, back in the layers of the MLP, is straight-forward. Firstly, the error
needs to be propagated backward one layer. To obtain such an error metric the matrix-vector

Page 11 of219

Chapter 2 2.1. NEURAL NETWORKS

product is found for the weight matrix (W) and the gradient loss vector (5°). By applying Eq. (2.8)
to the newly obtained vector, the gradient loss vector of the previous layer is obtained as seen in Eq.
(2.9) [15].

By repeating Eq. (2.9) the loss is propagated backwards through the entire MLP. To obtain the
gradient of the loss function with respect to the synaptic weights Eq. (2.10) is used [15].

oL

ow'
n,

= ylL.sl (2.10)
k

The obtained gradients can now be used to minimise the loss function through gradient descent
algorithms [6][33]. The algorithm for training a NN is presented in Algorithm 1.

Algorithm 1 Training of a Neural Network

Step 1: Initialise all synaptic weights (w,l1 o

Step 2: Forward pass one input and obtain an output (y*)

Step 3: Calculate loss (L(j, f/l))

Step 4: Backwards pass errors and obtain the partial derivatives with respect to each synaptic
weight (m‘zﬁ)

Step 5: Minimise the loss using a gradient-based optimisation algorithm.

Repeat Step 2 to 5 until all inputs have been used

2.1.4 State-of-the-Art Neural Networks

Fully connected feed-forward NNs has traditionally been the pinnacle of deep learning architec-
tures but modern research has provided multiple state-of-the-art architectures. The list includes
CNN (Convolutional Neural Network) used extensively in computer vision applications [6][41],
RNN (Recurrent Neural Networks) especially viable for applications with sequential data such as
language processing and speech recognition [42], and GNN (Graph Neural Networks) suited for
applications with graph-structured data, which could be social media recommendation algorithms
or chemical drug discovery [43].

A CNN addresses an issue with the fully connected NNs: Recognition of features in the input is
not necessarily invariant of the position in the signal. A CNN is a DNN that relies upon parameter-
sharing to local connectivity to obtain translation invariance [41][44][45]. The parameter-sharing
property is inherent in the name of the architecture, namely the convolution of the input signal
with a kernel filter. A CNN is trained like the fully connected NN using the BP algorithm to obtain
the partial derivatives that enable gradient-based optimisation [45][46][47]. The synaptic weights
perturbed in the fully connected NN are replaced by the kernel filters convolved with the input
signal [46]. A comprehensive study by LeCun et. al. [47] presents a specific CNN architecture (today
known as LeNet-5 [44]) which presents three architectural concepts, which are still used in a variety
of configurations to this day [46]. The building blocks of the CNN are convolutional layers, activation
layers, subsampling/pooling layers, and fully connected layers.

Convolutional Layers

The convolutional layer accounts for the equivalent of the linear classifier in the perceptron. An
input signal X, a tensor of N dimensions is convolved with a series of parameterised kernels,

Page 12 of 219

Chapter 2 2.1. NEURAL NETWORKS

analogous to the synaptic weights in the MLP. The kernels are smaller matrices (or tensors) than
the input matrix/tensor. For each shift, the inner product is found and all the inner products of one
kernel are gathered in a FM (Feature Map). The kernel and corresponding subset of the input is
flattened into vectors and their inner product is found as seen in Eq. (2.11).

m; Mj My

FM; o k=U*K)ij k=2 > Y Koy 2licx iy, k-2 2.11)
x=1y=1 z=1

where:

FM | The resulting FM-tensor
I | The input tensor
K | The kernel tensor

It is emphasised that the mathematical principle behind the convolutional layer is identical to that
of the MLP, an inner product. The difference exists in the input/kernel configuration.

An example of a convolutional layer using two-dimensional inputs is provided in Example 2.1.2.

Example 2.1.2: Convolutional Layer

The following example of a convolutional layer in a CNN is from [48]. However, the concepts
are congruent with those in [44][46][47].

The example has a 9 x 9 input matrix convolved with a 3 x 3 kernel, yielding a 7 x 7 FM,
illustrated in Figure 2.7.

Input Layer
9x9 Feature Map

7

Kernel g g3

..............

Figure 2.7: Illustration of a two-dimensional convolution layer, using a single kernel. The coloured
squares provide an intuitive understanding of the relationship between the convolution with a kernel
and the corresponding value in the FM. The figure is from [48].

Analogous to applying multiple nodes within a single layer in the MLP, a CNN can have
multiple kernels, corresponding to an identical amount of FMs. An example using four
kernels is illustrated in Figure 2.8.

Feature Maps

Input Layer
P Y 4@7x7

9x9

Figure 2.8: Illustration of the example convolutional layer, using four kernels resulting in four FMs.
The figure is from [48].

Page 13 of 219

Chapter 2 2.1. NEURAL NETWORKS

Activation

The CNN needs a non-linear activation for the reasons explained in subsection 2.1.1. The activation
functions used are usually the same as for MLPs [44]. As previously mentioned the most widely
used activation function is the RELU function. The activation function is applied to each entry in
each FM as shown in Eq. (2.12).

Yi,j,.ok = PReLU(FM; j . k) (2.12)

Pooling/Subsampling

A crucial part of the CNNs is a layer known as both subsampling or pooling. The purpose of the
pooling layer is to downsample the features to simplify calculations and reduce complexity as the
network progresses [44]. The pooling layer can intuitively be interpreted as selecting only the most
significant activations to investigate further [46].

The pooling layer is distinguished into two options; max-pooling and average-pooling. Max-
pooling slides a window across each FM and selects the largest value of the window for each shift.
This operation reduces the size of the FMs, but not the number of FMs. The average-pooling
calculates the average of all activations within the window. An example of both max- and average-
pooling is provided in Example 2.1.3.

Example 2.1.3: Pooling Layers

This example presents both max- and average-pooling, for a 4 x 4 input FM. The values in
the FM are chosen arbitrarily, for the sole purpose of providing this example. The example is
seen in Figure 2.9.

4X4
Feature
Map

25 147 168 ! 33

47 ' 95 Max
84 pooling

Average
pooling

Figure 2.9: Illustration of both max- and average-pooling based on an FM with arbitrary values. The
purpose of the coloured squares is to indicate the relationship between the FM and the pooled outputs.

As previously mentioned the architecture of a CNN is a varying configuration of convolutional
and pooling layers. The network typically ends with a few fully connected layers configured based
on application [46][47]. To this day the CNN paradigm is state-of-the-art in the field of pattern
recognition and is widely used in computer-vision applications [45][44][49].

Full-Scale Convolutional Neural Networks

The first groundbreaking CNN architecture was the LeNet-5 [47] which provided the architecture
presented in subsection 2.1.4. LeNet-5 was used for classifying handwritten digits (i.e. MNIST [50]
dataset). In 2012 Krizhevsky et. al. presented a comprehensive CNN model for the classifica-
tion of high-resolution images in the Image Classification on ImageNet [51]; today known as
the AlexNet [52]. The AlexNet was at the time the pinnacle of CNN architectures and has therefore

Page 14 of 219

https://paperswithcode.com/sota/image-classification-on-imagenet

Chapter 2 2.1. NEURAL NETWORKS

been the baseline of comparison for architectures developed since. However, the basis for com-
paring architectures should be made considering the context and requirements of the particular
research or application.

The impressiveness of the CNN in action can be seen in part by the number of papers with the
focus of developing/benchmarking CNNs and in part by the results within these papers. A large
collection of state-of-the-art benchmarking metrics w.r.t. CNNs is available on the website paper-
swithcode.com. Papers with Code states in their about section, that it is a “free and open resource
with Machine Learning papers, code, datasets, methods, and evaluation tables”. Furthermore,
users can submit their results with an accommodating paper; to be included as a benchmark
it is required that the paper has been published. In Figure 2.10 the progress of the accuracy on
CIFAR-100 (without using extra training data) can be seen.

100 Astroformer

|_
U
[N W)
o)
o Dspike (ResNet-18)
8 75 Spectral Representations_forf€onvolutional"Neural"Networks
o Tree Priors
g Stochastic Pooling
=
Z 50
U
o
Ll
o

25

0
2014 2016 2018 2020 2022 2024
Other models Models with highest Percentage correct

Figure 2.10: Overview of best-performing networks in terms of accuracy, performing image classification on
CIFAR-100 without using extra data (image taken from paperwithcode.com).

The cyan line of models with highest percentage correct from Figure 2.10 are listed and summar-
ised in Table 2.2. Interestingly, all the benchmarks presented in the articles utilize CNNs or the
convolutional layers.

Table 2.2: Overview of the models with highest percentage correct from Figure 2.10. The right-most column
indicates whether or not the benchmark, from which the data for Figure 2.10, is based on CNN architecture.

&

A method for regularising large CNNs by
Stochastic Pooling [53] = changing the pooling operations with stochastic = 2013 v
variants

Using dropout and introducing maxout in
Maxout Network [54] = tandem to improve optimization of 2013 v
deterministic feedforward architectures

Continued on next page

Page 15 of 219

https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/sota/image-classification-on-cifar-100

Chapter 2

2.2. DIGITAL DESIGN

Tree Priors [55]

NiN [56]

DSN [57]

HD-CNN [58]

Spectral
Representations for
CNNss [59]

ResNet+ELU [60]

Dspike (ResNet-18) [61]

Astroformer [62]

Table 2.2: (Continued)

A method for improving classification by
introducing grouping and shared features
within the groups

Utilising multilayer perceptrons for convolution
and global average pooling as a replacement for
CNN fully connected layers

Focused on improvement of three aspects of
CNNs: Transparency between intermediate
layers and classification, discriminativeness and
robustness of learned features, and
effectiveness in training

Introduces hierarchical deep CNNs

Using discrete-time Fourier transform and
spectral pooling, a speedup in computation can
be gained

Exchanging the ReLU and Batch normalization
for an exponential linear unit in residual
networks

Introduces a family of “DSpike” functions that
evolve during training, to overcome the
problem of finding the gradient in spiking
neural networks

A method to learn more from less data.

2013

2014

2014

2015

2015

2016

2021

2023

T Similar to CNNs, discrepencies exist in the convolution performed by the new layers.
* The presented ResNet utilises convolutional layers.

Vel

/i

Ve

v

From Table 2.2 it is clear, that CNNs are state-of-the-art when it comes to image classification and
that the theory behind CNNs can be expanded, modified, introduced into other architectures, etc.

with a positive influence.

T Yy

2.2 Digital Design

The necessary computations to facilitate NNs are the Multiply

MAC operations. In Figure 2.11 the basic MAC-unit
can be seen; the unit consists of two mathematical
operations-blocks and one memory cell: Multiply, v v

Accumulate, and Register, respectively. A set of num-
bers (x, y) are multiplied together. The product is Accumulate
then accumulated with the value from the register.
The sum is then available at the output and is saved

in the register to be utilised with the next multiplica-

Register

A

tion and accumulation. This represents the following

mathematical operation:

d=a+b-c

(2.13) Figure 2.11: MAC unit.

Page 16 of 219

Chapter 2 2.2. DIGITAL DESIGN

This operation is extensively used in NNs to calculate all the us in each perceptron, as seen in Eq.
(2.1) and (2.2).

2.2.1 Number representation

The number representation of the operands is the deciding factor for the design of the architecture
for the arithmetic operations. Two of the most common representations are FXP (fixed point) and
FLP (floating point) .

Fixed-Point Number Representation

The decimal value of a sequence of N bits x;, 0 <i < N — 1, represented in unsigned FXP can be
calculated using Eq. (2.14) [63]:

N-1

Xunsigned = 27b Z 2" xp (2.14)
n=0

where:

x | The decimal representation of the number

x; | The ith bit from the right, representing x

N | The total number of bits

b | The index where the weight of the bit should be unity

The terms unsigned and signed indicate whether or not it is possible to represent negative values,
and for FXP the formula used to convert an unsigned bit-sequence to decimal values can be seen in
Eq. (2.15) [63]:

N-2
Xsigned = 270 N1 XN-1+ Z 2" x, (2.15)
- v - n=0

MSB

Investigating the difference between Eq. (2.14) and (2.15) makes it clear, that the MSB (most
significant bit) is the only term that can take a negative value. This discrepency effectively shifts the
range of representable numbers from only positive to an almost even split of negative and positive
numbers. A visualisation of the shift can be seen in Figure 2.12.

Unsigned

Signed

| | | | | Ny
T T T T | >
-0 -8 -6 -4 =2 2 4 6 8 10

Figure 2.12: Intervals of representable values using 3 integer bits, no fractional bits, and signed/unsigned.
Both intervals include 8 integers, however, the signed representation is slightly skewed towards negative
numbers, being able to represent one more negative value than positive values.

The precision of signed/unsigned FXP numbers in the entire range is always the value of the LSB
(least significant bit) , and can thus be changed by changing the value of b. Lowering b will lower
the precision and increase the range and vice versa.

Page 17 of 219

Chapter 2 2.2. DIGITAL DESIGN

Floating-Point Number Representation

The other common number representation is FLP, with which a larger range is available. The larger
range comes at a cost since the number of states possible with IV bits does not change. The decimal
value of a sequence of bits represented in FLP can be calculated using Eq. (2.16) [63]:

x=(=1)"N1.E (2.16)

where:

X The decimal representation of the number
xn-1 | The MSB used as a sign bit
r The radix of the exponent, being 2 for binary representation
E | The exponent, an integer value comprised of a sequence of bits
M | The mantissa, a fractional value between 1 and 2 (or 1/2 and 1)

Floating-point representation is standardised by IEEE (The Institute of Electrical and Electronics
Engineers) to simplify interoperability of programs on devices that adhere to the standard [64].
An excerpt from the standard can be seen in Table 2.3. The naming scheme of the floating point
representations is binary{ N} because the radix is set to 2. From the information presented in the
table, Eq. (2.16) can be elaborated; the exponent is represented using w bits and the mantissa is
represented by ¢ bits. Furthermore, based on the value of the bias the exponent can be negative
(since the bias is subtracted from the value of the exponent), and since the trailing mantissa field
widths contain one fewer bit than the precision, the mantissa includes an implicit 1.

Table 2.3: Binary interchange format parameters from IEEE std 754-2019 [64].

binary{N},
binaryl6 | binary32 | binary64 | binaryl128 (N = 128)

N, storage width in

bits multiple of 32

C N —round(4 -
p, precision in bits 11 24 53 113 log, (N)) + 13
AN, mam 15 127 1023 16383 2N-p=1_]
exponent E

Encoding parameters

bias 15 127 1023 16383 max(E)
sign bit 1 1 1 1 1
w, exponent field round(4-log,(N)) —
width in bits 4 8 = 1 13
t, trailing mantissa 10 93 52 112 New—1

field width in bits

Note: Recreation of table 3.5 from the standard, however, the terminology and symbols have been
changed to align with the rest of the section.

In Example 2.2.1 an FLP bit sequence is converted to its corresponding decimal value.

Page 18 of 219

Chapter 2 2.2. DIGITAL DESIGN

Example 2.2.1: binary32 following IEEE std 754-2019

Figure 2.13 examplifies a floating point number (binary32). The MSB is 0 signaling that the
float is positive. The following eight bits represent the exponent with a value of 170, however,
the bias must be subtracted and the actual value is 43. The remaining bits are for the mantissa
and with the implicit 1 it equals ~ 1.6666666 and the number is approximately equal to
2%3.1.6666666 ~ 1.466-10'.

0/(1(0/1/0{1{0[1(0|1|0|1 |01 0|1

0,1/0|1j0}1(0(1|0|1|0|1 |01 0|1

Figure 2.13: IEEE 754 binary32 number representation (single-precision f1loat) [64]. One sign-bit
seven bits for the exponent , and 24 bits for the mantissa .

Unlike FXP, the precision of FLP values is not invariant over the entire range. The cause of this can
be found in Eq. (2.16) and specifically the multiplication of the radix to the power of the exponent
and the mantissa; the LSB of the mantissa has a constant value, however, when multiplied with
another term, the value of the LSB is suddenly dependent on the value of the radix and exponent.
The benefit of the changing precision is that at small numerical values, the LSB represents a small
value and the precision is high. However, when large numbers are represented, the precision is
lowered to accommodate a larger range.

2.2.2 Arithmetic in Computer Systems

The MAC unit presented in Figure 2.11 represents the baseline for calculating a sum of multiplica-
tions in computer systems. To explore the individual blocks of the unit, it is essential to know the
number representation; the architecture of the Multiply and Accumulate blocks are dependent
on the chosen number representation. Exploring the arithmetics of FXP (fixed point) representation
lays the foundation for the subroutines used to perform arithmetic operations with FLP (floating
point) representation.

Fixed-point Addition

The addition of two sequences of bits performed in a computer system or any hardware is similar
to regular pencil-and-paper addition of radix-10 numbers, the rightmost digits are added, and if
the sum exceeds the value of the radix, the digit on the left side is incremented, move one position
to the left and repeat, etc. However, computer systems are limited by the number representation
(see subsection 2.2.1). Say two 1-bit numbers are to be summed and the sum must conform to the
same form as the inputs; all states are written out in Eq. (2.17), (2.18), (2.19), and (2.20).

020=0 (2.17)
Oel=1 (2.18)
le0=1 (2.19)
le1=0 (2.20)

In Figure 2.14 the leftmost column contains the I/O diagram for the presented case, and the logic
gates required to implement the summation following the set of equations above. This addition
holds for three out of the four cases, however, in Eq. (2.20) it is clear that information is lost since
1+1 = 2. This value cannot be represented by the single output bit and a carry bit can be introduced.

Page 19 of 219

Chapter 2 2.2. DIGITAL DESIGN

This will add another output to the I/0 diagram and add one logic gate to the implementation, both
of which can be viewed in the 2 column of Figure 2.14. This is known as ahalf-adder.

a; b; a; b; a; b; Ci-1
vy vy ‘)
Half-Adder Full-Adder
= =
S; C; S; C; S;
a; b a; b; a; by cia
!
\R
N
3
8; C; Si C; S;

Figure 2.14: 2-bit adders. From left to right; a simple adder with inputs a and b producing the output sum as
one bit, Half -Adder with the same inputs producing the sum as two bits (one carry-out), and Full-Adder
with inputs a, b, and a carry-in from the previous adder c;_; producing the sum as two bits (one carry-out).

Say the following two bit-sequences are to be added:

a=1{ap-1, an-2, ..., ap}

b=1{bn-1, bu-2, ..., bo}

The addition can be viewed as n 1-bit additions, where the carry is propagated from right to left. A
problem arises immediately, as the half-adders cannot receive the carry-bit. Adding an extra input
to accommodate a carry bit from another operation produces the full-adder which can be seen
in the rightmost column in Figure 2.14. As a consequence of adding the ability to receive a carry-bit
as an input, three extra logic gates are added.

A tull n-bit adder can thus be constructed from a series of full-adders connected as seen in Fig-
ure 2.15. This combination of half-adders comprises an RCA (ripple-carry adder) .

An-1 bn—l Qp—2 bn—2 ag bO 0
v v v v /
Cn—2 Cn—3 Co
Full-Adder [« Full-Adder |[€—— .. <— Full-Adder
7= J | J
Cn—1 Sn—1 Sn—2 Sn—3ySn—4y- -+, 81 S0

Figure 2.15: Adder consisting of a series of full-adders.

Page 20 of 219

Chapter 2 2.2. DIGITAL DESIGN

A problem that arises with the use of this kind of RCAs is the slowness associated with the RCA [65].
The carry has to propagate from right to left, requiring a long “critical path” from the addition
of the LSB to the MSB. This problem is exacerbated when multiplying since it requires multiple
summations. Many designs have been proposed to overcome the slowness of the RCA, some of
which are mentioned and briefly described in the list below:

* CS (conditional-sum adders)
— Two sets of circuits can perform additions based on assumptions w.r.t. the value of the
carry bit. Both possible output states are prepared and using a multiplexer, the correct
value is chosen when the carry bit is calculated [65].
e CCSA (carry-completion sensing adders)
- Using dependent/independent carries, independent carries are detected, dependent
carries are generated based on the independent carries, the sum-bit at each index can
lastly be calculated as the sum of the generated carry bit and the inputs with modulo 2
(the calculation of the sum-bits are independent at the last step) [65].
* CLA (carry lookahead adders)
— Using a carry generation function and a carry propagation function it can be shown, that
the carries can be calculated in parallel with a carry-lookahead unit avoiding the linear
delay scaling of the RCA [65].

Rather than designing a module specifically for subtraction of two sequences of bits, it is common
to use subtract-by-addition utilising additional gates to enable the complement of the subtrahend,
whereby addition between the minuend and complemented subtrahend will yield the difference
between the two. The complement of a signed FXP number represented as in Eq. (2.15) can be
found by negating all bits and adding 1 LSB.

Fixed-point Multiplication

The basic idea of multiplication of two sequences of bits is identical to long-multiplication; the
multiplicand is multiplied with each digit (bit) of the multiplier, and the product is then shifted
according to the placement of the digit of the multiplier. The partial products are then summed
and the resulting value is the product of the multiplicand and the multiplier. This is exemplified in
Figure 2.16 and 2.17 with decimal values and binary values, respectively.

Example 2.2.2: Long-multiplication with decimal values and binary values

Figure 2.16 and 2.17 illustrates long-multiplication in two number formats. The product of
the multiplicand and the individual digits of the multiplier is calculated and shifted according
to the placement of the digit and trailing zeros are added. This holds for both decimal and
binary multiplication.

32 1001

X 132 X 111
64 1001

960 10010

4 3200 S 100100
4224 111111

Figure 2.16: Long-multiplication of 32-132 in

decimal.

Figure 2.17: Long-multiplication of 9- 7 in bin-

ary.

Page 21 of219

Chapter 2 2.2. DIGITAL DESIGN

The approach in the example above is also known as add-and-shift and is the basis for some
sequential multiplication algorithms in computer arithmetic [65]. At the gate level, the partial
products of the binary multiplication can be found by ANDing the multiplicand with the digit of
the multiplier and shifting the product. Instead of calculating all the partial products and summing
them in the end, they are calculated one by one and added to a cumulative sum.

o o Table 2.4: Values of registers ACo MR per operation.
Multiplier, Multiplicand, .
(o1, bnsy v sb0} {@n_1,ana,-.., a0} The product of the two n-bit is stored accross the two
registers when the operation is finalised.

] | T S
A

n bits {0, 0, ..., 0} {bn—ly bn_g, ceey bo}
{Couts Sn-1, .-+, 81} {s0, bp-1, ..., b1}
{Cout, Sny, ---» S2} {s1, o, ..., by}
n bl n bl {Couts Sn+1, -+, S3} {s2, s1, ..., b3}

n-bit adder

{Couts S2n-2, .-+, Sn} {$n-1, Sn—2, ..., So}

Figure 2.18: Sequential multiplier. There are three registers to hold the input values and the cummulative
sum; accumulator (AC) holds the result from the summation performed in the adder, multiplier register (MR)
holds the value of the multiplier slowly shifting the least significant bits from the cummulative sum in from
the left, and auxiliary register (AX) holds the multiplicand.

The circuit presented in Figure 2.18 follows five steps to perform a full multiplication of two n-bit
numbers [65]:

I) Setinitial register values:

MR‘_{bn_l, bn_z, ceey b()}
AX —{an-1, an-2, ..., aop} (2.21)
AC—0

II) Multiply the multiplicand and one digit from multiplier

AX AMRy (2.22)

IIT) Sum product of step II and the accumulated sum, save it in accumulated sum and the extra
bit for a carry

Cout ©AC — AC + (AX A MRy) (2.23)

IV) Shift one right
ACoMR « cout ©{AC;—1, ACy_a, ..., ACo} o {MR;,_1, MR;,_2, ..., MRy} (2.24)

This procedure runs n times, facilitated by an assigned counter, until the values of MR have been
replaced (see progression of MR in Table 2.4). However, if the operands are signed it would only take
n— 1 loops since the sign is not a part of the magnitude The sign bits would have to be handled

Page 22 of 219

Chapter 2 2.2. DIGITAL DESIGN

separately and differently; the sign bit of the product can be found by applying an XOR operation on
the sign-bits. Furthermore, if the operands are represented in complement form, the method above
requires slight modifications. One method is to convert the operands to sign-magnitude form before
multiplication. The resulting value, if negative, should be converted back into complemented form.
Another method, Robertson’s Signed number multiplication makes use of arithmetic shifts during
step IV (see Eq. (2.24)) to avoid the extra overhead from a pre- and post-complement circuit. [65]

The process of multipliation by add-shift is slow and scales with n, and has therefore been the
subject of a lot of optimisation and a short list of some of the methods can be seen below:

* Recoding Techniques:

— Booth’s Algorithm [66]: Using multiple bits and performing additions/shifts based on
the value of the subset of bits, multiplication of signed numbers can be performed with
fewer operations.

— Non-Overlapped Multiple-Bit Scanning Multiplications [65]: Using multiple bits from
the multiplier for every loop, the number of loops required per multiplication can be
reduced.

— Overlapped Multiple-Bit Scanning Multiplications [67]: Using the string-property, a zero
followed by a set of 1s can be turned into 1 followed by a set of zeros. This offsets the
value by 1 LSB (with relation to the placement of the string), which can be accounted for
later in the operation.

e Parallelisation Techniques:

— Wallace Trees [1]: Produces the product of two numbers using only combinatorial logic,
i.e. no intermediate registers for partial sums needed. Utilises a tree of “pseudo-adders”
to reduce time scaling to logarithmic instead of linear.

- Baugh-Wooley Algorithm [68]: Useful for multiplication of 2’s complement numbers.
The negative partial products are segregated and summed and all partial product bits
are treated equally.

— Pezaris [69]: Using appropriate circuits the partial products are calculated with their
respective signs.

Addition in floating-point arithmetic: Given two nonzero binary floating-point numbers, x =
(-1)%-|x| and y = (-1)% - |y|, addition is based on the following identity [2]:

x+y==D%- (Ixl+ (=1D%-1yl) (2.25)
where:

Sy The sign-bit of x, sy € {1, 0}

Sy The sign-bit of y, sy, € {1, 0}

s; = sy ®sy | The XOR'ed sign-bits, s, € {1, 0}
From Eq. (2.16), |x| and |y| can be expanded:
Ix|=rB. M, = |x|=2&7PRS.pp (2.26)
yl=rfr-m, = |yl =28 7Pias . pp, (2.27)
The addition of these two values can be performed, and traditionally the addition follows the
following steps [2]:

I) Swap x and y to ensure that e, > e,
II) Align mantissa by shifting M), right by e, — e, the first shift should push in a 1 from the left
due to the implicit 1 in floating-point numbers [64]. The exponent of the result, e; is set to e*
for now

Page 23 of 219

Chapter 2 2.2. DIGITAL DESIGN

III) Compute the resulting mantissa as M, = My + (=1)%-m,, - 2-(ex=ey) If M, is negative, it is
negated. The sign-bit of the resulting sum is chosen based on this calculation and the values
of sy and s,
IV) Normalise the sum if it falls into one of the two cases:
* (M, = r), this will result in a carry-out. M, must be shifted 1 right and e, must be
incremented
* (M, < 1), this will result in leading zeros. M, must be shifted left until a 1 has been
shifted out of the mantissa (restoring the implicit 1). Accordingly, the exponent e, must
be decremented once per shift
V) Round the normalised sum

Multiplication in floating-point arithmetic: Given two nonzero binary floating-point numbers,
x=(-1)%-|x|and y = (=1)% -|y|, multiplication is based on the following identity [2]:

x-y =D (1x1-1yl) (2.28)
where:

Sy The sign-bit of x, s, € {1, 0}

Sy The sign-bit of y, sy, € {1, 0}

sy = sx® s, | The XOR’ed sign-bits, s, € {1, 0}

Likewise, |x| and |y| can be expanded as seen in Eq. (2.26) and (2.27). The product of the two
positive finite floating-point numbers is given by [2]:

x|yl =254 My M, (2.29)

From Eq. (2.29) itis clear, that multiplication requires:

¢ Addition of the multiplier’s and multiplicand’s exponents
— Can be viewed as fixed-point addition

e Multiplication of the multiplier’s and multiplicand’s mantissas
- Can be viewed as fixed-point multiplication

The resulting number may require normalisation identical to step IV of addition in floating-point
arithmetic.

2.2.3 The Multiply-Accumulate Unit (MAC)

A commonly used technique to speed up calculations is to combine addition and multiplication in
one module: The MAC-unit (see Figure 2.11). With the knowledge of how addition and multiplica-
tion of FXP and FLP are done (separately), the MAC unit can be designed. Firstly, the format of the
multiplicand, multiplier, and result is chosen. Based on the format, an adder can be chosen (e.g.
choosing FXP gives CSA (carry-save adder) , CCSA, and CLA as possible choices, among others).
Then a suitable multiplier can be chosen (e.g. in the case of FXP a booth multiplier or a Wallace
Tree multiplier are possible choices, among others).

In an article called Design and Performance Analysis of Multiply-Accumulate (MAC) Unit a few
models are investigated [70]:

(A) MRBM (Modified Radix-2 Booth Multiplier) + CSA (carry-save adder) + Accumulator
(B) Array Multiplier + CSA (carry-save adder) + Accumulator

(C) Ripple Carry Multiplier + CSA (carry-save adder) + Accumulator

(D) Wallace Tree Multiplier + CSA (carry-save adder) + Accumulator

Page 24 of 219

Chapter 2 2.2. DIGITAL DESIGN

(E) DADDA Multiplier + CSA (carry-save adder) + Accumulator

The five units are simulated at gate-level to compare the designs w.r.t. the following 3 metris: Area
[LUT’s]}, Delay [ns], and power [W].

Table 2.5: Comparison of performance metrics of MAC unit models [70].

137

A 6,712 1,010
B 97 8,175 1,067
C 92 6,712 1,261
D 96 6,102 1,061
E 103 3,6592 2,142

Note: Data taken from [70], however, “S.No”” and “Design”’ columns have been replaced by the
“Model” column.

The performance metrics in Table 2.5 display an important property of the design of a MAC unit; a
compromise between area, delay, and power must be made. Model A has the largest area, however,
the delay is relatively small and its power consumption is the smallest of the five. On the other
hand, model C is equal to model A in delay, however, the area is smaller, and the price to pay is an
increase in power consumption. This compromise is essential when designing modules/units that
include addition and/or multiplication.

2.2.4 State-of-the-Art Arithmetic Units

As mentioned in subsection 2.2.3 a compromise must be made with area, delay, and power, which
means that there are more than one state-of-the-art MAC units. Finding reputable sources for
which architecture is used for addition and multiplication in newer CPUs and GPUs is difficult
(if not impossible) and in the technical blog on NVIDIAs own website, it was mentioned in 2022
that the latest NVIDIA Hopper GPU architecture uses Al-designed circuits [72]. From the available
information, it is not possible to look at the state-of-the-art GPU/CPU architectures, however,
looking at benchmarking tools instead, yields different results. “AxBench” is a multi-platform
benchmark suite for approximate computing and in [73] the tools benchmarks are listed. In their
list of benchmarks, three are under the domain arithmetic computation:

e Brent-Kung (FXP parallel prefix form of a CLA)
* Kogge-Stone (FXP parallel prefix form of a CLA)
e Wallace-Tree (FXP multiplier)

These three benchmarks are explained in the following paragraphs.

Brent-Kung Carry Chain Prefix

The Brent-Kung Carry Chain Prefix reformulates the full-adder design from serial to parallel. For
the full-adder, the carry-out and sum can be calculated as [74]:

A LUT (Look-up Table) is a configurable logic-block that is used in the most popular FPGAs [71].

Page 25 of 219

Chapter 2 2.2. DIGITAL DESIGN

c_.1=0
ci=(aiNb;)Vv(a;jNci—1)V(b; Aci—1)
4 i i i i .1 i i—-1 (2.30)
si=a;ob;®ci_1, i=0,...,n-1,
Sn==Cn-1
where:
¢; | The carry-out at bit i
a; | The ith bit of one summand
b; | The ith bit of the other summand
s; | The sum at bit i
n | The number of bits
The calculation of the carry-bit can be rewritten [74]:
gi=ai;N\b;
pi=a;®b; (2.31)

ci=giV(pinci-1)
where:

gi | The carry generate
pi | The carry propagate

The reformulation of the carry chain computation is as follows; Brent and Kung define an operator
« 2
0”’“ to be:

(g, poig, ph=@gvipng), pap) (2.32)

Brent and Kung's article provides and proves the following two lemmas [74]:

Lemma 2.2.1. Let

Gy, Py =1 8" P o (2.33)
(gi, pi)o(Gi_y, Pi_y) ifl<isn-1
Then
c;i =G fori=0,2,..., n—-1 (2.34)

« »

Lemma 2.2.2. The operator 0’ is associative

Given Lemma 2.2.1 and Lemma 2.2.2 all ¢;s can be computed in any order given all g;s and p;s. To
that extent two nodes are defined in Figure 2.19:

(gouta pout) (gouh pout)
(gout7 pout) ? (gouta pout) ?
: Gout = Gin Gout = Gin V (pin A gin)
DPout = Pin Pout = Pin N ﬁin

i E (gina ﬁin)

(gina pin) (gina pin)

Figure 2.19: Pass-through node on the left and a computational node on the right (Recreation of Fig. 4
from [74]).

2Be aware that o is similar to o, the concatenation operator, however, they are different operations.

Page 26 of 219

Chapter 2 2.2. DIGITAL DESIGN

Using a lattice-like structure of the two nodes from Example 2.2.3 all carry-bits can be calculated at
the same time in parallel. In Example 2.2.3 the carry-bits for a summation of two 8-bit numbers are
calculated.

Example 2.2.3: Brent-Kung Parallel Prefix

Using the two nodes presented in Figure 2.19 the tree structures below can be created. On the
lefthand side of Figure 2.20 the nodes required for calculating the 7th carry bit are highlighted.
Although information about all bits 0, 1, ..., 6 is needed to calculate bit 7, this parallel
method has a shorter critical path w.r.t. the carry propagation than an adder consisting of
only full-adders (as seen in Figure 2.15).

(97, p1) > >~ > (G, Pr) (g7, p1)--
(96 Pﬁ)"’Q} (96, Pe) --
(95, ps)--»()- (g5, p5) -~
(94, P4) -~ (94, P4) --
(93, ps)--»()- - (93, p3) -~
(92, Pz)--w (92, p2)--
(91, p1)->()- (91, P1)--
(90, Po) - (90, Po) -~

Figure 2.20: Brent-Kung adder carry tree. The lefthand side displays the nodes required to calculate
the carry-out of the MSB, and the righthand side displays the full structure required to calculate all the
carry-bits (Recreation with slight modifications of Fig. 3 and Fig. 5 from [74]).

The output of the lattice structure is all the carry-bits available at the same time.

To finalise the design of the adder using the Brent-Kung carry chain, the sum bits should still be
calculated (using the gous and poys). However, all carry bits are available and the critical path is
thus shortened. Assuming that v, A, and @ take unit time, the speedup of using the carry chain can
be viewed in Table 2.6. For n = 2¥ the parallel and serial times can be generalised to 4k and 2n — 1,
respectively [74].

Table 2.6: Comparison of parallel and serial times (Data for the time columns taken from Table 1 in [74]).

8 12 15

3 25%
16 4 16 31 ~94 %
32 5 20 63 215 %
64 6 24 127 ~ 429 %

Utilising the Brent-Kung adder significantly increases the speed. And the amount of computational
nodes can be calculated as [75]:

Comp. Nodesgeni—kung = 2(n— 1) —1og, (n) (2.35)

Page 27 of 219

Chapter 2 2.2. DIGITAL DESIGN

Kogge-Stone Adder

Another usage of the two nodes in Figure 2.19 is in the Kogge-Stone adder [76]. Revisiting Lemma 2.2.1
itis clear, that as long as there is a path from the Oth bit to the ith bit through the computational
nodes (see Figure 2.19), (G;, P;) is solved. The Kogge-Stone adder prefix takes advantage of this,
and creates a dense network of nodes.

Example 2.2.4: Kogge-Stone Parallel Prefix

Using the two nodes presented in Figure 2.19 the tree structures below can be created. The
lefthand side of Figure 2.21 displays the nodes and connection necessary for processing
(G7, P7) and thereby the carry-out of the MSB. The lefthand side is identical to that of the
Brent-Kung prefix displayed in Figure 2.20, however, the difference between the two parallel
prefixes can be seen on the right hand side. The Kogge-Stone prefix requires fewer layers
at the cost of an increase to the amount of computational nodes; the result of which is a
faster parallel prefix that uses more energy. Indeed, doubling the amount of bits would only

increase the depth by 1 layer.
23

->(G7, Pr) (97, p7

(96, D6

95, Ps (95: Ps >cs5
94, P4) - (94, P4 >y

(- - >cs
92, P2 >O/w (g2, p2 >cp
91, P1 (91, p1 >O»a

)=
)=
)=
)
(93, p3)--
)
)
)

Figure 2.21: Kogge-Stone adder carry tree. The lefthand side displays the nodes required to calculate
the carry-out of the MSB, and the righthand side displays the full structure required to calculate all the
carry-bits. Unlike the Brent-Kung adder prefix, no carry-out requires more layers than for the MSB.

The output of the Kogge-Stone parallel prefix is also all the carry-bits and not the sum of the
two input numbers.

Like for the Brent-Kung parallel prefix, the sum must still be calculated. The circuitry required for
calculating the sums can be simplified. Making the same assumptions w.r.t. unit time operations
another table for speedup can be created (see Table 2.7).

Table 2.7: Comparison of parallel and serial times. Data for the “Time (serial)”’-column taken from Table
1 in [74] and data for the ‘“Time (parallel)” is calculated by assuming each layer adds 2 unit time (this
assumption is based on the longest path in the computational node being a 2, AND followed by OR, and that
the time of a layerwise-operation is decided by the longest computation of that layer).

3 ~ 88 %
16 4 10 31 210 %
32 5 12 63 425 %
64 6 14 127 ~ 807 %

Page 28 of 219

Chapter 2 2.2. DIGITAL DESIGN

Utilising the Kogge-Stone parallel prefix significantly increases the speed. And the amount of
computational nodes can be calculated as [75]:

Comp. Nodesygge_stone = 7 (10g5(1) = 1) +1 (2.36)

Wallace-Tree Multiplier

The Wallace tree multiplier is a combinatorial alternative to the sequential multiplier presented
in Figure 2.18 [1]. The sequential multiplier generates a summand from the product of 1 bit of the
multiplier and all bits of the multiplicand and iteratively accumulates the summands, finally giving
the product of the multiplier and the multiplicand. This sequentiality costs time since the sums
have to be saved to a register. The proposed alternative uses a combination of pseudo-adders, which
instead of producing a single sum, produces two partial sums that collectively add up to the single
sum [1]. However, this requires that the summands are generated beforehand, and if they are not
generated in parallel, nothing is gained from this approach. There are multiple ways to generate
the summand, but the simplest (in terms of understanding) is the same way it was done in the
sequential multiplier: one bit from the multiplier ANDed with the multiplicand, however, done in
parallel.

Example 2.2.5: 3:2 Pseudo-Adder Using Full-Adders

An example of a pseudo-adder from [1] is a set of full-adders where the carry-in bits are used
for the third input number and the carry-out bits are used as the second output. In Figure 2.22
a 3:2 pseudo-adder using this method is visualised. The three 4-bit values are piped to the
full-adders: The LSBs are added in a full-adder, the second LSBs are added in the next, etc.
The outputs of the 3:2 pseudo adder are two 4-bit values comprised of the carries and the
sums, respectively. It is important to note, that the value of the carry-bits is double that of the
sums, and an implicit 0 is added for disambiguity. On the righthand side of Figure 2.22, the
sum of the inputs is calculated, and the sum of the outputs is calculated; the values are equal
and thus no information was lost.

1011 1/0]0](1 0/1(0 T
—+ 1{0|0]1
0/1(0]|1
=[1]1]o]o]1
Y A\ 4 j Y Y Y Y
Full-Adder Full-Adder Full-Adder Full-Adder #
' N [of1]1]1]
1{0(0]|1f0
Y. VY Y olo 1|

1lofof1]o of[1]1]1] =[]z
Hr.)

Carries Implicit Sums

Figure 2.22: Example of a 3:2 pseudo-adder consisting of 4 full-adders. The lefthand “circuit” utilises
four full-adders two reduce the sum of three values to two values. The righthand side shows that the
sum of the inputs is equal to the sum of the outputs.

The pseudo-adder presented in this example is one of many designs. 4:2 pseudo-adders are
also relevant in this context.

Page 29 of 219

Chapter 2 2.2. DIGITAL DESIGN

Example 2.2.6: Wallace Tree Multiplication

An example of the Wallace tree can be seen in Figure 2.23 where 20 summands

(W1, Ws, ..., Wag) are inputs to a tree of pseudo-adders. The last step requires a regular
adder and will produce the final product.

=1N
FLY

C S C S C S C S

M
5m

<M
<M
<M

< IZM
< EZM
< QZAA
< LZAA
< GZAA
< ISAA
< ESAA
< QSAA
< Z.SAA
< GSAA

c s c s
\1

A 4 £
c s
l l A 4
c s

Carry Propagating .
Adder —> Final Sum

Figure 2.23: Example Wallace tree for 20 summands (Recreation of Fig. 1 from [1]).

From Example 2.2.6 it is clear, that the delay and gatecount are dependent on the choice of pseudo-
adders, the carry propagating adder, how many summands are needed, and how the summands

are generated. Instead of having a formula to estimate the delay and gatecount, some examples are
presented in Table 2.8:

Page 30 of 219

Chapter 2 2.2. DIGITAL DESIGN

Table 2.8: Examples of Wallace tree delay and gate count (information taken from [77]).

(16 x 16) Conventional

. 14,252

(16 x 16) Hybrid WT 15,510 221 47 675

(32 % 32) Conventional 21,5519 960 191 2849
WT

(32 x 32) Hybrid WT 22,165 956 76 2750

Floating Point Arithmetics

As previously mentioned, addition and multiplication are the main building blocks of a MAC-unit.
MAC-units are an integral part of the Graphical Processing Unit and in state-of-the-art NVIDIA
GPUs the number representation is floating point [78]. Furthermore, in Floating Point and IEEE 754
Compliance for NVIDIA GPUs it is mentioned, that they utilise the faster and more accurate fused
multiply-add instead of separate multiply and add operations (can be disabled) [78]. However,
the specific architecture of the FMA in the NVIDIA GPUs is seemingly not available. Instead, the
“classic architecture” of an FMA is researched and summarised here.

In Figure 2.24 the architecture of the first widely available FMA [2] can be viewed. Note the inputs
at the top of the figure, which are split into 3 groups: sign-bits s, exponents E, and mantissa m. Two
of the mantissas of the operands are piped into a partial product generation, through a compression
tree, the outcome of which are two numbers for piped into an adder. This process is almost identical
to the parallel multiplication in FXP presented in Example 2.2.6; partial products are generated
and piped into a tree-structure, whereby the partial products are ‘“‘reduced’” to two summands,
which are piped into an adder.

The last mantissa is processed in the invert block, wherein its value is inverted based on n, the “is
normal’’-bit and if it is subtraction. Afterward, the mantissa is shifted before it is also piped into
the same adder as the two multiplied mantissas. The 3:2 carry-save adder is a pseudo adder (two
outputs, that add up to the sum), wherefrom the output is added in a fast adder and complemented
if necessary. The adders are FXP adders and could be replaced with something using Brent-Kung
or Kogge-Stone prefix. Lastly the mantissa and exponents are normalised (see step IV of addition in
floating-point arithmetic in section 2.2.2). Some of the blocks and connections have been left out
of this description, however, they are explained in the source material [2, pp. 303-304].

Floating-point multiplication requires small portions of fixed-point addition and fixed-point multi-
plication.

Page 31 of219

Chapter 2 2.2. DIGITAL DESIGN

s, s, 8. I, E, E. ., My mp
| | *_n 1 *p 1
| n partial
/ product
Ty .
- m)
3| ® R generation
= :
SN invert compression tree
o Bl
e 2
= : .
S right shift
a
g' 2p 2p
3P+5I‘ sticky
2p ¥ ¥ ¥
pP+o

3:2 carry-save adder

r r

leading
Zero
: complement anticipator
sign update 3p+5 \
normalization <«
(left shift)
l sticky update
. r
rounding

overflow and sign handling

1

r

Figure 2.24: The classical single-path FMA architecture from the IBM RS/6000 [2].

Page 32 of 219

Chapter 2 2.3. APPROXIMATE COMPUTING

2.3 Approximate Computing

As described in chapter 1 the rapid growth of data generated in computing systems and academic
respects, there is a pressing demand for computational ability [22].

AC (Approximate Computing) is an umbrella term encapsulating any concept that simplifies
system computations at the expense of the accuraty of the calculations. Generally, the field is
distinguished into two domains; HW (Hardware) and SW (Software) [22][27]. Each domain
possesses an extensive catalogue of subdomains and techniques that are of varying relevance to the
CNN application [22][79]. The following sections will focus solely on the AC techniques applicable
to CNNs. A survey by Leon et. al. split in two parts, [22] and [27], presents a variety of methods and
techniques within both SW and HW domains. [22] offsets in a general-purpose review of AC and
will for this project be used as a guide to relevant literature. [27] presents (among other things)
techniques specifically viable in NN applications. The following sections are based on [27] and the
literature presented in the survey.

2.3.1 Approximate Software

The SW domain is explored first and is generally divided into four categories that apply to NN;
pruning, precision scaling, early determination, and input dimensionality reduction.

Pruning is a technique that deliberately exploits computation skipping to lower the necessary
memory and computational load of the trained NN model. The principle behind pruning is to
remove synaptic weights, biases, or entire perceptrons deemed unnecessary or irrelevant. Relev-
ance in this context could refer to low activation of the perceptron or synaptic weights close to
zero [80][81][82][83]. Pruning is further distinguished into structured and unstructured pruning.

Unstructured pruning refers to techniques that remove individual synaptic weights, with the
simplest technique being an assessment of the weight’s magnitude and any weight below a
threshold is removed. This technique is known as fine-grain pruning. Unstructured pruning
may lead to irregular memory access patterns, which could impact computational efficiency and
might disallow simple reconfiguration of the NN [82]. However, the unstructured pruning schemes
usually provide a greater compression ratio [27].

Structured pruning refers to strategies where entire kernels (i.e. perceptrons) or filters (i.e. collec-
tions of kernels) are removed based on activation. In opposition to the unstructured counterpart,
structured pruning preserves the overall structure of the layers in a CNN, eventually limiting the
compression ratio [81][82].

Precision Scaling has been thoroughly introduced from a conceptual perspective in subsec-
tion 2.2.1, and refers to the approximations introduced by representing numbers in low precision
FXP rather than the 32-bit FLP IEEE-standard [84].

A straightforward approach to precision scaling in a NN application is the PTQ (Post-Training
Quantisation) , in which a CNN is trained on general-purpose CPU (Central Processing Unit) s
or Graphical Processing Units using a standard FLP quantisation. The trained model is then re-
optimised using a quantised number format (e.g. FXP number representation) before deployment
[80][85].

Several efforts have been devised to use QAT (Quantisation-Aware Training) strategies which
address the apparent loss of information due to precision scaling. As the name suggests, QAT
is incorporating the effects of the quantisation in the backpropagation algorithm, allowing the

Page 33 of 219

Chapter 2 2.3. APPROXIMATE COMPUTING

optimiser to learn these relations [80]. It has been shown that the loss of accuracy (due to the
quantisation errors) in the inference of a NN can be regained by using QAT [86][87].

Precision scaling is most effective when deployed on hardware that supports quantised opera-
tions. Some hardware accelerators are designed to work optimally with quantised models, further
improving efficiency during inference [27].

Early Determination is an approach that aspires to decide whether it is necessary to finish a
comprehensive computation, or if an intermediate result will suffice. The aim is to relax require-
ments for computation, by initially estimating the result’s significance [88]. A sign-predictor is a
specific example deeply related to the CNN application. The principle is to estimate if the output of
a MAC-operation is negative. If the RELU function is used as activation; negative values will return
0 and therefore a complete MAC-operation is a waste of computation.

Input Dimensionality Reduction reduces the number of input features with an effort to preserve
the most characteristic ones. The efficiency gain is that a smaller network is needed to model the
input/output relationship [6].

2.3.2 Approximate Hardware

The HW domain relies on circuit-level approximations for a reduction in energy consumption or
circuit latency. An early stage deep CNN such as AlexNet has 650,000 perceptrons and 60 million
tunable parameters, hence at least that amount of MAC-operations is necessary for each forward-
pass in the network. Furthermore, the AlexNet was trained on the ImageNet dataset containing
3.2 million images [52][51], resulting in an unfathomable amount of computations in the training
of the AlexNet or state-of-the-artNNs in general. Significant energy reduction can therefore be
obtained by introducing AC to the MAC units. Two approaches are presented in this section namely
VOS (Voltage Over Scaling) and approximate arithmetic circuits.

Voltage Over Scaling is a specific technique that relies on operating digital systems, with a voltage
below the critical voltage where the critical path delay is met for a given circuit. Since the consumed
power has a quadratic relationship with the voltage of a circuit VOS is assuring a reduction in energy
over time [89][90]. The VOS introduces timing errors as the charging time of transistors in the circuit
increases as the voltage decreases, requiring a lower clock frequency [90].

An approach similar to VOS is overclocking. Opposite to VOS overclocking is the concept of operating
a circuit with a higher clock frequency to enhance the latency performance, trading off a higher
power consumption [89].

Modern processors and GPUs are utilising the concept of DVES (Dynamic Voltage and Frequency
Scaling) , which is a technique that scales voltage and clock frequency dynamically based on
intermediate requirements to either power consumption or throughput. DVFS operates between
the critical path delay and maximum power requirements, where VOS and overclocking introduces
errors by exceeding these thresholds [89][90].

Approximate Arithmetic Circuits are circuits designed to perform arithmetic operations such
as additions or multiplications. The approximate circuits differ from the adders and multipliers
presented in section 2.2, in that circuits are designed using fewer logic gates to deduce the output
of an arithmetic operation [21][23]. The methodology for developing such circuits has historically
been rather ad hoc and application-specific, as arithmetic designs can be fine-tuned to reduce area
or latency based on the problem or application at hand [91][92].

Page 34 of 219

Chapter 2 2.3. APPROXIMATE COMPUTING

Approximate arithmetic circuit design includes various strategies of differing analytical properties.
The main focus is on the fundamental building blocks of digital processors (i.e. adders, multipliers
etc.). To approximate the arithmetic units only the requirements for the magnitude of errors limit
the possibilities in design. The point to notice is that any outcome approximates any arithmetic
operation, with a varying degree of accuracy. To illustrate this fact three open-source libraries
of approximate adders and multipliers are provided by Shafique et. al. [93], Ullah et. al. [94],
and Mrazek et. al. [4]. [93] presents a configurable strategy to synthesising approximate adders.
[94] provides a library of approximate multipliers with varying degrees of accuracy and circuit
complexity. [4] presents a library of 430 approximate adders and 471 approximate multipliers.
This also serves as an illustration of the point that anything can approximate an arithmetic circuit.
However, an effort has been made to categorise the design of approximate arithmetic units.

