
Malware analysis environment with
the use of Elastic Stack

Master Thesis

Songshuo Wang/20220323

Aalborg University Copenhagen

Robotics
Aalborg University

http://www.aau.dk

Title:
Malware analysis environment with the use
of Elastic Stack

Theme:
Thesis Project

Project Period:
Spring Semester 2024

Project Group:

Participant(s):
Songshuo Wang
No. 20220323

Supervisor(s):
Marios Anagnostopoulos

Page Numbers: 56

Date of Completion:
May 30, 2024

Abstract:

As malware evasion and obfuscation tech-
niques become more powerful, sandboxing,
the current workhorse for dynamic mal-
ware analysis, becomes time-consuming
when confronted with specific malware. In
this thesis, we discuss an alternative ap-
proach to dynamic malware analysis that is
different from sandboxing, i.e., using Elas-
tic Stack to perform dynamic analysis. This
is done by installing and running Elastic-
search, Kibana and integrations, then run-
ning real malwares to collect data, and fi-
nally using a graphical interface to per-
form in-depth analysis of the malware’s
behaviour. This thesis finally summarises
some methods as well as examples for de-
termining malware behaviour and more im-
portantly describes the detailed steps for
analysis using Elastic Stack.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.aau.dk

Contents

1 Introduction 1
1.1 Problem formulation . 2

1.1.1 Contribution . 2
1.1.2 Limitations . 3

1.2 Structure of the report . 3

2 Background 5
2.1 Introduction to malware . 5

2.1.1 What is malware . 5
2.1.2 Introduction of CIA . 5
2.1.3 Malware Classification . 6

2.2 Malware analysis . 8
2.2.1 Static malware analysis . 8
2.2.2 Dynamic malware analysis . 8
2.2.3 Dynamic analysis VS Static analysis . 9
2.2.4 Using Elastic Stack instead of sandbox 10

2.3 Introduction to Elastic Stack . 11
2.3.1 Elastic Stack and malware analysis . 12

3 Literature Review 13
3.1 Dynamic malware analysis techniques . 13

3.1.1 Dynamic analysis with machine learning 13
3.1.2 Dynamic analysis with sandboxes . 14

3.2 Principles of Malware . 14
3.3 Elastic Stack in cyber security . 15

4 Methodology 16
4.1 Analysis design . 16

4.1.1 Network Topology-based analysis . 16
4.1.2 Analysis in the infected machine . 18

4.2 Malware selection . 18

ii

Contents iii

4.2.1 Worms . 19
4.2.2 Ransomware . 19
4.2.3 Trojan Horses . 20
4.2.4 Decision . 20

4.3 Implementation . 20
4.3.1 Installation . 20
4.3.2 Configuration . 21
4.3.3 Integration . 22
4.3.4 Fleet server,Elastic agent and policy . 23
4.3.5 Rules . 24
4.3.6 Snapshot . 25
4.3.7 The Alert dashboard . 25

5 Analysis and Results 27
5.1 Analysis . 27

5.1.1 syt.exe . 27
5.1.2 FinalPayload.exe . 32
5.1.3 b23.exe . 36
5.1.4 torn.exe . 42

6 Discussion and Conclusion 46
6.1 Discussion . 46
6.2 Conclusion . 50

6.2.1 Secure system . 50
6.2.2 Detect malware . 50

6.3 Summary and future work . 53

Bibliography 54

Chapter 1

Introduction

In an era where technology plays an integral role in facilitating organizational operations,
the escalating reliance on digital infrastructure has brought forth a critical concern – the
pervasive threat of cyber attacks. Malicious activities, particularly in the form of malware,
pose substantial risks to the confidentiality, integrity, and availability of sensitive informa-
tion. As organizations grapple with the evolving landscape of cyber security threats, it
becomes imperative to devise robust mechanisms for the detection and mitigation of these
digital menaces.

This MSc thesis embarks on the journey to construct a specialized environment dedi-
cated to monitoring malware activities, utilizing the power of the Elastic Stack. This project
focuses on the malware behaviour using the Event analysis feature of Elastic Defend. The
subsequent phase of the project involves the meticulous collection and analysis of logs
generated during these experiments. This wealth of data will be harnessed to develop ad-
vanced methodologies for malware detection. By deciphering the patterns and anomalies
within the log files, the research aims to enhance our understanding of malware behaviors,
ultimately contributing to the development of effective countermeasures.

As the digital landscape continues to evolve, the significance of proactive cyber security
measures cannot be overstated. This thesis seeks to address the pressing need for innova-
tive approaches in monitoring and countering malware activities. Through the fusion of
cutting-edge technology and empirical experimentation, this research endeavors to make
substantial strides in fortifying organizations against the ever-evolving threat landscape of
cyber attacks.

1

1.1. Problem formulation 2

1.1 Problem formulation

This project focuses on two main parts: the Elastic Stack and dynamic malware analysis.
Since Elastic is not widely used for dynamic malware analysis, it is necessary to under-
stand its preparation and its advantages. In this project, an attempt has been made to
answer the following questions, the first two about Elastic Stack and the last two about
dynamic malware analysis.

1.What preparation is needed for dynamic malware analysis with Elastic Search?

2.What are the advantages of using Elastic Stack for dynamic malware analysis?

3.How is the security of the system guaranteed when performing dynamic analyses?

4.What behaviours in dynamic analysis identify a target program as malware?

1.1.1 Contribution

This research project seeks to address a critical gap in the realm of cyber security by fo-
cusing on the dynamic analysis of malware activities and leveraging the Elastic Stack for
comprehensive monitoring.

By delving into the specifics of dynamic malware analysis and the utilization of Elastic
Stack and related tools, this research aims to advance the understanding of malware be-
haviors in real-world scenarios.

The significance of this research lies in its practical application, aligning with the evolv-
ing landscape of cyber security threats. Through a systematic study of existing literature
on dynamic malware analysis and hands-on experimentation with Elastic Stack, the project
endeavors to offer a nuanced perspective on malware detection. The insights gained from
the analysis of logs not only contribute to the academic discourse on cyber security but also
hold practical implications for organizations seeking effective countermeasures against
malware.

This research project contributes by providing a hands-on exploration of dynamic mal-
ware analysis, experimentation with Elastic Stack, and a detailed analysis of logs to en-
hance our understanding of malware activities. The ultimate goal is to empower organi-
zations with practical insights and recommendations to fortify their defenses against the
persistent and evolving threat of malware in the digital landscape.

1.2. Structure of the report 3

1.1.2 Limitations

Although this project has tried to cover as many situations as possible, some limitations
are unavoidable. Among them, the main challenge is that the research samples and data
are not diverse, which will lead to a certain gap between the final results and the real
world. Addressing this issue in the future may involve working with companies to obtain
real-world samples to further analyze data about malware.

In addition, this project does not consider the impact of human factors, such as user
awareness. Malware campaigns frequently leverage psychological tactics, and user behav-
ior plays a crucial role in either fortifying or compromising cyber security defenses. With
psychology or human Cooperating with behavioral experts and using a multidisciplinary
approach to research may be a solution. In addition, if more people conduct research on
this project again in the future, simulating the behavior of real corporate employees is also
a possible solution to this problem.

It is also unfortunate that due to laptop disk space issues, this project did not imple-
ment the building of a network topology to study the spread of malware. If the machine
has sufficient space in future studies, it would be necessary to create a topology to perform
a dynamic analysis.

1.2 Structure of the report

In the first chapter of this report, the malware threats faced in today’s cyber world are
introduced and a targeted technical approach is proposed to address such threats, namely
Elastic Stack.

In Chapter 2, this chapter explains some of the meanings of terms related to this project,
such as malware and Elastic Stack.This information provides comprehensive background
knowledge of what is being analyzed, the analyze methodology, and the needed tools.

Chapter 3 focuses on making a summary of the research literature related to this paper.
Similar to Chapter 2, the summarised literature is also divided into three categories, re-
search objectives, research tools and research methods. By reviewing the research methods
and results of previous literature, it was aim to provide new inspiration for this project as
well as improve the research methodology.

In Chapter 4, this chapter describes how the research methodology was conceptualised
and implemented as appropriate to the specifics of this project. It includes comparisons
and trade-offs between different research approaches and research objectives, considering
their strengths and weaknesses in a comprehensive manner.

1.2. Structure of the report 4

Chapter 5 presents the results of this project and the process of analysing these results.

In Chapter 6, it is divided into two parts. The discussion section records the problems
encountered in the course of this project, which are intended to assist subsequent research,
and the conclusion section summarises the findings of this project.

