
Approximation Spaces of
Deep Neural Networks

Julie Havbo Lund
Mads Bjerregaard Kjær

Master’s thesis, Mathematics

Department of Mathematical Sciences
Skjernvej 4A

DK-9220 Aalborg Ø
http://math.aau.dk

Title
Approximation Spaces of
Deep Neural Networks

Theme
Analysis: Approximation Theory
& Machine Learning

Project Period
Fall Semester 2023 &
Spring Semester 2024

Participants
Julie Havbo Lund
Mads Bjerregaard Kjær

Supervisor
Morten Nielsen

Numbered Pages
91

Numbered Pages with Appendix
111

Date of Completion
May 30, 2024

Abstract

This master’s thesis explores the relation-
ship between the structure of deep neural
networks and their expressivity, which is the
ability to approximate functions from cer-
tain function classes. Approximation spaces
are used as a theoretical framework for the
expressivity and the complexity of the neural
networks are measured by either the num-
ber of connections or the number of neu-
rons. This thesis is divided into different
segments; at first, neural networks and their
activation functions are explored, and some
elementary properties are considered. Then
B-splines are introduced and connected to
neural networks by proving that B-splines
can be realized or approximated by neural
networks if these networks are sufficiently
complex. The results regarding B-splines
are combined with B-spline approximation
to construct a neural network with a struc-
ture equivalent to B-spline approximation.
The performance of the equivalent neural
network is explored in an experiment with
simulated target functions. Lastly, approxi-
mation spaces related to the neural networks
are established using general approximation
theory. These approximation spaces for the
ReLU activation function are discussed, and
topics for further analysis are highlighted.

The content of this report is freely available,
but publication (with reference) may only be
pursued due to agreement with the authors.

http://math.aau.dk

Contents

Preface iv

Introduction v

Chapter overview vi

Notation vii

I Intro to Approximation Theory 1

II Neural Networks 2
II.1 Relations Depending on the Complexity . 6
II.2 Operations on Generalized Neural Networks 10

III Activation Functions 18
III.1 Connections Between Activation Functions 18
III.2 Functions that can Represent the Identity 26

IV Realization of B-splines 31

V Experiments 42
V.1 Initial Experiment: Realization of B-Splines 42
V.2 Setup of the Main Experiment . 47
V.3 Results & Discussion . 50

VI Approximation Spaces 57
VI.1 Approximation Spaces . 57
VI.2 Approximation Classes of Neural Networks 65
VI.3 Connection Complexity & Neuron Complexity 70
VI.4 Approximation Spaces of Neural Networks 74
VI.5 Approximation Spaces of ReLU-networks 84

VII Additional Discussion Points 86
VII.1 ReLU Activation Function . 86
VII.2 Embeddings with Besov Spaces . 87
VII.3 B-spline Approximation . 88
VII.4 Novel Approximation Classes . 89
VII.5 Model Classes . 89
VII.6 Approximation using Data . 90

Conclusion 91

ii

J. Lund & M. Kjær Contents

Appendix 92

A Remarks & Notations 93

B Additional Proofs 95

C Lexicon 99

D Errata to [Gribonval et al., 2021] 107

E Code overview 108
E.1 Results from Initial Experiment . 109

iii

Preface

This master’s thesis has been prepared by two students at the Department of Mathematical
Sciences at Aalborg University. This thesis was prepared during the third and fourth
semesters of the Mathematics Master’s program in the period from September 1 2023, to
June 3 2024. The project’s theme is “Analysis” with a focus on “Approximation Spaces of
Deep Neural Networks”. The purpose of this thesis is, among other things, to be able to
understand and reflect scientifically on the field of mathematical knowledge, as well as to
build a project report according to the subject’s norms. The academic purpose is to explore
certain mathematical aspects of the structure of deep neural networks.

This thesis is numbered in sections, definitions, figures, etc. Furthermore, proofs are
completed with ■ indicating that the proof is complete. The sources are cited using the IEEE
method and can be found together at the back of this thesis. The notation environment is
used for notation, which is always used in connection with a specific assumption, for example
“Let Φ be a neural network”, after which the assumption is not repeated in connection with
the notation. These notations can also be found in the symbol overview. If more than
one of the same symbol is needed within the same context, then a ∼ or an index is added.
Combined with the notation environment, this means that if both Φ and Φ̃ are used for
neural network, the underlying sentence “Let Φ and Φ̃ be neural networks.” is omitted. As a
supplementary to some of the proofs illustrations are created using Tikz and the Python
package matplotlib. These can differ from the notation in the proof but are chosen so they
are simpler and easier to compare. The code constructed for the implementation is written
in Python 3.12.1.

We want to thank Morten Nielsen, for being our supervisor throughout this master’s
thesis. We are also grateful for Morten being our supervisor or censor throughout every
project since our bachelor’s thesis. He is the best supervisor we could wish for. Additionally,
we want to thank our co-students for creating an enjoyable studying environment and showing
us that we have no reason to stress about deadlines.

Signatures

Julie Havbo Lund Mads Bjerregaard Kjær

iv

Introduction

Neural networks are a huge and developing area, impacting numerous fields of application,
such as approximation, [12, p. 260]. Approximation using neural networks has demonstrated
remarkable efficiency and is today a building block for many numerical algorithms in
machine learning and artificial intelligence, [8, p. 328]. Going back, neural networks
were developed in 1943 by Warren McCulloch and Walter Pitts, [12, p. 260]. Based on
mathematics and algorithms, neural networks was used to introduce a theoretical framework
for artificial intelligence. Today, the field has grown due to the significantly increased
computer performance, and neural networks have become a major influence on a variety
of machine learning problems, [6, p. 128]. Prominent examples are in computer vision,
such as self-driving cars, in natural language processing, such as Google Translate, and in
reinforcement learning, such as superhuman performance at Go, [8]. Moreover, fields of
mathematics have been affected. Examples of these are inverse problems and numerical
analysis of partial differential equations, [12, p. 260].

However, despite these empirical successes, the area is still under development, and neural
networks are not yet well understood, [6], [8], [12]. Such as a profound and comprehensive
mathematical foundation is still missing, and questions as to how and why they work could
lead to practical improvements. Thus, there are still areas that are not properly covered. For
a start, the understanding of the approximation properties of neural networks is important,
since approximation is one of the main components of many algorithms design, [8]. Such an
approach can lead to a better understanding of the expressivity of deep neural networks,
which is the ability of deep neural networks to approximate functions from certain function
classes. To be able to answer this question, an approach is to make a general theoretical
framework, which is the focus of this report.

The main focus of this report is to explore certain mathematical aspects of the structure of
deep neural networks. Here approximation spaces are used to provide a theoretical framework
for studying the expressivity of deep neural networks. To associate an approximation space to
a neural network, a measure of the neural network’s complexity is required. This complexity
can be given by the number of connections or by the number of neurons. Moreover, for
ReLU-networks a relation to B-splines is established. This relation shows that B-splines
can be well approximated by neural networks if these networks are sufficiently complex.
The theory resulting from this approach will be attempted to be replicated in practice by
measuring the precision of neural networks implemented with varying structures. This is
included in a larger experiment that has the goal of connecting the purely theoretical results
to application.