Approximate adders generally be divided into two approaches:

I) Approximate Full-Adders: The technique attempts to approximate the fundamental building
blocks of an adder circuit (i.e. the full-adders) [22][21]. As described in subsection 2.2.2 the
full-adders are 1-bit adders, used as building blocks in broader addition architectures (e.g.
RCA or CLA). The approximation of full-adders is realised by configuring the logic-gate
circuits using fewer transistors. Yang et. al. [95] present three designs of an XOR/XNOR-
based AFA (Approximate Full-Adder) s reducing the transistor count relative to the accurate
equivalent by up to 40 %. Gupta et. al. [96] presents approximate architectures of the mirror-
adder reducing transistor count of amirror-adder by up to 52 %

II) Segmentation and Carry Prediction: These are strategies that aim to reduce transistor count
and/or critical path delay by dividing the architecture of an n-bit adder into smaller seg-
ments that can be evaluated in parallel and approximated individually [22]. This approach
differs from the AFA as the configuration of full-adders are approximated rather than
the full-adders themselves. Mahdiani et. al. [97] presented an architecture known as the
LOA (Lower-part-OR-Adder) . The principle of the LOA is to divide an p-bit adder into two
segments; an m-bit accurate adder (e.g. RCA or CLA) for the m MSBs and an n-bit segment
of LSBs where the bit-wise addition is approximated as OR-gates. Dalloo et. al. systematises
a LOA design in [98]. The segmented approaches also allow parallel computing of each seg-
ment, lowering the critical path delay [99]. In [100] The authors present an ACA (Accuracy
Configurable Adder) which uses approximate sub-adders as was the case for the LOA but
implements an error-correction scheme, which can be configured throughout the pipeline of
the calculations in a given system. When accurate results are necessary the error correction is
applied to segments handling the MSBs and when an accurate result is not critical, the error
correction is applied to fewer segments (if any) of the MSBs. [101] builds upon the ACA and
utilise carry-prediction techniques to anticipate carry bits before they are fully propagated
through segments of the adder. These adders can reduce the critical path delay by predicting
carries early in the computation in each segment.

Approximate multipliers presented in the literature are primarily based on the Wallace tree from
subsection 2.2.4 and can be generalised into three main approaches:

I) Truncation, Rounding, and Perforation: The Wallace tree uses a tree of pseudo-adders to
accumulate the summands generated using the long multiplication scheme presented in
Example 2.2.2. Approximations can be introduced by truncating, rounding, or perforating
the summands before accumulation which yields pseudo-adders with simpler circuits, as
the inputs are of shorter bit-length [21]. Hashemi et. al. [102] presents a truncation scheme
known as the DRUM (Dynamic Range Unbiased Multiplier) . The DRUM first detects the most
significant 1 in each multiplicand and discards all more significant 0s. Next, a fixed bit-width
is selected and the bits of less significance than this are truncated into a 1 as the LSB of the

Page 35 of 219

Chapter 2 2.3. APPROXIMATE COMPUTING

fixed bit-width and every bit of less significance is discarded. The length of the fixed bit-width
determines the precision of the approximation. The multiplication is then performed on the
unbiased truncated multiplicands and the result is shifted into the appropriate bit-width (i.e.
the length if no truncation was performed). The length of the bit-width bounds the errors of
this approach and the distribution has a Gaussian distribution while obtaining 58% power
savings [102]. Zervakis et. al. [103] present a perforation technique where the generation of
summands is limited to a selection of MSBs where the developer chooses the exact amount.
The amount of discarded LSBs yields an equivalent reduction in the number of summands in
the Wallace tree.

II) Approximate Pseudo-Adders: An alternative approach to the approximate summands is to

I1I)

approximate the accumulation of summands (i.e. the pseudo-adders in the Wallace tree).
Four approaches with varying degrees of approximation are presented in [104], all focusing
on applying approximations to the 4:2 compressor (i.e. a realisation of a pseudo-adder
implemented using two full-adders). The specific design presented in [104] provides the
ability to switch between an exact implementation and the proposed designs dynamically.
Two of the approximate 4:2 compressors are implemented as simple wirings (i.e. no logic
gates in the compressors). Strollo et. al. [105] surveys proposed 4:2 compressors from the
literature and compares the performances for developers to choose from. In the context of
approximate pseudo adders, developers are once again left with a rather ad hoc approach.
Logarithmic Binary Multiplication: Mitchell’s logarithmic binary multiplier was presen-
ted in 1962 by John N. Mitchell [106]. The principle is to encode the multiplicands as LN
(Logarithmic Number) s, to yield a simple multiplier implementation. The conversion to
LNs is an approximate operation, resulting in inaccuracies in the final result. The gain in
computing efficiency is that the logarithm of multiplication is an addition, meaning that
the far more complex multiplier HW is substituted with the much simpler adder HW. Liu et.
al. [107] extend the concept of approximate logarithmic multipliers, by using approximate
adders in the design. One of the approaches uses the LOA that was described earlier.

The antecedent survey of approximate adders and multipliers is not exhaustive of the approximate
arithmetic circuits proposed in the literature, nor the possible design space. However, a brief
introduction to multiple categories within the field, along with relevant references to the literature
should provide a foundation for developers to explore approximate designs further.

Automated approaches for approximate circuit design have also been proposed in the form of
approximate logic synthesis. This is the concept of approximating the boolean function in the
synthesis of a logic circuit. Two approaches are considered for approximate synthesis:

D

II)

Structural Netlist Transformation: A netlist is a structural representation of a digital circuit
specifying the interconnections between logic gates and different components. The netlist
realises a boolean function (described by a truth table) and by making simplifications to the
netlist, approximations are introduced to the boolean function [23]. Schlachter et. al. [108]
presents a simple algorithm for pruning netlists. The general idea is to remove one gate at a
time and simulate until a certain error threshold is reached in the boolean functions truth
table. A similar approach is presented in [109], known as Circuit Carving. Rather than the
iterative technique just described, the circuit carving algorithm exhausts the entire design
space finding the smallest possible circuit (i.e. lowest gate count) that does not cross the
design-specified error threshold. This is done by assigning a weight to each operation in a net-
list and using a binary tree to locate the minimum [109]. Both the iterative and circuit carving
methods have a neat property of not being application invariant, as no prior information
about the functionality is needed.

Cartesian Genetic Programming: This approach utilises genetic algorithms and graph-based

Page 36 of 219

Chapter 2 2.3. APPROXIMATE COMPUTING

representation of accurate circuits to derive approximate solutions. The concept was presen-
ted by Hrbacek et. al. in [110]. The design space is defined in a graph representation which
is a grid of nodes and connections. The nodes represent logic circuits and the connections
represent wires. Evolutionary algorithms are then applied to reach approximate circuits
by "mutating”’ the accurate circuit. The authors of [110] used their proposed algorithm to
develop the EvoApproxLib described earlier [4].

It is noticed that the field of possible approximate computing design is wide-reaching and can be
difficult to navigate in the approximate circuit’s impact on the CNN. Efforts have been made to
find practices for determining approximate solutions to CNN-based problems with user-defined
constraints. Tools for benchmarking approximate computing techniques in NNs have already been
developed, three of which are presented in the list below:

* TypeCNN [28]: A software framework for the development of (approximate) CNNs. With
TypeCNN the user can modify the datatypes and multipliers of a CNN and infer the impact
on the classification accuracy. In the paper TypeCNN: CNN Development Framework With
Flexible Data Types, the tool is presented and evaluated specifically on altering data types
(on either weights or the data); the accuracy of the CNN on MNIST in three cases are placed
in tables: 10 epochs in floats and conversion to FXP, 10 epochs in floats and fine-tuning for
5 epochs in FXP and 10 epochs with FXP used for inference and weights and the backward
propagation in floats.

e AXDNN [29]: A systematical framework towards the cross-layer design of approximation
DNNSs with a pre-RTL simulation environment to evaluate the power consumption. As per
the authors of the paper AxDNN: Towards The Cross-layer Design of Approximate DNNs their
contributions are threefold: Exploration of approximation techniques presenting an analysis
of accuracy energy trade-offs offered by the techniques, the pre-RTL simulation environment
for accurate power performance evaluation to figure out the accuracy energy trade-off at the
design stage, and the detailed experiments for validation of the effectiveness of the pre-RTL
simulator.

e ProxSim [30]: A fast simulation framework for approximate hardware supporting approxim-
ate DNN inference and retraining. The main contributions of the paper ProxSim: GPU-based
Simulation Framework for Cross-Layer Approximate DNN Optimization are as follows: The
simulation framework itself, accelerated simulation of approximate hardware in DNN com-
putation, formulation of a novel hardware-aware regularisation for retraining approximate
DNNs, and exploration and analysis of several optimisation and retraining techniques for
approximate DNNs. The retraining techniques include a so-called STE (Straight-Through Es-
timator) and a proposal for an approximation-aware backpropagation. The STE is a technique
where the loss-function evaluation is obtained through forward-passing in an approximate
circuit and backward-passing and optimising using the accurate equivalent of the circuit.

Page 37 of 219

https://ehw.fit.vutbr.cz/evoapproxlib/

Chapter 2 2.4. SUMMARY OF THE SURVEY

2.4 Summary of the Survey

In 2.1 Neural Networks the perceptron has been presented as the basic building block of NN (Neural
Networks)s. The perceptron is connected to a set of inputs and each input is associated with a
weight. Internally, the inputs are weighted and summed, possibly with a bias, and the sum is
processed through an activation function, which introduces non-linearity. The activation function
enables the perceptron to classify non-linearly separable sets and perform non-linear regression.
A lattice structure of perceptrons (like the one presented in Example 2.1.1) constitute a neural
network. In order to set the weights and bias the concept of training has been presented: A loss
functionis defined, which is used to calculate how “far”’ the output of the neural network is from
the wanted output. Based on the loss error back-propagation is utilised to find the gradient of from
each weight to the loss, i.e. the contribution of the weight on the evaluated loss. The gradients
are used to update the weights and biases using some gradient descent algorithm (optimisation
algorithm). CNN (Convolutional Neural Network)s are the product of a state-of-the-art architectural
approach, that addresses a problem with densely connected neural networks: recognition of features
in the input is not invariant of the position in the signal. This is done by parameter-sharing to local
connectivity; local convolution of the input signal with a kernel filter. Unlike a single perceptron,
the outputs of a convolutional layer are feature maps. The size of the feature maps can be reduced
by pooling/subsampling, where another form of kernel filter is applied, e.g. max pooling.

The efficacy of utilising CNNs on a task like image classification on the CIFAR-100 dataset is reflected
in Table 2.2 where it is shown, that in the period between 2013 and 2024, the best-performing
networks utilised convolutional layers.

In 2.2 Digital design the inner workings of the MAC (multiply-accumulate) unit were investigated.
The MAC unit is an essential block to facilitate the arithmetic operations required in an NN. The
MAC unit consists of a multiplication-block, an accumulation-block, and a register-block. The
register stores the output of the accumulation and is thus a “memory’’-block and has not been
explored further. However, multiplication and addition require an understanding of the number
representation of computer systems. Unsigned/signed fixed point and floating point have been
presented; unsigned/signed FXP is essentially the infeger interpretation of a sequence of bits scaled
by a factor 277, where the most significant bit is negative in the case of signed fixed-point. The
floating-point number representation is divided into three parts: sign-bit, exponent, and mantissa.
The sign-bit indicates if the decimal interpretation is positive or negative, the mantissa represents a
number between 1 and 2, and the exponent scales the value of the mantissa. The resolution of FXP
is static, i.e. the LSB (least significant bit) defines the step size in the entire range of representable
values. The resolution of FLP is dynamic since the product of the exponent and the LSB of the
mantissa dictates the step size; for small values of the exponents, the step size is also small, and vice
versa. Next, the principles for performing addition and multiplication with the different number
representations have been presented. The most basic (and exact) addition in FXP is utilising a
sequence of full-adders where the carry-out bits are sent to the next full-adder. This approach
is slow, due to the “critical path” where the carries are rippled from the LSB to the MSB (most
significant bit) and alternatives that with a shorter “critical path” and larger power consumption
have been presented. Multiplication in FXP is a matter of generating partial products and summing
them (not unlike long multiplication). This process can be parallelised and the partial products can
be produced at the same time, which shortens the latency and removes the dependency on registers,
i.e. the multiplications can be performed by combinatorial logic. FXP addition and multiplication
are more involved, since alignment, normalisation, and rounding have to be performed. However,
the actual computations are performed similarly: During addition the mantissas are summed as
two FXP values, and during multiplication the exponents are added as two FXP values, and the
mantissas are multiplied as two FXP values.

Page 38 of 219

Chapter 2 2.4. SUMMARY OF THE SURVEY

State-of-the-art MAC units are the product of a compromise between power consumption and
latency; lowering one increases the other.

In 2.3 Approximate computing the term approximate computing has been presented; an umbrella
term encapsulating any concept that simplifies system computations at the expense of the accuracy
of the calculations. Two branches of this development strategy have been presented: approximate
software and approximate hardware, with a focus on their relevance to NNs. Through software it
is possible to prune “unnecessary’”’ computations, by removing elements with small significance.
The number representation can be revised and the precision can be scaled, e.g. instead of using
float32 the values/weights may be represented by 16 bits in FXP, simplifying arithmetics and
reducing required memory. Using early determination an intermediate result may be utilised to
avoid fully performing an operation. “Simplifying” input by reducing the dimensionality may
also simplify/reduce the required operations. Through hardware the circuit-level designs may be
approximated for a reduction in energy consumption or circuit latency. Voltage over scaling can be
utilised, where the supply voltage can be reduced at the cost of a lower clock-rate. Approximate
arithmetic circuits utilises fewer gates to produce an output, where some error is allowed. Many
methods exist that guide/perform the development of the approximate circuits like approximating
full-adders, truncation, rounding, perforation, etc.

Three tools for benchmarking approximate computing techniques have been briefly mentioned
in section 2.3: TypeCNN, AxDNN, and ProxSim. These three approaches serve as a beneficial
commencement for developing efficient CNNs, however, it is clear that the tools are mostly aimed
at the machine learning developer demographic. The tools do not solve the ad hoc problems
that are present when designing the approximate circuits for implementation. In this thesis, a
contribution towards an easy validation process of approximate circuits will be made. Rather than
avoid the ad hoc problems, the solution will lean into it and allow relatively fast validation of an ad
hoc circuit. However, the knowledge gathered in the papers will be taken into account during the
design and implementation of the solution. In the following chapter, the solution will be presented
on a functional level.

Page 39 of219

A Benchmarking Tool for
Approximate Arithmetics

The preceding chapter has presented fundamental concepts as well as state-of-the-art methods
for NNs and the principal arithmetic building blocks of such systems. The purpose is to provide
a basic foundation for a brief survey of AC methods relevant to the field of NN design. The vast
amount of MAC-operations performed in state-of-the-art models are the main issue regarding
computational complexity and energy consumption, driving the need for efficient approximate
computing techniques to strike a balance between accuracy and resource utilisation. AC has shown
great potential in reducing the power consumption of large CNN models, both in the HW and SW
domains.

Frameworks for simulation of approximate computing techniques applied to CNNs already exist
and three were presented in subsection 2.3.2: TypeCNN, AXxCNN, and ProxSim. However, the
frameworks are aimed at the development of the CNNs and the demographic is the machine
learning developer rather than the circuit developer. Furthermore, these three proposals are limited
in the sense that the scalability and generalisation of the CNN models are of minor consideration.
They contribute greatly to the methodology of designing cross-layer end-to-end simulations prior
to RTL design but lack the interpretation of the actual outcome of a CNN model.

The purpose of this thesis is to provide a benchmarking tool, that in a broad sense evaluates a
supplied approximate arithmetic design in the context of CNNs. The evaluation will seek to inform
the user about the potential savings in latency, power consumption, and the impact on accuracy
for the context in which the user wants to apply the supplied design. This benchmarking system is
summed up in the problem statement from the introduction:

“How can a benchmarking tool provide an ASIC developer with relevant metrics to evaluate an
approximate arithmetic circuit as an integral part of a large scale system, i.e. a neural network,
prior to implementation?”

In this chapter the solution to the problem statement will be presented on a functional level.
Preliminary questions will be asked at the end of the chapter, which will be used to guide the
development of the tool.

Page 40 of 219

Chapter 3 3.1. FUNCTIONAL OVERVIEW OF THE TOOL

3.1 Functional Overview of the Tool

Before implementing the benchmarking tool, an overview at a functional level is presented. In
Figure 3.1 a functional diagram is presented subdivided into three steps:

I) Circuit analysis: A user-supplied AC circuit is investigated in isolation. The purpose of this
step is to evaluate relevant metrics, this allows the user to balanc the power consumption,
latency, and error distribution characterstics of the circuit. The error distribution is also
essential for the other two steps.

II) Small-scale Implementation: Three networks are created: An approximate model, an exact
model, and a probabilistic model. The three models are structurally the same and will share
the same weights. The exact model takes a random input, processes it, and the output is used
as areference for the other two models. The probabilistic model takes the same random input,
processes it multiple times, compares the output to that of the exact model, and generates
an error distribution. The approximate model takes the same random input, processes the
input with the supplied “approximate arithmetic design” in-place, the output of which will
be compared with the output of the exact model, giving an error. The likelihood of seeing
that error, given the distribution from the output of the probabilistic model is evaluated,
and by extension the probabilistic model is evaluated, i.e. if there is a high likelihood of
seeing the error the probabilistic model and the approximate model are similar, and thus the
probabilistic model can be scaled and utilised in step III.

IIT) Full-scale Simulation: A user-defined CNN is then introduced in step III and the statistical
model found in step II is used to infer the influence of a given approximate arithmetic
circuit in the user-defined problem. The purpose of this step is to provide the user of the
benchmarking system with a qualified impression of how AC affects the performance of their
application-specific full-scale CNN, prior to netlist design.

AP . . . Step IIT: Full-scale
_St_ep_I._Cfcglt_Azalz/st_s o Step II: Small-scale Implementation _GNN Error Injection .

1
Approximate . 1 \
Arithmetic . 1 Random Input Approximate
Analyse D
Design -na yse Design : | Generator I | Model
7

Power

i~»| Consumption

\/\

Evaluate Full-Scale

Exact

]

1
1
1
— : ‘)l Model Probabilistic Application of
1 ode Mode
~-» Latency 1
__——
1
Error 1 Probabilistic
*-» Distribution f--#-------------ooo--- s Model
\/\ ! \
S
_____________ L e mm e ————

Figure 3.1: Functional diagram of the benchmarking tool. An approximate arithmetic design is supplied to the
tool and is processed through three steps. In step I the design is analysed, producing three metrics to evaluate
the design with: Latency, power consumption, and error distribution. The evaluated error distribution is then
utilised in step II, where three NNs are created: An approximate model, an exact model, and a probabilistic
model; an input is generated and propagated through each model and the error is computed with respect to
the exact model. Based on the error at the output, the probabilistic model is evaluated based on “how well
it represents the approximate model’ . Lastly, in step III the probabilistic model is scaled and applied to a
full-scale neural network.

The idea behind creating a probabilistic model as opposed to a generally applicable approximate
model is the potential of the speedup. To implement the approximate model it will be necessary
to fundamentally rework how convolutional sums are computed since it is not possible to rely on

Page 41 of219

Chapter 3 3.2. DELIMITATION AND RESEARCH QUESTIONS

fast implementations of vector/matrix multiplication, if the innermost MAC operation is modi-
fied. However, given a probabilistic model that can emulate the errors of the approximate model
and add the error as “noise”’, the fast implementations of vector/matrix multiplication can be
utilised. Furthermore, the generalisation and scalability of the error modelled as “noise” is likely
simpler than implementing the approximate arithmetic circuits in a full-scale model, where number
representation, overflow, etc. will play an important role.

Although, the three models in step II should share the weights, a question arises: how should the
weights be trained? Training the exact model and sharing its weights with the other two models
would be simple, as a standard machine learning library can be utilised. However, the weights
from training exact model, may not yield good results in the approximate model. Training the
approximate model and sharing its weights may ensure that the optimisation is performed in the
real “cost-landscape’”’, however, it is not guaranteed that a NN with approximate can be trained; the
derivatives required for back-propagation may not be well-defined. It is seen as essential to research,
test, and implement a method for training the weights. Furthermore, it is seen as beneficial for
scalability and generalisation if the probabilistic model could be trained in place of the approximate
model if the behaviours of the models are almost identical. The layers added in the probabilistic
model to simulate the error, should be easy to integrate in full-scale applications.

From a user’s perspective, an approximate arithmetic design should be supplied to the benchmark-
ing tool, and in return, the user should get insight into the reduction in latency, the reduction in
power consumption, and get a noise model based on the error distribution, that can be applied to
a CNN of the user’s choosing. The noise model should also include some evaluation of how well it
fits, which is the purpose of step II.

3.2 Delimitation and Research Questions

The solution presented in section 3.1 is broadly applicable, however, it is deemed infeasible to
implement a solution capable of evaluating any approximate arithmetic circuit in any CNN, why a
delimitation is performed in this section.

Multipliers will be the main focus w.r.t. arithmetic circuits. The logic circuits required to perform
multiplication are comprised of more gates and by extension are often slower and consume more
power. Approximating addition would also lead to some savings in latency and power consumption,
however, implementation, debugging, and testing is not prioritised.

No Sequential Logic will be implemented or modelled. As mentioned in section 2.2 sequential
multiplication algorithms are slow, but not because of complex logic structures, rather they are
tied to a clock. As shown in Figure 2.18 it is possible to construct using a single addition circuit, a
register, and some AND-gates. Reducing the amount of gates may lead to power saving, however,
the latency is tied to the clock, and little is to gain in comparison with combinatorial logic.

Only CNNs will be discussed/implemented due to time constraints. The number of different
NN architectures is essentially endless, and the number of different methods is too great to be
extensively tested and implemented. However, the resulting methods and implementation may be
easily modifiable to accommodate a greater number of methods and architectures.

Page 42 of 219

Chapter 3 3.2. DELIMITATION AND RESEARCH QUESTIONS

3.2.1 Research Questions

To further help guide the development and implementation of the benchmarking tool, a set of
research questions have been formulated, and presented below:

I) How can the error distribution, latency, and power consumption of an approximate arithmetic
circuit be evaluated and presented to the user of the benchmark system?
II) What is the effect of approximate arithmetic on the training of a CNN?
IIT) How can the deterministic error distribution of an approximate arithmetic circuit be modelled
probabilistically and how can this model be applied to a CNN?
IV) How well does the model fit a deterministic simulation, and can the model be scaled and
generalised to the application provided by the user?

These questions will be investigated and answered in chapter 4, 5, and 6, which are structured in
the same three steps presented in this chapter.

Page 43 of 219

Step I: Circuit Analysis

This chapter walks through the design and implementation of step I presented in chapter 3 and
highlighted in Figure 4.1. Step I of the benchmarking tool revolves around choosing metrics and
developing models to evaluate approximate arithmetic circuits such as adders and multipliers
independently from any application.

Step I: Circuit Analysis Step II: Small-scale Implementation Step III: Full-scale

B I T e e T T T T R - - -

Analyse Design|

Power
i~»| Consumption

\/\

Approximate
Arithmetic
Design

Random Input
Generator

Approximate

Full-Scale
Application of
Mode

Evaluate
Probabilistic
Mode

i - Latency

R
: Error

*-»| Distribution |--

—- e e o e o o = o = o o= = 7

Y

S IR U U U U | —

Figure 4.1: Functional diagram of the benchmarking tool. An approximate arithmetic design is supplied to the
tool and is processed through three steps. In step I the design is analysed, producing three metrics to evaluate
the design with: Latency, power consumption, and error distribution. The evaluated error distribution will
then be utilised in step II.

Terminologies like power consumption, latency, and inaccuracy are often used when making com-
promises with a design, but how are they defined?

The Power Consumption of a circuit is usually defined in Watts, i.e. how much energy is used
per second. However, this definition is influenced by the circumstances of the implementation,
i.e. the technology of the implementation, leakage, etc. To generalise the power consumption, the
transistorcount is utilised. An optimistic guess w.r.t. the reduction in power consumption would be
to say that the percentage-wise reduction in transistors translates into the same percentage-wise
reduction in power consumption. This estimate exchanges the precision of simulation tools with a
simple and more general metric.

The Latency of a digital circuit can be defined by how long it takes to perform the intended
operation [111]. Throughput (rate at which a digital circuit comptes outputs from new inputs) of a
digital circuit can also be used for the same purpose, but with combinatorial logic the throughput is
exactly the reciprocal of latency [111]. It takes a small amount of time for a gate to switch its value,
and thus the latency is tied to the path from input to output, which has the largest cumulative

Page 44 of 219

Chapter 4

gate-delay: The critical path. Given this path, the latency of a circuit can be estimated by summing
the delays from each gate in series [112].

The inaccuracy will be defined by errors metrics induced by adjusting the power consumption
and/or latency with relation to an exact counterpart. An important error metric is the difference
defined as [23]:

diff(f(x), F(x) E11f) - F@ll (4.1)

where:

x | input to functions f and f
f(x) | exact function performed on input x

f(x) | approximate function performed on input x

There are several error metrics, which utilise the difference, some of them are defined below [23]:

WCD (Worst Case Distance):
max (diff(f(x), f(x))) (4.2)
xeX

MAE (Mean Absolute Error):

E{diff(f(x), f(x)} (4.3)
MSE (Mean Squared Error):

1 .

= 2 (diff(f (), Fan)” (4.4)

| |x€X

Eq. (4.2), (4.3), and (4.4) are good tools to indicate the precision of the approximation performed,
however, they are tied to the numerical values of the evaluated input. In some contexts it would be
more appropriate to examine how often errors happen, the ER (Error Rate) is defined as [22]:

W] -
I W={xeX[f(x)# fx)} (4.5)
In digital circuit design, it is also relevant to view how much the evaluated input differs from
approximate to exact on the bit level. For this purpose, the HD (Hamming Distance) can be
utilised; the HD between two binary values, x and y, is defined as the count of bits that differ:

Y ;i # yil (4.6)

i=0
In circuits with multiple input-output relations, it can be beneficial to evaluate the MHD (Mean
Hamming Distance) , defined as:
1 n
—7 2 2 xi # yil 4.7)

| X xeXi=0

Page 45 of 219

Chapter 4 4.1. GATES, TRANSISTORS, AND DELAY

4.1 Gates, Transistors, and Delay

In the benchmarking system, no assumptions are made on the user choice of hardware techno-
logy realising the approximate arithmetic circuits. The user is expected to provide a functional
approximate RTL circuit. Based on the user input, the appropriate abstraction level for power
consumption is deemed to be gate-count. Furthermore, the latency has been defined as the sum
of the gate-delays on the critical-path.

The design of the analysis tool that constitutes step I of the benchmarking system is implemented
such that a user can change assumptions about the number of transistors in each gate type, and
the latency of the individual logic gates. Furthermore, the user can modify which gates are available
in the synthesis. The gates that are available in the benchmarking tool to choose from and their
assumed CMOS layout are congruent with those presented in [113]. The transistor count is presented
in Table 4.1.

To get an estimate of the critical path delay of each available logic gate, an estimate is derived based
onresearch in [114], that finds the propagation delay of a conventional inverter and NAND-gates to
be about 150 ps. The estimate used for the remainder of the logic gates is 300 ps for AND and OR
gates and 450 ps for XOR and XNOR. It is emphasised that these delays are assumed to be provided
by the user of the benchmarking system and that these estimates are only placeholder values used
for exemplification.

Table 4.1: Assumptions on transistor count and latency for a selection of logic gates. These estimates are
used as examples through the entirety of the step one analysis examples in this project.

P A A K N

Transistor
113
Count 6 [113]
Propagation Inspired by
Delay 300 ps @ 450 ps 150ps @ 300ps = 450 ps 150 ps (114]

Before descending into the substance of how to evaluate approximate arithmetic circuits, a short
emphasis is made on what circuits to assess. As previously presented multiple libraries of approx-
imate arithmetic circuits exist, where the EvoApproxLib span a great variety. In Appendix C a
selection of adders and multipliers from the EvoApproxLib is presented and they are summed up in
Table 4.2. In the appendix, step I is utilised to evaluate the power consumption, latency, and error
distributions, and relevant figures and values from the appendix will appear as examples during
this chapter.

Table 4.2: The chosen approximate circuits from EvoApproxLib [4]. All circuits perform signed 8-bit arith-
metic operations.

mul8s_| mul8s_| mul8s_| mul8s_| mul8s_| mul8s_| mul8s_| add8se| add8sel add8se| add8se
1L12 1KV9 1KV8 1KVM 1KVA 1L2J 1KV6 839 8VQ 8NH 8CL

Approx Approx Approx Approx| Approx Approx| Exact @ Approx Approx Approx Exact
Multipl Multipl Multipli Multipll Multipl Multipl Multip] Adder Adder Adder Adder

Page 46 of 219

https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended
https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1L12_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1L12_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV9_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV9_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV8_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV8_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_ep&file=mul8s_1KVM_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_ep&file=mul8s_1KVM_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_wce&file=mul8s_1KVA_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_wce&file=mul8s_1KVA_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1L2J_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1L2J_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV6_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV6_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_839.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_839.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8VQ.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8VQ.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8NH.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8NH.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8CL.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8CL.v

Chapter 4 4.2. RTL SYNTHESIS: GATECOUNT AND CRITICAL PATH DELAY

4.2 RTL Synthesis: Gatecount and Critical Path Delay

[Functional Design]

Designing a digital circuit can be viewed at multiple abstraction levels

and in Figure 4.2 an example of how the abstraction levels can be item- ¢
ized is presented (abstraction levels taken from Fig 1.2 in [3] and the [Architecture]
explanation of the levels are taken from the surrounding sections and ¢
subsections). Functional design covers the fundamental idea behind the [Micro-architecture]
development. From the specifications of the functional design both the ¢
architecture and micro-architecture can be elaborated. The architecture [RTL Design]
is a translation from the functional design to a block-level representa- ¢

tion, whereas the micro-architecture describes hierarchical design de-
tails, such as blocks and sub-blocks, interfaces, pin connections, reset
capabilities, synchronous/asynchronous designs, etc. In the RTL design
the micro-architecture is used as a reference to develop the design in an
HDL (Hardware Description Language) such as Verilogand VHDL, fur- pjgure 4.2: Different levels
thermore, the design is simulated and synthesised to a gate-level netlist. of abstraction in digital
Switch level design represents the design in standard cells for ASICs or design, inspired by Fig 1.2
architecture resources in FPGAs. from [3].

[Gate Level Design]

]

[Switch Level Design]

Power consumption has been equated to the transistor-count of the designed approximate arith-
metic circuit and latency has been equated to the accumulated gate-delay on the critical path.
Both transistor-count and the critical path are innately tied to the hardware implementation of the
circuit, why it is relevant to synthesise the circuit: The relevant abstraction layers will be limited to
the RTL design and the gate level design. The end product of these two layers is a gate-level netlist,
which is a “representation of the functional design in the form of combinational and sequential
logic cells” [3]. Where sequential logic is defined as digital logic with which the output is a function
of present input and past output, e.g. memory cells. Combinational/combinatorial logic is only
dependent on present input, e.g. logic gates.

Given the gate-level netlist of a design, it should be possible to count the number of gates required
for the design, find the critical path delay, and by extension have two out of the three metrics metrics:
Power consumption and latency. However, going from an RTL design to a corresponding gate-level
netlist requires multiple intermediate steps. In Figure 4.3 a generic process from RTL design to
the physical design is depicted: A user creates a design written in an HDL, the functionality of the
design is verified, and synthesis can be commenced. Synthesis of a design requires the RTL design
and libraries, whereas design constraints can be optionally defined and passed to the synthesis tool.
Some common constraints are area, speed, and power. The product of a successful synthesis is the
gate-level netlist with which the physical design can be produced.

Ad !
No No

[ER R P

Constraints
met?

Functional
Verification

RTL Design

\/\

Design
Constraints

Yes Phys.lcal
Design

User Supplied

Figure 4.3: Generic simulation and synthesis flow. The user supplies design constraints that their design
should meet. An RTL design is created, its functionality is verified, and the design is synthesised based on the
constraints. If the design does not meet the constraints, the RTL will have to be revisited. The end product of
the simulation and synthesis flow is a netlist (inspired by Fig 1.3 from [3]).

Page 47 of 219

Chapter 4 4.2. RTL SYNTHESIS: GATECOUNT AND CRITICAL PATH DELAY

In section 2.3 some of the approximate computing methods for arithmetic circuit design were
presented. Since the nature of approximate computing allows errors, designing a globally applicable
functional verification is not feasible, and this task is off-loaded to the user. Furthermore, the
purpose of analysing the design is to report on the metrics power consumption and latency, why
applying design constraints is redundant. This greatly reduces the scope of the RTL synthesis in
Figure 4.3 and the only block left is the Synthesis-block.

4.2.1 Synthesis Flow

The synthesis-block from Figure 4.3 is elaborated in Figure 4.4, where the desired flowchart is
represented. From a user’s perspective, the synthesis process should be a blackbox with minimum
of two interfaces: Input the RTL design and output a netlist. To facilitate this process it is essential,
that the tool can read the RTL design, synthesise the design, and write the netlist to a Verilog file
(marked in Figure 4.4 with black lines/text). Furthermore, some nice-to-have features would be
the capability to flatten the hierarchy of the design, map the netlist to a specific set of gates, and
write the netlist to a JSON formatted file (marked in Figure 4.4 with grey lines/text). Flattening the
hierarchy would simplify further processing of the netlist by removing hierarchical boundaries and
superfluous references; keeping the hierarchy intact is not essential when the purpose is to find
the critical path delay and gate-count. Mapping the netlist to a specific set of gates would allow
for customisability on the user’s part, and add another way to adjust the power consumption and
latency of the designed arithmetic circuit. Writing the netlist to a JSON file will simplify the analysis
of the netlists, e.g. in Python a JSON-file can be decoded with the package json to a dictionary of
dictionaries.

Synthesis Tool
72 Y

1
1
RTL Design RTL_FILE_NAME . 1
TOP_MODULE 4:—)[Read RTL]—)[Synthesise]—) p
J :
1
J Write to 1 netlist.v
Verilog 1
1

Figure 4.4: Synthesis flowchart. An RTL design is supplied by passing its path with the name of the top module
to a synthesis tool. The synthesis tool should read the RTL and synthesise the design resulting in a netlist. This
netlist may contain submodules, and to simplify the data processing of the netlist, the hierarchy should be
flattened. The netlist should then be exported to a Verilog file. Furthermore, two nice nice-to-have features
are the possibility to force the synthesis tool to use a specific set of gates and write the netlist formatted
in a JSON file, Map to Technology and Write to JSON, respectively. Black lines/text indicate need-to-have
functions/features, whereas the grey lines/text indicate nice-to-have functions/features.

The choice of the synthesis tool is yosys [115]. Yosys describes itself as a “framework for Verilog RTL
synthesis” [115] and is capable of accommodating both the nice-to-have and need-to-have features
previously described. Many alternatives could have been utilised for this purpose, e.g. Cadence
Synthesis, Synopsys Design Compiler, Intel Quartus, etc. however, yosys is more lightweight than
the full-scale EDA (Electronic Design Automation) tools. Furthermore, it is free of charge and
open-source. Yosys can be interfaced through a CLI (Command Line Interface) and the blocks in
the flowchart in Figure 4.4 can be mapped one-to-one with available commands:

Page 48 of 219

https://github.com/YosysHQ/yosys
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html

Chapter 4 4.2. RTL SYNTHESIS: GATECOUNT AND CRITICAL PATH DELAY

Read RTL: read_verilog [options] [filename]
- Load modules from a Verilog file to the current design. A large subset of Verilog-2005 is
supported [115]

Synthesise: synth [options]
— This command runs the default synthesis script. This command does not operate on
partly selected designs [115]
- The top module will be provided using -top $: :env(TOP_MODULE)

Flatten Hierarchy: flatten [options] [selection]

- This pass flattens the design by replacing cells by their implementation. This pass is very

similar to the ‘techmap’ pass. The only difference is that this pass is using the current
design as mapping library [115]

Map to Technology: abc [options] [selection]
— This pass uses the ABC tool [1] for technology mapping of yosys’s internal gate library to
a target architecture [115]
- The gates will be provided using -g $: :env(GATES)

Write to Verilog: write_verilog [options] [filename]
- Writes the current design to a Verilog file [115]

Write to JSON: write_json [options] [filename]
— Writes a JSON netlist of the current design [115]

The flow presented in Figure 4.4, using yosys as the synthesis tool and the functions presented in the
list above, is implemented as a Makefile function, and the source code can be found in Appendix A
under /rtl_analysis/Makefile and /rtl_analysis/netlist.tcl.

After performing the synthesis of a circuit, >
the generated netlist can be visualised us- [
ing a tool like netlistsvg, with which an

SVGfile of the netlist can be created. In Fig- D

ure 4.5 an example of this can be seen. The O—:0] r :

design add8s_8VQ from EvoApproxLib [4] Sis qiD

has been synthesised to AND, XOR, NAND, L —A
OR, NOR, and XNOR gates. Furthermore, in T [

Figure 4.6 and Figure 4.7 examples of the -
customisable map to technology are visu- '
alised, by mapping to AND gates and OR r}]:D
gates, respectively. Notice, that both cir-

cuits contain NOT gates, which is required Figure 4.5: add8se_8VQ from EvoApproxLib [4] synthes-
for functional Comple[eness and is there- ised to AND, XOR, NAND, OR, NOR and XNOR gates using
fore unavoidable when using the abc func- netlistsvg.

tion from yosys.

Although the complexity of these circuits is low enough, that the gatecount and critical path (in
number of gates) can be found in a matter of minutes by hand, in larger and more complex designs,
it would be tedious and very difficult to keep track of. For this reason the processes of counting the
gates and finding the critical path are automated in subsection 4.2.2 and subsection 4.2.3.

Page 49 of 219

Chapter 4 4.2. RTL SYNTHESIS: GATECOUNT AND CRITICAL PATH DELAY

* “

Figure 4.6: add8s_8VQ from EvoApproxLib [4] syn- Figure 4.7: add8s_8VQ from EvoApproxLib [4] syn-
thesised to AND and NOT gates and visualised using thesised to OR and NOT gates and visualised using
netlistsvg. netlistsvg.

j
i

ﬂ

51

]

4.2.2 Counting the Gates

Assuming that the synthesis described in subsection 4.2.1 has been performed, both a netlist in
Verilog and a netlist in JSON should be available. The JSON file of the netlist is used to count the
gates and the structure can be seen in Figure 4.8. Since the hierarchy of the design is flattened
during the synthesis, the only module will be the TOP_MODULE. From here, the gates can be counted
by looping over all the cells and incrementing counters based on their type.

: "direction"
"PORT_NAME" l‘: "bits"
"ports" | p=1 ﬁ
"creator" : Yosys... "TOP_MODULE" |‘:>

"modules” =3 }—ﬂ "cells” | =3

"CELL_NAME"

"PORT" : "DIRECTION" I
"PORT" : "CONNECTION”I

"port_directions"

i

"connections"

Figure 4.8: netlist. json data-structure, indicates the key’s value is a dictionary. The relevant keys for
counting gates are highlighted with blue.

To index the JSON structure within netlist. json the Python script needs the name of the TOP_-
MODULE, which can be provided as an environment variable by exporting its name from the Makefile
function (see /rtl-analysis/Makefile in Appendix A). Given netlist. json and the name of
the top module, the gates and their types can be counted, following the flow in Figure 4.9. The
cells dictionary is indexed following the JSON structure in Figure 4.8 and the script loops over
every cell incrementing typecounters. The typecounters are used to estimate the total amount of
transistors required for the circuit by summing the products of the typecounts and the transistors
per type. The typecounts are summed to calculate the total gatecount. The typecounts, the total
amount of transistors, and the gatecount are saved in a csv file.

python gates.py]
-

- \ , Create new Increment
12[3?;1;:;2; / entry typecount
TOP_ K ?
MODULE
Yjs Yes

\
Transistors | Compute Compute Savecsv |, gates.csv
per gate type Transistorcount| Gatecount summary
y,

Figure 4.9: Gatecount flowchart. The python script gates. py is called with an available net1list. json, the
TOP_MODULE available in the environment, and the transistors per gate type set. The script loops over all
cells in the design, incrementing counters based on the cells’ types. The transistor count required for the
design is estimated based on the type counters, the type counters are summed to give the gatecount, and the
information is exported to a csv file.

Page 50 of 219

Chapter 4 4.2. RTL SYNTHESIS: GATECOUNT AND CRITICAL PATH DELAY

Performing the gatecount on the netlists visualised in Figure 4.5, Figure 4.6, and Figure 4.7 yields
three csv files, with contents tabularised in Table 4.3. In the third and fourth row, there are no
XOR, NAND, or XNOR, which matches with Figure 4.6 and Figure 4.7 since they have been mapped to
AND and OR gates, respectively; indicating that the count is correct (which can also be verified by
counting the gates by hand).

Table 4.3: Gatecounts of the netlists visualised in Figure 4.5, Figure 4.6, and Figure 4.7.

Figure 4.5 1 5 8 0 15 0 15 98
Figure 4.6 21 0 0 0 0 26 47 178

Figure 4.7 0 0 0 21 0 26 47 178

T Calculated based on the assumptions presented in Table 4.1.

A note on transistors: The “gate technology’’ of an implementation of a gate can be classified
in one of four ways [116]: Resistor-Transistor Logic, Diode-Transistor Logic, TTL (Transistor-
Transistor Logic) , and CMOS (same as TTL, using FETs rather than transistors). The choice of
“gate technology” also affects the amount of transistors required for implementing a specific gate,
i.e. a CMOS NOT gate architecture may use 2 transistors [113] whereas a TTL NOT gate may use
6 [117]. Due to discrepancies in the amount of transistors required for a gate, configuration hereof
is possible within the gates. py script.

4.2.3 Critical Path

Again, it is assumed that the synthesis described in subsection 4.2.1 has been performed and the
JSON netlist is available. The JSON netlist is the starting point for finding the critical path and the
structure can be seen in Figure 4.10, where the relevant keys and values are highlighted in blue. The
hierarchy of the design is still flat, why there is only one module. In order to figure out the critical
path of a design, it is necessary to keep track of all paths from input to output and perform a search
in the paths to determine the longest path.

: "direction"
"PORT_NAME" |’: "bits"
"ports" | =1 }J’—){
"creator" : Yosys... "TOP_MODULE" |:

"modules" = }—)’)‘ "cells" | =

"CELL_NAME"

r
_,—)' "PORT" : "DIRECTION" IJ

>"pORT" : "CONNECTION””

"port_directions"

I

"connections"

Figure 4.10: netlist. json data-structure, indicates the key’s value is a dictionary. The relevant keys
for finding the critical path are highlighted with blue.

In section 3.2 the benchmarking tool was delimited to only analysing combinatorial logic. From this
delimitation it must follow, that there are no ““cyclic”’ connections in the designs. This observation
simplifies the process of finding the longest path since the combinatorial circuit can be translated
into a DAG (Directed Acyclic Graph). Analysis of DAGs is well documented, and tools exist to
perform the analysis. A tool fit to process DAGs is the networkx package for Python, which describes
itself as ““a Python package for the creation, manipulation, and study of the structure, dynamics,
and functions of complex networks” [118]. Using networkx to analyse the DAG also requires the

Page 51 of219

Chapter 4 4.2. RTL SYNTHESIS: GATECOUNT AND CRITICAL PATH DELAY

creation of the DAG; all ports and gates are converted to nodes, the nets interconnecting the ports
and gates are the drawn connections, where the direction of the connections are from one gate’s/
port’s output to another’s input. Furthermore, it is possible to define a “weight” for the connections,
and the “weights” are chosen to be the gate-delay of the driving gate. This choice will affect the
search for the critical path since it is now not just the number of gates that define the longest path,
but the propagation-delay. The scripts used to perform this analysis can be found in Appendix A:
/rtl-analysis/Makefile and /rtl_analysis/paths.py.

Example 4.2.1: Netlist to DAG

In Figure 4.11 the translation from an example circuit to a DAG can be seen. The ports are
marked in and the gates are marked in fuchsia, and the translated DAG follows the
same colour scheme. The connections on the right-hand diagram are weighted based on
the delay values shown on each of the gates on the left-hand side. The wires are modeled as
ideal, why there are no delays from port to gate. In this example, the critical path would be
AND-OR-XOR with the propagation delay of 0.3 ns +0.45 ns +0.15 ns = 0.9 ns.

w L JOR
0.3 0.15
' > D
0.3 0.45
0.45 ns e ::{

Figure 4.11: Example translation of a combinatorial logic circuit into a DAG. The ports are marked in

and the gates are marked in fuchsia to clarify how they are placed as nodes. The connections
on the right-hand diagram are weighted based on the delay values shown on each of the gates on
the left-hand side. The wires are modeled as ideal, why there are no delays from port to gate. The
gate-delay values are example values and are not necessarily correct.

In Figure 4.12 and Figure 4.13 an example of a netlist and its corresponding DAG can be seen. Given
the DAG has been set up properly with networkx, it is possible to find the longest/critical path by
calling networkx.dag_longest_path(graph, weight=’weight’). The critical path is exported
to a textfile wherein the estimated propagation-delay for circuit is noted as well as the number of
gates passed and the names of the gates passed.

Figure 4.12: Visualisation of an example netlist Figure 4.13: Visualisation of the DAG represent-
(Copy of Figure 4.5). ation of Figure 4.12. The red nodes indicate the
calculated critical path.

Given the critical path two important metrics are readily available: The number of gates in the
path and the propagation delay. Returning to the example netlists visualised in Figure 4.5, 4.6,
and 4.7 and performing the critical path analysis yields the values presented in Table 4.4.

Page 52 of 219

Chapter 4 4.3. ERROR SIMULATION

Table 4.4: Number of gates and propagation delay for the critical paths of the netlists visualised in Fig-
ure 4.5, 4.6, and 4.7.

Number of gates Propagation delay'[ns]

Figure 4.5 6 1.65
Figure 4.6 16 3.6
Figure 4.7 15 3.45

T Calculated based on assumptions presented in Table 4.1.

A note on gate-delay: The gate-delay of a gate is dependent on the “gate technology”’, why there
can be discrepancies between the estimation from the implementation to real-life. To accommodate
the discrepancies it is possible to configure the gate-delay associated with each logic gate in /rtl_-
analysis/paths.py.

A note on sequential circuits: The implementation assumes that the supplied circuit is combin-
atorial logic, why the netlist can be represented as a DAG. This assumption will be wrong given a
sequential logic circuit, however, for sequential logic the propagation-delay is not a metric of how
fast the circuit performs its function, which is defined by the clock, however, it defines a ceiling
for the clock frequency [119]. For this reason, the corresponding metric would be proportional to
1/clock frequency depending on how many times the sequential blocks have to be used, before
reaching the result.

4.3 FError Simulation

To analyse the inaccuracy of the approximate arithmetic circuits, the metrics from the beginning
of the chapter are computed. As all circuits from the EvoApproxLib [4] are provided with both a
Verilog and C implementations, a C++ class is implemented that evaluates the mean square error,
mean absolute error, worst case distance, error rate, and mean hamming distance. Since the
approximate circuits are deterministic it is possible to record every input/output relation in a LUT
and calculate the metrics from this distribution. The functional circuit corresponding with the
netlist from Figure 4.5 is analysed to provide an example.

The circuit is an 8-bit signed adder meaning that both addends can take any integer value between
-128 and 127, i.e. x € {—128,—-127,-126,...,127}. It is assumed that the addends take any value with
equal probability, i.e. A, B ~ U{—128,127}. This means that the P(A=x) =P(B=x) = 256 The joint
distribution can be represented as a LUT where each entry is the product of the marginal entries, i.e.
fap=P(A=x,B=x)=P(A=x)-P(B=x) = 512 It is then possible to describe the error difference
as another discrete RV (random variable) (E) with a conditional PMF fg 4 g. This PMF is obtained
by evaluating every output of the approximate circuits exactly once. The single-value metrics for
this distribution are shown in Table 4.5 and The PMF is plotted in Figure 4.14.

Table 4.5: Error-metrics of the distribution presented in Figure 4.14.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance

99.22 % 2.75

Page 53 of 219

https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended

Chapter 4 4.4. CIRCUIT COMPARISON AND SUMMARY

,_.
o
o
1
®
®
®
®

~
ot
1

5.0 1

Probability |[.]

W1 i r

—15 —10 -5

Error [/]

Figure 4.14: PMF of the error distribution of the approximate circuit in Figure 4.5. The distribution is plotted
where each bar represents a discrete error distance.

4.4 Circuit Comparison and Summary

To compare the chosen approximate arithmetic circuit is a balance not only between the power,
latency and inaccuracy, but also the application-relevant sub-metrics. In Appendix C a thorough
analysis is performed for all chosen circuits. The following comparison is a constituent of the
appendix, specifically the comparison of the multipliers mul8s_1KV9, mul8s_1KVM, mul8s_1L12,
and mul8s_1KV6.

For some applications, there could be a boundary to the WCD (Worst-Case Distance) and for dif-
ferent applications, it is desired to trade off a high gate count for a short critical path. An illustration
that aids the comparability of the trade-offs for different approximate circuits is also provided using
the MakeFile (see /rtl-analysis/Makefile in Appendix A), which takes approximate circuit in
Verilog and C++ and finds the metrics presented in all previous sections. It is further possible to
specify comparison metrics, i.e. one for power, latency and inaccuracy each. These three constitute
a vector that can be plotted in three dimensions, where the vector with the lower magnitude is
considered more satisfactory compared to the one with a higher magnitude. Firstly an example
is shown for the multipliers mul8s_1KV9, mul8s_1KVM, mul8s_1L12, and mul8s_1KV6, comparing
the gate-count for power, critical path gate-count for latency, and error rate for inaccuracy. This is
shown in Figure 4.15.

A few points are highlighted from Figure 4.15. Firstly it is noticed that mul8s_1L12 has the shortest
critical path and lowest gate count, but at the expense of a large error rate. Secondly, the mul8s_-
1KV9 has a shorter critical path compared to mul8s_1KVM, but trades both total gate count and
error rate. Lastly, it is noticed that mul8s_1KV6 is accurate, as it has 0% error rate and it is noticed
that the total gate count is also the highest of the multipliers. However, the critical is even longer
for mul8s_1KVM. If the user’s application values low latency more than a low error rate, the user
should choose mul8s_1KV9 and maybe even mul8s_1L12 over mul8s_1KVM and if the application
can only "afford” an error rate of 50% only mul8s_1KVM and mul8s_1KVé is feasible for this selection
of multipliers.

Secondly, a comparison is made for the same multipliers using gate-count for power, critical path
gate-count for latency, and WCD for inaccuracy. This is shown in Figure 4.16.

Page 54 of 219

Chapter 4 4.4. CIRCUIT COMPARISON AND SUMMARY

Multiplier comparison

—— mul8s_1KV9
—— mul8s_1L12
—— mul8s_1KV6
—— mul8s_1KVM

Error Rate

68.0; 14; 98.053)

(361.0; 24; 68.75)

Gate Count

Figure 4.15: 3D-plot of the metrics of mul8s_1KV9, mul8s_1KVM, mul8s_1L12, and mul8s_1KV6.

Multiplier comparison

—— mul8s_1KV9
—— mul8s_1KV6
—— mul8s_1KVM

Worst-Case Error Distance | o
1T I B

(339.0; 28;'128.0)

Gate Count

Figure 4.16: 3D-plot of the metrics of mul8s_1KV9, mul8s_1KVM, and mul8s_1KV6.

Page 55 of 219

Chapter 4 4.4. CIRCUIT COMPARISON AND SUMMARY

The takeaway from this comparison is that even though mul8s_1KV9 had a higher error rate com-
pared to mul8s_1KVV, it has a significantly lower WCD. This constitutes the fact that comparing the
approximate circuits using single parameter metrics is a challenging task and the ability to visualise
these metrics benefits the interpretability.

This concludes the development and implementation of step I of the benchmarking system. The
abilities of this subsystem can be summarised in four main points:

I) The system can estimate the power consumption of a user-provided RTL functional circuit,
by synthesising the circuit (also using the user-specified available logic gates) and counting
the type and amount of gates used in the circuit, and by extension counting the transistors.
This estimate was chosen as the actual power consumption is specific to the technology used
in the transistors of the circuit, which is not within the scope of this project to identify. The
gate count is viewed as a more general estimate.

