
Filter Frenzy:
- Towards Assessing Active Directory Filters -

Masters Thesis

Group 1001
Mads Lykkeberg Møller - 20220431

Jonathan Hartvigsen Juncker - 20220325

Aalborg University
Electronics and IT

Copyright © Aalborg University 2015

Electronics and IT
Aalborg University
h�p://www.aau.dk

Title:
Filter Frenzy: Towards Assessing Active Di-
rectory Filters

Theme:
Cyber Security

Project Period:
Spring Semester 2024

Project Group:
Group 1001

Participant(s):
Mads Lykkeberg Møller
Jonathan Hartvigsen Juncker

Supervisor(s):
Shreyas Srinivasa

Copies: 1

Page Numbers: 86

Date of Completion:
May 30, 2024

Abstract:

In recent years, several password �lters
for Microsoft’s Active Directory have been
developed. Historically, these �lters have
primarily been third-party implementa-
tions. However, Microsoft has introduced
its own password �lter in the form of Mi-
crosoft Entra Password Protection. Given
that passwords remain the most prevalent
form of access control and Microsoft’s Ac-
tive Directory is a cornerstone of Iden-
tity and Access Management, it is crucial
to assess the e�ectiveness of these pass-
word �lters. This raises the question of
whether these �lters enhance password
security and how Microsoft’s �lter com-
pares to third-party options.
This master’s thesis presents an extensive
literature review on password policies,
password strength, and password guess-
ing attacks. It also introduces a novel
method for evaluating the e�ectiveness of
password �lters for Active Directory. The
evaluation involves testing three di�erent
password �lters using approximately 88
million passwords, state-of-the-art pass-
word strength meters, and various pass-
word guessing attacks.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement
with the author.

http://www.aau.dk

Elektronik og IT
Aalborg Universitet
h�p://www.aau.dk

Titel:
Filter Frenzy: Towards Assessing Active Di-
rectory Filters

Tema:
Cyber Security

Projektperiode:
Forårssemestret 2024

Projektgruppe:
Gruppe 1001

Deltager(e):
Mads Lykkeberg Møller
Jonathan Hartvigsen Juncker

Vejleder(e):
Shreyas Srinivasa

Oplagstal: 1

Sidetal: 86

A�everingsdato:
30. maj 2024

Abstract:

I de senere år er der udviklet adskilli-
ge adgangskode�ltre til Microsofts Acti-
ve Directory. Historisk set har disse �l-
tre primært været tredjepartsimplemente-
ringer. Microsoft har dog indført sit eget
password-�lter i form af Microsoft En-
tra Password Protection. Da adgangsko-
der fortsat er den mest udbredte form
for adgangskontrol, og Microsofts Active
Directory er fundamental i Identity and
Access Management, er det afgørende at
vurdere e�ektiviteten af disse adgangs-
kode�ltre. Dette rejser spørgsmålet om,
hvorvidt disse �ltre forbedrer adgangsko-
desikkerheden, og hvordan Microsofts �l-
ter kan sammenlignes med tredjepartsmu-
ligheder.
Dette kandidatspeciale præsenterer en
omfattende litteratur søgning og review
om adgangskodepolitikker, adgangsko-
destyrke og adgangskodegætteangreb.
Den introducerer også en ny metode til
at evaluere e�ektiviteten af adgangsko-
de�ltre til Active Directory. Evalueringen
involverer test af tre forskellige ad-
gangskode�ltre ved hjælp af cirka 88
millioner adgangskoder, avancerede
adgangskodestyrkemålere og forskellige
adgangskodegætteangreb.

Rapportens indhold er frit tilgængeligt, men o�entliggørelse (med kildeangivelse) må kun ske efter aftale med
forfatterne.

http://www.aau.dk

0.1. Reading Guide iv

0.1 Reading Guide

This thesis contains a variety of technical abbreviations, the following reading guide will
explain these abbreviations:

• KDC - Key Distribution Unit

• PSM - Password Strength Meter

• AD - Active Directory

• LSASS - Local Security Authority Subsystem Service

• LM - Lan Manager

• NTLM - New Technology Lan Manager

• LSA - Local Security Authority

• ASCII - American Standard Code for Information Interchange

• CFCS - Center for Cyber Sikkerhed

• NIST - National Institute of Standards and Technology

• GPU - Graphical Processing Unit

• CPU - Central Processing Unit

• PCP - Password Complexity Policy

• ADSI - Active Directory Service Interfaces

• COM - Component Object Model

• GAN - Generative Adversarial Network

• LDAP - Lightweight Directory Access Protocol

• HPC - High Performance Computing

• DLL - Dynamic Link Library

• OPF - OpenPasswordFilter

Contents

Preface 1

1 Introduction 2
1.0.1 Motivation . 3
1.0.2 Contribution . 3

2 Background 4
2.1 Password History . 4
2.2 Directory Services . 4

2.2.1 Active Directory . 4
2.2.2 Active Directory Password Filters 6

2.3 Authentication . 6
2.4 Password Entropy . 7
2.5 Leaked Credentials . 7
2.6 Password Guessing Attacks . 8

2.6.1 O�ine Password Guessing Attacks 8
2.6.2 Online Password Guessing Attacks 8

3 Related Work 9
3.1 Systematic Literature Search . 9
3.2 Related Works Review . 11

3.2.1 Password Strength . 11
3.2.2 Password Policies . 12
3.2.3 Password Guessing Attacks . 14

3.3 Literature Review Summary . 15

4 Methodology 17
4.1 Ethical Concerns . 17
4.2 Experimental Setup . 18
4.3 Password Lists . 18

4.3.1 Generating Passwords Using PassGAN 19
4.4 Password Filters to be Evaluated . 20
4.5 Automated Password Change Script . 21

v

Contents vi

4.5.1 Script Optimizations . 21
4.5.2 Final Scripts . 27

4.6 Password Strength Measurement . 31
4.6.1 Password Strength Meters . 31
4.6.2 Password Cracking . 36

4.7 Calculating Overall Score . 42
4.7.1 Normalizing Scores . 42

4.8 Method Summary . 43

5 Results 44
5.1 Passwords Accepted by Filters . 44

5.1.1 Lithnet Filter . 44
5.1.2 OpenPasswordFilter Filter . 45
5.1.3 Entra Password Protection . 46
5.1.4 Summarized . 46

5.2 Password Strength Meter Results: . 47
5.2.1 zxcvbn . 47
5.2.2 MultiPSM . 49
5.2.3 Monte Carlo . 50
5.2.4 fuzzyPSM . 52

5.3 Guessing Attacks . 54
5.3.1 Online Attack on Accepted Passwords 54
5.3.2 O�ine Guessing Attacks on Accepted Passwords 54
5.3.3 O�ine Guessing Attacks on Rejected Passwords 55

5.4 Combined Results . 57
5.4.1 Normalized Password Strength Meter Scores 57
5.4.2 Normalized Guessing Attack Scores 61
5.4.3 Final Scores . 62

6 Discussion 65
6.1 Evaluation . 65
6.2 Challenges and Obstacles . 67

7 Conclusion 70

8 Future Work 71

Bibliography 72

A Appendixes 77
A.1 Advanced Password Changing Script . 77
A.2 Password Guessing Attacks Scripts . 82

A.2.1 Python Script For O�ine Password Guessing Using Hashcat 82
A.2.2 Python Script For Online Password Guessing 83

Contents vii

A.3 Score Calculations For Password Guessing Attacks 84
A.3.1 Normalized O�ine Brute Force Scores 84
A.3.2 Normalized O�ine PassGAN+Rules Scores 86

Preface

Aalborg University, May 30, 2024

Mads Lykkeberg Møller
mlmo22@student.aau.dk

Jonathan Hartvigsen Juncker
jjunck22@student.aau.dk

1

Jonathan Juncker

Chapter 1

Introduction

In the realm of enterprise network security Active Directory (AD) stands as a cornerstone
for Identity and Access Management as the primary directory service forWindows domain
networks. Active Directory plays a critical role in maintaining the security and integrity
of organizational IT infrastructure.

Passwords remain the primarymethod for access control across organizations and tech-
nologies including Active Directory. Weak passwords have been a persistent source of se-
curity breaches and vulnerabilities for decades [40]. To enhance password security, various
advancements has been made, one of the more prominent being Password Policies (PPs).
These policies set speci�c requirements that passwords must adhere to, to be considered
valid. Active Directory can also employ password policies in the form of password �lters
[35]. These �lters have historically been third-party implementations, however to the best
of the our knowledge Microsoft released the beginnings of what would become their own
�lter in 2018 [33], focused on blocking weak passwords from Active Directory. Today,
both third-party implementations and Microsoft’s Password Protection rely on blocklists
to prevent weak passwords from being created and used, however research has shown that
implementing blocklists while recommended [42][7] is notoriously hard to do accurately
[55] [26]. To the best of our knowledge no research has been done into the e�ectiveness
of password �lters for Active Directory and the extent of the potential password security
they provide.

This brings into question of what makes a weak or strong password, which has been a
research topic for many years. Historically, password strength has been measured through
information theoretic entropy [52], and has therefore resulted in password policies requir-
ing using upper-, lower-case characters and special characters. This has been proven to
be an insu�cient measurement of password strength [63]. Modern standards regarding
passwords also recommend minimal restrictions on password complexity [42] [7]. Most
enterprise services now employ Password Strength Meters (PSMs) that inform users about
the calculated strength of their password when creating it, and even forbids a low strength
password from being created. There exists a plethora of di�erent PSMs that can measure
password strength in various ways such as guessability, password probability, and resis-
tance to guessing attacks. Extensive research has been done to develop accurate and ef-

2

3

fective PSMs [63] [61] [15] [9]. We believe that these PSMs along with password guessing
attacks can be leveraged to measure the e�ectiveness and strength of an Active Directory
password �lter.

1.0.1 Motivation

Considering the gap in research into Active Directory password �lters it is the goal of this
thesis to research:

• How does Microsoft’s Password Protection solution compare to various open-source
Active Directory password �lters.

• Are Active Directory password �lters e�ective in increasing password security.

• Develop and test a method to evaluate Active Directory password �lters.

1.0.2 Contribution

This masters thesis consisted of researching Microsoft Active Directory password �lters
and developing a method for evaluating them. This thesis brings the following main con-
tributions:

1. We provide an extensive literature search and review of contemporary research into
password policies, password strength and password guessing attacks

2. We propose, to the best of our knowledge, a novel method for testing Active Di-
rectory password �lters, leveraging four di�erent password strength meters, several
password guessing attacks, and roughly 88 million passwords.

3. We systematically test our proposed method on three di�erent password �lters for
Microsoft Active Directory, and provide an evaluation of the e�ectiveness of the
tested Active Directory password �lters.

Chapter 2

Background

2.1 Password History

Password security is not a new research area, Morris et al. [40] explored password vulner-
abilities in 1979. Furthermore, passwords have been used for authentication since the early
days of computing, such as MIT’s time-sharing system in the early 1960s [4].

While password security has witnessed many vulnerabilities and changes through the
times, the security that passwords provide is ultimately dependent on the implemented
system in question. As to improve these systems, various password policies have been
proposed through the times [4].

2.2 Directory Services

A Directory, is a hierarchical structure used to store data on a network. The type of data
stored is varying depending on the directory, but commonly information about users, com-
puters, servers, etc. is stored in a directory [30].

Directory Services has evolved over the time, but the primary reason it became a pop-
ular solution is the same reason for it being used so widely today. That reason is that it
provides a central solution to meet various business needs, such as support for network
and enterprise management, security, messaging, employee and client identity manage-
ment [53]. Directory Services can also provide supportive services to an enterprise, with
the most fundamental service being storing and retrieving information from the Directory.
Because of this service a centralized repository, e�cient data management, security and
scalability is possible [53].

2.2.1 Active Directory

Active Directory (AD) is a database and set of services that falls under the category of
Directory Services. Active Directory uses a controller called the Domain Controller, which
is used to control the services and directory itself. A Domain Controller is a Windows
server and has the Active Directory Domain Services installed as a role [32].

4

2.2. Directory Services 5

The Microsoft Active Directory Domain Services (AD DS), provides methods for inter-
acting with a Directory. These methods are used for storing and sharing data with users
on a network. In Active Directory, user information such as names, passwords, usernames
are stored in the AD DS, and other authorized users on the same network can through the
AD DS access this information [30].

Authentication in Active Directory, is done through Windows Single Sign-on (SSO) ar-
chitecture. This means that users on the network, simply log on once to access resources
in the Directory. Authentication in Active Directory has previously used the LM andNTLM
(New-Technology LAN Manager) protocols, but today follow the Kerberos protocol. The
NTLM protocol is still employed by various systems, particularly legacy services that have
not been updated [34]. One signi�cant vulnerability of NTLM authentication is the Pass-
TheHash attack [6]. This attack is possible due to how NTLM authentication involves the
transmission of a password hash. Since this hash is used for authentication, it practically
functions as the password.

For the Keberos protocol, instead of passing the credentials across the network, a ses-
sion token is created. This session token contains what access rights the user have [49]. The
Kerberos authentication in Active Directory, is done by converting the entered password
into a hash and storing it in memory, which is all done by the Local Security Authority
Subsystem Service (LSASS) process. The hash is then used against the Key Distribution
Center (KDC), typically the Domain Controller [39].

Due to backwards compatability, the Keberos protocol can create RC4-HMAC-MD5-
encrypted Kerberos tokens based on NTML hashes. However, this opens up the authenti-
cation to an attack known as OverpassTheHash [1], which operates under a similar prin-
ciple to PassTheHash but instead facilitates the acquisition of a Kerberos ticket.

In Active Directory a password policy that enforces certain password requirements can
be enabled. These requirements are enforced when a password is created or changed. The
di�erent requirements that can be enforced are [37] [38]:

• Maximum password age.

• Minimum password age.

• Minimum password length.

• Password must meet complexity requirements:

– Passwords must not contain the user’s entire samAccountName (Account Name)
value or entire displayName (Full Name) value. Both checks are not case sensitive

– Passwords must contain characters from three of the following �ve categories:
∗ Uppercase characters of European languages (A throughZ,with diacriticmarks,
Greek and Cyrillic characters).

∗ Lowercase characters of European languages (a through z, sharp-s, with dia-
critic marks, Greek and Cyrillic characters).

2.3. Authentication 6

∗ Base 10 digits (0 through 9).
∗ Nonalphanumeric characters: ~ ! @ # $ % ^ & * _ - + = \̀ | () { } [] : ; ” ‘’ < > , .
? /

∗ Any Unicode character that is categorized as an alphabetic character but is
not uppercase or lowercase. This includes Unicode characters from Asian lan-
guages.

2.2.2 Active Directory Password Filters

In Active Directory it is possible to enable custom password �lters, that has custom require-
ments for password creation and password changes. When a password change request is
made, the Local Security Authority (LSA), will call all password �lters on the system, to
validate the new password. It is possible to have multiple password �lters enabled, such as
both the standard password requirements in Active Directory, and custom password �lters.
[36]

These custom �lters can be created to enforcemuchmore strict andmanymore require-
ments for password creation. There exists many open-source and commercial password
�lters, that can be tweaked to �t all needs. Such tools include, but is not limited to:

• Lithnet: Password Protection for Active Directory [28]

• ImprosecPasswordFilter [22]

• safepass.me [46]

• Specops Password Policy [47]

• Enzoic for Active Directory [14]

• OpenPasswordFilter [54]

• PassFiltEx [45]

• Microsoft Entra Password Protection [33]

2.3 Authentication

Authentication is the process of verifying the identity of a user or system when accessing
a resource or service. The methods which the user uses to substantiate its authenticity can
be divided into di�erent categories [59]:

• The user/system knows something: Passwords, PINs, shared secrets.

• The user/system owns something: Cards, certi�cates.

• The user/system has some inviolable characteristics: Biometric data.

The widely used method of authentication is passwords along with some multi factor-
authentication [59].

2.4. Password Entropy 7

2.4 Password Entropy

Passwords are still the most common method of authentication. Generally humans are bad
at creating and memorizing complex arbitrary passwords, resulting in passwords that are
easily guessed. To force users to create more complex passwords, organizations enforce
password policies, that often state that passwords require upper and lower-case letters,
numbers, symbols, and must be at least 8-characters long. The introduction of these re-
quirements aim at increasing the entropy of the password.

Information theoretic entropy [52] has often been used to quantify the complexity of
passwords. When researching ways to calculate password entropy a simple formula ap-
pears on several password entropy calculators:

E = log2(R
L)

Where E is the entropy in bits, R is the possible characters within the password, meaning
if the password is "password", R is 26 considering the standard English alphabet, and L is
the length of the password. This results in an entropy of log2(268) = 37.6.

Upon further research, the simple formula can only correctly calculate entropy if the
password is completely randomly generated, which most passwords are not [43].

Considering new guidelines for password safety fromCenter for Cybersikkehed (CFCS)
[7], and NIST [42], the most important part of a passwords security is the length of the
password, determining that the length should be at least 15 characters long. This is mostly
to protect against bruteforce attacks. Both organizations state that most passwords are
vulnerable to phishing and general social engineering attacks.

The guidelines also state that the usual requirements for passwords that companies or
organizations tend to use to increase password complexity would still allow for a password
like Password123456!, and doing the entropy calculation states that the password has an
entropy of 98 bits, which is seen as very strong. But looking up the password on https://
haveibeenpwned.com/Passwords [21] we see that the password has been seen in 120 di�erent
data breaches, making it a poor choice of password.

2.5 Leaked Credentials

Account credentials, is a information tuple that includes username and password combina-
tions. These credentials are used for authenticating to gain access to a service. If credentials
gets stolen or leaked, then any adversaries can potentially obtain the credentials and use
them to gain unauthorized access to the relevant services.

If a user decides to re-use a password for di�erent services, then the number of services
that can be accessed by adversaries if they obtain the password also increases. This poses
a security risk, due to the nature of users often re-using passwords [29].

The challenge of identifying whether your passwords have been compromised is signif-
icant, due to massive scale of credentials getting leaked or stolen, and due to the secret

2.6. Password Guessing Attacks 8

nature of leaked credentials. There is no guarantee that a user will realise their creden-
tials are leaked. Therefore, various services have been created to help users realise if their
credentials are found leaked online. One of the leading platforms in this �eld, HaveIBeen-
Pwned [21], now encompasses over 12 billion compromised credentials, showcasing the
vast quantity of data accessible to potential attackers. These leaked credentials are often
used in credential stu�ng attacks, leading to a common security practice to block the use
of previously leaked passwords.

2.6 Password Guessing Attacks

Password guessing attacks is a method used by attackers to gain unauthorized access to
systems, user accounts, or sensitive information. These types of attacks usually rely on
the fact that the passwords are either easy to guess or have been leaked in a data breach.
There are two di�erent strategies for password guessing attacks: O�ine password guessing
attacks and online password guessing attacks. [62]

2.6.1 O�line Password Guessing Attacks

In o�ine password guessing attacks, it is not di�cult for attackers to utilize GPUs to per-
form billions of guesses [62]. O�ine guessing can be generally categorized into three dif-
ferent groups: brute force, dictionary, and probability-based attacks. Brute force attacks
consist of attackers performing an exhaustive search for a password over a given search
space. This is ine�cient, computationally expensive, and time-consuming. Dictionary at-
tacks involve guessing a password based on wordlists and frequency lists, usually also with
a ruleset for permutations. A probability attack relies on targeting the password distribu-
tion using parametric probability models such as the Markov model. Generally, in o�ine
password guessing attacks, the attacker will utilize all three methods in order to success-
fully guess a password. Tools such as John the Ripper1 and Hashcat2 are powerful free tools
for the purposes of o�ine password guessing, and supports the three di�erent strategies.
[62]

2.6.2 Online Password Guessing Attacks

In contrast to o�ine password guessing attacks, the online strategy, is limited by the
amount of guesses an attacker is allowed to make. This means that an attacker cannot
rely on brute force attacks, as those require a large amount of guesses to be successful. In-
stead the attacker will use probability based attacks like guessing with the most commonly
used passwords. For this reason online password guessing attacks can be categorized by
the type of attacker either a knowledgeable attacker or a general attacker. The di�erence
here being the that the knowledgeable attacker has some knowledge about the password
distribution and can make more calculated guesses, where as the general attacker utilizes
generally common passwords usually from a leaked corpus of passwords. [62]

1https://github.com/openwall/john
2https://github.com/hashcat/hashcat

Chapter 3

Related Work

This chapter contains a systematic literature search and review of related works to pass-
word policies, password strength, and password guessing attacks. The purpose is to �nd
ways of evaluating password policies that can be used to develop a method for evaluating
Active Directory password �lters.

3.1 Systematic Literature Search

The goal of this section is to�nd research that explores password policies, password strength,
and password guessing attacks. For the purposes of searching and �nding relevant research
into the described areas. Papers found during the initial conception of the project was used
as a start set for the snowballing method [64]. These papers can be seen in Table 3.1.