Chapter 2

Background

2.1 Introduction to malware

2.1.1 What is malware

There are many definitions of malware,for example:From the definition of Cisco: "Mal-
ware, short for malicious software, refers to any intrusive software developed by cyber-
criminals (often called hackers) to steal data and damage or destroy computers and com-
puter systems" [1] and also, the experts in ENISA mentioned: "The word Malware is
derived from the term ’Malicious Software’. Any piece of software that performs unde-
sirable operations such as data theft or some other type of computer compromise can be
categorised as Malware"[2].
As can be seen from the above two definitions, how to explain the "malicious behavior" of
malware is the key to defining malware. In this project, we define malicious behavior as
"behavior that intentionally harms the target CIA."
Therefore, in this project, we follow as the definition of malware: a piece of program code
which aim to harm the target CIA.

2.1.2 Introduction of CIA

As Sun Tzu said :"If you know the enemy and know yourself you need not fear the results
of a hundred battles."[3]So in order to analysis the malware,we must know what the mal-
ware’s purpose: breaking the CIA.
C: Confidentiality relates to the privacy of data, which means that unauthorised access
needs to be prevented. Confidentiality is achieved when, for example, an email requires
a token to read it, and hacker who do not have that token cannot access the data in the
email even they hijack the email.
I: Maintaining the integrity of data means that it must be protected from malicious modifi-
cation. In the previous email example, if the hacker can delete or tamper with the content,
the data would lose integrity.

5

2.1. Introduction to malware 6

A: Maintaining availability means that the system is capable to do the intended function.
Similarly, in the previous email example, the receiver can successfully read the full mes-
sage means that usability is guaranteed.

2.1.3 Malware Classification

In the survey by O’Or-Meir et al.[4], it was noted that malware is divided into three main
classes, each of which is has many subclasses. This classification received wide acceptance,
so this project partially follows that survey’s classification when presenting the malware
classification. These are Type, behaviour and privilege.In this project, a specific type of
malware is planned to be selected for study. This is due to the fact that the functionality
and purpose of the malware varies greatly between different malware, so there is a need
to select a malware that meets the experimental environment and experimental conditions
for the study. The specific selection process is described in the methodology chapter4.

Type

• Virus

Viruses are usually malicious code present in certain files that are capable of spread-
ing between hosts. The term is also commonly used to refer to many types of mal-
ware in general. One example is ILOVEYOU, discovered in 2000, which spreads by
e-mail, overwriting the victim’s files.

• Worm

Worms can also spread between hosts, and because they are not restricted by the
host programs, they spread back faster and are more threatening [5]. For example,
the Code Red worm[6], which takes advantage of a buffer overflow vulnerability to
spread quickly and perform DDOS attacks.

• Trojan horse

Trojans are malware disguised as ordinary programs that do not propagate or repli-
cate, and their main purpose is to act as a backdoor for attackers to steal private
information, etc. An example of this is the Zeus Trojan [7], which injects malicious
code into web browsers to record keystrokes, credentials, and other sensitive infor-
mation.

• Ransomware

Ransomware usually encrypts the victim’s files as a way to demand a ransom. A
typical example of ransomware is wannacry, which appeared in 2017. It spreads on
Windows machines via a vulnerability called EternalBlue, encrypts the victim’s data
and demands Bitcoin to unlock it.

2.1. Introduction to malware 7

• Cryptojacking malware

The main function of cryptojacking malware is to use the victim’s device for mining
without the victim’s knowledge. This can consume a lot of power from the victim’s
device and is relatively difficult to detect because there is no obvious malicious be-
haviour. For example, Coinhive[8] is a well-known Cryptojacking malware in recent
years,and it is used to mine bits of the Monero cryptocurrency.

Behavior

• Denying service

The purpose of this behaviour is to disrupt the availability of the victim’s system,
such as a DDOS attack, by generating a large number of requests through a botnet to
overload the target so that it cannot continue to serve legitimate users [9].In a DOS
attack, the main intent of the malware is to compromise Availability in the CIA. this
means preventing the victim from working normally [10].

• Information stealing

This behaviour usually includes theft of credentials, personal privacy, confidential
data and so on. It also breaks the confidentiality in the victim system’s CIA by
stealing sensitive data.

• Spreading

Self-propagation is common with viruses and worms, which take advantage of sys-
tem vulnerabilities and network connections to rapidly infect multiple victim ma-
chines. The Morris Worm [11] , discovered in 1988, did nothing but replicate and
infect itself, but that was enough to cause massive network slowdowns.

Privilege

• User mode(Ring 3) User mode has the lowest privileges, programs running in it have
access to only a limited number of resources. It is not difficult to remove malware
running in user mode.

• Kernel Mode(Ring 0) The core of the operating system is called the kernel mode,
malware that runs in kernel mode has access to all services including the hardware
system, this malware is also known as rootkit.

• Hypervisor(Ring -1) The Hypervisor has higher privileges and this technique man-
ages the operation of virtual machines. This means that if the malware has such
privileges, it can escape detection by analytical tools.

• Hardware (Ring -3) Malware that infects hardware will be trickier to detect because
it will have more means of evading detection and can attack from outside the CPU.

2.2. Malware analysis 8

2.2 Malware analysis

2.2.1 Static malware analysis

Static analysis means analyzing the malware without actually running it.
Static analysis mainly uses PEbear, PEview, IDA and other tools to disassemble mal-

ware code and observe strings, libraries or functions for malicious behaviour.
For example, look at the file hash and compare it to malware database (such like virus-

total), or use IDA to list the strings of the file and look for comments left by careless
authors. And watch for suspicious function calls, such as the keylogger [12].

2.2.2 Dynamic malware analysis

Dynamic analysis refers to the process of analysing a piece of malware by executing it and
observing its behaviour; the goal of the analysis is to expose the activities of the malware
as it runs in a secure environment [4].

The typical dynamic malware analysis tool are sandboxes.The ability of sandboxes is
to provide a secure environment in which to dynamically run malware.The sandboxing
system can highlight malicious activities, such as modification entry in registry, deleting,
uploading files in a system[13].

One of the famous example sandbox is Cuckoo sandbox [14].The figure below shows
how does the Cuckoo sandbox work.In short, the host machine is responsible for initiating
analysis and monitoring malicious behaviour and generating analysis reports, while the
client machine acts as a restricted environment to run the malware and then transmits the
results of the analysis back to the Cuckoo[15].

2.2. Malware analysis 9

Figure 2.1: How Cuckoo works

[15]

But using sandboxes for dynamic malware analysis is not perfect. Many sandboxes,
such as Cuckoo, have a number of shortcomings that cannot be ignored.Aaron Walker et
al. show that Cuckoo’s malware threat scoring is arbitrary: "The arbitrary nature of the
Cuckoo scoring methodology casts confusion upon the threat level of a given malware
sample."[16] Moreover,if the authors of the malware have fully researched how the sand-
box works, then they may intentionally evade detection.When the malware detects it is
running in a simulated environment, it can show non-suspicious behaviour or just stop
running[17].

2.2.3 Dynamic analysis VS Static analysis

One of the most attractive features of static analysis is that it eliminates the need to actually
run the malware, which also keeps the system safe. However, the threat of malware is also
greatly reduced if it is run in a controlled virtual environment and can be restored to its
initial state. In this way, the advantages of static analysis over dynamic analysis are not
obvious. In addition, static analysis has many shortcomings.

• More complicated

Compared to dynamic analysis, static analysis requires the researcher to have more

2.2. Malware analysis 10

knowledge such as assembly language, hardware fundamentals, and so on. These
are not beginner friendly. Dynamic analysis, on the other hand, can use graphical
tools, etc., to clearly reflect the behaviour of the malware without having to directly
study the underlying code logic.

• Evasion Techniques

Modern malware makes extensive use of techniques such as obfuscating code and
self-packaging to circumvent detection. This makes it difficult to perform static anal-
yses. As more and more diverse evasion techniques emerge, static study of the code
will also become more time consuming. In contrast, dynamic analysis is able to skip
obfuscation behaviours and capture malicious behaviours without the need to study
the underlying logic of these obfuscated behaviours. This greatly saves analysis time
and increases efficiency.

By considering the above points, this project finally decided to use dynamic analysis to
study malware.

2.2.4 Using Elastic Stack instead of sandbox

As mentioned earlier, there are many problems with using sandboxes to study malware.
And for these problems, Elastic Stack deals with them well [18].

• Complicated sandbox formation process

The powerful analysis capabilities of many sandboxes are undeniable. But with it
comes a complicated configuration process. This can include installing and configur-
ing many interdependent pieces of software, such as Regshot, Wireshark, ProcMon,
etc. This also means that there is more uncertainty, and in the event of a problem
with one application, it may not be possible to carry out the analysis successfully.
And this is something Elastic Stack handles very well. For researching malware,
there are only two files to download and a few integrations, making it very beginner
friendly.

• Risk of being detected by malware

As previously stated, there is a risk that the sandboxes currently in general use on
the web are recognised by malware. Malware authors will purposefully detect these
sandbox features, stop execution, and even modify logs. Comparatively speaking,
Elastic is a latecomer and is constantly being updated, up to version 8.13 so far. This
means that each update to Elastic refines known issues, making malware detection
more difficult.