II) To estimate the latency of the provided approximate circuit, a method is developed to deduce
the critical path of the synthesised circuit. The circuits are represented as acyclic directed
graphs, to obtain the path with the most nodes (i.e. logic gates). The connections between
nodes is weighted by the latency of the specific logic gate to obtain an estimate of the critical
path delay. However, these weights are also technology-specific and have to be provided by
the user.

III) Error metrics are found by empirically obtaining the degenerate PMF of each circuit, by
evaluating the output of approximate circuits exactly once for each of the possible inputs (this
is finite as the inputs are quantised by e.g. 8-bits). Single-value metrics can then be calculated
from this distribution of errors.

IV) The obtained metrics are compared through a representation of the metrics as a three-
dimensional vector, where low magnitudes are desired. These vectors are plotted for different
approximate arithmetic circuits to provide a possibility to visually inspect the trade-offs that
can be made from the compared circuits.

Step one provides an analysis and comparison tool for approximate arithmetic circuits enabling the
user to estimate the circuit’s performance for their application. However, this can be a challenging
task to extrapolate the metrics presented in step one to the performance of a CNN, which is the
case chosen for this project. The goal of the second step in the benchmarking system is to provide a
model that can do exactly this.

Page 56 of 219

Step II: Small-Scale
Approximate Neural Network

This chapter describes the design and implementation of step II presented in chapter 3. Step 11
of the benchmarking tool revolves around the implementation and evaluation of a probabilistic
model in relation with a hierarchically identical approximate model. The probabilistic model will
utilise the error distribution from step I to generate ‘‘noise’” emulating the error of the approximate
arithmetic circuit, thereby generalising the error. If the outcome of the probabilistic model is similar
to the outcome of the approximate model, the probabilistic model can easily be scaled and reused.

oo . . Step III: Full-scale
Step I: Circuit Analysi Step II: Small-scale Impl tat
ep ircuit Analysis ep mall-scale Implementation CNN Error Injection R

- e e o o o o = —

~
. Random Input Approximate
Analyse Desig
Generator I | Model
7

Approximate
Arithmetic
Design

Power

i~» Consumption
h

1

1

! 1

1

! ' Exact Evaluate Full-Scale

1 ~ ! Probabilistic Application of
Model

1 Mode Model

: - Latency

] PN

! : Error Probabilistic

: *-»| Distribution f--8------nnmmoninnonnn T Model

1 ~—~— .

1

Figure 5.1: Functional diagram of the benchmarking tool. An approximate arithmetic design is supplied to
the tool and is processed through three steps. The evaluated error distribution from step I is utilised in step
IT, where three NNs are created: An approximate model, an exact model, and a probabilistic model; an input
is generated and propagated through each model and the error is computed with respect to the exact model.
Based on the error at the output, the probabilistic model is evaluated based on ‘“how well it represents the
approximate model’ .

Step II requires three CNNs, identical in hierarchy, why the exact model will be developed and
implemented in the first section of this chapter. In section 5.1 the exact model is defined as well as
the “machine learning problem” for the models. The structure of the model will be copied in the
approximate model and the statistical model.

The approximate model is designed and implemented in section 5.2 using the structure of the exact
model as a starting point. The outcome of the section will be a model capable of performing forward
passes with approximate arithmetic in-place.

The probabilistic model is designed in section 5.3 as a modification that can be applied to the exact
model. The outcome of the section will be general and scalable methods, that can be applied to any
CNN model.

Page 57 of 219

Chapter 5 5.1. EXACT MODEL - REFERENCE SYSTEM AND APPLICATION

Lastly, the training of the models is investigated in section 5.4 to expose a strategy to effectively
train the weights of the approximate model. Furthermore, the similarity between the training of
the approximate model and the statistical model will be investigated, which may lead to a robust
strategy to fit the weights to the approximate model of full-scale model in step III.

5.1 Exact Model - Reference System and Application

The design of the reference system is performed using the TensorFlow framework, and the classes
native to the framework are investigated concerning the accuracy of the network. The entire
investigation is documented in Appendix B and central takeaways are presented in this section. In
addition to the information regarding the structure and functionality of a CNN from section 2.1; the
CNN is designed using methodologies native to TensorFlow. This CNN will act as a bridge between
state-of-the-art machine learning algorithms, and the use of approximate arithmetic units.

In section 2.1 a block diagram was presented in Figure 2.1, describing the procedure of designing
NNs and subsection 5.1.1, 5.1.2, and 5.1.3 follow the three phases of that procedure.

5.1.1 Preliminary Phase

The main purpose of the reference system is to provide a comparison for another implementation
of an almost identical system, and to that extent any machine learning problem would suffice. For
visualisation purposes, the identified problem is chosen to be image classification.

Due to the arbitrary choice of image classification, the data collection can be reduced to download-
ing a premade dataset. The choice of the dataset will be based on the following parameters:

Table 5.1: Three important parameters for the choice of a dataset

The dataset should be large enough to fully train a CNN, without requiring
gathering more data than is already available

The difficulty should be high enough to make it a challenge for

Difficul . e
ty state-of-the-art image classification networks

Combined with the difficulty there should be a way to configure the
Configurability difficulty of the problem, to accommodate for a small-scale network as
well as a large-scale network

MNIST [50] is a classical example of image classification, the size is sufficient and visualization is
simple. However, it is not a difficult task to classify the dataset. Using the 92 submissions on Image
Classification on MNIST [120] as an indication of the difficulty and noting the lowest accuracy is
92,47 % it is clear to see, that it is not a difficult classification problem. Another well-known image
classification dataset is the CIFAR-10 [121] dataset. Again, the size is sufficient, visualisation is
simple, and the difficulty is increased compared to MNIST. Based on 240 submissions on Image
Classification on CIFAR-10 [120] the lowest score is an accuracy of 80,45 %. The configurability of
the dataset is decent with 10 classes, however, CIFAR-10 has a sibling dataset: CIFAR-100 with 100
classes. The increase in difficulty from CIFAR-10 to CIFAR-100 is notable, however, not overwhelm-
ing for state-of-the-art models. The span of accuracies for models not using extra training data
on CIFAR-10 from Image Classification on CIFAR-10 is 60,6 % to 99,5 %, whereas the models not
using extra training data on CIFAR-100 from Image Classification on CIFAR-100 [120] is 19,49 % to
93,36 %. CIFAR-100 is chosen to be the dataset on with which the models will be trained on.

Page 58 of 219

https://paperswithcode.com/sota/image-classification-on-mnist
https://paperswithcode.com/sota/image-classification-on-mnist
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-100

Chapter 5 5.1. EXACT MODEL - REFERENCE SYSTEM AND APPLICATION

The data representation of the CIFAR-100 is sets of images and their corresponding labels. The
images are of the shape (32, 32, 3), with each value formatted as an unsigned 8-bit integer. In Fig-
ure 5.2 five examples are depicted: a raccoon, a cloud, a lamp, a keyboard, and a beetle, respectively.

raccoon cloud lamp keyboard beetle

A=F 0

Figure 5.2: 5 example images from CIFAR-100 represented as 32 x 32 colour images.

In the creation of a small-scale neural network, the complexity of the model should be proportionate
with the complexity of the dataset. For the small-scale network, the data should be “simpler”,
whereby the first layer of the CNN can be reduced. The dataset can be reduced to 1/3 of its size by
converting to grayscale. Multiple ways of converting images to grayscale exists, however, most of
the models are concerned with the perception of the human-eye and is just a weighted average
over the colours for each pixel, the grayscale conversion will be performed as the mean of the
RGB-values.

raccoon cloud lamp keyboard beetle

Figure 5.3: 5 example images from CIFAR-100 represented as 32 x 32 grayscale images.

Each datapoint is still comprised of 32 - 32 = 1024 8-bit integers, which is incongruent with a small-
scale network. The dataset can be reduced further to 1/12 of its original size, by compressing the
images to 16 x 16 grayscale. The resizing method was chosen based on the results of section B.3 in
Appendix B, and a plot of the accuracy using different resizing methods are visualised in Figure 5.4.

0.6
. accuracy —— AREA
j 044 val_accuracy —— BICUBIC
8 e > —— BILINEAR
= - GAUSSIAN
g 021 R e T T TR LANCZOS3
< LANCZOS5

0.0 T T T T MITCHELLCUBIC

0 50 100 150 200 250 ____ NEAREST .NEIGHBOR

Epochs []

Figure 5.4: (Copy of Figure B.4) The accuracy as a function of epoch training the same model on differently
resized datasets. The loss function is MeanSquaredError and the optimisation algorithm is adam. The
evaluated training accuracies are depicted as fully-drawn lines, whereas the evaluated testing accuracies are
depicted as dotted-lines.

Using TensorFlow datasets available resizing methods, LANCZOS3 was chosen to be the resizing
method, since it reaches the highest peak accuracy in Figure 5.4.

Page 59 of219

Chapter 5 5.1. EXACT MODEL - REFERENCE SYSTEM AND APPLICATION

raccoon cloud lamp keyboard beetle

Figure 5.5: 5 example images from CIFAR-100 represented as 16 x 16 grayscale images after being resized
using LANCZOS3.

The outcome of the preliminary phase is thus a complexity reduced CIFAR-100 dataset consisting
of 50.000 training examples, 10.000 test examples, in the shape (16, 16) of 8-bit integers. The labels
are converted to one-hot encoding.

5.1.2 Design Phase

There is no analytical process with which an optimal neural network can be designed, so trial-and-
error is somewhat necessary. From TensorFlow the basic CNN model from example Convolutional
Neural Network (CNN) is taken and utilised as the base network. The example CNN performs image
classification on CIFAR-10; changes have to be made to accommodate the chosen (and modified)
dataset:

¢ Adjust kernel size: Since the images have been resized to (16, 16), the kernel size pro-
duced an error: ValueError: Exception encountered when calling Conv2D.call().
Negative dimension size caused by subtracting 3 from 2, whichwassolved by chan-
ging the kernel size to (2, 2).

¢ Adjust output layer: The output of the network should be directly comparable to the labels,
which have been one-hot encoded; the output vector should be (100, 1) corresponding with
the 100 classes.

This model, base_model, is a seven layer CNN with three convolutional layers, two pooling layers,
a flattening layer, and two dense layers (not in that order), where all kernels are 2 x 2. The model
could potentially be implemented at this stage, however, as depicted in Figure 5.4 this basic
implementation using the modified dataset only reaches a test accuracy of ~ 20 % before it is
overtrained. To optimise the model, the parameters of the optimizer are heuristically chosen.
Firstly, the optimisation algorithm was tested. Although adamax takes relatively many epochs to
reach peak test accuracy, it reaches the highest test accuracy and the effect of overtraining is
seemingly negligible compared to the others, and was therefore picked.

Another parameter that can be changed in the optimizer is the loss-function, with adamax as
optimisation algorithm, all the readily available loss functions from TensorFlow were used to
train the same network. The results are depicted in Figure 5.6, where BinaryFocalCrossentropy
and SquaredHinge reach a notably higher test accuracy. BinaryFocalCrossentropy reaches a
higher accuracy in fewer epochs than SquaredHinge, and is chosen to be the loss function for the
small-scale networks.

Comparing the val_accuracy using BinaryFocalCrossentropy in Figure 5.6 with the accuracies
reached in Figure 5.4 the choice of adamax and BinaryFocalCrossentropy has improved the
accuracy by around 5 percentage points, furthermore, the accuracy in Figure 5.6 does not show
signs of being overtrained.

Page 60 of 219

https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/images/cnn

Chapter 5 5.1. EXACT MODEL - REFERENCE SYSTEM AND APPLICATION

0.6
accuracy BinaryCrossentropy
054 val_accuracy —— BinaryFocalCrossentropy
—— CategoricalCrossentropy
— 041 CategoricalFocalCrossentropy
— CategoricalHinge
g 03 CosineSimilarity
8 ’ — Hinge
) —— Huber
< 0.21 —— KLDivergence
—— LogCosh
0.1 —— MeanAbsolutePercentageError
/ MeanSquaredError
0.0 ; T - t MeanSquaredLogarithmicError
0 50 100 150 200 250 —— SquaredHinge
Epochs []

Figure 5.6: (Copy of Figure B.8) The accuracy as a function of epochs, training the same model on the same
dataset using different loss functions. The evaluated training accuracies are depicted as fully-drawn lines,
whereas the evaluated testing accuracies are depicted as dotted-lines.

The optimisation algorithm and loss function do not change the architecture of the model, but
rather how it is trained. It should be possible to tune the architecture of the model to reduce the
amount of trainable parameters, with a disproportionate affect on its accuracy, and for that purpose,
the model architecture was also investigated.

The depth of the was tested by adding/removing layers from the base model. Out of the five models,
the base model had the highest accuracy and the second-most accurate model had an increase in
total number of parameters. The depth of the model was chosen to remain unchanged. The width
of the model, however, was also tested and an excerpt of the tested models can be seen in Figure 5.7.
The base_model is the starting point, however, all the other models have fewer parameters, which
can be seen in Table 5.2.

0.4

accuracy base_model
val_accuracy —— nl6_model
— 124 _model
n32_model
n40_model
n48_model
—— 1nd6_model

0.0

0 50 100 150 200 250
Epochs []

Figure 5.7: (Copy of Figure B.11) Accuracy as a funciton of epochs, training models with varying depth. The
evaluated training accuracies are depicted as fully-drawn lines, whereas the evaluated testing accuracies are
depicted as dotted-lines.

From Table 5.2 and Figure 5.7 it can be seen that n40_model has nearly the same testing accuracy
as the base_model, n48_model, and n56_model, however, the total amount of parameters are half
of the Base Model. Furthermore, the n40_model is just as fast per epoch as the base_model, and
significantly faster than both n48_model and n56_model.

Page 61 of219

Chapter 5 5.1. EXACT MODEL - REFERENCE SYSTEM AND APPLICATION

Table 5.2: (Copy of Table B.10) Base model and the model with fewer parameters. For each model the number
of parameters and the mean time per epoch are listed.

base_model 47812 1,61
nl16_model 4900 1,05
n24_model 9604 1,16
n32_model 15844 1,40
n40_model 23620 1,60
n48_model 32932 1,84
n56_model 43780 2,15

Increasing the width yielded no increase in accuracy, however, a smaller model retained a good
testing accuracy with a significant decrease in the number of parameters: n40_model with only
23620 parameters.

5.1.3 Implementation Phase

The purpose of the developed small-scale CNN is to have a reference system of low complexity,
that can be implemented with approximate arithmetic and used to test/research the influence of
approximate computing on neural networks. In subsection 5.1.2 the “final model” (n40_model) was
chosen, however, the accuracy of this model only reaches around 25 %. Approximate computing
techniques are appropriate to implement in error-tolerant scenarios, however, with this relatively
low accuracy it may be fallacious to say that the model is error-tolerant given the problem of image
classification on CIFAR-100. However, as previously mentioned, CIFAR-100 was chosen so that the
number of classes could be adjusted to accommodate different levels of difficulty. In Appendix B
under subsection B.6.2 the number of classes was adjusted to ensure a ~ 50 % accuracy for the
model to attain more leverage. Furthermore, in the same test, the effect of having bias was tested
and an excerpt of the accuracies can be seen in Figure 5.8.

1.0 5 Classes w Bias
—— 5 Classes w/o Bias
0.8 1 1 1 7 1 — 10 Classes w Bias
. 10 Classes w/o Bias
T 0.6 1 - . 15 Classes w Bias
%3 7 15 Classes w/o Bias
— 0.4 1 8 8 —— 20 Classes w Bias
— 20 Classes w/o Bias
0.2 1 § T —— 25 Classes w Bias
—— 25 Classes w/o Bias
0.0 T
0 2500 2500 2500 2500 250 — accuracy
Epochs [-|Epochs [-]Epochs [-]Epochs [-|Epochs [-] = val_accuracy

Figure 5.8: (Copy of Figure B.12) Accuracy and validation accuracy plotted as a function of number of epochs
in the interval [0, 250]. From left to right, the number of classes to perform classification on is incremented
by 5, and each combination is tried with and without bias.

Page 62 of 219

Chapter 5 5.1. EXACT MODEL - REFERENCE SYSTEM AND APPLICATION

The difference between using bias and not using bias is noted as mostly insignificant in the appendix,
however, for 5, 10, 15, and 60 classes there are differences (the accuracy with 60 classes can be
found in Figure B.12). For 5 classes the model is trained faster with bias, but they reach around
the same maximum validation accuracy. For 10 classes using bias outperforms not using bias. For
15 and 60 classes not using bias outperforms using bias. To simplify the implementation of the
manual implementation of the small-scale network, the bias weights are discarded going further.
This also reduces the total number of parameters.

Due to the goal of 50 % accuracy the model will perform classification on 10 classes (see Figure 5.8).
It is noticed, that the accuracies are very ragged and there are clear signs of overtraining, both of
which are unwanted in the model. Regularisation is seen as a method to minimise the effects of
overtraining and potentially “smooth” out the accuracies. L1, L2, and L1L2 regularisation with a set
of A-values have been tested in subsection B.6.2, where L2 regularisation was deemed effective. To
optimise the A-value for L2 regularisation another search was performed, and the results can be
seen in Figure 5.9

1.0
accuracy A = 0.0001
0.8 =xeree val_accuracy — A=10.0002
= A = 0.0003
§ 0.6 A = 0.0004
55' A = 0.0005
<8 0.41 A = 0.0006
0.9 — A =0.0007
— A =0.0008
004 . . . | —— X =0.0009

0 50 100 150 200 250 —— X =0.001
Epochs []

Figure 5.9: (Copy of Figure B.19) L2 regularisation with adjusted A-values.

From Figure 5.9 it is clear that the values 0.0001 and 0.0002 are the best performing of the tested
values. After 25 epochs, A =0.0001 reaches a higher accuracy than A = 0.0002, however, A = 0.0002
overtakes at around 125 epochs. Furthermore, both accuracy and val_accuracy are notably less
ragged for A = 0.0002, why this value is chosen.

Table 5.3: (Identical to Table B.14) Summary of the
final small-scale model (n40 Model) found by calling
model . Summary ().

The final model is summarised. The task
of the model is to perform image classi-
fication on 10 classes of the CIFAR-100

fod oy converting the images to gy I *
Layer Type Output Shape Params #
fied” by converting the images to gray- per L = -

scale by calculating the mean over the = ConvzD (None, 15, 15, 40) 160
RGB-channels. Furthermore, the (32 x 32) MaxPooling 2D (None, 7, 7, 40) 0
¥mages have been resized to 16 x '16 us- 1 oonveD (None, 6, 6, 40) 6400
ing the LANCZOS3 method. Optimisa- .
tion of the model is performed using the =~ MaxPooling2D = (None, 3, 3, 40) 0
adamax algorithm and the loss is calcu- Conv2D (None, 2, 2, 40) 6400
lated as BinaryFocalCrossentropy with

Fl None, 1
A =0.0002 L2 regularisation. The structure atten (None, 160) 0
of the model is shown in Table 5.3, the Dense (None, 40) 6400
kernels of the convolutional and pooling Dense (None, 10) 400

layers are all 2 x 2, and there are no bias
weights. In section B.9 the methods are ' Total parameters 19800 and trainable parameters

briefly described. 19800.

Page 63 of 219

5.2. APPROXIMATE MODEL - APPROXIMATE FORWARDPASS IN A CONVOLUTIONAL NEURAL
Chapter 5 NETWORK

5.2 Approximate Model -
Approximate Forwardpass in a Convolutional Neural Network

The reference system provided a model (i.e. Table 5.3) which solves the image classification on
a reduced CIFAR-100 data set. The purpose of designing the reference system was threefold; to
provide the architecture and design of the CNNs, to provide an accurate network to employ the
statistical models derived from the approximate arithmetic circuits presented in section 4.3, and to
potentially provide the trained kernels and biases to an approximate twin of the accurate network.
This section revolves around designing a simulation of the approximate twin. The approximate twin
should provide an option to compare the statistical model with the actual approximate distribution
in the network.

As mentioned in chapter 3, the benchmarking system should investigate the effects of approx-
imation in the inference stage of the designed CNN through simulation, i.e. before hardware
implementation. The design presented in the previous section is reused and methods to simulate
approximate computing techniques is implemented, specifically precision scaling and approximate
arithmetic circuits.

In short, the simulation implementation should allow the user to provide an approximate arithmetic
circuit and a FXP Q-format compatible with the design of the approximate circuits. It is chosen
to implement the approximate model in C++ since the authors are more familiar with memory
and datatype management compared to python. A block diagram illustrating the relationship/
interactions of the reference TensorFlow model and the approximate C++ model is shown in

Figure 5.10.
4 N
TensorFlow Accurate
> o 7 Output /
\, 7

v

Kernels and Approx. Approx.
Input Data ——@ -
| et :a - \B% Adder Multiplier

\ 2
Fixed-Point Approx. Approx
Quantiser C++ CNN Output

Figure 5.10: [llustration of the relationship between the reference TensorFlow model and the approximate
CNN. The two networks have identical architecture and are presented with the same inputs. The reference
system writes its kernels to a document, which the approximate model then adopts. Two predefined processes
are adopted, emulating approximate arithmetic units (i.e. approximate adder/multiplier). The dotted lines
represent the data flow that constitutes the interactions of the two CNNs.

The approach for implementing the CNN model in C++ is to develop classes for the convolutional,
pooling, and dense layers in the model, and then create objects of these classes corresponding
to the model from Table 5.3. The perceptron is also designed as a class since these are used both
for convolutional and dense layers. This property also enables evaluating a model with different
adders or multipliers for the various layers. A class diagram of the C++ implementation is seen in
Figure 5.11.

Page 64 of 219

5.2. APPROXIMATE MODEL - APPROXIMATE FORWARDPASS IN A CONVOLUTIONAL NEURAL
Chapter 5 NETWORK

FixedPointConverter PoolingLayer

- decimalBits : int - windowSize : int
- fractionalBits : int

+ PoolingLayer (int windowSize)

+ FixedPointConverter (int decimalBit's, fractionalBits) + applyMaxPooling (std::vector<Matrix> input)
+ convertToFxP (std::vector<float>) : int
+ convertToFIP (std::vector<int>) : float
+ truncateL.SBs (std::vector<int>) : int
A
ConvolutionalLayer FullyConnectedLayer

- sizes : Sizes - inputSize : int

- filters : std::vector<Matrix> - NoPerceptrons : int

- biases : std::vector<int> - perceptrons : std::vector<Perceptron>

- perceptrons : std::vector<Perceptron>

+ FullyConnectedLayer (int inputSize, noPercerptrons)

+ ConvolutionalLayer (Sizes size) + forward (std::vector<int> input, weights. int bias)

+ applyConvolution (Matrix input)

+ updateFilters (std::vector<Matrix> newFilters) . _> ActivationFunction
+ updateBias (std::veclor(l‘nt> newBias) !
‘ + ReLU (value)
------------ Use-'
Perceptron Multiplier
si - adder : Adder + mul8s_1KV6 (int A, B) : int
12€S - multiplier : Multiplier ‘ + mul8s_1KV9 (int A, B) : int
+ inputDimension : int - Welght§ : Zt.t.i::vecto;'<1n>t> : mu:gsfﬁﬁ({nt% }]33) :. 1'nt
+ numberOfKernels : int - inputs : std::vector<int mul8s_ (int A, B) : int
+ kernelDimension : int . . .
+ Perceptron (std::vector<int> weights, inputs)
+ compute (int bias)
+ setAdder (Adder adder) Adder
+ setMultiplier (Multiplier multiplier)
+ setWeights (std::vector<int> newWeights) + add8se_8CL (int A, B) : int
+ setInputs (std::vector<int> newInputs) L] + add8se_8NH (int A, B) : int
+ add8se_8VQ (int A, B) : int
+ add8se_839 (int A, B) : int

Figure 5.11: Class diagram of the implementation of the reference CNN in C++. The structured representation
shows the modular configuration of the different layers in the implementation. The connections with a filled
diamond denote a composition relationship, dotted arrows denote dependency and solid arrows denote
association. Each class’s methods and attributes are denoted, and the naming scheme should describe
functionality.

The class diagram shows the fundamental building blocks of the CNN, represented as classes for
simple modification. The convolutional and fully connected layers are the ’computational’ classes
and are composed of objects of the perceptron class. The fact that both layers are constructed
using objects of the same class is due to a requirement for modularity of the arithmetic operations,
hence the perceptron class is composed of approximate adders and multipliers. The perceptron
class depend on the activation function class, which in this implementation only holds the ReLU
method.

The FXP-converter class is auxiliary to the remaining classes which all utilise FXP number repres-
entation, hence the conversion methods native to objects of this class is necessary, for FLP inputs
and outputs.

The pooling layers are only implemented with a method for max-pooling and are associated with
any of the remaining classes.

The specific implementation of the CNN from Table 5.3 is presented in the object diagram from
Figure 5.12.

Page 65 of 219

612J0 99 a3ed

g-format 6:FixedPointConverter

FractionalBits = 6
DecimalBits = 2

Layer 0:C Layer

Layer

Layer 4:C Layer

Layer 2:C

g-format 12:FixedPointConverter

FractionalBits = 12
DecimalBits = 4

Perceptron_u:Perceptron

InputDim = 16x16x1
numKernels = 40
kernelDim = 2x2

Layer_1:PoolingLayer

WindowSize = 2x2

7 Perceptron 1:Perceptron [—

% i
%
%, L
% N
%, f
%
2,
%,
2%
%,

Y4

| | mul8s 1KV8:Multiplier

ReL.U:Activation Function|

InputDim = 7x7x40
numKernels = 40
kernelDim = 2x2

Layer 3:PoolingLayer

WindowSize = 2x2

Perceptron_u:Perceptron

Perceptron_1:Perceptron [—

LH

|| mul8s 1KV8:Multiplier

[Rel.U:Activation Function|

InputDim = 3x3x40

Layer_6:FullyConnectedLayer

Layer_7:FullyConnectedLayer

numKernels = 40
kernelDim = 2x2

Perceptron_u:Perceptron

l] Perceptron 1:Perceptron [—

L0

|| mul8s 1KV8:Multiplier A

4
%,
%,
9

|ReLU:Aclivalinn Funclionl

Figure 5.12: Object diagram of the CNN model presented in Table 5.3. The objects are instantiations of the classes presented in Figure 5.11. The connections in this
object diagram illustrate a composite relationship between objects. The arrows indicate the input-output relationship between objects.

Perceptron_u:Perceptron

=

NumPerceptrons = 40

Perceptron_u:Perceptron

NumPerceptrons = 10

Perceptron_1:Perceptron [—

|| mul8s 1KV8:Multiplier
|ReLU:Aclivalion Fullclionl

Perceptron_1:Perceptron [—

|| mul8s 1KV8:Multiplier

|ReLU:Aclivalion Fullclionl

G 11deyD

TVHNAN TVNOLLNTOANOOD V NI SSVdAYVMUOT ALVINIXOYUddV - THTJOW ALVINIXOdddV ¢S

AHOMIAN

5.2. APPROXIMATE MODEL - APPROXIMATE FORWARDPASS IN A CONVOLUTIONAL NEURAL
Chapter 5 NETWORK

From this object diagram, it is noticed that each convolutional and fully connected layers contain ob-
jects for each resulting perceptron. The constructors of the classes are responsible for assigning the
appropriate weights and inputs to the perceptron objects native to the class. This means that from
a user’s perspective, it is only necessary to specify the architecture of a desired CNN, the weights
of each layer, and which approximate multiplier to use to comprise an approximate simulation.
It is further noticed that the choice of approximate arithmetic can be different from layer to layer.
This is advantageous if one layer contains deep perceptrons of many MAC-operations and more
accurate approximations are desired, compared to simple layers. However, for all implementations
in this project, the multipliers are kept congruent for all perceptrons.

A thorough description of each method and attribute is omitted from this presentation as this is
considered beyond the scope of this introductory overview, which aims to provide a high-level un-
derstanding of the key concepts and functionalities. However, the description of the convolutional
layers and the FXP-converter are presented in the following subsections as these are considered
non-trivial. The scripts, files, and classes for the C++ implementation can be found in GitHub
through Appendix A under the directory /Perceptron/.

5.2.1 Convolutional Layers

The convolutional layer gets the weights from the TensorFlow model. The weights in TensorFlow are
represented in a 4-dimensional structure of the size (filter_height x filter_width x input_channels x
filters). The implementation loops over the input_channels when convolving the input and
weights as presented in Figure 5.13. Given an input consisting of j channels to a layer of k fil-
ters, j structures of k kernels are constructed. From the first structure, the first kernel is convolved
with the first input channel, the first kernel from the second structure is convolved with the second
input channel, etc. the outcome of which is a 3-dimensional structure, with the height and width of
(input heigth — kernel heigth + 1) and (input width — kernel width + 1), respectively, and the depth
is j. This structure is summed over the 3rd axis, shrinking the depth to 1, and resulting in the first
FM (Feature Map). This process is repeated k times utilising different kernels, resulting in k FMs
that are put together as the output.

<\ wm Feature Map 0
Y =R
fihe>\/ \
* e = Feature Map 1 \
filters

Input

wm
Channels
fihe>\/ \

Figure 5.13: Implementation of convolution in the approximate model. An input is convolved with as many
kernel-structures as input channels.

This implementation is based on purely the structure of the weights and the visualisation is not
intuitive. However, another equally valid method would be to loop over the filters, rather than the
input channels. The visualisation is presented in Figure 5.14. Each filter has the size filter heigth x
filter width x input dimensions, and the convolution can be seen as can be seen as taking the first
filter and a slice of the input of equal size, compute the entry-wise multiplication and sum the
products, yielding one pixel of the feature map. This is repeated for all “slices’” of the input, with
overlap, and 1 filter results in 1 feature map. After this has been done using all filters, the resulting
feature maps can be stacked, comprising the output of the layer.

Page 67 of 219

5.2. APPROXIMATE MODEL - APPROXIMATE FORWARDPASS IN A CONVOLUTIONAL NEURAL
Chapter 5 NETWORK

Feature Map 0

I
Input
= =
\
Input .ﬂ
Channels

N\

ezl
=}

eature Map \
\ —
Input .‘
Channels .‘ /
Input ﬂ
Channels

Figure 5.14: Alternative convolution method. A filter is entry-wise multiplied with an equally sized slice
of the input and the products are summed to get the value of one pixel. This is performed for all possible
slices, resulting in a feature map. One feature is thus computed per filter, and the feature maps are stacked,
comprising the output of the convolutional layer.

Although the two methods are equally valid, the method in Figure 5.14 is presented, as it is more
intuitive, and will be used again during the development of the probabilistic model.

5.2.2 Fixed-Point Precision Scaling

The kernels and input images of the CNN are provided by the TensorFlow implementation as
illustrated in Figure 5.10. However, there is a clear mismatch between the f1oat32 representation
of the weights and the FXP (fixed point) representation required for the approximate circuits. A
class is implemented, where converters can be instantiated to process values from/to f1loat32. The
class must be aware of which FXP format the value should be converted to, i.e. the converter is
constructed with a Q-format, reserving a specific number of bits to represent the integer-value of the
number-to-be-converted, and reserving a specific number of bits to represent the fractional-values.

Converting from f1oat32 to Qn.mrequires utilisation of the int-types in C++. There is no type
for interpreting Q-format fixed-point values, however, as seen in Eq. (2.14) and (2.15) Q-formats
are essentially a scaled version of uints and ints, respectively. This scaling factor, 27, can be
used to go between the int-types and f1loat32, by scaling the f1oat32 value with the reciprocal
of the scaling factor. The product of a f1oat32 and the reciprocal scaling factor is not guarenteed
to be an integer value, why truncation is performed, and the operation is thus non-reversible. In
Example 5.2.1 an example of this conversion is presented.

Example 5.2.1: Converting a f1oat32 to an int in Q2.6 format

Say a weight, a = 1.6453 has to be represented in signed Q2.6 format. First, the value is scaled:
Ascaled = a-2™ = 1.6453-2° = 105.2992

This value can not be represented as an integer, however, by casting this value to an int in
C++, truncation is automatically applied, and a@scaleq = 105. In two’s complement, this value
as an 8-bit signed integer is 0110 1001:

0O(1(1/0|1]0]0]|1

Examining this 8-bit signed integer as a signed Q2.6, the decimal value represented can be
found: One sign-bit ;, one bit for integer values , and 6 bits for the fractional value -, yields:

ages = —]0]-2' +[1]-2°+[1]-2 1 +[0]- 272 +[1]-273 +[0]- 2* +[0]-27% +[1]- 27® = 1.640625

aqo.¢ is a bit smaller than the original value for a, however, that is expected due to the
truncation.

Page 68 of 219

Chapter5 5.3. PROBABILISTIC MODEL - MODELLING ERRORS IN FORWARD PROPAGATION

Converting from Qn.m to float32, can be performed by scaling the ints from C++ with the
factor 27". However, it is not possible to multiply an int with a fractional value, the int is cast to a
float32 just before the scaling is applied.

Truncation of the Product is another method defined for the converter class. The product of two
values in Qn.m is represented in Q2n . 2m format. Say the product also has to be passed through an
adder, which expects a value in the format Qn.m. These formats are incongruent and some of the
bits must be removed. Although the implementation allows for defining the Q-formats for each
layer/perceptron, one Q-format is applied globally. This means, that the product of two values in
Qn.m, which should be represented in Q2n. 2m, will also be represented in Qn.m, i.e. n integer bits
are removed (from the left) and m fractional bits are removed (from the right). There is an innate
risk of overflow associated with this approach, however, in the exact model the weights are found
using L2 regularisation, and seemingly not too large.

5.3 Probabilistic Model - Modelling Errors in Forward
Propagation

The goal of step II of the benchmarking system is to evaluate the user-provided approximate
arithmetic circuits in a CNN which have been developed in the previous sections. The purpose is
to develop a probabilistic model for the errors introduced by the approximate arithmetic circuits
applied to a copy of the TensorFlow model derived in section 5.1. The probabilistic model will then
be evaluated using a statistical test using the C++ simulation as samples of observations.

Step 1I of the benchmarking system is essential as the probabilistic model of the approximate
arithmetic circuits can be tested on the reference system ensuring generalisation, before applying
the same modeling principles in a scaled model in step three.

In regards to modeling the effects of employing approximate arithmetic circuits in a user-specified
CNN, a decision is to be made for the interface between modeling and simulation. section 5.2
provides an option for simulating the effect on the CNN derived in section 5.1. However, this simu-
lated error in prediction accuracy on the CIFAR-100 reduced data set is, doubtless not generaliseable
to other CNNs with different applications. Oppositely, modeling the input/output relationship of
the CNN derived in section 5.1 given an approximate circuit will neither suffice, as the model once
again becomes application specific. The strategy chosen in this project is to derive a probabilistic
model for the output of a perceptron, as a function of the chosen circuit and the length of the vector
of weights. This solution should provide a model that can be sampled and added as noise for the
perceptrons used in step 3, regardless of the network architecture and application.

P CEEEEEE—
n— Approx.

Wi 3] Multiplier
—

P E—
2 —— Approx.

W2 y] Multiplier
—

P EEEEEE—
B3 — Approx.

W3y Multiplier
———————

U

Approx.
Adder

P
7 ——> Approx. I
Wj 3] Multiplier I

Figure 5.15: Signal flow diagram of a perceptron with j inputs and weights using approximate arithmetic
circuits. This figure should illustrate that an additional input/weight combination only appends one approx-
imate adder and multiplier.

Page 69 of 219

Chapter5 5.3. PROBABILISTIC MODEL - MODELLING ERRORS IN FORWARD PROPAGATION

A perceptron can be modeled as a series of MAC-operations. The length of this series is determined
solely by the amount of weights within a perceptron/filter in the CNN. This point is illustrated in
Figure 5.15. This perceptron design is congruent for both fully connected and convolutional layers,
further assuring the scaling and generalising ability of the probabilistic model in step 3.

5.3.1 Modelling Errors of Approximate MAC-operations

The principle of the probabilistic modeling is to describe the error of the result of the MAC-
operations as an RV, with a PDF (Probability Density Function) that can be sampled to emulate
the actual error for the approximate circuits. It is noticed that in addition to the error introduced
by the approximate circuits, a truncation error is introduced by the necessary quantisation and
FXP-conversion to the appropriate word length for the given circuit. Initially, it is assumed that all
weights and inputs are congruent with the appropriate FXP values, to simplify the analysis.

In section 4.3 the approximate adders and multipliers were simulated assuming the operation’s
inputs were uniformly distributed throughout the input space. The distribution of error conditioned
by the joint distribution of the inputs was found by evaluating the circuits using every element in
the input space exactly once.

For a trained CNN the kernels are known in advance, meaning that the error of the approximate
multiplier is a distribution conditioned on the first input, which is an RV, and the second input
which is a constant. The error can then be described as:

E=PUI,w) -1 w (5.1)

where:

E The error modelled as an RV
P(.,-) | The mapping performed by the approximate circuit

The input modelled as a uniform RV distributed over

I A = Precision range of a B-bit 2’s complement fixed point number.

w The weight of a certain kernel

The distribution of the RV E is described as a conditional PMF, i.e. pg;,.,(eli, w). This is modelled
as a degenerate PMF, as the error is deterministic for a given sample of I, i.e. P(E = e; | =i, w) = 1.
The error is marginalised over A as the weighted sum of the degenerate PMFs Vi € A, I =i as shown
in Eq. (5.2).

PEw(elw) =Z<5(e—ei,w)-P(I:) (5.2)

Eq. (5.2) is obtained empirically by evaluating Eq. (5.1) exactly once for each value of I given a
certain w. If an 8-bit multiplier is used this results in a LUT with 256 PMFs, one for each possible
weight w.

The scenario is slightly different for the approximate adders as both inputs should be treated as
RVs because these are the outputs of the approximate multipliers. The goal is once more to model
the error of the output of the adder as an RV which is done for the case where the output of two
approximate multipliers is the input to an approximate adder (i.e. a perceptron with two inputs
and weights), shown in Eq. (5.3).

Page 70 of 219

Chapter5 5.3. PROBABILISTIC MODEL - MODELLING ERRORS IN FORWARD PROPAGATION

E,=SU,w)-S (5.3)

where:

E, | The error modelled as an RV
S | The mapping from input to output for the perceptron realised by the approximate circuit.
S | The mapping from input to output using accurate MAC operations

A derivation of the error of the perceptron as a random variable is shown in Eq. (5.4).

S=DP,+P,+E 4 (5.4)
S=P1+Pr=11- w1 +1-wy

Py =P +Em

Py =Py +E;»
U

Ey=Em +Ems+Eaaqa (5.5)

This means that the error of the perceptron can simply be modelled as the sum of the RVs of
each arithmetic circuit! The PMF of the error in the approximate multipliers was conditioned on
the known weights of the perceptron. For the approximate adders, the inputs are the outputs
of the approximate multipliers. Therefore the PMF is modelled as the conditional probability
PE,u4lPi=p1,Pr=ps (eqaadlp1, p2)- This is also a degenerate PMF as for the approximate multipliers and

the PMF can be marginalised over the inputs P; and P as:

PEaaa(€) =Y. 8(e—eqaa) - P(P1 = p1)P(Py = p) (5.6)
pP1 p2

For the approximate multipliers, the input RV, I, was assumed to be uniformly distributed, making
empirically obtaining the PMF a simple task. However, for the approximate adders, the inputs
are the approximate products which add complexity to the model, as P(P; = p;), P(P, = p,) are
no longer assumed uniform. To empirically obtain the output of the last adder in the series of
MAC-operations, requires knowledge of the output distribution of j'* multiplier and the second
to last MAC-operation, the latter of which requires the (j—l)th multiplier and the third to last MAC-
operation and so on. Therefore the chronology of the empirical distribution is essential.

Another approach would be to empirically obtain the output of an inner product with a certain
approximate multiplier and adder combination, as a function of the number of inputs. This arrives
with the implication that the input-output relationship has to be observed ideally for any number
of inputs to a perceptron. This approach presents a computational-labour-intensive approach as
the expansion of the input and output spaces now needs to be simulated.

It has previously been discussed that the approximation efforts are most effective in multiplication,
as these are far more complicated circuits than adders. Therefore it is assumed that multipliers have
the greatest interest in being implemented as approximate circuits in the CNN, why approximate
adders will be disregarded.

By only considering the multipliers of the accumulation of errors described in Eq. (5.5), the
problem becomes a sum of independent RVs. By the CLT (Central Limit Theorem) it is known
that the sum (or mean) of a large number of 1.I.D. (independent and identically distributed) RVs
is approximately normally distributed [122][123]. Unfortunately, the outputs are not identically

Page 71 of219

Chapter5 5.3. PROBABILISTIC MODEL - MODELLING ERRORS IN FORWARD PROPAGATION

distributed as different weights result in a specific distribution and the number of independent RVs
that are summed in the CNN model is 4 (i.e. in the first Conv2D-layer in Table 5.3). These properties
imply that the CLT in the classical sense does not apply. The PMF of the accumulated error (i.e.
pE,(ey)) is calculated by convolving the individual error PMFs of each multiplier since the addition
of RVs is the convolution of their PMFs.

The next step is to fit a Gaussian distribution to the obtained PMF. The purpose of making a
parametric fit of continuous RV is to accommodate for the truncation errors introduced by the
FXP-conversion described in subsection 5.2.2. Truncation introduces an error by removing the LSBs
after the desired word length. As both weights and inputs are drawn from continuous distributions,
it requires an infinite word length to represent their numbers accurately. The error from the
truncation is however bounded by the chosen word length (B) as:

eQ < 278

The truncation error is assumed to be accounted for by fitting a continuous distribution to the PMF.
The chosen continuous distribution is Gaussian as it is assumed to be the best parametric option
due to the CLT. The Gaussian distribution is fitted using a MLE (Maximum Likelihood Estimate) .
The MLE of a Gaussian is the mean (u) and standard deviation (o):

iy = Zeu - pPE,(ey)

ey

02y =) (ew—? pE,(ew)

ey
The final model is therefore given in Eq. (5.7)
Eu NJV(,auyOtzu) (5.7)

Since the focus of this project is delimited to investigating the approximate multiplier’s effect on
the CNN a probability model is derived for the trained CNN model.

5.3.2 Adding Error to the CNN

The modeled error from Eq. (5.7) is implemented in python, to be compatible with the CNN
implemented using TensorFlow. The flow of obtaining the model is illustrated in Figure 5.16.

Get Weights Get Conditional Convolve Fit Gaussian RAetl;llél‘l
& PMFs PMFs Using MLE 12254

A

| PMF LUT

Figure 5.16: Conceptual flow diagram illustrating the methods utilised for obtaining a probabilistic model
for each perceptron in the CNN.

The implementation of the probabilistic error modeling is provided in Appendix A under /statistic_-
test_3_models/NoisyLayers.py. The error PMFs are provided in a . csv file used as a LUT de-
veloped in step one (i.e. section 4.3). The weights are read from the tf.layer.kernel, to use as
indexing in the LUT. Since the multipliers are multiplying in FXP-format, the FLP-represented

Page 72 of 219

Chapter5 5.3. PROBABILISTIC MODEL - MODELLING ERRORS IN FORWARD PROPAGATION

weights are firstly converted by scaling by 25 where B is the word length of the inputs to the
approximate multipliers.

The python library scipy. statsis used to provide the MLE using the method scipy.stats.fit(norm,pmf)
which provides the MLE parameters given the Gaussian distribution and the error PMF.

To verify the fitted normal distribution a test case is specified using the weights from . /statistic_-
test_3_models/1KV9_weights/save_45/layer_6/weights.csv found in Appendix A. This is
the weights of the 6" layer in Table 5.3, which is a fully connected layer with 40 perceptrons,
meaning that 40 sets of 160 weights are provided. The LUT of the multiplier mul8s_1KV9 (see
Appendix C) is used for this example. The convolved PMF given the weights specific to the first
perceptron is plotted along the fitted Gaussian distribution. This is shown in Figure 5.17.

Convolved PMF and Fitted Distributions

- Fitted Gaussian
0.010 1 Convolved PMF
0.008 A
2 0.006 -
=
©
Ke]
o)
a
0.004 A
0.002 1
0-000 T T T T T T T
—-1200 —-1000 —800 -600 —-400 -200 0
Error sum

Figure 5.17: The accumulated PMF plotted along the fitted Gaussian distribution. By visual inspection, it is
noticed that the fitted Gaussian seems to model the calculated PMF accurately.

Firstly it is noticed that the calculated PMF seems to follow a Gaussian distribution accurately.
This is to be expected due to the CLT as previously described. The mean of the fitted Gaussian
distribution for these specific weights is —655. As presented in Appendix C the MAE of the mul8s_-
1KV9 is 4.25. A quick estimate of the mean of the distribution for a perceptron with 160 weights
is 4.25-160 = 680. The cause of the calculated mean of the fit not matching this estimate exactly,
is that the individual PMFs given a weight, differ from the total MAE. By inspection of the fitted
distribution for the remaining weights shows that the fitted means are distributed around the
estimate, hence it is reasoned that the MLE fit of the accumulated PMFs works as it was intended in
Eq. (5.7).

Given the ability to generate an error fit based on the weights used in a series of MAC-operations,
adding the modelled error is possible, it is desired to implement custom classes that can be used
as layers in the TensorFlow framework. These noise layers should be general and scalable since it
should be possible to reuse them in step III, where a user should be able to apply the layers to their
models. The noise should be added just after convolution/multiplication, however, usually the

Page 73 of 219

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fit.html#scipy.stats.fit

Chapter5 5.3. PROBABILISTIC MODEL - MODELLING ERRORS IN FORWARD PROPAGATION

activation function is applied as the last step of a layer. It is possible to apply None as the activation
function and create a separate layer only performing the activation function, however, this would
force the user to change their model and add more layers. Instead, a set of dense- and convolutional
layers are created based on the TensorFlow implementation of tf .keras.layers.Dense () and
tf.keras.layers.Conv2D (). The custom layers will perform the same computations, include an
activation function, and have the possibility of adding noise from a distribution created from the
weights of the layer and the error characteristics from the supplied approximate arithmetic circuit.
The process of generating the distributions is simplified since the layers will have the weights readily
available and be aware of how the output is calculated, i.e. be aware of which weights should be
included when generating the distributions.

Dense Layers with Noise - NoisyDense ()

The dense layer is comprised of a set of perceptrons. Each perceptron has a set of weights equal
in length to the number of inputs. The inner product of the input and the weights are computed,
yielding one value per perceptron. The implementation of the custom noisy dense layer will follow
these steps when computing the outputs:

I) Perform the inner product of the inputs and the weights using tf .matmul ()
1) Generate a tensor of the same size as the output filled with zeros
III) Fit the “error PMFs” of the weights to one normal distribution per perceptron
IV) Sample from the error distribution of each perceptron and add the error to the tensor of zeros
V) Sum the result of the inner product with the error
VI) Pass the result through the activation function

Furthermore, to accommodate batches another dimension is added to the output, which now has
the shape (batch x perceptrons). This does not change the behaviour of tf.matmul (), however,
when sampling from the error distribution the number of samples is now equal to the number of
inputs.

Convolutional Layers with Noise - NoisyConv2D ()

The convolutional layer is comprised of filters. Each filter has a set of weights, with the shape of
input channels x kernel width x kernel height. However, the method of applying error is very similar
to the case of dense layers. In Figure 5.18 the method to compute the value of the first “pixel” of
two feature maps can be seen: A 3-dimensional filter of weights is entry-wise multiplied with a
slice of equal size of the input, the result of which is summed to one value. The filter is then reused
by taking another slice of the input, multiplying, and summing, resulting in the value of another
“pixel” in the same output feature map. When adding errors to the computed feature maps, it is
worth noting that this means that all entries in a feature map are calculated based on the same
filter, i.e. the same set of weights are utilised to generate an entire feature map. All error values for a
feature map can thus be sampled from the same distribution.

Filter 0 Feature Map 0
Input <\
. NN\
—\ =
Inpu Qutput
Channels N N\

* 4 —
Filter 1 Feature Map 1
Input\\
Channels KK
Inpux\t
Channels

Figure 5.18: Convolution of a 3-dimensional input and two filters.

Page 74 of 219

Chapter 5 5.4. TRAINING THE CNN WITH APPROXIMATE ARITHMETIC

The implementation of the custom noisy convolutional layer will follow these steps when computing
the outputs:

I) Perform the inner product of the inputs and the filters using tf . matmul ()
II) Generate a tensor of the same size as the output filled with zeros
III) Fetch the weights of a filter and convert them to a list
IV) Fit the “error PMFs” of the weights to one normal distribution per filter
V) Sample from the error distribution of each filter and generate a ‘“‘feature map of errors”
VI) Sum the feature maps from tf .matmul () with the “feature maps of errors”
VII) Pass the result through the activation function

Furthermore, to accommodate batches another dimension is added to the output, which now has
the shape (batch x input width - filter width + 1 x input height - filter height + 1 x filters). This does
not change the behaviour of tf .matmul (), however, when sampling from the error distributions
the number of “error feature maps’’ is now equal to the number of inputs.

Verification of Custom Noise Layers

To ensure that the custom layers are correctly designed, two small tests are performed on each
of the layers. The first test will use ‘“‘error PMFs”’ consisting of pure zeros, thereby sampling noise
with 0 mean and 0 variance, and the output of the layer will be compared to an identically con-
figured tf .keras.layers.Dense() and tf.keras.layers.Conv2D (), respectively. A randomly
generated input signal is processed by a custom layer and its TensorFlow counterpart, the output
of the custom layer is subtracted from the TensorFlow layer, and all nonzero-values are counted. If
there are any nonzero-values, the custom layer has not been implemented correctly. The script for
performing this can be found in Appendix A under /statistic_test_3_models/test_custom_-
layers.py. The results show no indications of nonzero-values, i.e. the custom layers produce the
same output as the TensorFlow layers, given error distributions with = 0 and o2 = 0.

The “error PMFs” are processed using the functions and methods from section 5.3. Given they work
as intended, it is verified, that “noise’’ is applied in the custom noise layers: Performing the same
test as before, but using “error PMFs’’ from an approximate multiplier, mul8s_1KV8, (almost) all
values should differ and the non-zero count should be high. Modifying the function test_noisy_-
layers () from Appendix Aunder /statistic_test_3_models/test_custom_layers.py toread
the “error PMFs” from mul8s_1KV8 yields a high non-zeros count, which is interpreted as the noise
is added.

5.4 Training the CNN with Approximate Arithmetic

To avoid ambiguity the meaning of training the CNN with approximate arithmetic is clarified: In
this section the problem regarding training/optimisation of a CNN, which utilises approximate
arithmetic operations to perform the MAC operations required for a neural network. The alternative
training approach would be a training of a CNN using the probabilistically modelled error, which is
not the focus of this section.

The exact model is a CNN using standard layers, optimisation algorithm, etc. from the TensorFlow
API (configured in section 5.1). The approximate model is architecturally identical to the Tensor-
Flow model, however, it is developed in C++ and it is possible to insert the bitwise calculations
that would comprise an approximate arithmetic adder/multiplier (developed in section 5.2). The
weights are shared between the two models, however, since the calculations in the C++ models can
be approximations, it is necessary to utilise the STE as opposed to developing, testing, and imple-
menting a general method for performing gradient descent on the C++ model with approximate

Page 75 of 219

Chapter 5 5.4. TRAINING THE CNN WITH APPROXIMATE ARITHMETIC

arithmetic in place. The STE has been effective for AXDNN [29] and ProxSim [30]: The gradient of a
non-differentiable function f(x) is substituted with the gradient of a related differentiable function

f):

0f(x) of(x)
0x 0x

(5.8)

With this estimator, training the two networks should be identical, since they share the weights and
the architecture. This means that it should be possible to train the models using all the built-in
tools for gradient descent from the TensorFlow API.

In Appendix D the process of defining a method for training a network with approximate arithmetic
operations was undertaken. The following section will highlight the most relevant points from the
appendix. Firstly, some terms that are going to be used are defined:

* Exact Epoch: An epoch of training the models only using the TensorFlow model. The flow-
chart can be seen in Figure D.1; a batch is retrieved from the training set; forward passed
through the TensorFlow model; the predictions are compared to the labels and a loss is
calculated; the gradients are evaluated based on the calculations performed in the model and
the loss®; the weights are updated based on the gradients; another batch is processed. This
goes on until the entire training set has been processed: One epoch.