Despite the large and exciting area to work in, the report must be limited, but some
fundamental work can be found in [12], [8], [10], [9], and [6]. Some of the simpler proofs,
and proofs similar to those already stated are omitted from the report, but for the sake of
the reader, they are included in Appendix B. Additionally, Appendix C will be used for
definitions, theorems, etc. that are referred to during the report. The purpose of this is
to let the reader view the referenced theory without having to track down the source. In
addition, some errata to [12] are highlighted in Appendix D.

v

Chapter Overview

Below is a brief overview of the content of each chapter:

Chapter I - Intro to Approximation Theory:
This chapter introduces relevant terms within approximation theory, which are used through-
out the report.

Chapter II - Neural Networks:
Neural networks and their realizations are introduced together with the notion of complexity
in terms of the number of layers, connections, and neurons that neural networks consist of.
Relations between these measures of complexity and the realizations of neural networks are
explored. Additionally, the methods for combining and transforming neural networks are
considered, along with the effect on a given neural network’s complexity.

Chapter III - Activation Functions:
This chapter deals with activation functions and relevant properties. One such property is
when an activation function can realize another activation function or the identity. What
this means for the set of realizations is studied in both cases. Specifically, ReLU and its
powers are highlighted.

Chapter IV - Realization of B-splines:
The chapter introduces B-splines, along with a few immediate properties, and an important
decomposition. This decomposition is used to connect B-splines to the realization of neural
networks.

Chapter V - Experiments:
Based on the result from the previous chapter two experiments are constructed, including
an implementation of one of the main results in practice. The initial experiment attempts
to construct neural networks, that can realize B-splines. The main experiment attempts
to assess the performance of an alternative approximation approach using neural networks
compared with the traditional B-spline approximation.

Chapter VI - Approximation Spaces:
The chapter provides an introduction to approximation theory and associates it with the
knowledge from Chapters II and III. Approximation classes are constructed in a general
setting and proven to be approximation spaces. Similar approximation classes are defined
for functions associated with neural networks, and the general setup is used to prove that
these are approximation spaces as well.

Chapter VII - Additional Discussion Points:
The chapter provides an overall introduction to further analysis in the focal area of the
report. This includes discussing similar results and topics that are relevant to the findings
established in this master’s thesis.

vi

Notation
Setup:
d Input dimension.
k Output dimension.
N Natural numbers.
N0 N ∪ {0}.
N≥m {n ∈ N | n ≥ m}.
O Big O-notation.
⌊·⌋ Round down to the nearest integer.
⌈·⌉ Round up to the nearest integer.
Ω A subset of Rd.
⊗ Modified tensor product, see Definition II.1.
≲ Less than or equivalent to.
f(x) −−→

x→0
y lim

x→0
f(x) = y.

fm −−−→
m→c

f lim
m→c

fm = f , for c ∈ R ∪ {−∞,∞}.

Neural Network:
Φ Neural network.
din(Φ) Input dimension of the neural network Φ.
dout(Φ) Output dimension of the neural network Φ.
ϱ Activation function.
ϱ

(ℓ)
j Activation function or identity function.
αℓ Vector with entries ϱ(ℓ)

j .
ϱr Rectified linear unit, ReLU and its power of exponent r ∈ N0.
Tℓ Affine-linear maps.
A(ℓ) Weight matrices.
b(ℓ) Bias vectors.
∥A∥ℓ0 The number of non-zero entries of the matrix A.
L(Φ) The depth of the neural network Φ; The number of layers.
L(Φ)− 1 The number of hidden layers in the neural network Φ.
R(Φ) The realization of the neural network Φ.
N(Φ) The number of hidden neurons in the neural network Φ.
W (Φ) The number of connections or weights in the neural network Φ.
L Depth growth function.
L1 ⪯ L2 L2 dominates L1, see Definition II.6.
L1 ∼ L2 L1 is equivalent to L2, that is L1 ⪯ L2 and L1 ⪰ L2.
L Supremum of L (n) for n ∈ N.

vii

J. Lund & M. Kjær Contents

Relevant Sets of Neural Network and their Realization:
NN ϱ, d, k

W, L, N The set of all generalized ϱ-networks Φ.
SNN ϱ, d, k

W, L, N The subset of Φ ∈ NN ϱ, d, k
W, L, N , which are strict.

NNϱ, d, k
W, L, N The set of f that can be realized by Φ ∈ NN ϱ, d, k

W, L, N .
SNNϱ, d, k

W, L, N The set of f that can be realized by Φ ∈ SNN ϱ, d, k
W, L, N .

NNϱ, d, k
W, L, N(Ω) The set of f↾Ω, where f ∈ NNϱ, d, k

W, L, N .
SNNϱ, d, k

W, L, N(Ω) The set of f↾Ω, where f ∈ SNNϱ, d, k
W, L, N .

Approximation Theory:
X Quasi-Banach space.
∥·∥X Quasi-norm associated with X .
X1 ↪→ X2 X1 is continuously embedded in X2, that is X1 ⊆ X2 and

∥·∥X2 ≤ C∥·∥X1 , see Definition VI.3.
Σ := {Σn}n∈N0 Family of Σn, where Σn are subsets of a quasi-Banach space.
E (f,Σn)X Error of best approximation of f ∈ X from Σn ⊆ X .
Aα

q (X ,Σ) Approximation space, see Definition VI.2.

Approximation Theory Associated with Neural Networks:
Wn(X , ϱ,L) The set NNϱ, d, k

n, L(n), ∞(Ω) ∩ X .
Nn(X , ϱ,L) The set NNϱ, d, k

∞, L(n), n(Ω) ∩ X .
Wα

q (X , ϱ,L) Aα
q (X ,Σ) where Σ is the family of Σn = Wn(X , ϱ,L).

Nα
q (X , ϱ,L) Aα

q (X ,Σ) where Σ is the family of Σn = Nn(X , ϱ,L).
SWn(X , ϱ,L) The set SNNϱ, d, k

n, L(n), ∞(Ω) ∩ X .
SNn(X , ϱ,L) The set SNNϱ, d, k

∞, L(n), n(Ω) ∩ X .
SWα

q (X , ϱ,L) Aα
q (X ,Σ) where Σ is the family of Σn = SWn(X , ϱ,L).

SNα
q (X , ϱ,L) Aα

q (X ,Σ) where Σ is the family of Σn = SNn(X , ϱ,L).

Spaces:
X General space.
∥ · ∥X Norm associated with the space X.
(X)∗ The dual space of the space X.
ℓp(X) ℓp-space of sequences in X.
Lp(Ω,Rn) Lp-space of function from Ω ⊆ Rd to Rn.
Lp

loc(Ω,Rn) The space of locally integrable function in Lp(Ω,Rn).
C(Ω,Rn) The space of continuous function from Ω ⊆ Rd to Rn.
Ck(Ω,Rn) The space of k-times continuous differentiable function from

Ω ⊆ Rd to Rn.
Ck

c (Ω,Rn) The space of compact supported functions in Ck(Ω,Rn).
C0(Ω,Rn) The space of uniformly continuous function from Ω to Rn that

vanish at infinity.
Xk

p (Ω) The space Lp(Ω,Rk) for 0 < p <∞, and C0(Ω,Rn) for p =∞.

viii

J. Lund & M. Kjær Contents

GL(Rd) The generalized linear space, that consists of invertible real
valued matrices.