2.3. Introduction to Elastic Stack 11

2.3 Introduction to Elastic Stack

The latest Elastic Stack is very simple, requiring only Elastic, Kibana and integrations.

• Elasticsearch

Elasticsearch is a distributed RESTful search and analytics engine for indexing and
analysing all kinds of data like registry,system commands[19].Some of the key fea-
tures include: open source, easy to extend and integrate, powerful RESTful API, with
real-time analytics capabilities[20].

• Kibana

The main function of Kibana is to provide data visualisation. Examples include pie
charts, table charts, geographic maps, etc. and uses a browser interface that is flexible
and easy to use.

• Integrations

In the latest version, integrations replaces Logstash, filebeat, etc., making the Elastic
Stack more streamlined. integrations includes a number of useful tools and applica-
tions, including Elastic Defend, which is the focus of this project, and Integrations.
Integrations has a very easy to use UI on Kibana, and can often be installed and run
with a single click’add integration’.

Figure 2.2: Powerful visualisation of Kibana

2.3. Introduction to Elastic Stack 12

• Elastic Defend

Elastic Defend belongs to integrations and needs to be installed in order to be used in
Elastic.Elastic Defend has a wide range of features such as blocking malware, threat
detection, identifying cloud threats and more[21].In this project, the main use was its
ability to detect malware, by installing Rules, Elastic Defend was able to detect and
alert on malicious behaviours, as well as perform Event Analyze on each malicious
behaviour.

• Fleet and Agent

Elastic Agent is used to monitor the host’s data, logs, and so on, and re-query data
from the operating system[22], a host can only be configured with one Elastic Agent.

Fleet’s role is to provide a web-based UI for managing connected Elastic Agents and
their policies, i.e., multiple Elastic Agents can be associated with a single Fleet Server
to monitor the data of multiple hosts at the same time.

Figure 2.3: Fleet server and Elastic agent

2.3.1 Elastic Stack and malware analysis

Elastic Stack’s data analysis capabilities are very powerful, which makes it an ideal tool
for analysing malware. Typically, log datasets for malware analysis are relatively large,
capable of reaching hundreds of megabytes in large cases, or even in gigabytes. and one
of the advantages of using ELK technology is the ability to handle large volumes of data.
At the same time, Elasticsearch uses unsupervised machine learning algorithms, which
can help researchers efficiently detect anomalies in the system and thus identify malware
infections. In addition, visualisation is also an important advantage, because the number of
system logs is huge, and there is a lot of useless information, and malware analysis needs
to look for possible suspicious points in a large amount of useless data, which makes
the visualisation can minimise the pressure on researchers and improve the efficiency of
analysis.

Chapter 3

Literature Review

This project is about using Elastic Stack to perform dynamic analysis of malware. So in
the literature research, the focus is on what methods the researchers have used to perform
dynamic analysis of malware, how Elastic Stack can be specifically applied to the analysis
steps and learning the principles of malware propagation based on papers. The aim is to
synthesise and compare the research methods of these literatures and get inspiration that
can be used to refine the analysis methods of this project.

3.1 Dynamic malware analysis techniques

3.1.1 Dynamic analysis with machine learning

In the field of malware analysis, traditional analysis methods are considered time consum-
ing and complex, so people have started to combine emerging machine learning and AI
techniques with malware analysis. Nassiri et al.[23] applied the Random Forest algorithm
from machine learning to improve the accuracy of log analysis to 92 percent.Similarly, Si-
hwail et al.[24] applied machine learning in their study on dynamic analysis of malware.
They used a number of algorithms including vector machine (SVM), the decision tree,
Naïve Bayes (NB) to learn and classify malicious behaviours. Although machine learning
is not the main focus of this project, the dynamic research methods proposed by these
authors are very valuable, e.g. combining behavioural and memory analysis, API function
calls.

In addition, researchers have discovered the power of neural networks in the field of
malware analysis. In a study by YT Huang et al.[25] the authors developed a neural net-
work that became TagSeq to identify malicious behaviour. This paper analyses in detail the
life cycle of Eggnog malware, malicious behaviours, etc., pointing out three very valuable
observations, namely: access to system resources (e.g. registry entries), limited informa-
tion about malware family names and studying the complexity of individual program API
calls. These problems are solved by the TagSeq technique proposed by the authors. This

13

3.2. Principles of Malware 14

paper is very inspiring for this project as it not only provides more ideas for dynamic
analysis of malware, but also provides a solution to the potential difficulties.

3.1.2 Dynamic analysis with sandboxes

Sandbox have long been an important tool for conducting dynamic malware research, such
as Cuckoo. in the 2018 paper by Sainadh Jamalpur et al.[13] a detailed process of sand-
box analysis is shown, including the study of Process tree, Dropped files, register files.
even though this project ultimately does not consider the using sandboxes for dynamic
analysis, this paper still provides a great deal of valuable guidance on dynamic analysis.
Similarly, Chih-Hung Lin et al.[26] used sandboxes, their approach used VTCSandbox and
used a more novel technique, namely virtual time controller for their study. This complex
technique includes hypervisor security monitor, the key acceleration component, VTC and
sandbox. While the details of this technique are outside the scope of this project’s imple-
mentation, the techniques demonstrated in the paper to prevent malware from evading
detection and to optimise the speed of detection are valuable to this project.

3.2 Principles of Malware

Only by understanding how malware works can researchers know how to perform dy-
namic analysis and where to find data representing malicious behaviour. In Long Chen et
al.[27]’s study, after complex computation of Graph Clustering, Behaviour Analysis, and
machine learning of detection algorithms, the authors summarised malware propagation
models including Social Network Propagation, Network-Level Propagation and Telecom
Network, etc. Although this research focuses on mobile malware propagation models, its
value lies in providing the principles of malware propagation, and it is not difficult to
apply them to the study of non-mobile malware.

Similarly, in the study by P Eder-Neuhauser et al.[28] the propagation characteristics of
three types of malware and countermeasures are explained. They are: pandemic malware,
endemic malware and contagion malware. for the first malware, the authors propose that
it is characterised by aggressive scanning, automatic initiation of TCP connections and a
relatively simple payload. For the second malware, the characteristics also include auto-
matic initiation of TCP connections, list scanning, and a large payload. And in Contagion
malware, the characteristics are passive scanning, TCP connections are also legitimate and
have larger payload.After complex calculations and derivations, the authors propose that
the malware propagation can be detected by restricting VLANs, deploying firewalls, using
asymmetric encryption and IDS. This article uses a very complex and scientific approach
with a lot of calculations, which is beyond the scope of this project, but nevertheless, the
topology construction, malware propagation characteristics and detection methods pro-
posed by the authors are very informative.

Worms are a typical type of malware, and they are also ideal samples for studying

3.3. Elastic Stack in cyber security 15

the principles of malware propagation. In the study of worm propagation by Jun Li et
al.[29] the basic principles of how to detect worms are explained in detail and a novel
worm detector called SWORD is proposed.In the paper it is suggested that worm detec-
tion is divided into host and network and specific detection methods are given such as
buffer overflow detection, memory errors etc. are used for host detection and observing
signatures and detecting traffic are used for network detection. The article also suggests
that the traditional detection scheme cannot cope well with the worm’s superior means of
evading detection, and gives SWORD as a solution: combining two detectors, BDD (Burst
Duration Detector) and QPD (Quiescent Period Detector), to detect worms. This means
that if a worm wants to avoid detection, it has to ensure both a long activity period and a
enough quiescent periods,which is very difficult. In the end, SWORD’s detection results
were impressive, which is very informative for the worm research in this project.

3.3 Elastic Stack in cyber security

A convenient and powerful tool is very important in conducting malware research. Elastic
Stack was chosen for this project, and the experience of some researchers in using Elastic
Stack and how to use it were also referred to. For example, in the paper by Alin Puncioiu
et al.[30] the authors use Elastic Stack stacks to detect attacks. Specifically, the authors
used Winlogbeat to send logs to Logstash for processing, and also integrated virustotal
inside Logstash to scan for malware. For Elasticsearch, the authors integrated it with
MISP to search for malware activity information. After setting all this up, the authors
enabled network monitoring and used Packetbeat to analyse network traffic. In addition,
the authors configured machine learning inside Elasticsearch to detect anomalies. In the
end, the results section of the article clearly demonstrates how powerful Elastic Stack is, as
it successfully detected a large number of malware domains, and data leakage attacks.The
topic of this paper fits well with this project, so the tests mentioned in the article as well
as the methods of using them are very helpful for the deployment and implementation of
this project.