TF Model

{ N
Start of Epoch End of Epoch)« Yes Opt{mlse Find Gradients
B Weights L)

A

[T Forward (cutare Loss
Retrieve Batch TF I;C;zvsvard Calculate Loss
L—J —

Figure 5.19: (Copy of Figure D.1) Flowchart of an exact epoch of training the model. A batch from the training
set is propagated forward in the TensorFlow model and the loss is calculated. The gradients are evaluated and
used to optimise the weights. This process is repeated until the entire training dataset has been processed.

e Approximate Epoch: An epoch of training the models using the C++ model’s prediction
combined with the optimisation tools available for the TensorFlow model. The flowchart
can be seen in Figure D.2; the TensorFlow model’s weights are exported to CSV files; a batch
is retrieved from the training set and exported to another CSV file; the C++ model is called
as an executable file, wherewith the weights and batch are read from the CSV files and the
predictions are exported to another CSV file; the TensorFlow model performs also performs
the forward pass, which is required for the automatic differentiation; the predictions from the
TensorFlow model are changed to match the predictions from the C++ model; the gradients
are evaluated based on the calculations performed in the model and the loss; the weights
are updated based on the gradients; another batch is processed. This goes on until the entire
training set has been processed: One epoch.

3TensorFlow has a tool for automatic differentiation called GradientTape ().

Page 76 of 219

Chapter 5 5.4. TRAINING THE CNN WITH APPROXIMATE ARITHMETIC

TF Model

- \ ' N
Start of Epoch ‘ End of Epoch ’{ Yes $ OPt%Imse < Find Gradients
B Weights
. J . J
No

A

{ N\ { N
Write Weights Call C++ TF Forward Replace Exact
H Ret Batch H |—)| i—) Calculate L
[to CSV etrieve Batc Model Pass Predictions) L aicdiate Loss
\ o

..

C++ Model

Figure 5.20: (Copy of Figure D.2) Flowchart of an approximate epoch of training the model. The weights of
the TensorFlow are exported to a CSV file. A batch from the trainings dataset is retrieved and exported to
a CSV file. The C++ model is called, wherein the weights and batch are read into the program and forward
propagated. A forward propagation is also performed in the TensorFlow model. The predictions from the C++
model replaces the prediction from the TensorFlow model, wherewith the loss is calculated, the gradients
are found, and the weights are optimised. This process is repeated until the entire training dataset has been
processed.

An investigation of the three scenarios was proposed for the models developed in section 5.1
and section 5.2; training and evaluating the C++ model and the TensorFlow model three times:

I) 50 approximate epochs
1) 50 exact epochs
IIT) 45 exact epochs followed by 5 approximate epochs

To ensure that the integration of approximate/exact epochs performs optimisation as intended, the
chosen approximation for the preliminary training runs is conversion to FXP (fixed point) with
20 bits for accuracy and no approximate multiplier. In Figure 5.21 the result of each of these
training processes can be seen. Note that the values accuracy and val_accuracy are found using
the C++ network: accuracy is found by passing the train dataset through the C++ network and
calculating the rate of correct predictions, val_accuracy is found by passing the test dataset
through the C++ network and calculating the rate of correct predictions.

0.6
50 Approximate Epochs
N 50 Exact Epochs
= 041 45 Exact and 5 Approximate Epochs
S
=
5 0.2 :
< accuracy Mean Time per Epoch [s|:
...... 1 accura Green: 3669.50
00 Ve accHTaty Blue: 1047.01
. T T T T R 1 llrr F'
0 10 20 30 40 50 ed: 1155.58

Figure 5.21: (Copy of Figure D.3) Accuracy of C++ network with quantisation noise, 20 bits for precision.
Accuracy of C++ network on the train and test datasets: accuracy and val_accuracy, respectively. Further-
more, the mean time per epoch is noted for each of the three trainings.

The run using 45 exact and 5 approximate epochs is performing better than the other two. For the

Page 77 of 219

Chapter 5 5.4. TRAINING THE CNN WITH APPROXIMATE ARITHMETIC

training with 50 exact epochs it should be noted, that the low accuracy must be from an unlucky
start (or a lucky start for the 45 exact and 5 approximate training run) since the training process
is identical to that of 45 exact and 5 approximate; the accuracy of these two training runs should
be close to identical in the first 45 epochs. Important for these three runs is that the optimisation
method is working when the predictions from the TensorFlow model are replaced with the predic-
tions from the C++ model (see Figure D.2). This suggests that the implemented method for making
performing approximate epochs is working as intended.

The same three methods were tested after lowering the precision of the weights and values to only 8
bits. The results were similar to what can be seen in Figure 5.21, however, 50 approximate epochs per-
forms better in this case. However, as presented in the dark-blue ellipsis, the time it takes to perform
an approximate epoch is significantly longer than performing one exact epoch: The run with 50 ap-
proximate epochs took around 3750, 03 s/epoch-50 epochs = 2 days 4 hours and 5 minutes, whereas
the run with 50 exact epochs only took 1089,44 s/epoch - 50 epochs = 15 hours and 8 minutes. For
that reason, the compromise of using a 45 : 5 split of exact and approximate epochs is chosen as the
method for training the C++ network.

Now that the method of training the C++ network is defined, training a network that implements
some approximate arithmetic operation is tested. For this purpose the 8-bit multiplier mul8s_1KV9
from EvoApproxLib|[4] was chosen. The relevant error metrics are presented again in Table 5.4.

Table 5.4: (Copy of Table C.8) Error-metrics of the distribution presented in Figure C.6.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance
4.25 34.25 68.75 %
Since the test is essentially creating training two models: An exact model in TensorFlow and a

C++ model (first 45 epochs only inference), the accuracies for both are evaluated. The number of
precision bits is chosen to be 7. In Figure 5.22 the results can be seen.

0.6
. 0.4 4
>
3 C++ Model
= —— TensorFlow Model
O
S 0.2+
< accuracy

"""" val_accuracy
0.0 . . 1 1
0 10 20 30 40 50
Epochs [/]

Figure 5.22: (Copy of Figure D.5) Accuracy of C++ network with an approximate multiplier, mul8s_1KV9. The
first 45 epochs of the training of the C++ network are inference only, why the TensorFlow model is plotted for
comparison. The last 5 epochs of the training are with the predictions from the C++ network.

During the 45 exact epochs it is clear that the accuracy of the C++ network is steadily increasing.
Interestingly, after the 46th epoch (the first approximate epoch), the accuracies of the networks fall

Page 78 of 219

Chapter 5 5.4. TRAINING THE CNN WITH APPROXIMATE ARITHMETIC

to around 0.1, corresponding to random guesses. This puts some doubt into the training process
previously devised. To overcome this drastic drop in accuracy three paths are tested:

D

1D

11D

Training purely with approximate epochs: As shown in Figure 5.21, training using the ap-
proximate arithmetic from the beginning may lead to high accuracy. Perhaps, using only
approximate epochs would prevent the drastic drop in accuracy seen in Figure 5.22.
* 15 approximate epochs with the approximate multiplier in-place were performed, how-
ever, the accuracy never rose significantly above 10 %, a random guess.
Pre-training of the TensorFlow model: In Figure 5.22 the accuracy of the C++ model is
increasing alongside the TensorFlow model, and the inference at the 45th epoch is pretty
decent. Since the objective of the network is not subject to change, it may be beneficial to have
the weights of a pre-trained TensorFlow model, and use the weights as a springboard from
which the C++ model can be finetuned. This would reset the training just as the finetuning
were to commence since the optimisation algorithm adamax would not know the previous
gradients.
e Another 15 approximate epochs were performed on a set of pre-trained networks. Again,
the results showed no sign of optimisation, as the accuracy stayed at 10 %.
Changing the optimisation algorithm: A possible explanation for the drastic drop in accuracy
in Figure 5.22 is the optimisation algorithm: adamax, which has an adaptive learning rate
that is based on the first and second moments of previous gradients (see section B.9). The
difference in the evaluated loss may be so large it is irreconcilable for the optimiser, and the
updated values for the weights are off. At the shift from exact epochs to approximate epochs
the optimiser could be replaced by another, whose learning rate is not adaptive or based on
the previous gradients.
¢ Unlike the other two methods, the accuracy did not immediately drop to 10 %, rather,
the accuracy hovered around 40 %, before dropping off slowly. This might suggest that
this is the right path to train the model, but the pre-trained model may be overtrained,
the weights may have been a local minimum, or perhaps the learning rate is off.

The optimisation using SGD was further investigated and the resulting accuracies from using the
same set of pre-trained weights and adjusting the SGD learning rate can be viewed in Figure 5.23:

0.75

— LR = 0.00001
\
0 T et AR ooy SR — LR = 0.00003
0.95] acturacy —— LR = 0.00005
....... val_accuracy LR = 0.00010
OOO " ! ! ! LR - 000015
0 2 4 6 8 10

Epochs []

Figure 5.23: (Copy of Figure D.9) Finetuning with different SGD learning rates. 10 approximate epochs
performed on pre-trained network with varying learning rates.

Every value for the learning rate results in the model “‘optimising” toward a lower accuracy. This
is a surprising trend since the optimisation should lower the loss and by extension increase the
accuracy. This may suggest a fundamental flaw in the implementation of the training. However,
the training worked with high precision quantisation and low precision quantisation. No clear path
to rectifying the problem of training the approximate network has presented itself.

Page 79 of 219

Chapter 5 5.4. TRAINING THE CNN WITH APPROXIMATE ARITHMETIC

In order to investigate this problem, it is seen as beneficial to reduce the amount of computations
required for a forward pass, in order to speed up the evaluation process, because debugging the
implemented CNN is infeasible due to the long duration of each epoch. The slowest layer is the
2nd convolutional layer and the “complexity” is reduced to effectivise the debugging process. This
is done by reducing the amount of filters from 40 to 2, reducing the amount of parameters from
19.800 to 7.600. This modification is applied to the TensorFlow model as well as the C++ model.

Table 5.5: (Copy of Table D.3) Summary of the smaller
network found by calling model . Summary ().

Layer Type Output Shape

Conv2D (None, 15, 15, 40) 160
MaxPooling 2D = (None, 7, 7, 40) 0
Conv2D (None, 6, 6, 2) 320
MaxPooling 2D (None, 3, 3, 2) 0
Conv2D (None, 2, 2, 40) 320
Flatten (None, 160) 0
Dense (None, 40) 6400
Dense (None, 10) 400

T Total parameters 7600 and trainable parameters
7600.

Firstly, a preliminary test with adamax and SGD was performed with 20 bits precision and an
accurate multiplier, whereby it was concluded, that this smaller model is trainable using either
optimisation algorithm. Secondly, two of the SGD learning rates were tested on with an 8 x 8
accurate multiplier, whereby it was concluded, that it is possible to finetune with SGD on accurate
8 x 8 multipliers, quantisation with 6 precision bits does not add enough noise to make training
impossible. Perhaps 6 precision bits may also work with adamax; 5 different multipliers were tested
and the approximate multipliers with relatively low error characteristics showed positive results, i.e.
the approximate epochs were effective on the accuracy. These results are interpreted as the dropoff
seen in Figure 5.22 may have been caused by the number of precision bits or the architecture.

Testing Variations of the Number of Precision Bits on the multiplier used in Figure 5.22, mul8s_-
1KV9, gave an insight into the effects of the chosen bit precision. In Figure 5.24 the resulting
accuracies given 45 epochs pre-training, 10 epochs of finetuning with adamax as the optimisation
algorithm, and mul8s_1KV9 with a varying number of precision bits is visualised.

Neither 2 precision bits, 3 precision bits, or 4 precision bits are training and stay at 10 %, the same as
arandom guess. This is likely a consequence of too much quantisation, as the values of the LSBs
are 1/4, 1/8, and 1/16, respectively, which are not matching effectively with the regularised weights.
Furthermore, the small changes in the weights at each epoch/iteration may not be transferred to
the C++ model, as the changes may not be large enough to “overcome’ the quantisation. However,
for 5 precision bits and 6 precision bits, the first epoch of finetuning significantly improves the
accuracies, suggesting that the changes are transferred and that they are improving the accuracy of
the models.

Page 80 of 219

Chapter 5 5.4. TRAINING THE CNN WITH APPROXIMATE ARITHMETIC

accuracy 2 precision bits

5

------- val_accuracy —— 3 precision bits
—— 4 precision bits
5 precision bits

Accuracy
(e}
[\)
1

e
il

6 precision bits
46 48 50 52 54 7 precision bits
Epochs [/]

Figure 5.24: (Copy of Figure D.13) Adamax finetuning with varying number of precision bits on mul8s_1KV9.

For 7 precision bits the accuracy worsens at each epoch, this is reminiscent of the training using
SGD from Figure D.9, which also was tested with 7 precision bits. The implication of having 7
precision bits in a signed 8 x 8 multiplier, is that the representable values exist between [—1; 1-277];
if the multiplicands are in the said interval no problem should arise. Using regularisation may force
the weights into this range, however, the inputs are not taken into account. In the first layer, it
is known that the input has been normalised, quantised, and truncated, ensuring they are in the
interval. However, the outputs of each hidden layer (being the inputs to the following layer), are
not ensured to be in the same interval. Say there are 40 input channels and the kernel size is 2 x 2,
the each “pixel” of the resulting FM (Feature Map) is the sum of 2-2-40 = 160 multiplications,
which may cause overflow/underflow. From Figure 5.24 it is clear, that it is possible to fintune using
adamax and given mul8s_1KV9 and only 2 filters in the second convolutional layer the best choice of
precision bits is 6.

Finetuning with 45 Approximate Epochs using adamax as the optimisation algorithm is per-
formed to ensure that the conclusion from the previous test is correct. Weights from a pre-trained
TensorFlow model are applied to the C++ model. 45 approximate epochs are then performed, and
the inferred accuracy of the C++ network is saved and visualised in Figure 5.25. Furthermore, the
accuracy of a TensorFlow model with the same architecture and starting weights trained for 45
epochs and averaged over 5 runs can be seen.

045

: Run 0

?) — Runl

sg 0.30 1 accuracy —— TensorFlow comparison
) Qi I S A
~ 0.25 val_accuracy

0.20
50 60 70 80 90

Epochs [

Figure 5.25: (Copy of Figure D.14) Finetuning with 45 approximate epochs with mul8s_1KV9 using 6 bits for
precision.

Both runs show that the C++ model with an approximate multiplier is training and the optimisation
is working. Comparing the two runs with the TensorFlow model’s accuracies the difference is only
around 5 percentage points, which is impressive given the approximate multiplier and only 8-bits
to represent the weights. The solution was changing the number of precision bits to match with
the network. This suggests, that the problem in Figure D.5 may have been caused by overflow/
underflow. The solution is to:

Page 81 of219

5.5. INVESTIGATION OF CONGRUENCY BETWEEN PROBABILISTIC AND DETERMINISTIC
Chapter 5 MODELLING

e Keep the “simplified”” CNN with 2 filters in the second convolutional layer
* Use 6 bits for precision

5.4.1 Considerations/Reflections when Training the Approximate Model

The results from finetuning a set of weights from a pre-trained network in Figure 5.25 incidentally
simplified the training process. Three things are noteworthy:

I) Exact epochs yielded positive results for the C++ model, wherewith the inferred accuracy
rose.

II) Restarting the learning rate of adamax did not negatively affect the finetuning, i.e. the
finetuning can be performed independent of information from previous epochs. Given a set
of pre-trained weights, the required amount of epochs could potentially be lowered.

III) The problem is static and consecutive uses of the same weights should yield the same results
(without training).

These three remarks in combination should allow the simplification of the training process, i.e.
given the weights of a trained CNN from TensorFlow, the only training necessary is finetuning with
approximate epochs using adamax as the optimisation algorithm; a TensorFlow model has been
trained 45 epochs and the weights have been saved for this purpose. Training the C++ model given
some approximate arithmetic circuit, should be possible by taking the pre-trained weights and
finetuning for some epochs, using the defined approximate epochs.

Although it has been stated that overflow/underflow is the culprit for the dropoff in Figure 5.22 and
that it was solved by lowering the number of precision bits, the chosen amount of precision bits is
not guaranteed to work for every architecture nor every approximate multiplier. Let’s reexamine
the example of potential overflow: 40 input channels and the kernel size is 2 x 2, each “pixel” of
the resulting FM (Feature Map) is the sum of 2-2-40 = 160 multiplications. The multiplicands
are represented with 8 bits, 6 of which are precision bits, i.e. formatted as Q2.6. To ensure no
information is lost, the product of the multiplications should be Q4.12, and 160 of these products
should be calculated and summed, requiring the format Q11.12 to avoid overflow/underflow. This
sum is then processed by the activation function, in this case, ReLU, and the format Q11.12 is still
required to avoid overflow. This value is then the input of another 8-bit multiplier. The format is
incongruent with the multipliers, and a lot of information may be lost. In the implementation, the
multiplicands are always transformed to Q2.6 just before the 8 x 8 approximate multipliers. Overflow
is thus still a possibility, however, based on the results of Figure 5.25 the simplified architecture is
not as affected by overflow as Figure 5.22 seemingly is.

5.5 Investigation of Congruency Between Probabilistic and
Deterministic Modelling

The purpose of this section is to statistically evaluate the fit of the probabilistic model designed
and implemented in section 5.3. As described in chapter 3 it is desired to compare the output of a
trained CNN (i.e. the CNN architecture from Table 5.3), with the output of the same network using
approximate arithmetic units, and using the probabilistic model (i.e. the models designed and
implemented in section 5.2, and section 5.3, respectively). The concept is then to apply appropriate
statistical evaluations, to determine how well the probabilistic model’s effect on a CNN’s output
matches the effects observed from the deterministic simulation of approximate hardware.

A test is conducted in Appendix E wherein two experiments are performed, both associated with
the evaluation of the probabilistic model in comparison with the approximate deterministic system,

Page 82 of 219

5.5. INVESTIGATION OF CONGRUENCY BETWEEN PROBABILISTIC AND DETERMINISTIC

Chapter 5 MODELLING
0.40 - ﬂﬁ AN T 1KV8-approx: accuracy_val

—_ A éE Jkig e e R SRIREA A 1KV8-stat: accuracy_val
' 0.351 R - o : EE ------ 1KV9-approx: accuracy_val
9 P S I DR S B T A R A 1KV9-stat: accuracy_val

o 0.30 - T CFRL AR . A

3 A N T

S A 3

< 0.251 . 2 i

45 50 55 60 65 70 75 80 85
Epochs [.]

Figure 5.26: Results of the accuracy evaluation on the test data set for the mu18s_1KV8 and mul8s_1KV9. The
deterministic approximate model is plotted as dotted lines and are congruent with the ones in Figure E.3.
The accuracy of the probabilistic model is plotted using three-pointed stars for every 5 epochs. 5 data points
are obtained for the probabilistic model and are all shown in this figure.

which it is attempting to emulate. The purpose is to obtain a metric that can imply “‘to which extent
this is the case”. The experiment uses the exact model derived in section 5.1 as a reference for the
deterministic and probabilistic models.

The first experiment evaluates the prediction accuracy for inference using the CNN presented
in Table 5.3. The network trains 45 epochs using exact arithmetic (exact epochs), and continues
training using STE on the approximate model for 40 epochs (approximate epochs). The weights
are stored every 5 epochs to use for inference on the test data set for both the approximate and
probabilistic model. The results are plotted in Figure 5.26.

From these results, it is noticed that the probabilistic model of the mul8s_1KV8 follows to a consid-
erable extent the accuracy of its deterministic equivalent. The case is different for the probabilistic
model of mul8s_1KV9 where the accuracy is considerably lower than its deterministic equivalent.
However, it seems that the probabilistic model is "’ catching up” as the epochs progress for the STE.
An investigation of the relationship between the output vectors is necessary to give an appropriate
explanation for this result, which is the essence of the second experiment.

The second experiment uses 1000 input pictures in the CNN. The pixels of these are samples of a
continuous RV with a uniform distribution between 0 and 1. A reference test-accuracy is obtained
by forward passing in the exact model. The same procedure is done for the approximate model. The
difference between these outputs yields 1000 vectors that are denoted deterministic error. The same
is done for the outputs of the probabilistic models. Since the model is probabilistic the output will
be different when applying the same input multiple times, therefore each input is applied 1000
times to mitigate the risk of unfortunate samples. This results in a distribution of 1000000 samples
of error vectors. This experiment is conducted for both the mul8s_1KV8 and mul8s_1KV9 (with an
MAE of 1.2 and 4.25, respectively).

The task is now to determine if the probabilistic errors are an appropriate model of the deterministic
errors. The Kullback-Liebler divergence is introduced to perform this task. The Kullback-Liebler
divergence is a measure of the “distance” or ‘“‘divergence” of two distributions, based on how
difficult it is to tell samples of the two distributions apart [124]. Given two distributions, P and Q
the KL-divergence is denoted as Dxp.(P||Q). P is here interpreted as an observation of a probability
distribution and Q is seen as a model of the distribution P. The KL divergence is then intuitively
construed as a measure of the information lost when using Q as a model for P. This intuition can
directly be applied to the problem at hand, where the probabilistic model attempts to model the
approximate outputs.

Page 83 of 219

5.5. INVESTIGATION OF CONGRUENCY BETWEEN PROBABILISTIC AND DETERMINISTIC
Chapter 5 MODELLING

When both P and Q are discrete the KL divergence is given as:

P(x)
D(P||Q) = P(x)-ln(—)
=2 QW

The KL-divergence has a closed formula for when both distributions are multivariate Gaussian.
This is presented without a proof (see Soch et. al. [125]) in Eq. (5.9).

_1 Ts-1 -1 [Z1]
D(PIIQ)—E (2 —p1)" 25 (2 —) +tr(Z5 1) —n—In 5| (5.9)
2
where:
P ~AN(u1,Zy)
Q NW(MZ’ZZ)

n Dimension of output vector

At first, the mul8s_1KV8 results are considered. This is done for inference using the weights attained
after training the CNN 45 epochs using exact arithmetic. The distributions of each of the variables
in the output vector are plotted as histograms in Figure 5.27.

From these figures, it is seen that the probabilistic errors are normally distributed, and the determ-
inistic errors can to some degree be approximated as Gaussian. It is chosen to use the closed-form
solution to the KL divergence and it has a nice interpretation which can be used to interpret if the
difference in mean or covariance is responsible for the divergence. The KL divergence is evaluated
to 14.5 for distribution illustrated in Figure 5.27.

This measure by itself shows that the probabilistic model is not an exact match of the observed
sample. However, this is to be expected from the plots shown in Figure E.6. It is emphasised that
the KL. measure by itself does not provide much useable information, as the measure should be
used for comparisons of methods. For this reason, the same analysis is applied to the remaining
inference stages for each additional 5 epochs of STE training, for both multipliers.

In the same manner as the mul8s_1KV8 the mul8s_1KV9 is investigated using the KL-divergence
measure. From the results presented in Figure 5.26 it is expected to observe a generally higher
KL-divergence than for the mul8s_1KV8 however, it is hypothesised that the measure will decrease
with the training on the approximate model as a convergence is seen in the classification accuracy.

The mul8s_1KV8 results are considered. This is done for inference using the weights attained after
training the CNN 45 epochs using exact arithmetic. The distributions of each of the variables in the
output vector are plotted as histograms in Figure 5.28.

Page 84 of 219

612JO Gga3ded

Error Variable 1

Error Variable 2

0.15 0.15
[Deterministic Error ’ —
B [Deterministic Error
[Probabilistic Error [Probabilistic Error
g o1 = 01
£ 2
2 E
3 2
F+0.05 £ 0.05
0 0
-0.8 -0.6 -04 -0.2 0 0.2 -0.8 -0.6 -0.4 -0.2 0 0.2
Error Error
Error Variable 5 0.15 Farror Variable 6
0.15 ’
— [Deterministic Error
[Deterministic Exror s
[Probabilistic Error [Probabilistic Error
= 0.1
Z ol =
2 Z
E E
< o
E =
& 0.05 ~ 0.05
0 0
-0.8 -0.6 -0.4 -0.2 0 0.2 -0.8 -0.6 -04 -0.2 0 0.2
Error Error
Error Variable 9
0.15
[Deterministic Error
[Probabilistic Error
.j; 0.1
=
<
]
2
A 0.05
0
-0.8 -0.6 -0.4 -0.2 0 0.2
Error

Figure 5.27: Histogram of the deterministic and probabilistic error distributions, given 1000 input images. The deterministic histograms are partitioned into 30

Probability

Probability

Probability

Error Variable 3

Error Variable 4

015 0.15
[Deterministic Error ’ —
[E] Probabilistic Error SR Dt uinistic Eror
0.1
% 0.1
=
i)
2
0.05 | A 0.05
0 0
-08 -06 -04 -02 0 0.2 -0.8 -0.6 -0.4 -0.2 0 0.2
Error Error
E: iabl .
0.15 rror Variable 7 0.15 Error Variable 8
[Deterministic Error ’ —
[Probabilistic Error I— ?:zzzs;{:;iff];;roorr
0.1
% 0.1
< -
<2 r L
E M L
0.05 | A 0.05 i N
0 0
-08 -06 -04 -02 0 0.2 -0.8 -0.6 -0.4 -0.2 0 0.2
Error Error
Error Variable 10
0.15
[Deterministic Error
[Probabilistic Error
0.1
0.05
0
-0.8 -06 -04 -02 0 0.2
Error

distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

G 1dey)

OLLSININYHLAA ANV DLLSITIaVAOdd NAIMILAI ADNANYONOD 40 NOLLVOLLSAANI "G

ONITTHAOW

612J0 98a3ed

Error Variable 1

Error Variable 2

Error Variable 3

Error Variable 4

0.2 0.2 0.2
0.2
[Approximate Model [Approximate Model [Approximate Model 5 -
[Probabilistic Model [Probabilistic Model [Probabilistic Model [Approximate Model
[Probabilistic Model
0.15 0.15 0.15 0.15
2 Z 2 =
= 01 = 01 = 01 < 01
<] o e] <
= = = 8
=9 A A &
0.05 0.05 0.05 | 0.05
0 0 0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error Error Error
Error Variable 5 Error Variable 6 Error Variable 7 0.2 trror Variable 8
0.2 0.2 0.2 ’ -
[Approximate Model [Approximate Model [Approximate Model % ?ﬁf}::l);lhn; Ztce 1\1)[1;):11;1
[Probabilistic Model [Probabilistic Model [Probabilistic Model
015 0.15 015 | 0.15
= = > ey
h=1 h=1 h=t =
= = = =
2 01 S 01 2 01} = 01
2 2 2 &)
o) o] e =
- - — Q—q
2= A ol
0.05 f 0.05 0.05 f 0.05
0 0 - - - 0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
> >
=t h=t
2 01 01
< el
o o
- —~
2 A
0.05 0.05
0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error

Figure 5.28: Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

G 1dey)

OLLSININYHLAA ANV DLLSITIaVAOdd NAIMILAI ADNANYONOD 40 NOLLVOLLSAANI "G

ONITTHAOW

5.5. INVESTIGATION OF CONGRUENCY BETWEEN PROBABILISTIC AND DETERMINISTIC
Chapter 5 MODELLING

From these histograms, it is noticed that the negative magnitude of the errors is larger compared to
the measurements performed using the mul8s_1KV8. The divergence between the two distributions
also seems larger. The KL divergence is calculated to 37 for this multiplier, which is larger than the
muls8s_1KV8 as expected from the results in Figure 5.26.

The remaining measurements for every 5 epochs of training using STE on the approximate model
are shown in Appendix E. The KL divergence was calculated for these measurements and is plotted
in Figure 5.29.

40 T

mul8s_1KV8
mul8s_1KV9

KL divergence

45 50 55 60 65 70 75 80 85
Epochs

Figure 5.29: Plot of the evolution of the KL-divergence, for progressing epochs. Both chosen multipliers are
plotted for comparison purposes. The continuous lines are linear interpolations as measurements are only
taken for each 5 epochs.

The development seen in this comparison is congruent with the observations from Figure 5.26, as
the divergence of muls8s_1KV9 is largest before approximate training and decreases along with the
training.

A feature worth noticing is the incongruency between the difference in means between the two
multipliers. The mul8s_1KV8 the mean is generally larger, while the opposite is true for the mul8s_-
1KVO.

From the two experiments conducted in Appendix E (summarised here), it is concluded that the
KL divergence is a measure that can be used for comparison of "’ how well”’ a probabilistic model
emulates an observation from the approximate model. It is observed that it is possible to improve the
divergence of the models, by training on the approximate model using STE. However, there seems
to be a limit to how well the probabilistic model in its current form can model the deterministic
error. The primary source of divergence is observed to be caused by the difference in standard
deviation of the two models, where the probabilistic is larger than the deterministic. The differences
in means of the two distributions are also contributing to the overall convergence, but it seems to
be possible to reduce this impact through approximate training.

The reason behind the difference in standard deviations is reasoned to be caused by the inherent
difference between probabilistic and deterministic systems. Adding RVs corresponds to a convolu-
tion of their distributions. This means that the standard deviation will grow as more additions of
approximate circuits’ PMFs are convolved, which is not the case for Q-format limited deterministic
circuits.

An invariance to consider is also that the KL divergence is evaluated using the closed-form solution
for multivariate Gaussian distributions. However, this is not the case for the deterministic errors

Page 87 of 219

Chapter 5 5.6. SUMMARY, REFLECTION, AND CONSIDERATIONS

as observed from the plotted histograms. It is regardless expected that the ’shape”’ observed in
Figure E.24 will be similar as this fits the observations in Figure 5.26.

Conclusively, the analysis indicates that inherent differences in deterministic and probabilistic
modelling are limiting the potential of using the modelling strategy developed in section 5.3.
Although this is a valid consideration, it is still observed that it is possible to obtain prediction
accuracies using the probabilistic model, similar to the ones for the deterministic model. The
possibility of evaluating the divergence between the modelling strategies applied to the reference
CNN from Table 5.3, is deemed a valuable metric to provide the user of the benchmarking system.

5.6 Summary, Reflection, and Considerations

In this chapter, a CNN used for classification tasks on a reduced CIFAR-100 was designed and
implemented in TensorFlow. This network served as a reference for the development of a simu-
lation tool where it is possible to simulate the network using approximate arithmetic units in the
multiplications and additions. This system is implemented in C++ where classes are provided such
that the possibility of implementing different CNNs using approximate arithmetic is provided to
users of the benchmarking system.

Efforts were put into deriving a model that should be able to emulate the effects of the deterministic
approximate CNN using, simpler classes that are easily configurable with TensorFlow models.
A metric for determining " how well”’ the probabilistic model, emulates the deterministic was
introduced, specifically the Kullback-Liebler divergence.

Experiments showed that the concept of using a probabilistic model for emulating deterministic
systems introduces unfortunate implications. However, the experiment showed that although
the model is not perfect, it can still provide valuable insights into the feasibility of implementing
approximate multipliers in a CNN. It is nonetheless suspected that this result is not scalable, for
larger networks without further development.

Lastly, an investigation into the prospects of training a CNN using approximate arithmetic units was
conducted. This investigation showed promising results using STE, for approximate backpropaga-
tion, yielding prominent improvements to the prediction accuracies, both during training and for
the fest data set.

Page 88 of 219

Step III: Full-Scale CNN Error
Injection

This chapter describes step III presented in chapter 3. Step III of the benchmarking tool revolves
around the application and presentation of the metrics found in step I and step II. The context of
step III can be seen in Figure 6.1.

Step I: Circuit Analysis Step II: Small-scale Implementation Step IIL: Full-scale

Approximate
Arithmetic
Design

Random Input
Generator

Approximate
Model

Analyse Design

j
H Power

i~» Consumption

:

:

:

Latency

Full-Scale
Application of
Mode

Evaluate
Probabilistic

Exact
Model

Probabilistic
Model

! Error
- Distribution | --

Figure 6.1: Functional diagram of the benchmarking tool. An approximate arithmetic design is supplied to
the tool and is processed through three steps. Lastly, in step III the probabilistic model from setp II is scaled
and applied to a full-scale neural network.

Step III requires the error distributions from an approximate multiplier found in step I, and the
evaluation of the noise model from step II.

In the following directory tree an overview of important files for the interaction with/usage of the
benchmarking tool can be found. The directory tree will be utilised as a reference to describe how
to use the benchmarking tool.
/
| STEP_III_walkthrough
Makefile
gates.py
paths.py
summary/
figures/
netlist/
Error/
statistic_test_3_models/
NoisyLayer.py
statistical_test_3_models.py

The following sections will refer to this directory tree.

Page 89 of 219

https://github.com/AlbertHansen/approximate_computing_in_CNN/
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/Makefile
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/gates.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/paths.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/summary
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/figures
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/netlist
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/Error
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/statistic_test_3_models
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/statistic_test_3_models/NoisyLayers.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/statistic_test_3_models/statistical_test_3_models.py

Chapter 6 6.1. INTERACTING WITH THE BENCHMARKING TOOL

6.1 Interacting with the Benchmarking Tool

This section will walk through the steps to take, when interacting with the benchmarking tool. The
section will take the perspective of the user and define what the user has to do, in order to use the
tool to analyse their approximate circuit design.

6.1.1 Performing Step I

A user has defined an approximate circuit and wants to query w.r.t. its power consumption, latency,
and the implication of implementing the circuit in their defined CNN. The user has to write two
files:

e C/C++ file with the functional description of the circuit, i.e. how the circuit calculates the
results on a functional level

* Verilog file with the RTL description of the circuit, i.e. how the circuit calculates the results on
a hardware level

These files are dropped in the directory STEP_III_walkthrough. The user defines where to find
the two files in the Makefile and the name of their circuit (the name of the top module in the
Verilog file). In the Makefile, the user also has access to decide which gates to map their design to
and select the appropriate error metrics.

Calling make analysis will perform the entirety of step I described in chapter 4. The outcome of
which will be a set of figures and textfiles:

e Figures (can be found in figures/):
— A visual representations of the netlist on gate-level and as a DAG (Directed Acyclic
Graph)
- A histogram of the error distribution
— A 3D-plot of the metrics gate count, critical path gate count, and error rate.
e Textfiles (can be found in summary/):
- A summary of the gatecount, types, and transistorcount
— A summary of the critical path with the number of gates passed, the estimated latency,
and the names of the gates,
— A CSV file of the error metrics, MSE, MAE, WCD, ER, and MHD
- A CSV file containing the error for each set of inputs will be available for the following
“steps”’.

Given the CSV file with error for each set of inputs, step II can be performed.

6.1.2 Performing Step II

From the user’s perspective, step II is a black box with little to no interaction. The user can run the
script, thereby running the “small-scale implementation”. The CSV containing the errors is utilised
in this step, however, the user is not expected to contribute in this step. The script can be found in
the directory tree under /statistical_test_3_models/statistical_test_3_models.py

Inside the black box 1000 random images of size (16 x 16) are generated and passed to three
CNN implementations of the same architecture: the approximate model, the exact model, and
the probabilistic model. The images are forward passed in the models, 1000 repetitions for the
probabilistic model, and the predictions of the approximate model and the probabilistic model
are compared according to the test defined in chapter 5. The outcome of the comparison is an
evaluation of how well the probabilistic model represents the approximate model.

Page 90 of 219

Chapter 6 6.2. APPLYING THE CUSTOM LAYERS TO A FULL-SCALE CNN

6.1.3 Performing Step III

Like step II, the third step utilises the CSV containing the errors. However, in this step, the user
must integrate elements from the benchmarking tool in their own CNN. In subsection 5.3.2 two
custom layers were defined, which can be found in the directory tree under /statistical_test_-
3_models/NoisyLayers.py:

* NoisyConv2D()
e NoisyDense()

The user can replace their layers with the custom layers, by importing the classes and changing
their model instantiation:

e tf.keras.layers.Conv2D() — NoisyConv2D(error_pmfs=pmfs, precision_bits=m)
e tf.keras.layers.Dense() — NoisyDense(error_pmfs=pmfs, precision_bits=m)

The custom layers require two more arguments to be passed: the number of bits used for pre-
cision and the “error PMFs”. The “error PMFs” can be found by calling the function make_-
pmfs(filepath) passing the path to the CSV containing the errors.

Although the custom layers are implemented and capable of adding noise based on the “error
PMFs” of the approximate multipliers, the integration come with some caveats:

* No Bias: To simplify the implementation, no bias term has been implemented.

¢ Problematic TensorFlow Interactions: Although, the custom layers are defined using mainly
TensorFlow functions and can be inserted into a Sequential () model, important function-
alities and methods for training and evaluating the models do not work. TensorFlow has mul-
tiple Tensor-types, however, they do not share attributes nor methods. model . evaluate ()
and model.fit () will fail, as they use SymbolicTensor.

To overcome the problematic TensorFlow interactions, a set of functions has been defined in
/statistical_test_3_models/statistical_test_3_models.py to perform the training and
evaluation of the model using the custom layers.

6.2 Applying the Custom Layers to a Full-scale CNN

Step I and step II have already been explored with examples, and building on one of these, an
approximate multiplier will be utilised in a full-scale CNN. Ideally, the probabilistic model would
be evaluated for divergence as done in section 5.5. However, as discussed in the section, the model
has flaws that make the comparison unsuitable. This is primarily due to the inherent difference
between the probabilistic and deterministic domains. The addition of multiple independent RVs
makes the PMF of the probabilistic error wider as more distributions are added. Since the CNN
derived in section 5.1 was purposely a small-scale network it is expected that for larger models,
such as the one to be investigated in this section, the models will fit poorly, hence the analysis is
omitted. The following example is still viewed as a valuable guide, to showcase the interpretations
to be drawn from the results of applying the custom layers on a full-scale CNN.

The small scale CNN developed in chapter 5 was a modified version of Convolutional Neural
Network (CNN) from TensorFlows documentation. The model was “‘simplified”” and the dataset
was replaced with a version of the CIFAR-100 dataset with reduced size and classes. The original
example network will now be utilised again, almost without modifications, to see the implications
of using the mul8s_1KV8 8-bit approximate multiplier on a full-scale network. Two almost identical
models are generated, one utilising the custom layers, and the other utilising the TensorFlow

Page 91 of219

https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/images/cnn

Chapter 6 6.2. APPLYING THE CUSTOM LAYERS TO A FULL-SCALE CNN

counterparts. As mentioned in subsection 6.1.3 the custom layers do not have the capabilities for
introducing a bias term, and for a fair comparison, the model will also not have the bias term.

Table 6.1: Summary of the base model found by calling
model . Summary ().

Layer Type Output Shape

Conv2D (None, 30, 30, 32) 864
MaxPooling 2D = (None, 15, 15, 32) 0
Conv2D (None, 13, 13, 64) 18432
MaxPooling 2D (None, 6, 6, 64) 0
Conv2D (None, 4, 4, 64) 36864
Flatten (None, 1024) 0
Dense (None, 64) 65536
Dense (None, 10) 640

Note: The total amount of params is 102436.

The two models are trained for 20 epochs with 5 repetitions. When creating a TensorFlow model, the
model is instantiated, compiled, and then built. During the “build”, the error PMFs are convolved
with the weights of a given filter/perceptron, the outcome of which is a distribution for each of the
filters and perceptrons, wherefrom the noise is sampled. The duration of this process is substantial,
and was noted to be around 210 s. Technically, these distributions should be updated for each
iteration i.e. after processing each batch. Given the CIFAR-10 dataset in batches of 32 images, each
epoch would take ~ 3 days and 19 hours, which is too long. To minimize the time required for an
epoch, the noise distributions are not updated, however, this is not seen as a problem, since the
distributions will not significantly change given the amount of errors that are summed. The results
can be seen in Figure 6.2.

038

. 0.6 Standard Layers
> —— AL

% —— Custom Layers
= 047

S accuracy

SO021 T val_accurac

< - y

0 5 10 15 20

Epochs []

Figure 6.2: Full-scale CIFAR-10 CNN trained with and without noise. The added noise is from the custom
layers, that emulate the effect of having the 8-bit approximate multiplier mul8s_1KV8 as the multiplication
circuit.

In Figure 6.2 there is a clear drop in accuracy from using the standard layers to the custom layers,
which is expected since probabilistic noise is added in each layer of the network. However, it is
worth noting that at the last epoch, the difference in accuracy on the validation set only differs with
~ 10 percentage points.

Page 92 of 219

Chapter 6 6.2. APPLYING THE CUSTOM LAYERS TO A FULL-SCALE CNN

The questions remains, how much is the power consumption reduced? and is the latency reduced?.
TensorFlow uses f1oat32 datatypes by default, whereas the custom layers emulate 8-bit FXP, i.e. the
approximate multiplier mul8s_1KV8 replaces a ‘“‘single-precision’” multiplier. It is not straightfor-
ward to figure out which single-precision multiplier is used by the computer that ran the simulation,
nor is it easy to find the number of transistors in a single-precision multiplier, as the architecture dif-
fers from company to company. However, it was possible to find a Verilog file of a single-precision
multiplier with truncation instead of rounding from akilmin GitHub [126]. Since the Verilog is syn-
thesisable, step I is performed on the Verilog file, the outcome of whic is summarised in Table 6.2,
alongside the same metrics for mul8s_1KV8.

Table 6.2: Summary of the two multipliers passed through step I of the benchmarking tool.

Gate | Trans. Gates
Multiplier | AND | XOR | NAND XNOR | NOR
Count| Count

prsércl?slgn 1581 3420 | 21890 17.1
mul8s_-
1KV8 91 19 153 50 61 1 375 2262 28 8.1

Note: Transistor count and gate-delays based on Table 4.1 from section 4.1.

With the optimistic estimate of the percentage-wise drop in transistor count reflecting in the same
percentage-wise drop in power consumption, using mul8s_1KV8 instead of a single-precision
multiplier will reduce the power consumption to 2262/21890 = 10.3 % of the original power con-
sumption. Furthermore, based purely on the propagation delay, the duration of each multiplication
is less than half. These estimates do not take the addition circuit, writing to/reading from memory,
etc. into account, however, the relatively low drop in accuracy is exchanged for a disproportionate
drop in power consumption and latency.

As a final remark, it is noted that the relationship between STE training on the deterministic and
probabilistic models needs verification in the same manner as was conducted in section 5.5. It
is from this thesis still unclear if these two training results would yield congruent performances.
However, from the analysis conducted it is deemed as a valid area of further research.

Page 93 of 219

Discussion

This chapter will discuss some of the results, methods, and consequences of the choices made.

Although the benchmarking tool would require some refinement before the final implementation,
the tool’s potential is considered auspicious. Some of the problems associated with using approx-
imate arithmetic circuits are the ad hoc nature of their design and the difficulty of noticing the
implication of integrating these into a CNN before implementation in hardware. With the tool, it is
possible to consider the implications w.r.t. power consumption, latency, error metrics, and have
the ability to apply the error as noise on their CNN model, thereby providing the user with enough
information to evaluate whether or not the approximate arithmetic design fulfils their requirements
and compare different approximate arithmetic circuits. Step I of the benchmarking tool in isolation
also serves as a powerful and fast tool for evaluating an approximate arithmetic design in isolation,
which may also have uses for an ASIC designer.

In the survey (chapter 2) many other approximate computing techniques were presented, however,
only the precision scaling and approximate arithmetic circuits have been implemented in the
benchmarking tool. This choice was made to limit the scope of the project, however, the tool may
have benefited from this limitation; applying pruning, early determination, etc. on the final model
would more than likely have made the results more unclear. The final implementation focuses on
approximate arithmetic circuits and by extension applies precision scaling, which ensures that no
other factors play a role in the evaluation of the supplied approximate arithmetic design.

A fundamental question to ask when dealing with the development of a tool for benchmarking
approximate computing techniques is: How is it possible to verify a solution, that is supposed to
be wrong? The purpose of applying approximate computing techniques is relaxing requirements
w.r.t. accuracy by allowing some level of error in order to lower parameters like latency and power
consumption. This is problematic for the development of a tool that is supposed to be generalised
and scalable, since there is no definitive method of verifying whether the implementation is causing
the errors or the techniques. By proxy, it can be verified that the solution works if an exact version
of the method is applied, however, as soon as the approximate computing technique is applied,
evaluation is based mostly on intuition. This issue was specifically encountered in the verification of
the approximate model developed in C++ in section 5.2 and the implementation of the probabilistic
model in section 5.3

The problem statement and the delimitations from chapter 3 depicts a tool, capable of evaluating an
combinatorial approximate arithmetic multiplier in the context of any CNN. The implementation
of the tool is capable of analysing supplied arithmetic designs, apply the designs to a small-scale
network, and generalising and scaling the results. There are limitations to the extent of the applic-
ability of the model. Many CNN models use other layer-types, e.g. the ResNets briefly mentioned in
subsection 2.1.4, which are not accommodated at this stage of implementation.

Page 94 of 219

Chapter 7 7.1. STEPI - CIRCUIT ANALYSIS

During the development of the approximate model and the ensuing training hereof, it became clear
that many factors have to align to successfully implement a CNN in a trainable state; metrics like
Q-format, choice of activation, limiting the size of the weights, complexity of the network, etc. The
question of whether it makes sense to try and develop a general framework for all CNN applications
arise. Even if these factors would culminate into a bad result for some application, this is still
deemed as important information to give the user. Rather than interpreting negative results from a
supplied approximate arithmetic design as ‘“‘not implementable”’, it should be interpreted as “will
require configurations and further development”, which in itself is nice-to-know for the user.

During development and testing only 8-bit multipliers were tested, but other sizes like 16-bit
multipliers were readily available from the same source. The 8-bit multipliers are more difficult to
deal with because, alongside the errors introduced from the approximativeness of the circuits, a
considerable quantisation error is also introduced. Furthermore, only having 8 bits to represent
both integer values and fractional values is a finicky process that will easily result in overflow or
too few bits for precision (as seen in section 5.4). Using the larger 16-bit multipliers might have
made the implementation easier by avoiding these specific pitfalls, however, uncovering these
“problems” is seen as important for the benchmarking tool, since it should be able to accommodate
any multiplier design. In short, the choice of solely relying on 8-bit arithmetic units introduces only
the most challenging problems, hence the range of the application was never fully explored.

In the early part of development, the machine learning API was chosen to be TensorFlow, a powerful
tool capable of easing the burden of training, testing, and implementing neural networks of many
different types. Designing custom layers using TensorFlow was accompanied by AttributeErrors
from their datatypes. During the development and testing of the custom layers, the basic Tensor
was used and no problems arose, however, when the layers were applied in a model, the methods
utilised for the model became unusable since they use SymbolicTensor and some of the important
methods did not exist, either causing an error and stopping the program or skipping essential
lines of code. Thus it became necessary to create custom functions for performing epochs and
evaluating the models, adding more slow/inefficient code. It is difficult to say with certainty that
this problem could have been avoided by using another API, however, it is worth noting that further
refinement of the code may lead to functioning custom layers, that would be able to handle these
SymbolicTensors and thereby making it possible to use faster and better methods for training and
evaluating the models.

7.1 Step]I - Circuit Analysis

A simplification w.r.t. the power consumption and latency was performed, when equating them
to the transistor-count and critical path delay, respectively. Many factors play into the power
consumption such as the specific technology available, the “activity” of the transistors, the registers
used for saving intermediate values, etc. Latency is innately tied to the system, i.e. unless an entire
CNN was implemented without using any sequential elements, the clock-rate of the sequential
elements will specify the latency, where the critical path will set the ceiling of the clock-rate. The
simplifications may lack precision, however, this is traded for more general metrics. Furthermore,
to accommodate a user with knowledge about the available technology, some of these metrics can
be specified: Transistors and gate-delay per gate. Granting the user more customisability w.r.t. the
power consumption of each gate-type, could potentially make the metrics more precise.

At the current state of implementation, the user is expected to supply two separate files, specifying
the multiplication/addition process in both C/C++ and Verilog. This is redundant, and impractical,
and ensuring the “two”” designs are identical may take time or introduce errors. The benchmarking
tool would benefit greatly if there was a “translation layer” for taking the Verilog design and

Page 95 of 219

Chapter 7 7.2. STEP II - SMALL-SCALE APPROXIMATE NEURAL NETWORK

converting it to C/C++ and/or vice versa. This would also reduce the number of errors the user might
cause and streamline the process of benchmarking an approximate arithmetic design. Multiple
tools exist, that can potentially be the “translation layer” like Verilator and v2c. During development
both C and Verilog files for all the modules used for testing and simulation were available through
certain libraries, why this “‘translation layer”” was not deemed essential for the development of the
benchmarking tool.

The development of the benchmarking tool revolved mostly around 8 x 8 approximate multiplication
circuits, however, there exists a lot of differently sized approximate multipliers. When performing
the error simulation as presented in section 4.3, it is possible to check every combination of outputs
and generate an LUT. However, if the benchmarking tool had to handle a larger 16 x 16 approximate
multiplier an LUT would be infeasible to store in the RAM. The number of entries would be 216216
each entry being 32 bits, meaning the LUT would be ~ 17.18 GB, saving each entry as a 16-bit
value would still require half of that. In this case, it would be appropriate to generalise the error
distribution by performing Monte Carlo simulations instead, which would not affect the PMF plots,
however, the current method of saving “‘error PMFs” as a lookup table would have to be refined to
accommodate this method.

7.2 Step II - Small-scale approximate neural network

The chosen reference system performs image classifications on the CIFAR-100 dataset with reduced
number of classes and image sizes. This choice works well as a subsystem, since there is little
interpretation required, i.e. the accuracy is an evaluation of how well the model performs its task.
The results can then be generalised, scaled, and applied to other machine learning tasks. However,
approximate computing techniques are especially relevant in tasks, where human perception plays
arole, since the errors induced by the techniques may be “filtered/sorted”” out by the brain. The
lateral jump from image classification to another CNN application like denoising has not been
explored, and the implications are not entirely clear. Since the machine learning techniques do not
differ, the “error’”’ added should be similar (perhaps identical), however, perception is a complex
topic, and the noise may be very clear for the brain, if it can see/recognize patterns in it.

The approximate model was implemented in C++ due to familiarity and the end product is slow.
During the training of the C++ using the defined approximate epochs it was revealed that for the
specific CNN architecture, the mean time per epoch was 3669.5 s = 1 hour 1 minute 9.5 seconds.
Since the implementation required modifying the MAC operation, libraries and tools for performing
matrix computations could not be utilised, and speeding up the processes would have required
extensive development. However, since the model was operational and seemingly produced the
correct output, speeding up the process was not seen as essential for the development of the
benchmarking tool. The effects of this choice has rippled down the subsequent development and
tests since repetitions were deemed too costly w.r.t. time. A few simple ideas for speeding up the
network were tried: Using python was too slow, since the convolutions would require seven nested
for-loops, using parallel processing to unpack the outermost for loop sped this up by lowering the
computation time to just below 400 s per iteration but still too slow since each epoch consisted of
157 iterations totaling just below 17 hours 27 minutes. One of the benefits associated with utilising
Python would be to avoid the I/0 process of saving and reading from CSV files. There are tools/
libraries like Pybind11, wherewith C++ functions can be called from within a Python script, which
should remove the I/0 processes and speed up the for-loops, but with no familiarity with these
types of tools and a working CNN written in C++, this was not prioritised.

Implementing fixed-point arithmetic consequentially adds the possibility of overflow and the
need for being aware of the Q-format. The current implementation was capable of performing

Page 96 of 219

https://www.veripool.org/verilator/
http://www.cprover.org/hardware/v2c/

Chapter 7 7.3. STEPIII - FULL-SCALE CNN ERROR INJECTION

inference, training, and more using an approximate arithmetic circuit in-place, however, stability
and generalisation of this model would require a more fixed-point-aware design. The weights are
encouraged to stay at small values using L2 regularisation, the images were normalised, but the
values between the hidden layers are not entirely accounted for. An idea for ensuring the values
between the layers remain relatively small would be to use “‘sigmoid” as the activation function, but
this would have implications on the training, since the vanishing gradients may force the weights to
take very large values, and by extension shift the burden to weights rather than solving the problem.
It should be noted, however, that although there are improvements to be made, the implementation
of a small-scale CNN with the capability to insert an approximate arithemetic operation works. The
implementation is capable of training with the defined architecture, optimisation algorithm, and
machine learning problem. Potentially, the design and architecture of this model could be applied
to another problem and by extension act as the user’s implementation.