Authors Title Year of publication
Tan et al. [55] Practical recommendations for stronger, more usable passwords combining 2020

minimum-strength, minimum-length, and blocklist requirements
Niseno� et al. [41] A Two-Decade Retrospective Analysis of a University’s 2023

Vulnerability to Attacks Exploiting Reused Passwords
Golla et al. [18] On the accuracy of password strength meters 2018
Bohuk et al. [3] Gossamer: Securely Measuring Password-based Logins 2022

Table 3.1: Start set for snowballing.

Using the start set, two rounds of snowballing was performed. These rounds include
both forward and backward snowballing. An overview of the snowballing process can be
seen in Figure 3.1. A set of requirements for the research papers to be included in this
project was made in order to �lter the papers found. These requirements were:

• Paper must be in English.

• Paper must be no older than 6 years.

• Paper must pertain to either password policies, password strength, and password
guessing attacks.

9

3.1. Systematic Literature Search 10

Figure 3.1: Overview of the literature search process.

The �nal list of papers found from the snowballing process, and to be reviewed for this
project can seen in Table 3.2. Some papers where excluded from the �lter, due to their
relevancy for the project.

Authors Title Year of publication Topic
Tan et al. [55] Practical recommendations for stronger, more usable passwords com-

bining minimum-strength, minimum-length, and blocklist require-
ments

2020 Password Strength

Habib et al. [19] Password creation in the presence of blacklists 2017 Password Strength,
Password Policy

Dong et al. [11] RLS-PSM: a robust and accurate password strength meter based on
reuse, Leet and separation

2021 Password Strength

Galbally et al. [15] A new multimodal approach for password strength estimation—Part I:
Theory and algorithms

2016 Password Strength

Galbally et al. [16] A newmultimodal approach for password strength estimation—Part II:
Experimental evaluation

2017 Password Strength

Ji et al. [23] Zero-sum password cracking game: a large-scale empirical study on
the crackability, correlation, and security of passwords

2015

Eckroth et al. [13] OneRuleToFindThem: E�cient Automated Generation of Password
Cracking Rules

2023 Password Attacks

Bohuk et al. [3] Gossamer: Securely Measuring Password-based Logins 2022 Password Strength,
Password Analysis

Golla et al. [18] On the accuracy of password strength meters 2018 Password Strength
Niseno� et al. [41] A Two-Decade Retrospective Analysis of a University’s Vulnerability

to Attacks Exploiting Reused Passwords
2023 Password Strength,

Password Policy
Gerlitz et al. [17] Please do not use!? _ or your license plate number: analyzing password

policies in german companies
2021 Password Policy

Hitaj et al. [20] Passgan: A deep learning approach for password guessing 2019 Password Strength,
Password Attacks

Johnson et al. [24] Skeptic: Automatic, justi�ed and privacy-preserving password compo-
sition policy selection

2020 Password Policy

Segreti et al. [50] Diversify to survive: Making passwords stronger with adaptive policies 2017 Password Strength,
Password Policy

Pereira et al. [44] Evaluating the accuracy of password strength meters using o�-the-
shelf guessing attacks

2020 Password Strength,
Password Attacks

Wang et al. [62] No single silver bullet: Measuring the accuracy of password strength
meters

2023 Password Strength,
Password Analysis

Lee et al. [26] Password policies of most top websites fail to follow best practices 2022 Password Policy
Lim et al. [27] Evaluating Password Composition Policy and Password Meters of Pop-

ular Websites
2023 Password Policy

Wheeler [63] zxcvbn:Low-Budget Password Strength Estimation 2016 Password Strength
Seitz et al. [51] Do di�erences in password policies prevent password reuse? 2017 Password Policy
Dell’Amico et al. [9] Monte Carlo strength evaluation: Fast and reliable password checking 2015 Password Strength

Table 3.2: Final set of papers for review.

3.2. Related Works Review 11

3.2 Related Works Review

3.2.1 Password Strength

Galbally et al. [15] [16] proposes a new multimodal Password Strength Meter (PSM), that
uses multiple types of models. The authors state that password strength is dependent on
the attack strategy used against the password. And that there is no objective truth when it
comes to password strength, and between 2 di�erent strength scores deciding which is cor-
rect, is objectively hard. Their proposed method is comprised of both statistics and heuris-
tics, fused from four individual heterogeneous strength scores, Attack-Based, Heuristic-
Based, Adaptive Memory Markov Chain, and Hierarchical Markov Chain. The results of
comparing their strength meter shows it outperforming strength meters from NIST-PSM,
Yahoo-PSM, Google-PSM, and Dropbox-PSM.

Wheeler [63] showcase their PSM zxcvbn that estimates strength by how common a
password is, based on various data sources, such as frequency lists, common names, and
leaked passwords. Secondly, the strength estimator uses search heuristics for multipattern
sequences. They compare the method to other estimators such as NIST and KeePass, aswell
as the Password Guessability Service from Ur et al. [58]. They �nd that zxcvbn if trained
on the same or similar data as attackers use, is able to predict todays best online guessing
attacks.

Golla et al. [18] explores the accuracy of PSMs by proposing a set of properties that a
PSM needs to have to maintain high accuracy. These properties are, Tolerance to Monotonic
Transformations, Tolerance to Quantization, Tolerance to Noise, Sensitivity to Large Errors,
and Approximation Precision. The authors performs a variety of tests on various PSMs,
where an ideal reference is used as the comparison for the test cases. This means that
they can test their properties and compare the results to their ideal reference. They �nd
that using a weighted Spearman correlation for the comparisons gives the most accurate
results, and also �nd that academic PSMs based on Markov models, PCFGs, and RNNs
performs the best.

Bohuk et al. [3] creates a framework for recording statistics about login attempts. They
use this framework to analyze the strength of passwords used at 2 unversities. Their
method of measuring strength of passwords, is by calculating a strength score with the
zxcvbn PSM [63], if the password appears in the top 5 thousand RockYou leaked pass-
words, if the password appears in the top 5 thousand generated passwords from Hashcat
on RockYou with the best64 rule set, or if the password appears in their top 1000 common
password leaked list.

Wang et al. [62] investigates the potential of having a single metric on which to evalu-
ate the accuracy of PSMs. They �nd that no such metric exists. They develop a framework
on which to measure PSM accuracy in various guessing scenarios and strategies. They do
�nd academic PSMs are more accurate than commercial ones. Wang et al. include Chi-
nese datasets since language is an important factor when it comes to measuring password
strength. Wang et al. measures accuracy in two di�erent scenarios, o�ine guessing attacks
and online guessing attacks. They do so because under these two di�erent scenarios, the
factors determining whether a password is strong di�er. In online guessing attacks the at-

3.2. Related Works Review 12

tacker is limited in the amount of guesses they can make, therefore they will try the most
commonly used passwords. This means that what makes a password secure in this scenario
is the frequency of the password. Wang et al. �nds that for the online guessing scenario
the fuzzyPSM[61] performs the best.

In the o�ine guessing attack scenario an attacker is not limited by the amount of
guesses they can make and will use di�erent strategies when trying to guess a password. In
this scenario it is the guessability of the password that determines if the password is string.
Wang et al. �nds that for the o�ine guessing attack scenario the MultiPSM [15] performs
the best.

Pereira et al. [44] evaluates the accuracy of 13 di�erent PSMs, using o� the shelf guess-
ing attacks. The tools used to test the PSMs were Hashcat, JohnTheRipper, and the Pass-
word Guessability Service from Ur et al. [58]. The rules used for Hashcat and JohnTheRip-
per, was a rule set created by combining popular rule sets together. The method used, sam-
pled 60, 000 passwords from leaked lists and queried the PSMs with these passwords. Their
results show that passwords resistance to o� the shelf guessing tools, relate to the pass-
words strength indicated by the PSMs tested. The study also shows that some passwords
scored as stronger could still be guessed, indicating that the PSMs could be improved.

Dong et al. [11] propose a PSM called RLS-PSM based on Reuse, Leet and Separation.
The PSM is seperated into three di�erent modules a preprocesssing module, probability
calculation module, and a strength feedback module. The preprocessing module calculates
the use of special characters impact on password stength. They separate the password into
substrings based on special characters, uppercase letters or leet transformations as sepa-
rators. They use a dictionary to query the substrings and their corresponding probability.
The probability calculation module calculates the probability of the basic string output
from the preprocessing module, and calculates the probability of the overall structure of
the password. The strength feedback module then communicates the strength of the pass-
word through an absolute strength which re�ects the actual strength of the password. But
also through relative strength by comparing it to a benchmark password. The proposed
PSM outperforms many mainstream PSMs only slightly falling behind fuzzyPSM [61] in an
o�ine guessing scenario.

Dell’Amico et al. [9] proposes a novel method based on Monte Carlo sampling to es-
timate the number of guesses an attacker would need to guess a password, which in turn
can be used as a strength metric for passwords. The model uses Monte Carlo sampling on
3 probabilistic attack models, n-grams, PCFG, backo�. The authors prove that the Monte
Carlo sampling on these 3 attack models can approximate the number of passwords more
probable than a given password, thereby approximating the strength of a given password.

3.2.2 Password Policies

Lim et al. [27] and Lee et al. [26] provide general research into password policies on web-
sites and seems to reach the same conclusion: amajority of online services still use outdated
versions of password policies, that no longer adhere to the guidelines presented by NIST.
Relying instead on old composition-based rules such as requiring special characters or cap-
italized letters.

3.2. Related Works Review 13

Lee et al. [26] �nds that more than half of the websites they investigate do not check
passwords against the 40 most common passwords. Furthermore, they discover that only
23 of the investigated websites employ PSMs, and of those 23, 10 are inaccurate. The au-
thors describes best practices for creating a password policy that encourages users to create
more secure passwords, Lee et al. suggests using blocklists to prevent users from creating
passwords common passwords. They note, however, that the blocklists should be con-
�gured carefully to avoid causing user frustration. Additionally, Lee et al. mentions the
use of compromised credential checking, which involves verifying if a username-password
combination has been exposed. Although this practice raises ethical concerns that inhibit
further investigation.

Lee et al. [26] also asserts that minimum strength requirements and PSMs are e�ective
and user-friendly. While measuring password strength poses challenges, it is a worthwhile
pursuit as it encourages users to create stronger passwords. Finally, Lee et al. argues against
the use of character-class Password Composition Policies (PCPs), which mandate the in-
clusion of special characters, numbers, and capitalized letters in passwords. According to
them, this requirement is a relic of the era when password strength was measured solely
based on entropy and serves only to decrease password memorability without signi�cantly
enhancing security.

Habib et al. [19] found that using a password blocklists in a password creation process, led
to increased strength of passwords created. However, they also found that 51.4% of users
who attempted to create a blocked password reused the blocked password as a part of their
�nal password (e.g. "happyday" -> "happyday!"). Furhtermore, 18% reused the blocked
password in a modi�ed form as their �nal password (e.g. "stewart7" -> "s1t9e9w8art").

Gerlitz et al. [17] conducted a study on 83 German companies and their password compo-
sition policies (PCP). In their study, they compare the extracted PCPs to recommendations
from industry frameworks NIST, BSI, and recommendations from researchers. Their study
found that the PCPs examined have high heterogeneity and �nd it likely that this is due to
clashing of guidelines from BSI and NIST, as well as the vague nature of BSIs recommen-
dations. The password policies analysed in the study, are found to have minimum length
requirements between 8-12 characters, with 8 being the most predominant requirement.
Furthermore, requiring di�erent character classes for complexity is also found to be either
3 or 4 classes required, with 3 classes being the most predominant. Finally, 50% of the com-
panies where found to use some blocklist.

Research in expanding the responsibilities of password policies has been done. Seitz et al.
[51] investigates if password policies prevent password reuse across websites. They �nd
that this is not the case as a single password can be created that satis�es 99% of all policies,
across the top 100 most used websites in Germany. They propose a dynamic policy that
potentially could detect a likely reused password and encourage the user to change or al-
ter their current password, to prevent the potential harms that comes from password reuse.

3.2. Related Works Review 14

Johnson et al. [24] presents an evaluation of di�erent PCP rules, using their developed soft-
ware tool-chain SKEPTIC. To simulate user behaviour in face of di�erent PCP rules they
use leaked passwords lists to derive password probability distributions. By redistributing
those probabilities they can simulate password re-selection behaviour that users exhibit.
Johnson et al. ranks the di�erent PCPs based on the values given by SKEPTIC, with PCPs
that require longer passwords of 16-20 characters performing the best.

Tan et al. [55] conducts experiments to �nd practical recommendations for password poli-
cies. Their experiments tests the impact of di�ering combinations of composition require-
ments, blocklist requirements and minimum strength requirements. Their results show-
cases that character class requirements does not provide any substantial impact against
password guess attacks. Their experiments also shows that the strength increase from in-
creased length requirements is much higher than character class requirements. Regarding
blocklists, the experiments shows that blocklists can improve the strength of passwords, but
it is depending on the con�guration of the blocklist. It also shows that a extensitve blocklist
can impact the usability. They also �nd that fuzzy matching improves the strength more
than full-string matching. Finally, they �nd that minimum strength requirements can help
users create stronger passwords. The authors recommendminimum strength requirements
and minimum length requirements, but without character class or blocklist requirements.
The reasoning being that both minimum strength and blocklists make passwords stronger,
however minimum strength is potentially easier to deploy, and password strength require-
ments does not have a noticeable negative impact on usability.

Segreti et al. [50] measure the impact on usability and security when adopting adaptive
password policies. They �nd that with a structure based adaptive policy, meaning a pol-
icy that does not allow for passwords to have the same structure of uppercase, lowercase,
numbers, and special characters, the quality of passwords increases signi�cantly becoming
more secure and with a minimal e�ect on usability.

3.2.2.1 Standards and Guidelines

In regards to industry frameworks and guidelines for password policies, in particular NIST
[42] and the Danish CFCS [7]. We see that the recommendations for password security
are mostly the same, and align with the research done in the area. Both NIST and CFCS
recommend the use of blocklists, but there is a signi�cant di�erence in the required length
of the passswords recommended, where NIST only requires 8 character long password and
CFCS requires 15 character long passwords. This is signi�cant considering that the research
shows that length is a determining factor in password strength.

3.2.3 Password Guessing Attacks

For the purpose ofmeasuring and testing password strength, it is clear that password guess-
ing attacks can and is used as a metric for testing password strength. Ji et al. [23] conduct

3.3. Literature Review Summary 15

a empirical study on the e�ectiveness of 6 state-of-the-art password guessing techniques
testing on roughly 145 million passwords. The study conducts three tests: training free,
where the guessing methods tested don’t need any pre-training, intra-site training is tested
where the guessing methods are trained on parts of a dataset, and testing is done on the
remaining part of a dataset, cross-site training is where di�erent datasets are used for train-
ing and testing. The di�erent tests performed shows that for training free, JohnTheRipper-
Bleeding-Jumbo Incremetal performs the best with a roughly 15% to 55% success rate de-
pending on the dataset. The authors �nd that for both intra-site and cross-site training, no
single guessing method is found to be the best overall and conclude that a hybrid strategy
potentially could be promising.

Eckroth et al. [13] develops a new algorithm that can �nd successful rules for Hashcat
password guessing. These rules are used to specify how password guess transformations
should be done when password guessing. Their algorithm uses combinatorial generation
of rules and emperical observations of these rules. Their algorithm is optimized as to avoid
naïve brute-force technique pitfalls. They compare their algorithm to state of the art rule-
sets such as Pantagrule, PACK, and dive. They �nd that a combination of the best perform-
ing rule set Pantagrule and their own improves the amount of passwords guessed by 1%.

Hitaj et al. [20] expands upon traditional rule based password guessing methods, and
develops a deep learning Generative Adversarial Network (GAN), that learns from real
password data, as to automatically generate password guesses. The model named Pass-
GAN is compared to traditional guessing methods and a di�erent neural network based
password guesser. The results show that PassGAN was always able to produce the same
amount of matches as other tools. However, it needs to produce a larger number of guesses
than the other tools. Finally PassGANwas also found to be able to generate passwords that
looks like human created passwords.

Niseno� et al. [41] performs a two decade retrospective password analysis of a uni-
versity. This is possible since the university has kept a list of all passwords used in the
past. Their analysis encompasses both how strong the passwords of the university are and
have been. The authors use 4 methods of password-tweaking for their password guessing,
and they search for passwords in over 450 individual service breaches and 12 large breach
compilations. The results show that 71 of the individual breaches and all compilations they
tested resulted in at least 1 correct guess. In total the authors managed to guess 14, 161
passwords contained in the universities password history database. The results show that
reused passwords are a far greater vulnerability than common passwords. Notably the au-
thors �nd that password length requirements can have temporary protective e�ects against
password reuse attacks.

3.3 Literature Review Summary

From the literature review, we have found di�erent methods for calculating password
strength. A common way to measure password strength is done with PSMs, that automat-

3.3. Literature Review Summary 16

ically determines the strength of a given password. From the literature review, we have
found various studies of PSMs, such as Galbally et al., [15], [16], and Wheeler [63]. Ad-
ditionally, our literature review revealed that PSMs can exhibit vastly di�erent strengths.
Some PSMs are more accurate for o�ine guessing attacks, while others perform better for
online guessing attacks [62]. We also �nd that much of the research uses Ur et al. [58]
Password Guessability Service to measure password strength.

The literature shows that in regards to password policies, blocklists are an e�ective
measure in enhancing password security, though it may come at a cost to usability and is
di�cult to con�gure correctly [26] [19] [55]. It also showed that PCPs is an ine�cient way
of increasing security and harms usability [26].

The literature review also showed how di�erent password guessing attacks can be used
in various ways. Wang et al. [62] used both online and o�ine guessing attack scenarios
to test various PSMs. Ji et al. [23] showcased the di�erent strengths of various password
guessing tools, and used password lists to do so, showcasing how the use of password
lists for strength estimation. Additionally our literature review highlighted how settings
for password guessing tools, such as mangling rules can have a signi�cant impact on the
success rate of the attacks [13].

The literature review also demonstrated the systematic use of password lists for strength
estimation. Niseno� et al. [41] illustrated how various password lists could be utilized to
evaluate the strength of their university’s passwords. The review also highlighted that
much of the research relies on commonly used password lists, such as the LinkedIn leak
and the RockYou leak lists. However, not a lot of the research uses a mix of password
origins, Wang et al. [62] does this by using password lists of both English and Chinese ori-
gins. To expand upon just using public known password lists the authors Hitaj et al. [20]
developed a Generative Adversarial Network that is capable of generating passwords.

Chapter 4

Methodology

In this chapter we will explain our approach for testing and evaluating the strength of Ac-
tive Directory password �lters. Our overall method can be described in the following way:
1: Gather a number of di�ering lists of passwords, that each bring their own aspect, such
as an often academically used list, a list of common passwords, di�ering languages, and
collections often used by hackers.
2: Test if all of these passwords are allowed by a given Active Directory password �lter,
whilst saving each password that was either accepted or rejected.
3: Test the strength of the accepted passwords of each �lter, to determine the strength of the
�lter itself. Our method for testing the strength of passwords is based on previous research
in this area, using methods such as password guessing attacks and password strength me-
ters.

In Section 4.2 we explain our Active Directory experimental setup. We then in Section
4.3 go through our process for gathering password lists for our testing. The Active Direc-
tory password �lters chosen for our thesis is explained in Section 4.4, and in Section 4.5
we outline the scripts developed and used to test if the passwords we have gathered are al-
lowed by these �lters. Then in Section 4.6 we showcase our chosen methods for measuring
password strength, which is then used for the �nal score calculations described in Section
4.7.
A summary of the chapter can be found in Section 4.8.

4.1 Ethical Concerns

The ethical concerns surrounding this thesis revolves around the use of leaked passwords
from various services. Though these passwords are publicly available and have been used
in other research, none of the leaked password lists will be distributed by the authors, and
any information and data gathered from themwill only be presented in an aggregated form
as to prevent exposure of any personable identi�able information.

Furthermore, any passwords that we have gathered for our experiments will be trans-
ferred between our devices in a secure encrypted manner. Finally, once our thesis has

17

4.2. Experimental Setup 18

�nished, we will purge all unnecessary password data from devices involved.

4.2 Experimental Setup

The setup used for our experiments involved a straightforward con�guration using a Vir-
tualBox virtual machine running the latest Windows Server 2022 build. We established a
new Active Directory Domain on this server, and set the server as the Domain Controller.
On this Domain Controller, we then created user objects, that could be used to simulate
users "changing" their password. An overview of the virtual machine setup can be seen in
Figure 4.1.

Figure 4.1: Overview of the virtual machine testing setup

4.3 Password Lists

For our testing we are using a collection of di�erent password lists, that we have gathered
for this speci�c purpose. Following the works of others such as Niseno� et al. [41], we
scoured various sources to �nd di�erent password lists. The lists chosen come from sources
such as website breaches, database leaks, breach compilations, word frequency lists, and
public password cracking lists. Furthermore, we obtained password data from research
contacts at our University. In our search for password lists, we did not sign up for any
private leak forums, pay for any data, distribute or redistribute any data. An overview of
the passwords lists can be seen in Table 4.1.