Although this project does not use CTI (Cyber Threat Intelligence) technology, the
study by Hamad Almohannadi et al.[31]still provides inspiration and reference for analysis
using Elastic Stack. The authors first searched out the attack events and logs using elastic-
search and then visualised them using Kibana.Similarly, in N Shah et al.[32]although there
is no guidance on how to use Elastic Stack to analyse malware, this paper is still highly
informative because malware analysis requires sifting through a large number of text logs,
so optimising the efficiency of the work is particularly important. To improve the efficiency
of Elastic Stack, the authors put forward three suggestions, namely: an optimised shard
size, a standardized structure for data and a specific configuration file.

Chapter 4

Methodology

4.1 Analysis design

In designing the research methodology, two approaches were considered: building a net-
work topology for the research, which means separating the monitoring machine from the
infected machine. Or using only one machine and running malware analysis while it is
infected.

4.1.1 Network Topology-based analysis

In the early stages of this project, a topology-based research method was the preferred
option. The reasons are based on the following:

• Observing how malware spreads

Spreading between networks and replicating itself has always been a signature be-
haviour of malware. Building a topological network can be easy to study the mech-
anism of malware propagation.

• Securing the analysing machine

On the analyser, since its task is not to collect data, it is possible to run powerful virus
protection programs. This means that even if malware spreads over the network to
the analyser machine, firewalls and virus detection programs will isolate the threat
in the first instance and protect the normal operation of the analyser machine.

• More data

Malware may have different behaviours on different systems and versions, so build-
ing experimental machines for different systems and versions helps to collect more
data for a more comprehensive analysis.

16

4.1. Analysis design 17

Due to the above attractive advantages, the following topology network was attempted
to be built using GNS3 at the beginning of the implementation of this project:

Figure 4.1: Ideal case topology

The topology plan uses PC3 as the analysis machine , and PC1 ,PC2 as the infected
data collection machines.

This method relies on the previously mentioned Elastic agent and Fleet server. The core
implementation idea is to configure Fleet server in the research machine, and then enroll
the elastic agent of the infected machine into the Fleet server of the research machine to
obtain the data of the infected machine. This means that all infected machines and research
machines need to run Elasticsearch.

However, after a period of trial and error, several major flaws in this research method-
ology were exposed.

Since the implementation of this project is restricted to a personal laptop, memory
footprint becomes a huge issue for the implementation of this topology. If too little run-
ning memory is allocated to the VMs, for example 2GB, then the individual VMs will be
extremely slow when running Elastic Stack. As an example, loading the Elastic pre-built
rules (a rule base with 1088 inspection rules) took the VMs up to an hour or so to load. To
make matters worse, there is a high probability that the VM will simply crash and have to

4.2. Malware selection 18

be restarted while loading.
However, allocating more memory to each VM would cause the host to become over-

whelmed. To be clear, to start the GNS3 topology, the official GNS3 VM will also be
started automatically. this further compresses the available space. Eventually the topol-
ogy network research method had to be cancelled due to the difficult to balance memory
issues.

4.1.2 Analysis in the infected machine

The modified solution is to use both Fleet server and Elastic agent on one machine, and
when infected by malware, Elastic Defend is an integration that collects alerts and analysis
of malware behaviours. This solution proved to be a huge space saving solution and
ensured that the virtual machine was up and running.

However there are drawbacks to this method. This approach does not provide the ‘de-
tection of malware propagation’ and ‘more data’ previously mentioned in the topological
network approach.

It is also important to mention that since the machine needs to run both malware and
detection, it is important to make sure that the malware used is not so powerful that it can
modify Elasticsearch logs, as well as other malicious behaviours that affect the operation
of the software. One example of this is that when trying to run the Tsuchigumo.bat mal-
ware[33], Elasticsearch is unable to collect alerts and data, the possible reason for this is
that this software shuts down windows explorer.

While this method does have the problems mentioned above, the impact of these draw-
backs can be reduced to a minimum. Firstly, there is the problem of not being able to detect
malware propagation, even though malware propagation and self-replication is a feature
of viruses, but not all of them. Excluding this, some very obvious malicious behaviours
can be detected, such as modifying the registry and invoking ping commands. So in this
approach, although it is not possible to detect if the malware is spreading in the network,
it is still possible to dynamically analysis other malicious behaviours. The collection of
‘more data’ is essentially to ensure the accuracy of the analysis results, for which multiple
runs of malware on the same machine can achieve similar results. Lastly, regarding the
issue of some malware being too powerful, since this project is not focused on countering
powerful malware, low or medium threat malware is a more ideal sample to analysis.

4.2 Malware selection

In this section different malware to be selected will be compared and finally one will be
selected for analysis.Viruses will be omitted because they can be considered as an alias or
generic term for a type of malware.And for cryptojacking malware, which is also not on
the research candidate list for this project because of its specialised use.

4.2. Malware selection 19

4.2.1 Worms

Worms are often considered a subclass of viruses. Unlike viruses, worms do not usu-
ally require a file, or user action, to propagate[34]. The advantages and disadvantages
regarding the use of worms are listed below:

Advantages

• Relatively simple Since the main purpose of a worm is to spread over the Internet,
most worms do not seriously affect the normal operation of the operating system
itself.

• Clear purpose The main purpose of the worm is clear: to propagate. So the goal is
relatively clear and the behaviour is easier to understand during the research process.

Disadvantages

• Evading detection Worms have been iterated over a long period of time, so it is also
very likely that the detection means to make detection to avoid detection.

• Threat to the host machine Some powerful worms are even able to spread to host
machines via virtual machines, which is a very dangerous behaviour.

4.2.2 Ransomware

Advantages

• Very obvious infectious behaviour Ransomware is designed to block the victim’s
files, so it is very easy to detect the malicious behaviour of this software. This may
facilitate data collection.

Disadvantages

• Dangerous behaviour Ransomware’s malicious behaviour is often designed to be
dangerous or even irreversible in order to be able to effectively blackmail its victims.
This is not an advantage for the research of this project.

• Functional complexity In order not to be easily disarmed by the victims, the authors
of ransomware usually design it to be extremely complex with many functions. This
makes it difficult to be detected and analysed.

4.3. Implementation 20

4.2.3 Trojan Horses

Advantages

• Relatively safe Trojans are generally designed as a backdoor, so there is no obvious
dangerous behaviour.

• Persistent Once enabled, Trojans are likely to stay on continuously, which means the
research window is also longer and more conducive to data collection.

Disadvantages

• Difficult to detect While it has the advantage of being more secure, this is also a
disadvantage. The lack of obvious malicious activity means that even if the data
collection window is long, it is not easy to obtain information.

• Complication Modern Trojans can be so complex and multifunctional that it may be
difficult to find their primary intent in a dynamic study.

4.2.4 Decision

After reflecting on and comparing the advantages and disadvantages of using these mal-
ware for research, the project ended up using a worm for dynamic analysis. This was
because the risk was too high for ransomware, which could directly affect system opera-
tion and block files, so it was discarded. It was a little difficult to choose between worms
and Trojan horses, but worms were chosen because the project initially planned to run the
analysis in a network, so more data would be collected using worms. The decision to use
worms was kept even though the plan later proved to be unachievable.

4.3 Implementation

4.3.1 Installation

In the latest version (8.13) of Elastic Stack, there is no need to download as many installa-
tion packages as in previous versions, It only needs to download and install Elasticsearch
and Kibana from the official website. There are two deployment options in the latest ver-
sion, local installation of Elastic Stack or using Elastic Cloud, the latter has the advantages
of faster deployment, less space, and comes with AI assistants, but it requires a monthly
rent, while the former can be obtained for free. Since this project is not complex, it is
natural to choose locally deployed Elastic Stack.

4.3. Implementation 21

4.3.2 Configuration

The first thing to do is to note down the initial user elastic and its password. After launch-
ing elasticsearch.bat for the first time, the programme will automatically generate the elas-
tic super account and corresponding password, which will be printed to the screen.

Figure 4.2: Initial user

After that, it is necessary to configure the elasticsearch.yml file , such as configuring
‘network.host’ as the IP address of the machine and ‘path.logs’ as the appropriate path.
Once the configuration is complete, the default server address can be accessed by typing
https://localhost:9200 into browser with elastic user and password.

Figure 4.3: Elasticsearch web page

4.3. Implementation 22

Once successfully logged in to the Elasticsearch web page, it is important to configure
Kibana for a more intuitive and user-friendly graphical interface. Kibana requires an
enrollment token to pair with Elasticsearch, which is printed in the output of the initial
run of elasticsearch.bat, and also by running elasticsearch-create-enrollment-token -s kibana.
Kibana runs on port 5601 by default. Enter localhost:5601 in a browser to access the Kibana
interface.