Rdeg≤n[x] The space of all polynomials of degree at most n ∈ N0.

B-spline:
β

(n)
+ Univariate B-spline of degree n ∈ N0.
β

(n)
d Multivariate B-spline of degree n ∈ N0 in dimension d ∈ N.

ix

I | Intro to Approximation Theory

The study of approximation spaces of deep neural networks requires theories from both
approximation theory and neural networks. Therefore, it makes sense to create a foundation
from both worlds, establishing a solid base for understanding these spaces. Approximation
theory is going to be a tool for understanding neural networks, so only the required tools are
introduced. As neural networks are the primary focus, a broader foundation is needed, which
is covered in the next chapter. This initial chapter serves as an introduction, guiding the
reader through the overall concepts within approximation theory before diving into neural
networks.

From the perspective of approximation, a central task is to approximate a function,
often seen in applications where the aim is to approximate an unknown function f given
a training data set (xi, f(xi))n

i=1, [12]. This unknown function could for instance encode
a classification problem, [3]. Exploring the possibility of discovering this approximating
function introduces the realm of approximation theory, [15]. Approximation theory includes
the studies of how possibly complicated target functions can best be approximated with
simpler functions, [10]. These simpler functions are called approximants and can be created
in different ways, corresponding to different approximation methods, [8]. Increasing the
resolution of the target function can generally only be achieved by increasing the complexity
of the approximants, which usually corresponds to the number of parameters. This trade-off
between resolution and complexity is another important study within approximation theory.
Comparison of approximation methods is typically done using the rate of approximation,
which is the decrease in error versus the number of parameters in the approximant, [9]. From
an applied point of view the computational time needed to construct the approximation is
another major component for comparison, [9].

Overall approximation theory provides a framework for expressing the approximation
effiency, which is how well these target functions can be approximated by the approximants
of a certain type. Defining a set of target functions to be measured on the approximation
efficiency is called a model class. By instead focusing on approximants, the approximation
properties are in focus, which is how well the approximants can approximate the target
function. The expressivity of the approximants refers to the ability of the approximants
to approximate a target function from a certain class of functions. Compared to the
approximation rate, an increase in the expressivity yields a better approximation rate.
Unifying target functions based on their ability to be approximated by specific approximants
yields an approximation class. This class is typically defined by target functions satisfying
a specific approximation rate, and if the classes are well-defined spaces, they are called an
approximation space.

In approximation theory, one usually assumes the target function to be fully accessible.
This is in contrast to most real-world problems, where only a training data set is available.
Thus using results from approximation theory in application, the performance would addi-
tionally depend on the amount and quality of the data. Typically the target function f is
in a normed space X such as Lp-spaces and the approximants are in a small subset of X ,
[10]. Classic examples of approximants are polynomials, splines, and wavelets, [8]. Another
newer popular choice is neural networks. As the title of this master’s thesis indicates, neural
networks are the approximants of focus in this report. More specifically with emphasis on
the expressivity of neural networks, which is explored through approximation spaces.

1

II | Neural Networks

To explore the expressivity of neural networks, the definition of the neural network itself
is needed. This chapter presents this definition and the most basic terminology regarding
neural networks. This includes the exploration of sets of neural networks and their properties.
This foundation is also used to explore the properties of sets of neural networks. The chapter
is based on [12, p. 259-276], and [6, p. 131], and is a foundation for the rest of the report.

As an initial step, the following notation is defined.

Definition II.1: Modified Tensor Product
Let N ∈ N, and {fn : Xn → Yn}N

n=1. Then

N⊗
n=1

fn : X1 × · · · ×XN → Y1 × · · · × YN ,

is given by [x1, . . . , xN] 7→ [f1(x1), . . . , fN(xN)].

Note that compared to the classical use of tensor product, this stacks the outputs as a vector.

Definition II.2: Neural Networks
Let ϱ : R→ R, let L ∈ N, and let {Nℓ}L

ℓ=0 ⊆ N. A neural network with activation
function ϱ is a tuple

Φ :=
(
(T1, α1), . . . , (TL−1, αL−1), (TL, idRNL)

)
,

where for 1 ≤ ℓ ≤ L the functions Tℓ : RNℓ−1 → RNℓ are affine linear maps and for
1 ≤ ℓ < L the functions αℓ : RNℓ → RNℓ are given by

αℓ :=
Nℓ⊗

n=1
ϱ(ℓ)

n ,

where ϱ(ℓ)
n ∈ {ϱ, idR}.

Argumentation for the conventions in the definition can be found in Remark A.1. For
convenience, a neural network with activation function ϱ will often be shorted to a ϱ-network
or a neural network if the activation function holds no interest. In addition, this definition
of the neural network is in this report also referred to as generalized neural networks. The
affine linear maps Tℓ in Definition II.2 is given by

Tℓ(x) := A(ℓ)x+ b(ℓ),

where the matrices A(ℓ) ∈ RNℓ×Nℓ−1 are called weight matrices and the vectors b(ℓ) ∈ RNℓ are
called bias vectors. These matrices and vectors are often used with a specific structure such

2

J. Lund & M. Kjær Chapter II. Neural Networks

as convolutional or Toeplitz. The zero-norm of Tℓ is defined by

∥Tℓ∥ℓ0 := ∥A(ℓ)∥ℓ0 ,

where ∥ · ∥ℓ0 is the zero-norm which counts the number of non-zero entries in the matrix.
Note this differs from the normal definition of the zero-norm for affine linear maps as it
should count the number of non-zero entries in the bias vector as well. A general illustration
of a neural network is highlighted in Figure II.1.

x1

x2

...

xN0

ϱ
(1)
1

ϱ
(1)
2

...

ϱ
(1)
N1

ϱ
(2)
1

ϱ
(2)
2

...

ϱ
(2)
N2

· · ·

· · ·

. . .

· · ·

ϱ
(L−1)
1

ϱ
(L−1)
2

...

ϱ
(L−1)
NL−1

y1

y2

...

yNL

Input
layer

Hidden
layers

Output
layer

Figure II.1: Illustration of a neural network with activation function ϱ.

For future use, the neural network in Figure II.1 can also be illustrated in a more compact
form, which is more in line with the tuple representation. This is illustrated in Figure II.2.

Rd RkT1 α1 TL idRk

Figure II.2: Illustration of a neural network by the tuple, where the dotted line illustrated
more layers. Here N0 = d and NL = k.

This illustration is simpler and is useful in the context where many different neural networks
are used at once. This is, for example, the case where illustrations are used to illustrate the
constructive parts of a proof.