4.3. Password Lists 19

Name Type Total Passwords
SecLists Keyboard-Combinations Keyboard Walk 9604
SecLists 10-million-password-list-top-1000000 Common Passwords 999,998
SecLists default-passwords Common Passwords 1315
Xato-Net Common password compilation 5,189,454
PassGAN Generated passwords 10,000,000
Russian Wordlist 2,500,000
Chinese Wordlist 2,500,000
Greatest_books_of_all_time_original Wordlist 5568
RockYou Database leak 14,344,391
LinkedIn Database leak 52,789,651
DanishTop5K Wikipedia Frequency List 5000
EnglishTop1K Wikipedia Frequency List 1000
Total 88,345,981

Table 4.1: Passwords Lists

For our data we have speci�cally chosen a list of Russian and Chinese words, to see
how other languages impact the �lters. However, these lists are not passwords in the same
sense as some of the other lists.

4.3.1 Generating Passwords Using PassGAN

PassGAN developed by Hitaj et al. [20], is originally intended for performing password
guessing attacks, by generating passwords based o� of leaked password lists. But PassGAN
o�ers a unique way to introduce new unseen passwords for the purposes of testing the
Active Directory password �lters. This is especially important as �lters like Lithnet can use
blocklists from services like HaveIBeenPwned [21], which likely will block the passwords
from any leaked list of passwords we have chosen.

The PassGAN implemention used for this project [2], comes with a pretrained model,
that has been trained on the RockYou dataset. The problem with using this model is the
limitation set on the character length of the passwords that themodel generates. Themodel
only generates passwordswith a length of up to 10 characters which eliminates the possibil-
ity of using PassGAN for testing longer passwords on the password �lters. To address this,
a new model was trained this time using the signi�cantly larger list of leaked passwords,
namely the LinkedIn password list mentioned in Table 4.1. Following the recommendations
of the PassGAN authors Hitaj et al. [20], the model was trained over several days to reach
the 200,000 recommended iterations with a new password character limit of 20 characters.
A sample of the resulting passwords can be seen in Table 4.2

4.4. Password Filters to be Evaluated 20

ms07111587 pacheans23 ba2wev96
55721350 stavardade engxerpson
000818mi jngioleedang habriancy
tetruwd133 kieshorolu 107413edints
frewch07 dica2007 sumitaarainis
carvarez 5ehthj 99469214
miokye tearradinuo2 010itav
712e�shtac 95phoves aeenddadlosau
2478690 fshows0 2936tmma
dardaso kasa2266 bmbice6
ctoobt123 estin3593 elsin286
cpk22000mjar ealchmbicp1$1 aole01571

Table 4.2: Samples of the generated passwords using PassGAN

4.4 Password Filters to be Evaluated

Our proposed methods e�ectiveness will be assessed by testing and evaluating three dif-
ferent password �lters for Active Directory, with the method. The password �lters to be
tested, are chosen from various criteria: Availability, cost, ease of use, and provider. While
there exists di�erent open source �lters, we have chosen ones that supports di�erent kinds
of password �ltering or di�erent default blocklists. Furthermore, our method will be used
to evaluate how e�ective Microsoft’s own password �lter is compared to the competing
password �lters on the market.

Microsoft Password Protection [33]. Microsoft have a password �lter for Active Di-
rectory as a part of their Entra suite. It builds upon telemetry data and looks for terms that
often are used as the basis for weak passwords. These weak terms are added to a global
banned password list maintained by Microsoft. This list is not public, nor based on any
online lists available. As stated by Microsoft "To improve security, Microsoft doesn’t publish
the contents of the global banned password list." [33]. The password �lter also allows for
some limited customization where up to 1000 terms can be added to the blocklist. This is
recommended to be done with brand names, product names, company locations, and in-
ternal company-speci�c terms. The evaluation of passwords is done in 2 steps, �rst with
normalization where all uppercase characters are changed to lowercase and common char-
acter substitutions are performed. In the second step, the password is examined for match-
ing behaviour against the global banned list with fuzzy matching and substring matching.
Then a score is calculated on the password and depending on this score the password is
either rejected or accepted. [33]

OpenPasswordFilter (OPF) [54]. This open source Active Directory password �lter
is created to give a basic solution to reject common passwords based on a blocklist. The
�lter can do both partial matching and full matching at the same time. This can be done
by con�guring two distinct blocklists, one for partial matching and one for full matching.
The recommended setup is to use partial matching on the most common passwords such as

4.5. Automated Password Change Script 21

’welcome’ and ’password’. The �lter does come with a pre-con�gured blocklist and recom-
mendations for creating new blocklists with mangling rules from Hashcat. For our testing
we will run the �lter with the following settings as seen in Table 4.3.

Recommended-setup test:
OpenPasswordFilter password lists
HashCat password mangleded list
Partial matching enabled
Full matching enalbed

Table 4.3: OpenPasswordFilter test con�guration

Lithnet Password Protection. Lithnet password protection, is an open source pass-
word �lter for Active Directory, that can do various combinations of di�erent checks on
passwords. The �lter can do direct blocking on passwords de�ned in a blocked password
list, and has built in capabilities to use the HaveIBeenPwned [21] data for direct block-
ing. The �lter can also block passwords with partial matching based on certain words, it
does this with a normalization process where common character substitutions and weak
obfuscation attempts are still blocked. The �lter can also de�ne complexity requirements
based on length, where a threshold length de�nes if password complexity is required or
not. The �lter also supports custom regex matching, either for allowing or rejecting pass-
words. Finally, the �lter has a points-based complexity where points are assigned for the
use of certain characters and categories, and a minimum point-threshold is required for
allowing passwords. The Lithnet setup we use can be seen in Table 4.4.

Recommended-setup test:
HaveIBeenPwned password lists
Partial matching enabled
Full matching enabled

Table 4.4: Lithnet test con�guration

4.5 Automated Password Change Script

To perform our tests we developed a script to automatically change the password of a user
in Active Directory. We developed the script using the Powershell scripting language, as
to use the built-in Active Directory cmdlets [31].

4.5.1 Script Optimizations

Since we are attempting roughly 88 million password changes on three di�erent Active
Directory setups, we have implemented various methods to optimize the scripts used for
automatically changing passwords in Active Directory.

4.5. Automated Password Change Script 22

4.5.1.1 Parallel Programming

To increase the amount of password changes we are able to do, we implemented paral-
lel programming, to simultaneously attempt password changes. Since the script is reading
passwords from password �les line by line, we had to split the �les to accommodate the par-
allel programming. To split the �les we used the Powershell script created by Typhlosaurus
[56], seen in Listing 1.

1 �from � "C:\Users\Administrator\Desktop\Passwords\linkedinclean.txt"
2 �rootName � "C:\Users\Administrator\Desktop\Passwords\Split\split"
3 �ext � "txt"
4 �limit � ��
5 �upperBound � (Get-Item �from).Length / �limit
6 �fromFile � [io.file]::OpenRead(�from)
7 �buff � new-object byte[] �upperBound
8 �count � �idx � �
9 try {
10 do {
11 �count � �fromFile.Read(�buff, �, �buff.Length)
12 if (�count -gt �) {
13 �to � "{�}.{�}.{�}" -f (�rootName, �idx, �ext)
14 �toFile � [io.file]::OpenWrite(�to)
15 try {
16 �"Writing �count to �to"
17 �tofile.Write(�buff, �, �count)
18 } finally {
19 �tofile.Close()
20 }
21 }
22 �idx ��
23 } while (�count -gt �)
24 }
25 finally {
26 �fromFile.Close()
27 }

Listing 1: Automated password script - Splitting the password lists

We ran multiple experiments to determine the optimal amount of processes for our
tests, and during these experiments we realized that there is a upper limit to how often
Active Directory can handle password changes. This means that we cannot in�nitely in-
crease the number of processes to further increase the speed. We also realized that this
limit varied for the di�erent �lters. From our experiments we found 30 processes to be the

4.5. Automated Password Change Script 23

optimal amount. More than 30 processes would throttle the �lter, whereas no problems
occurred at 30, and we still got a performance increase.

We also encountered a problemwhen the processes tried logging the results to the same
�le. To remedy this we opted to log all the password change results from each process to
individual �les. Once all password change attempts had been made, we would combine the
individual �les containing the results. For combining the result �les we used the following
Powershell code seen in Listing 2.

1 foreach(�list in �rejectedList) {
2 �file � "C:\Users\Administrator\Desktop\Passwords\Split\rejected\" � (�list

| Select-Object -ExpandProperty Name),!

3

4 �fromFile � [io.file]::OpenRead(�file)
5 �toFile �

[io.file]::Open("C:\Users\Administrator\Desktop\Passwords\Split\rejected\combined.txt",
[io.FileMode]::Append, [io.FileAccess]::Write)

,!

,!

6 �buff � new-object byte[] �upperBound
7

8 try {
9 �count � �fromFile.Read(�buff, �, �buff.Length)
10

11 �tofile.Write(�buff, �, �count)
12 } finally {
13 �tofile.Close()
14 }
15 �fromFile.Close()
16 }

Listing 2: Combining multiple result �les

Since we were using parallel programming for the automatic password changes we
had to create multiple users in our Active Directory setups. This was done to avoid a users
password change attempt being locked by another process. Each process would attempt
a password change for a separate user. For the creation of multiple users we used the
Powershell script seen in Listing 3

4.5. Automated Password Change Script 24

1 �count � ��
2 for(�i � �; �i -le �count; �i �� �){
3 �splat � @{
4 Name � 'test' � �i
5 AccountPassword � (ConvertTo-SecureString -AsPlainText 'AccountPassword'

-Force),!

6 Enabled � �true
7 }
8 New-ADUser @splat
9 }

Listing 3: Powershell script for creating AD users

4.5.1.2 Changing Passwords with Cmdlets and ADSI

We ran into a problem where using the Active Directory cmdlet Set-ADAccountPassword
was being used by too many processes, and it would result in a transient error. This would
happend if more than 20 processes was using the cmdlet, and depending on the �lters
speed, it could happen down to as few as 5 processes. We therefore implemented Active
Directory Service Interfaces (ADSI), which is a set of COM interfaces that can be used to
access Active Directory features through network providers. This meant we could call a
password change through LDAP. For this we used modi�ed code by ScottyDoo [48] seen
in Listing 4.

1 �User � "test" � �number
2 �DomainDN � �(([adsisearcher]"").SearchRoot.path)
3 �Filter � "(&(objectCategory�person)(objectClass�user)(samaccountname��User))"
4 �Searcher � New-Object System.DirectoryServices.DirectorySearcher
5 �Searcher.Filter � �Filter
6 �Searcher.SearchScope � "Subtree"
7 �Searcher.SearchRoot � New-Object

System.DirectoryServices.DirectoryEntry('LDAP://CN�test' � �number �
',CN�Users,DC�passwordfilter,DC�local')

,!

,!

8 �objUser � �Searcher.FindOne().GetDirectoryEntry()
9 �objUser.PsBase.Invoke("SetPassword", �password)
10 �objUser.CommitChanges()

Listing 4: ADSI Password Change Script

While the change to ADSI solved the problem of limited cmdlet use, we found it to be
slightly slower than the cmdlet in single use cases. Nevertheless, the speed improvement
from parallel programming compensates for this.

4.5. Automated Password Change Script 25

4.5.1.3 Filters Impact On Speed

As brie�y mentioned in Section 4.5.1.1, we found the di�erent �lters would have vary-
ing speeds with our scripts. An example of this is the OPF being the slowest at password
changes. We ran experiments to �nd out if the parallel programming would increase the
speed for a given password �lter, and found that for some of the �lters the parallel program-
ming would actually slow down the password changing. The results in Table 4.5 are from
running our scripts with and without parallel programming on 10.000 random passwords.

Filter Parallel Singular
OpenPasswordFilter 50 min. 22:30 min.
Improsec Filter 27 min. 14:40 min.
Entra Filter 2:36 min. 2:07 min.

Table 4.5: Password Changer script speed di�erences

We choose to look into why the �lters behaved this way and while the results might
seem surprising, after looking into just one of the �lters we found that the di�erent im-
plementations of the �lters can impact the speed sign�cantly. We investigated the slowest
�lter, OPF, and discovered that the installed DLL opens a network socket connection to a
C# program that does the actual password �ltering. This also explains why OPF becomes
slower when using the script with parallel programming. The socket is likely getting over-
whelmed with connections, thereby we indirectly are doing a Denial of Service attack on
the �lter. The OPF code responsible for the network socket can be seen in Listing 5:

4.5. Automated Password Change Script 26

1 // In this function, we establish a TCP connection to ���.�.�.�:���� and
determine,!

2 // whether the indicated password is acceptable according to the filter
service.,!

3 // The service is a C� program also in this solution, titled "OPFService".
4 unsigned int __stdcall CreateSocket(void *v) {
5 //the account object
6 PasswordFilterAccount *pfAccount �

static_cast�PasswordFilterAccount*�(v);,!

7 SOCKET sock � INVALID_SOCKET;
8 struct addrinfo *result � NULL;
9 struct addrinfo *ptr � NULL;
10 struct addrinfo hints;
11 bPasswordOk � TRUE; // set fail open
12 int i;
13 ZeroMemory(&hints, sizeof(hints));
14 hints.ai_family � AF_UNSPEC;
15 hints.ai_socktype � SOCK_STREAM;
16 hints.ai_protocol � IPPROTO_TCP;
17 // This butt-ugly loop is straight out of Microsoft's reference example
18 // for a TCP client. It's not my style, but how can the reference be

wrong? ;-),!

19 i � getaddrinfo("���.�.�.�", "����", &hints, &result);
20 if (i �� �) {
21 for (ptr � result; ptr !� NULL; ptr � ptr-�ai_next) {
22 sock � socket(ptr-�ai_family, ptr-�ai_socktype,

ptr-�ai_protocol);,!

23 if (sock �� INVALID_SOCKET) {
24 break;
25 }
26 i � connect(sock, ptr-�ai_addr, (int)ptr-�ai_addrlen);
27 if (i �� SOCKET_ERROR) {
28 closesocket(sock);
29 sock � INVALID_SOCKET;
30 continue;
31 }
32 break;
33 }
34 if (sock !� INVALID_SOCKET) {
35 askServer(sock, pfAccount-�AccountName,

pfAccount-�Password);,!

36 closesocket(sock);
37 }
38 }
39 return bPasswordOk;
40 }

Listing 5: OpenPasswordFilter DLL socket from dllmain.cpp [54]

4.5. Automated Password Change Script 27

4.5.2 Final Scripts

After all the improvements and testing, we ended up with two scripts for automatically
calling password changes in Active Directory. A script that split �les, uses ADSI and par-
allel programming. And a script that iterates through the password lists, using the Active
Directory cmdlet to change passwords sequentially for each entry in the password list. The
simple script using the cmdlet can be seen in Listing 6:

1 param (
2 [string]�filePath �

"C:\Users\Administrator\Desktop\Passwords\linkedinclean.txt",,!

3 [string]�allowedPasswords �
"C:\Users\Administrator\Desktop\Passwords\RejectedAndAccepted\AllowedPasswords.txt",,!

4 [string]�deniedPasswords �
"C:\Users\Administrator\Desktop\Passwords\RejectedAndAccepted\DeniedPasswords.txt",!

5)
6

7 �stopWatch � [System.Diagnostics.Stopwatch]::StartNew()
8

9 �reader � New-Object -TypeName System.IO.StreamReader -ArgumentList �filePath
10

11 while (�password � �reader.ReadLine()) {
12 �foreach (�password in �passwords) {
13 try {
14 Set-ADAccountPassword -Identity

'CN�test�,CN�Users,DC�passwordfilter,DC�local' -Reset -NewPassword
(ConvertTo-SecureString -AsPlainText �password -Force)

,!

,!

15

16 � The password change succeeded, so log the password in the allowed
list,!

17 Out-File -FilePath �allowedPasswords -Append -Encoding utf�
-InputObject �password,!

18 }
19 catch {
20 � The password change failed, so log the password in the denied list
21 Out-File -FilePath �deniedPasswords -Append -Encoding utf� -InputObject

(�password � " " � �_.Exception.Message),!

22 }
23 }
24 �stopWatch.stop()
25 Write-Output("Time: " � �stopWatch.Elapsed)

Listing 6: Simple script that uses cmdlets for changing passwords in Active Directory

4.5. Automated Password Change Script 28

A �owchart illustration of the simple scripts work�ow can be seen in Figure 4.2. The
�gure shows how the script �rst initializes parameters and starts a stopwatch. Then by
using a Streamreader, a list of passwords is looped over. For each password, a password
change is attempted using a cmdlet and the results are logged. Once the password list has
been looped over, the script ends.

Figure 4.2: Flowchart depicting the �ow of the simple script for changing passwords.

4.5. Automated Password Change Script 29

The full advanced script that utilizes �le splitting and parallel programming, can be
found in appendix A.1. The advanced script can be seen in Algorithm 1. The three main
steps of the script is, splitting of �les, the parallel password changing, and the combining
of results. The password changing step, is following the same approach as the simple script
from Listing 6, but uses ADSI for chagning passwords instead of a cmdlet.

Algorithm 1: Parallel Programming Script for Changing Passwords in Active
Directory
Data: Source path, target path, split limit
Result: Password list �le is split �les, processed for password changes and logged,

then the results are combined

1 Start timer
2 De�ne paths and limits
3 Calculate upperBound from �le size and split limit
4 Open source �le for reading

5 while bytes read > 0 do
6 Read from source �le into bu�er
7 if bytes read > 0 then
8 Open target split �le for writing

// Write buffer to target file and close it
9 Write bu�er to target �le

10 Close target �le
11 end
12 Increment �le index
13 end
14 Close source �le

15 Enumerate all split �les
16 foreach �le in split list do

// Parallel processing of files
17 foreach line in �le as password do

// Attempt to set password using ADSI and log result
18 Try to set password
19 if password change succeeded then
20 Log accepted password
21 else
22 Log rejected password
23 end
24 end
25 end

26 Function CombineFiles(rejectedList, acceptedList):
27 Combine �les in rejectedList and acceptedList
28 Delete temporary split �les
29 return

30 Stop timer and output elapsed time

4.5. Automated Password Change Script 30

A �owchart illustration of the advanced script’s work�ow can be seen in Figure 4.3,
where three lanes show the three main steps of the script. The parallel programming is
encompassed in the middle lane of the �gure. Otherwise, the main di�erence compared to
Figure 4.2, is the addition of lanes, that each handles the di�erent steps of the script.

Figure 4.3: Flowchart depicting the �ow of the password changing script which utilizes parallel programming.

4.6. Password Strength Measurement 31

4.6 Password Strength Measurement

Using the setup described in Section 4.2 with the scripts from Section 4.5, we obtain lists of
accepted passwords for each password �lter. To �nd the strength of the �lters, we use the
lists of accepted passwords together with a number of methods to analyze the strength of
the individual passwords.

While the majority of the �lters we tested are quite customizable, our method remains
applicable to them. However, the scores we calculate is speci�c to the settings used for
each �lter. If the settings are changed for the �lter, our method is still relevant, but it
would require retesting to get a new accurate score for the changed settings.

The methods used to analyze the strength of the individual passwords is based on pre-
vious research, such as papers working with Password Strength Meters (PSM) [62], [61],
[15] [16], [9]. We have chosen two overall methods to analyze the strength of the individual
passwords. These two methods are password guessing attacks and PSMs.

4.6.1 Password Strength Meters

To calculate the overall strength of the password �lters, our method uses four di�erent
PSMs, to calculate the strength of the individual passwords that were accepted by theActive
Directory password �lters. There exists a wide number of PSMs, so to chose the strength
meters for our method we looked at research done relating to PSMs. Wang et al. [62] did an
extensive evaluation of PSMs accuracy, and from their work we have chosen the following
PSMs to incorporate in our method:

• zxcvbn [63] [65]

• fuzzyPSM [61] [60]

• MultiPSM [15] [16] [25]

To also include PSMs from other sources, we haven chosen the following PSM from the
works of Dell’Amico et al., which calculates strength in terms of guesses needed to guess
a given password:

• Monte Carlo PSM [9] [8]

The chosen PSMs are all di�erent types, meaning that either their method of calculating
strength or the feedback form is di�erent. This will help give us a broader and potentially
more correct evaluation of the passwords strengths. The PSMs can be seen in Table 4.6,
where the PSMs feedback form, and type can be seen. Here the feedback form represents
how the strength score is returned from the PSM, and the type refers to the underlying
password strength evaluation method.