From the results in section 5.5 it is clear, that there is a significant difference between the model with
approximate arithmetic in-place and the probabilistic model trying to emulate the effects of the
approximate arithmetic design. A possible explanation would be the inherent difference between
deterministic and probabilistic modeling; perhaps the assumption of this being representative
of the error from an approximate circuit is fallacious. An extensive analysis would be necessary
to derive a more suitable model, but based on the results the possibility of providing accurate
estimates that are simple to implement for a user is not deemed infeasible.

The statistical model in isolation was supposed to be a simple and effective method for applying the
implications of utilising a specific approximate arithmetic design in a user-specific CNN. However,
due to the vast possibilities of approximating a circuit, it was seen as necessary to have a metric
to evaluate how well the probabilistic model emulated the noise from the error distribution, and
by extension how accurate the noise applied to the user’s CNN is. Unfortunately, there is a clear
distinction between the error added in the probabilistic model and the error from the arithmetic
circuits, however, this is clear because of the evaluation, and underlines the importance of the
process.

The results of section 5.3 suggest that the probabilistic model requires some modifications and
revision to be an appropriate stand-in for the approximate model, why training the probabilistic
model and exploring whether the training mirrors the training of the approximate model has not
been explored. Given the future development of a more concise modelling of the deterministic
errors, justify an investigation of the congruency between training on the using probabilistic model
using the same STE technique as developed methods from section 5.4.

The approximate model is implemented and functioning with the possibility of replacing the
multiplication arithmetic. This might suggest that designing and implementing a probabilistic
model might be superfluous, however, as displayed in section 5.4 there are some application specific
problems like the number of precision bits, overflow, etc. that have to be taken into account, before
training is possible. This is not seen as user friendly, as the purpose of the tool is to give a “quick”
insight into the effect on a final implementation.

7.3 Step III - Full-scale CNN Error Injection

In Figure 6.2 the accuracy of a TensorFlow model using standard layers and a TensorFlow model
using the custom ‘‘noise’” layers based on the approximate multiplier mul8s_1KV8 trained on
the CIFAR-10 dataset are plotted against each other. The comparison seeks to show how the
approximate multiplier would affect the accuracy of the CNN if implemented, without actually
implementing it. Based on the results from section 5.5 it may be fallacious to say with certainty,

Page 97 of 219

Chapter 7 7.3. STEPIII - FULL-SCALE CNN ERROR INJECTION

that the accuracy reached with the probabilistic model is congruent with the reachable accuracy
with the approximative multiplier in-place. Furthermore, verifying the accuracy would be very
difficult as shown in section 5.1, where a smaller network suffered from problems originating from
the choice of precision bits, and likely overflow caused by the summation of a large set of products.
This problem would likely be exacerbated in this example, and the verification would then require
extensive development for the approximate full-scale model.

In Figure 6.2 the probabilistic model is trained, however, the implications of training the noise
model have not been explored. It is unknown at this point if the accuracy of the probabilistic model
and the approximate model will converge, diverge, or run in parallel if the weights are trained
using the probabilistic model. The purpose of the probabilistic model is to give the user a ‘‘simple”
method for applying the error of an approximate arithmetic circuit as “‘noise” to their model, with
little to no configuration, however, training the probabilistic model is not guarenteed to yield the
same accuracy of an actual implementation nor weights that could be applied if the model were to
be implemented.

Page 98 of 219

Conclusion

This thesis aimed to apply approximate computing techniques on neural networks by developing
a tool that would be able to benchmark approximate arithmetic designs, and evaluate their power
consumption, latency, and the implications of applying them to a full-scale scenario before im-
plementation. In chapter 1 the financial and environmental burdens associated with large scale
data models was highlighted and how the main focus of papers about machine learning focused
on the accuracy of the models rather than efficiency. On the other hand the field of approximate
computing is gaining traction, where an increase in “errors’”’ can be exchanged for a disproportion-
ate reduction in energy, resource, and/or time consumption. Machine learning algorithms and
models have proven to be powerful at removing/disregarding noise, why this thesis grabbed the
opportunity to combine elements of these two fields of study. There are existing tools for applying
some approximate computing techniques on neural networks, however, these frameworks are
mostly aimed at the machine learning designer rather than an ASIC developer. The ad hoc nature of
developing approximate arithmetic designs and the difficulties of seeing the effects/implications of
the implementation, is viewed as an opportunity to develop a benchmarking tool to alleviate these
problems. The benchmarking tool was summarised in the problem statement:

“How can a benchmarking tool provide an ASIC developer with relevant metrics to evaluate an
approximate arithmetic circuit as an integral part of a large scale system, i.e. a neural network,
prior to implementation?”

To answer the problem statement, a survey about neural networks, digital design, and approx-
imate computing was performed and documented. The neural networks survey highlighted and
elaborated on the building block of NNs, the perceptron. The perceptron is a simplistic model
of a biological neuron, designed to mimic functions of the human brain’s neural network. With
this model, a set of inputs are weighed by individual factors, summed, and processed through an
activation function, which can introduce non-linearity. A set of perceptrons can be structured to
form layers, and a set of layers can be structured to comprise a neural network. The effectiveness of
neural networks is partly due to their ability to learn; the weights of the perceptrons can be updated
using a loss function and the concept of error back-propagation. The loss function defines how well
the model is performing the assigned task. The evaluated loss is used in the back-propagation step,
where the weights’ influence on the loss is used to find the individual gradients from weight to
loss. With the gradients a gradient descent algorithm can be utilised to minimise the loss, thereby
improving the model. The perceptrons are essentially MAC (multiply-accumulate) units with an
activation function to process the output. In the “digital design” part of the survey, the MAC units
were explored. Number representation is essential for the development of arithmetic circuits re-
quired for performing a MAC operation, and two number representations were highlighted: FXP
(fixed point) and FLP (floating point). FXP has the same precision across the entire range, the LSB

Page 99 of219

Chapter 8

(least significant bit); the format of a FXP value is a tradeoff between range and precision, increasing
one will lower the other. With FLP a larger range is available, however, the precision is lowered
at large values. Arithmetic circuits must be aware of the number representation, as it requires
larger and more complex circuits to perform exact arithmetic operations with FLP values. Lastly,
the topic of approximate computing computing was addressed; an umbrella term for any concept
that simplifies system computations at the expense of accurate operations. W.r.t. the MAC units
precision scaling and approximate arithmetic circuits are especially relevant. Precision scaling is
approximations introduced by representing numbers with fewer bits than the f1oat32 standard
from IEEE and approximate arithmetic circuits are modifications of existing arithmetic circuit to
lower the power consumption and/or latency.

Based on the knowledge gained from the survey, it became clear that there is room for a contribution
to the field of approximate computing; a benchmarking tool for evaluating approximate arithmetic
circuits pre-implementation. The tool would consist of three steps:

I) Circuit Analysis: Investigation of a user-supplied arithmetic design in isolation, analysing
and presenting metrics for power consumption, latency, and error distribution
II) Small-scale Implementation: Implementation of the arithmetic design in a CNN architec-
ture mirrored by a probabilistic model. The purpose of which is to evaluate how well the
probabilistic model emulates the errors of a real implementation, thereby giving a metric for
the appropriateness of the generalisation of the error and by extension, the appropriateness
of scaling the model
III) Full-scale CNN Error Injection: The probabilistic model is applied to the user’s CNN, whereby
the implications of implementing the approximate arithmetic circuit can be scoped pre-
implementation

The development of these three steps comprises the entirety of the benchmarking tool.

Step I - Circuit Analysis requires two files describing the approximate arithmetic circuit: A Verilog
file of the design describing the design at the RTL (Register Transfer Level) and a C/C++ file with the
operation described at a functional level. The module defined in the Verilog file is synthesised and
mapped to a set of logic gates, i.e. a netlist. This netlist is saved in two formats: Verilog and JSON. The
JSON netlist is utilised for processing the design in Python. The power consumption of the design
is simplified to the transistor-count of the synthesised netlist, to avoid some technology-specific
factors, and is found by counting all gates, taking note of their type, and scaling the gate type-count
with how many transistors are used for the different types of gates. The number of transistors per
gate is also a technology-specific factor, however, this can be configured in the script. The latency
of the approximate circuit is simplified to be the sum of gate-delays along the critical path. The
critical path is found by translating the netlist to a DAG (Directed Acyclic Graph) and utilising the
Python library networkx to find the longest path. Furthermore, the weights of the “edges” between
the nodes are defined to be the gate-delay of the specific gates, thereby incorporating a method to
find the critical path defined by the slowest path and not necessarily the path with most nodes. The
C/C++ file is passed to a C++ script which evaluates the mean square error, mean absolute error,
worst case distance, error rate, and mean Hamming distance. Furthermore, the error PMF of the
approximate arithmetic circuit is found by evaluating every possible combination of inputs and
outputs and comparing them with an exact version of the same circuit. This error PMF is essential
for both step II and step III. All the metrics from step I inform the user about what to expect from
an isolated implementation of the circuit, wherewith comparison with other approximate circuits
can quickly be performed.

Page 100 of219

Chapter 8

Step II - Small-scale Approximate Neural Network implements and compares three architectur-
ally identical CNNs: The exact model, the approximate model, and the probabilistic model. The exact
model should be viewed as a reference for the other two models. The development of the exact
model through TensorFlow’s API defined the machine learning problem, architecture, and design
of the two other models, and was essential for the training in subsequent tests. The approximate
model was implemented in C++ as a twin to the reference model, wherewith the multiplication
operation could be exchanged with the user’s C/C++ design of their approximate arithmetic circuits.
The approximate model is thus capable of performing forward-passes using the custom arithmetic
circuits in-place. Research and testing went into trying to train the approximate model, which
uncovered some important but subtle complications a user may encounter during the implement-
ation of an approximate arithmetic design in a large system, e.g. the importance of choosing the
correct number of precision bits, STE (Straight-Through Estimator) is a powerful simplification,
however, training is not guaranteed. Importantly, the approximate model is a fully functional CNN
with approximate arithmetic operations. It is capable of training its weights using the STE and
could potentially be reused on simple machine learning problems “as is”’. The generalisation and
scalability of this model are limited, why the probabilistic model is introduced. The probabilistic
model seeks to generalise and produce a scalable method for emulating the noise from the errors
associated with the supplied circuit on any CNN model. This is done with custom-defined layers,
within the TensorFlow framework, in which error distributions are generated based on the current
weights per perceptron/filter, sampling noise from these distributions, and applying them just
before the activation function. Efforts were made to evaluate the effects of using the probabilistic
model for inference through the metric Kullback-Liebler divergence. This metric proved useful in
the analysis of the probabalistic model. Experiments showed a significant difference in standard
deviations, between the probabilistic and deterministic model. The difference in standard deviations
is attributed to the inherent nature of probabilistic systems, where adding random variables (RVs)
involves convolution of their distributions, resulting in a growing standard deviation, unlike the
fixed standard deviation in Q-format limited deterministic circuits.

Step III - Full-scale CNN Error Injection is the culmination of the knowledge and models from
step I and step II. The error PMFs from step I are reused in the custom layers defined in step 11
and the custom layers replaces their exact counterparts in the user’s model. The user can then
infer the implications of implementing the approximate arithmetic circuit in their model pre-
implementation. This was trialed on an example CNN from TensorFlow, performing image clas-
sification on the CIFAR-10 dataset. The noise was based on the error from the approximate 8-bit
multiplier, mul8s_1KV8, and the graph comparing the accuracy of the example CNN with and
without noise shows that the accuracy dropped by ~ 10 percentage points, from ~ 70 % to ~ 60 %.
The reduction in accuracy is traded for a disproportionate drop in power consumption and latency:
An example float32 multiplier was used as the ‘““baseline” for the comparison which consists
of 21890 transistors, whereas mul8s_1KV8 only consists of 2262, i.e. only 10.3 % of the baseline
multiplier. The latency also went from 17.1 ns to 8.1 ns, less than half of the baseline.

The combined benchmarking tool is capable of RTL synthesis and by extension evaluating combinat-
orial circuits in isolation. The tool can insert the circuit into a configurable CNN and train the network.
It was seen in Figure 5.25 that training a network with approximate arithmetic operations in-place
using the STE (Straight-Through Estimator) yields positive results, this result in itself opens up
many possibilities for research: To what extent is STE appropriate?, What happens with the error
distribution at the output as well as between the layers during training?, etc. Furthermore, two
custom layers have been defined, that a user can import and utilise to emulate the error as “noise”
in their CNNs. The layers are also evaluated by the tool, giving a metric of the certainty with which
the modeled noise mirrors the errors of the approximate circuits. There are some caveats as presen-

Page 101 of219

Chapter 8

ted in the discussion in chapter 7, but the potential of the tool is viewed as a ‘“possibly significant
contribution to help bridge the gap between approximate circuit design and the ever-increasing
relevancy of neural networks, that may assist in making machine learning more sustainable”.

Page 102 of219

Further Work 9

The current implementation mostly succeeds in solving the problem statement, however, there is
room for improvements. As stated in the discussion, the speed of the current implementation is
very slow. This would be a problem for a user, since ad hoc solutions may require frequent small
changes, which would be impossible with the current speed. Furthermore, the development and
testing of the solution would be positively impacted by speeding up the tool. The I/0 problem
associated with reading/writing weights from/to CSV files must be handled, possibly by using
a tool like Pybind11 where C++ functions can be called with variables from Python; this would
solve the I/0O problem without losing the speed of C++ compiled code. The interactions between a
user and the benchmarking tool are currently not very intuitive nor user-friendly, and something
like a graphical user interface should be designed. The tool is configurable with transistors and
propagation delay for each logic gate type, however, the power consumption and latency metrics
are affected by more than just these two factors, and elaborating the metric enough to give an
estimate in Watts or something else easily interpretable would give the user a more definitive view
of their circuit. This would most likely require more focus and research into simulation of the
supplied circuits. Another interesting path to explore the possibility of making the probabilistic
model aware of implementation-specific factors, such as the pooling layers and activation functions.
This may help the probabilistic model fit better with the user’s application.

Approximate arithmetic circuits and precision scaling is a small subset of the available AC (Ap-
proximate Computing) techniques. Incorporating more techniques to be benchmarked or possibly
creating a suite of benchmarking tools for the other techniques would significantly improve the
contribution of the benchmarking tool, granting access and information to the user, and hopefully
simplifying the process of analysing and implementing approximate techniques in large scale
systems

During the development of the benchmarking tool many fascinating branches of research and
possible research opportunities/questions were uncovered:

* What are the implications of training the probabilistic model? Could the weights potentially
be transferred to the approximate model, thereby avoiding the problems accompanying the
training of the approximate model? Would these weights perform better than the weights
from the exact model on inference?

e If both approximate multipliers and adders were implemented in the same model, how would
training and inference be affected? What if multipliers/adders were varied across the layers?

* Would approximative aware back-propagationyield better results than using the STE (Straight-
Through Estimator)?

* Are the results presented in the thesis applicable in other CNN applications like denoising
and regression?

* Would it be possible to generalise and define clear rules/methods w.r.t. precision scaling to
avoid problems like overflow?

The answers could be integrated into the tool and improve the models.

Page 103 of219

Bibliography

(10]
(11]

(12]

(13]

(14]

(15]

C. S. Wallace. A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic Computers,
EC-13(1):14--17, 1964.

Serge Torres, Claude-Pierre Jea, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and
Leféevre. Handbook of Floating-Point Arithmetic. Boston, MA: Birkhduser, 2nd ed. 2018
edition, 2009.

Vaibbhav Taraate. Digital logic design using Verilog : coding and RTL synthesis . Springer,
Singapore, 2nd ed. edition, 2022.

Vojtech Mrazek, Radek Hrbacek, Zdenek Vasicek, and Lukas Sekanina. EvoApprox8b: Library
of Approximate Adders and Multipliers for Circuit Design and Benchmarking of Approxim-
ation Methods. Design, Automation and Test in Europe Conference and Exhibition (DATE),
2017,2017.

IBM. What is Artificial Intelligence. https://www.ibm.com/topics/
artificial-intelligence. (Accessed on 19/02/2024).

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 1. edition,
2006.

Nils J. Nilson. The Quest for Artificial Intelligence: A History of Ideas and Achievements.
Cambridge University Press, 1. edition, 2010.

Zhi-Hua Zhou. Machine Learning. Springer, 1. edition, 2016.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson, 2.
edition, 2003.

Ethem Alpaydin. Introduction to Machine Learning. MIT University Press, 1. edition, 2004.
Ke-Lin Du and M. N. S. Swamy. Neural Networks and Statistical Learning. Springer, 2014.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. London: Chapman and
Hall, 26. edition, 1998.

Matthieu Cord and Padraig Cunningham. Machine Learning Techniques for Multimedia.
Springer, 1. edition, 2006.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm for Deep
Belief Nets. Neural Computing, 7(18), 2006.

Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

Page 104 of219

https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/artificial-intelligence

Chapter 9 BIBLIOGRAPHY

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

Frank Emmert-Streib, Zhen Yang, Han Feng, Shailesh Tripathi, and Matthias Dehmer. An
Introductory Review of Deep Learning for Prediction Models With Big Data. Frontiers in
Artificial Intelligence, 3(28), 2020.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organ-
ization in the brain. Psychological Review, 65(6), 1958.

Yu chen Wu and Jun wen Feng. Development and Application of Artificial Neural Network.
Wireless Pers Commun, 102, 2017.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Al and compute, March 2024. [Online; accessed 8. Mar. 2024].

Honglan Jiang, Francisco Javier Hernandez Santiago, Hai Mo, Leibo Liu, and Jie Han. Approx-
imate Arithmetic Circuits: A Survey, Characterization, and Recent Applications. Proceedings
of the IEEE, 108(12), 2020.

Vasileios Leon, Muhammad Abdullah Hanif, Giorgos Armeniakos, Muhammad Shafique
Xun Jiao, Kiamal Pekmestzi, and Dimitrios Soudris. Approximate Computing Survey, Part I:
Terminology and Software & Hardware Approximation Techniques. https: //do%i. org/
10. 48550/ arXiv. 2307. 11124,2023. (Under Review).

Ilaria Scarabottolo, Giovanni Ansaloni, George A. Constantinides, Laura Pozzi, and Sherief
Reda. Approximate Logic Synthesis: A Survey. Proceedings of the IEEE, 108(12), 2020.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green Al. arXiv preprint
arXiv:1907.10597v3, aug 2019.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for modern deep learning research. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-20), 2020.

Nadezhda Semenova, Laurent Larger, and Daniel Brunner. Understanding and mitigating
noise in trained deep neural networks. Neural networks, 146:151--160, 2022.

Vasileios Leon, Muhammad Abdullah Hanif, Giorgos Armeniakos, Muhammad Shafique
Xun Jiao, Kiamal Pekmestzi, and Dimitrios Soudris. Approximate Computing Survey, Part II:
Application-Specific and Architectural Approximation Techniques and Applications. https:
//dot. org/10. 48550/ arXiv. 2307. 11128,2023. (Under Review).

Petr Rek and Lukas Sekanina. TypeCNN: CNN Development Framework With Flexible Data
Types. IEEE Xplore, 2019.

Yinghui Fan, Xiaoxi Wu, Jiying Dong, and Zhi Qi. Axdnn: Towards the cross-layer design of
approximate dnns. jan 2019.

Cecilia De la Parra, Andre Guntoro, and Akash Kumar. Proxsim: Gpu-based simulation
framework for cross-layer approximate dnn optimization. IEEE Xplore, 2020.

Fionn Murtagh. Multilayer Perceptrons for Classification and Regression. Neurocomputing,
183(2), 1990.

Marius-Constantin Popescu, Valentina E. Balas, Liliana Perescu-Popescu, and Nikos Mas-
torakis. Multilayer Perceptrons and Neural Networks. WSEAS TRANSACTIONS ON CIRCUITS
AND SYSTEMS, 7(8), 2009.

Page 105 of219

https://doi.org/10.48550/arXiv.2307.11124
https://doi.org/10.48550/arXiv.2307.11124
https://doi.org/10.48550/arXiv.2307.11128
https://doi.org/10.48550/arXiv.2307.11128

Chapter 9 BIBLIOGRAPHY

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

Simon Haykin. Neural Networks: A Comprehensive Foundation. Pearson, 2. edition, 2005.

Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. Activation Functions in Neural
Networks. International Journal of Engineering Applied Sciences and Technology, 4(12), 2000.

Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in
deep learning: A comprehensive survey and benchmark. Neurocomputing, 503, 2022.

Chigozie Enyinna Nwankpa, Winifred [jomah, Anthony Gachagan, and Stephen Marshall.
Activation Functions: Comparison of Trends in Practice and Research for Deep Learning.
https: //dot. org/ 10. 48550/ arXiv. 1811. 03378, 2018.

Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann
Machines. Proceedings of the 27th International Conference on Machine Learning, 2010.

Leon Bottou. Online learning and stochastic approximations. On-line learning in neural
networks, 17(9), 1998.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven C.H. Hoi. Online Deep Learning: Learning
Deep Neural Networks on the Fly. https: //doi. org/ 10. 48550/ arXiv. 1711. 03705,
2017.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations
by Back-Propagating Errors. Nature, 323(9), 1986.

Yeshwanth Valaboju. A Literature Review on Neural Network Architechtures. Journal of
Interdisciplinary Cycle Research, 7(2), 2015.

Zachary C. Lipton, John Berkowitz, and Charles Elkan. A Critical Review of Recurrent Neural
Networks for Sequence Learning. https://dot. org/10. 48550/ arXiv. 1506. 00019,
2015.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqgi Zhang, and Philip S.
Yu. A Comprehensive Survey on Graph Neural Networks. https: //doi. org/ 10. 48550/
arXtv. 1901. 00596, 2019.

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Sawi. Understanding of a Convolutional
Neural Networks. ICET2017, 2017.

Claus Neubauer. Evaluation of Convolutional Neural Networks for Visual Recognition. IEEE
Transactions on Neural Networks, 9(4), 1998.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A Survey of Convolutional
Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Net-
works and Learning Systems, 33(12), 2021.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11), 1998.

Bjorn Hojmose Grevenkop-Castenskiold, Albert Berg Hansen, Simon Dahl Jepsen, Nikolaj
Kraegpeoth, Kristoffer Martinsen, Jonas Emil Nielsen, and Morten Renberg. Quantum Machine
Learning. Technical report, 2022.

IBM. What is Computer Vision. https://www.ibm.com/topics/computer-vision. (Ac-
cessed on 01/04/2024).

Page 106 of219

https://doi.org/10.48550/arXiv.1811.03378
https://doi.org/10.48550/arXiv.1711.03705
https://doi.org/10.48550/arXiv.1506.00019
https://doi.org/10.48550/arXiv.1901.00596
https://doi.org/10.48550/arXiv.1901.00596
https://www.ibm.com/topics/computer-vision

Chapter 9 BIBLIOGRAPHY

(50]

(51]

(52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

(62]

(63]

(64]

[65]

[66]

[67]

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141--142, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition,
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems 25 (NIPS
2012), 1, 2012.

Matthew D. Zeriler and Rob Fergus. Stochastic Pooling for Regularization of Deep Conovolu-
tional Neural Networks. https: //arziv. org/abs/1301. 3557, 2013.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
Maxout Networks. https: //arziv. org/abs/1302. 4389v4, 2013.

Nitish Srivastava and Ruslan Salakhutidinov. Discriminative Transfer Learning with Tree-
based Priors. Department of Computer Science, University of Toronto, 2013.

Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network . https: //arziv. org/
abs/ 1312. 4400v3,2014.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
Supervised Nets. https: //arziv. org/abs/ 1409. 5185, 2014.

Zhichen Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di,
and Yizhou Yu. HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale
Visual Recognition. https: //arziv. org/abs/ 1410. 0736v4, 2015.

Oren Rippel, Jasper Snoek, and Ryan P. Adams. Spectral Representations for Convolutional
Neural Networks. https: //arziv. org/abs/1506. 03767v1, 2015.

Anish Shah, Sameer Shinde, Eashan Kadam, Hena Shah, and Sandip Shingade. Deep Residual
networks with Exponential Linear Unit. https: //arziv. orqg/abs/ 1604 . 04112v4, 2016.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differ-
entiable Spike: Rethinking Gradient-Descent for Training Spiking Neural Networks. NeurIPS
2021, 2021.

Rishit Dagli. ASTROFORMER: MORE DATA MIGHT NOT BE ALL YOU NEED FOR CLASSI-
FICATION. https: //arziv. org/abs/2304. 056350v2, 2023. (Published as a conference
paper at ICLR 2023).

Randy Yates. Fixed-Point Arithmetic: An Introduction. http://www.digitalsignallabs.
com/fp.pdf, Sep 2020. (Accessed on 20/02/24).

IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019, 754, 2019. (Revision
of IEEE std 754-2008).

Mi Lu. Arithmetic and Logic in Computer Systems. Hoboken, NJ : Wiley-Interscience, 1.
edition, 2004.

Andrew D. Booth. A Signed Binary Multiplication Technique, aug 1950.

Stamatis Vassiliadis, Eric M. Schwarz, and Don J. Hanrahan. A General Prood for Overlapped
Multiple-Bit Scanning Multiplications. IEEE Transactions on Computers, 38(2), 1989.

Page 107 of219

https://arxiv.org/abs/1301.3557
https://arxiv.org/abs/1302.4389v4
https://arxiv.org/abs/1312.4400v3
https://arxiv.org/abs/1312.4400v3
https://arxiv.org/abs/1409.5185
https://arxiv.org/abs/1410.0736v4
https://arxiv.org/abs/1506.03767v1
https://arxiv.org/abs/1604.04112v4
https://arxiv.org/abs/2304.05350v2
http://www.digitalsignallabs.com/fp.pdf
http://www.digitalsignallabs.com/fp.pdf

Chapter 9 BIBLIOGRAPHY

(68]

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

C.R. Baugh and B.A. Wooley. A Two’s Complement Parallel Array Multiplication Algorithm.
IEEE Transactions on Computers, C-22(12):1045--1047, 1973.

S.D. Pezaris. A 40-ns 17-Bit by 17-Bit Array Multiplier. IEEE Transactions on Computers,
C-20(4):442--447,1971.

Maroju Sai Kumar, D Ashok Kumar, and P Samundiswary. Design and performance analysis
of Multiply-Accumulate (MAC) unit. In The Institute of Electrical and Electronics Engineers,
Inc. (IEEE) Conference Proceedings, pages 1084--, Piscataway, 2014. The Institute of Electrical
and Electronics Engineers, Inc. (IEEE).

Marcin Kubica, Adam Opara, and Dariusz Kania. Technology mapping for LUT-based FPGA.
Lecture notes in electrical engineering ; Volume 713. Springer, Cham, Switzerland, 1st ed.
2021. edition, 2021.

Designing Arithmetic Circuits with Deep Reinforcement Learning | NVIDIA Technical Blog,
jul 2022. [Online; accessed 1. Apr. 2024].

Amir Yazdanbakhsh, Divya Mahajan, Hadi Esmaeilzadeh, and Pejman Lotfi-Kamran.
AxBench: A Multiplatform Benchmark Suite for Approximate Computing. IEEE Design & Test,
34(2):60--68, 2017.

Richard P. Brent and H. T. Kung. A Regular Layout for Parallel Adders. IEEE Transactions on
Computers, C-31(3), 1982.

Rahila K. C. and U. Sajesh Kumar. A Comphrehensive Compariative Analysis of Parallel Prefix
Adders for ASIC Implementation. ICSEE, 2019.

Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution of a general
class of recurrence equations. IEEE transactions on computers, C-22(8):786--793, 1973.

Sa’ed Abed, Yasser Khalil, Mahdi Modhaffar, and Imtiaz Ahmad. High-performance low-
power approximate wallace tree multiplier. International journal of circuit theory and applic-
ations, 46(12):2334--2348, 2018.

Floating Point and IEEE 754 Compliance for NVIDIA GPUs, March 2024. [Online; accessed
12. Apr. 2024].

Adrian Sampson. Hardware and Software for Approximate Computing. PhD thesis, University
of Washington, 2015.

Tailin Lianga, John Glossnera, Lei Wanga, Shaobo Shia, and Xiaotong Zhanga. Pruning and
Quantization for Deep Neural Network Acceleration: A Survey. https: //doi. org/ 10.
48550/ arXiv. 2101. 09671, 2021.

Yang He and Lingao Xiao. Structured Pruning for Deep Convolutional Neural Networks: A
survey. Journal of LaTeX Class Files, 14(8), 2015.

N. Manikandan, M. Priyanka, Sasikumar, and R. Muthaiah. Approximation Computing
Techniques to Accelerate CNN Based Image Processing Applications — A Survey in Hard-
ware/Software Perspective. International Journal of Advanced Trends in Computer Science
and Engineering, 9(3), 2020.

Sourav Sanyal, Shubham Negi, Anand Raghunathan, and Kaushik Roy. Approximate Comput-
ing for Machine Learning Workloads: A Circuits and Systems Perspective, chapter 15. Springer,
2022.

Page 108 of219

https://doi.org/10.48550/arXiv.2101.09671
https://doi.org/10.48550/arXiv.2101.09671

Chapter 9 BIBLIOGRAPHY

(84]

(85]

(86]

(87]

(88]

(89]

(90]

(91]

(92]

(93]

(94]

[95]

[96]

[97]

(98]

Mukhammed Garifulla, Juncheol Shin, Chanho Kim, Won Hwa Kim, Hye Jung Kim, Jaeil
Kim, and Seokin Hong. A Case Study of Quantizing Convolutional Neural Networks for Fast
Disease Diagnosis on Portable Medical Devices. Sensors, 219(22), 2022.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen,
and Tijmen Blankevoort. A White Paper on Neural Network Quantization. preprint
arXiv:2106.08295v1, 2021.

Paul Merolla, Rathinakumar Appuswamy, John Arthur, Steve K. Esser, and Dharmendra
Modha. Deep Neural Networks are Robust to Weight Binarization and Other Non-Linear
Distortions. preprint arXiv:1606.01981v1, 2016.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binar-
ized Neural Networks. 30th Conference on Neural Information Processing Systems, 2016.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Energy-Efficient and Improved
Image Recognition with Conditional Deep Learning. ACM Journal on Emerging Technologies
in Computing Systems, 13(3), 2017.

Tanvir Arafin, Qian Xu, and Gang Qu. Voltage Overscaling Techniques for Security Applications,
chapter 12. Springer, 2022.

Armin Alaghi, Weikang Qian, and John P. Hayes. Voltage over-scaling: A cross-layer design
perspective for energy efficient systems. 20th European Conference on Circuit Theory and
Design, 2011.

Swagath Venkataramani, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan.
Approximate computing and the quest for computing efficiency. 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015.

Oliver Keszocze. Approximate Computing. Information Technology, 64(3), 2022.

Muhammad Shafique, Wagas Ahmad, Rehan Hafiz, and Jérg Henkel. A low latency generic
accuracy configurable adder. 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), 2015.

Salim Ullah, Sanjeev Sripadraj Murthy, and Akash Kumar. SMApproxLib: Library of FPGA-
based Approximate Multipliers. Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2017, 2018.

Zhixi Yang, Ajaypat Jain, Jinghang Liang, Jie Han, and Fabrizio Lombardi. Approximate
XOR/XNOR-based adders for inexact computing. IEEE International Conference on Nano-
technology, 2013.

Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghunathan, and Kaushik
Roy. IMPACT: IMPrecise adders for low-power approximate computing. IEEE/ACM Interna-
tional Symposium on Low Power Electronics and Design, 2011.

H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. Bio-Inspired Imprecise Compu-
tational Blocks for Efficient VLSI Implementation of Soft-Computing Applications. IEEE
Transactions on Circuits and Systems I: Regular Papers, 57(4), 2010.

Ayad Dalloo, Ardalan Najafi, and Alberto Garcia-Ortiz. Systematic Design of an Approximate
Adder: The Optimized Lower Part Constant-OR Adder. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 26(8), 2018.

Page 109 of219

Chapter 9 BIBLIOGRAPHY

(99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Ning Zhu, Wang Ling Goh, and Kiat Seng Yeo. An enhanced low-power high-speed Adder
For Error-Tolerant application. Proceedings of the 2009 12th International Symposium on
Integrated Circuits, 2009.

Andrew B. Kahng and Seokhyeong Kang. Accuracy-Configurable Adder for Approximate
Arithmetic Designs. DAC Design Automation Conference 2012, 2012.

Ning Zhu, Wang Ling Goh, and Kiat Seng Yeo. On reconfiguration-oriented approximate
adder design and its application. 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2013.

S. Hashemi, R. I. Bahar, and S. Reda. DRUM: A Dynamic Range Unbiased Multiplier for
approximate applications. 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2015.

Georgios Zervakis, Kostas Tsoumanis, Sotirios Xydis, Dimitrios Soudris, and Kiamal
Pekmestzi. Design-Efficient Approximate Multiplication Circuits Through Partial Product
Perforation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(10), 2016.

Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram. Dual-Quality 4:2 Com-
pressors for Utilizing in Dynamic Accuracy Configurable Multipliers. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 25(4), 2017.

Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, and Gen-
naro Di Meo. Comparison and Extension of Approximate 4-2 Compressors for Low-Power
Approximate Multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(9),
2020.

John N. Mitchell. Computer Multiplication and Division Using Binary Logarithms. IRE
Transactions on Electronic Computers, EC-11(4), 1962.

Weiqgiang Liu, Jiahua Xu, Danye Wang, Chenghua Wang, Paolo Montuschi, and Fabrizio
Lombardi. Design and Evaluation of Approximate Logarithmic Multipliers for Low Power
Error-Tolerant Applications. IEEE Transactions on Circuits and Systems I: Regular Papers,
65(9), 2018.

Jeremy Schlachter, Vincent Camus, Krishna V. Palem, and Christian Enz. Design and Applic-
ations of Approximate Circuits by Gate-Level Pruning. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(5), 2017.

Ilaria Scarabottolo, Giovanni Ansaloni, and Laura Pozzi. Circuit carving: A methodology for
the design of approximate hardware. 2018 Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2018.

Radek Hrbacek, Vojtech Mrazek, and Zdenek Vasicek. Automatic design of approximate
circuits by means of multi-objective evolutionary algorithms. 2016 International Conference
on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), 2016.

Steve Ward. Performance Measures. https://computationstructures.org/notes/
performance/notes.html, 2017. (Accessed on 04/15/2024).

John Wawrzynek. EECS150 - Digital Design Lecture 17 - Circuit Timing [2]. http://wla.
berkeley.edu/ cs150/spl3/agenda/lec/lecl7-timing2.pdf, mar 2013. (Accessed on
04/15/2024).

Page 110 of219

https://computationstructures.org/notes/performance/notes.html
https://computationstructures.org/notes/performance/notes.html
http://wla.berkeley.edu/~cs150/sp13/agenda/lec/lec17-timing2.pdf
http://wla.berkeley.edu/~cs150/sp13/agenda/lec/lec17-timing2.pdf

Chapter 9 BIBLIOGRAPHY

[113] Lorenzo Mari. Basic cmos logic gates - technical articles. https://eepower.com/
technical-articles/basic-cmos-logic-gates/#, oct 2021. (Accessed on 04/29/2024).

[114] Vijay Sharma, Balwinder Raj, and Manisha Pattanaik. ONOFIC approach: low power high
speed nanoscale VLSI circuits design. International Journal of Electronics, 2013.

[115] C. Wolf. Yosys Open SYnthesis Suite. https://yosyshq.net/yosys.

[116] Hubert Henry. Ward. Mastering Digital Electronics : An Ultimate Guide to Logic Circuits and
Advanced Circuitry. Maker Innovations Series. Apress L. P., Berkeley, CA, 1st ed. edition,
2023.

[117] ELPROCUS. Transistor transistor logic : History, types, working & its applications.
https://www.elprocus.com/transistor-transistor-logic-ttl/, 2024. (Accessed on
29/04/2024).

[118] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy2008),
pages 11--15, aug 2008.

(119] NANDLAND. What is Propagation Delay. https://nandland.com/
lesson-11-what-is-propagation-delay/. (Accessed on 05/01/2024).

[120] Papers with Code - The latest in Machine Learning, apr 2024. [Online; accessed 3. Apr. 2024].

[121] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[122] H. Pishro-Nik. Introduction to Probability, Statistics, and Random Processes. Kappa LLC,
2014.

[123] Jean Dickinson Gibbons and Subhabrata Chakraborti. Nonparametric Statistical Inference.
Taylor and Francis Group LLC, 5. edition, 2011.

[124] R. A. Leibler S. Kullback. On Information and Sufficiency. The Annals of Mathematical
Statistics, 8(1), 1951.

[125] Joram Soch, Pietro Monticone, Thomas J. Faulkenberry, Alex Kipnis, Kenneth Petrykowski,
Carsten Allefeld, Heiner Atze, Adam Knapp, and Ciardn D. Mclnerney. The Book of Statistical
Proofs. Zenodo, 1. edition, 2023.

[126] akilm. akilm/fpu-ieee-754: Synthesizable floating point unit written using verilog. supports
32-bit (single-precision) multiplication, addition and division and square root operations
based on the ieee-754 standard for floating point numbers. https://github.com/akilm/
FPU-IEEE-754/tree/main, jan 2021. (Accessed on 05/28/2024).

[127] B.N.Madhukar and R. Narendra. Lanczos Resampling for the Digital Processing of Remotely
Sensed Images. In Lecture Notes in Electrical Engineering, volume 258 of Lecture Notes in
Electrical Engineering, pages 403--411. Springer India, India, 2013.

[128] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv.org,
2017.

[129] Daniel Godoy. Understanding binary cross-entropy / log loss: a visual explanation
| by Daniel Godoy | Towards Data Science. https://towardsdatascience.com/
understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a,
nov 2018. (Accessed on 05/08/2024).

Page 111 of219

https://eepower.com/technical-articles/basic-cmos-logic-gates/#
https://eepower.com/technical-articles/basic-cmos-logic-gates/#
https://yosyshq.net/yosys
https://www.elprocus.com/transistor-transistor-logic-ttl/
https://nandland.com/lesson-11-what-is-propagation-delay/
https://nandland.com/lesson-11-what-is-propagation-delay/
https://github.com/akilm/FPU-IEEE-754/tree/main
https://github.com/akilm/FPU-IEEE-754/tree/main
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

Chapter 9 BIBLIOGRAPHY

[130] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal Loss for Dense

Object Detection. IEEE transactions on pattern analysis and machine intelligence, 42(2):318--
327, 2020.

[131] Anuja Nagpal. L1 and 12 regularization methods, explained | built in. https://builtin.
com/data-science/12-regularization,jan 2022. (Accessed on 05/08/2024).

[132] P.C.Mahalanobis. On the Generalised Distance in Statistics. The journal of the Asiatic Society
of Bengal, 2(1), 1936.

Page 112 of219

https://builtin.com/data-science/l2-regularization
https://builtin.com/data-science/l2-regularization

Acronyms

ACA Accuracy Configurable Adder. 35

AFA Approximate Full-Adder. 35

Al Artificial Intelligence. 1

ANN Artificial Neural Networks. 2, 6

ASIC application-specific integrated circuit. 3, 47

BP Back-Propagation. 11, 12

CCSA carry-completion sensing adders. 21, 24

CGP Cartesian Genetic Programming. 3

CLA carry lookahead adders. 21, 24, 25, 35

CLI Command Line Interface. 48

CLT Central Limit Theorem. 71--73, 191

CPU Central Processing Unit. 33

CSA carry-save adder. 24, 25

CS conditional-sum adders. 21

DNN Deep Neural Network. 9, 12, 37

DRUM Dynamic Range Unbiased Multiplier. 35

DVEFS Dynamic Voltage and Frequency Scaling. 34

EDA Electronic Design Automation. 48

ER Error Rate. 45, 139

FLP floating point. 17--19, 24, 31, 33, 38, 65, 72,99, 100

FXP fixed point. 17, 19, 21, 24, 25, 31, 33, 37--39, 64, 65, 67, 68, 70, 72, 77, 93, 99, 100, 175, 176
GNN Graph Neural Networks. 12

HDL Hardware Description Language. 47

HD Hamming Distance. 45, 139

HW Hardware. 33, 34, 36, 40

IEEE The Institute of Electrical and Electronics Engineers. 18, 33
LN Logarithmic Number. 36

LOA Lower-part-OR-Adder. 35, 36

LSB least significant bit. 17, 19, 21, 23, 29, 35, 38, 72, 80, 99, 183, 185
LUT Look-up Table. 25, 53, 70, 72, 96, 141

MAC multiply-accumulate. 7, 16, 19, 24, 25, 31, 34, 38--40, 42, 67, 70, 71, 73, 75, 96, 99, 100
MHD Mean Hamming Distance. 45, 139

MLE Maximum Likelihood Estimate. 72, 73

MLP Multilayer Perceptrons. 9, 11--14

ML Machine Learning. 1, 3

MRBM Modified Radix-2 Booth Multiplier. 24

MSB most significant bit. 17--19, 21, 27, 28, 35, 36, 38

MSE mean-square error. 11

NN Neural Networks. 2, 3, 5--7,9, 10, 12, 16, 17, 33, 34, 37--42, 57, 58, 99, 187

Page 113 of219

Chapter 9 ACRONYMS

PDF Probability Density Function. 70

PTQ Post-Training Quantisation. 33

QAT Quantisation-Aware Training. 33, 34

RCA ripple-carry adder. 20, 21, 35

RNN Recurrent Neural Networks. 12

RV random variable. 53, 70--72, 83, 87, 91, 141, 191
RELU Rectified Linear Unit. 8, 14, 34

STE Straight-Through Estimator. 37, 75, 76, 101, 103, 173, 175, 187
SW Software. 33, 40

TTL Transistor-Transistor Logic. 51

VOS Voltage Over Scaling. 34

WCD Worst-Case Distance. 54, 56, 159--161, 171
I.I.D. independent and identically distributed. 71

AC Approximate Computing. 3, 33, 34, 40, 41, 103
API Application Programming Interface. 116, 118, 189

CNN Convolutional Neural Network. vii, 3, 4, 12--16, 33, 34, 37--40, 42, 43, 57--60, 62, 64, 69--72,
75, 80, 82, 88, 90, 91, 94--97, 100, 101, 116, 119, 134, 173, 180, 184, 185, 190

DAG Directed Acyclic Graph. vii, viii, 51--53, 90, 100, 141, 144, 147, 150, 153, 156, 159, 164, 166, 169,
170

FM Feature Map. vi, 13, 14, 67, 81, 82, 184--186
FMA fused multiply-add. vi, 31, 32

GPU Graphical Processing Unit. 31, 33, 34
PMF Probability Mass Function. vii, viii, 53, 54, 56, 70--72, 141, 144, 147, 150, 153, 156, 165, 167, 169

RTL Register Transfer Level. 40, 46--48, 100, 138

Page 114 of219

Github References

/

| _rtl_analysis/

figures/
Error/

netlist/
summary/
Makefile
gates.py

netlist.tcl
paths.py
| Perceptron
| _statistic_test_3_models/

NoisyLayers.py
statistical_test_3_models.py

test_custom_layers.py
| STEP_III_walkthrough
Makefile
gates.py
paths.py
summary/
figures/
netlist/
Error/
statistic_test_3_models/
kNoisyLayer.py
statistical_test_3_models.py
| _app-small_network/
functions/
results/
| _convergence_of_stat_and_approx_model/
mul8s_1kv8_stats_and_approx.py
mul8s_1kv8_stats_and_approx.csv
mul8s_1kv9_stats_and_approx.py
mul8s_1kv9_stats_and_approx.csv

Page 115 of219

https:/github.com/AlbertHansen/approximate_computing_in_CNN/
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis/figures
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis/Error
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis/netlist
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis/summary
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis/Makefile
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis/gates.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis/netlist.tcl
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/rtl_analysis/paths.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/Perceptron
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/statistic_test_3_models
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/statistic_test_3_models/NoisyLayers.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/statistic_test_3_models/statistical_test_3_models.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/statistic_test_3_models/test_custom_layers.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/Makefile
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/gates.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/paths.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/summary
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/figures
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/netlist
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/Error
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/STEP_III_walkthrough/statistic_test_3_models
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/statistic_test_3_models/NoisyLayers.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/blob/main/STEP_III_walkthrough/statistic_test_3_models/statistical_test_3_models.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/app-small_network
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/app-small_network/functions
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/app-small_network/results
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/convergence_of_stat_and_approx_model
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/convergence_of_stat_and_approx_model/mul8s_1kv8_stats_and_approx.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/convergence_of_stat_and_approx_model/mul8s_1kv8_stats_and_approx.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/convergence_of_stat_and_approx_model/mul8s_1kv9_stats_and_approx.py
https://github.com/AlbertHansen/approximate_computing_in_CNN/tree/main/convergence_of_stat_and_approx_model/mul8s_1kv9_stats_and_approx.py

Defining small CNN for
benchmarking B

This appendix walks through the design process of a CNN (Convolutional Neural Network). The
small CNN will be implemented in C++ as the small scale neural network using approximate
arithmetic and will be an integral part of the benchmarking tool. The methods, procedure, results,
and analysis will be presented in aptly named sections and the outcome of this appendix will come
in the form of a small-scale CNN.

In Appendix A every script, network summary, and resulting data can be found under /app-small_-
network/.

B.1 Introduction

In this appendix a small-scale CNN will be created by heuristically “optimising” one element at a
time. The chosen machine learning API (Application Programming Interface) is TensorFlow and
the testing will be limited to readily available methods, objects, etc. From TensorFlow the basic
CNN model from example Convolutional Neural Network (CNN) is taken and utilised as the base
network. The example CNN performs classification on the cifar10 dataset, which is a set of 60.000
(32 x 32)-images in colour divided in 10 classes. The proposed model has a total of 122570 total
(and trainable) parameters and reaches a test accuracy of ~ 71%. It is deemed, that it would be
beneficial to reduce the number of parameters (i.e. simplify the network) since the same network
will be implemented in C++ from scratch.

The modifications will be divided into 4 categories with subentries of:

¢ Dataset
- Dimensionality Reduction
- Task simplification/expansion (e.g. adding/removing classes in the case of classification)
e Optimizer
— Optimisation algorithm
- Loss function
* Model
- Layers (type, count, width, etc.)
- Activation function
— Kernel size
- Pooling operation
* Final adjustments
— Number of classes
— Bias

Page 116 of219

https://www.tensorflow.org/
https://www.tensorflow.org/tutorials/images/cnn

Chapter B B.2. WORKSPACE SETUP, SOFTWARE AND HARDWARE

- Regularization

Adjusting anything from the list above will change the cost landscape and thus an optimal model
would require extensive research and tests. This would require a lot of time, however, the return
from the time investment would be minimal as this model will only be compared to itself with slight
modifications. Instead, the model is heuristically modified based on the list above; the dataset will
be simplified first in section B.3, followed by the optimizer in section B.4, the model itself will be
modified in section B.5, and lastly the final adjustments of the model are made in .

B.2 Workspace Setup, Software and Hardware

All tests are run on the same hardware, i.e. an available cloud-computer has been set up as seen in
Table B.1:

Table B.1: Information about the cloud-computer used in this appendix. Information taken from https:
//strato-new.claaudia.aau.dk/ under the Instancestab.

" FavorName | Havorid] "Raw | VGPUs | Disk

10a7313a-2e8c-421a-9cdc-
AAU.CPU.g.16-64 8612836f905b 64GB VCPU 50GB

As mentioned in section B.1 an eexample network is used as the baseline, whereon modifications
will be performed. The specifics of the baseline network can be seen in Table B.2 and is updated
when modifications are performed.

Table B.2: Summary of the base model found by calling
model . Summary ().

Layer Type Output Shape Params #

Conv2D (None, 30, 30, 32) 896
MaxPooling 2D = (None, 15, 15, 32) 0
Conv2D (None, 13, 13, 64) 18496
MaxPooling 2D = (None, 6, 6, 64) 0
Conv2D (None, 4, 4, 64) 36928
Flatten (None, 1024) 0
Dense (None, 64) 65600
Dense (None, 100) 6500

Table B.3: The software packages used in the appendix. The names and versions were found using the
print-versions package in python.

Continued on next page

Page 117 of219

https://strato-new.claaudia.aau.dk/
https://strato-new.claaudia.aau.dk/

Chapter B B.3. DATASET PREPARATION

Table B.3: (Continued)

numpy Math package 1.26.4
" }}/Iath”pgckage used for storing resulting data in 991
.csv”’ files
The chosen machine learning AP]I, utilised for data
tensorflow . . . 49.4
manipulation, loading datasets, etc.
tensorflow_datasets Used for dedicated dataset manipulation 4.9.4
keras Used to create and compile the models 3.1.1

B.3 Dataset Preparation

Although the example from TensorFlow already has a dataset, it is relevant to consider alternatives.
Due to the arbitrary choice of image classification, the data collection can be reduced to download-
ing a premade dataset. The choice of the dataset will be based on the following parameters:

Table B.4: Three important parameters for the choice of a dataset

The dataset should be large enough to fully train a CNN, without requiring
gathering more data than is already available

The difficulty should be high enough to make it a challenge for

Difficul . e
ty state-of-the-art image classification networks

Combined with the difficulty there should be a way to configure the
Configurability difficulty of the problem, to accommodate for a small-scale network as
well as a large-scale network

MNIST [50] is a classical example of image classification, the size is sufficient and visualization is
simple. However, it is not a difficult task to classify the dataset. Using the 92 submissions on Image
Classification on MNIST [120] as an indication of the difficulty and noting the lowest accuracy is
92,47 % it is clear to see, that it is not a difficult classification problem. Another well-known image
classification dataset is the CIFAR-10 [121] dataset. Again, the size is sufficient, visualisation is
simple, and the difficulty is increased compared to MNIST. Based on 240 submissions on Image
Classification on CIFAR-10 [120] the lowest score is an accuracy of 80,45 %. The configurability of
the dataset is decent with 10 classes, however, CIFAR-10 has a sibling dataset: CIFAR-100 with 100
classes. The increase in difficulty from CIFAR-10 to CIFAR-100 is notable, however, not overwhelm-
ing for state-of-the-art models. The span of accuracies for models not using extra training data
on CIFAR-10 from Image Classification on CIFAR-10 is 60,6 % to 99,5 %, whereas the models not
using extra training data on CIFAR-100 from Image Classification on CIFAR-100 [120] is 19,49 % to
93,36 %. CIFAR-100 is chosen to be the dataset on with which the models will be trained on.

The data representation of the CIFAR-100 is sets of images and their corresponding labels. The
images are of the shape 32, 32, 3, with each value in formatted as an unsigned 8-bit integer.
In Figure B.1 five examples are depicted: a raccoon, a cloud, a lamp, a keyboard, and a beetle,
respectively.

Page 118 of219

https://paperswithcode.com/sota/image-classification-on-mnist
https://paperswithcode.com/sota/image-classification-on-mnist
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-100

Chapter B B.3. DATASET PREPARATION

raccoon cloud lamp keyboard beetle

Figure B.1: 5 example images from CIFAR-100 represented as 32 x 32 colour images.

In the creation of a small-scale neural network, the complexity of the model should be proportionate
with the complexity of the dataset. For the small-scale network, the data should be “simpler”’, why
the first layer of the CNN can be reduced. The dataset can be reduced to 1/3 of its size by converting
to grayscale. Multiple ways of converting images to grayscale exists, however, most of the models
are concerned with the perception of the human-eye and is just a weighted average over the colours
for each pixel, the grayscale conversion will be performed as the mean of the RGB-values.

raccoon cloud lamp keyboard beetle

Figure B.2: 5 example images from CIFAR-100 represented as 32 x 32 grayscale images.