To associate an approximation space to a neural network, a measure of the neural
network’s complexity is required. To understand complexity, the following definition includes
several characterizing features.

Definition II.3:
Let Φ be a neural network. Then the following features are defined:

(i) Input dimension: din(Φ) := N0 ∈ N.

(ii) Output dimension: dout(Φ) := NL ∈ N.

(iii) Number of layers: L(Φ) := L ∈ N.

3

J. Lund & M. Kjær Chapter II. Neural Networks

(iv) Number of hidden neurons: N(Φ) :=
L−1∑
ℓ=1

Nℓ ∈ N0.

(v) Number of connections: W (Φ) :=
L∑

ℓ=1
∥Tℓ∥ℓ0 ∈ N0.

The number of connections can also be called the number of weights. Note that by definition
connections of value 0 are not considered as connections. Furthermore, the number of layers
is called the depth, and by definition, the number of hidden layers is given by L− 1. If L ≥ 2
a neural network is called deep. A special class of neural networks with less flexibility is the
strict neural networks.

Definition II.4: Strict Neural Network
A ϱ-network is called strict, if and only if ϱ(ℓ)

n = ϱ for all 1 ≤ ℓ < L and 1 ≤ n ≤ Nℓ.

As for the generalized neural network, a comment for the strict neural networks can be found
in Remark A.1 as well.

The quantities given in Definition II.3 all describe the complexity of the neural network,
and are all used as an expression for it. However, to be able to work with it later on,
something more concrete is required. This can be done by restricting the complexity with
an upper bound. More concretely this can be done by bounding the number of neurons
N(Φ) ≤ n or the number of weights W (Φ) ≤ n, where n ∈ N0. If needed the number of
layers can be restricted depending on n. This is typically done with a depth growth function,
which controls how the depth L(Φ) grows with n.

Definition II.5: Depth Growth Function
A depth grown function is a non-decreasing function L : N0 → N ∪ {∞} given by
n 7→ L (n).

This allows the number of layers to depend on the parameter, that restricts the number of
connections or neurons. Note this definition allows the number of layers to be ∞. Later on,
the relation between approximation classes associated with different depth growth functions
is explored. For this, a comparison rule between depth growth functions is needed.

Definition II.6:
Let L1 and L2 be depth growth functions. Then L1 is said to be dominated by L2,
denoted by L1 ⪯ L2 or L2 ⪰ L1, if

∃ c, n0 ∈ N0 : ∀n ≥ n0 : L1(n) ≤ L2(cn).

Moreover, L1 and L2 are equivalent, denoted by L1 ∼ L2, if L1 ⪯ L2 and L1 ⪰ L2,
which is equivalent with

∃ c, n0 ∈ N0 : ∀n ≥ n0 : L1(n) ≤ L2(cn) ∧ L1(cn) ≥ L2(n).

4

J. Lund & M. Kjær Chapter II. Neural Networks

Note that L1(n) ≤ L2(n) for all n ∈ N0, implies that L1 ⪯ L2.
With the complexity and the ways to characterize a neural network in place, functions

implemented by neural networks are considered. These are defined by applying the different
maps in the tuple in an iterative order. Formally this is given as follows:

Definition II.7: Realization of a Neural Networks
Let Φ be a neural network. Then R(Φ) : RN0 → RNℓ is called the realization of Φ and
is given by

R(Φ) := TL ◦ αL−1 ◦ TL−1 ◦ · · · ◦ α1 ◦ T1.

Since idRNL ◦ TL = TL, the identity is omitted from the definition of the realization but can
be reinstated if needed. The argumentation for the convention in the definition of neural
networks also relies on the definition of the realization, which is commented in Remark A.1
as well. Moreover, the remark highlights the reasoning for distinguishing between a neural
network and its realization. The realization is going to play an important role and allow a
connection between the neural networks and approximation theory.

An example of a simple neural network is when N(Φ) = 0. In this case R(Φ) is an affine
linear map. Given different constraints on the features for complexity different families occur.
Some of the relevant families are stated in the following definition.

Definition II.8:
Let d, k ∈ N, let L ∈ N ∪ {∞}, and let W,N ∈ N0 ∪ {∞}. Then

NN ϱ, d, k
W, L, N :=

Φ is a ϱ-network

∣∣∣∣∣∣ din(Φ) = d, dout(Φ) = k,

W (Φ) ≤ W, L(Φ) ≤ L, N(Φ) ≤ N

 ,
SNN ϱ, d, k

W, L, N :=
{
Φ ∈ NN ϱ, d, k

W, L, N

∣∣∣ Φ is strict
}
,

NNϱ, d, k
W, L, N :=

{
R(Φ)

∣∣∣ Φ ∈ NN ϱ, d, k
W, L, N

}
,

SNNϱ, d, k
W, L, N :=

{
R(Φ)

∣∣∣ Φ ∈ SNN ϱ, d, k
W, L, N

}
.

By definition NNϱ, d, k
W, L, N is the set of all functions f : Rd → Rk that can be represented by a

realization of a ϱ-network with at most W weights, L layers and N neurons, and similarly for
SNNϱ, d, k

W, L, N . An example of such a family is NNϱ, d, k
∞, L, 0, which is the set of affine linear functions.

Moreover, for a non-empty set Ω ⊆ Rd the restriction of the introduced set to Ω is
denoted by NNϱ, d, k

W, L, N(Ω), and SNNϱ, d, k
W, L, N(Ω) respectively. Often Ω is chosen to be a simple

bounded compact subset of Rd, for instance, Ω = [0, 1]d.
These classes are later used with an n ∈ N0 and a depth growth function L , to make an

upper bound of the complexity. For instance the class

NNϱ, d, k
n, L (n), ∞ :=

{
R(Φ)

∣∣∣ Φ ∈ NN ϱ, d, k
n, L (n), ∞

}
.

5

J. Lund & M. Kjær Chapter II. Neural Networks

Notation:
For the rest of the report, let NN ϱ, d, k

W, L, N , SNN ϱ, d, k
W, L, N , NNϱ, d, k

W, L, N , and SNNϱ, d, k
W, L, N be defined

as in Definition II.8.

II.1 Relations Depending on the Complexity
This section is devoted to exploring the relationships between the quantities describing the
complexity, as these are tightly connected. First of all the number of connections and layers
can be bounded by the number of neurons in a neural network.

Proposition II.9:
Let Φ be a neural network. Then

L(Φ) ≤ 1 +N(Φ), (II.1)
W (Φ) ≤

(
N(Φ) + din(Φ)

)(
N(Φ) + dout(Φ)

)
. (II.2)

If L(Φ) = 2, then W (Φ) ≤ (din(Φ) + dout(Φ))N(Φ).

Proof, see Appendix B.

Proposition II.9 gives a boundary of L(Φ) and W (Φ) in terms of N(Φ). Therefore one could
try to consider a boundary of N(Φ) and L(Φ) in terms of W (Φ). However, such a bound
does not exist as it is always possible to bloat a neural network with ’dead neurons’. By
considering the class of realizations one could make such a bound.