4.6. Password Strength Measurement 32

Name Release Date Type Feedback form
zxcvbn 2017 Pattern Detection Guess number
fuzzyPSM 2019 Attack Algorithm Password probability
MultiPSM 2019 Multimodal Fusion Score
Monte Carlo PSM 2017 Attack Algorithm Guess number

Table 4.6: Final Password Strength Meters chosen

4.6.1.1 zxcvbn

The zxcvbn PSM presented by Wheeler [63], works as a low budget alternative for pass-
word strength estimation. It has since become a stable PSM in academic work relating
to password strength. The PSM itself is very easy to implement and has been ported to
numerous programming languages [65]. We have chosen to work with the Python imple-
mentation of zxcvbn [66]. In Listing 7 the Python script we have developed for calculating
the zxcvbn scores can be seen, the script iterates over a list of passwords and returns the
average strength of all the passwords. We use this script on the lists of accepted passwords
for each �lter.

1 from zxcvbn import zxcvbn
2 import json
3 import statistics
4 from tqdm import tqdm
5 results � []
6 passwords � []
7 with open('/home/student/Documents/Results/Lithnet/top�mil/rejected.txt', 'r')

as file:,!

8 for password in tqdm(file):
9 password � password.rsplit(" ", �)
10 if str.isspace(password):
11 continue
12 x � zxcvbn(password.replace("\n", ")
13 passwords.append(password)
14 score � x["score"]
15 results.append(score)
16

17 print("Mean: ", statistics.mean(results))

Listing 7: Python script for calculating mean zxcvbn score on a list of passwords

4.6. Password Strength Measurement 33

4.6.1.2 fuzzyPSM

The fuzzyPSM was created by Wang et al. and is a PSM built on probabilistic context-free
grammars. It is trained on leaked password data, as to capture the essence of users picking
passwords based on previously used passwords. The authors have made fuzzyPSM public
as an executable [60]. For our use we follow their instructions for running the PSM on
Linux. In Figure 4.4, a terminal from a Linux system can be seen running the fuzzyPSM.

Figure 4.4: fuzzyPSM running on a Linux system

In Figure 4.5 the results from running fuzzyPSM can be seen, the results are saved in a
text �le. The results are separated by each line, where the password can be seen followed
by the score given by fuzzyPSM.

Figure 4.5: Result �le from running the fuzzyPSM

4.6. Password Strength Measurement 34

4.6.1.3 MultiPSM

Galbally et al. [15] [16] developed a PSM that measures a passwords strength with multiple
models, as mentioned in Section 3.2.1. Their PSM is publicly available as an executable
program [25], which can handle both individual passwords or lists of passwords.

While using the provided executable, we noticed some problems. Some passwords
would make the PSM crash, while it did not happen often, it would stop the program when
evaluating a list of passwords. And since we are running the program on millions of pass-
words, it was happeningmore than once for each password list. To �x the crashing problem,
we got the PSM’s source code from GitHub and added exception handling to the evaluation
of password �les. This �xed the problem for us, and left us with an insigni�cant amount
of passwords not getting properly evaluated.

In Figure 4.6, ten instances of the MultiPSM program can be seen running. We ran 10
instances due to the speed of the evaluations. This also meant that we had to split our
passwords into multiple �les for each instance of the MultiPSM program.

Figure 4.6: 10 instances of MultiPSM running

4.6.1.4 Monte Carlo PSM

Dell’Amico et al. [9] created a PSM that uses Monte Carlo sampling on three probabilistic
attack models as described in Section 3.2.1. The authors have made the code for their PSM
public on GitHub [8]. In Listing 8, the Python code from the Monte Carlo GitHub and our
own additions can be seen. The code calculates the Monte Carlo PSM scores for a given
password list and then saves the password and the scores to a speci�ed result �le.

4.6. Password Strength Measurement 35

1 � internal imports
2 import backoff
3 import model
4 import ngram_chain
5 import pcfg
6

7 with open("/home/student/Documents/StrengthEval/montecarlopwd/password.lst",
'rt') as f:,!

8 training � [w.strip('\r\n') for w in f]
9 models � {'{}-gram'.format(i): ngram_chain.NGramModel(training, i)
10 for i in range(�, � � �)}
11 models['Backoff'] � backoff.BackoffModel(training, ��)
12 models['PCFG'] � pcfg.PCFG(training)
13 samples � {name: list(model.sample(�����))
14 for name, model in models.items()}
15 estimators � {name: model.PosEstimator(sample)
16 for name, sample in samples.items()}
17 modelnames � sorted(models)
18

19 passFile � "/home/student/Documents/Results/Entra/allRejectedremoved.txt"
20 outfile � "/home/student/Documents/Results/Entra/EntraAllRejectedMonte.txt"
21

22 with open(outfile, 'w') as fileOut:
23 with open(passFile, 'r') as file:
24 for password in tqdm(file):
25 if str.isspace(password) �� True:
26 continue
27 password � password.replace("\n", "")
28 estimations �

[estimators[name].position(models[name].logprob(password)) for
name in modelnames]

,!

,!

29

30 out � password � ", " � str(estimations[�]) � ", " �
str(estimations[�]) � ", " � str(estimations[�]) � ", " �
str(estimations[�]) � ", " � str(estimations[�]) � ", " �
str(estimations[�]) � "\n"

,!

,!

,!

31 fileOut.write(out)

Listing 8: Python script for calculating the Monte Carlo PSM scores of a password list.

4.6. Password Strength Measurement 36

4.6.2 Password Cracking

Other than using PSMs, we also employ a number of guessing attack strategies for our
password �lter strength estimation method.

4.6.2.1 O�line Guessing Attacks

O�ine guessing attacks represent the attacks where an adversary has seemingly unlimited
attempts at guessing the password. Usually for this attack the adversaries have obtained
the password hash. For the purposes of performing o�ine guessing attacks Hashcat will
be used. The attacks will be done in steps, with increased complexity of the attacks in
each step, thereby following the method developed by Galbally et al. [16]. This is to more
accurately assess the strength of the passwords, considering that weaker passwords will
be cracked with simpler attacks. An overview of the attack method can be seen in Figure
4.7. As illustrated in the �gure, the lists of accepted passwords from the password �lters
undergo an attack session comprising of four distinct steps. The �rst step employs brute
force to guess the passwords. The second step utilizes a dictionary attack. The third step
involves a rule-based dictionary attack. Finally, the fourth step applies a rule-based at-
tack using passwords generated by PassGAN from Section 4.3.1. Crucially, the passwords
guessed in earlier steps are excluded from subsequent attacks, so that the �lters can be
accurately assessed based on what passwords were guessed in each step. The results are
output to four �les, detailing the number and speci�c passwords guessed at each step.

Figure 4.7: Attack method for o�ine guessing attacks

4.6. Password Strength Measurement 37

In order to execute these attacks we utilize the GPUs available on CLAAUDIA [57]
a cloud platform by Aalborg University, that specialize in High-Performance Computing
(HPC) with GPUs. The entire Python script for o�ine password guessing attacks can be
found in appendix A.2.

Brute Force Attacks In the �rst attack strategy, we try an exhaustive strategy at guess-
ing the passwords. Various strategies have been proposed for this, and we follow the works
of Galbally et al. [16] and Wang et al. [62]. The 5 methods presented by the authors that
we will follow can be seen in Table 4.7. The methods are di�erentiated by two categories,
the number of characters used, and max password length. The combination of these two
categories gives the �nal number of guesses for each method.

Attack Characters Max Length Number of guesses
1.A 10 digits 11 1011

1.B 26 Lower Case 8 268

1.C 26 upper case 8 268

1.D 32 special characters 8 328

1.E All 96 ASCII 6 966

Table 4.7: Brute force attacks

Listing 9 shows the Python function used to perform the 5 di�erent guessing attacks
from Table 4.7. Notably the script works by executing Hashcat commands through the
subprocess module. The Hashcat commands used, have di�erent �ags set, and these �ags
de�ne the settings for command being run. All the �ags we use can be seen below:

• -d 1,2 sets the devices used by Hashcat normally device 1 is the CPU but because of
how CLAAUDIA[57] and singularity containers handle devices, when running the
container device 1 and 2 is the GPUs.

• -m 1000 is the type of hash we are working with 1000 is the hash number for NTML
hashes.

• –attack-mode 3 sets Hashcat in brute force mode.

• –increment tells Hashcat to start brute forcing with a password length of 1 and then
increment the password length when Hashcat has exhausted its options.

• –increment-max de�nes the max password length Hashcat will try.

• The string of characters seperated by ’?’ like ’?d?d?d?d?’ is the mask hashcat uses
for the attack. This de�nes the character set used for each character in the password.

4.6. Password Strength Measurement 38

1 def brute(file_path):
2 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max��� {file_path} "?d?d?d?d?d?d?d?d?d?d?d" -o
hashcat_attack�.txt --outfile-format�� --potfile-path�potfile.pot'

,!

,!

3 subprocess.run([hash_cmd], shell�True)
4 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max�� {file_path} "?l?l?l?l?l?l?l?l" -o hashcat_attack�.txt
--outfile-format�� --potfile-path�potfile.pot'

,!

,!

5 subprocess.run([hash_cmd], shell�True)
6 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max�� {file_path} "?u?u?u?u?u?u?u?u" -o hashcat_attack�.txt
--outfile-format�� --potfile-path�potfile.pot'

,!

,!

7 subprocess.run([hash_cmd], shell�True)
8 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max�� {file_path} "?s?s?s?s?s?s?s?s" -o hashcat_attack�.txt
--outfile-format�� --potfile-path�potfile.pot'

,!

,!

9 subprocess.run([hash_cmd], shell�True)
10 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max�� {file_path} "?a?a?a?a?a?a" -o hashcat_attack�.txt
--outfile-format�� --potfile-path�potfile.pot'

,!

,!

11 subprocess.run([hash_cmd], shell�True)

Listing 9: Python function for conducting brute force attacks.

Dictionary Attack For the second attack we use a wordlist, where the passwords from
the wordlist is compared against the passwords we’re trying to guess. The total number
of guesses for this attack will depend on the wordlist used. For this thesis a wordlist of
63, 941, 069 passwords from Crackstation was used. Again we are using a Python function
seen in Listing 10 to run the Hashcat command. The listing also shows the �ags used,
which has some overlap with the �ags used for the brute force attack.

1 def dictionary(file_path, wordlist):
2 hash_cmd � f'hashcat -d �,� -m ���� {file_path} {wordlist} -o

hashcat_attack�.txt --outfile-format�� --potfile-path�potfile.pot',!

3 subprocess.run([hash_cmd], shell�True)

Listing 10: Python function for conducting dictionary attack.

Dictionary Attack + Rules For the third attack we use a wordlist as in the dictionary
attack, but will also include a ruleset for creating mangled versions of each password in the
wordlist. The total number of guesses for this attack depends on thewordlist and the ruleset

4.6. Password Strength Measurement 39

used for the attack. The wordlist will be the same wordlist as the dictionary attack, and the
ruleset will be the ruleset presented by Eckroth et al. [13]. With the wordlist and ruleset
combined the amount of guesses will total 3.32 · 1012. In Listing 11 the Python function
used to execute this attack can be seen. As with the previous attacks Python functions, the
�ags are overlapping, but this time the ruleset is also used in the command.

1 def rule(file_path, wordlist, ruleset):
2 hash_cmd � f'hashcat -d �,� -m ���� {file_path} {wordlist} -r {ruleset} -o

hashcat_attack�.txt --outfile-format�� --potfile-path�potfile.pot',!

3 subprocess.run([hash_cmd], shell�True)

Listing 11: Python function for conducting Dictionary+Rules attacks.

Guessing with PassGAN In recent years machine learning has been leveraged to en-
hance password guessing attacks. Hitaj et al. [20] developed PassGAN in which they util-
lized Generative Adverserial Networks, to e�ciently and accurately generate passwords
based of leaked password lists. These generated passwords are then used to perform guess-
ing attacks.

The code for the PassGAN implementation by Dorsey [12] is almost 7 years old and
unfortunately quite deprecated. Fortunately, a GitHub repository by beta6 [2] contains an
updated version of the PassGAN implementation with less deprecated dependencies. The
implementation requires the use of Nvidia’s CUDA, which means an Nvidia GPU is nec-
essary to run the implementation. To meet this requirement we used Aalborg University’s
AI cloud CLAAUDIA [57], which contains compute nodes with Nvidia GPUs specialized
for machine learning. As mentioned in Section 4.3.1, the PassGAN model used was trained
for 200,000 iterations with the LinkedIn leaked password data mentioned in Table 4.1.

As per the recommendations of Hitaj et al. [20] the PassGAN generated passwords will
be combined with a rule set for a rule-based attack. While Hitaj et al. recommends using
Hashcats best64 ruleset. Eckroth et al. [13] has developed a ruleset that performs better,
therefore the attack will be carried out using this ruleset. A list of 100,000,000 passwords
was generated to perform this attack. The python script used to execute this attack can be
seen in Listing 12

1 def PassGAN(file_path, wordlist, ruleset):
2 hash_cmd � f'hashcat -d � -m ���� {file_path} {wordlist} -r {ruleset} -o

hashcat_attack�.txt --outfile-format�� --potfile-path�potfile.pot',!

3 subprocess.run([hash_cmd], shell�True)

Listing 12: Python function for conducting PassGAN attacks.

4.6. Password Strength Measurement 40

Building the Container To use CLAAUDIA [57] and its resources one has to run pro-
grams and processes inside a Singularity container. Singularity containers are speci�cally
for High Performance Computing (HPC) such as the platform CLAAUDIA. To build a con-
tainer that has the requirements to run Hashcat on CLAAUDIA, we use .def build �les in
order to construct the container. The .def build �le we used can be seen in Listing 13, here
it can be seen that we are using a docker image from dizcza [10].

1 Bootstrap: docker
2 From: dizcza/docker-hashcat
3

4 �post
5 apt-get -y update
6 apt install -y python�

Listing 13: The .def build �le used to build the container for CLAAUDIA.

The build �le allows us to use a prebuilt docker container with Hashcat installed and
install Python in order to run the python script that will be used to perform the guessing
attacks.

4.6.2.2 Online Guessing Attacks

As described in Section 2.6.2, online guessing attacks is limited by the number of guesses
an attacker is allowed to make. This is usually due to a lockout threshold that de�nes how
many incorrect login attempts can be made before the account gets locked. Wang et al.
[62] explores how a threshold limit can be circumvented by delaying the guesses in the
guessing attack. By limiting the number of guesses to less than the set lockout threshold
during each lockout period, the threshold is e�ectively circumvented. For example, if the
threshold of failed logins is 10 every hour, then an attacker can attempt up to 9 guesses each
hour. Active Directories have a custom account threshold lockout policy, which is why
we have decided to test di�erent thresholds. We will also be acting as a general attacker
without any knowledge of the password distribution. In Table 4.8, the 6 di�erent threshold
combinations we are using can be seen. The table shows that we use 3 distinct lockout
thresholds, and 2 di�erent lockout duration’s, giving us a total of 6 di�erent thresholds.
The attempts per day in the table are made by the simple calculation:

attempts per day = lockout threshold� 1 · (lockout duration
60

· 24)

and the attempts per month are made by multiplying the attempts per day with 30.

4.6. Password Strength Measurement 41

Lockout Threshold Lockout Duration Attempts per day Attempts per month
5 15 384 11520
5 30 192 5760
10 15 864 25920
10 30 432 12960
20 15 1824 54720
20 30 912 27360

Table 4.8: Number of login attempts given di�erent lockout thresholds and durations.

To determine if the passwords �lters are e�ective against an online password guess-
ing attack, we compare lists of the most common passwords against the lists of the �lters
accepted passwords. Utilizing multiple lists ensures thoroughness, allowing us to compre-
hensively evaluate the �lters resistance to common password-based attacks. The password
lists we use can be seen in Table 4.9, where we see lists with a length of 100000, 10000, and
200 passwords.

Source Number of passwords
Seclists 100000
Wikipedia 10000
Nordpass 200

Table 4.9: Common password lists used for online guessing attack.

The Python script for the online password guessing attacks seen in Listing 14, it shows
that the thresholds chosen are 50, 100, 200, 10000 and 54720, these are based of the thresh-
olds from Table 4.8. The script also shows that we don’t actually perform the guessing at-
tack, since we already have the list of accepted passwords, it is simply a matter of checking
the common passwords against this list.

1 def count_matching_entries(file�, file�, num_entries):
2 with open(file�, 'r') as f�:
3 entries� � set(f�.read().splitlines()[:num_entries])
4 with open(file�, 'r') as f�:
5 entries� � set(f�.read().splitlines())
6 matching_entries � entries�.intersection(entries�)
7 return len(matching_entries)
8 file�_path � 'seclist���k.txt'
9 file�_path � 'allAcceptedOPF.txt'
10 guesses � [��, ���, ���, �����, �����]
11 for i in range(�):
12 matching_count � count_matching_entries(file�_path, file�_path, guesses[i])
13 print(f"Passwords guessed with {guesses[i]}:", matching_count)

Listing 14: Python script for conducting simulated online password guessing attacks.

4.7. Calculating Overall Score 42

4.7 Calculating Overall Score

To calculate the overall score for the �lters, we use two di�erent methods. We have chosen
to calculate a �nal score and a weighted �nal score. The reason for calculating two �nal
scores is to provide di�erent perspectives on the data. A weighted score can account for
PSMs or guessing attacks not performing as expected or intended. The weights can also
be used to highlight scores that should have more impact on the �nal result, for example if
most passwords accepted by a �lter could be guessed using a simple dictionary attack, that
would be indicative of a very bad �lter and the score should re�ect that. The unweighted
�nal score is calculated with a simple average calculation:

x =

Pn
i=1 xi
n

To calculate the weighted score, we follow the works of Galbally et al. [15], and use a
combination algorithm that has been proven to work well, namely the weighted sum algo-
rithm. This algorithm combines the di�erent scores into a �nal score in a linear equation:

xweighted =
KX

k=1

wksk

Where wk is the weight given to each of the individual scores sk, and with the weights
following:

KX

k=1

wk = 1

4.7.1 Normalizing Scores

Since the di�erent methods we use to calculate password strengths returns results in dif-
ferent formats, we have to �nd a way to combine these results together in a meaningful
manner. For this we use normalization, where the di�erent strength scores are normalized
to the same value range. This will give us comparable results from the di�erent PSMs and
guessing attacks. We have chosen to normalize to a value range of 0� 1.

To calculate the normalized values, we are using two methods of normalization. We
will use both methods for all the PSM and guessing attack results, and compare how the
di�erent methods impact the �nal results. The �rst method of normalization is a simple
min-max normalization:

Normalized Score =
Score�Min. Score

Max. Score�Min. Score

The second method for normalization is using the logarithmic function, this method
can be especially useful for data consisting of huge numbers. Since the Monte Carlo PSM
returns a estimated guess number which can be quite high, this method might be better
suited here:

4.8. Method Summary 43

Log Normalized Score =
log(Score+ 1)

log(Max. Score)

In this formula, we still use a maximum score. Since log(0) is unde�ned, and log(1) is
0, we need to ensure that the max score is always above 1.

4.7.1.1 fuzzyPSM Normalisation

Since the fuzzyPSM [61], returns a number probability of the password where a lower
probability is a better score. This is opposed to the other PSMswe are using for our method.
To solve this issue, we simply multiply the score with 100 and then subtract the multiplied
score from 100. Given that the score is a probability and always falls within the range of
0� 1, subtracting the multiplied score from 100 gives us a new score where a higher value
indicates better performance.

4.7.1.2 Password Guessing Attacks Normalization

For the password guessing attacks, the score we calculate is the percentage of passwords we
are able to guess. This again leaves us in a situation where a lower number is a better score.
Again to solve this issue we follow the same approach as for the fuzzyPSM normalization
in Section 4.7.1.1.

4.8 Method Summary

Our method consists of using Virtual Machines hosting an Active Directory, where a pass-
word �lter has been installed. For our method we collected a number of password lists
from various sources. We use our collection of password data, in a Powershell script that
automatically tests if each password is accepted or rejected by the Active Directory pass-
word �lter. The script does so by attempting to change a users password to each password
from our collection.

Once we have attempted a password change for all passwords in our collection, we
end up with a list of accepted and rejected passwords for each �lter. We then use various
methods to calculate the strength of all the accepted passwords, these methods are state of
the art Password Strength Meters and a number of di�erent password guessing attacks.

When we have the results from the Password Strength Meters and guessing attacks, we
use a normalization formula to normalize our results, and then calculate the overall score
based on these normalized results. This leaves us with a overall strength score for each
Active Directory password �lter.

Chapter 5

Results

This Chapter contains the results from the method described in Chapter 4. We �rst show-
case in Section 5.1, the results of the automatic password changing scripts for each of the
Active Directory password �lters. These results showcase what passwords were accepted
and rejected by each �lter. We then in Section 5.2, showcase the results of running all the
accepted and rejected passwords through our chosen Password Strength Meters. This sec-
tion also includes an analysis on the PSM results, such as looking at the impact of password
length, and distribution of scores. In Section 5.3 the results from all the password guessing
attacks is shown, and contains an analysis on the results. Finally, in Section 5.4 we perform
the normalization calculations, and then calculate the �nal scores for the three di�erent
Active Directory password �lters.