Each datapoint is still comprised of 32 - 32 = 1024 8-bit integers, which is incongruent with a small-
scale network. The dataset can be reduced further to 1/12 of its original size, by compressing the
images to 16 x 16 grayscale. Multiple resizing methods exists, and is tested using the procedure
presented in subsection B.3.1, with the results presented in subsection B.3.2.

Some changes have to be made on the model to accommodate the chosen (and modified) dataset:

* Adjust kernel size: Since the images have been resized to (16, 16), the kernel size pro-
duced an error: ValueError: Exception encountered when calling Conv2D.call().
Negative dimension size caused by subtracting 3 from 2, which wassolved by chan-
ging the kernel size to (2, 2).

* Adjust output layer: The output of the network should be directly comparable to the labels,
which have been one-hot encoded; the output vector should be (100, 1) corresponding with
the 100 classes.

The resulting model can be seen in Table B.5.

Page 119 of 219

Chapter B B.3. DATASET PREPARATION

Table B.5: Summary of the base model found by calling
model . Summary ().

Layer Type Output Shape

MaxPooling 2D (None, 7, 7, 32)

MaxPooling 2D (None, 3, 3, 64) 0
Flatten (None, 256) 0
Dense (None, 64) 16448
Dense (None, 100) 6500

T Total parameters 47812 and trainable parameters
47812.

Note: Orange rows have been modified to accom-
modate the (modified) dataset.

The total amount of parameters have thus been reduced from 128420 to 47812 or reduced by 63 %.

B.3.1 Procedure

The procedure of the dataset preparation is split into two parts: create_dataset and test_-
resize_method.

In create_dataset, the dataset is downloaded and modified:

I) Import required packages (a subset of packages displayed in Table B.3)
IT) Set settings:
* enable grayscale
* enable dimensionality
¢ enable normalisation
¢ choose resize method and the wanted size of the datapoints
III) Save summary of the settings
IV) Import dataset (CIFAR-100)
V) Convert to grayscale
VI) Resize
VII) Normalise
VIII) Save modified dataset

The above procedure is performed eight times; one for each resizing method that works out-of-the-
box. With the saved (and modified) datasets, the test_resize_method is run:

I) Import packages (a subset of packages displayed in Table B.3)
I) Define paths for the datasets
III) Load dataset
IV) Format the dataset
* Change labeling to one-hot-encoding
 Create batches of the training data (512)

Page 120 of 219

Chapter B B.3. DATASET PREPARATION

* Create batches of the test data (512)
V) Create the model
VI) Compile the model (choose optimizer algorithm, loss function, and metric)
VII) Fit the model over 250 epochs

Items III through VII are repeated for each resize method available from the TensorFlow Dataset
package.

B.3.2 Results

The loss of the resizing methods can be viewed in Figure B.3 and the corresponding accuracy can
be viewed in Figure B.4. Furthermore, the mean time per epoch for all eight resizing methods can
be viewed in Table B.6.

0.012
—— 1loss AREA
—0010K " val_loss L ity | —— BICUBIC
';' _.“"'.."“n—"_"_‘,,,p:.-';-;-.‘.'.:-:..v.':-- A — BILINEAR
S GAUSSIAN
= 0.008 LANCZOS3
LANCZOS5
0.006 . ; ' ' MITCHELLCUBIC
0 50 100 150 200 250 | __ NEAREST NEIGHBOR

Epochs []

Figure B.3: The loss as a function of epoch training the same model on differently resized datasets. The loss
function is MeanSquaredError and the optimisation algorithm is adam. The evaluated training losses are
depicted as fully-drawn lines, whereas the evaluated testing losses are depicted as dotted-lines.

From Figure B.3 no single resizing method is objectively better than the rest, as all training losses
follow a similar path, and the same is true for the testing losses. It is noted, that the all models are
seemingly full trained at 50 epochs, and further training has resulted in overtraining. At 50 epochs
all testing losses are almost identical, however, the training loss for LANCZ0S3 is a bit lower than the
rest.

In Figure B.4 the accuracy of classification on the testing examples reaches just above 20 % using
some of the resizing methods. It is noted, that up to around the 50 epoch point, LANCZ0S3 is
performing slightly better in the testing accuracy, but significantly better in the training accuracy.

Page 121 of219

Chapter B B.3. DATASET PREPARATION

raccoon cloud lamp keyboard beetle

Figure B.5: 5 example images from CIFAR-100 represented as 16 x 16 grayscale images.

0.6
_ accuracy —— AREA
i 044 val_accuracy —— BICUBIC
© ——— —— BILINEAR
= D GAUSSIAN
g 021 e L T L ST ST Ty LANCZOS3
< LANCZOS5

0.0 - - - - MITCHELLCUBIC

0 50 100 150 200 250 ____ NEAREST NEIGHBOR
Epochs []

Figure B.4: The accuracy as a function of epoch training the same model on differently resized datasets.
The loss function is MeanSquaredError and the optimisation algorithm is adam. The evaluated training
accuracies are depicted as fully-drawn lines, whereas the evaluated testing accuracies are depicted as dotted-
lines.

In Table B.6 the mean time per epoch with different resizing methods applied to the CIFAR-100
dataset can be viewed. Since every datapoint is of the same size/shape (16, 16), the time required
per epoch should be very similar if not identical, which is cooperated by the values in the table. The
discrepancies are insignificant and there is no resizing method that results in the “fastest” times.

Table B.6: The mean epoch time in [s] for each tested resizing method. one epoch includes training, and
testing a batch of 512.

Resize Method Time [s]

AREA 1,49 LANCZ0S3 1,50
BICUBIC 1,47 LANCZ0S5 1,49
BILINEAR 1,47 MITCHELLCUBIC 1,47
GAUSSIAN 1,49 NEAREST_NEIGHBOR 1,46

LANCZ0S3 is chosen as the preferred resizing method, due to the slightly better accuracy in the
lower epochs. Using the same examples as Figure B.1 and Figure B.2, the images will be reduced to
what can be viewed in Figure B.5:

The outcome of the dataset preparation is thus a complexity reduced CIFAR-100 dataset consisting
of 50.000 training examples, 10.000 test examples, in the shape (16, 16) of 8-bit integers (using
grayscale and LANCZ0S3). The labels are converted to one-hot encoding.

Page 122 of219

Chapter B B.4. OPTIMIZER PREPARATION

Task Simplication was not tested, however, it is noted, that due to the dataset being comprised
of 100 classes, the problem can be “simplified”’ by removing classes.

B.4 Optimizer Preparation

Opposite to the dataset preparation the outcome of the optimizer preparation will not reduce the
amount of trainable parameters, since the model itself is not affected. Nonetheless, it is essential to
optimise the performance, by choosing a fitting optimisation algorithm and loss function.

B.4.1 Procedure

The optimizer preparation will follow a heuristic approach, wherewith the technique resulting in
the “best performance’ is chosen and subsequent testing will not revise the choice. Firstly, the
optimisation algorithm is found:

I) Import necessary packages
II) Load dataset (CIFAR-100, grayscale, 16 x 16)
III) Format the dataset
* Change labeling to one-hot-encoding
 Create batches of the training data (512)
 Create batches of the test data (512)
IV) Create the model
V) Compile model (Choose optimizer algorithm, loss function and metric are not changed)
VI) Fit the model over 250 epochs

Items IV through VI are repeated for each optimisation algorithm available from TensorFlow. The
script performing the optimisation algorithm search is called test_optimizer and can also be
found in Appendix A.

A similar procedure is performed to find the loss function, however, now the newfound optimisation
algorithm will be integrated into the compilation of the model:

I) Import necessary packages
II) Load dataset (CIFAR-100, grayscale, 16 x 16)
III) Format the dataset
* Change labeling to one-hot-encoding
 Create batches of the training data (512)
* Create batches of the test data (512)
IV) Create the model
V) Compile model (Choose loss function, optimizer algorithm and metric are not changed)
VI) Fit the model over 250 epochs

Items IV through VI are repeated for each loss function available from TensorFlow. The script
performing the loss function search is called test_loss and can also be found in Appendix A.

B.4.2 Results

The loss of the different optimisation algorithms can be viewed in Figure B.6 and the corresponding
accuracy is available in Figure B.7. Furthermore, the mean time per epoch for all ten optimisation
algorithms can be viewed in Table B.7.

Page 123 of219

Chapter B

B.4. OPTIMIZER PREPARATION

loss

val_loss

adadelta
adagrad

adam
adamw

adamax
ftrl
lion

nadam

100 150 200 TSprop

Epochs [/]

0 50 250

sgd

Figure B.6: The loss as a function of epochs, training the same model on the same dataset using different
optimisation algorithms. The loss function is MeanSquaredError. The eavluated training losses are depicted
as fully-drawn lines, whereas the evaluated testing losses are depicted as dotted-lines.

In Figure B.6 there is a clear difference between the optimisation algorithms. adamw, nadam, and
adam reaches their lowest loss very fast (around 30 epochs), however, they all suffer greatly from
overtraining after 50 epochs. adamax takes longer to reach its lowest loss, however, the effects
of overtraining are diminished. All four reach almost the same lowest loss at some point in their
training.

0.5
accuracy adadelta
.70-4_ ------- val_accuracy — adagrad
:0 —— adam
O .
< adamw
8 0. adamax
s o
0.1 1 — lion
—— nadam
00 T T T T
0 50 100 150 200 250 ImSprop
Epochs [] — sgd

Figure B.7: The accuracy as a function of epoch, training the same model on the same dataset using different
optimisation algorithms. The evaluated training accuracies are depicted as fully-drawn lines, whereas the
evaluated testing accuracies are depicted as dotted-lines.

Figure B.7 depicts the consequences of Figure B.6; adam, adamw, and nadam quickly reach their
respective peaks, at around the same epoch as their lowest loss. However, the effect of overtraining
are applied to the accuracies, and they each fall with around five percentage points. adamax is
slower, but reaches around the same accuracy as the others, and retains the accuracy.

In Table B.7 the mean duration of an epoch using the different optimisation algorithms can be seen.
Some of the times are notably lower, however, their losses and accuracies were not sufficient. W.r.t.
the four “best” optimisation algorithm, based on the loss and accuracy in Figure B.6 and B.6, there
exists no meanningful difference.

Page 124 of219

Chapter B B.4. OPTIMIZER PREPARATION

Table B.7: The mean epoch time in [s] for each tested resizing method. One epoch includes training, and
testing a batch of 512.

Resize Method Time [s] :

adadelta 1,51 ftrl 1,45
adagrad 1,50 lion 1,44
adam 1,50 nadam 1,52
adamw 1,51 Imsprop 1,48
adamax 1,50 sgd 1,46

Based on the stability of the test loss/accuracy, nadam is chosen out of the four optimisation
algorithms. In the following test where the loss function is changed, the optimisation algorithm will
thus be nadam.

Unlike the previous tests, comparing the losses of the different runs will not yield useful information,
since the loss is differently defined. Instead, the accuracies can be viewed in Figure B.8

0.6
accuracy BinaryCrossentropy
054 val_accuracy —— BinaryFocalCrossentropy
—— CategoricalCrossentropy
— 041 CategoricalFocalCrossentropy
— CategoricalHinge
g 0.3 - CosineSimilarity
g ' —— Hinge
) —— Huber
0.2 —— KLDivergence
—— LogCosh
0.1 1 —— MeanAbsolutePercentageError
/ MeanSquaredError
0.0 - : - : MeanSquaredLogarithmicError
0 50 100 150 200 250 —— SquaredHinge
Epochs [/]

Figure B.8: The accuracy as a function of epochs, training the same model on the same dataset using different
loss functions. The evaluated training accuracies are depicted as fully-drawn lines, whereas the evaluated
testing accuracies are depicted as dotted-lines.

In Figure B.8 using MeanSquaredLogarithmicError and CosineSimilarity is the fastest method
to reach above 20 % accuracy. However, BinaryFocalCrossentropy and SquaredHinge reach a
higher accuracy of around 25 % at their peaks. The accuracy using BinaryFocalCrossentropy is
for the most epochs slightly higher than using SquaredHinge.

Comparing the mean duration of an epoch between using BinaryFocalCrossentropy and SquaredHinge,
it is clear that using SquaredHinge is notably slower. However, it is deemed more important to
have the higher accuracy.

Page 125 of219

Chapter B B.5. MODEL ARCHITECTURE PREPARATION

Table B.8: The mean epoch time in [s] for each tested resizing method. one epoch includes training, and
testing a batch of 512.

Resize Method Time [s]

BinaryCrossentropy 1,59 Huber 1,57
BinaryFocalCrossentropy 1,63 KLDivergence 1,57
CategoricalCrossentropy 1,56 LogCosh 1,57
CategoricalFocal- 1,59 MeanAbsolutePercentage- 1,51
Crossentropy Error

CategoricalHinge 1,52 MeanSquaredError 1,54
CosineSimilarity 1,54 gijﬁiquaredl‘ogarithmic’ 1,58
Hinge 1,54 SquaredHinge 1,56

From comparison between using the different loss functions, a choice is made, and BinaryFocalCrossentro
will be utilised going forward, due to the slightly higher accuracy.

B.5 Model Architecture Preparation

Before the architecture of the model is tuned, the dataset, optimisation algorithm, and loss function
have been adjusted. The current goal is to create a model, with relatively few parameters. The
model was modified to accommodate the new data, which reduced the amount of parameters from
128.420 to 47.812 and given adamax as the optimisation algorithm and BinaryFocalCrossentropy
as the loss function, the model has reached an accuracy of around 25 %.

If possible the goal is to reduce the amount of parameters and increase the accuracy.

B.5.1 Procedure

The possible combination to produce a model is incredibly large, and some simplifications have
to be made, to make the search for an efficient model be done in a timely manner. Firstly, it is
decided, that the width and depth of the model will not be changed at the same time; i.e. if a layer
is added/removed from the base model, none of the layers can be modified at the same time and
vice versa. Furthermore, the layers will be restricted to be the same types as the baseline: Conv2D,
MaxPooling?2D, Flatten, and Dense. The kernel size and activation functions will not be changed.
The Flatten layer and the output layer Dense (100) will not be touched, as they ensure the output
is in the right format.

The models are based on the baseline. However, they each have an equal amount of the different
layer types (disregarding the Flatten-layer) per model. A summary of the models can be seen in
Table B.9:

Page 126 of219

Chapter B B.5. MODEL ARCHITECTURE PREPARATION

Table B.9:

T

Conv2D, MaxPooling2D, Conv2D, MaxPooling2D,
Base Model Conv2D, Flatten, Dense, Dense (100) 47812

One-Of-Each Model Conv2D, MaxPooling?2D, Flatten, Dense (100) 157060
Conv2D, MaxPooling2D, Conv2D, MaxPooling2D,

Two-Of-Each Model Flatten, Dense, Dense (100) 51844
Conv2D, MaxPooling2D, Conv2D, MaxPooling2D,
Three-Of-Each Model Conv2D, MaxPooling?2D, Flatten, Dense, Dense, 39684
Dense (100)
Conv2D, MaxPooling?2D, Conv2D, MaxPooling2D,
Four-Of-Each Model Conv2D, MaxPooling?2D, Conv2D, MaxPooling2D, 48004

Flatten, Dense, Dense, Dense, Dense (100)

For the modification of the depth of the model, the procedure will follow:

* Import necessary packages
* Load dataset (CIFAR-100, grayscale, 16 x 16)
e Format the dataset
— Change labeling to on-hot-encoding
— Create batches of the training data (512)
— Create batches of the testing data (512)
e Choose a model
* Compile the model (adamax is used as the optimisation algorithm, BinaryFocalCrossentropy
is used as the loss function)
 Fit the model over 250 epochs

Steps IV through VI is repeated for all the prepared models. Based on the accuracy and the amount
of parameters, a model is chosen and the width will be examined.

After the depth of the model has been set, the width is the subject of change. To keep it simple, the
chosen model will be compared to models where the ‘“number of filters” in the Conv2D-layer and
the amount of nodes in the Dense-layers are equal. To generate all the comparison models, the
number of filters/nodes starts at 16 and are incremented by eight until the number has reached
128.

The procedure for the width will follow:

* Import necessary packages
* Load dataset (CIFAR-100, grayscale, 16 x 16)
* Format the dataset
— Change labeling to on-hot-encoding
- Create batches of the training data (512)
— Create batches of the testing data (512)
* Choose a model
* Compile the model (adamax is used as the optimisation algorithm, BinaryFocalCrossentropy
is used as the loss function)
* Fit the model over 250 epochs

Page 127 of219

Chapter B B.5. MODEL ARCHITECTURE PREPARATION

B.5.2 Results

The resulting accuracies of the models presented in Table B.9 can be seen in Figure B.9. The base
models is significantly outperforming the other models w.r.t. its testing accuracy being multiple
percentage points higher than the second best: twoofeach_model. Furthermore, in Table B.9 it
can be seen, that twoofeach_model has more parameters than the Base Model; 51844 parameters
compared to the 47812. With the decrease in accuracy and increase amount of parameters, there is
no reason to further investigate any other model than the Base Model.

0.6
— accuracy base_model
= 044 77" val_accuracy oneofeach_model
© twoofeach_model
g 0.2 - threeofeach_model
< fourofeach_model

0.0 . . 1 .

0 50 100 150 200 250
Epochs [/]

Figure B.9: Accuracy as a function of epochs, training models of different depth on the same dataset. The
models can be seen in Table B.9. The evaluated training accuracies are depicted as fully-drawn lines, whereas
the evaluated testing accuracies are depicted as dotted-lines.

Testing the Base Model with varying width as described in subsection B.5.1, the resulting accuracies
can be viewed in Figure B.10:

0.6 - accuracy base_model —— n72_model
= | e val_accuracy —— nl6_model —— n80_model
= 0.4 1 —— n24_model —— n88_model
< n32_model n96_model
§ n40_model n104_model
< 0.2 n48 model —— nl12 model

— nb6_model —— nl120_model

0.0 ¥ T T T T n64_model n128_model

0 50 100 150 200 250
Epochs [/]

Figure B.10: The accuracy as a function of epochs, training modified versions of the base model using the
same dataset. The evaluated training accuracies are depicted as fully-drawn lines, whereas the evaluated
testing accuracies are depicted as dotted-lines.

There is no meaningful increase in accuracy from the Base Model, why all the models with more
weights can be discarded. The remaining models and their respective amount of parameters can be
found in Table B.10.

Page 128 of219

Chapter B B.6. FINAL ADJUSTMENTS

Table B.10: Base model and the model with fewer parameters. For each model the number of parameters
and the mean time per epoch are listed.

Base Model 47812 1,61
nl6 Model (Base) 4900 1,05
n24 Model (Base) 9604 1,16
n32 Model (Base) 15844 1,40
n40 Model (Base) 23620 1,60
n48 Model (Base) 32932 1,84
n56 Model (Base) 43780 2,15

From Table B.10 and Figure B.11 it can be seen that n40 Model has nearly the same testing accuracy
as the Base Model, n48 Model, and n56 Model, however, the total amount of parameters are half
of the Base Model. Furthermore, the n40 Model is just as fast per epoch as the Base Model, and
significantly faster both n48 Model and n56 Model.

0.4

accuracy base_model
. 03q e val_accuracy — nl6_model
2 —— 124 _model
T 0.2 1 n32_model
§ n40_model
< 0.1 A n48_model
— nH6_model

0.0 r 1 l l

0 50 100 150 200 250
Epochs [/]

Figure B.11: Repeat of Figure B.10 with the discarded networks removed.

The small drop in testing accuracy and the large drop in the number of parameters from Base
Model to n40 Model is deemed to be a good tradeofft.

B.6 Final Adjustments

For the final adjustments the current model-so-far is reviewed: The n40 Model chosen in sec-
tion B.5 reaches around a 25 % accuracy on the test data. This is viewed as a potential problem, as
approximate computing is relevant in scenarios where there is room for error. However, due to the
choice of a dataset of 100 classes, some of the classes may be removed to increase the accuracy,
which will be done in this section. Furthermore, the bias terms are temporarily removed to see the
effect of the values since no biases would simplify the C++ implementation. Lastly, to smooth out
the accuracy and avoid overtraining, regularisation is performed.

Page 129 of219

Chapter B B.6. FINAL ADJUSTMENTS

The goal of this section is to have a model with ~ 50 % test accuracy, with a smooth curve and no
overfitting.

B.6.1 Procedure

The final adjustments will be performed over two tests: Number of classes with/without bias and
regularisation.

I) Import necessary packages
II) Load dataset (CIFAR-100, grayscale 16 x 16)
III) format the dataset
* Change labeling to one-hot-encoding
* Create batches of the training data (32)
e create batches of the test data (32)
IV) Create the model
V) Compile model with optimiser found in section B.4
VI) Fit the model over 250 epochs
VII) Remove five classes and repeat I1I through VI (100 to 5 in decrements of 5)
VIII) Repeat III through VII, where in step IV the biases are removed

The script performing the number of classes with/without bias can be found in Appendix A un-
der /app-small_network/functions/ and are called classes_with_bias.py and classes_-
without_bias.py.

For the regularisation, three types are examined: L1, L2, and L1&L2. The procedure will follow

I) Import necessary packages
II) Load dataset (CIFAR-100, grayscale 16 x 16)
III) format the dataset
¢ Change labeling to one-hot-encoding
¢ Create batches of the training data (32)
e create batches of the test data (32)
IV) Create three models with regularisation (L1, L2, or L1&L2)
V) Compile models with optimiser found in section B.4
VI) Fit the models over 250 epochs
VII) Change lambda value for the regularisation and repeat III through V

The lambda values, that will be tried can be found in Table B.11.

Table B.11: A for the regularisation.
Y o001 001 005 01 03 05

The script performing the regularisation can be found in Appendix A under /app-small_network/
functions/ and is called regularization.py.

B.6.2 Results

In Figure B.12, B.13, B.14, and B.15 the result of number of classes with/without bias can be viewed.
The difference between using bias and not using bias is mostly insignificant, however, for 5, 10, 15,
and 60 classes there are differences. For 5 classes the model is trained faster, but they reach around

Page 130 of219

Chapter B B.6. FINAL ADJUSTMENTS

the same maximum validation accuracy. For 10 classes using bias outperforms not using bias. For
15 and 60 classes not using bias outperforms using bias.

Given the descrepancies noted above, it is assumed that using bias for this specific scenario does
not significantly affect the accuracy; the differences are probably caused by the start guess since
the value of the weights are random at first. Bias will not be included in the model.

Due to the goal of 50 % accuracy the model will perform classification on 10 classes (see Figure B.12).

1.0 5 Classes w Bias
—— 5 Classes w/o Bias
0.8 1 T 1 T 1 —— 10 Classes w Bias
o 10 Classes w/o Bias
= 0.6 9/ R . 15 Classes w Bias
% b’ 15 Classes w/o Bias
— 0.4 1 T T —— 20 Classes w Bias
—— 20 Classes w/o Bias
0.2 1 8 . — 25 Classes w Bias
—— 25 Classes w/o Bias
0.0 1
0 2500 2500 2500 2500 250 — accuracy
Epochs [-|Epochs [-]Epochs [-]Epochs [-|Epochs [-] = val_accuracy

Figure B.12: Accuracy and validation accuracy plotted as a function of number of epochs in the interval
[0, 250]. From left to right, the number of classes to perform classification on is incremented by 5, and each
combination is tried with and without bias.

1.0 30 Classes w Bias
—— 30 Classes w/o Bias
0.8 . . 8 . —— 35 Classes w Bias

35 Classes w/o Bias
i . . 40 Classes w Bias
40 Classes w/o Bias
—— 45 Classes w Bias
—— 45 Classes w/o Bias

—— 50 Classes w Bias

—— 50 Classes w/o Bias

0 2500 2500 2500 2500 250 —— accuracy
Epochs [-]Epochs [-|Epochs [-|Epochs [-]Epochs [-] = val accuracy

Figure B.13: Accuracy and validation accuracy plotted as a function of number of epochs in the interval

[0, 250]. From left to right, the number of classes to perform classification on is incremented by 5, and each
combination is tried with and without bias.

Page 131 of219

Chapter B B.6. FINAL ADJUSTMENTS

1.0 55 Classes w Bias
—— 55 Classes w/o Bias
0.8 1 1 1 T 1 —— 60 Classes w Bias
60 Classes w/o Bias
0.6 1 8 1 T 1 65 Classes w Bias
% 65 Classes w/o Bias
— 0.4 1 7 7 7 T —— 70 Classes w Bias
] —— 70 Classes w/o Bias
0.2 1 § V/ § —— 75 Classes w Bias
—— 75 Classes w/o Bias
0.0
0 2500 2500 2500 2500 250 — accuracy
Epochs [-]Epochs [-|Epochs [-|Epochs [-|Epochs [-] val_accuracy

Figure B.14: Accuracy and validation accuracy plotted as a function of number of epochs in the interval
[0, 250]. From left to right, the number of classes to perform classification on is incremented by 5, and each
combination is tried with and without bias.

1.0 80 Classes w Bias
—— 80 Classes w/o Bias
0.8 1 . . b . —— 85 Classes w Bias

85 Classes w/o Bias
i . . 8 90 Classes w Bias
90 Classes w/o Bias
i i . . — 95 Classes w Bias
—— 95 Classes w/o Bias

P
T —— 100 Classes w Bias
' —— 100 Classes w/o Bias
0 2500 2500 2500 2500 250 —— accuracy
Epochs [-]Epochs [-|Epochs [-|Epochs [-|Epochs [-] val_accuracy

Figure B.15: Accuracy and validation accuracy plotted as a function of number of epochs in the interval
[0, 250]. From left to right, the number of classes to perform classification on is incremented by 5, and each
combination is tried with and without bias.

Table B.12: Calculated mean time per epoch in seconds for Figure B.12 and B.13.

051s 1.11s | 1.75s | 2.23s | 2.76s 3.32s 394s 4.37s 4.84s | 5.71s
051s 1.10s 156s 194s 252s 3.18s 3.56s 4.04s 456s 5.03s

Page 132 of219

Chapter B B.6. FINAL ADJUSTMENTS

Table B.13: Calculated mean time per epoch in seconds for Figure B.14 and B.15.

I I I AN I T A

6.19s 6.51s | 6.97s | 7.52s 8.00s 8.55s 897s | 9.62s | 10.58s 11.31s
577s 6.10s 6.67s 691s 7.37s 7.92s 859s 932s 9.82s 11.43s

In Figure B.16, B.17, and B.18 the accuracy is plotted against the epochs for L1, 1.2, and L1L2
regularisation for the different values from Table B.11.

1.0

= accuracy A =0.001

? ------- val_accuracy — A=0.01

= 059 — A=005

S A=0.1

- 0.0 i B . . . A=03
0 50 100 150 200 250 A=05

Epochs [/]

Figure B.16: L1 regularisation with different A-values. Accuracy as a function of epochs.

1.0

= accuracy A =0.001

? ------- val_accuracy — A=0.01

5 057 —— A=005

S A=0.1

< 0.0 T [N I A=0.3
0 50 100 150 200 250 A=05

Epochs [.]

Figure B.17: L2 regularisation with different A-values. Accuracy as a function of epochs.

1.0

= accuracy A =0.001
? ------- val_accuracy — A=0.01
5 057 —— A=005
S A=0.1
R — . . . A=03

0 50 100 150 200 250 A=0.5

Epochs [.]

Figure B.18: L2 regularisation with different A-values. Accuracy as a function of epochs

It is clear from Figure B.16, B.17, and B.18, that most of the chosen A-values are affecting the
accuracy of the model very negatively, and they fall to an accuracy of ~ 10 %, which is corresponding

Page 133 of219

Chapter B B.7. CONCLUSION

to a random guess. However, it is noticed that using L2 regularisation with a A-value of 0.001 is the
best of the bunch, and increasing this value seems to cause a decrease in accuracy. In Figure B.19
an extra set of 1-values have been tested, all yielding better results than the previous.

1.0
accuracy A =0.0001
0.8 4 =reres val_accuracy — X =0.0002
o — —— A =0.0003
? 0.6 s S - A = 0.0004
5 e A = 0.0005
i} 0-41 A = 0.0006
02 —— A =0.0007
— A =0.0008
0.04 | | | | —— A =10.0009

0 50 100 150 200 250 ——)\ =0.001

Epochs [/]

Figure B.19: L2 regularisation with adjusted A-values.

From Figure B.19 it is clear that the values 0.0001 and 0.0002 are the best performing of the tested
values. After 25 epochs, A = 0.0001 reaches a higher accuracy than A = 0.0002, however, A = 0.0002
overtakes at around 125 epochs. Furthermore, both accuracy and val_accuracy are notably less
ragged for A = 0.0002, why this value is chosen.

B.7 Conclusion

The designed small-scale network is based on the example CNN presented in Convolutional Neural
Network (CNN). The dataset was changed from CIFAR-10 to CIFAR-100 to make the machine
learning problem more difficult, with the benefit of many classes. The amount of classes can be
changed, and thus the difficulty of the problem faced by the network can be adjusted, if need be.
The CIFAR-100 dataset was converted to grayscale and the size of each image was changed from
(32, 32) to (16, 16) using LANCZ0S3. Due to the changed (and modified) dataset, some modifications
of the model followed: The kernel size of the convolutional and pooling layers were changed from
(3, 3) to (2, 2) and the output layer had to be increased from 10 to 100 to accommodate the new
number of classes.

By heuristically testing the parameters of the network’s optimizer, the chosen optimisation al-
gorithm was adamax and the loss function was chosen to be BinaryFocalCrossentropy. The
combination of these two choices resulted in a network with an accuracy of around 25 %.

The model itself was also modified by heuristically choosing the best model from sets of models.
The depth of the model remained unchanged as none of the other models retained the accuracy
without negatively affecting the number of parameters. However, testing the model with different
widths, a modified model emerged with slightly worse accuracy but a steep drop in number of
parameters.

This model was tuned to around a 50 % accuracy by reducing the set of classes to 20. The effect
of having bias in this scenario was also while changing the number of classes, and the difference
was deemed to be caused by the “random guess” with which the weights are initialised. The bias

Page 134 of219

https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/images/cnn

Chapter B B.8. DISCUSSION

was removed from the model, further reducing the amount of parameters, and slightly simplify-
ing implementation. To avoid overtraining and smooth out the training and testing accuracies,
regularisation was explored. The initial 1-values were tested with L1, L.2, and L1L2 regularisation,
however, only A = 0.001 L2 regularisation performed significantly better than a random guess.
L2 regularisation was chosen, however, to improve performance other A-values were tested and
A =0.0002 was chosen.

The final model is presented in Table B.14:

Table B.14: Summary of the final small-scale model (n40
Model) found by calling model . Summary ().

Layer Type Output Shape

Conv2D (None, 15, 15, 40) 160
MaxPooling 2D (None, 7, 7, 40) 0
Conv2D (None, 6, 6, 40) 6400
MaxPooling 2D = (None, 3, 3, 40) 0
Conv2D (None, 2, 2, 40) 6400
Flatten (None, 160) 0
Dense (None, 40) 6400
Dense (None, 10) 400

T Total parameters 19800 and trainable parameters
19800.

B.8 Discussion

Designing and optimising a neural network can take a lot of time, due to the sheer amount of
hyperparameters. In this appendix, a lot of time has been saved by heuristically going forward with
the best performing model; testing one hyperparameter per test. This, however, does not ensure the
best model and small changes that would improve the performance of the model may have been
missed. The purpose of the model is for comparison with another identical implementation, and
for that purpose, an optimal model is unnecessary and the shortcomings of the heuristic approach
are deemed unimportant.

Furthermore, some of the hyperparameters have settings that can be adjusted, however, this has
been purposefully avoided with the same reasoning above.

Repetition of the tests has been purposefully avoided to save time, however, to support the validity
of the choices and ensure the correct conclusion would have been drawn, this would be essential.
Since the end goal is a model neural network, that will be compared with an almost identical copy,
this is not seen as important.

B.9 Methods

This section will briefly describe the methods utilised by the final model.

Page 135 of219

Chapter B B.9. METHODS

LANCZO0S3 is an interpolation function. The reader is recommended to read section 48.1 Lanczos
Resampling from Lanczos Resampling for the Digital Processing of Remotely Sensed Images by
Madhukar, B. N. and Narendra, R. [127], as this is the main source for the following brief explanation:

Each samples of the original signal (in this case pixels) are effectively mapped to a translated and
scaled Lanczos kernel. The Lanczos kernel is defined as:

1, x=0
L(x) = { 2nm0sin(F) - x<q (B.1)
=X
0, otherwise

where:

x | Arbitrary real argument, where the resampling is performed
a | The size of the kernel in integer-values (for the TensorFlow method LANCZ0S3 a = 3)

Since this method is performed on a 2D signal (grayscale CIFAR-100 images), the Lanczos kernel
must be 2D, which is defined by the product of two 1D kernels:

L(x, y) =L(x)-L(y) (B.2)

The reconstruction/regeneration of a 2D signal s;; can be performed given:

lx|+a lyl+a
S,)=). Y. sijLx—i)-Ly—-j) (B.3)

i=lx]-a+1 j=|x]-a+1

where:

X, y | Arbitrary real argument (coordinate), where the resampling is performed
a | Thesize of the kernel in integer-values (for the TensorFlow method LANCZ0S3 a = 3)
sjj | Original signal indexed at (i, j)

adamax is an optimisation algorithm. The reader is recommended to read the article Adam: A
Method for Stochastic Optimization by Kingma, Diederik P and Ba, Jimmy [128], as this is the main
source for the following brief explanation.

Adamax is a modified version of Adam; a gradient descent method with individual adaptive learn-
ing rates for the parameters based on the first and second moments of the gradients. Adam is
designed to work well with sparse gradients and work well in on-line and non-stationary settings,
by combining the advantages of AdaGrad and RMSProp. Adamax differs from Adam when scaling
the gradients: Using Adam the gradients are inversely proportional to a L? norm of their individual
current and past gradients, whereas the norm used in Adamax is L.

BinaryFocalCrossentropy is a loss function. The reader is recommended to read the article by
Daniel Godoy [129] and to explore the Keras 3 API documentation about probabilistic losses, as
these are the main sources for the following brief explanation.

Entropy is a measure for the uncertainty of a given distribution: In the case of image classification
high entropy would mean that the distribution of different classes is uniform, whereas low entropy
would be if the distribution of the classes is heavily skewed toward a class. The entropy may not be
known, however, given a set of labels it can be approximated as the crossentropy [129]:

Page 136 of219

https://keras.io/api/losses/probabilistic_losses/

Chapter B B.9. METHODS

C
H(g)=-) q(yc)-log(p(ye)
=1 (B.4)

C
Hp(q) =—) q(yc)-log(q(ye)
c=1

where:

H(q) | The entropy
Hp(q) | The cross-entropy
C Number of classes
q(y.) | Likelihood of class c given the true distribution
p(ye) | Likelihood of class ¢ given the approximated distribution

If the approximated distribution matches the true distribution perfectly, H(g) and Hp(g) would be
equal, otherwise cross-entropy will have a bigger value than entropy. This inequality is called KL
divergence, however, for brevity the explanation is omitted, but can be found in the article. The goal
is to minimize this divergence, i.e. this can be seen as a loss function. Given that the training/test
sets have a uniform distribution of classes and ““a little bit of manipulation”, any point from any
class can be utilised in the same formula, binary cross-entropy:

1 N
Hy(q) = N Y yi-log(p(y)) + (L —y) - log(1— p(y)) (B.5)
i=1

Binary cross-entropy becomes binary focal cross-entropy when another term is introduced: the
focal factor. The focal factor scales the difference between the true label and predicted label, which
should help to “down-weights the ss assigned to well-classified examples [...] focuses training on a
sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the
detector during training’’ [130].

L2 Regularisation is a penalty term for the loss function. The reader is recommended to read the
article L1 and L2 Regularization Methods, Explained by Anuja Nagpal [131] or watch Regularization
Part 1: Ridge (L2) Regression, as they are the main sources for the following brief explanation.

The L2 penalty term is the addition of the squared magnitudes of the weights/coefficients on the
loss function, scaled by a set constant A:

AY B (B.6)

where:
A | Scalar constant
Bi | ith weight
n | Number of weights
Adding this extra loss term helps reduce variance by shrinking the weights and by extension making

the predictions less sensitive to them. Reducing the variance may in turn help the model avoid
overfitting.

Page 137 of219

https://youtu.be/Q81RR3yKn30
https://youtu.be/Q81RR3yKn30

Selection of Approximate
Circuits for Comparing Metrics

This appendix presents a selection of approximate adders and multipliers from the EvoApproxLib
[4]. The purpose is to attain different approximate arithmetic circuits with different characteristics,
to be able to evaluate the benchmark system for varying use cases. The selection is made to achieve
a catalogue with varying approximate parameters.

The approximate circuits alone constitute step one of the benchmarking system, and the procedure
for evaluation is described in chapter 4. The purpose of step one is to determine the power, latency
and inaccuracy of a functional approximate circuit on the RTL.

It is chosen to measure power as gate-count and latency as critical path as respectively power/area
and latency are functions hereof. The designed analysis tool described in section 4.2 is implemented
such that a user can change assumptions about the number of transistors in a certain gate, and the
latency of the logic gate circuits. Furthermore, the user can modify which gates are available in the
synthesis. The gates that are available to choose from and their assumed CMOS layout is congruent
with those presented in [113]. The transistor count is presented in Table C.1.

To get an estimate of the critical path delay of each available logic gate, an estimate is derived based
onresearch in [114], that finds the propagation delay of a conventional inverter and NAND-gates to
be about 150 ps. The estimate used for the remainder of the logic gates is 300 ps for AND and OR
gates and 450 ps for XOR and XNOR. It is emphasised that these delays are assumed to be provided
by the user of the benchmarking system and that these estimates are only placeholder values used
for exemplification.

Table C.1: Assumptions on transistor count and latency for a selection of logic gates. These estimates are
used as examples through the entirety of the step one analysis examples in this project.

P A T R

Transistor
113
Count [113]
Propagation Inspired by
Delay 300 ps @ 450 ps 150ps @ 300ps @ 450 ps 150 ps (114]

The inaccuracy will be defined by errors metrics induced by adjusting the power consumption
and/or latency with relation to an exact counterpart. An important error metric is the difference
defined as [23]:

Page 138 of219

https://ehw.fit.vutbr.cz/evoapproxlib/

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

diff(f(x), Fx) E11f) - F@ll C.1)

where:

x | input to functions f and f
f(x) | exact function performed on input x
f(x) | approximate function performed on input x

There are several error metrics, which utilise the difference, some of them are defined below [23]:

WCD (Worst Case Distance):
r)?&x(diff(fx), fx)) (C.2)

MAE (Mean Absolute Error):
E{diff(f(x), f(x)} (C.3)

MSE (Mean Squared Error):

1 ~
— ¥ (diff(f 0, Fo) (C.4)
|X| xeX

Eq. (C.2), (C.3), and (C.4) are good tools to indicate the precision of the approximation performed,
however, they are tied to the numerical values of the evaluated input. In some contexts it would be
more appropriate to examine how often errors happen, the ER is defined as [22]:

4 =
X[W={xeX|f(x)# fl} (C.5)
In digital circuit design, it is also relevant to view how much the evaluated input differs from
approximate to exact on the bit level. For this purpose, the HD can be utilised; the HD between two
binary values, x and y, is defined as the count of bits that differ:

n
> lxi # yil (C.6)

i=0
In circuits with multiple input-output relations, it can be beneficial to evaluate the MHD which is
simply:
1 n
— 2 2 lxi # yil (C.7)

| X] x€Xi=0

C.1 Step One Analysis on Approximate Circuits
To obtain a selection of approximate arithmetic circuits to use as examples in the remainder of this

project, multiple adders and multipliers from the EvoApproxLib are analysed using the methods
described in chapter 4. The chosen circuits are summed up in Table C.2.

Page 139 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.2: The chosen approximate circuits from EvoApproxLib [4]. All circuits perform signed 8-bit arith-
metic operations.

Apx. Apx. Apx. Apx. Apx. Apx. Acc. Apx. ApxX. Apx. Acc.

Multipl Multipl Multipl Multipll Multipl Multip] Multipl Adder Adder Adder Adder

Each circuit is provided with a Verilog and C file in the EvoApproxLib and can be evaluated
provide these to the Makefile function (see /rtl-analysis/Makefile in Appendix A). The result
provides metrics regarding cost, performance and inaccuracy for the input circuit and provides a
synthesised RTL netlist, a graph illustrating the critical path in a directed graph, and a distribution
of all possible errors for the approximate circuit.

C.1.1 mul8s 1L12

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.1.

| — =
D
B

Lo

>

HIA

—D o=
> D—
.

Figure C.1: mul8s_1L12 synthesised to AND, XOR, NAND, OR, NOR and XNOR gates usingnetlistsvg.

Lﬁ
1
L
;
)

|
%
X

.
(==
oLy

The gate-count of the circuit is shown in Table C.3.

Page 140 of219

https://ehw.fit.vutbr.cz/evoapproxlib/
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1L12_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1L12_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV9_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV9_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV8_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV8_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_ep&file=mul8s_1KVM_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_ep&file=mul8s_1KVM_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_wce&file=mul8s_1KVA_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_wce&file=mul8s_1KVA_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1L2J_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1L2J_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV6_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed/pareto_pwr_mae&file=mul8s_1KV6_pdk45.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_839.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_839.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8VQ.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8VQ.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8NH.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8NH.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8CL.v
https://ehw.fit.vutbr.cz/evoapproxlib/?folder=adders/8_signed_extended/pareto_pwr_mae&file=add8se_8CL.v

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.3: Gatecounts of the netlist visualised in Figure C.1 (i.e. mul8s_1L12).
AND | XOR | NAND | O | XNOW | NOR | NOT | gatecount | ranssorcount
20 11 24 5 5 0 3 68 412
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.2 and the corresponding
critical path gate count and delay are shown in Table C.4.

Table C.4: Critical path data of Figure C.2 (i.e. the
directed graph of the mul8s_1KV6 circuit).

i if
Number of Gates | ©"°P agz[lrtlls(]m delay

18 19.95

T Calculated based on assumptions presen-
Figure C.2: Visualisation of the DAG represent- ted in Table C.1.

ation of Figure C.1. The red nodes indicate the
calculated critical path.

The functional circuit is an 8-bit signed multiplier meaning that both the multiplicand and mul-
tiplier can take any integer value between -128 and 127, i.e. x € {-128,-127,-126,...,127}. It is
assumed that the multiplier and multiplicand take any value with equal probability, i.e. A, B ~
U{-128,127}. This means that the P(A=x) = P(B=x) = ﬁ. The joint distribution can be repres-
ented as a LUT where each entry is the product of the marginal entries, i.e. fap=P(A=x,B=x) =
P(A=x)-P(B=x)= 5% It is then possible to describe the error distance as another discrete RV (E)
with a conditional PMF fg4 . This PMF is obtained by evaluating every output of the approximate
circuits exactly once.

The PMF is plotted in a histogram using 100 bins for this particular circuit. The histogram is seen in
Figure C.3.

Page 141 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

0.020 - 3
— 0.015
-
e
2 0.010-
[av]
o)
o
hast
& 0.005
0.000 1 commeessnaneshSENIRAR ARt —

—8000 —6000 —4000 —2000 0 2000 4000 6000 8000
Error [/]

Figure C.3: Histogram of the error distribution of the approximate circuit in Figure C.1. The distribution is
illustrated as a histogram of 100 distinct bins and normalised to show probability density.

The single-value metrics for this distribution are shown in Table C.5.
Table C.5: Error-metrics of the distribution presented in Figure C.3.
Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate . .
Error Error Error Distance Distance
2016 7.283 -10° 98.053 % 8064 5.06

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of
this chapter.

The purpose of providing these metrics is for the user to pick and choose between metrics for a
certain application

Page 142 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.2 mul8s 1KV9

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.4.

b
!
*@
it

b 811 0

wﬁ
-

g0
5

el]

Figure C.4: mul8s_1KV9 synthesised to AND, XOR, NAND, OR, NOR and XNOR gates usingnetlistsvg.

Page 143 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

The gate-count of the circuit is shown in Table C.6.

Table C.6: Gatecounts of the netlist visualised in Figure C.4 (i.e. mul8s_1KV9).
“AND | XOR | NAND| “OR | XNOR | NOR | NOT | gtecount | tranistorcount
76 19 159 49 57 1 0 361 2150
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.5 and the corresponding
critical path gate count and delay are shown in Table C.7.

Table C.7: Critical path data of Figure C.5 (i.e. the
directed graph of the mul8s_1KV9 circuit).

i ir
Number of Gates LD agz[lrtlls(]m delay

18 3.9

T Calculated based on assumptions presen-

Figure C.5: Visualisation of the DAG represent- ted in Table C.1.

ation of Figure C.4. The red nodes indicate the
calculated critical path.

The PMF is plotted in Figure C.6.

0.30 1

0.25 A

0.20

0.15 A

0.10 1

Probability [.]

0.05 A

TTITITTI»

0.00 1 ?
—17.5 —15.0 —12.5 —10.0 =75 —5.0 —2.5 0.0
Error []

Figure C.6: PMF of the error distribution of the approximate circuit in Figure C.4. The distribution is plotted
where each bar represents a discrete error distance.

The single-value metrics for this distribution are shown in Table C.8.

Page 144 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.8: Error-metrics of the distribution presented in Figure C.6.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance
4.25 34.25 68.75 %

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of
this chapter.

Page 145 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.3 mul8s 1KV8

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.7.

— 5]
5>
1 —D—D
o] —D—1
! =51
=
—D—D
DD
Lo
e —
=) L
—=—p1 o
oo L
DDt
Lo g [
Lot |
il
Eptplio
[L
LDt
o] Lo olto-Ho=o-
——
:.}j>ﬁD- :]}—-:D,; '
D DFD =D
—D =
== —O1
==
N
:il‘}:l:t)- \-&
Lo
DD D O P
— T DD
:Dzﬁ D7 L _g 1}93}@ =51
NI
—&Df:D-L
= > - =1 i
Dt ‘ DD
DD =D
o
=] EL
| i —
E [L] 7 ; fe—D
O DD Dt r; '] el
5
el
D I Lo N }J’D
=H
=l L)
——D ||
oo l]
SO
— <E] | =.
= Ir:D‘FD“ID‘\K
B ==
EDJ\ —D—“ tD:D =271
—r\D:D-
:) Lol
=] sl
LI
Lﬂi
|

Figure C.7: mul8s_1KV8 synthesised to AND, XOR, NAND, OR, NOR and XNOR gates usingnetlistsvg.

Page 146 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

The gate-count of the circuit is shown in Table C.9.

Table C.9: Gatecounts of the netlist visualised in Figure C.7 (i.e. mul8s_1KV8).
"AND | XOR | NAND| “OR | XNOR | NOR | NOT | gtecount | tranistorcount
91 19 153 50 61 1 0 375 2262
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.8 and the corresponding
critical path gate count and delay are shown in Table C.10.

Table C.10: Critical path data of Figure C.8 (i.e.
the directed graph of the mul8s_1KV8 circuit).

i ir
Number of Gates LD agz[lrtlls(]m delay

28 8.1

T Calculated based on assumptions presen-

Figure C.8: Visualisation of the DAG represent- ted in Table C.1.

ation of Figure C.7. The red nodes indicate the
calculated critical path.

The PMF is plotted in Figure C.9.

0.5 1 ®

o o
w =~
1 1

Probability [.]

(e}
—
1
—
'
O

<
o
1

Error [.]

Figure C.9: PMF of the error distribution of the approximate circuit in Figure C.7. The distribution is plotted
where each bar represents a discrete error distance.

The single-value metrics for this distribution are shown in Table C.11.

Page 147 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.11: Error-metrics of the distribution presented in Figure C.9.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance
1.25 3.75 50 % 0.75

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of
this chapter.

Page 148 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.4 mul8s 1KVM

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.10.

T‘

. —
FEE]|
DQE;T)

q

| —

:1>ED rgiw
,DiDJ ;—D
B
> s |
5
D
s P I
—D -1
s
e N
s | MO =D (>
—ro—o]]| b
—
=pu | DD ']
- D SSE =s ol
=D DD%
Senle —DH:D~ oo —=-—
EjD d}mi—
=D —
—D—D>
—O7iD

A
Y
4
s
b
iﬂj

i
i

Figure C.10: mul8s_1KVM synthesised to AND, XOR, NAND, OR, NOR and XNOR gates using netlistsvg.

The gate-count of the circuit is shown in Table C.12.

Page 149 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.12: Gatecounts of the netlist visualised in Figure C.10 (i.e. mul8s_1KVM).
AND | XOR | NaND | OR | XNOW | NOR | NOT | gatecount | ranssorcount
92 11 139 45 49 1 2 339 1986
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.11 and the corresponding
critical path gate count and delay are shown in Table C.13.

Table C.13: Critical path data of Figure C.11 (i.e.
the directed graph of the mul8s_1KVM circuit).

i if
Number of Gates |/ °P ag?;ls?n delay

28 8.25

T Calculated based on assumptions presen-

Figure C.11: Visualisation of the DAG represent- ted in Table C.1.

ation of Figure C.10. The red nodes indicate the
calculated critical path.

The PMF is plotted in Figure C.12.

0.5 1 ®
04+
£ 031
=
S
< 0.2
S
~
o
0.1 1
(). D
—100 —-50 0 50 100
Error []

Figure C.12: PMF of the error distribution of the approximate circuit in Figure C.10. The distribution is
plotted where each bar represents a discrete error distance.

The single-value metrics for this distribution are shown in Table C.14.

Page 150 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.14: Error-metrics of the distribution presented in Figure C.12.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance
2730.75 49.8 % 2.23

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of
this chapter.

Page 151 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.5 mul8s 1KVA

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.13.

&
o>
o

i

Figure C.13: mul8s_1KVA synthesised to AND, XOR, NAND, OR, NOR and XNOR gates usingnetlistsvg.

The gate-count of the circuit is shown in Table C.15.

Page 152 of219

Chapter C

C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.15: Gatecounts of the netlist visualised in Figure C.13 (i.e. mul8s_1KVA).

“AND | XOR | NAND | OR_| XNOR | NOR | NOT | gtecount | tansisorcount
73 16 147 45 56 1 0 338

T Calculated based on values presented in Table C.1.

2020

The directed graph illustration of the critical path is shown in Figure C.14 and the corresponding
critical path gate count and delay are shown in Table C.16.

Figure C.14: Visualisation of the DAG represent-
ation of Figure C.13. The red nodes indicate the
calculated critical path.

The PMF is plotted in Figure C.15.

Table C.16: Critical path data of Figure C.14 (i.e.
the directed graph of the mul8s_1KVA circuit).

Propagation delay’
[ns]

Number of Gates

28 8.1

T Calculated based on assumptions presen-
ted in Table C.1.

_ 0157

0.10 A

Probability |

<

o

>
1

o soleettle TTTL’TT Neltls

QTQLT._

0.00 1

—50 —40

-30

—-20 —10 0

Error [.]

Figure C.15: PMF of the error distribution of the approximate circuit in Figure C.13. The distribution is
plotted where each bar represents a discrete error distance.

The single-value metrics for this distribution are shown in Table C.17.

Page 153 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.17: Error-metrics of the distribution presented in Figure C.15.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance
12.25 248.25 81.25% 2.14

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of
this chapter.

Page 154 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.6 mul8s 11.2]

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.16.

N E—

Figure C.16: mul8s_1L2J synthesised to AND, XOR, NAND, OR, NORand XNOR gates usingnetlistsvg.

The gate-count of the circuit is shown in Table C.18.