The next result shows that when the number of non-zero weights is less than the number
of layers the realization of the neural network is guaranteed to be constant.

Proposition II.10:
Let Φ be a neural network with dout(Φ) = k. If W (Φ) < L(Φ), then R(Φ) = c ∈ Rk.

Proof, see Appendix B.

Note Proposition II.10 also guarantees R(Φ) is constant if W (Φ) = 0, since L(Φ) ≥ 1.
Now it is considered how the set of constant functions relates to sets of realizations of

neural networks.

Proposition II.11:
Let ϱ : R → R be an activation function, let d, k ∈ N, W,N ∈ N0 ∪ {∞}, and let
L ∈ N ∪ {∞}. Then{

f : Rd → Rk
∣∣∣ ∃ c ∈ Rk : f = c

}
⊆ SNNϱ, d, k

W, L, N ⊆ NNϱ, d, k
W, L, N .

6

J. Lund & M. Kjær Chapter II. Neural Networks

Proof, see Appendix B.

In the case where the number of connections is zero, there is equality, so the classes
of realizations of neural networks with no connections are the constant map.

Lemma II.12:
Let ϱ : R → R be an activation function, let d, k ∈ N, N ∈ N0 ∪ {∞}, and let
L ∈ N ∪ {∞}. Then

NNϱ, d, k
0, L, N = SNNϱ, d, k

0, L, N =
{
f : Rd → Rk

∣∣∣ ∃ c ∈ Rk : f = c
}
.

Proof, see Appendix B.

Given W ∈ N, the next result shows that any function that is a realization of a neu-
ral network with at most W ≥ 1 connections can also be realized by a neural network with
W connections and at most W layers and hidden neurons. Some notations for matrices are
used to prove the result, these can be found in Definition A.4.

Lemma II.13:
Let ϱ : R → R be an activation function, let d, k ∈ N, L ∈ N ∪ {∞}, and let W ∈ N.
Then

NNϱ, d, k
W, L, ∞ = NNϱ, d, k

W, L, W ⊆ NNϱ, d, k
W, W, W .

For L ≥ W the inclusion becomes an equality. An analogous statement holds for strict
neural networks.

Proof
First, it is desired to show that

NNϱ, d, k
W, L, W ⊆ NNϱ, d, k

W, W, W .

Therefore assume f ∈ NNϱ, d, k
W, L, W . Then there exists a Φ ∈ NN ϱ, d, k

W, L, W such that R(Φ) = f .
The statement is now divided into two cases:

L(Φ) ≤ W (Φ), L(Φ) > W (Φ).

First assume L(Φ) ≤ W (Φ). Then it holds that Φ ∈ NN ϱ, d, k
W, W, W , so f ∈ NNϱ, d, k

W, W, W . Now
assume W (Φ) < L(Φ). Then f is constant according to Proposition II.10, so Proposition II.11
gives that f ∈ NNϱ, d, k

W, W, W . This shows that NNϱ, d, k
W, L, W ⊆ NNϱ, d, k

W, W, W .
To prove the last statement in the lemma, assume L ≥ W . Then it follows directly from

the definition of the sets that NNϱ, d, k
W, L, W ⊇ NNϱ, d, k

W, W, W , which gives equality.
Next, it is desired to prove that NNϱ, d, k

W, L, ∞ = NNϱ, d, k
W, L, W , by showing that they are subspaces

of each other. By definition of the classes NNϱ, d, k
W, L, ∞ ⊇ NNϱ, d, k

W, L, W . Therefore it remains to show
that NNϱ, d, k

W, L, ∞ ⊆ NNϱ, d, k
W, L, W . For realizations in NNϱ, d, k

W, L, ∞, where the neural network satisfies

7

J. Lund & M. Kjær Chapter II. Neural Networks

N(Φ) ≤ W , the inclusion holds by definition, so assume that N(Φ) > W . To establish
the inclusion it is desired to prove that that for a neural network Φ ∈ NN ϱ, d, k

W, L, ∞ with
N(Φ) > W , there exists a neural network Φ̃ ∈ NN ϱ, d, k

W, L, ∞ with R(Φ) = R(Φ̃) such that
N(Φ̃) ≤ W. This is done by an “compression” argument, which consists of showing that
there exists a Φ̃ ∈ NN ϱ, d, k

W, L, ∞ with R(Φ) = R(Φ̃) such that N(Φ̃) < N(Φ), and then repeating
the argument until the case where N(Φ̃) ≤ W.

The “compression” argument is given as follows: Consider Φ ∈ NN ϱ, d, k
W, L, ∞. Since

W (Φ) ≤ W and N(Φ) > W it follows that

L(Φ)−1∑
ℓ=1

Nℓ = N(Φ)

> W

≥ W (Φ)

=
L(Φ)∑
ℓ=1

∥∥∥A(ℓ)
∥∥∥

ℓ0

=
L(Φ)∑
ℓ=1

Nℓ∑
i=1

∥∥∥A(ℓ)
i,−

∥∥∥
ℓ0

≥
L(Φ)−1∑

ℓ=1

Nℓ∑
i=1

∥∥∥A(ℓ)
i,−

∥∥∥
ℓ0
.

This shows that L(Φ) > 1 and the existence of some ℓ0 ∈ {1, . . . , L(Φ) − 1} and i ∈
{1, . . . , Nℓ0} such that A(ℓ0)

i,− = 0. By reindexing assume without loss of generality that
i = Nℓ0 . The rest of the proof will be split into two cases:

Nℓ0 = 1, Nℓ0 > 1.

First, consider the case where Nℓ0 = 1. Hence A(ℓ0) = 0, and therefore Tℓ0 = b(ℓ0). Thus
the realization is constant, so there exists a c ∈ Rk such that R(Φ) = c. Then the strict
neural network

Φ̃ :=
((
T̃1, idRk

))
,

where T̃1 := c satisfy R(Φ̃) = R(Φ) and Φ̃ ∈ NN ϱ, d, k
0, 1, 0 ⊆ NN

ϱ, d, k
W, L, W .

For the case where Nℓ0 > 1 it is desired to construct a ϱ-network based on the original
with i slight change for the index ℓ0. Start by defining

α̃ℓ := αℓ, ℓ ∈ {1, . . . , L(Φ)− 1} \ {ℓ0},
T̃ℓ := Tℓ, ℓ ∈ {1, . . . , L(Φ)} \ {ℓ0, ℓ0 + 1}.

For ℓ0 define α̃ℓ0 : RNℓ0 −1 → RNℓ0 −1 given by

α̃ℓ0(x) :=
Nℓ0 −1⊗

ℓ=1
ϱℓ0

ℓ

 (x),

and T̃ℓ0 : RNℓ0−1 → RNℓ0 −1 given by

T̃ℓ0x := (Tℓ0x)(Nℓ0).