5.1 Passwords Accepted by Filters

The results presented in this section are the passwords accepted and rejected by each of
the Active Directory password �lters. The results are presented for each �lter individually.

5.1.1 Lithnet Filter

We can see in Table 5.1 that the Lithnet �lter only allowed a total of 13.62% of all the
passwords, where majority of the denied passwords come from the LinkedIn password list.
As seen in the table, the �lter blocked almost 90% of the LinkedIn passwords, but that still
left more than half a million LinkedIn passwords that got accepted. Furthermore, the list
with the most accepted passwords is the PassGAN generated passwords, then followed by
the Chinese and Russian password lists.

44

5.1. Passwords Accepted by Filters 45

List name Accepted Rejected Percentage
accepted Total

SecLists Keyboard-Combinations 6,089 3,539 63.2% 9,628
SecLists 10-million-password-list-top-1000000 68,102 931,922 6,81% 999,998
SecLists default-passwords 199 1,140 14.9% 1,339
Xato-Net 703,595 4,485,885 13.5% 5,189,480
PassGAN Generated 6,072,327 3,927,702 60.7% 10,000,029
Russian Passwords 2,175,474 324,556 87.01% 2,500,030
Chinese Passwords 2,444,126 55,902 97.7% 2,500,028
Greatest_books_of_all_time_originals 3,556 2,041 63.5% 5,597
RockYou 18,027 14,326,393 0.12% 14,344,420
Linkedin 544,622 52,245,057 1,04% 52,789,651
DanishTop5K 1,290 3,734 25.6% 5,024
EnglishTop1K 1 1,021 0.09% 1,022
Summed 12,037,408 76,308,890 13.62% 88,346,298

Table 5.1: Passwords accepted by the Lithnet �lter

5.1.2 OpenPasswordFilter Filter

In Table 5.2 we can see the results of the OpenPasswordFilter, and that the results are quite
similar to the ones from the Lithnet �lter. OPF only allowed 17.7% of the total passwords
and we can see that only 0.006% of the RockYou list was accepted. The most accepted pass-
words also come from the PassGAN passwords, then the Chinese and Russian passwords,
just as with the Lithnet �lter. A big di�erence compared to the Lithnet �lter, is from the
SecLists Keyboard-Combinations, where OPF accepts more than 90% of the list.

List name Accepted Rejected Percentage
accepted Total

SecLists Keyboard-Combinations 8,710 894 90.6% 9,604
SecLists 10-million-password-list-top-1000000 86,047 913,951 8.604% 999,998
SecLists default-passwords 362 953 27.5% 1,315
Xato-Net 958,078 4,231,376 18.4% 5,189,454
PassGAN Generated 8,990,578 1,009,442 89.9% 10,000,020
Russian Passwords 2,197,955 302,065 87.9% 2,500,020
Chinese Passwords 2,453,296 46,724 98.1% 2,500,020
Greatest_books_of_all_time_originals 4,799 769 86.1% 5,568
RockYou 981 14,343,431 0.006% 14,344,391
Linkedin 1,018,297 51,771,294 1.9% 52,789,591
DanishTop5K 1,292 3,708 25.8% 5,000
EnglishTop1K 1 999 0.1% 1,000
Summed 15,720,396 72,625,606 17.7% 88,346,002

Table 5.2: Passwords accepted by the OpenPasswordFilter �lter

5.1. Passwords Accepted by Filters 46

5.1.3 Entra Password Protection

Finally, the results of Microsoft Entra Password Protection �lter can be seen in Table 5.3.
These results are drastically di�erent than the two other �lters, with 88.92% of the total
passwords accepted. Interestingly the only password list that is more blocked by Entra
compared to OPF and Lithnet, is the Chinese Passwords list.

List name Accepted Rejected Percentage accepted Total
SecLists Keyboard-Combinations 9,024 580 93.9% 9,604
SecLists 10-million-password-list-top-1000000 751,636 248,362 75.1% 999,998
SecLists default-passwords 592 723 45.01% 1,315
Xato-Net 4,401,441 788,013 84.81% 5,189,454
PassGAN Generated 9,530,481 469,519 95.3% 10,000,000
Russian Passwords 2,291,248 208,752 91.64% 2,500,000
Chinese Passwords 2,088,822 411,178 83.55% 2,500,000
Greatest_books_of_all_time_originals 5,244 324 94.1% 5,568
RockYou 12,399,288 1,945,103 85.43% 14,344,391
Linkedin 47,081,197 5,708,455 89.1% 52,789,652
DanishTop5K 2,699 2,301 53.89% 5,000
EnglishTop1K 228 772 22.8% 1,000
Summed 78,561,900 9,784,082 88.92% 88,345,982

Table 5.3: Passwords accepted by the Entra Password Protection �lter

5.1.4 Summarized

In Figure 5.1, all three password �lters results can be seen in a column plot. Here the
di�erence between Entra and the two other �lters can clearly be seen visualized. It is clear
that Lithnet and OPF are overall more selective in what passwords they let through.

Lithnet OpenPasswordFilter Entra Password Protection

2

4

6

8

·107

Password Filter

A
cc
ep
te
d
Pa
ss
w
or
d
Co

un
t Accepted

Rejected

Figure 5.1: Column plot showcasing accepted and rejected passwords for each �lter
We also looked at the di�erent length distributions of the accepted passwords for each

password �lter. These �ndings can be seen in Figure 5.2, where we observe that Lithnet
has the highest percentage of passwords with a length exceeding 10 characters, followed by

5.2. Password Strength Meter Results: 47

OPF, and then �nally Entra. Interestingly, the opposite is true for passwords with a length
between 5 and 10 characters. For passwords with a length less than 5 characters, we see
that Lithnet and OPF are similar with respectively 4.06% and 3.19%, whereas Entra has 0%.

Lithnet OpenPasswordFilter Entra Password Protection

0

20

40

60

80

Password Filter

%
of

pa
ss
w
or
ds

x<5
5<=x<=10

10<x

Figure 5.2: Column plot showcasing password length distribution for the three �lters.

5.2 Password Strength Meter Results:

Here the results of the chosen PSMs can be seen. The results are presented for each PSM,
where the password strength is calculated on all the combined accepted and rejected pass-
words.

5.2.1 zxcvbn

In Table 5.4 the scores from the zxcvbn PSM [63] can be seen. The results shows the average
score for each �lter, and we can see that Lithnet has the highest average score followed by
OPF, and then Entra. While Lithnets average score is only 0.1 points higher than OPF, it is
0.44 points higher than Entra. For the rejected passwords we can see that Lithnet and OPF
is very close in their scores, whereas Entras scores quite a bit lower. The reason for Entra
to be scoring lower than both Lithnet and OPF in the rejected passwords, is most likely due
to Entra not rejecting a lot of passwords in the �rst place.

Accepted Passwords Rejected Passwords

Password Filter Number of passwords Mean Score: 0-4 Number of passwords Mean Score: 0-4
Lithnet 12,037,408 2.667615708976309 76,308,890 2.038756946278184
OpenPasswordFilter 15,720,396 2.5606279103230247 72,625,555 2.030028066566927
Entra Password
Protection

78,561,900 2.2247675555806 9,784,082 1.318926209864359

Table 5.4: zxcvbn PSM strength score results

Furthermore we have explored the impact of password length on the di�erent PSM
scores. In Figure 5.3 the impact of password length can be seen for the zxcvbn PSM [63]

5.2. Password Strength Meter Results: 48

scores, and here we see that length has a signi�cant impact on the scoring. Where for all
three �lters the highest scores are found for passwords with a length of at least 10 char-
acters. Then passwords with a length between 5 and 10 characters, and �nally passwords
with a length less than 5 characters. We can see that Lithnet and OPF have very similar
scores, whereas Entra is scoring slightly lower, and has no passwords with a length of less
than 5 characters.

Lithnet OpenPasswordFilter Entra Password Protection

1

2

3

4

Password Filter

M
ea
n
Pa
ss
w
or
d
Sc
or
e

x<5
5<=x<=10

10<x

Figure 5.3: Column plot showcasing password length impact on zxcvbn PSM scores.

From the distribution of the zxcvbn scores on the three �lters in Figures 5.4, 5.5, and
5.6, it can be seen that Lithnets scores are skewed towards scores of 2, 3, and 4. Where as
OPF and Entra are more normally distributed with OPF leaning a bit more towards scores
of 3 and 4, compared to Entra. Interestingly, no passwords from Entra are scored 0, which
is likely is due to Entra having no passwords with less than 5 characters.

Figure 5.4: Histogram of zxcvbn
scores on the accepted passwords
from Lithnet.

Figure 5.5: Histogram of zxcvbn
scores on the accepted passwords
from OPF.

Figure 5.6: Histogram of zxcvbn
scores on the accepted passwords
from Entra.

5.2. Password Strength Meter Results: 49

5.2.2 MultiPSM

The results from theMultiPSM [15] can be seen in Table 5.5. The number of passwords used
to calculate these scores is lower than the total amount of accepted passwords, this is due
to MultiPSM not supporting non-ASCII characters, we have discarded these passwords for
the MultiPSM scores. For the rejected OPF results, we only have 650,669 passwords. This
is a random sample from all the passwords rejected by OPF. We used a sample here due to
time constraints.

The results show that Lithnet have the highest Fusion Score, which is a fusion of the
4 other metrics: LIST, BF, AMM, and CFHMM. Although both OPF and Entra have a LIST
score that is 0.01 higher than Lithnet, Lithnet still maintains a strong LIST score of 9.98. OPF
leads in the BF score, but Lithnet has the highest score in the rest of the metrics, followed
by OPF and then Entra.

Interestingly, for the rejected passwords, we can see that Lithnets rejected scores are
still higher than Entras rejected scores. This is likely due to Lithnet being more selective
with passwords in general, whereas Entra only rejects the very worst passwords.

Accepted Passwords Rejected Passwords

Password �lter Number of
passwords

LIST
Metric

BF
Metric

AMM
Metric

CFHMM
Metric

Fusion of
scores

Number of
passwords

LIST
Metric

BF
Metric

AMM
Metric

CFHMM
Metric

Fusion of
scores

Lithnet 7,575,463 9.98 6.87 4.46 5.21 3.73 75,947,488 9.978 6.006 3.140 4.602 2.572
OpenPasswordFilter 11,320,668 9.99 7.09 4.06 4.98 3.48 650,669 9.900 3.817 2.609 4.207 1.698
Entra Password
Protection

75,947,884 9.99 6.53 3.33 4.72 2.83 9,298,143 9.945 4.501 2.414 4.210 1.715

Table 5.5: MultiPSM strength score results

In Figure 5.7 the length impact on the MultiPSM scores can be seen. Here we again see
that length has a signi�cant impact on the scores. As with the zxcvbn results, we can see
Lithnet having the highest score for all three password lengths, followed by OPF, and then
�nally Entra. Again Lithnet and OPF are very close in their results, as re�ected from Table
5.5.

Lithnet OpenPasswordFilter Entra Password Protection
0

2

4

6

Password Filter

M
ea
n
Pa
ss
w
or
d
Sc
or
e

x<5
5<=x<=10

10<x

Figure 5.7: Column plot showcasing password length impact on MultiPSM score

5.2. Password Strength Meter Results: 50

In Figures 5.8, 5.9, and 5.10, the distribution for the MultiPSM [15] scores can be seen.
The distributions show that Lithnet and OPF are quite similar, with OPF having more pass-
words scored between 0 and 1. Furthermore, the rest of Lithnets scores are rated slightly
higher than those of OPF. Lithnets scores starts at around 4, whereas OPFs scores begin
at around 3. Finally, we see that Entras distribution is comparable to the two others but it
drops o� more rapidly, likely leading to the overall lower score.

Figure 5.8: Histogram of
MultiPSM scores on the accepted
passwords from Lithnet

Figure 5.9: Histogram of
MultiPSM scores on the accepted
passwords from OPF

Figure 5.10: Histogram of
MultiPSM scores on the accepted
passwords from Entra

5.2.3 Monte Carlo

The results from the Monte Carlo PSM [9] can be seen in Table 5.6, where 6 distinct scores
are calculated: 2-, 3-, 4-, 5-gram, Backo�, and PCFG. These scores represent the estimated
number of guesses needed to guess the password. The results show that Lithnet performs
the best in all scores, with OPF following quite close after, and Entra having the worst
scores, and scoring signi�cantly lower in 2-gram and 3-gram.

Accepted Passwords Rejected Passwords

Password �lter Number of
passwords

Mean
2-gram

Mean
3-gram

Mean
4-gram

Mean
5-gram

Mean
Backo�

Mean
PCFG

Number of
passwords

Mean
2-gram

Mean
3-gram

Mean
4-gram

Mean
5-gram

Mean
Backo�

Mean
PCFG

Lithnet 12,037,408 2.36+67 1.66+54 8.18e+35 2.70e+23 3.86e+19 6.81e+21 76,308,890 5.08e+65 6.82e+56 1.01e+37 1.32e+26 3.92e+16 1.05e+24
OpenPasswordFilter 15,720,334 1.85e+67 1.41e+54 7.80e+35 2.68e+23 3.23e+19 6.44e+21 72,625,555 5.01e+65 6.70e+56 9.89e+36 1.30e+26 3.87e+16 1.04e+24
Entra Password
Protection

78,561,899 4.55e+66 6.24e+53 5.04e+35 2.16e+23 1.40e+19 5.02e+21 9,784,082 1.32e+66 7.58e+56 8.47e+36 1.06e+26 2.74e+16 7.93e+23

Table 5.6: Monte Carlo PSM strength score results

In Figure 5.11 the impact on length can be seen for three of the Monte Carlo PSM
scorings: 5-Gram, Backo�, and PCFG. Some of these PSM scores are the �rst to not show
any clear impact due to password length. We see that for the 5-Gram scorings, passwords
with a length of less than 5 scores best in both Lithnet and OPF, whereas for all three �lters
passwords with a length above 10 characters scores better than passwords with a length
between 5 and 10 characters.

For the Backo� scoring, we have the same overall pattern of passwords with a length
above 10 characters scoring better than passwords with a length between 5 and 10 char-
acters. Intrestingly, these two scores are for Backo� signi�cantly worse than scores for
passwords with a length of less than 5 characters. We think the reason for passwords with
less than 5 characters having such a big impact on 5-gram and Backo� is due to the over-
whelming number of Chinese passwords in this category.

5.2. Password Strength Meter Results: 51

Finally, for the password length impact on PCFG scorings we see that passwords with
a length less than 5 characters are scoring the worst. The two other length categories are
scoring almost equally.

Lithnet OpenPasswordFilter Entra Password Protection

1023.2

1023.4

Password Filter

M
ea
n
5-
G
ra
m

Sc
or
e

(lo
g
sc
al
e)

x<5
5<=x<=10

10<x

Lithnet OpenPasswordFilter Entra Password Protection

1019

1020

1021

1022

Password Filter

M
ea
n
Ba

ck
o�

Sc
or
e

(lo
g
sc
al
e)

x<5
5<=x<=10

10<x

Lithnet OpenPasswordFilter Entra Password Protection

1020

1021

1022

Password Filter

M
ea
n
PC

FG
Sc
or
e

(lo
gs
ca
le
)

x<5
5<=x<=10

10<x

Figure 5.11: Column plot showcasing password length impact on 5-Gram, Backo�, and PCFG Monte Carlo
PSM scores (log scale)

5.2. Password Strength Meter Results: 52

Figures 5.12, 5.13, and 5.14 shows the collective average distribution of all the Monte
Carlo PSM scores. The distributions show that Lithnet and Entra is close in their distribu-
tions, with Lithnets slope towards higher scores being slightly less steep. We see that all
three �lters have their highest distribution of scores around 1014, then sloping down to-
wards higher scores. Intrestingly, both Lithnet and Entra have both have a spike at around
a score of 1065

Figure 5.12: Histogram of
MonteCarlo scores on the accepted
passwords from Lithnet

Figure 5.13: Histogram of
MonteCarlo scores on the accepted
passwords from OPF

Figure 5.14: Histogram of
MonteCarlo scores on the accepted
passwords from Entra

5.2.4 fuzzyPSM

Table 5.7 shows the results of the fuzzyPSM. For this PSM lower scores is preferable. The
results show that Entra has the best average score. We also see that OPF has the second
best average score followed closely by Lithnet. This is the �rst PSM to score Entra the best
and Lithnet the worst. However, it still scores OPF and Lithnet closely. For the rejected
passwords, we can see that Lithnet actually scores the best, followed by OPF, and then
Entra.

Accepted Passwords Rejected Passwords

Password Filter Number of passwords Mean Score Number of passwords Mean Score

Lithnet 12,037,398 1.75e-05 76,308,850 1.15e-06
OpenPasswordFilter 15,720,334 1.31e-05 72,625,555 1.25e-06
Entra Password
Protection

78,561,899 3.04e-06 9,784,072 6.03e-06

Table 5.7: fuzzyPSM strength score results

In Figure 5.15 password length impact on the fuzzyPSM scores can be seen. Again, for
these scores a lower rating is better, and we see that passwords with lower character length
also scores worse with this PSM. Intrestingly, we can see that for Entra, the score di�erence
between passwords with lengths between 5 and 10 characters, and thosewith lengths above
10 characters is not very signi�cant. Whereas, the di�erence is more impactful for Lithnet
and OPF. The results also shows the likely reason for Entra to be scoring the best for this
PSM is due to Entra having no passwords with a length of less than 5 characters, and these
are clearly the most impactful on the overall scoring.

5.2. Password Strength Meter Results: 53

Lithnet OpenPasswordFilter Entra Password Protection

0

2

4

6

·10�5

Password Filter

M
ea
n
Pa
ss
w
or
d
Sc
or
e

x<5
5<=x<=10

10<x

Figure 5.15: Column plot showcasing password length impact on fuzzyPSM score

The fuzzyPSM score distributions can be seen in Figures 5.16, 5.17, and 5.18. The dis-
tributions shows that a large number of very low scores are present for all three �lters.
However, Entra’s distribution shows that a number of bins are quite a bit higher on the
y-axis than the two other �lters. These bins are also on the lower end of the scores, which
is likely why Entra scores the best with fuzzyPSM.

Figure 5.16: Histogram of
fuzzyPSM scores on the accepted
passwords from Lithnet.

Figure 5.17: Histogram of
fuzzyPSM scores on the accepted
passwords from OPF.

Figure 5.18: Histogram of
fuzzyPSM scores on the accepted
passwords from Entra.

5.3. Guessing Attacks 54

5.3 Guessing Attacks

5.3.1 Online Attack on Accepted Passwords

This section contains the results from the online guessing attacks. The method is for online
guessing attacks is described in Section 4.6.2.2. The attack was conducted on the passwords
accepted by the �lters.

Lithnet OPF Entra
Threshold Seclist Nordpass Wikipedia Seclist Nordpass Wikipedia Seclist Nordpass Wikipedia
50 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 1 0 1
200 0 0 0 0 0 0 11 7 11
10,000 0 N/A 0 0 N/A 0 4,748 N/A 4748
54,720 46 N/A N/A 81 N/A N/A 32,839 N/A N/A

Table 5.8: Number of guessed passwords with di�erent thresholds for accepted passwords.

Looking at the results from Table 5.8 we see that no �lter has any successful attacks
at a threshold of 50, and that only Entra has any successful attacks at thresholds 100, 200,
10,000. This shows that the passwords accepted by Entra is by far the most susceptible
to an online guessing attacks, and that Lithnet and OPF shows great resistance to online
guessing attacks only producing successful guesses at a very high threshold of 54,720.

5.3.2 O�line Guessing Attacks on Accepted Passwords

This section presents the results of the o�ine guessing attacks against each �lter, following
the method presented in section 4.6.2.1. The attacks were conducted using two Nvidia A40
GPUs on Aalborg University’s CLAAUDIA [57].

Table 5.9 presents the results of all the o�ine guessing attacks against the three �lters.
The table shows that even though Lithnet and OPF has signi�cantly less total accepted
passwords, the number of unguessed passwords are very high, especially when compared
to the results of the Entra �lter.

Filter Total accepted passwords Brute Force Dictionary Dictionary + Rules PassGAN + Rules Unguessed
Lithnet 12,037,408 1,651,767 30,780 1,078,945 1,021,039 8,254,877
OPF 15,720,396 2,062,157 25,293 3,127,743 1,609,823 8,895,380
Entra 78,561,900 17,716,342 8,449,032 24,735,292 3,095,713 24,565,521

Table 5.9: Amount of passwords cracked for each attack on all accepted passwords for each �lter

Table 5.10 shows the results in percentages, and here we see that Entras passwords
are the most vulnerable to o�ine guessing attacks, with a high overall percentage guessed
(68.73%). Especially the brute force attack (22.55%) and dictionary + rules (31.48%) indicate
that Entra fails signi�cantly in blocking weak passwords. Entra also has the highest per-
centage of guessed passwords from the dictionary attack (10.75%), this is a simple attack,
and this result highlights the failure to e�ectively block easily guessed passwords.