Page 155 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.18: Gatecounts of the netlist visualised in Figure C.16 (i.e. mul8s_1121J).
AND | XOR | NAND |OR | XNOW | NOR | NOT | gatecount | ranssorcount
58 14 132 38 45 0 1 288 1696
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.17 and the corresponding
critical path gate count and delay are shown in Table C.19.

Table C.19: Critical path data of Figure C.17 (i.e.
the directed graph of the mul8s_1L2J circuit).

i if
Number of Gates |/ °P ag?;ls?n delay

24 6.9

T Calculated based on assumptions presen-

Figure C.17: Visualisation of the DAG represent- ted in Table C.1.
ation of Figure C.16. The red nodes indicate the
calculated critical path.

The PMF is plotted in a histogram using 150 bins for this particular circuit. The histogram is seen in
Figure C.18.

0.25 - L 4

Probability [.]

0.05 A

0.00 4 oD

—200 —100 0 100 200
Error [/]

Figure C.18: PMF of the error distribution of the approximate circuit in Figure C.16. The distribution is
plotted where each bar represents a discrete error distance.

The single-value metrics for this distribution are shown in Table C.20.

Page 156 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.20: Error-metrics of the distribution presented in Figure C.18.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance
53.3 5462 74.6 % 3.25

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of
this chapter.

Page 157 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.7 mul8s 1KV6

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.19.

=
I
D1 —
:DE —
Lo=o
q):b:&f
==
=1 P
— >
N — !
:tyj}ID‘D
Ll
Y I
DD
-
r=2g! =D —
jﬂ} I
Ny |
—Drft———
i
—
D>
=D
= i
:DP DT>
—D
=
=+
’_Dt =D
=" J:D
DD
LT
>0
——D
——-
—or—
=5 —DOr
Loy =-———————— =
@P lep
=D =
> =D
S P | N
Lot o —D
O
= L
iR ! s
I 11 Y |
D &
E=S=N ks
ol
—
,—Dﬂ:ﬁ)«o_
ol —D1
==
—O D
oD i
= 17
ol =o=——>r_ |
=t tI):D L =
=o
Of
rog]
——D
= FDﬂ:D"
—1

Figure C.19: mul8s_1KV6 synthesised to AND, XOR, NAND, OR, NOR and XNOR gates using netlistsvg.

Page 158 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

The gate-count of the circuit is shown in Table C.21.

Table C.21: Gatecounts of the netlist visualised in Figure C.19 (i.e. mul8s_1KV6).

“AND | XOR | NAND | “OR | XNOR | NOR | gatccounc_| —transitorcount’
79 19 171 51 63 1 384

2288

T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.20 and the corresponding
critical path gate count and delay are shown in Table C.22.

Table C.22: Critical path data of Figure C.20 (i.e.
the directed graph of the mul8s_1KV6 circuit).

i ir
Number of Gates LD agz[lrtlls(]m delay

82 8.1

T Calculated based on assumptions presen-

Figure C.20: Visualisation of the DAG represent- ted in Table C.1.
ation of Figure C.19. The red nodes indicate the
calculated critical path.

Since the mul8s_1KV6 is an accurate multiplier, there are no error metrics to report.

C.1.8 Multiplier Comparison

To compare the chosen multipliers is a balance not only between the power, latency and inaccuracy,
but also the application-relevant sub-metrics. For some applications, there could be a boundary to
the WCD and for different applications, it is desired to trade off a high gate count for a short critical
path. An illustration that aids the comparability of the trade-offs for different approximate circuits
is also provided using the MakeFile (see /rtl-analysis/Makefile in Appendix A), which takes
approximate circuit in Verilog and C++ and finds the metrics presented in all previous sections.
It is further possible to specify comparison metrics, i.e. one for power, latency and inaccuracy
each. These three constitute a vector that can be plotted in three dimensions, where the vector
with the lower magnitude is considered more satisfactory compared to the one with a higher
magnitude. Firstly an example is shown for the multipliers mul8s_1KV9, mul8s_1KVM, mul8s_1L12,
and mul8s_1KV6, comparing the gate-count for power, critical path gate-count for latency, and
error rate for inaccuracy. This is shown in Figure C.21.

Page 159 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Multiplier comparison

—— mul8s_1KV9
—— mul8s_1L12
—— mul8s_1KV6
—— mul8s_1KVM
Error Rate /1,0,,0
/(68.0; 14;98.053)
4; 68.75)
339.0; 28; 49.8047) i
30
//,/l ,/ 40
',/ Aritical Path Gate Count
Ay
|
)//, //
g
/
/
/ /
-7, /
17
Fr—a_)

Gate Count

Figure C.21: 3D-plot of the metrics of mul8s_1KV9, mul8s_1KVM, mul8s_1L12, and mul8s_1KV6.

A few points are highlighted from Figure C.21. Firstly it is noticed that mul8s_1L12 has the shortest
critical path and lowest gate count, but at the expense of a large error rate. Secondly, the mul8s_-
1KV9 has a shorter critical path compared to mul8s_1KVM, but trades both total gate count and
error rate. Lastly, it is noticed that mul8s_1KV6 is accurate, as it has 0% error rate and it is noticed
that the total gate count is also the highest of the multipliers. However, the critical is even longer
for mul8s_1KVM. If the user’s application values low latency more than a low error rate, the user
should choose mul8s_1KV9 and maybe even mul8s_1L12 over mul8s_1KVM and if the application
can only “afford” an error rate of 50% only mul8s_1KVM and mul8s_1KV6 is feasible for this selection
of multipliers.

Another comparison is made for the same multipliers using gate-count for power, critical path
gate-count for latency, and WCD for inaccuracy. This is shown in Figure C.22.

Page 160 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Multiplier comparison

—— mul8s_1KV9
—— mul8s_1KV6
—— mul8s_1KVM

Worst-Case Error Distance | o
AP S

120 | I S

lQO

- {(339:0;28128.0)

\ \
,(\35,1,-Q,:E,24;,1,7,,0,) [

5

Gate Count

Figure C.22: 3D-plot of the metrics of mul8s_1KV9, mul8s_1KVM, and mul8s_1KV6.

The takeaway from this comparison is that even though mul8s_1KV9 had a higher error rate com-
pared to mul8s_1KVV, it has a significantly lower WCD. This constitutes the fact that comparing the

approximate circuits using single parameter metrics is a challenging task and the ability to visualise
these metrics benefits the interpretability.

For good measure another comparison is made for the remaining multipliers, i.e. mul8s_1KV8,

mul8s_1KVA and mul8s_1L2J using gate-count for power, critical path gate-count for latency, and
error rate for inaccuracy, this is shown in Figure C.23.

Page 161 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Multiplier comparison

—— mul8s_1KV8
—— mul8s_1KVA
—— mul8s_112)
Error Rate fq00
| (338.0; 28; 81.25)
60 N ;|23; 74.6094)
1
1
1
1
1
1
(375.0; 28; 50.0
1
i
SEN
(.
I
I
I
: 1
10 ! 3
O 1 ‘
- ~ 230 40

7 /
- ,/Critical Path Gate Count

——

SR N S

Gate Count

Figure C.23: 3D-plot of the metrics of mul8s_1KV8, mul8s_1KVA and mul8s_1L2J.

This plot shows that mul8s_1L2J is superior to mul8s_1KVA as its vector is shorter in all dimensions.
However, the plots of the same multipliers are shown using WCD as the metric for inaccuracy is
shown in Figure C.24. This shows that the trade-off still exists but between the different inaccuracy
metrics as mul8s_1L2J has a significantly larger WCD compared to mul8s_1KVA.

Page 162 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Multiplier comparison

—— mul8s_1KV8

—— mul8s_1KVA
Worst-Case Error Distance —— mul8s_1L2J

pso
oo
150

{100

(338/0; 28;49.0) "/

B YRy Ay i A &

r" ~

/

71

i

Gate Count

Figure C.24: 3D-plot of the metrics of mul8s_1KV8, mul8s_1KVA and mul8s_1L2J.

Page 163 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.9 add8se 839

In a manner equal to the multiplier circuits the different adders is analysed. Firstly, the netlist is
synthesised, providing the circuit diagram shown in Figure C.25.

Y
D LE%

>
o 1. LD

Figure C.25: add8se_839 synthesised to AND, XOR, NAND, OR, NOR and XNOR gates using netlistsvg.

The gate-count of the circuit is shown in Table C.23.

Table C.23: Gatecounts of the netlist visualised in Figure C.25 (i.e. add8se_839).
"AND | XOR_| NAND| “OR | XNOR | NOW | NOT | gtecount | tramsisorcount
2 12 17 0 1 0 0 32 210
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.26 and the corresponding
critical path gate count and delay are shown in Table C.24.

Table C.24: Critical path data of Figure C.26 (i.e.
the directed graph of the add8se_839 circuit).

i 1)
e

12 2.55

T Calculated based on assumptions presen-

Figure C.26: Visualisation of the DAG represent- ted in Table C.1.
ation of Figure C.25. The red nodes indicate the
calculated critical path.

Page 164 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

The PMF is plotted in Figure C.27.

100 3 3
80
£ 60
=
ERRUE
o
—~
[aW
20 -
0_
~2.0 ~15 ~1.0 —0.5 0.0 05 1.0
Error [.]

Figure C.27: PMF of the error distribution of the approximate circuit in Figure C.25. The distribution is
plotted where each bar represents a discrete error distance.

The single-value metrics for this distribution are shown in Table C.25.

Table C.25: Error-metrics of the distribution presented in Figure C.27.
Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance
0.75 62.4 % 0.98

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of

this chapter.

Page 165 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.10 add8se_8VQ

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.28.

A

]

N [w o [a o ~T)

;

lm) mlq

r
<o lo £ [v ==

]

Figure C.28: add8se_8V(Q synthesised to AND, XOR, NAND, OR, NOR and XNOR gates using netlistsvg.

The gate-count of the circuit is shown in Table C.26.

Table C.26: Gatecounts of the netlist visualised in Figure C.28 (i.e. add8se_8VQ).
AND | XOR | NAND | OK | XNOK | NOR | NOT | gatecount | iransisor count
1 5 8 0 1 0 0 32 210
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.29 and the corresponding
critical path gate count and delay are shown in Table C.27.

Table C.27: Critical path data of Figure C.29 (i.e.
the directed graph of the add8se_8VQ circuit).

i if
Number of Gates | ©"°P ag?:s‘]m delay

6 1.65

T Calculated based on assumptions presen-

Figure C.29: Visualisation of the DAG represent- ted in Table C.1.
ation of Figure C.28. The red nodes indicate the
calculated critical path.

Page 166 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

The PMF is plotted in Figure C.30.

12.51 ® ® ® ¢

—
~ =
ot o

1 1

4

4
]
]

Probability [.]

0.0 1

N 1 !

10 15

ot o

—15 —10 -5
Error [.]

Figure C.30: PMF of the error distribution of the approximate circuit in Figure C.28. The distribution is
plotted where each bar represents a discrete error distance.

The single-value metrics for this distribution are shown in Table C.28.
Table C.28: Error-metrics of the distribution presented in Figure C.30.
Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate . .
Error Error Error Distance Distance
8 77 99.22 % 16 2.75

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of
this chapter.

Page 167 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.11 add8se 8NH

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.31.

Figure C.31: add8se_8NH synthesised to AND, XOR, NAND, OR, NORand XNOR gates usingnetlistsvg.

The gate-count of the circuit is shown in Table C.29.

Table C.29: Gatecounts of the netlist visualised in Figure C.31 (i.e. add8se_8NH).
"AND | XOR | NAND | OR | XNOR | NOR | NOT | gatocount | eansistorcount
0 0 0 0 0 0 0 0 0
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.32 and the corresponding
critical path gate count and delay are shown in Table C.30.

Page 168 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Table C.30: Critical path data of Figure C.32 (i.e.
the directed graph of the add8se_8NH circuit).

i i
Number of Gates Pl‘Opaga[lrtllS(])n delay

0 0

T Calculated based on assumptions presen-

Figure C.32: Visualisation of the DAG represent- ted in Table C.1.

ation of Figure C.31. The red nodes indicate the
calculated critical path.

The PMF is plotted in Figure C.33.

0.006
=
=
— 0.004 1
Q
S
Q
e
Ay 0.002 1

0.000

—100 —-50 0 50 100
Error [.]

Figure C.33: PMF of the error distribution of the approximate circuit in Figure C.31. The distribution is
plotted where each bar represents a discrete error distance.

The single-value metrics for this distribution are shown in Table C.31.

Table C.31: Error-metrics of the distribution presented in Figure C.33.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance
4797 99.95 % 118 2.875

Note: The formulas for these metrics were presented in chapter 4 and repeated in the beginning of
this chapter.

C.1.12 add8se 8CL

Firstly, the netlist is synthesised, providing the circuit diagram shown in Figure C.34.

Page 169 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

J.

Silis

Q
i

I

I

2y HDlg
) % ﬁ_‘\

o E
Pl |

Figure C.34: add8se_8CL synthesised to AND, XOR, NAND, OR, NOR and XNOR gates using netlistsvg.

The gate-count of the circuit is shown in Table C.32.

Table C.32: Gatecounts of the netlist visualised in Figure C.34 (i.e. add8se_8CL).
"AND | XOR | NaND | O | XNOW | NOR | NOT | gatecount | ranssorcount
2 14 20 0 1 0 0 37 242
T Calculated based on values presented in Table C.1.

The directed graph illustration of the critical path is shown in Figure C.35 and the corresponding
critical path gate count and delay are shown in Table C.33.

Table C.33: Critical path data of Figure C.35 (i.e.
the directed graph of the add8se_8CL circuit).

i if
Number of Gates | | °P ag?;ls?n delay

14 2.85

T\
X

/'

T Calculated based on assumptions presen-

Figure C.35: Visualisation of the DAG represent- ted in Table C.1.
ation of Figure C.34. The red nodes indicate the
calculated critical path.

The add8se_8CL is an accurate adder, meaning there are no errors to report.

Page 170 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

C.1.13 Adder Comparison

As the case was for the multipliers, the presented adder circuits are analysed using the 3D illustration
tool, to compare the metrics deduced in the previous sections. Firstly the adders are compared
through the gate count for power, critical path gate count for latency, and error rate for inaccuracy.
This is shown in Figure C.36

Multiplier comparison

Error Rate — addsse 8NH
—— add8se_8CL
100; 0; 99.9512) —— add8se_8VQ
| R —— add8se_839
o
9.2188;
20
Gate Count

Figure C.36: 3D-plot of the metrics of add8se_839, add8se_8VQ, add8se_8NH, and 8CL.

It is noticed that the adders are of significantly lower magnitude than the multipliers presented in
subsection C.1.8, which makes sense since adders are simpler circuits than multipliers. From the
plots shown in Figure C.36 the adders chosen do not have a pronounced trade-off between power
and latency, meaning they are both reduced for an increase in error rate, across all multipliers. Note
that the gate count is 0 for add8se_8NH, which is a peculiar case where the adder is approximated
only by wires as shown in Figure C.31.

The same adders except for add8se_8NH are compared using WCD as the metric for inaccuracy,
and shown in Figure C.37.

Page 171 of219

Chapter C C.1. STEP ONE ANALYSIS ON APPROXIMATE CIRCUITS

Multiplier comparison

—— add8se_8CL
—— add8se_8VQ
—— add8se_839

Worst-Case Error Distance

20
- (15.0; 6; 16.0) |
| !
. |
| |
1 I
| i
S 3
O T
| i
,,,,,,,, - 3
| i
1 o
,,,,,, L |
. i
1 [
| |
B |
i |
-f--- ‘
: 8 10 | “
: /1 214 1618 o5
. i /
A
/
~(33/0:12;2.0) / /
1/ / Critical Path Gate Count
e / S / Vi ,"’

LONB7.0:1400)

Gate Count

Figure C.37: 3D-plot of the metrics of add8se_839, add8se_8VQ, and 8CL.

The tendency as the one noticed for Figure C.36 applies for Figure C.37, further implying the point
pf multipliers being more complex to analyse.

Page 172 of219

Training an Approximate
Arithemetic Network D

This appendix walks through finding the best process with which the weights of the CNN with
approximate arithmetics, aka. the C++ model, can be trained.

D.1 Introduction

Two networks have been designed: One with TensorFlow and one in C++. The TensorFlow model is
a CNN using standard layers, optimisation algorithm, etc. from the TensorFlow APIL. The C++ model
is architecturally identical to the TensorFlow model, however, it is possible to insert the bitwise cal-
culations that would comprise an approximate arithmetic adder/multiplier. The weights are shared
between the two models, however, since the calculations in the C++ models can be approximations,
it is necessary to utilise the STE as opposed to developing, testing, and implementing a general
method for performing gradient descent on the C++ model with approximate arithmetic in place.
The STE has been effective for AXDNN [29] and ProxSim [30]: The gradient of a non-differentiable
function f(x) is substituted with the gradient of a related differentiable function f(x):

0f(x) 0f(x)

D.1
0x 0x (D.1)

With this estimator, the training of the two networks should be identical, since they share the
weights and the architecture. This means that it should be possible to train the models using all the
built-in tools for gradient descent from the TensorFlow API.

This appendix seeks to research if the STE is warranted, how and if it is possible to train the C++
model with some approximate arithmetic, with the assumption that the STE holds.

Firstly, some terms that are going to be used in this appendix are defined:

* Exact Epoch: An epoch of training the models only using the TensorFlow model. The flow-
chart can be seen in Figure D.1; a batch is retrieved from the training set; forward passed
through the TensorFlow model; the predictions are compared to the labels and a loss is
calculated; the gradients are evaluated based on the calculations performed in the model and
the loss?; the weights are updated based on the gradients; another batch is processed. This
goes on until the entire training set has been processed: One epoch.

“TensorFlow has a tool for automatic differentiation called GradientTape ().

Page 173 of219

Chapter D D.2. THE MODEL

TF Model

' N
Start of Epoch End of Epoch)« Yes Opt%rmse Find Gradients
B Weights L)

No A

SE—
| TF Forward |
Calculate Loss

Pass

Retrieve Batch

Figure D.1: Flowchart of an exact epoch of training the model. A batch from the training set is propagated
forward in the TensorFlow model and the loss is calculated. The gradients are evaluated and used to optimise
the weights. This process is repeated until the entire training dataset has been processed.

* Approximate Epoch: An epoch of training the models using the C++ model’s prediction
combined with the optimisation tools in the TensorFlow model. The flowchart can be seen in
Figure D.2; the TensorFlow model’s weights are exported to CSV files; a batch is retrieved from
the training set and exported to another CSV file; the C++ model is called as an executable file,
wherewith the weights and batch are read from the CSV files and the predictions are exported
to another CSV file; the TensorFlow model performs also performs the forward pass, which is
required for the automatic differentiation; the predictions from the TensorFlow model are
changed to match the predictions from the C++ model; the gradients are evaluated based
on the calculations performed in the model and the loss; the weights are updated based on
the gradients; another batch is processed. This goes on until the entire training set has been
processed: One epoch.

TF Model

{ \ { '
Start of Epoch ‘ End of Epoch }{ Yes $ OPlese | Find Gradients
B Weights
\ J \ J
-

A

No
4 \ - N
Write Weights . Call C++ TF Forward Replace Exact
H Ret Batch Iculate L
{ o CSV etrieve Bale I | Model I | Pass]_)L Predictions) kCa culate OSSJ

: i : A

* BE O EER . E

Weights N |\Ba/tch_\|' T | Forward Pass }-E- -)|\Prem}ior_ls\l~ ---------- q
---------------- L

Figure D.2: Flowchart of an approximate epoch of training the model. The weights of the TensorFlow are
exported to a CSV file. A batch from the trainings dataset is retrieved and exported to a CSV file. The C++
model is called, wherein the weights and batch are read into the program and forward propagated. A forward
propagation is also performed in the TensorFlow model. The predictions from the C++ model replaces the
prediction from the TensorFlow model, wherewith the loss is calculated, the gradients are found, and the
weights are optimised. This process is repeated until the entire training dataset has been processed.

D.2 The Model

In this appendix the utilised TensorFlow model is defined as the final model of Appendix B: The
task of the model is to perform image classification on 10 classes of the CIFAR-100 dataset. The
dataset has been ‘‘simplified” by converting the images to grayscale by calculating the mean

Page 174 of219

Chapter D D.3. HIGH PRECISION QUANTISATION

over the RGB channels. Furthermore, the (32 x 32) images have been resized to 16 x 16 using the
LANCZ0OS3 method. Optimisation of the model is performed using the adamax algorithm and the
loss is calculated as BinaryFocalCrossentropy with A =0.0002 L2 regularisation. The structure
of the model is shown in Table D.1, the kernels of the convolutional and pooling layers are all 2 x 2,
and there are no bias weights. In section B.9 the methods are briefly described.

Table D.1: (Identical to Table B.14) Summary of the
final small-scale model (n40 Model) found by calling
model. Summary ().

Layer Type Output Shape

Conv2D (None, 15, 15, 40) 160
MaxPooling 2D (None, 7, 7, 40) 0
Conv2D (None, 6, 6, 40) 6400
MaxPooling 2D (None, 3, 3, 40) 0
Conv2D (None, 2, 2, 40) 6400
Flatten (None, 160) 0
Dense (None, 40) 6400
Dense (None, 10) 400

T Total parameters 19800 and trainable parameters
19800.

D.3 High Precision Quantisation

In TypeCNN: CNN Development Framework With Flexible Data Types [28] they use three different
training methods: 10 epochs in floats and conversion to FXP, 10 epochs in floats and fine-tuning for
5 epochs in FXP, and 10 epochs with FXP representation used for inference and weights and the
backward operation in floats. Modifications of these methods are approached in this appendix:

I) Only approximate training: Always updating the weights based on the predictions from the
C++ model may work better, since the cost landscape would be closely related to the C++
model. However, an approximate arithmetic operation may be so distant from the STE, that
the chain rule (and by extension the evaluated gradients) will not hold, and no optimisation
will be performed.

II) Only exact training: Always updating the weights based on the TensorFlow predictions
will ensure that the optimisation will be performed succesfully and a minimum will be
approached. However, since the cost landscape associated with the approximate arithmetic
operations may be very different, the approached minimum may not be close to a minimum
for the approximate weights.

III) Exact training, finetuning on approximate training: Updating the weights based on the
TensorFlow model and the C++ model (in that strict order) may alleviate the problems
associated with the individual methods: Using the exact training to approach some minimum,
and changing the cost landscape to be more related to the approximate circuit, may let the
model approach a minimum in the cost landscape of the C++ model.

An investigation of the three scenarios is proposed; training and evaluating the C++ model and the
TensorFlow model three times:

Page 175 of219

Chapter D D.4. LOW PRECISION QUANTISATION

I) 50 approximate epochs
1) 50 exact epochs
IIT) 45 exact epochs followed by 5 approximate epochs

To ensure that the integration of approximate/exact epochs performs optimisation as intended, the
chosen approximation for the preliminary training runs is conversion to FXP (fixed point) with 20
bits for accuracy and no approximate multiplier.

In Figure D.3 the result of each of these training processes can be seen. Note that the values
accuracy and val_accuracy are found using the C++ network: accuracy is found by passing the
train dataset through the C++ network and calculating the rate of correct predictions, val_-
accuracy is found by passing the test dataset through the C++ network and calculating the rate
of correct predictions.

0.6
50 Approximate Epochs

- —— 50 Exact Epochs
@ 047 —— 45 Exact and 5 Approximate Epochs
S
=
g 0.2 .
<t accuracy Mean Time per Epoch [s]:

Green: 3669.50

...... 17

0.0 b i Blue: 1047.01

' ' ' ' ' Red: 1155.58
0 10 20 30 40 50 €(09.9

Figure D.3: Accuracy of C++ network with quantisation noise, 20 bits for precision. Accuracy of C++ network
on the train and test datasets: accuracy and val_accuracy, respectively. Furthermore, the mean time per
epoch is noted for each of the three trainings.

In Figure D.3 it is clear, that the run using 45 exact and 5 approximate epochs is performing better
than the other two. For the training with 50 exact epochs it should be noted, that the low accuracy
must be from an unlucky start (or a lucky start for the 45 exact and 5 approximate training run)
since the training process is identical to that of 45 exact and 5 approximate; the accuracy of these
two training runs should be close to identical in the first 45 epochs. This would likely not be seen, if
the plot showed the mean of multiple identical runs.

Important for these three runs is that the optimisation method is working when the predictions
from the TensorFlow model are replaced with the predictions from the C++ model (see Figure D.2).
This suggests that the implemented method for performing approximate epochs is working as
intended.

In all three of these training runs, the approximation was “soft”, i.e. quantisation with 20 bits for
precision. The next step is to test the same three training scenarios with something less “soft” and
in section D.4 a test with only eight bits for precision is tested.

D.4 Low Precision Quantisation

The setup for the low precision quantisation test is almost identical to the high precision quantisa-
tion presented in section D.3, but the precision of the values in the C++ model has been lowered
from 20 bits to 8 bits, still not using an approximate multiplier. In Figure D.4 the results can be
seen.

Page 176 of219

Chapter D D.5. MULTIPLIER APPROXIMATION - MUL8S_1KV9

0.6
50 Approximate Epochs
- —— 50 Exact Epochs
5 047 — 45 Exact and 5 Approximate Epochs
S
=
S 0.2 :
< accuracy Mean Time per Epoch [s]:
...... Green: 3750.03
0w val-accuracy Blue: 1089.44
: J J y j Red: 1200.43
0 10 20 30 40 50 .
Epochs []

Figure D.4: Accuracy of C++ network with quantisation noise, 8 bits for precision. Accuracy of C++ network
on the train and test datasets: accuracy and val_accuracy, respectively. Furthermore, the mean time per
epoch is noted for each of the three trainings.

Unlike Figure D.3 the training run with 50 approximate epochs outperforms the two runs with exact
epochs. The results suggest that using the approximate epochs will yield a higher accuracy, however,
the time is also worth investigating. As presented in the dark-blue ellipsis, the time it takes to per-
form an approximate epoch is significantly longer than performing one exact epoch: The run with
50 approximate epochs took around 3750, 03 s/epoch - 50 epochs = 2 days 4 hours and 5 minutes,
whereas the run with 50 exact epochs only took 1089, 44 s/epoch-50 epochs = 15 hours and 8 minutes.
For that reason, the compromise of using a 45 : 5 split of exact and approximate epochs is chosen as
the method for training the C++ network.

Now that a method of training the C++ network is defined, the next step is testing the training with
an approximate multiplier in the C++ network

D.5 Multiplier Approximation - mul8s_1KV9

The chosen multiplier, mul8s_1KV9 was presented in subsection C.1.2. The relevant error metrics
are presented again in Table D.2.

Table D.2: (Copy of Table C.8) Error-metrics of the distribution presented in Figure C.6.

Mean Absolute Mean Square Worst-Case Mean Hamming
Error Rate
Error Error Error Distance Distance

4.25 34.25 68.75 %

Since the test is essentially creating training two models: An exact model in TensorFlow and a
C++ model (first 45 epochs only inference), the accuracies for both are evaluated. The number of
precision bits is chosen to be 7. In Figure D.5 the results can be seen.

Page 177 of219

Chapter D D.5. MULTIPLIER APPROXIMATION - MUL8S_1KV9

0.6
. 0.4 4
>
9 C++ Model
= —— TensorFlow Model
O
S 0.2 1
< accuracy
"""" val_accuracy
0.0 T T T T
0 10 20 30 40 50

Epochs [.]

Figure D.5: Accuracy of C++ network with an approximate multiplier, mul8s_1KV9. The first 45 epochs of the
training of the C++ network are inference only, why the TensorFlow model is plotted for comparison. The
last 5 epochs of the training are with the predictions from the C++ network.

During the 45 exact epochs it is clear that the accuracy of the C++ network is steadily increasing.
Interestingly, after the 46th epoch (the first approximate epoch), the accuracies of the networks fall
to around 0.1, corresponding to random guesses. This puts some doubt into the training process
previously devised. To overcome this drastic drop in accuracy three paths are tested:

I) Training purely with approximate epochs: As shown in Figure D.3 and D .4, training using
the approximate arithmetic from the beginning may lead to high accuracy. Perhaps, using
only approximate epochs would prevent the drastic drop in accuracy seen in Figure D.5.

II) Pre-training of the TensorFlow model: In Figure D.5 the accuracy of the C++ model is
increasing alongside the TensorFlow model, and the inference at the 45th epoch is pretty
decent. Since the objective of the network is not subject to change, it may be beneficial to have
the weights of a pre-trained TensorFlow model, and use the weights as a springboard from
which the C++ model can be finetuned. This would reset the training just as the finetuning
were to commence since the optimisation algorithm adamax would not know the previous
gradients.

III) Changing the optimisation algorithm: A possible explanation for the drastic drop in accuracy
in Figure D.5 is the optimisation algorithm: adamax, which has an adaptive learning rate
that is based on the first and second moments of previous gradients (see section B.9). The
difference in the evaluated loss may be so large it is irreconcilable for the optimiser, and the
updated values for the weights are off. At the shift from exact epochs to approximate epochs
the optimiser could be replaced by another, whose learning rate is not adaptive or based on
the previous gradients.

D.5.1 Training purely with approximate epochs

In Figure D.6 it is clear, that training purely with approximate epochs is not the solution, as the
accuracy does not significantly differ from a random guess at any time during the training. This
result might suggest that the cause of the drastic drop is to be found in the process of approximate
epochs.

Page 178 of219

Chapter D D.5. MULTIPLIER APPROXIMATION - MUL8S_1KV9

15 Approximate Epochs

075
— accuracy
§ 050 +—F+————F————F—————F+———f oo val_accuracy
—
S 0.25-
o
<

O-OO T T T T T T T

0 2 4 6 8 10 12 14

Figure D.6: mul8s_1KV9 trained used approximate epochs. The accuracy is somewhat stable at ~ 10 %,
indicating that the model is not improving during optimisation.

D.5.2 Pre-training of the TensorFlow model

The results of using the weights from a training run where the TensorFlow model has been trained
on 250 exact epochs, and then performing 15 approximate epochs can be seen in Figure D.7. Since
the weights are read in from CSV files just before the training, the adamax optimisation has not had
time to update its learning rate. However, the same problem arises as in Figure D.5: the accuracy
drastically drops, and the predictions from the C++ network are no better than a random guess.
“Restarting” the learning rate of the adamax optimisation algorithm is not the solution.

15 Approximate Epochs with Pretraining

075
— accuracy
? 0504+ een. val_accuracy
—~
S 0.25-
Q
< e

0.00 T T T T T T T

0 2 4 6 8 10 12 14

Figure D.7: mul8s_1KV9 trained using approximate epochs on a pre-trained set of weights. The accuracy
is somewhat stable at ~ 10 %, indicating that the model is not improving during optimisation.

D.5.3 Changing the optimisation algorithm

Again, the weights of the pre-trained TensorFlow model are read from CSV files, however, in this run
the adamax optimisation algorithm has been exchanged for SGD with a learning rate of 0.00005. In
Figure D.8 the results of this test can be seen. The drop-off seen in the tests above has disappeared,
however, it has been replaced with a slow drop-off. This may be rectified using another learning
rate.

Page 179 of219

Chapter D D.5. MULTIPLIER APPROXIMATION - MUL8S_1KV9
- 15 Approximate Epochs with SGD and Pretraining
7 0.50
o
§ 0.25 - accuracy |l
< | val_accuracy
0.00 T T T T T T T
0 2 4 6 8 10 12 14
Epochs [.]

Figure D.8: mul8s_1KV9 trained using approximate epochs on a pre-trained set of weights with SGD. Al-
though the accuracy is not increasing, it is not decreasing in the first 6-7 epochs, indicating that optimisation
may be possible.

The resulting accuracies from using the same set of weights as the starting point of Figure D.8 and
adjusting the SGD learning rate can be viewed in Figure D.9:

. 0.75

— —_— LR = 0.00001
§0‘50— T T = P P R — LR =0.00003
%‘ 0.95 - accuracy el oo
S0 i

0.00 ' ' ' ' a
; 5 A 6 8 10
Epochs [/]

Figure D.9: Finetuning with different SGD learning rates. 10 approximate epochs performed on pre-trained
network with varying learning rates.

Every value for the learning rate results in the model “optimising” toward a lower accuracy. No
clear path to rectifying the problem of training the approximate network has presented itself. In
order to investigate this problem, it is seen as beneficial to reduce the amount of computations
required for a forward pass, in order to speed up the evaluation process.

D.5.4 Debugging with Smaller Network

The results in Figure D.9 seem strange, since the weights change, however, the optimisation process
is seemingly worsening the outcome of the model. Debugging the implemented CNN is infeasible
due to the long duration of each epoch; the slowest layer is the 2nd convolutional layer and the
“complexity’”’ is reduced to effectivise the debugging process. This is done by reducing the amount
of filters from 40 to 2, effectively reducing the amount of parameters from 19.800 to 7.600. This
change is also applied to the TensorFlow model as well as the C++ model.

Page 180 of219

Chapter D D.5. MULTIPLIER APPROXIMATION - MUL8S_1KV9

Table D.3: ummary of the smaller network found by call-
ingmodel . Summary ().

Layer Type Output Shape

Conv2D (None, 15, 15, 40) 160
MaxPooling 2D (None, 7, 7, 40) 0
Conv2D (None, 6, 6, 2) 320
MaxPooling 2D (None, 3, 3, 2) 0
Conv2D (None, 2, 2, 40) 320
Flatten (None, 160) 0
Dense (None, 40) 6400
Dense (None, 10) 400

T Total parameters 7600 and trainable parameters
7600.

The TensorFlow model from Table D.3 is pre-trained 45 epochs and the resulting weights are saved
to be utilised in the following small tests.

A Preliminary Test of the Optimisation Algorithms is performed to ensure, that the new small
model is trainable and that it is possible to increase the accuracy using either of the optimisation
algorithms. The result of training 10 epochs with the two optimisation algorithms from the weights
of a pre-trained network can be seen in Figure D.10. The epochs are approximate epochs and the
C++ model has 20 bits precision and an accurate multiplier.

—20.41 accuracy adamax
g ------ val_accuracy —— SGD, LR = 0.0005
5 0.40 -
O
O
<C 039 L T T T T T

46 48 50 52 54

Epochs [/]

Figure D.10: Preliminary test with only 2 filters in the second layer. Two separate runs initialised with
identical weights from a network with 45 epochs of pretraining.

Based on the results from Figure D.10, the accuracy of the network increases regardless of which
optimisation algorithm is in use; the accuracy has significantly improved using adamax, and the
accuracy has slightly improved using SGD. This is interpreted as the reduced model is trainable
and both adamax and SGD should be able to train the reduced network.

Retrying Different SGD Learning Rates to see whether the quantisation is the cause of a down-
ward trend seen in Figure D.9. Perhaps the results seen Figure D.9 are caused by the bit-precision
rather than multiplication-approximation. In Figure D.11 an accurate 8 x 8 multiplier with 6 bits
reserved for precision has been trained using SGD with two different values of learning rate.

Page 181 of219

Chapter D D.5. MULTIPLIER APPROXIMATION - MUL8S_1KV9

L LR = 0.0005
? 0.36 4 B e e — LR =0.00005
= .
= accuracy

<¢é 0341 e val_accuracy

4|6 4|8 5IO 5|2 5|4
Epochs [-]

Figure D.11: SGD finetuning with 6 bits for precision on an 8 x 8 accurate multiplier. The 2nd axis is scaled to
showcase the slight “upwards trend”’.

Both of the learning rates result in accuracies with a slight “‘upwards trend”’, which is interpreted as
it is possible to finetune with SGD on accurate 8 x 8 multipliers, quantisation with 6 precision bits
does not add enough noise to make training impossible.

Retrying adamax since the SGD learning curve has been somewhat rectified by lowering the
amount of precision bits, perhaps this will also hold for adamax. For this reason, adamax is rein-
vestigated in Figure D.12, wherein the mean accuracies across 5 runs of 10 epochs with a set of
approximate multipliers with different error metrics can be viewed. Note that “‘accurate” in this
context should be interpreted as a “*”” has been inserted as the multiplication instead of a function
emulating a circuit, this will avoid overflow but not quantisation.

Table D.4: Error-metrics of the different multipliers used in Figure D.12.

Mean Mean Square Worst-Case Mean
Multiplier Absolute 1 Error Rate Error Hamming
Error . .

Error Distance Distance
1KV6 0 0 0%
1KV8 1.25 3.75 50 % 5 0.75
1KV9 4.25 34.25 68.75 % 17 1.4
1L12 2016 7.283-10° 98.053 % 8064 5.06
11L.2J 53.3 5462 74.6 % 255 3.25

Note: The formulas for these metrics were presented in chapter 4

For all 1KVx and “accurate” there is no dropoff and all the models are training (improving their
accuracy). For the 1Lxx multipliers there is no upward trend, however, it is not guaranteed that it
is possible to train the multipliers, and the error metrics associated with these two approximate
multipliers are very large compared to the other 3.

Page 182 of219

Chapter D D.5. MULTIPLIER APPROXIMATION - MUL8S_1KV9

S 1KV6
% — 1KVS8
= & accuracy — 1KV9
o 11.2J
~ R e R e Tk val_accuracy
T T T T T 1L12
46 48 50 52 H4 accurate

Epochs [-]

Figure D.12: Adamax finetuning with 5 bits for precision on various multipliers.

Seemingly, finetuning the weights by using adamax as optimisation algorithm and an approximate
multiplier in the C++ model yields a positive result. This is the opposite of what what seen in
Figure D.5, and the only parameters that have been changed are the number of precision bits and
the number of filters in the second convolutional layer. These results are interpreted as the dropoff
seen in Figure D.5 may be caused by the choice of the number of precision bits or the architecture.

Testing Variations of the Number of Precision Bits on the multiplier used in Figure D.5, mul8s_-
1KV9, might give an insight into the effects of the chosen bit precision. In Figure D.13 the resulting
accuracies given 45 epochs pre-training, 10 epochs of finetuning with adamax as the optimisation
algorithm, and mul8s_1KV9 with a varying number of precision bits is visualised.

Neither 2 precision bits, 3 precision bits, or 4 precision bits are training and stay at 10 %, the same as
arandom guess. This is likely a consequence of too much quantisation, as the values of the LSBs
are 1/4, 1/8, and 1/16, respectively, which are not matching effectively with the regularised weights.
Furthermore, the small changes in the weights at each epoch/iteration may not be transferred to
the C++ model, as the changes may not be large enough to “overcome’ the quantisation. However,
for 5 precision bits and 6 precision bits, the first epoch of finetuning significantly improves the
accuracies, suggesting that the changes are transferred and that they are improving the accuracy of
the models.

accuracy 2 precision bits

<
w
1

------- val_accuracy — 3 precision bits
—— 4 precision bits
5 precision bits

Accuracy [
e
[\

6 precision bits
46 48 50 52 54 7 precision bits
Epochs [/]

e
—

Figure D.13: Adamax finetuning with varying number of precision bits on mul8s_1KV9.

For 7 precision bits the accuracy worsens at each epoch, this is reminiscent of the training using
SGD from Figure D.9, which also was tested with 7 precision bits. The implication of having 7
precision bits in a signed 8 x 8 multiplier, is that the representable values exist between [-1; 1-277];
if the multiplicands are in the said interval no problem should arise. Using regularisation may force
the weights into this range, however, the inputs are not taken into account. In the first layer, it
is known that the input has been normalised, quantised, and truncated, ensuring they are in the

Page 183 of219

Chapter D D.6. CONCLUSION

interval. However, the outputs of each hidden layer (being the inputs to the following layer), are not
ensured to be in the same interval. Say there are 40 input channels and the kernel size is 2 x 2, the
each “pixel” of the resulting FM (Feature Map) is the sum of 2-2-40 = 160 multiplications, which
may cause overflow/underflow.

From Figure D.13 it is clear, that it is possible to fintune using adamax and given mul8s_1KV9 and
only 2 filters in the second convolutional layer the best choice of precision bits is 6.

Finetuning with 45 Approximate Epochs using adamax as the optimisation algorithm is per-
formed. This test is performed to ensure that the conclusion from the previous test is correct. In
Figure D.14 the results of two runs are seen. Weights from a pre-trained TensorFlow model are
applied to the C++ model. 45 approximate epochs are then performed, and the inferred accuracy of
the C++ network is saved and visualised in Figure D.14. Furthermore, the accuracy of a TensorFlow
model with the same architecture and starting weights, trained for 45 epochs and averaged over 5
runs can be seen.

045
Run 0
?) — Runl
sg 0.30 1 accuracy —— TensorFlow comparison
) Qi I S A
~ 0.25 val_accuracy
0.20 - - . .
50 60 70 80 90

Epochs [

Figure D.14: Finetuning with 45 approximate epochs with mul8s_1KV9 using 6 bits for precision.

Both runs show that the C++ model with an approximate multiplier is training and the optimisation
is working. Comparing the two runs with the TensorFlow model’s accuracies the difference is only
around 5 percentage points, which is impressive given the approximate multiplier and only 8-bits
to represent the weights. The solution was changing the number of precision bits to match with
the network. This suggests, that the problem in Figure D.5 may have been caused by overflow/
underflow.

D.6 Conclusion

In this appendix, different methods were approached and tested, to develop a method for training a
CNN which uses approximate arithmetic. Performing 50 approximate epochs, 50 exact epochs, or 45
exact and 5 approximate epochs (see Figure D.2 and D.1), yielded no significantly different results
in two cases of quantisation, 20 bits for precision and 8 bits for precision. However, in section D.5 it
became clear, that given the approximate multiplier mul8s_1KV9 using 45 exact and 5 approximate
epochs did not yield good results; evaluating the accuracy of the C++ network during the 45 exact
epochs it was clear that by pure inference, the network was trained, however, at the shift from
exact epochs to approximate epochs the accuracy fell to that of a random guess. A couple of tests
with ideas to remedy the problem were performed, one of which worked decently: Replacing the
optimisation algorithm at the shift from exact to approximate epochs. However, further testing
debunked this solution, since no upward trend (optimisation) could be performed.

To perform a sequence of ad-hoc tests for debugging the training process, a significantly smaller
CNN was created, by reducing the number of filters in the second convolutional layer in both

Page 184 of219

Chapter D D.6. CONCLUSION

the TensorFlow and C++ models, reducing the number of parameters from 19800 to 7600. This
significantly sped up the debugging process. Firstly, a preliminary test with adamax and SGD
was performed with 20 bits precision and an accurate multiplier, whereby it was concluded, that
this smaller model is trainable using either optimisation algorithm. Secondly, two of the SGD
learning rates were tested on with an 8 x 8 accurate multiplier, whereby it was concluded, that it is
possible to finetune with SGD on accurate 8 x 8 multipliers, quantisation with 6 precision bits does
not add enough noise to make training impossible. Perhaps 6 precision bits may also work with
adamax; 5 different multipliers were tested and the approximate multipliers with relatively low error
characteristics showed positive results, i.e. the approximate epochs were effective on the accuracy.
These results are interpreted as the dropoff seen in Figure D.5 may have been caused by the number
of precision bits or the architecture. Another test was performed to see the effects of changing the
number of precision bits, where mul8s_1KV9 was utilised again. Neither 2 precision bits, 3 precision
bits, or 4 precision bits improved in accuracy during training and stayed at 10 %, the same as a
random guess. This is likely a consequence of too much quantisation, as the values of the LSBs are
1/4,1/8, and 1/16, respectively, which are not matching effectively with the regularised weights.
Furthermore, the small changes in the weights at each epoch/iteration may not be transferred to
the C++ model, as the changes may not be large enough to “overcome’ the quantisation. However,
for 5 precision bits and 6 precision bits, the first epoch of finetuning significantly improves the
accuracies, suggesting that the changes are transferred and that they are improving the accuracy of
the models. For 7 precision bits the accuracy worsens at each epoch. The implication of having 7
precision bits in a signed 8 x 8 multiplier, is that the representable values exist between [-1; 1 — 277;
if the multiplicands are in the said interval no problem should arise. Using regularisation may force
the weights into this range, however, the inputs are not taken into account. In the first layer, it
is known that the input has been normalised, quantised, and truncated, ensuring they are in the
interval. However, the outputs of each hidden layer (being the inputs to the following layer), are not
ensured to be in the same interval. Say there are 40 input channels and the kernel size is 2 x 2, the
each “pixel” of the resulting FM (Feature Map) is the sum of 2-2-40 = 160 multiplications, which
may cause overflow/underflow. The problem of underflow/overflow is thus dependent on the
number of precision bits and the architecture, why the CNN model will be permanently replaced
by the small version, since the training process works, furthermore, for any approximate multiplier
only 6 precision bits will be used.

The results from finetuning a set of weights from a pre-trained network in Figure D.14 incidentally
simplified the training process. Three things are noteworthy:

I) Exact epochs yielded positive for the C++ model, wherewith the inferred accuracy rose.

II) Restarting the learning rate of adamax did not negatively affect the finetuning, i.e. the
finetuning can be performed independent of information from previous epochs. Given a set
of pre-trained weights, the required amount of epochs could potentially be lowered.

III) The problem is static and consecutive uses of the same weights should yield the same results
(without training).

These three remarks in combination should allow the simplification of the training process, i.e.
given the weights of a trained CNN from TensorFlow, the only training necessary is finetuning
with approximate epochs using adamax as the optimisation algorithm; a TensorFlow model has
been trained 45 epochs and the weights have been saved. Training the C++ model given some
approximate arithmetic circuit, should be possible by taking the pre-trained weights and finetuning
for some epochs, using the defined approximate epochs.

Page 185 of219

Chapter D D.7. DISCUSSION

D.7 Discussion

Some of the tests have only been run 1 time due to time restrictions. Even 50 exact epochs takes
50-1089.44 s = 15 hours 8 minutes (based on Figure D.4) and repetitions were deemed too costly.
The effect of this choice may have caused fallacious conclusions and missed opportunities for
optimisation of the process of training the C++ model. Given apt time, the conclusion should be
adjusted by performing an adequate amount of repetitions.

Although the conclusion states that overflow/underflow is the culprit for the dropoff in Figure D.5
and that it was solved by lowering the number of precision bits, the chosen amount of precision bits
is not guaranteed to work for every architecture nor every approximate multiplier. Let’s reexamine
the example of potential overflow: 40 input channels and the kernel size is 2 x 2, the each “pixel”
of the resulting FM (Feature Map) is the sum of 2 -2 -40 = 160 multiplications. The multiplicands
are represented with 8 bits, 6 of which are precision bits, i.e. formatted as Q2.6. To ensure no
information is lost, the product of the multiplications should be Q4.12, and 160 of these products
should be calculated and summed, requiring the format Q11.12 to avoid overflow/underflow. This
sum is then processed by the activation function, in this case, ReLU, and the format Q11.12 is still
required to avoid overflow. This value is then the input of another 8-bit multiplier. The format
is incongruent the multipliers, and a lot of information may be lost. In the implementation, the
multiplicands are always transformed to Q2.6 just before the 8 x 8 approximate multipliers. Overflow
is thus still a possibility.

Page 186 of219

Testing the Probabilistic Model E

This appendix walks through the testing of the probabilistic model. Two specific tests are conducted.

Firstly, a test of the prediction accuracies using the probabilistic error model developed and imple-
mented in section 5.3. This result is compared to the prediction accuracies of the deterministic error
model, simulated using approximate arithmetic circuits. The inference is made on the test-data set
of the CIFAR 100, reduced to 10 classes. This test is performed on the CNN network using weights
trained accurately and for each 5" epoch when training with STE on the deterministic system.

Secondly, a test of the output vector of the probabilistic model, which is compared to the output
vector of the deterministic model. For this test, each pixel for the input images is random, with
a uniform distribution between 0 and 1. The purpose of this test is to be able to analyse the
distributions of the deterministic and probabilistic outputs, to evaluate the statistical similarity of
these.

In Figure E.1 the probabilistic model can be seen in the context of the rest of the benchmarking
tool.

R . . Step III: Full-scale
Step I: Circuit Analysis Step II: Small-scale Implementation
B . —CNN Error Injection

Approximate

1
) 1
Arithmetic . Random Input Approximate
Analyse Design I—\—)l !
Design : Generator Model 1
7

1 T !
1 ! Power :

1 3 3 i 1 -
1 »| Consumption ' Exact Evaluate Full-Scale 1
1 ~ ! Probabilistic Application of 1
I Model 1
1 Mod .
: :I - Latency 1
. PN 1
1 X Trror Probabilistic :
: *-»| Distribution f--4---mnmmnemaiaaaaan 1 Model 1
1 _/—\ Oy 1
1 1

Figure E.1: (Copy of Figure 5.1) Functional diagram of the benchmarking tool. An approximate arithmetic
design is supplied to the tool and is processed through three steps. The evaluated error distribution from step
Iis utilised in step II, where three NNs are created: An approximate model, an exact model, and a probabilistic
model; an input is generated and propagated through each model and the error is computed with respect to
the exact model. Based on the error at the output, the probabilistic model is evaluated based on “how well it
represents the approximate model’ .

Page 187 of219

Chapter E E.1. WORKSPACE SETUP, SOFTWARE AND HARDWARE

Table E.1: Summary of the network architecture found

The Exact Model is a baseline imple- py calling model . Summary ().

mentation of the architecture seen in

SNSRIl Layer Type | Output Shape | *
Layer Type Output Shape Params #
TensorFlows API, creating a sequential yer Jp P P -

keras model with the layers from “Layer | €onv2D (None, 15, 15, 40) 160

Type”. MaxPooling 2D (None, 7, 7, 40) 0
Conv2D (None, 6, 6, 2) 320

The Approximate Model is the C++ P — -

model developed in section 5.2 with an oL 2 (Wenis, 8, 5, 2) L

identical architecture to the exact model, = Conv2D (None, 2, 2, 40) 320

i.e. the architecture seen in Table E.1. Flatten (None, 160) 0
Dense (None, 40) 6400

The Probabilistic Model is a simplifica-

tion of the approximate model, where error Dense (None, 10) 400
induced from the approximate arithemtic
circuits is modelled as “noise’”’, which is
then applied using custom layers. The ar-
chitecture is identical to the other two
models, and can be viewed in Table E.1.

T Total parameters 7600 and trainable parameters
7600.

E.1 Workspace Setup,
Software and Hardware

The tests performed in this appendix have been run on a cloud-computer set up in strato. The
hardware overview can be seen in Table E.2. Using the screen command in Linux, a detachable
screen was created, whereby the tests could run in the background and overnight.

Table E.2: Information about the cloud-computer used in this appendix. Information taken from https:
//strato-new.claaudia.aau.dk/ under the Instances tab.

" FavorName | avorld] “Raw_| VGPUs | Disk

10a7313a-2e8c-421a-9cdc-
AAU.CPU.g.16-64 861283ef905b 64GB VCPU 50GB

To ensure that the tests are reproducable, important packages and their versions are tabularised
in Table E.3. The versions are found using the print-versions package from Python, and the
method print_versions(globals()).