8

J. Lund & M. Kjær Chapter II. Neural Networks

Moreover, define T̃ℓ0+1 : RNℓ0 −1 → RNℓ0+1 given by

T̃ℓ0+1x := Tℓ0+1
(
x1, . . . , xNℓ0 −1, ϱ

(ℓ0)
Nℓ0

(
b

(ℓ0)
Nℓ0

))
= A

(ℓ0+1)
[Nℓ0] x+ b̃(ℓ0+1),

where

b̃(ℓ0+1) := b(ℓ0+1) + ϱ
(ℓ0)
Nℓ0

(
b

(ℓ0)
Nℓ0

) (
A

(ℓ0+1)
−,Nℓ0

)T
.

Thus the constructed neural network is given by

Φ̃ :=
((
T̃1, α̃1

)
, . . . ,

(
T̃L(Φ)−1, α̃L(Φ)−1

)
,
(
T̃L(Φ), idRNℓ

))
.

Now consider some x ∈ RNℓ0 −1 and define

y := Tℓ0x ∈ RNℓ0 , ỹ := T̃ℓ0x ∈ RNℓ0 −1.

Notice that ỹj = yj for 1 ≤ j < Nℓ0 and yNℓ0
= b

(ℓ0)
Nℓ0

since A
(ℓ0)
Nℓ0 ,− = 0. From these

observations, it follows that(
T̃ℓ0+1 ◦ α̃ℓ0 ◦ T̃ℓ0

)
(x) =

(
T̃ℓ0+1 ◦ α̃ℓ0

)
(ỹ)

= Tℓ0+1
(
ϱ

(ℓ0)
1 (ỹ1) , . . . , ϱ(ℓ0)

Nℓ0 −1

(
ỹNℓ0 −1

)
, ϱ

(ℓ0)
Nℓ0

(
b

(ℓ0)
Nℓ0

))
= Tℓ0+1

(
ϱ

(ℓ0)
1 (y1), . . . , ϱ(ℓ0)

Nℓ0

(
yNℓ0

))
=
(
Tℓ0+1 ◦ αℓ0

)
(y)

=
(
Tℓ0+1 ◦ αℓ0 ◦ Tℓ0

)
(x).

This implies that Φ̃ satisfies R(Φ̃) = R(Φ), W (Φ̃) ≤ W (Φ) and N(Φ̃) = N(Φ) − 1 by
construction. It is therefore possible to “compress” until the desired inclusion is achieved.
Additionally Φ̃ inherits strictness from Φ, so the proof for strict neural networks follows
analogously. ■

Consider a neural network Φ ∈ NN ϱ, d, k
∞, ∞, ∞. Using Lemma II.13 with L = L(Φ) and

W = W (Φ) there exists another neural network Φ̃ ∈ NN ϱ, d, k
W (Φ), L(Φ), W (Φ) with R(Φ̃) = R(Φ),

and

N(Φ̃) ≤ W (Φ̃) ≤ W (Φ) ≤ N2(Φ) + (d+ k)N(Φ) + dk, (II.3)

where the first inequality holds by the compression argument in the proof of Lemma II.13,
and the last inequality holds according to (II.2). In the case where L = 2, it holds that

N(Φ̃) ≤ W (Φ̃) ≤ W (Φ) ≤ (d+ k)N(Φ), (II.4)

according to Proposition II.9.
With the focus on the depth growth function, Lemma II.13 gives that

NNϱ, d, k
n, L (n), ∞ = NNϱ, d, k

n, L̃ (n), ∞

for L̃ (n) := min{n,L (n)}. Similarly Proposition II.9, and (II.1) gives that

NNϱ, d, k
∞, L (n), n = NNϱ, d, k

∞, L̃ (n), n

for L̃ (n) := min{n + 1,L (n)}. These conclusions will be used when associating neural
networks with approximation spaces.

9

J. Lund & M. Kjær Chapter II. Neural Networks

II.2 Operations on Generalized Neural Networks
This section explores different operations on generalized neural networks, such as addition
and composition. For this, an extended version of a neural network is needed. This is
constructed in the next result, which shows that it is possible to increase the depth of
generalized neural networks while controlling the increase in complexity.

Lemma II.14: Extended Neural Networks
Let ϱ : R → R be an activation function, let d, k ∈ N and let L0 ∈ N0. Consider a
neural network Φ ∈ NN ϱ, d, k

∞, ∞, ∞ with layer sizes {Nℓ}L(Φ)
ℓ=0 , and define c := min{Nℓ}L(Φ)

ℓ=0 .
Then there exists a Ψ ∈ NN ϱ, d, k

∞, ∞, ∞ such that

R(Ψ) = R(Φ), W (Ψ) = W (Φ) + cL0,

L(Ψ) = L(Φ) + L0, N(Ψ) = N(Φ) + cL0.

Proof
Assume Φ ∈ NN ϱ, d, k

∞, ∞, ∞. Then it holds that

Φ :=
(
(T1, α1), . . . , (TL(Φ)−1, αL(Φ)−1),

(
TL(Φ), idRk

))
.

If L0 = 0, then choose Ψ := Φ. If L0 > 0 then choose ℓ0 := arg min{Nℓ}L(Φ)
ℓ=0 and define

Ψ :=
(
(T1, α1), . . . , (Tℓ0 , αℓ0),

(
idRNℓ0 , idRNℓ0

)
, . . . ,

(
idRNℓ0 , idRNℓ0

)
︸ ︷︷ ︸

L0 terms

,

(Tℓ0+1, αℓ0+1), . . . , (TL(Φ)−1, αL(Φ)−1),
(
TL(Φ), idRk

))
.

Note Ψ is just Φ, with additional L0 terms of
(
idRNℓ0 , idRNℓ0

)
, where each terms add one

layer, Nℓ0 neurons and Nℓ0 weights. Thus

R(Ψ) = R(Φ), W (Ψ) = W (Φ) +Nℓ0L0,

L(Ψ) = L(Φ) + L0, N(Ψ) = N(Φ) +Nℓ0L0,

which was the desired. The principle of the extended neural network Ψ in the case where
ℓ0 = L(Φ) is illustrated in Figure II.3. ■

Initial Neural Network Φ:

Rd RkT1 α1 TL idRk

Extended Neural Network Ψ:

Rd RkT1 α1 TL idRk idRk idRk idRk idRk

Figure II.3: Illustration of the principle of the proof for Lemma II.14. The first neural
network is the initial neural network, and the last is an example of the extended neural
network, where ℓ0 = L(Φ). Here the green boxes consist L0 additional layers, L0k connections
and L0k neurons compared to the initial neural network.

10

J. Lund & M. Kjær Chapter II. Neural Networks

This result has the consequence that the class of generalized neural networks is closed under
linear combinations and Cartesian products. However, this does not hold for the class of
strict neural networks. Already in proof of Lemma II.14 it is used that the identity can be
chosen as an activation function. First, the statement on linear combinations is formalized
in the following lemma.

Lemma II.15: Linear Combination
Let ϱ : R→ R be an activation function, let d, k, n ∈ N, W,N ∈ N0∪{∞}, L ∈ N∪{∞},
and c ∈ R.

(i) Scalar Multiplication:
If Φ ∈ NN ϱ, d, k

W, L, N then there exists a Ψ ∈ NN ϱ, d, k
W, L, N such that

R(Ψ) = cR(Φ), W (Ψ) ≤ W (Φ),
L(Ψ) = L(Φ), N(Ψ) = N(Φ).