5.3. Guessing Attacks 55

Lithnet, shows that it is resistant to most o�ine guessing attacks, indicating that it
succeeds in blocking weak and easily guessable passwords.

OPF shows the same resistance as Lithnet in the simpler guessing attacks i.e. brute
force and dictionary. However, OPF does seem to be more vulnerable to more advanced
guessing attacks strategies with dictionary + rules (19.89%) being especially e�ective.

Filter Brute Force Dictionary Dictionary + Rules PassGAN + Rules Total
Lithnet 13.72% 0.25% 8.96% 8.48% 31.42%
OPF 13.12% 0.16% 19.89% 10.24% 43.42%
Entra 22.55% 10.75% 31.48% 3.94% 68.73%

Table 5.10: Percentage of passwords guessed for each attack on all accepted passwords for each �lter.

In Figure 5.19 we see the percentage of passwords guessed for each length category for
accepted passwords. Entra again shows high percentage of guessed passwords for pass-
words between 5 and 10 characters long and even passwords above 10 characters long.
This illustrates that weak passwords are allowed through the Entra �lter. When compared
to Lithnet and OPF, it shows the impact an e�ective �lter has on password security. The
low percentage of guessed passwords with a length below 5 characters for Lithnet and OPF
is likely caused by the large amount of Chinese character passwords that dominate the
category.

Lithnet OpenPasswordFilter Entra Password Protection

0

20

40

60

80

Password Filter

%
of

pa
ss
w
or
ds

gu
es
se
d

x<5
5<=x<=10

10<x

Figure 5.19: Column plot showcasing the percentage of password guessed for each length category, for ac-
cepted passwords.

5.3.3 O�line Guessing Attacks on Rejected Passwords

This section presents the results of the o�ine guessing attacks on the rejected passwords
for each �lter, following the method presented in Section 4.6.2.1. The attacks were con-
ducted using two Nvidia A40 GPUs on Aalborg University’s CLAAUDIA [57].

5.3. Guessing Attacks 56

Table 5.11 shows the results from the rejected o�ine guessing attacks for all the �lters. The
results show that Lithnet and OPF has almost the same amount of passwords not guessed,
and that Entra has the least amount of passwords not guessed. However for these results,
it is easier to get an overview with percentages, which is done in Table 5.12.
Filter Total rejected passwords Brute Force Dictionary Dictionary + Rules PassGAN + Rules Unguessed
Lithnet 76,308,850 18,763,411 9,627,030 26,919,671 2,136,566 18,862,172
OPF 72,625,555 18,353,297 9,632,614 24,871,083 1,547,781 18,220,780
Entra 9,784,072 2,698,750 1,209,159 3,263,348 61,892 2,550,923

Table 5.11: Amount of passwords guessed for each attack on all rejected passwords for each �lter

Table 5.12 indicate that rejected passwords for all �lters are highly vulnerable to o�ine
guessing attacks, with Lithnet showing the highest total percentage of guessed passwords
(75.28%), followed by OPF (74.91%) and Entra (73.92%). This higlights that the �lters indeed
are e�ective in preventing the use of weak passwords. A key observation is the signi�cant
di�erence in the percentages of guessed passwords between accepted passwords seen in
Table 5.10, and rejected passwords seen in Table 5.12. Lithnet and OPF exhibit a 30-40%
di�erence, whereas Entra shows only a 5.19% di�erence. Suggesting that Entra fails to
e�ectively block weak passwords, and that the rejected passwords are not substantially
easier to guess than the accepted passwords.
Filter Brute Force Dictionary Dictionary + Rules PassGAN + Rules Total
Lithnet 24.59% 12.62% 35.28% 2.80% 75.28%
OPF 25.27% 13.26% 34.25% 2.13% 74.91%
Entra 27.58% 12.36% 33.35% 0.63% 73.92%

Table 5.12: Percentage of passwords guessed for each attack on all rejected passwords for each �lter

In Figure 5.20 we see the percentage of rejected passwords guessed for each length cat-
egory. The high guess percentages across all length categories for Lithnet and OPF indicate
that most weak passwords were e�ectively �ltered out. Entra has high guess percentages
but when compared to Figure 5.19, only a small di�erence between the rejected and ac-
cepted passwords is to be found, indicating failure to e�ectively �lter weak passwords.

Lithnet OpenPasswordFilter Entra Password Protection

20

40

60

80

Password Filter

%
of

pa
ss
w
or
ds

x<5
5<=x<=10

10<x

Figure 5.20: Column plot showing the percentage of rejected password guessed for each length category.

5.4. Combined Results 57

5.4 Combined Results

In this section we use the normalization method described in Section 4.7 to normalize the
results from the di�erent PSMs and guessing attacks. We then use these normalized values
to calculate a �nal score for all three Active Directory password �lters.

5.4.1 Normalized Password Strength Meter Scores

5.4.1.1 zxcvbn PSM

We use Lithnets, OPFs, and Entras average zxcvbn score from 5.4:

Lithnet zxcvbn = 2.667615708976309

Normalized Score =
2.667615708976309� 0

4� 0
= 0.666903927244

Log Normalized Score =
log(2.667615708976309)

log(4)
= 0.707775424962

OpenPasswordFilter zxcvbn = 2.5606279103230247

Normalized Score =
2.5606279103230247� 0

4� 0
= 0.640156977581

Log Normalized Score =
log(2.5606279103230247)

log(4)
= 0.678248813712

Entra zxcvbn = 2.2247675555806

Normalized Score =
2.2247675555806� 0

4� 0
= 0.556191888895

Log Normalized Score =
log(2.2247675555806)

log(4)
= 0.576827305359

In Table 5.13, all the normalized scores for zxcvbn can be seen. For both normalized
and log normalized, Lithnet has the highest score followed by OPF and then Entra. It can
be seen that the log normalization increases both Lithnet and OPF scores more than Entras
score.

Filter Normalized Score Log Normalized Score
Lithnet 0.666903927244 0.707775424962
OpenPasswordFilter 0.640156977581 0.678248813712
Entra 0.556191888895 0.576827305359

Table 5.13: zxcvbn Normalized Scores

5.4. Combined Results 58

5.4.1.2 Monte Carlo PSM

Here we use the Lithnet, OPF, and Entra Monte Carlo PSM scores from Table 5.6. Since the
Monte Carlo PSM returns 6 results, we have taken the average of all the scores, to calculate
the normalized scores.

Monte Carlo PSM Lithnet = 3.94e+ 66

Normalized Score =
3.94e+ 66

5.42e+ 67
= 0.072693726937269

Log Normalized Score =
log(3.94e+ 66)

log(5.42e+ 67)
= 0.983191557021510

Monte Carlo PSM OpenPasswordFilter = 3.09e+ 66

Normalized Score =
3.09e+ 66

5.42e+ 67
= 0.057011070110701

Log Normalized Score =
log(3.09e+ 66)

log(5.42e+ 67)
= 0.981633436380290

Monte Carlo PSM Entra = 7.59e+ 65

Normalized Score =
7.59e+ 65

5.42e+ 67
= 0.014003690036900

Log Normalized Score =
log(7.59e+ 65)

log(5.42e+ 67)
= 0.972631801899060

In Table 5.14 the normalized Monte Carlo PSM scores for all three �lters can be seen.
These scores shows a signi�cant di�erence between the normalized score and log normal-
ized score. Since for both of the normalized scores a higher score is better, it is clear that
the log normalized score will have a much bigger impact than the normalized score. This
is due to the huge numbers coming from the Monte Carlo PSM and how the logarithmic
function works. While the log normalized score will have a higher impact, there is not a
big di�erence between the three �lters scores, so the impact will be equal for all �lters.

Filter Normalized Score Log Normalized Score
Lithnet 0.072693726937269 0.983191557021510
OpenPasswordFilter 0.057011070110701 0.981633436380290
Entra 0.014003690036900 0.972631801899060

Table 5.14: Monte Carlo PSM Normalized Scores

5.4. Combined Results 59

5.4.1.3 MultiPSM

For the normalized MultiPSM scores, we use the Fusion Score results from Table 5.5, for all
three �lters.

MultiPSM Lithnet = 3.73

Normalized Score =
3.73� 0

10� 0
= 0.373

Log Normalized Score =
log(3.73)

log(10)
= 0.571708831809

MultiPSM OpenPasswordFilter = 3.48

Normalized Score =
3.48� 0

10� 0
= 0.348

Log Normalized Score =
log(3.48)

log(10)
= 0.541579243947

MultiPSM OpenPasswordFilter = 2.83

Normalized Score =
2.83� 0

10� 0
= 0.283

Log Normalized Score =
log(2.83)

log(10)
= 0.451786435524

The MultiPSM Fusion Scores were in a value range of 0 � 10, the normalized score is
simply just the Fusion Score, where the decimal has moved, giving us the score range of
0�1. In Table 5.15 we can see the log normalized scores are a bit higher than the normalized
scores, but the overall relationship between the three �lters scores remain the same, with
Lithnet having the highest score, followed by OPF and then Entra.

Filter Normalized Score Log Normalized Score
Lithnet 0.373 0.571708831809
OpenPasswordFilter 0.348 0.541579243947
Entra 0.283 0.451786435524

Table 5.15: MultiPSM Normalized Scores

5.4. Combined Results 60

5.4.1.4 fuzzyPSM

Since the fuzzyPSM score is in percentages, it is already in the range that we are normal-
izing to, therefore we only need to calculate the logarithmic normalized scores. However,
fuzzyPSM scores a lower percentage as good score, and a higher percentage as bad score.
This would result in a good fuzzyPSM score having a negative impact on the overall score,
which is not desired. To avoid this we subtract the score from 1. This is possible because
the score is already in the correct range of 0� 1.

Furthermore, to avoid dividing by 0, we multiply the scores by 100 in the logarithmic
normalized score. This approach maintains the percentage score while preventing log(1)
from being the maximum score dividend, thereby avoiding division by zero.

fuzzyPSM Lithnet = 0.0000175

Normalized score = 1� 0.0000175 = 0.9999825

Log Normalized Score =
log(100� (0.00175 ⇤ 10))

log(100)
= 0.99999619989

fuzzyPSM OpenPasswordFilter = 0.0000131

Normalized score = 1� 0.0000131 = 0.9999869

Log Normalized Score =
log((100� (0.0000131 ⇤ 100)))

log(100)
= 0.999997155353

fuzzyPSM Entra = 0.00000304

Normalized score = 1� 0.00000304 = 0.99999696

Log Normalized Score =
log(100� (0.000304 ⇤ 100))

log(100)
= 0.99999933987

In Table 5.16 the �nal normalized fuzzyPSM scores can be seen. Due to the original
scores from fuzzyPSM, in both the normalized scores and log normalized scores we end up
with near identical scores for all three �lters. And as the table shows, these scores are all
very high, being at least 0.99 in a range of 0� 1. This means that the impact of fuzzyPSMs
scores will only be positive for all three �lters.

Filter Normalized Score Log Normalized Score
Lithnet 0.9999825 0.99999619989
OpenPasswordFilter 0.9999869 0.99999933987
Entra 0.99999696 0.999997155353

Table 5.16: fuzzyPSM Normalized Scores

5.4. Combined Results 61

5.4.2 Normalized Guessing Attack Scores

5.4.2.1 Normalized Online Guessing Attack Scores

For the score calculations for online guessing attacks, we take the average successful guesses
for all thresholds and calculate the combined average guess percentage as seen in Table
5.17. We then use the combined average percentage along with the normalization formulas
described in Section 4.7 to calculate the score.

Lithnet OPF Entra
Threshold Average guess Average guess % Average guess Average guess % Average guess Average guess %
50 0 0% 0 0% 0 0
100 0 0% 0 0% 0.667 0.667%
200 0 0% 0 0% 9.667 4.833%
10000 0 0% 0 0% 4748 47.48%
54720 46 0.084% 81 0.148 32839 60.013%
Combined average % 0.016% 0.029% 22.599%

Table 5.17: Table showing the average amount of successful guesses for each threshold for online guessing
attacks. And the total average successful guess percentage across all three �lters.

Looking at the scores in Table 5.18 we see the resilience of Lithnet and OPF has to
online guessing attacks. Entra falls behind with a lower score re�ecting its inability to
e�ectively block weak passwords. It can also be seen that the log normalized score from
Entra is signi�cantly closer to the scores of Lithnet and OPF compared to the di�erence
seen between Entras normalized score and the normalized scores of Lithnet and OPF.

Filters Normalized Score Log Score
Lithnet 0.9998318713 0.9999634883
OPF 0.9997039474 0.9999357035
Entra 0.7740144152 0.9443745245

Table 5.18: Normalized online guessing attack scores for each of the password �lters.

5.4.2.2 Normalized O�line Guessing Attack Scores

For the score calculations we use the the formulas described in Section 4.7 with the percent-
ages from the o�ine guessing attack results from Table 5.10. An example of the normaliza-
tion calculations for the brute force attack are shown here, for the rest of the calculations
refer to appendix A.2.

Entra Brute Force = 22.55%

Normalized Score =
(100� 22.55)� 0

100� 0
= 0.7745

Log Normalized Score =
log(100� 22.55)

log(100)
= 0.94450845

5.4. Combined Results 62

Looking at Table 5.19, Lithnet performs the best in the Dictionary+Rules and PassGAN
attacks. Whereas, OPF performs the best in Brute Force and Dictionary attacks. Lithnets
scores suggest a well-balanced �lter with high resistance across various attack methods.
OPF scores also suggest a well-balanced �lter, that is on par with Lithnet, but is slightly
worse at protecting against the more sophisticated attacks (dictionary + rules and Pass-
GAN). Entra is by far the weakest �lter, with the lowest scores in all the attacks but Pass-
GAN, where it surprisingly performs the best.

Brute force Dictionary Dictionary + Rules PassGAN
Filter Normalized Score Log Score Normalized Score Log Score Normalized Score Log Score Normalized Score Log Score
Lithnet 0.8627805089 0.9679501627 0.9974429711 0.9994440371 0.9103673316 0.9796083324 0.9151778356 0.9807527468
OPF 0.8688228337 0.9694656131 0.9983910711 0.9996503442 0.8010391723 0.9518268772 0.8975965364 0.976540584
Entra 0.7744919357 0.94450845 0.892453823 0.9752928771 0.6851490099 0.9178925172 0.9605952376 0.9912702146

Table 5.19: Normalized scores for o�ine guessing attacks

5.4.3 Final Scores

Taking the results of the normalized scores, we can calculate the �nal scores for the �lters,
that determine their strength.

5.4.3.1 Average Score

The average score is calculated using the all the scores from Section 5.4.1 and Section 5.4.2.
Looking at the �nal average scores seen in Table 5.20 Lithnet scores the best with OPF

right behind. Entra scores the worst as expected considering the scores from Section 5.4.1
and 5.4.2.

Filter Average Score Log Scaled Score
Lithnet 0.7553534081 0.9098702956
OPF 0.7345231676 0.8998755507
Entra 0.6599885511 0.8638423646

Table 5.20: Table of �nal unweighted scores for Lithnet, OPF and Entra

5.4.3.2 Weighted Score

The weights for the weighted score calculations can be seen in Table 5.21 and Figure 5.21.
The heavily weighted scores are the zxcvbn and MultiPSM scores as well as the dictionary
and brute force attacks scores. The brute force and dictionary attacks is weighted higher
due to the simplicity of the attacks, and a low score in either would indicate that a �lter
has failed in blocking weak passwords. The PassGAN attack is weighted lower due to the
high barrier of entry in terms of carrying out the attack. The dictionary+rules attack is also
weighted lower considering the complexity of the attack compared to both the brute force
and dictionary attacks.
We have chosen to give higher weights to both the zxcvbn PSM and MultiPSM. This is due
to how well the two PSMs performed, and in part due to how both Monte Carlo PSM and

5.4. Combined Results 63

fuzzyPSM performed. The Monte Carlo PSM is weighted lower, due its results not being
very precise, the PSM is supposed to give a estimated guess number for the passwords.
The results seen from the Monte Carlo PSM, are too high compared to the results we have
seen with our own guessing attacks. fuzzyPSM is weighted lower for two main reasons,
�rst the results for all three �lters are too close, thereby not giving any real impact. The
second reason is that we don’t know what training data was actually used for the PSM,
which makes the results a bit less transparent.

Base weight zxcvbn MultiPSM Monte Carlo PSM fuzzyPSM Online Brute Force Dictionary Dictionary+Rules PassGAN
0.1111111111 0.1851851852 0.1851851852 0.03703703704 0.03703703704 0.1111111111 0.1666666667 0.1666666667 0.05555555556 0.05555555556

Table 5.21: Weights for the various scores for the Weighted Sum calculation

Figure 5.21: Radar plot of the weights used for the weighted score calculations

5.4. Combined Results 64

We use the weighted sum formula from Chapter 4, Section 4.7 to calculate the weighted
score, using the weights from table 5.21:

Filter Average Score Log Scaled Score
Lithnet 0.7548524033 0.8582502557
OPF 0.7387892902 0.8457093768
Entra 0.6482176158 0.7945063446

Table 5.22: Table of �nal weighted scores for Lithnet, OPF and Entra

Using the weights we see a drop in the overall scores for all �lters, Lithnet and OPF still
scores the best with Entra scoring the worst and being a�ected by the weights the most.

Chapter 6

Discussion

6.1 Evaluation

Looking at the results in Table 5.1 from Section 5.1.1 it is clear that Lithnet is the most
restrictive �lter, accepting the least amount of passwords, only accepting 13.62% of the
overall passwords passed through the �lters. It is also evident that the passwords Lithnet
does accept are strong with the lowest guess percentages from guessing attacks and highest
scores from the PSMs. Lithnet also achieves the highest �nal score both weighted and
unweighted of the three �lters evaluated in this thesis.

OPF produces very similar results to Lithnet, it has a slightly higher percentage of ac-
cepted passwords at 17.7%. This di�erence compared Lithnet stems from OPF generally
accepting more passwords from each list, especially from the PassGAN generated pass-
words and the Linkedin dataset. This is likely the cause of the slightly worse scores for
most of the PSMs and guessing attacks, though we would argue that the di�erence be-
tween OPF and Lithnet is negligible. While this only takes our method of calculating the
�lters strength into account, it must be clari�ed that the performance di�erence between
Lithnet and OPF is not negilably, as seen in Table 4.5.

Entra accepts by far the largest amount of passwords, accepting a total of 88.9% of the
overall passwords passed through the �lter. This makes Entra the only �lter evaluated in
this thesis that has a majority of accepted passwords. Entra also scores the worst in the
�nal scores as seen in Section 5.4.3, and consistently scores the worst, in zxcvbn PSM, Mul-
tiPSM, Monte Carlo PSM, o�ine guessing attacks, and online guessing attack. This by our
evaluation means that Entra is a worse Active Directory password �lter compared to both
Lithnet and OpenPasswordFilter.

Looking at the results from Chapter 5, we see that Entra did not accept any password
with a character length less than �ve. Interestingly this is a feature of the �lter that is
not speci�cally mentioned in the documentation. It is also the only one of the three �l-
ters evaluated in this thesis to do this. Entra while scoring the lowest and performing the
worst, does block signi�cantly more of the Chinese dataset compared to both Lithnet and
OpenPasswordFilter. Hinting at Entra being better suited for non-western languages, at

65

6.1. Evaluation 66

least when using Lithnets and OpenPasswordFilters default setups.

A noteworthy observation regarding the results of the Lithnet password �lter is that, de-
spite utilizing HaveIBeenPwned [21], it failed to block a signi�cant number of passwords
from the leaked lists, such as the LinkedIn list. Additionally, it did not block 13.5% of the
passwords from the Xato-Net list of commonly used passwords. Passwords that we would
expect to exist within the HaveIBeenPwned database [21].

When selecting a dictionary for o�ine guessing attacks, for the dictionary and dictio-
nary+rules attacks, our initial strategy was to use a password dictionary that contained
passwords not present in any of our password lists from Table 4.1. This led us to initially
dismiss the Crackstation password compilation dictionary, as wewere con�dent it included
many of the passwords we used to test the �lters. However, after further discussion, we
realized that excluding it would introduce bias and fail to accurately represent the �lters
e�ectiveness. If the �lters are not e�ectively blocking insecure passwords found in com-
monly used dictionaries, this issue would not be revealed if we used a dictionary that didn’t
include any of the passwords used to test the �lters.

When it comes to the online guessing attacks it is clear that Entra is signi�cantly more
vulnerable than the other two �lters. This is interesting as it shows Entra’s inability to
block a large number of commonly used passwords, which arguably is the most important
function of a blocklist and �lter. It shows that even with a high lockout restriction an at-
tacker could potentially get access within a relatively short amount of time. While we have
not con�gured the custom blocklist for Entra, it is only limited to 1,000 di�erent words.