Figure 4.4: Kibana web page

4.3.3 Integration

After configuring Elasticsearch and Kibana, the integrations need to be added.For this
project, a total of five integrations have been added, namely Fleet Server , Elastic Agent ,
Elastic Defend , System,where Fleet Server and Elastic Agent are required to enable Elastic
Defend, which is used to dynamically analysis malware. System is mainly used to help
collect log files generated by the system.

4.3. Implementation 23

Figure 4.5: Elastic Defend

4.3.4 Fleet server,Elastic agent and policy

In this step, the Fleet server is set up first, then the agent, and finally the policy is added
to the agent. None of these steps are complicated and the official quick guide helps one to
complete the configuration quickly:

Figure 4.6: Fleet Server setup

After configuring the Fleet server and agent, the next step is to create a policy and add

4.3. Implementation 24

the required integrations to the policy.

Figure 4.7: Policy

After everything is configured, a functioning Fleet server should show up as healthy.

Figure 4.8: Healthy server

The final step is to set Elastic Defend’s detection rule to detect instead of prevent,
otherwise it will prevent the malware from running.

4.3.5 Rules

Elastic Defend requires the addition of detection rules to properly detect malicious be-
haviour. To add detection rules, the API intergration key must be configured in Kibana by
running kibana-encryption-keys generate and copying the three lines of text generated to the
bottom of kibana.yml. In this project, the three lines of text are:

xpack.encryptedSavedObjects.encryptionKey: 8ecc89df163bcfb5b85c85ee399ed88c
xpack.reporting.encryptionKey: 6415fccafc8bb8e0c2bee7f63101dd76
xpack.security.encryptionKey: 91e5966510f7c5df409823cd6b15dfd2

4.3. Implementation 25

After configuring the API intergration key, the next step is to install elastic with the
built rules. Once installed, use the bulk action to select Enable All.

4.3.6 Snapshot

After this is all set up, Elastic is ready to detect the malware. However, before the malware
can actually run, the Internet connection must be severed and the host machine needs to
ensure that virus protection software such as Windows Defender, McAfee, etc. is turned on
to prevent the malware from exploiting a vulnerability to escape from the virtual machine
and compromise the host machine’s system security. More importantly, snapshots must
be taken of the initial system state before running the malware, with the aim of restoring
it to an uninfected state for the next malware after researching one, and taking snapshots
also ensures that the virtual machine can be rolled back to a backup state and continue to
run after an irreversible event.

Figure 4.9: Rules

4.3.7 The Alert dashboard

With all rules enabled, Elastic has been able to detect malware running. However, during
the course of this project, an issue arose: the Alert interface did not show new alerts
immediately after running malware. So after each malware run, Elasticsearch and Kibana
had to be restarted to refresh the page and get new alerts.

4.3. Implementation 26

Figure 4.10: Alert Dashboard

Chapter 5

Analysis and Results

This chapter includes all malware analysis process and results. A total of four malware
were studied in this project, and the all malware samples were obtained from the Malware
Bazaar database[35].

5.1 Analysis

5.1.1 syt.exe

Base information of syt.exe malware:

Figure 5.1: Information of syt.exe

27

5.1. Analysis 28

1. Overview

An overview of the syt.exe malware’s behaviour is clearly depicted in Elastic’s Anal-
ysis Event interface. First, the malware calls winlogon.exe, modifies two registry
contents, then runs userinit.exe, followed by explorer.exe, and does a number of
actions. Finally, the main program syt.exe was run and 50 files were modified.

Figure 5.2: syt.exe overview

2. Winlogon.exe

The main responsibilities of Winlogon.exe[36] include loading user configuration
files, SAS identification, assigning initial processes to users, etc. The target of the
malware to call winlogon.exe is not clear , usually winlogon.exe is a legitimate sys-
tem process, and in the process of running the program, no abnormality has been
detected, so it is assumed that the malware is running winlogon.exe in order to cover
up its malicious behaviours.

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\Winlogon\PasswordExpiryNotification\NotShownTime

The registry path refers to the specific user and the user’s SUID, and the win-
dows registry settings under that user, respectively. What’s really interesting is
that the malware modifies the NotShownTime under PasswordExpiryNotifica-
tion with the following operation: registry.data.strings 10::09::15, 2024/05/10
This modification means that from 10 May 2024, the password expiry notifi-
cation for this particular user has been delayed by 10 days, 9 hours and 15
minutes.

• Registry change:

5.1. Analysis 29

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\Winlogon\PasswordExpiryNotification\NotShownReason

Under this registry, the malware modification is registry.data.strings Password-
NeverExpires. this means that the reason users are not notified of password
changes is that the password never expires.

• Purpose One possibility for the malware’s modification of the registry regarding
password expiration prompts is that the malware wants to prevent users from
changing their passwords, making it easier for hackers to subsequently brute-
force the credentials.

3. Userinit.exe

Figure 5.3: syt.exe userinit.exe

Userinit.exe is usually started by winlogon.exe as part of the login process. It ensures
that the user’s environment is set up correctly and ready to use. Again this is part of
the legitimate processes of the system and no malicious behaviour is detected. Again
the assumption is that this is a malware strategy to avoid detection.

4. explorer.exe

explorer.exe has performed a lot of operations. It contains 13 files, 6 libraries, 5 net-
work operations and 392 registry operations. After research, no malicious behaviour
was detected.

5.1. Analysis 30

Figure 5.4: syt.exe explorer from any.run

[37]

5. syt.exe

The main malware programme changed 50 files,and the evidence can be seen in the
target folder :

Figure 5.5: syt.exe file changes detection

5.1. Analysis 31

Figure 5.6: syt.exe file Evidence

And then, these files generated by the main malware program were also analysed,
and the result for one of them is as follows:

Figure 5.7: One of the exe files

This means that this executable also performs file operations. And this file is also
marked as malicious when it is placed in databases such as Virustotal.

6. Result

After detailed analysis of the teardown of each step of the malware’s operation, a
reliable hypothesis is that the malware is designed to prevent users from changing
their passwords, generating more malware in the target folder (which is consistent
with the characteristics of a worm), while running legitimate processes to disguise
themselves.

5.1. Analysis 32

5.1.2 FinalPayload.exe

Base information of FinalPayload.exe:

Figure 5.8: Information of FinalPayload.exe

1. Overview

FinalPayload.exe seems to run the main program twice (the hash here actually refers
to FinalPayload.exe, which can be thought of as a file alias.) Changed four files and
the registry six times. Finally ran schtasks.exe and called a library.

5.1. Analysis 33

Figure 5.9: Modifed registry by malware

2. FinalPayload.exe 1st time

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\UNCAsIntranet

In this registry path, ZoneMap is used to classify website trust based on trust
level. And the next value of UNCAsIntranet represents whether or not Univer-
sal Naming Convention (UNC) paths are considered part of the Intranet area in
Internet Explorer.
If the value of UNCAsIntranet is set to 1, websites accessed using UNC paths
are treated with the same level of security as websites in the Intranet area. This
means that security checks are less stringent.
If the value of UNCAsIntranet is set to 0, UNC paths are not considered part
of the Intranet area. These paths may have higher security restrictions. This
explains why malware was detected that changed this value to 1.

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\AutoDetect

Auto-detect is a feature in Internet Explorer that automatically determines the
safe areas of visited websites. In this registry, registry.data.strings was modified
by malware to 0.And this may also be to match the UNCAsIntranet value set
earlier.

5.1. Analysis 34

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\IntranetName

Sites included in the IntranetName list are usually treated with a lower level of
security than sites in the Internet zone. This can allow for more relaxed security
measures, such as automatic logins or access to internal resources. This registry
value is usually a string, and it is not yet clear why malware set it to 1.

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\ProxyBypass

ProxyBypass specifies a list of sites or domains that should bypass any config-
ured proxy server. Traffic directed to these bypassed sites will connect directly
to the Internet without going through a proxy. The value of ProxyBypass usu-
ally consists of a string containing a list of websites or domains. The purpose
of changing it to 1 is unclear, it could be to force bypassing all proxies or some
kind of vulnerability exploit.

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run\wininit

This registry configures applications to start automatically at system startup.
Any executables listed here will be launched when the user logs on. So the
malware aims to set it to boot up automatically.

Figure 5.10: FinalPayload.exe Auto run

3. FinalPayload.exe 2nd time

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run\wininit

5.1. Analysis 35

Same as the previous one ,it may used to make sure that registry is modified.

• File change
Files:

\Device\HarddiskVolume1\EFI\Microsoft\Boot\memtest.efi
\Device\HarddiskVolume1\EFI\Microsoft\Boot\bootmgr.efi
\Device\HarddiskVolume1\EFI\Microsoft\Boot\bootmgfw.efi
\Device\HarddiskVolume1\EFI\Boot\bootx64.efi

bootmgr.efi: This is the primary boot loader file responsible for launching the
Windows operating system on UEFI systems.
bootmgfw.efi: This file might be used for booting in special firmware modes
like booting from a recovery drive or for troubleshooting purposes.
memtest.efi: This file is likely a diagnostic tool used to test the system’s memory
(RAM) for errors.
bootx64.efi: This file might be related to booting 64-bit versions of the Windows
operating system on UEFI systems.
It is unclear yet why the malware changed these files.