Table E.3: The software packages used in the appendix. The names and versions were found using the
print-versions package in python.

numpy Math package 1.26.4

Math package used for reading data from “.csv”

files 2:2.2

pandas

Continued on next page

Page 188 of219

https://strato-new.claaudia.aau.dk/
https://strato-new.claaudia.aau.dk/

Chapter E E.2. PROCEDURE

Table E.3: (Continued)

The chosen machine learning AP]I, utilised for data

tensorflow . . . 2.16.1
manipulation, loading datasets, etc.

tensorflow_datasets Used for dedicated dataset manipulation 4.9.4

csv Used to export weights to CSV-files 1.0

E.2 Procedure

The procedure of test I follows the list below and the scripts and data can be found in Appendix A
under /convergence_of_stat_and_approx_model/:

I) Perform the following steps for each multiplier: mul8s_1KV8 and mul8s_1KV9
IT) Fetch the pre-trained weights (45 epochs using the exact model from section 5.1), can be
found under /convergence_of_stat_and_approx_model/training_1KVx/2_kernels_-
45_epochs_start
III) Train the approximate model from section 5.2 with the multiplier in-place for 45 epochs,
saving the weights with a 5 epoch interval, i.e. at 45, 50, 55, 60, 65, 70, 75, 80, and 85, can be
found under /convergence_of_stat_and_approx_model/1KVx_weights/
IV) For each of the sets of weights perform the following steps
V) Instantiate the probabilistic model from section 5.3 and import the weights
VI) Evaluate the accuracy of the probabilistic model on the training- and test datasets five times
given the set of weights. The accuracies are saved in:
e /convergence_of_stat_and_approx_model/mul8s_lkvx_stats_and_approx.csv

The procedure of test II follows the flowchart in Figure E.2. Furthermore, the script and collected
data can be found in Appendix A under /statistic_test_3_models/:

I) 1000 images are randomly generated, where each pixel is uniformly sampled from values
between 0 and 1, using tf .random.uniform(). The size of the images is (16 x 16). The images
are saved under /statistic_test_3_models/input.csv

II) Perform the following steps for each multiplier: mul18s_1KV8 and mul8s_1KV9
IIT) Perform the following steps for each set of weights: 45, 50, 55, 60, 65, 70, 75, 80, and 85,
pre-trained exact epochs, can be found under /statistic_test_3_models/1KV8_weights
and /statistic_test_3_models/1KV9_weights
IV) Instantiate the three models:
e The exact model from section 5.1 requires importing the weights
* The approximate model from section 5.2 is an executable looking in a specific directory
and the weights have to be copied into that directory
* The probabilistic model from section 5.3 also needs the weights to be imported, however,
it has to create error distributions based on the weights
V) The 1000 images are forward passed in the exact model and the approximate model and their
predictions are exported to CSV files, which can be found in the following directories:
e /statistic_test_3_models/accurate_predictions/
e /statistic_test_3_models/approximate_predictions/
e /statistic_test_3_models/statistical_predictions/
VI) The 1000 images are iteratively handled in the probabilistic model, where each image is copied
1000 times. Each ““batch " of 1000 identical images is forward passed in the probabilistic
model and the predictions are exported to CSV files

Page 189 of219

Chapter E

E.3. RESULTS

Exact Model

Instantiate
I—)Ilm ort Weights
exact model por '8

,L

Foward Pass Save N
Images Predictions

Exact
» Predictions |

Generate 1000

(16 x 16) >
image Export Images Copy W91ghts Foward Pass Save N Appr9x1'rnate
to Directory to Dlrectory Images Predictions Predictions ||
_ —
Probabilistic Model
Instantiate [Probabilistic |
Forward Pass Save
babilisti I t Weight - icti
M(;ells ic]—)[mpor eig S] [Copled ImageH Predictions } | Predictions H-
\/\

A

Last I Copy image I
a(N
© Image? © 1000 times

Figure E.2: Testing the probabilistic model flow. For each combination of approximate multiplier and set of
pre-trained weights for that multiplier, the three models process the same input. The input consists of 1000
randomly generated images, where each pixel is sampled from a uniform distribution between 0 and 1. The
predictions from each model are exported to CSV files for data processing. The outcome of the probabilistic
model is probabilistic, why the same input is processed multiple times.

E.3 Results

In test I the CNN is trained using the approximate model for 45 epochs which will be used for
reference against the inference probabilistic model. The accuracy of the approximate model, on
both the training and test data set is seen plotted in Figure E.3.

—— 1KV8-approx:

1KV8-approx:
1KV9-approx:
1KV9-approx:

accuracy
accuracy_val
accuracy

accuracy_val

Accuracy [.]

45 50 55 60 65 70 75 80 85
Epochs [.]

Figure E.3: The train and test accuracy for the approximate model using both the mul8s_1KV8and mul8s_-
1KV9. The evaluation is presented for the training using the STE.

These results are used as the basis for comparison for the evaluation of the probabilistic model
using the weights trained using STE on the approximate model. The test is conducted using the test
data for inference on both models and the results are plotted in Figure E.4.

From these results, it is noticed that the probabilistic model of the mul8s_1KV8 follows to a consid-
erable extent the accuracy of its deterministic equivalent. The case is different for the probabilistic
model of mul8s_1KV9 where the accuracy is considerably lower than its deterministic equivalent.
However, it seems that the probabilistic model is "’ catching up” as the epochs progress for the STE.

Page 190 of219

Chapter E E.3. RESULTS

0.40 - A N T 1KV8-approx: accuracy_val
— # - Jkig P S A 1KV8-stat: accuracy_val
; 0.35 d& EE 1KV9-approx: accuracy_val
9 JE RSO A [N R A 1KV9-stat: accuracy_val
50.30 A A A
S A N
< 0.2514 A4

45 50 55 60 65 70 75 80 85
Epochs [.]

Figure E.4: Results of the accuracy evaluation on the fest data set for the mul8s_1KV8 and mul8s_1KV9. The
deterministic approximate model is plotted as dotted lines and are congruent with the ones in Figure E.3.
The accuracy of the probabilistic model is plotted using three-pointed stars for every 5 epochs.

An investigation of the relationship between the output vectors is necessary to give an appropriate
explanation for this result.

Test II is conducted by applying uniformly distributed input pictures to the exact, approximate and
probabilistic models. 1000 images are applied, once for the exact and approximate models and 1000
times for the probabilistic model. The reasoning behind this choice is that it is possible to get a
quite accurate representation of the behaviour of all three systems, hence it is possible to perform a
more detailed analysis on this basis.

E.3.1 mul8s 1KV8

As this experiment generates a large amount of data the analysis is first focused on the mul8s_1KV8
for the inference stage, before STE training. The three samples are 10-variate random vectors and
all RVs are assumed independent. To get an impression of the distribution of the output of the three
models, these are plotted as histograms in Figure E.5

It is noticed that both the approximate and probabilistic models have lower means than the exact
model, as the mul8s_1KV8 introduces a negative bias to all multiplications in the network, hence
an underestimate is to be expected.

As the model is developed to model the error of the approximate model the deterministic and
probabilistic error distributions are obtained by subtracting the output vectors from the exact
model, from both the approximate and probabilistic outputs. The distribution for each of the
indices in the error vectors is plotted in Figure E.6.

It is noticed that, by visual inspection, the probabilistic errors are close to normally distributed,
which makes sense as the individual samples of error distribution (i.e. the 1000 pr. image) are all
close to normally distributed, due to the CLT as described in section 4.3. The deterministic errors
also seem normally distributed, however clearly with a different variance than the probabilistic
distribution. The means are rather similar for some of the variables in the output vector. Pondering
on the purpose of the probabilistic model, it is known that this should model the deterministic
errors such that ideally this distribution could be mistaken for a sample of the probabilistic error.

Page 191 of219

61230 261 93ed

Probability

Probability

0.25

0.2

0.15

o©
[

0.05

o
N
a1

o
)

o
i
al

©
=

0.05

Error Variable 1

[Approximate Model

[Exact Model
[Probabilistic Model

0.5 1

Error
Error Variable 5

[Approximate Model

[Exact Model
[1Probabilistic Model

0.5 1
Error

Probability

Probability

Probability

0.25

I
N}

o
iy
(4]

o
[

0.05

0.25

0.2

0.15

o
-

0.05

0.25

o
)

©
[
a1

o
=

g
o
a

Error Variable 2

Error Variable 3

Error Variable 4

0.25 0.25
[Approximate Model [Approximate Model [Approximate Model
[Exact Model 0.2 [Exact Model 0.2 [Exact Model
] Probabilistic Model : [_—_]Probabilistic Model . [Probabilistic Model
& Z
= 0.15 = 0.15
i 2 i =
°Q <
| 2 01 I 2 01
&~ [a¥
hk 0.05 0.05
0 0
0 0.5 1 0.5 1 0 0.5 1
Error Error Error
Error Variable 6 Error Variable 7 Error Variable 8
0.25 0.25
[Approximate Model [Approximate Model [Approximate Model
[Exact Model 0.2 [Exact Model 0.2 [Exact Model
[—]Probabilistic Model : [——]Probabilistic Model ' [—]Probabilistic Model
iy &
= 0.15 = 0.15
el el
< <
2 Q
2 o1 g o1
~ ~
0.05 0.05
0 0
0 0.5 1 0 0.5 1 0 0.5 1
Error Error Error
Error Variable 9 Error Variable 10
0.25
[Approximate Model [Approximate Model
[Exact Model 0.2 [Exact Model
[—]Probabilistic Model ' [—]Probabilistic Model
&
= 0.15
a
<
a
g o1
=)
0.05
0
0 0.5 1 0 0.5 1
Error Error

Figure E.5: Histogram of the output of the approximate, exact and probabilistic models, given 1000 input images. The deterministic histograms are partitioned into
20 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the output vectors.

q 121deyD

SL'INSHY €4

61230 €61 93ed

Error Variable 1

Probability

[Deterministic Error
[Probabilistic Error

-0.6

Probability

-04 -0.2 0 0.2

Error
Error Variable 5

Probability

[Deterministic Error
[Probabilistic Error

-0.6 -0.4 -0.2 0

Error

0.2

Error Variable 2

0.15

o
[

o
o
G

-0.8

-0.6

[Deterministic Error
[Probabilistic Error

-0.4 -0.2 0 0.2

Error
Error Variable 6

0.15

Probability
o
o

o
o
a

0

-0.8

[Deterministic Error
[Probabilistic Error

-06 -04 -02 0 0.2

Error
Error Variable 9

0.15

o
[

Probability

0.05

0
-0.8

[Deterministic Error
[Probabilistic Error

-06 -04 -0.2 0

Error

Error Variable 3

Error Variable 4

[Deterministic Error
[Probabilistic Error

-0.6 -0.4 -0.2 0 0.2
Error

Error Variable 8

[Deterministic Error
[Probabilistic Error

0.15
[Deterministic Error 0.15
[Probabilistic Error
E 0.1 f ? 01
2 b
s =
o) el
2 2
R 0.05 ¢ & 0.05
0 0
-0.8 -06 -04 -02 0 0.2 -0.8
Error
Error Variable 7
0.15
[Deterministic Error 0.15
[Probabilistic Error
g 0.1 f 5 01
i =
s =
o) el
2 2
R 0.05 & 0.05
0 0
-0.8 -06 -04 -02 0 0.2 -0.8
Error
Error Variable 10
0.15
[Deterministic Error
[Probabilistic Error
> 0.1
=
2
)
2
2
& 0.05
0
0.2 -08 -06 -04 -02 0 0.2
Error

-0.6 -0.4 -0.2 0 0.2
Error

Figure E.6: Histogram of the deterministic and probabilistic error distributions, given 1000 input images. The deterministic histograms are partitioned into 30
distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

Chapter E E.3. RESULTS

The Kullback-Liebler divergence is a measure of the " distance” or ” divergence of two distributions,
based on how difficult it is to tell samples of the two distributions apart [124]. Given two distribu-
tions, P and Q the KL-divergence is denoted as Dk (P||Q). P is here interpreted as an observation
of a probability distribution and Q is seen as a model of the distribution P. The KL-divergence is
then intuitively construed as a measure of the information lost when using Q as a model for P. This
intuition can directly be applied to the problem at hand, where the probabilistic model attempts to
model the approximate outputs. The KL-divergence has a neat formula for when both distributions
are multivariate Gaussian. This is presented without a proof (see Soch et. al. [125]) in Eq. (E.1).

_1 Ts-1 -1 |Z1]
D(PIIQ)—E (M2 — 1) " 2y " (U2 — 1) +tr(2, Z1)—-n-In m (E.1)
2
where:
P ~N(u1,Z1)
Q ~AN(u2,Z»)

n Dimension of output vector

The KL-divergence is a simple scalar measure, which can be used to quickly assess the magnitude
of the loss of information. However, the cause of this magnitude is unclear by just evaluating Eq.
(E.1). The magnitude of the addends within the formula reveals some of the causes for the total
magnitude.

The first term:

(2 —) 25 (2 — 1)

is the squared Mahalanobis distance between the mean vectors p; and py, with X, as the covariance
matrix. The Mahalanobis distance is a measure between a point and a probability distribution,
the use of the inverse covariance matrix accounts for correlations between the variables in the
distribution, hence this is a beneficial measure for multivariate probabilistic data set [132]. The
squared Mahalanobis distance is used in the KL-divergence as a measure from the mean of P to the
distribution of Q. This term is therefore interpreted as a measure of the differences in means.

The second term:
tr(Z,'Z)) —n

is simple to show that if the covariance matrices are equal their product will be the identity matrix
of size nxn, hence the trace subtracted by n will be zero. The second term is therefore interpreted
as a measure of differences in covariance.

The third term:

(1211)

In|—

12|

is the logarithm of the difference in determinants are used to compensate for differences in the
scaling of the distributions. This ratio will also be zero if the distributions are equal.

Since this KL-divergence assumes Gaussian distributions, it is decided to measure the error dis-
tributions, since these seem to be more consistently Gaussianly distribution. The KL-divergence
between the deterministic and probabilistic models is found for the mul8s_1KV8 where the CNN
is not trained using STE (i.e. inference on the CNN trained on the exact model). This is shown in
Table E.4

Page 194 of219

Chapter E E.3. RESULTS

Table E.4: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained
for 45 epochs trained using exact arithmetic.

KL-divergence | Mahalanobis term
14

14.5 -8.9 23.9

These measures by themselves show that the probabilistic model is not an exact match of the
observed sample. However, this is to be expected from the plots shown in Figure E.6. Furthermore,
it is seen that the difference in means (measured by the Mahalanobis distance) seems to contribute
significantly to the divergence compared to the difference in covariances, although the largest
contributor to the overall divergence. These observations coincide with the histograms in Figure E.6.
It is emphasised that the KL measure by itself does not provide much useable information, as the
measures should be used for comparisons of methods. For this reason, the same analysis is applied
to the remaining inference stage for each additional 5 epochs of STE training.

45/5 is the ratio between exact and STE training epochs. The deterministic and probabilistic error
distributions are plotted in Figure E.7.

The KL-divergence is calculated and the results are shown in Table E.5.

Table E.5: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained for
45 epochs trained using exact arithmetic and 5 epochs using STE on the approximate

model.
KL divrgence | Mahalanobi erm
14.5 12.2 -8.8 25.7

The KL-divergence is the same as the one where the CNN did not consist of weights trained with
STE. However, the contribution from the Mahalanobis distance decreased, at the expense of a
larger contribution from the scaling term.

45/10 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.8.

It is noticed that the sixth variable has lost its Gaussian shape, and the probabilistic model seems
to fit the deterministic better than previously. This result is due to a shift in the weights during
training resulting in a negative value on this output for some inputs. The nonlinear ReLU function
is equating this to zero.

Page 195 of219

61230 961 93ed

Error Variable 4

[Approximate Model
[Probabilistic Model

i

-06 -04 -0.2 0 0.2
Error

Error Variable 8

[Approximate Model
[Probabilistic Model

I

0.2 Error Variable 1 Error Variable 2 Error Variable 3 0.2
’ 0.2 0.2
E ?iﬁ;:;;lhn; :::Ce]IVVI[(?;;I [Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15 015 0.15
2 o1 % 0.1 % 0.1 % o1
o
e 2 5 2
- " £ £ :
0.05 I 0.05 0.05 | I 0.05
0 —H-’-h_h\»\ 0 0 M 0
-08 -06 -04 -02 0 0.2 -08 -06 -04 -02 0 0.2 -0.8 -06 -04 -02 0 0.2 -0.8
Error Error Error
Error Variable 5 Error Variable 6 Error Variable 7
0.2 0.2 0.2 0.2
[Approximate Model [Approximate Model [Approximate Model ’
[Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15 0.15 0.15
2 2 2 =
°) o o S
- - - &
~ A A~ &
0.05 1 0.05 0.05 0.05
0 0 0 0
-08 -06 -04 -02 0 0.2 -0.8 -06 -04 -02 0 0.2 -0.8 -06 -04 -02 0 0.2 -0.8
Error Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15

Probability
o
[

0.05

0

Figure E.7: Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV8, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

-0.8

-06 -04 -0.2 0
Error

Probability
o
=

0.05

0.2 -08 -06 -04 -0.2 0 0.2
Error

-0.6 -0.4 -0.2 0 0.2
Error

q 121deyD

SL'INSHY €4

612JO .61 93ed

Error Variable 1

0.2

0.15

Probability
o
=

[Approximate Model
[Probabilistic Model

0.05 B 1
0 M
-08 -06 -04 -02 0 0.2
Error
Error Variable 5
0.2
[Approximate Model
[Probabilistic Model
0.15

Probability
o
[

0.05

Figure E.8: Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV8, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

-04 -0.2 0 0.2
Error

-0.6

Error Variable 2

Error Variable 3

0.2

o
=
4]

Probability
o
[

[Approximate Model
[Probabilistic Model

0.2

o
[
a

Probability
o
[

[Approximate Model
[Probabilistic Model

Probability

-0.2 0 0.2

-0.4
Error

-0.6

Error Variable 7

[Approximate Model
[Probabilistic Model

..

-06 -04 -02 0 0.2

Error
Error Variable 10

0.05 0.05
0 0
-08 -06 -04 -02 0 0.2 -0.8
Error
Error Variable 6
0.2 i 0.2
[Approximate Model
[Probabilistic Model
0.15 0.15
> >
= =
T 01 01
Q el
o o
— -
i ~
0.05 0.05
0 0
-0.8 -06 -04 -02 0 0.2 -0.8
Error
Error Variable 9
0.2 0.2
[Approximate Model
[Probabilistic Model
0.15 0.15

Probability
o
[

0.05

0

-0.2 0
Error

-08 -06 -04

Probability
o
[

0.05

0.2 -0.8

[Approximate Model
[Probabilistic Model

-04 -0.2 0 0.2
Error

-0.6

Error Variable 4

0.2

0.15

o
[

0.2

0.15

Probability
o
[

0.05

[Approximate Model
[Probabilistic Model

.

-06 -04 -02 0

Error
Error Variable 8

0.2

[Approximate Model
[Probabilistic Model

b

-04 -0.2 0
Error

-0.6

0.2

q 121deyD

SL'INSHY €4

Chapter E E.3. RESULTS

The KL-divergence is calculated and the results are shown in Table E.6.

Table E.6: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 10 epochs using STE on the ap-
proximate model.

KL-divergence | Mahalanobis term
5.4

10.5 -8.3 28.8

The KL-divergence reduces from the previous measure, primarily because of a reduction in the
Mahalanobis distance and thereby the difference in means. It is suspected that this is due to the
development regarding the deactivation of the 6.

45/15 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.9.

The development of the deactivation of the 6™ output persists, and even more samples seem to
have fallen under the effect of ReLU.

The KL-divergence is calculated and the results are shown in Table E.7.

Table E.7: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 15 epochs using STE on the ap-

proximate model.
KL-divergence | Mahalanobis term
12.7 10.6 -8.4 23.2

45/20 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.10.

The development of the deactivation of the 6™ output persists, and even more samples seem to
have fallen under the effect of ReLU.

The KL-divergence is calculated and the results are shown in Table E.8.

Table E.8: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 20 epochs using STE on the ap-

proximate model.
KL-divergence | Mahalanobis term
13.7 11.9 -8.8 24.5

45/25 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.11.

Page 198 of219

61230 661 93ed

Probability

Probability

Error Variable 2

[Approximate Model
[Probabilistic Model

-06 -04 -02 0 0.2

Error
Error Variable 6

[Approximate Model
[Probabilistic Model

-06 -04 -0.2 0
Error

Error Variable 9

il

0.2

[Approximate Model
[Probabilistic Model

..

Error Variable 1
0.2 0.2
[Approximate Model
[Probabilistic Model
0.15 015
£
.E
0.1 < 0.1
E
Ay
0.05 0.05
0 0
-08 -06 -04 -02 0 0.2 -0.8
Error
Error Variable 5
0.2 0.2
[Approximate Model
[Probabilistic Model
0.15 015
£
.E
0.1 < 01
E
Ay
0.05 0.05
0 0
-08 -06 -04 -02 0 0.2 -0.8
Error
0.2
0.15
2
2 01
o)
<]
-
[a W
0.05
0
-0.8

-06 -04 -02 0
Error

Error Variable 3

Error Variable 4

0.2

0.2

0.15

Probability
o
-

[Approximate Model
[Probabilistic Model

o
[
3

Probability
o
[

[Approximate Model
[Probabilistic Model

.

-06 -04 -02 0 0.2

Error
Error Variable 8

0.05 0.05
0 —”-h-"h_ 0
-0.8 -06 -04 -02 0 0.2 -0.8
Error
Error Variable 7
0.2 0.2
[Approximate Model
[""]Probabilistic Model
0.15 0.15

Probability
o
-

0.05

Probability
o
[

0.05

0.2

0.15

Probability
o
[

0.05

0

[Approximate Model
[Probabilistic Model

-

-0.8 -06 -04 -02 0
Error
Error Variable 10

[Approximate Model
[Probabilistic Model

-08 -06 -04 -0.2 0 0.2
Error

-06 -04 -0.2 0 0.2
Error

Figure E.9: Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV8, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

61230 00z 93ed

Error Variable 1

0.2 0.2 0.2
0.2
[Approximate Model [Approximate Model [Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15 0.15 0.15
2 2 2 =
8
E 0.1 = 0.1 E 0.1 E 0.1
2 2 2 S
¥ ~ o £
0.05 0.05 I 0.05 | 0.05 Is
; . . . Hﬂm
-0.8 -06 -04 -02 0 0.2 -0.8 -06 -04 -02 0 0.2 -0.8 -06 -04 -02 0 0.2 -08 -06 -04 -02 0 0.2
Error Error Error Error |
Error Variable 5 Error Variable 6 0.2 Error Variable 7 0.2 Error Variable 8
0.2 0.2 I ’ ’
- " [Approximate Model [Approximate Model
[Approximate Model [Approximate Model B s
[Probabilistic Model [Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15
0.15 0.15
> > z e
= = = =
2 2 2 2
S 01 e 01 g 01 = 01
< = <} [-
g 2 2 2 n
& ' ~ - - T
0.05 0.05 0.05 0.05 I I
-0.8 -06 -04 -02 0 0.2 -08 -06 -04 -02 0 0.2 -08 -06 -04 -02 0 0.2 -08 -06 -04 -02 0 0.2
Error Error Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
£ £
Z 01 E 01
=} 2
2 2
[al ol
0.05 0.05
0 0
-08 -06 -04 -0.2 0 0.2 -0.8 -06 -04 -02 0 0.2

Error Variable 2

Error Variable 3

Error Variable 4

Error

Error

Figure E.10: Histogram of the deterministic and probabilistic error distributions for the mul18s_1KV8, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

61230 10z 93ed

Probability

Error Variable 1

0.2

o
[
(4]

o
S

0.05

0

0.2

o
s
o

Probability
o
[

0.05

-0.8

[Approximate Model
[Probabilistic Model

Probability

-06 -04 -02 0 0.2

Error
Error Variable 5

[Approximate Model
[Probabilistic Model

-06 -04 -0.2 0
Error

Error

Error Variable 3

[Approximate Model
[Probabilistic Model

-06 -04 -02 0 0.2

Error
Error Variable 7

[Approximate Model
[Probabilistic Model

.

-06 -04 -02 0 0.2

Error
Error Variable 10

Error Variable 2
0.2 0.2
[Approximate Model
[Probabilistic Model
0.15 015
=
2
0.1 < 0.1
2
s}
0.05 0.05 r
0 0
-08 -06 -04 -02 0 0.2 -0.8
Error
Error Variable 6
0.2 il 0.2
[Approximate Model
[Probabilistic Model
0.15 I 0.15
= £
2 01 2 01
] <
<} <}
- -
[al [al
0.05 0.05
0 0
-0.8 -06 -04 -02 0 0.2 -0.8
Error
Error Variable 9
0.2 0.2
[Approximate Model
[Probabilistic Model
0.15 0.15
£ B
Z 01 s 01
< el
2 2
[al ol
0.05 0.05
. [.
-0.8 -06 -04 -02 0 0.2 -0.8

[Approximate Model
[Probabilistic Model

Error Variable 4

0.2

0.15

Probability
o
[N

0.05

[Approximate Model
[Probabilistic Model

-06 -04 -02 0 0.2

Error
Error Variable 8

0.2

0.15

Probability
o
[E

0.05

[Approximate Model
[Probabilistic Model

.

-06 -04 -02 0 0.2

Error

-0.6 -0.4 -0.2 0 0.2
Error

Figure E.11: Histogram of the deterministic and probabilistic error distributions for the mul18s_1KV8, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

Chapter E E.3. RESULTS

The development of the deactivation of the 61 output persists, and all samples seem to have fallen
under the effect of ReLU.

The KL-divergence is calculated and the results are shown in Table E.9.

Table E.9: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 15 epochs using STE on the ap-

proximate model.
KL divrgence | Mahalanobi erm
13.9 10.6 -7.9 22.4

45/30 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.12.

The KL-divergence is calculated and the results are shown in Table E.10.

Table E.10: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 30 epochs using STE on the ap-

proximate model.
KL-divergence | Mahalanobis term
15 16.1 -8 21.9

The KL-divergence is increasing and is at the highest value yet. This is mainly due to a significant
rise in the Mahalanobis term, which is supported by the development in the histograms.

45/35 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.13.

The KL-divergence is calculated and the results are shown in Table E.11.

Table E.11: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 15 epochs using STE on the ap-

proximate model.
KL-divergence | Mahalanobis term
14.8 14.7 -8.1 23.1

45/40 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.14.

Page 202 of219

61230 €0z a3ed

Probability

Figure E.12: Histogram of the deterministic and probabilistic error distributions for the mu18s_1KV8, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

Probability
o
[N

Error Variable 1

0.2

[Approximate Model
[Probabilistic Model

o
=
(4]

0.05 i
0
-0.8 -06 -04 -0.2 0 0.2
Error
Error Variable 5
0.2
[Approximate Model
[Probabilistic Model
0.15
0.1
0.05 il
0
-08 -06 -04 -02 0 0.2
Error

Error Variable 2

0.2

0.15

Probability
o
[

[Approximate Model
[Probabilistic Model

Error Variable 3

0.2

o
=
o

Probability
o
[

[Approximate Model
[Probabilistic Model

Error Variable 4

0.2

0.15

Probability
o
[

[Approximate Model
[Probabilistic Model

0.05 I 0.05 i 0.05 M
0 0 0
-0.8 -0.6 -04 -0.2 0 0.2 -08 -06 -04 -02 0 0.2 -08 -06 -04 -02 0 0.2
Error Error Error
0.2 Brror Variable 6 | Error Variable 7 Error Variable 8
’ - 0.2 0.2
E gfg;)i:hn; Etlitce 1\1}400:;1 [Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
015 015 015
= = b=
s 01 E 01 § 0.1
£ 2 3
Ay M A] b
- - mﬁm N | _“-h}hM
0 0 0
-0.8 -06 -04 -02 0 0.2 -0.8 -0.6 -04 -0.2 0 0.2 -0.8 -0.6 -04 -0.2 0 0.2
Error Error Error
Error Variable 9 0.2 Error Variable 10
0.2 ’
- [Approximate Model
[Approximate Model B
] Probabilistic Model [Probabilistic Model
0.15 0.15
= =
3 2
§ 0.1 —g 0.1
S 2
& o a9
0.05 I 0.05
-0.8 -0.6 -04 -0.2 0 0.2 -0.8 -06 -04 -02 0 0.2
Error Error

q 121deyD

SL'INSHY €4

612JO %0z a3ed

Probability

Error Variable 2

Error Variable 3

Error Variable 4

[Approximate Model
[Probabilistic Model

[

-06 -04 -02 0

Error
Error Variable 8

[Approximate Model
[Probabilistic Model

..

0.2

Error Variable 1 0.2
0.2 ’ X ot Model 0.2 0.2
[Approximate Model E Pfg;;;hrz iice M(()) d:i [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 015 015 | 0.15
2 = >
= h=t =
0.1 = 01 S 01 S 01
3 2 2
& - 2 2
) ~ - ey A
0.05 i 0.05 I 0.05 _m_h_hj 0.05
0 0 0 0
-08 -06 -04 -02 0 0.2 -0.8 -06 -04 -02 0 0.2 -0.8 -06 -04 -0.2 0 0.2 0.8
Error Error Error
Error Variable 5 Error Variable 6 Error Variable 7
0.2 0.2 I 0.2 0.2
[Approximate Model [Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15 0.15 0.15
=) > =
2 01 2 01 % 01 2 01
2 =} = =}
<) o o) o
- - - -
[am - A ol A
0.05 i 0.05 0.05 0.05
o ”ﬂm\ o o M 0
-0.8 -06 -04 -02 0 0.2 -08 -06 -04 -0.2 0 0.2 -0.8 -06 -04 -02 0 0.2 -0.8
Error Error Error
0.2 Error Variable 9 Error Variable 10
' 0.2
[Approximate Model 4
s [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15 |

Probability
o
[

o
o
G

0
-0.8

Error

Probability
o
=

0.05

-06 -04 -02 0 0.2 -0.8

-0.

6 -04 -02 0
Error

0.2

Error

-06 -04 -02 0 0.2

Figure E.13: Histogram of the deterministic and probabilistic error distributions for the mul18s_1KV8, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

Error Variable 1

0.2

0.15

Probability
o
=

[Approximate Model
[Probabilistic Model

0.05
0
-08 -06 -04 -02 0 0.2
Error
Error Variable 5
0.2
[Approximate Model
[Probabilistic Model
0.15

Probability
o
[

0.05

612JO G0z a3ed

-0.2 0 0.2

-0.4
Error

-0.6

Probability

Probability
o
[

Error Variable 2

0.2

0.15

[Approximate Model
[Probabilistic Model

Error Variable 3

0.2

[Approximate Model
[Probabilistic Model

0.15

Probability
o
-

- | b —Hh_h_h
0 0
-08 -06 -04 -0.2 0 0.2 -08 -06 -04 -02 0 0.2
Error Error
0.2 Error Variable 6 | 02 Error Variable 7
[Approximate Model ’ 4
B [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.5 |
£
0.1 % 0.1
2
<)
—
=}
0.05 0.05 | I
0 0 ‘”.m.”h‘»\
-08 -06 -04 -0.2 0 0.2 -0.8 -06 -04 -02 0 0.2
Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
£ £
= 01 E 01
e o)
o) <)
= o =
~ AT &
0.05 I mhm 0.05 |
0 0
-08 -06 -04 -0.2 0 0.2 -0.8 -06 -04 -02 0 0.2
Error Error

Error Variable 4

0.2

o
[
3

Probability
o
[

[Approximate Model
[Probabilistic Model

0.05
0
-08 -06 -04 -02 0 0.2
Error
Error Variable 8
0.2
[Approximate Model
[Probabilistic Model
0.15

Probability
o
[

0.05

.

-04 -0.2 0 0.2
Error

-0.6

Figure E.14: Histogram of the deterministic and probabilistic error distributions for the mul18s_1KV8, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

Chapter E E.3. RESULTS

The KL-divergence is calculated and the results are shown in Table E.12.

Table E.12: The KL-divergence of the mul8s_1KV8, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 40 epochs using STE on the ap-
proximate model.

KL-divergence | Mahalanobis term Scaling term

16.9 16.1 -8.5 254

The KL-divergence is increasing and is at the highest value yet. This has to do with both an increase
in Mahalanobis and Scaling terms. The reason for this might be the training introduced to the
approximate model using STE. Through optimisation it is possible that the network can learn some
of the distinct deterministic errors, which do not apply to the probabilistic model, which would
coincide with the observation of the 10™ output node in Figure E.14.

E.3.2 mul8s 1KV9

In the same manner as the mul8s_1KV8 the mul8s_1KV9 is investigated using the KL-divergence
measure. From the results presented in Figure E.4 it is expected to see a generally higher KL-
divergence than for the mul8s_1KV8 however, it is hypothesised that the measure will decrease
with the training on the approximate model as a convergence is seen in the classification accuracy.

45/0 is the ratio between exact and STE training epochs. The deterministic and probabilistic error
distributions are plotted in Figure E.15.

From these histograms, it is noticed that the negative magnitude of the errors is larger compared to
the measurements performed using the mul8s_1KV8. The divergence between the two distributions
also seems larger and is also calculated and the results are shown in Table E.13.

Table E.13: The KL-divergence of the mul8s_1KV9, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 0 epochs using STE on the approx-

imate model.
KL-divergence | Mahalanobis term
37 60.2 -8.5 22.3

The KL-divergence is significantly larger for the mul8s_1KV9 than observed for the mul8s_1KV8,
mainly due to a large increase in the Mahalanobis term (i.e. the difference in means). This is
congruent with the histograms shown in Figure E.15.

Page 206 of219

612JO L0z a3ed

Error Variable 1

0.2

0.15

Probability
o
-

0.05

0
-2.5

-2

[Approximate Model
"] Probabilistic Model

-1.5 -1 -0.5
Error

Error Variable 5

0.2

0.15

Probability
o
-

-2

[Approximate Model
[Probabilistic Model

-1.5 -1
Error

Error Variable 2

Error Variable 3

Error Variable 4

-2

[Approximate Model
["] Probabilistic Model

-1.5 -1 -0.5

Error
Error Variable 8

0.2 0.2 0.2
[Approximate Model [Approximate Model ’
[Probabilistic Model [Probabilistic Model
0.15 0.15 015 F
Z 2 2
5 01 g 01 g 01
2 2 5
¥ ~ &
0.05 0.05 | 0.05
0 0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5
Error Error
Error Variable 6 Error Variable 7 0.2
0.2 0.2 ’
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 015 | 015
> = ey
h=] b= =
S 01 2 01 = 01
2 2 3
E 2 3
~ ~ -
0.05 0.05 | 0.05
0 0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15

Probability
o
[

g
o
a

0
-2.5

-2 -15 -1

Probability
o
[

0.05

-0.5
Error

0
-2.5

-2 -1.5 -1

-0.5

Error

[Approximate Model
[Probabilistic Model

-2 -1.5 -1
Error

Figure E.15: Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

61230 807 93ed

Error Variable 3 Error Variable 4

Error Variable 1 Error Variable 2 0.2
0.2 0.2 X oo Model 0.2
[Approximate Model [Approximate Model E Pfx:ﬁ:ﬁi ‘:i: M: dcel [Approximate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model
015 | 0.15 0.15 0.15
£ z £ =
2 I Z 2 01 2
8 0.1 = 0.1 £ E 0.1
Qo e} = Qo
- - Q_‘ -
[=i =B
0.05 0.05 0.05 0.05
0 0 0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error Error Error
Error Variable 5 0.2 Brror Variable 6 Error Variable 7 Error Variable 8
0.2 ’ - 0.2 0.2
[Approximate Model E gff;s;lllzzt: li\dl(;)((lieell [Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model
015 0.15 0.15 { o015
z £ & &
: Z o - -
< 0.1 2 < 0.1 1= 0.1
2 3 2 2
[} = o =}
= A, = =
=l sl sl
0.05 0.05 0.05 | 0.05
0 0 0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15

Probability
o
[S

o
o
a

0
-2.5

-2 -1.5 -1 -0.5
Error

Probability
o
S

0.05

0

-2.5

-2 -15 -1 -0.5
Error

Figure E.16: Histogram of the deterministic and probabilistic error distributions for the mu18s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

Chapter E E.3. RESULTS

45/5 is the ratio between exact and STE training epochs. The deterministic and probabilistic error
distributions are plotted in Figure E.16. The KL-divergence between the two distributions is also
calculated and the results are shown in Table E.14.

Table E.14: The KL-divergence of the mul8s_1KV9, for inference on a CNN trained

for 45 epochs trained using exact arithmetic and 5 epochs using STE on the approx-
imate model.

KL-divergence | Mahalanobis term Scaling term

29.9 44.8 -8.8 23.8

The KL-divergence is reduced from the previous measurement when no approximate training was

applied before inference, mainly due to a decrease in the Mahalanobis term (i.e. the difference in
means).

45/10 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.17. The deactivation of the 61 output node, is once more
an issue, making the distributions very similar and are not normally distributed. The KL-divergence
between the two distributions is also calculated and the results are shown in Table E.15.

Table E.15: The KL-divergence of the mul8s_1KV9, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 10 epochs using STE on the ap-

proximate model.
KL-divergence | Mahalanobis term
23.6 33.8 -8.4 21.8

Once again a decrease in the KL-divergence is observed. It is suspected that this is due to the 6™
output node partial deactivation.

45/15 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.18. The KL-divergence between the two distributions is
also calculated and the results are shown in Table E.16.

Table E.16: The KL-divergence of the mul8s_1KV9, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 15 epochs using STE on the ap-

proximate model.
KL-divergence | Mahalanobis term
17.7 22.6 -7.5 20.3

The KL-divergence is still decreasing, possibly due to the deactivation of the 6™ output node.

Page 209 of219

61230 012 93ed

0.2 Error Variable 1 Error Variable 2 0.2 Error Variable 3 Error Variable 4
’ 0.2 ’ 0.2
[Approximate Model - [Approximate Model -
e R [Approximate Model s [Approximate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15
0.15 0.15
ey = = =
= = = h=1
3 = a3 =
Z o1 2 01 g ol g o1
° <= <) <2
= 8 = <
& & A Y
0.05 0.05 0.05 | 0.05
0 0 0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error Error Error
Error Variable 5 Error Variable 6 Error Variable 7 Error Variable 8
0.2 0.2 0.2 0.2
[Approximate Model [Approximate Model [Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15 0.15 0.15
> =)) =)
b= h=t A=t b=
2 01 2 01 % 01 T 01
< < < e}
© © o ©
- - - -
A a9 Ay a
0.05 0.05 0.05 0.05
0 0 0 0
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -15 -1 -0.5 -2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
= £
Z 01 s 01
< el
© o
- -
a9 a9
0.05 0.05
0 0
-2.5 -2 -15 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
Error Error

Figure E.17: Histogram of the deterministic and probabilistic error distributions for the mul18s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

61230 11Z93ed

Error Variable 1

0.2
[Approximate Model
[Probabilistic Model
0.15
=)
=
2 01
2
©
-
sl
0.05
0
-2 -1 0
Error
Error Variable 5
0.2
[Approximate Model
[Probabilistic Model
0.15
>
=
2 01
2
©
-
[a W
0.05
0
-2 -1

Figure E.18: Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

Error Variable 2

Error Variable 3

0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
= >
R R
2 01 % 01
< el
© S
- -
[a W Ay
0.05 0.05
0 0
-2 -1 0 -2 -1 0
Error Error
Error Variable 6 Error Variable 7
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
= >
R R
2 01 % 01
< <
© o
- -
a9 Ay
0.05 0.05
0 0
-2 -1 0 -2 -1 0
Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
= >
= R
Z 01 s 01
< el
© o
- -
a9 a9
0.05 0.05
0 0
-2 -1 -2 -1
Error Error

Probability

Probability

Error Variable 4

0.2
[Approximate Model
[Probabilistic Model
0.15
0.1
0.05
0
-2 -1 0
Error
Error Variable 8
0.2
[Approximate Model
[Probabilistic Model
0.15
0.1
0.05
0
-2 -1
Error

q 121deyD

SL'INSHY €4

61230 Zlzo3ed

Probability

Error Variable 1

0.2

o
[
a

o
[

0.05

0.2

0.15

Probability
o
[

0.05

[Approximate Model
[Probabilistic Model

-1 0

Error
Error Variable 5

Error Variable 2

Error Variable 3

[Approximate Model
[Probabilistic Model

0.2 02
[Approximate Model ’ 4
s ¥ [Approximate Model
] Probabilistic Model I Prabebilistic Model
0.15 0.15
2 >
= =
2 b=
= 01 S 01
3 <o
= 2
- ~
0.05 0.05
0 0
-2 -1 0 -2 -1 0
Error Error
Error Variable 6 Error Variable 7
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
= >
= =
E 01 E 01
2 <
= <)
— —
Ay Ay
0.05 0.05
0 0
-2 -1 0 -2 -1 0
Error Error
. E iable 1
Error Variable 9 0.2 rror Variable 10
0.2 ’
A i Model
[Approximate Model [— Peababilintle M(());l:l
[Probabilistic Model
0.15 0.15
> z
= =
= 2
S 01 g 01
= Ie)
8 =
e Ay
0.05 0.05
0 0
-2 -1 0 -2 -1
Error

Error Variable 4

0.2
[Approximate Model
[Probabilistic Model
0.15
>
h=1
g 01
Qo
=}
—
o
0.05
0
-2 -1 0
Error
Error Variable 8
0.2
[Approximate Model
[Probabilistic Model
0.15
=)
=
2 01
<
°©
-
Ay
0.05
0
-2 -1 0
Error

Error

Figure E.19: Histogram of the deterministic and probabilistic error distributions for the mul18s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

Chapter E E.3. RESULTS

45/20 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.19. The KL-divergence between the two distributions is
also calculated and the results are shown in Table E.17.

Table E.17: The KL-divergence of the mul8s_1KV9, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 20 epochs using STE on the ap-
proximate model.

KL-divergence | Mahalanobis term Scaling term

15.2 17.2 =72 19.85

45/25 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.20. The deactivation of the 61 output node, is once more
an issue, making the distributions very similar and are not normally distributed. Furthermore, this
development seems to be happening for the 101 output node as well. The KL-divergence between
the two distributions is also calculated and the results are shown in Table E.18.

Table E.18: The KL-divergence of the mul8s_1KV9, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 25 epochs using STE on the ap-
proximate model.

KL-divergence | Mahalanobis term Scaling term
17

14.6 -7.3 19.5

45/30 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.21. The KL-divergence between the two distributions is
also calculated and the results are shown in Table E.19.

Table E.19: The KL-divergence of the mul18s_1KV9, for inference on a CNN trained

for 45 epochs trained using exact arithmetic and 30 epochs using STE on the ap-
proximate model.

KL-divergence | Mahalanobis term Scaling term

14.1 15.7 =74 19.9

The KL-divergence is now similar to the one observed for mul8s_1KV8. The main contributor is
now the scaling term which was also the case for the mul8s_1KV8. It is noticed that the mean of the

probabilistic model has a lower mean than the deterministic model for the mul8s_1KV9. This is the
opposite of what was the case for mul8s_1KV8.

Page 213 of219

Error Variable 1

Error Variable 2

Error Variable 3 Error Variable 4

0.2 0.2 0.2 0.2
[Approximate Model [Approximate Model [Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15 0.15 0.15
=) > [=)
2 01 2 01 % 01 T 01
< < el e}
© © S ©
- - - ~
A [a W Ay a
0.05 0.05 0.05 0.05
0 0 0 0
-2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0
Error Error Error Error
Error Variable 5 . Error Variable 7 Error Variable 8
0.2 0.2 Error Variable 6 0.2 0.2
[Approximate Model ’ Approximate Model [Approximate Model [Approximate Model
[Probabilistic Model I:l_ Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15 0.15
0.15
ey = ey ey
2 2 z =
s 01 = 01 % 01 5 01
° <= © o
= 8 = =
a9 a a9 Ay
0.05 0.05 0.05 0.05
0 0 J’ 0 0
-2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0
Error Error Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
= >
= R
Z 01 s 01
< el
© o
- -
a9 a9
0.05 0.05
0 0
-2 -1 0 -2 -1 0
Error Error

612JO ¥1gaded

Figure E.20: Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

Error Variable 1

Error Variable 2

Error Variable 3 Error Variable 4

0.2 0.2 0.2
0.2
[Approximate Model [Approximate Model [Approximate Model A imate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model E Approsimate Hodd
0.15 0.15 0.15 L
0.15
3 3 2 =
= 0.1 £ 0.1 E 0.1 E 0.1
2 2 2 S
jaly A Ay E
0.05 0.05 0.05 | 0.05
0 0 0 0
-2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0
Error Error Error Error
Error Variable 5 Error Variable 6 Error Variable 7 Error Variable 8
0.2 0.2 0.2 0.2
[Approximate Model [Approximate Model [Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model [Probabilistic Model
0.15 0.15 0.15 0.15
> > > >
2 01 E 01 E 01 T 01
< 2 e)
<) = <))
- — — —
s Ay Ay jal)
0.05 0.05 0.05 0.05
0 0 J— 0 0
-2 -1 -2 -1 0 -2 -1 0 -2 -1 0
Error Error Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
= >
= =
T 01 E 01
2 <
= <)
- —
Ay Ay
0.05 0.05
0 0
-2 -1 0 -2 -1 0
Error Error

612JO GIgaded

Figure E.21: Histogram of the deterministic and probabilistic error distributions for the mul8s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

61230 91¢93ed

0.2

o
[
)]

Probability
o
[

0.05

Error Variable 1

0.2

[Approximate Model
[Probabilistic Model

-1
Error
Error Variable 5

0.2

©
i
a

Probability
o
[

0.05

Figure E.22: Histogram of the deterministic and probabilistic error distributions for the mu18s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

[Approximate Model
[Probabilistic Model

I
S
5

Probability
o
[N

Error Variable 2

Error Variable 3

[Approximate Model
[Probabilistic Model

0.2

o
=
(6]

Probability
o
[

[Approximate Model
[Probabilistic Model

Error Variable 4

0.2

o
=
ol

Probability
o
=

[Approximate Model
[Probabilistic Model

-1 0

Error
Error Variable 8

[Approximate Model
[Probabilistic Model

0.05 0.05 0.05
0 0 0
-2 1 0 -2 -1 0 -2
Error Error
Error Variable 6 Error Variable 7
0.2 0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15 0.15
> > >
2 2 2
E 0.1 E 0.1 = 0.1
I o o
- - -
A ~ =i
0.05 0.05 0.05
-2 -1 0 -2 -1 0 -2
Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
> >
=1 =1
2 2
E 0.1 E 0.1
S o
- -
=B ~
0.05 0.05
0 0
-2 -1 0 -2 -1
Error Error

q 121deyD

SL'INSHY €4

Chapter E E.3. RESULTS

45/35 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.22.

The KL-divergence between the two distributions is also calculated and the results are shown in
Table E.20.

Table E.20: The KL-divergence of the mul8s_1KV9, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 35 epochs using STE on the ap-
proximate model.

KL-divergence | Mahalanobis term Scaling term

12.5 12.9 -7.5 19.6

45/40 is the ratio between exact and STE training epochs. The deterministic and probabilistic
error distributions are plotted in Figure E.23.

The KL-divergence between the two distributions is also calculated and the results are shown in
Table E.21.

Table E.21: The KL-divergence of the mul18s_1KV9, for inference on a CNN trained
for 45 epochs trained using exact arithmetic and 40 epochs using STE on the ap-
proximate model.

KL-divergence | Mahalanobis term
20

13.3 14.2 -7.6

The KL-divergence increases slightly from the previous measurement. This could indicate that the
modelling strategy limits the accuracy of the estimate. For all measurements, the scaling term is
rather high, which is also noticed from the difference in scale in all histograms for the output nodes.
This is interpreted as the probabilistic model introduces too large a standard deviation compared to
the approximate model.

Page 217 of219

Error Variable 1

0.2

Error Variable 2

Error Variable 3 Error Variable 4

0.2 0.2
[Approximate Model - - 0.2
[Probabilistic Model [Approximate Model [Approximate Model I A imate Model
[Probabilistic Model [Probabilistic Model pproximate Alode
0.15 0.15 015 "] Probabilistic Model
: : 0.15
£ Z £ =
Fg 0.1 E 1 E 1 ,-_g
Bl 2 0. = 0 B 0.1
= Qo =} IS)
Ay = = =
¥ ~ a8
0.05 0.05 0.05 0.05
0 0 0 0
-2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0
Error Error Error Error
Error Variable 5 Error Variable 6 Error Variable 7 N .
02 0.2 0.2 0. Error Variable 8
[Approximate Model [Approximate Model [Approximate Model ’ A - Model
[Probabilistic Model [Probabilistic Model [Probabilistic Model [Approximate Mode!
[Probabilistic Model
0.15 0.15 0.15 0.15
32) 2 2
% 01 s 01 = 01 R
o o) o
= = = S
a9 a9 a9 s
0.05 0.05 0.05 1 0.05
0 0 0 0
-2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0
Error Error Error Error
Error Variable 9 Error Variable 10
0.2 0.2
[Approximate Model [Approximate Model
[Probabilistic Model [Probabilistic Model
0.15 0.15
= >
=1 =1
2 2
E 0.1 E 0.1
°) o
— -
a9 a9
0.05 0.05
0 0
-2 -1 0 -2 -1 0
Error Error

61230 81z 93ed

Figure E.23: Histogram of the deterministic and probabilistic error distributions for the mu18s_1KV9, given 1000 input images. The deterministic histograms are
partitioned into 30 distinct bins of equal width, and the probabilistic histograms are 50. Each plot in this figure corresponds to one index of the error vectors.

q 121deyD

SL'INSHY €4

Chapter E E.4. CONCLUSION

E.3.3 Comparison of Kullback-Liebler Divergences

For comparison purposes the KL-divergences are plotted for the different multipliers, to illustrate
the evolution of the metric over the epochs of STE-training on the approximate model. This is
shown in Figure E.24.

40 T

mul8s_1KV8
mul8s_1KV9

KL divergence

45 50 55 60 65 70 75 80 85
Epochs

Figure E.24: Plot of the evolution of the KL-divergence, for progressing epochs. Both chosen multipliers are
plotted for comparison purposes. The continuous lines are linear interpolations as measurements are only
taken for each 5 epochs.

E.4 Conclusion

From the two experiments conducted in this appendix, it is concluded that the KL divergence
is a measure that can be used for comparison of "’ how well”’ a probabilistic model emulates an
observation from the approximate model. It is observed that it is possible to improve the divergence
of the models, by training on the approximate model using STE. However, there seems to be a
limit to how well the probabilistic model in its current form can model the deterministic error. The
primary source of divergence is observed to be caused by the difference in standard deviation of
the two models, where the probabilistic is larger than the deterministic. The differences in means
of the two distributions are also contributing to the overall convergence, but it seems to be possible
to reduce this impact through approximate training.

Page 219 of219

	Front Page
	Information
	Introduction
	Survey
	Neural Networks
	Perceptrons
	Multilayer Perceptrons
	Training Perceptrons
	State-of-the-Art Neural Networks

	Digital Design
	Number representation
	Arithmetic in Computer Systems
	The Multiply-Accumulate Unit (MAC)
	State-of-the-Art Arithmetic Units

	Approximate Computing
	Approximate Software
	Approximate Hardware

	Summary of the Survey

	A Benchmarking Tool for Approximate Arithmetics
	Functional Overview of the Tool
	Delimitation and Research Questions
	Research Questions

	Step I: Circuit Analysis
	Gates, Transistors, and Delay
	RTL Synthesis: Gatecount and Critical Path Delay
	Synthesis Flow
	Counting the Gates
	Critical Path

	Error Simulation
	Circuit Comparison and Summary

	Step II: Small-Scale Approximate Neural Network
	Exact Model - Reference System and Application
	Preliminary Phase
	Design Phase
	Implementation Phase

	Approximate Model - Approximate Forwardpass in a Convolutional Neural Network
	Convolutional Layers
	Fixed-Point Precision Scaling

	Probabilistic Model - Modelling Errors in Forward Propagation
	Modelling Errors of Approximate MAC-operations
	Adding Error to the CNN

	Training the CNN with Approximate Arithmetic
	Considerations/Reflections when Training the Approximate Model

	Investigation of Congruency Between Probabilistic and Deterministic Modelling
	Summary, Reflection, and Considerations

	Step III: Full-Scale CNN Error Injection
	Interacting with the Benchmarking Tool
	Performing Step I
	Performing Step II
	Performing Step III

	Applying the Custom Layers to a Full-scale CNN

	Discussion
	Step I - Circuit Analysis
	Step II - Small-scale approximate neural network
	Step III - Full-scale CNN Error Injection

	Conclusion
	Further Work
	Bibliography
	Acronyms
	Github References
	Defining small CNN for benchmarking
	Selection of Approximate Circuits for Comparing Metrics
	Training an Approximate Arithemetic Network
	Testing the Probabilistic Model