There is one aspect of the �lters that has not been considered for this thesis and that is
the e�ect the �lters have on usability. Much of the literature mentions that con�guring
blocklists is a challenge and wrong implementations has a signi�cant e�ect on usability
[26] [55]. It is clear from the results, that the various �lters will have di�erent impacts on
usability due to the di�erent number of accepted passwords. We think it would be interest-
ing to research what exactly this impact is. To conduct this research, the user study from
the works of Tan et al. [55] could be followed. The reason this aspect has been left out of
the thesis is for scoping reasons.

To get all the results from MultiPSM on the rejected passwords in time for the deadline
of the thesis, a smaller random selection of rejected passwords from OPF was used to cal-
culate the score of the rejected passwords. This was done due to the speed of MultiPSM,
even when running more than 35 instances of MultiPSM on two di�erent desktop com-
puters it would take up towards a week to calculate roughly 70 millon passwords scores.
Calculating scores on a random selection of passwords potentially has an e�ect on the score
of the rejected passwords from OPF. As we can see in Table 5.5 in Section 5.4.1, the rejected
passwords fromOPF score closer to Entra, where one would expect it to be closer to Lithnet
when compared to the other PSM results.

6.2. Challenges and Obstacles 67

Using the Monte Carlo PSM [8] created by Dell’Amico et al. [9] we followed the GitHub
page instructions for training the PSM. Nevertheless, once we started using the PSM we
saw that the results where quite high. The PSM is supposed to estimate the number of
guesses needed to guess a given password. But the results returned by this PSM did just
not match the number of guesses actually needed. While we think there could be multiple
reasons behind this issue, we have two main theories. First, is that the training data used
is just not su�cient enough, even though it is documented on the GitHub page. The sec-
ond theory could be that the PSM might be outdated by today’s standards, the paper was
published in 2015, and password security has changed a lot since then.

6.2 Challenges and Obstacles

Our method described in Chapter 4 use a number of Password Strength Meters to help cal-
culate the strength of the password �lters. Some of these PSMs are built on models that
are trained with password data. Therefore, it is likely that some of the PSMs are trained
on the same data that we have used in our method, which potentially has an impact on
our methods results. The impact is not necessarily negative. It can be argued that while
there might be a password overlap between our method and the training data for the PSMs,
this data was chosen because these passwords are commonly used in the real world. By
excluding data in our method due to an overlap, we could introduce bias and be negatively
impacting our method and results. An example of the password overlap in our method and
PSMs, is fuzzyPSM by Wang et al. [61] and MultiPSM by Galbally et al. [16] who both use
the RockYou dataset, which we also have used to test the �lters.

As showcased in Chapter 4, we are using two di�erent scripts for automatically changing
passwords in our Active Directory environments. While we originally intended to only
use a single script. We quickly realized that due to the number of passwords we wanted
to run through the password �lters, the original simple script would not su�ce, with the
speeds we were seeing. We therefore developed a script that utilized parallel programming,
as to improve the speed. Unfortunately, we realized that the �lters themselves had quite
the impact on speed. From our tests, we saw that the Lithnet �lter improved signi�cantly
from the parallel script, but the two other �lters did not. Due to the time-limit of the thesis
we therefore decided to use both scripts, and get our results faster. The parallel script does
come with a downside of splitting the passwords lists. In our case on the Lithnet �lter, this
means that up to 30 of the passwords from each list potentially has been split randomly.
This will have an impact on the results, however we valued the time gain over the minimal
interference of up to a total of 360 passwords out of 88,346,298 passwords.

The time limit on the thesis and speed of the �lters, also signi�cantly impacted the amount
of password we in total got to run through the �lters. While we did manage to use 12 pass-
words lists with a total of almost 90 million password for each �lter, we initially wanted to
do much more extensive experiments. The works of Niseno� et al. [41] showcased a boot-

6.2. Challenges and Obstacles 68

strapped collection of passwords, that was found by searching in more than 450 service
breaches and 12 breach compilations. We initially wanted to use their methodology and
also run a much larger number of passwords through the �lters, we had more password
lists, including password compilations with hundreds of millions of passwords. However,
due to the speed and time factor, we had to signi�cantly reduce our total number of pass-
words. We therefore, opted to pick some of the more commonly used lists from academic
works such as the LinkedIn and RockYou dataset. We also speci�cally chose to work with
deep learning generated passwords. Due the nature of generated passwords we can be al-
most certain that the list we generate will contain passwords not present in any online or
public list. Furthermore, we chose to followWang et al. [62] and also include passwords of
di�ering origins, including passwords that use characters that is non-ASCII. The inclusion
of non-ASCII password lists, highlighted some interesting results. It is clear from both our
PSM results and guessing attacks, that non-ASCII passwords have a huge e�ect. Interest-
ingly, we noticed that the biggest impact here came from the Chinese passwords, which
had a much bigger impact than for example Cyrillic passwords or other non-ASCII pass-
words we found in the RockYou dataset.

Our thesis proposes a method for calculating the strength of Active Directory password
�lters, and we showcase this method against 3 �lters. We originally wanted to evaluate
four �lters the fourth being the Improsec password �lter [22] but we eventually dropped
it. This is due to the speed of the Improsec �lter simply being too slow as well as taking up
too many resources. Running the �lter in one of our VMs we had to allocate 22GB RAM
to the VM, for the �lter to run. These two factors required us to drop the Improsec �lter.
While not impossible to run all the passwords through the �lter, we calculated that with the
speed of the �lter it would take around 2000 hours. And since the �lter was very resource
intensive, we could not simply split the task out on multiple VMs.

Two of the three �lters we have tested, are open source and the third is commercial �l-
ter developed by Microsoft. We also would have liked to include more commercial �lters,
simply due to the di�erence in nature between closed commercial projects and open source
projects. As we can see with the Microsoft Entra �lter, the blocklist is kept secret and while
score calculation for the �lters backend is known due to Microsoft’s documentation [33],
there is still no way for an end user to know exactly what will be blocked and how secure
the �lter is. There exists many more commercial �lters, that would have proven interesting
to test in our thesis but due to costs and time it was not possible to include them.

As seen in our literature review, a lot of research into password strength uses Ur et al.
[58] Password Guessability Service. After conducting our literature review, we also wanted
to incorporate this into our thesis. We had two main thoughts for how we could use the
service for the thesis. First, using the service for the �nal �lter score estimation and calcu-
lation besides our own password guessing attacks. Furthermore, it could potentially have
been used as a accuracy ideal. Meaning that our own results from guessing attacks could
have been compared to the results from the service. Unfortunately, we never got access to
the Password Guessabiltiy Service. We requested the access twice, following the guide to
request access from their own documentation [5].

6.2. Challenges and Obstacles 69

When running the PSM fromGalbally et al. [15] we found that the executable often crashed
when running. The crash would happen if the password evaluated used non-ASCII char-
acters, or when the model used for the PSM encountered a password it could not handle.
To �x this issue we added exception handling to the code of the PSM so that it still contin-
ued to evaluate passwords skipping the ones that caused it to crash. This came into e�ect
when running passwords that contained Cyrillic, æøå, or Chinese characters with the PSM
completely unable to parse them. The impact of this can be seen in Chapter 5, speci�cally
in Table 5.5 where a lower amount of passwords are tested. The majority of the passwords
missing comes from the Russian and Chinese password lists.

Additionally, the speed of this password strength meter was found to be quite slow
compared to the other password strength meters used in our thesis. Fortunately, we could
somewhat solve the speed issue of the PSM by simply running multiple instances of the
PSM, where we at times had 30 instances of the PSM running. While 30 instances de�nitely
sped up the run time signi�cantly, we would have liked to have run even more instances,
but due to the program being quite resource intensive, we were only able to run 15 in-
stances on a machine with 64GB of RAM, of which we had two.

When it became evident that we would need the computing power of CLAAUDIA [57]
a HPC (High-Performance Computing) cloud service provided by Aalborg University for
the password guessing attacks, we faced the challenge of installing either John the Ripper
(JtR) or Hashcat on CLAAUDIA. Due to CLAAUDIA’s limited functionality, we had to build
a container with either JtR or Hashcat locally and then transfer it to CLAAUDIA. Initially,
we preferred JtR, as Ji et al. [23] had found it to be more e�ective. However, we discovered
that JtR was signi�cantly more di�cult to set up on CLAAUDIA and slower in terms of
password cracking speed. Consequently, we opted for Hashcat, which not only was easier
to set up but also o�ered additional functionality that bene�ted our thesis.

Chapter 7

Conclusion

This masters thesis presents a novel method combining Password Strength Meters (PSMs)
and password guessing attacks to evaluate password �lters for Microsoft Active Directory.
The method is used to evaluate three di�erent password �lters from Lithnet [28], Open-
PasswordFilter [54] and Microsoft Entra Password Protection [33]. We found that Lithnet
and OpenPasswordFilter successfully prevents weak passwords from being used, while En-
tra falls behind proving to be less e�ective in �ltering out weak passwords. The method
successfully leverages state of the art PSMs to measure the strength of passwords, and sev-
eral password guessing attacks to determine the e�ectiveness of the password �lters. Our
method captures these results in a �nal score, that ranks Lithnet as the best �lter, followed
by OpenPasswordFilter, and �nally Microsoft Entra Password Protection.

This masters thesis also presents an extensive literature search and review into contem-
porary research of password policies, password strength, and password guessing attacks.
Where we �nd that measuring password strength is a complicated and di�cult endeavor.
Password Polices should not rely on password complexity, and blocklists are e�cient but
are hard to e�ectively implement. We �nd and utilize modern techniques for password
guessing attacks such as PassGAN [20] which utilizes machine learning in order to con-
duct advanced o�ine guessing attacks.

70

Chapter 8

Future Work

The method we have proposed and tested in this thesis have shown that it can successfully
evaluate the e�ectiveness of Active Directory password �lters. However, as mentioned
throughout the thesis, the method is very time consuming for various reasons. One big
pitfall is the need to evaluate millions of passwords in the Active Directory to gather the
list of accepted passwords. For future work we would like to explore the possibilities of
using our method on a signi�cant lower number of passwords, that have been randomly
sampled from carefully selected password lists. This could potentially improve the speed of
our method to such an extent that it could be used in professional enterprise environments
as a part of security auditing. We would want to test this by running multiple experiments,
to see exactly how few passwords are needed to get good reliable results. This approach
would enhance the method discussed in this report, making it more feasible for further
development such as introducing new PSMs, password �lters, and reducing the hardware
demands associated with processing millions of passwords.

This could potentially lead to the development of a program that incorporates the tech-
niques described in this report, to make the test and evaluation of a password �lter fast and
easy.

Additionally the method could include a baseline evaluation of the passwords one would
run through the �lters, to see how well the passwords score without �ltering at all, which
could give great insights to how e�ective the �lters are.

Furthermore, we have successfully shown that it is possible to reveal at least part of the
Microsoft Entra Password Protection’s hidden default global banned list, that is responsible
for blocking weak passwords. We would like to further explore the possibilities of exposing
more of this list.

71

Bibliography

[1] MITRE ATTCK®. Use Alternate Authentication Material: Pass the Hash. https://
attack.mitre.org/techniques/T����/���/. 2023.

[2] beta6. PassGAN. https://github.com/beta�/PassGAN. 2023.
[3] Marina Sanusi Bohuk et al. “Gossamer: SecurelyMeasuring Password-based Logins”.

In: 31st USENIX Security Symposium (USENIX Security 22). 2022, pp. 1867–1884.
[4] Leon Bošnjak and Boštjan Brumen. “Rejecting the death of passwords: Advice for

the future”. In: Computer Science and Information Systems 16.1 (2019), pp. 313–332.
[5] Passwords Research Team at Carnegie Mellon University. The Carnegie Mellon Uni-

versity Password Research Group’s Password Guessability Service. https://pgs.ece.
cmu.edu/.

[6] Crowdstrike. What is a pass-the-hash attack? 2023. ���: https://www.crowdstrike.
com/cybersecurity-���/pass-the-hash/.

[7] Center for Cybersikkehed. Password-sikkerhed. 2023. ���: https://www.cfcs.dk/da/
forebyggelse/vejledninger/passwords/.

[8] MatteoDell’Amico.montecarlopwd. https://github.com/matteodellamico/montecarlopwd.
2017.

[9] Matteo Dell’Amico and Maurizio Filippone. “Monte Carlo strength evaluation: Fast
and reliable password checking”. In: Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security. 2015, pp. 158–169.

[10] dizcza. dizcza/docker-hashcat. https://hub.docker.com/r/dizcza/docker-hashcat.
2023.

[11] Qiying Dong et al. “RLS-PSM: a robust and accurate password strength meter based
on reuse, Leet and separation”. In: IEEE Transactions on Information Forensics and
Security 16 (2021), pp. 4988–5002.

[12] Brannon Dorsey. PassGAN. https://github.com/brannondorsey/PassGAN. 2017.
[13] Joshua Eckroth, Lannie Hough, and Hala ElAarag. “OneRuleToFindThem: E�cient

Automated Generation of Password Cracking Rules”. In: Journal of Computing Sci-
ences in Colleges 39.3 (2023), pp. 226–248.

[14] Enzoic. Enzoic for Active Directory. 2024. ���: https://www.enzoic.com/active-
directory-password-monitoring/.

72

https://attack.mitre.org/techniques/T1550/002/
https://attack.mitre.org/techniques/T1550/002/
https://github.com/beta6/PassGAN
https://pgs.ece.cmu.edu/
https://pgs.ece.cmu.edu/
https://www.crowdstrike.com/cybersecurity-101/pass-the-hash/
https://www.crowdstrike.com/cybersecurity-101/pass-the-hash/
https://www.cfcs.dk/da/forebyggelse/vejledninger/passwords/
https://www.cfcs.dk/da/forebyggelse/vejledninger/passwords/
https://github.com/matteodellamico/montecarlopwd
https://hub.docker.com/r/dizcza/docker-hashcat
https://github.com/brannondorsey/PassGAN
https://www.enzoic.com/active-directory-password-monitoring/
https://www.enzoic.com/active-directory-password-monitoring/

Bibliography 73

[15] Javier Galbally, Iwen Coisel, and Ignacio Sanchez. “A new multimodal approach for
password strength estimation—Part I: Theory and algorithms”. In: IEEE Transactions
on Information Forensics and Security 12.12 (2016), pp. 2829–2844.

[16] Javier Galbally, Iwen Coisel, and Ignacio Sanchez. “A new multimodal approach for
password strength estimation—Part II: Experimental evaluation”. In: IEEE Transac-
tions on Information Forensics and Security 12.12 (2017), pp. 2845–2860.

[17] Eva Gerlitz, Maximilian Häring, and Matthew Smith. “Please do not use!? _ or your
license plate number: analyzing password policies in german companies”. In: Seven-
teenth Symposium on Usable Privacy and Security (SOUPS 2021). 2021, pp. 17–36.

[18] Maximilian Golla and Markus Dürmuth. “On the accuracy of password strength me-
ters”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. 2018, pp. 1567–1582.

[19] Hana Habib et al. “Password creation in the presence of blacklists”. In: Proc. USEC
(2017), p. 50.

[20] Briland Hitaj et al. “Passgan: A deep learning approach for password guessing”.
In: Applied Cryptography and Network Security: 17th International Conference, ACNS
2019, Bogota, Colombia, June 5–7, 2019, Proceedings 17. Springer. 2019, pp. 217–237.

[21] Troy Hunt. haveibeenpwned. 2024. ���: https://haveibeenpwned.com/.

[22] Improsec. Improsec Password Filter. 2021. ���: https : / / github . com / improsec /
ImprosecPasswordFilter.

[23] Shouling Ji et al. “Zero-sum password cracking game: a large-scale empirical study
on the crackability, correlation, and security of passwords”. In: IEEE transactions on
dependable and secure computing 14.5 (2015), pp. 550–564.

[24] Saul Johnson et al. “Skeptic: Automatic, justi�ed and privacy-preserving password
composition policy selection”. In: Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security. 2020, pp. 101–115.

[25] JRC-PaStMe. JRC-PaStMe - License. https://github.com/ec-jrc/jrcpastme. 2019.

[26] Kevin Lee, Sten Sjöberg, and Arvind Narayanan. “Password policies of most top web-
sites fail to follow best practices”. In: Eighteenth Symposium on Usable Privacy and
Security (SOUPS 2022). 2022, pp. 561–580.

[27] Kyungchan Lim et al. “Evaluating Password Composition Policy and Password Me-
ters of Popular Websites”. In: 2023 IEEE Security and Privacy Workshops (SPW). IEEE.
2023, pp. 12–20.

[28] Lithnet. Lithnet Password Protection. 2023. ���: https://docs.lithnet.io/password-
protection.

[29] LastPass by LogMeIn. THE PASSWORD EXPOSÉ 8 truths about the threats–and oppor-
tunities–of employee passwords. https://www.lastpass.com/-/media/cd��d��ac����dfa���b����f�e�e���.
pdf. 2017.

https://haveibeenpwned.com/
https://github.com/improsec/ImprosecPasswordFilter
https://github.com/improsec/ImprosecPasswordFilter
https://github.com/ec-jrc/jrcpastme
https://docs.lithnet.io/password-protection
https://docs.lithnet.io/password-protection
https://www.lastpass.com/-/media/cd40d79ac0324dfa857b7942f0e0e080.pdf
https://www.lastpass.com/-/media/cd40d79ac0324dfa857b7942f0e0e080.pdf

Bibliography 74

[30] Microsoft. Active Directory Domain Services Overview. https://learn.microsoft.
com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-
directory-domain-services-overview. 2022.

[31] Microsoft. ActiveDirectory. ���: https://learn.microsoft.com/en-us/powershell/
module/activedirectory/?view�windowsserver����-ps.

[32] Microsoft.Domain Controller Roles. https://learn.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-����/cc������(v�ws.��). 2014.

[33] Microsoft. Eliminate bad passwords using Microsoft Entra Password Protection. https:
/ / learn . microsoft . com / en - us / entra / identity / authentication / concept -
password-ban-bad. 2021.

[34] Microsoft. NTLM Overview. https://learn.microsoft.com/en-us/windows-server/
security/kerberos/ntlm-overview. 2023.

[35] Microsoft. Password Filters. https://learn.microsoft.com/en-us/windows/win��/
secmgmt/password-filters. 2021.

[36] Microsoft. Password Filters. https://learn.microsoft.com/da-dk/windows/win��/
secmgmt/password-filters?redirectedfrom�MSDN. 2021.

[37] Microsoft. Password Policy. https : / / learn . microsoft . com / en - us / previous -
versions/windows/it-pro/windows-server-����/cc������(v�ws.��). 2009.

[38] Microsoft. Passwords must meet complexity requirements. https://learn.microsoft.
com/en-us/previous-versions/windows/it-pro/windows-server-����/cc������(v�
ws.��). 2012.

[39] Microsoft. Passwords technical overview. https://learn.microsoft.com/en- us/
windows-server/security/kerberos/passwords-technical-overview. 2021.

[40] Robert Morris and Ken Thompson. “Password security: A case history”. In: Commu-
nications of the ACM 22.11 (1979), pp. 594–597.

[41] Alexandra Niseno� et al. “A {Two-Decade} Retrospective Analysis of a University’s
Vulnerability to Attacks Exploiting Reused Passwords”. In: 32nd USENIX Security
Symposium (USENIX Security 23). 2023, pp. 5127–5144.

[42] NIST. Digital Identity Guidelines. 2023. ���: https://pages.nist.gov/���- ��-
�/sp���-��b.html.

[43] NIST. Electronic Authentication Guideline. 2004. ���: https://web.archive.org/web/
��������������/http://csrc.nist.gov/publications/nistpubs/���-��/SP���-
��v�_�_�.pdf.

[44] David Pereira, Joao F Ferreira, and Alexandra Mendes. “Evaluating the accuracy of
password strength meters using o�-the-shelf guessing attacks”. In: 2020 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE.
2020, pp. 237–242.

[45] Joseph Ryan Ries. PassFiltEx. 2023. ���: https://github.com/ryanries/PassFiltEx.

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://learn.microsoft.com/en-us/powershell/module/activedirectory/?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/powershell/module/activedirectory/?view=windowsserver2022-ps
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc786438(v=ws.10)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc786438(v=ws.10)
https://learn.microsoft.com/en-us/entra/identity/authentication/concept-password-ban-bad
https://learn.microsoft.com/en-us/entra/identity/authentication/concept-password-ban-bad
https://learn.microsoft.com/en-us/entra/identity/authentication/concept-password-ban-bad
https://learn.microsoft.com/en-us/windows-server/security/kerberos/ntlm-overview
https://learn.microsoft.com/en-us/windows-server/security/kerberos/ntlm-overview
https://learn.microsoft.com/en-us/windows/win32/secmgmt/password-filters
https://learn.microsoft.com/en-us/windows/win32/secmgmt/password-filters
https://learn.microsoft.com/da-dk/windows/win32/secmgmt/password-filters?redirectedfrom=MSDN
https://learn.microsoft.com/da-dk/windows/win32/secmgmt/password-filters?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc783512(v=ws.10)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc783512(v=ws.10)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc786468(v=ws.10)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc786468(v=ws.10)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc786468(v=ws.10)
https://learn.microsoft.com/en-us/windows-server/security/kerberos/passwords-technical-overview
https://learn.microsoft.com/en-us/windows-server/security/kerberos/passwords-technical-overview
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://web.archive.org/web/20040712152833/http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63v6_3_3.pdf
https://web.archive.org/web/20040712152833/http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63v6_3_3.pdf
https://web.archive.org/web/20040712152833/http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63v6_3_3.pdf
https://github.com/ryanries/PassFiltEx

Bibliography 75

[46] safepass.me. safepass.me. 2024. ���: https://safepass.me/safepass-me/.