(ii) Addition:
If {Φm}n

m=1 ⊆ NN
ϱ, d, k
W, L, N , then there exists a Ψ ∈ NN ϱ, d, k

C(L−1)+nW, L, (C+n)N such
that

R(Ψ) =
n∑

m=1
R(Φm), W (Ψ) ≤ δ +

n∑
m=1

W (Φm)

L(Ψ) = max{L(Φm)}n
m=1, N(Ψ) ≤ δ +

n∑
m=1

N(Φm),

where δ := C(L(Ψ)−min{L(Φm)}n
m=1) and C ≤ min{d, k}.

Proof
(i) Let

Φ :=
(
(T1, α1), . . . , (TL(Φ)−1, αL(Φ)−1), (TL(Φ), idRk)

)
∈ NN ϱ, d, k

W, L, N .

Then the neural network

Ψ :=
(
(T1, α1), . . . , (TL(Φ)−1, αL(Φ)−1), (cTL(Φ), idRk)

)
∈ NN ϱ, d, k

W, L, N

satisfy R(Ψ) = cR(Φ), L(Ψ) = L(Φ), and N(Ψ) = N(Φ). If c ̸= 0 then it also holds
that W (Ψ) = W (Φ), but if c = 0, then

W (Ψ) = W (Φ)−
∥∥∥TL(Φ)

∥∥∥
ℓ0
≤ W (Φ),

which completes this part of the proof.

(ii) To prove this part induction is used on i ∈ {1, . . . , n}. Before beginning with this, some
assumptions are made. Assume without loss of generality that L(Φ1) ≤ · · · ≤ L(Φn).
This can be done by permutating the index, which does not affect the desired realization,
since addition is commutative. Next, it is desired to show that it can be assumed
that there only is one neural network with one layer, so L(Φ2) ≥ 2, compared to the

11

J. Lund & M. Kjær Chapter II. Neural Networks

previous assumption. To see this assume there there exists a j ∈ {2, . . . , n} such that
L(Φj) = 1. Then it holds that Φm =

(
(Tm,1, idRk)

)
, where Tm,1 := A(m,1) • +b(m,1) for

1 ≤ m ≤ j. Moreover, N(Φm) = 0 and R(Φm) is an affine linear map. By defining

Φ̃i :=


 j∑

m=1
Tm,1, idRk

 , i = 1,

Φi+j−1, 2 ≤ i ≤ n− j + 1,

it holds that

L(Φ̃1) = 1, R(Φ̃1) =
j∑

m=1
R(Φm), N(Φ̃1) = 0,

W (Φ̃1) =
∥∥∥∥∥∥

j∑
m=1

Tm,1

∥∥∥∥∥∥
ℓ0

≤ min
dk,

j∑
m=1
∥Tm,1∥ℓ0

 = min
dk,

j∑
m=1

W (Φm)
 .

Then for {Φ̃i}n−j+1
i=1 there exists no such j, so L(Φ̃2) ≥ 2. It is therefore possible to

assume without loss of generality that L(Φ2) ≥ 2.
Now the induction part is considered for i ∈ {1, . . . , n}. The result holds for i = 1

by choosing Ψ := Φ1. For the induction step, a constructive argument is needed.
Assume that Ψi satisfies the result for some i ∈ {1, . . . , n− 1}. That is

R(Ψi) =
i∑

m=1
R(Φm), W (Ψi) ≤ δi +

i∑
m=1

W (Φm),

L(Ψi) = max{L(Φm)}i
m=1 = L(Φi), N(Ψi) ≤ δi +

i∑
m=1

N(Φm),

where δi := Ci(L(Ψi) − min{L(Φm)}i
m=1) and Ci ≤ min{d, k}. Then it holds that

L(Ψi) = L(Φi) ≤ L(Φi+1), where

Φi+1 :=
(
(T1, α1), . . . , (TL(Φi+1)−1, αL(Φi+1)−1), (TL(Φi+1), idRk)

)
.

Let

Ψ̃i :=
((
S̃1, β̃1

)
, . . . ,

(
S̃L(Φi+1)−1, β̃L(Φi+1)−1

)
,
(
S̃L(Φi+1), idRk

))
be the result of extending Ψi using Lemma II.14 with

L0 = L(Φi+1)− L(Ψi), R(Ψ̃i) = R(Ψi),

and let ci be the minimal layer size of Ψi. Define

S1 : Rd → RN1+Ñ1 , x 7→
(
S̃1x, T1x

)
,

Sm : RNm−1+Ñm−1 → RNm+Ñm , (x, y) 7→
(
S̃mx, Tmy

)
,

SL(Φi+1) : RNL(Φi+1)−1+ÑL(Φi+1)−1 → Rk, (x, y) 7→ S̃L(Φi+1)x+ TL(Φi+1)y,

for 1 < m < L(Φi+1) and define

βm : RNm+Ñm → RNm+Ñm , (x, y) 7→
(
β̃mx, αmy

)
,

12

J. Lund & M. Kjær Chapter II. Neural Networks

for 1 ≤ m < L(Φi+1). Now define

Ψi+1 :=
(
(S1, β1), . . . , (SL(Φi+1)−1, βL(Φi+1)−1), (SL(Φi+1), idRk)

)
.

This neural network plays the role of the sum of the original neural networks Φi.
The principle of the construction is illustrated in the case of two neural networks in
Figure II.4. Now it holds that

L(Ψi+1) = L(Φi+1) = max{L(Φm)}i+1
m=1,

R(Ψi+1) = R(Ψi) + R(Φi+1) =
i+1∑

m=1
R(Φm).

Using the properties of the extended neural network and the induction assumption it
holds that

N(Ψi+1) = N(Ψ̃i) +N(Φi+1)
≤ N(Ψi) + ci(L(Φi+1)− L(Ψi)) +N(Φi+1)

≤
(
δi +

i∑
m=1

N(Φm)
)

+ ci(L(Φi+1)− L(Ψi)) +N(Φi+1)

= Ci(L(Ψi)−min{L(Φm)}i
m=1) + ci(L(Φi+1)− L(Ψi)) +

i+1∑
m=1

N(Φm)

≤ Ci(L(Φi+1)−min{L(Φm)}i
m=1) + ci(L(Φi+1)− L(Ψi)) +

i+1∑
m=1

N(Φm)

≤ max{Ci, ci}(L(Φi+1)−min{L(Φm)}i
m=1) +

i+1∑
m=1

N(Φm)

≤ δi+1 +
i+1∑

m=1
N(Φm),

where

δi+1 := C
(
L(Φi+1)−min{L(Φm)}i+1

m=1

)
,

C := max{Ci, ci} ≤ min{d, k}.

By similar arguments, it holds that

W (Ψi+1) = W (Ψ̃i) +W (Φi+1)

≤ δi + ci(L(Φi+1)− L(Ψi)) +
i+1∑

m=1
W (Φm)

≤ δi+1 +
i+1∑

m=1
W (Φm).