4. schtasks.exe

Schtasks.exe is a legitimate command line tool for Windows. It is used to schedule
tasks on your computer. For example, running programmes or scripts at specific
times or intervals.

From the detection result, the malware used this command

schtasks.exe /Create /TN wininit /ru SYSTEM /SC ONSTART /TR
‘C:\Users\admin\AppData\Local\Temp\FinalPayload.exe(filehash)’

/Create: creates a new scheduled task.

/TN wininit: Names the task ‘wininit’ to disguise it as a legitimate system process.

/ru SYSTEM: runs the task with SYSTEM privileges (the highest access level in
Windows).

/SC ONSTART: Schedules the task to run at system startup, ensuring that it is exe-
cuted every time the computer starts.

/TR

‘C:\Users\admin\AppData\Local\Temp\FinalPayload.exe’

5.1. Analysis 36

This command is very dangerous, it means that the malware is running with the
highest privileges every time the system is booted while masquerading as wininit.exe.
this is clear privilege elevation behaviour.

Figure 5.11: The cmd malware used

5. Result

Taken together, each step in the running of the malware has a high likelihood of
being aimed at: modifying network security settings so that the machine is able to
trust malicious websites that it shouldn’t be trusted, and running with the highest
privileges every time the machine is switched on.

5.1.3 b23.exe

Base information of b23.exe:

5.1. Analysis 37

Figure 5.12: Infromation of b23.exe

1. Overview It starts by running the main process, modifying three files and four reg-
istries, then runs cmd.exe and modifies eight registries. Afterwards three processes
are run by cmd.exe, namely wscript.exe, conhost.exe and ping.exe.

Figure 5.13: Overview of b23.exe

5.1. Analysis 38

2. b23(filehash).exe

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE
\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\AutoDetect

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\ProxyBypass

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\IntranetName

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\
Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\UNCAsIntranet

These four registry modifications behave exactly same as FinalPayload.exe.

• File change
Zip.vbs

Figure 5.14: Zip.vbs

5.1. Analysis 39

The script checks the extension of each file, e.g. ‘.rar’ or ‘.zip’. If a match is
found, the script creates a new text file in that archive using the same filename.
The script then writes malicious text (‘<INFECTED by VBS Worm>’ and ‘<Ex-
pert192>’) to the newly created text file within the archive.

• File change
zipper.bat

Figure 5.15: zipper.bat

The purpose of this script is to repeat the execution of the ‘zip.vbs’ VBScript file
every 30 minutes.

• File change
Created 96CA...folder which contains the zipper.bat.

3. cmd.exe

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE
\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\AutoDetect

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE
\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\ProxyBypass

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE
\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\IntranetName

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE
\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\UNCAsIntranet

5.1. Analysis 40

These four changes are same as the previous.

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE
\Microsoft\Windows\CurrentVersion\Explorer\FileExts\.vbs\OpenWithProgids\
VBSFile

OpenWithProgids\VBSFile

This registry entry stores the program that Windows uses by default to open
.vbs files. The malware modifies the value of this registry to ‘00000000’, which
means that Windows will not know which application is used to open vbs files
by default.

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000_Classes\
Local Settings\Software\Microsoft\Windows\Shell
\MuiCache\C:\Windows\System32\WScript.exe.FriendlyAppName

C:\Windows\System32\WScript.exe.FriendlyAppName

:This registry entry stores the user-friendly name displayed for the WScript.exe
file located in the Windows system directory. It is not clear why the malware
sets this value to ‘Microsoft ® Windows Based Script Host’.

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000_Classes\
Local Settings\Software\Microsoft\Windows\Shell\MuiCache\C:\Windows\System32\
WScript.exe.ApplicationCompany

This registry entry stores the ‘ApplicationCompany’ data associated with the

C:\Windows\System32\WScript.exe

The malware appears to use the default value of ‘Microsoft Corporation’, the
legitimate developer of the WScript.exe file. It is not clear why the malware
performs this step, but it may be an attempt to disguise itself.

• Registry change:

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE
\Microsoft\Windows\CurrentVersion
\ApplicationAssociationToasts\VBSFile_.vbs

The ApplicationAssociationToasts registry means the path to the Toast notifica-
tion configuration that appears in Windows when a file type is associated with
a program. The malware changes the value of

5.1. Analysis 41

VBSFile_.vbs

to 0, which disables notifications for .vbs file types.

4. wscript.exe

Figure 5.16: Wscript.exe

From the detection result, the malware runs wscript with the command

‘C:\Windows\System32\WScript.exe’ ‘C:\Users\admin\AppData\Local\Temp\zip.vbs’.

This means that the malware is using wscript to run zip.vbs,and the three libraries
called during this period are all required for wscript.exe to run.The function of this
program is to provide an environment[38] in which the user can execute various
scripting languages.

5. conhost.exe

Figure 5.17: conhost.exe

5.1. Analysis 42

According to the detection result, the malware uses the command ‘conhost.exe 0xffffffff
-ForceV1’.conhost.exe is a windows core and legitimate program that is responsible
for managing console windows.It is unclear what the parameters used by the mal-
ware mean.

6. Ping.exe

Figure 5.18: Ping.exe

According to the test results, the complete command is ‘ping -n 1800 localhost’ This
command means to continuously ping the localhost every 1800 seconds (i.e. 30 min-
utes).

7. Result

The malware has a clear purpose, to modify the registry to ensure that vbs scripts
can be run. The malicious vbs script works by overwriting the target file and writing
‘<INFECTED by VBS Worm>’ and ‘<Expert192>’ and modifying the registry to run
itself when machine is started.

5.1.4 torn.exe

Base information of torn.exe:

5.1. Analysis 43

Figure 5.19: Information of torn.exe

1. Overview

Figure 5.20: Overview of torn.exe

The malware runs a total of three processes, torn.exe, cmd.exe and conhost.exe . In
total, seven files were modified.

2. tornover.exe

3 files are created

5.1. Analysis 44

C:\Users\10163\AppData\Local\Temp\~DF44B26E4301CDB2DC.TMP

C:\Users\10163\AppData\Local\Temp\~DF44B26E4301CDB2DC.TMP

C:\Users\10163\AppData\Local\Temp\tornkill.bat

The purpose of this bat file is to delete the first two files.

3. cmd.exe

Figure 5.21: cmd.exe

According to the detection result, the command it runs is cmd.exe /c tornkill.batThis
line of command is used to run the bat file and close the cmdline when it is finished.

4 files are deleted

C:\Users\10163\AppData\Local\Temp\tornkill.bat

C:\Users\10163\AppData\Local\Temp\tornkill.bat

C:\Users\10163\Desktop\torn\torn.exe

C:\Users\10163\Desktop\torn\torn.exe

After using the previous command,these 4 files are deleted.

4. conhost.exe

The malware used ’conhost.exe 0xffffffff -ForceV1’, same as the previous one.It is
not yet clear why it ran this line of command.

5.1. Analysis 45

5. Result

According to the analysis, this software does not exhibit serious malicious opera-
tions.The detection system gave the reason as manipulation of cmd.exe in order to
execute commands and posted a warning about file creation behaviour.

Chapter 6

Discussion and Conclusion

The overall structure of this project is divided into two parts: the first part is to install
and run Elastic Stack, and the second part is to dynamically analyse the malware samples.
This chapter will summarise each of these two parts.

6.1 Discussion

This section focuses on the issues experienced during the process of installing Elastic Stack
and running analysis for this project and the cautions for using Elastic Stack. This section
aim to provide solutions to the some problems for researchers using Elastic Stack in the
future.

1. Elastic cluster health status is yellow

The issue first appeared early in the process of this project, after launching Elas-
ticsearch.bat and displaying ’current.health="YELLOW" message="Cluster health
status changed from [RED] to [YELLOW] (reason: [shards started [[.apm-source-
map][0]]])." previous.health="RED" reason="shards started [[.apm-source-map][0]]"’

According to the official Elastic documentation[39], a yellow or red health status
means that there are shards unallocated.This means there is a risk of losing data.

After reviewing multiple documents and forums for solutions, the final reason iden-
tified was because of insufficient storage space for the VMs used for this project. The
solution was to use a single machine for malware analysis and allocate a sufficiently
large amount of disk space to that machine, rather than reallocating the already lim-
ited disk space to multiple virtual machines.

2. Fleet server is not healthy

At one time during the process of this project, this issue was the biggest obstacle.
The causes of this problem are numerous and are detailed below

46

6.1. Discussion 47

• Overview
After opening Fleet on the left side of Kibana, if Status shows unhealthy or
offline, it proves that the problem occurs.