[47] safepass.me. Specops Password Policy. 2024. ���: https://specopssoft.com/product/
specops-password-policy/.

[48] ScottyDoo. ChangePassword ADSI method not working (constraint violation). 2023.
���: https : / / forums . powershell . org / t / changepassword - adsi - method - not -
working-constraint-violation/�����.

[49] Sectona. Passwords technical overview. https://sectona.com/pam-���/authentication/
active-directory-based-authentication/.

[50] SeanM Segreti et al. “Diversify to survive: Making passwords stronger with adaptive
policies”. In: Thirteenth symposium on usable privacy and security (SOUPS 2017). 2017,
pp. 1–12.

[51] Tobias Seitz et al. “Do di�erences in password policies prevent password reuse?”
In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems. 2017, pp. 2056–2063.

[52] Claude Elwood Shannon. “A mathematical theory of communication”. In: The Bell
system technical journal 27.3 (1948), pp. 379–423.

[53] Beth Sheresh and Doug Sheresh. Understanding directory services. Sams Publishing,
2002.

[54] Josh Stone.OpenPasswordFilter. https://github.com/jephthai/OpenPasswordFilter.
2018.

[55] Joshua Tan et al. “Practical recommendations for stronger, more usable passwords
combiningminimum-strength,minimum-length, and blocklist requirements”. In: Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Se-
curity. 2020, pp. 1407–1426.

[56] Hugo Bu�Typhlosaurus.How can I split a text �le using PowerShell? 2012.���: https:
//stackoverflow.com/questions/�������/how-can-i-split-a-text-file-using-
powershell.

[57] Aalborg University. CLAAUDIA. 2023. ���: https : / / www . researcher . aau . dk /
contact/claaudia.

[58] Blase Ur et al. “Measuring {Real-World} Accuracies and Biases in Modeling Pass-
word Guessability”. In: 24th USENIX Security Symposium (USENIX Security 15). 2015,
pp. 463–481. ���: https://pgs.ece.cmu.edu/.

[59] Maxsud Usmonov. “Identi�cation and Authentication”. In: Scienceweb academic pa-
pers collection (2021).

[60] Ding Wang. fuzzyPSM. https://github.com/NKUSec/fuzzyPSM. 2019.

[61] DingWang et al. “fuzzyPSM: A new password strength meter using fuzzy probabilis-
tic context-free grammars”. In: 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE. 2016, pp. 595–606.

https://safepass.me/safepass-me/
https://specopssoft.com/product/specops-password-policy/
https://specopssoft.com/product/specops-password-policy/
https://forums.powershell.org/t/changepassword-adsi-method-not-working-constraint-violation/21535
https://forums.powershell.org/t/changepassword-adsi-method-not-working-constraint-violation/21535
https://sectona.com/pam-101/authentication/active-directory-based-authentication/
https://sectona.com/pam-101/authentication/active-directory-based-authentication/
https://github.com/jephthai/OpenPasswordFilter
https://stackoverflow.com/questions/1001776/how-can-i-split-a-text-file-using-powershell
https://stackoverflow.com/questions/1001776/how-can-i-split-a-text-file-using-powershell
https://stackoverflow.com/questions/1001776/how-can-i-split-a-text-file-using-powershell
https://www.researcher.aau.dk/contact/claaudia
https://www.researcher.aau.dk/contact/claaudia
https://pgs.ece.cmu.edu/
https://github.com/NKUSec/fuzzyPSM

Bibliography 76

[62] DingWang et al. “No single silver bullet:Measuring the accuracy of password strength
meters”. In: Proc. USENIX SEC 2023. 2023, pp. 1–28.

[63] Daniel Lowe Wheeler. “zxcvbn:{Low-Budget} Password Strength Estimation”. In:
25th USENIX Security Symposium (USENIX Security 16). 2016, pp. 157–173.

[64] Claes Wohlin. “Guidelines for snowballing in systematic literature studies and a
replication in software engineering”. In: Proceedings of the 18th international con-
ference on evaluation and assessment in software engineering. 2014, pp. 1–10.

[65] zxcvbn. ���: https://github.com/dropbox/zxcvbn?tab�readme-ov-file.

[66] zxcvbn. 2021. ���: https://github.com/dwolfhub/zxcvbn-python.

https://github.com/dropbox/zxcvbn?tab=readme-ov-file
https://github.com/dwolfhub/zxcvbn-python

Appendix A

Appendixes

A.1 Advanced Password Changing Script

1 �stopWatch � [System.Diagnostics.Stopwatch]::StartNew()
2

3 �from � "C:\Users\Administrator\Desktop\Passwords\linkedinclean.txt"
4 �rootName � "C:\Users\Administrator\Desktop\Passwords\Split\split"
5 �ext � "txt"
6

7 �limit � ��
8

9

10 �upperBound � (Get-Item �from).Length / �limit
11

12 �Calculate uppbound � filsize / ���
13

14

15 �fromFile � [io.file]::OpenRead(�from)
16 �buff � new-object byte[] �upperBound
17 �count � �idx � �
18 try {
19 do {
20 �count � �fromFile.Read(�buff, �, �buff.Length)
21 if (�count -gt �) {
22 �to � "{�}.{�}.{�}" -f (�rootName, �idx, �ext)
23 �toFile � [io.file]::OpenWrite(�to)
24 try {
25 �"Writing �count to �to"
26 �tofile.Write(�buff, �, �count)
27 } finally {

77

A.1. Advanced Password Changing Script 78

28 �tofile.Close()
29 }
30 }
31 �idx ��
32 } while (�count -gt �)
33 }
34 finally {
35 �fromFile.Close()
36 }
37

38

39 �
40 � Test the passwords:
41 �
42

43 �splitList � Get-ChildItem -Path
"C:\Users\Administrator\Desktop\Passwords\Split" -Attributes !Directory,!

44

45 �splitList | ForEach-Object -Parallel {
46 �list � �_
47

48 � �passwords � Get-Content �list
49

50

51 �number � (�list | Select-Object -ExpandProperty Name)
52 �number � �number.Split('.')[-�]
53 � �user � 'CN�test' � �number � ',CN�Users,DC�passwordfilter,DC�local'
54

55 �acceptedFile � (�list | Select-Object -ExpandProperty Name) �
"_accepted.txt",!

56 �rejectedFile � (�list | Select-Object -ExpandProperty Name) �
"_rejected.txt",!

57 New-Item -Path "C:\Users\Administrator\Desktop\Passwords\Split\accepted\"
-Name �acceptedFile -ItemType "file",!

58 New-Item -Path "C:\Users\Administrator\Desktop\Passwords\Split\rejected\"
-Name �rejectedFile -ItemType "file",!

59 �acceptedFile � "C:\Users\Administrator\Desktop\Passwords\Split\accepted\"
� �acceptedFile,!

60 �rejectedFile � "C:\Users\Administrator\Desktop\Passwords\Split\rejected\"
� �rejectedFile,!

61

62

A.1. Advanced Password Changing Script 79

63 �User � "test" � �number
64 �DomainDN � �(([adsisearcher]"").SearchRoot.path)
65 �Filter �

"(&(objectCategory�person)(objectClass�user)(samaccountname��User))",!

66 �Searcher � New-Object System.DirectoryServices.DirectorySearcher
67 �Searcher.Filter � �Filter
68 �Searcher.SearchScope � "Subtree"
69 �Searcher.SearchRoot � New-Object

System.DirectoryServices.DirectoryEntry('LDAP://CN�test' � �number �
',CN�Users,DC�passwordfilter,DC�local')

,!

,!

70

71

72 �reader � New-Object -TypeName System.IO.StreamReader -ArgumentList �list
73

74 while (�password � �reader.ReadLine()){
75 �foreach (�password in �passwords) {
76

77 try {
78

79 �objUser � �Searcher.FindOne().GetDirectoryEntry()
80 �objUser.PsBase.Invoke("SetPassword", �password)
81 �objUser.CommitChanges()
82

83 � Set-ADAccountPassword -Identity �user -Reset -NewPassword
(ConvertTo-SecureString -AsPlainText �password -Force),!

84 � Write-Output(�password � " accepted by " � �user)
85

86 � The password change succeeded, so log the password in the allowed
list,!

87 Out-File -FilePath �acceptedFile -Append -Encoding utf�
-InputObject �password,!

88 }
89 catch {
90 � The password change failed, so log the password in the denied

list,!

91 � Write-Output(�password � " rejected by " � �user� " " �
�_.Exception.Message),!

92

93 (�password � " " � �_.Exception.Message) | Out-File -FilePath
�rejectedFile -Append -Encoding utf�,!

94 }
95 }

A.1. Advanced Password Changing Script 80

96 } -ThrottleLimit �limit
97

98

99

100 �
101 � Combine the split files:
102 �
103

104 �rejectedList � Get-ChildItem -Path
"C:\Users\Administrator\Desktop\Passwords\Split\rejected",!

105 New-Item -Path "C:\Users\Administrator\Desktop\Passwords\Split\rejected\" -Name
"combined.txt" -ItemType "file",!

106

107 �upperBound � �upperBound*�
108

109 foreach(�list in �rejectedList) {
110 �file � "C:\Users\Administrator\Desktop\Passwords\Split\rejected\" � (�list

| Select-Object -ExpandProperty Name),!

111

112

113 �fromFile � [io.file]::OpenRead(�file)
114 �toFile �

[io.file]::Open("C:\Users\Administrator\Desktop\Passwords\Split\rejected\combined.txt",
[io.FileMode]::Append, [io.FileAccess]::Write)

,!

,!

115 �buff � new-object byte[] �upperBound
116

117 try {
118 �count � �fromFile.Read(�buff, �, �buff.Length)
119

120 �tofile.Write(�buff, �, �count)
121 } finally {
122 �tofile.Close()
123 }
124 �fromFile.Close()
125 }
126

127

128 �acceptedList � Get-ChildItem -Path
"C:\Users\Administrator\Desktop\Passwords\Split\accepted",!

129 New-Item -Path "C:\Users\Administrator\Desktop\Passwords\Split\accepted\" -Name
"combined.txt" -ItemType "file",!

130

A.1. Advanced Password Changing Script 81

131 foreach(�list in �acceptedList) {
132 �file � "C:\Users\Administrator\Desktop\Passwords\Split\accepted\" � (�list

| Select-Object -ExpandProperty Name),!

133

134

135 �fromFile � [io.file]::OpenRead(�file)
136 �toFile �

[io.file]::Open("C:\Users\Administrator\Desktop\Passwords\Split\accepted\combined.txt",
[io.FileMode]::Append, [io.FileAccess]::Write)

,!

,!

137 �buff � new-object byte[] �upperBound
138

139 try {
140 �count � �fromFile.Read(�buff, �, �buff.Length)
141

142 �tofile.Write(�buff, �, �count)
143 } finally {
144 �tofile.Close()
145 }
146 �fromFile.Close()
147 }
148

149 Write-Output("Deleting files: " � �stopWatch.Elapsed)
150

151 Get-ChildItem "C:\Users\Administrator\Desktop\Passwords\Split" -Include *split*
-Recurse -Force | Remove-Item -Recurse -Force,!

152

153

154

155

156 �stopWatch.stop()
157 Write-Output("Time: " � �stopWatch.Elapsed)

A.2. Password Guessing Attacks Scripts 82

A.2 Password Guessing Attacks Scripts

A.2.1 Python Script For O�line Password Guessing Using Hashcat

1 import subprocess
2

3 def brute(file_path):
4 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max��� {file_path} "?d?d?d?d?d?d?d?d?d?d?d" -o
hashcat_attack�.txt --outfile-format�� --potfile-path�potfile.pot'

,!

,!

5 subprocess.run([hash_cmd], shell�True)
6 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max�� {file_path} "?l?l?l?l?l?l?l?l" -o hashcat_attack�.txt
--outfile-format�� --potfile-path�potfile.pot'

,!

,!

7 subprocess.run([hash_cmd], shell�True)
8 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max�� {file_path} "?u?u?u?u?u?u?u?u" -o hashcat_attack�.txt
--outfile-format�� --potfile-path�potfile.pot'

,!

,!

9 subprocess.run([hash_cmd], shell�True)
10 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max�� {file_path} "?s?s?s?s?s?s?s?s" -o hashcat_attack�.txt
--outfile-format�� --potfile-path�potfile.pot'

,!

,!

11 subprocess.run([hash_cmd], shell�True)
12 hash_cmd � f'hashcat -d �,� -m ���� --attack-mode � --increment

--increment-max�� {file_path} "?a?a?a?a?a?a" -o hashcat_attack�.txt
--outfile-format�� --potfile-path�potfile.pot'

,!

,!

13 subprocess.run([hash_cmd], shell�True)
14

15 def dictionary(file_path, wordlist):
16 hash_cmd � f'hashcat -d �,� -m ���� {file_path} {wordlist} -o

hashcat_attack�.txt --outfile-format�� --potfile-path�potfile.pot',!

17 subprocess.run([hash_cmd], shell�True)
18

19 def rule(file_path, wordlist, ruleset):
20 hash_cmd � f'hashcat -d �,� -m ���� {file_path} {wordlist} -r {ruleset} -o

hashcat_attack�.txt --outfile-format�� --potfile-path�potfile.pot',!

21 subprocess.run([hash_cmd], shell�True)
22

23 def PassGAN(file_path, wordlist, ruleset):
24 hash_cmd � f'hashcat -d �,� -m ���� {file_path} {wordlist} -r {ruleset} -o

hashcat_attack�.txt --outfile-format�� --potfile-path�potfile.pot',!

25 subprocess.run([hash_cmd], shell�True)
26

A.2. Password Guessing Attacks Scripts 83

27 def main():
28 file_path � '' �input all accepted passwords for a given filter
29 wordlist � 'realhuman_phill.txt'
30 ruleset � 'OneRuleToRuleThemAll.rule'
31 GAN � 'gen_passwords���mil.txt'
32 try:
33 brute(file_path)
34 dictionary(file_path, wordlist)
35 rule(file_path, wordlist, ruleset)
36 PassGAN(file_path, GAN, ruleset)
37 except:
38 print("An error occurred.")
39

40 if __name__ �� "__main__":
41 main()
42

A.2.2 Python Script For Online Password Guessing

1 def count_matching_entries(file�, file�, num_entries):
2 with open(file�, 'r') as f�:
3 entries� � set(f�.read().splitlines()[:num_entries])
4

5 with open(file�, 'r') as f�:
6 entries� � set(f�.read().splitlines())
7

8 matching_entries � entries�.intersection(entries�)
9 return len(matching_entries)
10

11 file�_path � '' �input list of common passwords
12 file�_path � '' �input all accepted passwords for a given filter
13

14 guesses � [��, ���, ���, �����, �����]
15 for i in range(�):
16 matching_count � count_matching_entries(file�_path, file�_path, guesses[i])
17 print(f"Passwords guessed with {guesses[i]}:", matching_count)
18

A.3. Score Calculations For Password Guessing Attacks 84

A.3 Score Calculations For Password Guessing Attacks

A.3.1 Normalized O�line Brute Force Scores

Entra Brute Force = 22.55%

Normalized Score =
(100� 22.55)� 0

100� 0
= 0.7745

Log Normalized Score =
log(100� 22.55)

log(100)
= 0.94450845

Lithnet Brute Force = 13.72%

Normalized Score =
(100� 13.72)� 0

100� 0
= 0.8628

Log Normalized Score =
log(100� 13.72)

log(100)
= 0.9679501627

OpenPassWordFilter Brute Force = 13.12%

Normalized Score =
(100� 13.12)� 0

100� 0
= 0.8688

Log Normalized Score =
log(100� 13.12)

log(100)
= 0.9694656131

A.3.1.1 Normalized O�line Dictionary Scores

Entra Dictionary = 10.75%

Normalized Score =
(100� 10.75)� 0

100� 0
= 0.8925

Log Normalized Score =
log(100� 10.75)

log(100)
= 0.9752928771

Lithnet Dictionary = 0.25%

A.3. Score Calculations For Password Guessing Attacks 85

Normalized Score =
(100� 0.25)� 0

100� 0
= 0.9975

Log Normalized Score =
log(100� 0.25)

log(100)
= 0.9994440371

OpenPasswordFilter Dictionary = 13.12%

Normalized Score =
(100� 13.12)� 0

100� 0
= 0.8688

Log Normalized Score =
log(100� 13.12)

log(100)
= 0.9996503442

A.3.1.2 Normalized O�line Dictionary+Rules Scores

Entra Dictionary = 31.48%

Normalized Score =
(100� 31.48)� 0

100� 0
= 0.6852

Log Normalized Score =
log(100� 31.48)

log(100)
= 0.9178925172

Lithnet Dictionary = 8.96%

Normalized Score =
(100� 8.96)� 0

100� 0
= 0.9104

Log Normalized Score =
log(100� 8.96)

log(100)
= 0.9796083324

OpenPasswordFilter Dictionary = 19.89%

Normalized Score =
(100� 19.89)� 0

100� 0
= 0.8011

Log Normalized Score =
log(100� 19.89)

log(100)
= 0.9518268772

A.3. Score Calculations For Password Guessing Attacks 86

A.3.2 Normalized O�line PassGAN+Rules Scores

Entra Dictionary = 3.94%

Normalized Score =
(100� 3.94)� 0

100� 0
= 0.9606

Log Normalized Score =
log(100� 3.94)

log(100)
= 0.9912702146

Lithnet Dictionary = 8.48%

Normalized Score =
(100� 8.48)� 0

100� 0
= 0.9152

Log Normalized Score =
log(100� 8.48)

log(100)
= 0.9807527468

OpenPasswordFilter Dictionary = 10.24%

Normalized Score =
(100� 10.24)� 0

100� 0
= 0.8976

Log Normalized Score =
log(100� 10.24)

log(100)
= 0.976540584

	Front page
	English title page
	Danish title page
	Contents
	0.1 Reading Guide

	Preface
	1 Introduction
	1.0.1 Motivation
	1.0.2 Contribution

	2 Background
	2.1 Password History
	2.2 Directory Services
	2.2.1 Active Directory
	2.2.2 Active Directory Password Filters

	2.3 Authentication
	2.4 Password Entropy
	2.5 Leaked Credentials
	2.6 Password Guessing Attacks
	2.6.1 Offline Password Guessing Attacks
	2.6.2 Online Password Guessing Attacks

	3 Related Work
	3.1 Systematic Literature Search
	3.2 Related Works Review
	3.2.1 Password Strength
	3.2.2 Password Policies
	3.2.3 Password Guessing Attacks

	3.3 Literature Review Summary

	4 Methodology
	4.1 Ethical Concerns
	4.2 Experimental Setup
	4.3 Password Lists
	4.3.1 Generating Passwords Using PassGAN

	4.4 Password Filters to be Evaluated
	4.5 Automated Password Change Script
	4.5.1 Script Optimizations
	4.5.2 Final Scripts

	4.6 Password Strength Measurement
	4.6.1 Password Strength Meters
	4.6.2 Password Cracking

	4.7 Calculating Overall Score
	4.7.1 Normalizing Scores

	4.8 Method Summary

	5 Results
	5.1 Passwords Accepted by Filters
	5.1.1 Lithnet Filter
	5.1.2 OpenPasswordFilter Filter
	5.1.3 Entra Password Protection
	5.1.4 Summarized

	5.2 Password Strength Meter Results:
	5.2.1 zxcvbn
	5.2.2 MultiPSM
	5.2.3 Monte Carlo
	5.2.4 fuzzyPSM

	5.3 Guessing Attacks
	5.3.1 Online Attack on Accepted Passwords
	5.3.2 Offline Guessing Attacks on Accepted Passwords
	5.3.3 Offline Guessing Attacks on Rejected Passwords

	5.4 Combined Results
	5.4.1 Normalized Password Strength Meter Scores
	5.4.2 Normalized Guessing Attack Scores
	5.4.3 Final Scores

	6 Discussion
	6.1 Evaluation
	6.2 Challenges and Obstacles

	7 Conclusion
	8 Future Work
	Bibliography
	A Appendixes
	A.1 Advanced Password Changing Script
	A.2 Password Guessing Attacks Scripts
	A.2.1 Python Script For Offline Password Guessing Using Hashcat
	A.2.2 Python Script For Online Password Guessing

	A.3 Score Calculations For Password Guessing Attacks
	A.3.1 Normalized Offline Brute Force Scores
	A.3.2 Normalized Offline PassGAN+Rules Scores