Figure 6.1: Fleet server is not healthy

• Check the logs - unable to connect
The first thing to do when this type of problem occurs is to check the logs. Click
on the Host name and then click logs to go to the logs screen.
The first problem that occurred in this project was that fleet was unable to
connect to elasticsearch. there are two settings that need to be checked in order
to solve this problem: the address of the fleet server and the privilege to run
elasticsearch.bat. Firstly, make sure that the fleet server is using the correct ip
address, something like 192.168.71.32, not 127.0.0.1. Even if the fleet server is
running locally, it should not be configured as 127.0.0.1 or localhost. secondly,
make sure that elasticsearch and kibana bat files start with administrator, i.e.
right click on the bat file and click run as administrator.

6.1. Discussion 48

Figure 6.2: Unable to connect

• Check the logs - SSL certificate problem
When this problem occurs, the error entry in logs complains: ssl remote key
was not ok.

Figure 6.3: SSL problem

There are multiple reasons that could cause this problem, so first ,by using the
command: elastic-endpoint.exe test outputthe system will output a test result
to help narrow down the problem.

6.1. Discussion 49

Figure 6.4: Test output

In this example, the problem is clearly shown: the server cannot connect be-
cause host cannot trust the server’s certificate, i.e., 401. solving this problem
requires adding trust to elasticsearch’s certificate. By default, elasticsearch uses
a certificate named

http_cert.ca

which is located in the

\config\certs

folder in the elasticsearch directory. To install the certificate, right-click on the
certificate, click Install, and install the certificate to a ‘Trusted Root Certificate
Authority’.

• Endpoint can not connect to the output server
After configuring the certificate, if the log shows this issue, then it may be
necessary to configure the certificate fingerprint in the outputs. Click on fleet,
then go to settings, click on the pencil symbol to the right of outputs and paste
the certificate fingerprint.

Figure 6.5: Fingerprint

6.2. Conclusion 50

6.2 Conclusion

This section focuses on answering the two questions posed in Introduction1:how to secure
the system when running malware, and how to determine if a program is malicious.

6.2.1 Secure system

Two methods are used in this project to ensure security: firstly by disconnecting the net-
work, and then by ensuring that after each run of malware, the snapshot feature is used to
restore it to its previous clean state.

Figure 6.6: Snapshot

6.2.2 Detect malware

Based on the results of previous chapter 5, this project’s conclusions on how to identify
malware is divided into the following sections:

1. Registry

In the four malware samples used in this project, some of the registry modification
behaviours that are clearly malicious are listed below:

• Password related

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\Microsoft\
Windows\Winlogon\PasswordExpiryNotification\NotShownTime

6.2. Conclusion 51

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\Microsoft\
Windows\Winlogon\PasswordExpiryNotification\NotShownReason

Once a process is detected trying to modify these registries, it may mean that
it wants to change the relevant settings regarding password notifications. The
settings related to passwords or credentials are considered sensitive, so this
behaviour is considered malicious.

• Network related

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\Microsoft\
Windows\CurrentVersion\Internet Settings\ZoneMap\UNCAsIntranet

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\Microsoft\
Windows\CurrentVersion\Internet Settings\ZoneMap\AutoDetect

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\Microsoft\
Windows\CurrentVersion\Internet Settings\ZoneMap\IntranetName

Once a process is detected trying to modify these registries, it may mean that
it wants to change the relevant settings regarding network trust. This may
allow the machine to trust malicious websites and download more malware
from them. That’s why these settings about modifying the network are also
considered malicious behaviour.

• Auto run

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run\wininit

If the boot self-start is set, the program will run without the user being aware
of it. Self-booting without the administrator’s consent is considered malicious
behaviour.

• Files related

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\Microsoft\
Windows\CurrentVersion\Explorer\FileExts\.vbs\OpenWithProgids\VBSFile

HKEY_USERS\S-1-5-21-760549000-1770973590-13726604-1000\SOFTWARE\Microsoft\
Windows\CurrentVersion\ApplicationAssociationToasts\VBSFile_.vbs

Usually when these file configurations are modified, some malicious scripts
are trailing behind. So when a process is seen modifying to start apps with
some specific suffixes or disabling Toast notifications, etc., these behaviours are
considered to be malicious.

6.2. Conclusion 52

2. Files

File manipulation may not be all that malicious, as in the case of the torn.exe sample.
However, it is also a form of suspicious behaviour, and the focus is on identifying
whether the specific file being operated is suspicious or not. For example, the script
file generated in b23.exe is very typical of malicious programs. In this project, two
main means are used to identify whether the generated files are suspicious or not:
firstly, manual analysis. Firstly, it can be analysed manually. It can be opened by
decompiler software or notepad to check the contents of the program. Secondly, the
file’s hash can be searched directly in Virustotal and other databases to see whether
it is marked as malicious.

Figure 6.7: Virustotal

3. System commands

Operating system commands are likewise not necessarily malicious. However it is
important to focus on the specific commands used by the program, the parameters
and details of which can be found in Elastic defend. In the previous example, the
command

‘PING -N 1800 LOCALHOST’

conhost.exe 0xffffffff -ForceV1

may not suspicious. However, the command

schtasks.exe /Create /TN wininit /ru SYSTEM /SC ONSTART /TR

6.3. Summary and future work 53

‘C:\Users\admin\AppData\Local\Temp\FinalPayload.exe(filehash)’

is obviously a malicious behaviour.This is because the parameters of this command
indicate that it intends to operate with SYSTEM highest privileges, which is very
much a very sensitive command and can be immediately concluded as malicious
behaviour.

It is important to determine if the instructions executed by a process are malicious
after Elastic Defend reports them. This can be done with the help of nowadays devel-
oped AI tools like ChatGPT, Gemini, etc. to reveal the meaning of the instructions’
parameters.

6.3 Summary and future work

By documenting in detail the installation and running process of Elastic Stack and analysing
four pieces of malware, this thesis provides a novel and convenient approach to dynamic
malware analysis, aiming to improve the efficiency and accuracy for malware researchers
in order to combat today’s increasing number of cybercrimes.

This project still has many shortcomings, one of the most unfortunate being the failure
to implement the topology first conceived due to disk space constraints, as well as the
study of malware propagation through the network. In future research, if new experimen-
tal machines can be used, then the primary goal is to realise the plan. In addition, too
much time was spent on solving the operational problems of the Elastic Stack, resulting in
a low number of malware being analyzed. In future research, with the experience of this
project, more malware samples will be selected for study.

Bibliography

[1] Cisco. What is malware. Nov. 2023. url: https://www.cisco.com/site/us/en/learn/
topics/security/what-is-malware.html.

[2] ENISA. Malware. Feb. 2024. url: https://www.enisa.europa.eu/topics/incident-
response/glossary/malware.

[3] Sun Tzu. The Art of War. 1. ed. Capstone Publishing, 2010.

[4] Ori Or-Meir et al. “Dynamic malware analysis in the modern era—A state of the art
survey”. In: ACM Computing Surveys (CSUR) 52.5 (2019), pp. 1–48.

[5] Fang Min. What Is a Worm Virus (Computer Worm)? Jan. 2024. url: https://info.
support.huawei.com/info-finder/encyclopedia/en/Worm+Virus.html.

[6] Rob. Lemos. Virulent worm calls into doubt our ability to protect the Net. June 2011. url:
http://news.cnet.com/2009-1001-270471.html.

[7] Lawrence Abrams. CryptoLocker Ransomware Information Guide and FAQ. Oct. 2013.
url: http://www.bleepingcomputer.com/virus-removal/cryptolocker-ransomware-
information.

[8] Brian Krebs. Who and What Is Coinhive? Mar. 2018. url: https://krebsonsecurity.
com/2018/03/who-and-what-is-coinhive/.

[9] Georgios Kambourakis et al. Botnets: Architectures, countermeasures, and challenges.
CRC Press, 2019.

[10] Marios Anagnostopoulos. “Amplification DoS Attacks”. In: Encyclopedia of Cryptog-
raphy, Security and Privacy. Springer, 2020, pp. 1–3.

[11] reasonlabs. What is Self-propagation? Sept. 2023. url: https://cyberpedia.reasonlabs.
com/EN/self-propagation.html.

[12] Saurabh. “Advance malware analysis using static and dynamic methodology”. In:
2018 International Conference on Advanced Computation and Telecommunication (ICA-
CAT). IEEE. 2018, pp. 1–5.

[13] Sainadh Jamalpur et al. “Dynamic malware analysis using cuckoo sandbox”. In: 2018
Second international conference on inventive communication and computational technologies
(ICICCT). IEEE. 2018, pp. 1056–1060.

54

https://www.cisco.com/site/us/en/learn/topics/security/what-is-malware.html
https://www.cisco.com/site/us/en/learn/topics/security/what-is-malware.html
https://www.enisa.europa.eu/topics/incident-response/glossary/malware
https://www.enisa.europa.eu/topics/incident-response/glossary/malware
https://info.support.huawei.com/info-finder/encyclopedia/en/Worm+Virus.html
https://info.support.huawei.com/info-finder/encyclopedia/en/Worm+Virus.html
http://news.cnet.com/2009-1001-270471.html
http://www.bleepingcomputer.com/virus-removal/cryptolocker-ransomware-information
http://www.bleepingcomputer.com/virus-removal/cryptolocker-ransomware-information
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://cyberpedia.reasonlabs.com/EN/self-propagation.html
https://cyberpedia.reasonlabs.com/EN/self-propagation.html

Bibliography 55

[14] Peyman Pahlevani et al. “The Impact of Network Configuration on Malware Be-
haviour”. In: The International Conference on Cybersecurity, Situational Awareness and
Social Media. Springer. 2023, pp. 91–104.

[15] Lele Wang et al. “Cuckoo-based malware dynamic analysis”. In: International Journal
of Performability Engineering 15.3 (2019), p. 772.

[16] Aaron Walker, Muhammad Faisal Amjad, and Shamik Sengupta. “Cuckoo’s mal-
ware threat scoring and classification: Friend or foe?” In: 2019 IEEE 9th Annual Com-
puting and Communication Workshop and Conference (CCWC). IEEE. 2019, pp. 0678–
0684.

[17] Avira. Cuckoo Sandbox vs. Reality. Nov. 2014. url: https://www.avira.com/en/blog/
cuckoo-sandbox-vs-reality-2.

[18] Rasmi-Vlad Mahmoud et al. “Redefining Malware Sandboxing: Enhancing Analysis
through Sysmon and ELK Integration”. In: IEEE Access (2024).

[19] Elastic Stack. Functions of elaticsearch. 2024. url: https://www.elastic.co/cn/
elasticsearch/features.

[20] Saurabh Chhajed. Learning ELK stack. Packt Publishing Ltd, 2015.

[21] elastic. Elastic Defend. 2024. url: https://docs.elastic.co/en/integrations/
endpoint.

[22] elastic. Fleet and Elastic Agent overview. 2024. url: https://www.elastic.co/guide/
en/fleet/current/fleet-overview.html.

[23] Mohammad Nassiri et al. “Malware elimination impact on dynamic analysis: An
experimental machine learning approach”. In: Handbook of Big Data Privacy (2020),
pp. 359–370.

[24] Rami Sihwail et al. “Malware detection approach based on artifacts in memory image
and dynamic analysis”. In: Applied Sciences 9.18 (2019), p. 3680.

[25] Yi-Ting Huang, Yeali S Sun, and Meng Chang Chen. “TagSeq: Malicious behavior
discovery using dynamic analysis”. In: Plos one 17.5 (2022), e0263644.

[26] Chih-Hung Lin, Hsing-Kuo Pao, and Jian-Wei Liao. “Efficient dynamic malware
analysis using virtual time control mechanics”. In: Computers & Security 73 (2018),
pp. 359–373.

[27] Long Chen et al. “Detection, traceability, and propagation of mobile malware threats”.
In: IEEE Access 9 (2021), pp. 14576–14598.

[28] Peter Eder-Neuhauser, Tanja Zseby, and Joachim Fabini. “Malware propagation in
smart grid networks: metrics, simulation and comparison of three malware types”.
In: Journal of Computer Virology and Hacking Techniques 15 (2019), pp. 109–125.

https://www.avira.com/en/blog/cuckoo-sandbox-vs-reality-2
https://www.avira.com/en/blog/cuckoo-sandbox-vs-reality-2
https://www.elastic.co/cn/elasticsearch/features
https://www.elastic.co/cn/elasticsearch/features
https://docs.elastic.co/en/integrations/endpoint
https://docs.elastic.co/en/integrations/endpoint
https://www.elastic.co/guide/en/fleet/current/fleet-overview.html
https://www.elastic.co/guide/en/fleet/current/fleet-overview.html

Bibliography 56

[29] Jun Li, Devkishen Sisodia, and Shad Stafford. “On the detection of smart, self-
propagating internet worms”. In: IEEE Transactions on Dependable and Secure Com-
puting (2022).

[30] Răzvan Stoleriu, Alin Puncioiu, and Ion Bica. “Cyber attacks detection using open
source ELK stack”. In: 2021 13th International Conference on Electronics, Computers and
Artificial Intelligence (ECAI). IEEE. 2021, pp. 1–6.

[31] Hamad Almohannadi et al. “Cyber threat intelligence from honeypot data using
elasticsearch”. In: 2018 IEEE 32nd International Conference on Advanced Information
Networking and Applications (AINA). IEEE. 2018, pp. 900–906.

[32] Neel Shah, Darryl Willick, and Vijay Mago. “A framework for social media data
analytics using Elasticsearch and Kibana”. In: Wireless networks 28.3 (2022), pp. 1179–
1187.

[33] MalwareBazzar. Tsuchigumo.bat. Aug. 2023. url: https://bazaar.abuse.ch/sample/
8d1d36a7ad23626341f658815bfd21a6274f703aca2126bddfad63fa749041be/.

[34] Yini Wang et al. “Modeling the propagation of worms in networks: A survey”. In:
IEEE Communications Surveys & Tutorials 16.2 (2013), pp. 942–960.

[35] MalwareBazzar. MalwareBazzar. 2024. url: https://bazaar.abuse.ch/.

[36] Microsoft. Responsibilities of Winlogon. July 2021. url: https://learn.microsoft.
com/en-us/windows/win32/secauthn/responsibilities-of-winlogon.

[37] any.run. Analysis syt.exe. 2022. url: https://app.any.run/tasks/b5ae58be-345c-
4291-bc4d-fdd85fa6f3e1/.

[38] Microsoft. WScript. 2023. url: https://learn.microsoft.com/en-us/windows-
server/administration/windows-commands/wscript.

[39] elastic. Red or yellow cluster status. 2024. url: https://www.elastic.co/guide/en/
elasticsearch/reference/current/red-yellow-cluster-status.html.

https://bazaar.abuse.ch/sample/8d1d36a7ad23626341f658815bfd21a6274f703aca2126bddfad63fa749041be/
https://bazaar.abuse.ch/sample/8d1d36a7ad23626341f658815bfd21a6274f703aca2126bddfad63fa749041be/
https://bazaar.abuse.ch/
https://learn.microsoft.com/en-us/windows/win32/secauthn/responsibilities-of-winlogon
https://learn.microsoft.com/en-us/windows/win32/secauthn/responsibilities-of-winlogon
https://app.any.run/tasks/b5ae58be-345c-4291-bc4d-fdd85fa6f3e1/
https://app.any.run/tasks/b5ae58be-345c-4291-bc4d-fdd85fa6f3e1/
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/wscript
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/wscript
https://www.elastic.co/guide/en/elasticsearch/reference/current/red-yellow-cluster-status.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/red-yellow-cluster-status.html

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Problem formulation
	1.1.1 Contribution
	1.1.2 Limitations

	1.2 Structure of the report

	2 Background
	2.1 Introduction to malware
	2.1.1 What is malware
	2.1.2 Introduction of CIA
	2.1.3 Malware Classification

	2.2 Malware analysis
	2.2.1 Static malware analysis
	2.2.2 Dynamic malware analysis
	2.2.3 Dynamic analysis VS Static analysis
	2.2.4 Using Elastic Stack instead of sandbox

	2.3 Introduction to Elastic Stack
	2.3.1 Elastic Stack and malware analysis

	3 Literature Review
	3.1 Dynamic malware analysis techniques
	3.1.1 Dynamic analysis with machine learning
	3.1.2 Dynamic analysis with sandboxes

	3.2 Principles of Malware
	3.3 Elastic Stack in cyber security

	4 Methodology
	4.1 Analysis design
	4.1.1 Network Topology-based analysis
	4.1.2 Analysis in the infected machine

	4.2 Malware selection
	4.2.1 Worms
	4.2.2 Ransomware
	4.2.3 Trojan Horses
	4.2.4 Decision

	4.3 Implementation
	4.3.1 Installation
	4.3.2 Configuration
	4.3.3 Integration
	4.3.4 Fleet server,Elastic agent and policy
	4.3.5 Rules
	4.3.6 Snapshot
	4.3.7 The Alert dashboard

	5 Analysis and Results
	5.1 Analysis
	5.1.1 syt.exe
	5.1.2 FinalPayload.exe
	5.1.3 b23.exe
	5.1.4 torn.exe

	6 Discussion and Conclusion
	6.1 Discussion
	6.2 Conclusion
	6.2.1 Secure system
	6.2.2 Detect malware

	6.3 Summary and future work

	Bibliography