This concludes the induction. It remains to show that the constructed Ψ is in the right
family. Since δn ≤ C(L− 1) ≤ CN, it holds that Ψ ∈ NN ϱ, d, k

C(L−1)+nW, L, (C+n)N , which
concludes the proof. ■

13

J. Lund & M. Kjær Chapter II. Neural Networks

Φ1:
Rd1 Rk1T1 α1 TL idRk1

Φ2:
Rd2 Rk2S1 β1 SL̃ idRk2

Ψ = Φ1 + Φ2 for d1 = d2 = d and k1 = k2 = k:

Rd Rk

T1

S1

α1

β1

TL̃

SL̃

αL̃

idRk

TL̃+1

idRk

αL̃+1

idRk

TL−1

idRk

idRk

idRk

(x, y) 7→ TLx+ y

Figure II.4: Illustration of the principle of adding two neural networks, as constructed in
the proof for Lemma II.15(ii).
Note that Lemma II.15 assumes that the input and output dimensions of the neural networks
are equal. However, for the result stating that the class of generalized neural networks is
closed under Cartesian products, it is only assumed that the input dimensions are equal.
The proof of this result follows the same ideas as the previous and will be dealt with in less
detail.

Lemma II.16: Cartesian Products
Let ϱ : R→ R be an activation function, let d, n ∈ N, W,N ∈ N0 ∪ {∞}, L ∈ N∪ {∞},
and let {km}n

m=1 ⊂ N. If Φm ∈ NN ϱ, d, km

W, L, N for m ∈ {1, . . . , n}, then there exists a
Ψ ∈ NN ϱ, d, k

CL+nW, L, (C+n)N , where k := ∑n
m=1 km, such that

R(Ψ) =
(
R(Φ1), . . . , R(Φn)

)
, W (Ψ) ≤ δ +

n∑
m=1

W (Φm)

L(Ψ) = max{L(Φm)}n
m=1, N(Ψ) ≤ δ +

n∑
m=1

N(Φm),

where δ := C(L(Ψ)−min{L(Φm)}n
m=1) and C ≤ min{d, k − 1}.

Proof
First, consider a permutation σ ∈ Sn such that L(Φσ(1)) ≤ · · · ≤ L(Φσ(n)) and a permutation
matrix P ∈ GL(Rk) such that

P ◦
(
R(Φσ(1)), . . . , R(Φσ(n))

)
=
(
R(Φ1), . . . , R(Φn)

)
.

By these considerations, assume without loss of generality, that L(Φ1) ≤ · · · ≤ L(Φn).
In contrast to the proof of Lemma II.15(ii) this permutation matrix is crucial since the
realization depends on the order of the neural networks.

The result follows from an induction argument similar to the proof of Lemma II.15(ii).
The only differences lie in the affine-linear map

Sm : RNm−1×Ñm−1 → RNm×Ñm , (x, y) 7→
(
S̃mx, Tmy

)
,

for 1 < m ≤ L(Φi+1), the constant C := max{Ci, ci} ≤ min{d, k − 1}, and the realization
R(Ψi+1) =

(
R(Ψ1), . . . , R(Ψi+1)

)
. Similarly as in the proof of Lemma II.15(ii), the neural

networks constructed from these Sm plays the role of the Cartesian product, and the principle
of the construction is illustrated in the case of two neural networks in Figure II.5. ■

14

J. Lund & M. Kjær Chapter II. Neural Networks

Φ1:
Rd1 Rk1T1 α1 TL idRk1

Φ2:
Rd2 Rk2S1 β1 SL̃ idRk2

Ψ = (Φ1,Φ2) for d1 = d2 = d:

Rd Rk1+k2

T1

S1

α1

β1

TL̃

SL̃

αL̃

idRk2

TL̃+1

idRk2

αL̃+1

idRk2

TL

idRk2

idRk1

idRk2

Figure II.5: Illustration of the principle of Cartesian products for two neural networks, as
constructed in the proof for Lemma II.16.

The next result deals with neural networks and composition. New notation is needed before
stating the result. For an affine linear map T : Rd → Rk, given by T (x) := Ax+ b define

∥A∥ℓ0,∞ := max{∥A−,m∥ℓ0}d
m=1, ∥T∥ℓ0,∞ := ∥A∥ℓ0,∞ ,

∥A∥ℓ0,∞
∗

:= max
{
∥Am,−∥ℓ0

}k

m=1
, ∥T∥ℓ0,∞

∗
:= ∥A∥ℓ0,∞

∗
.

Lemma II.17: Composition
Let ϱ : R→ R be an activation function, let d1, d2, k1, k2 ∈ N, W,N ∈ N0 ∪ {∞}, and
let L ∈ N ∪ {∞},

(i) If Φ ∈ NN ϱ, d1, k1
W, L, N and P : Rd2 → Rd1 , Q : Rk1 → Rk2 are affine linear maps, then

there exists a Ψ ∈ NN ϱ, d2, k2
W1, L, N , where W1 := ∥Q∥ℓ0,∞∥P∥ℓ0,∞

∗
W such that

R(Ψ) = Q ◦ R(Φ) ◦ P, L(Ψ) = L(Φ),
W (Ψ) ≤ ∥Q∥ℓ0,∞∥P∥ℓ0,∞

∗
W (Φ), N(Ψ) = N(Φ).

(ii) If Φ1 ∈ NN ϱ, d1, k1
W, L, N and Φ2 ∈ NN ϱ, k1, k2

W, L, N , then there exists a Ψ1 ∈ NN ϱ, d1, k2
2W, 2L, 2N+k1

such that

R(Ψ1) = R(Φ2) ◦ R(Φ1), L(Ψ1) = L(Φ1) + L(Φ2),
N(Ψ1) = N(Φ1) +N(Φ2) + k1, W (Ψ1) = W (Φ1) +W (Φ2),

and a Ψ2 ∈ NN ϱ, d1, k2
W2, 2L, 2N , where W2 := W + max{N(Φ1), d1}W such that

R(Ψ2) = R(Φ2) ◦ R(Φ1), L(Ψ2) = L(Φ1) + L(Φ2)− 1,
N(Ψ2) = N(Φ1) +N(Φ2), W (Ψ2) ≤ W (Φ1) + max{N(Φ1), d1}W (Φ2).

If Φ1 and Φ2 are strict neural networks, then Ψ2 is strict as well.

Proof
(i) Let

Φ :=
(
(T1, α1), . . . , (TL(Φ)−1, αL(Φ)−1), (TL(Φ), idRk)

)
.

15

J. Lund & M. Kjær Chapter II. Neural Networks

In the case where ∥P∥ℓ0 = 0 or ∥Q∥ℓ0 = 0 and the case where ∥P∥ℓ0 ≥ 1 and ∥Q∥ℓ0 ≥ 1
er dealt with separately.

If ∥P∥ℓ0 = 0 or ∥Q∥ℓ0 = 0 then Q ◦ R(Φ) ◦ P = c ∈ Rk2 . Then by defining

Ψ :=
(
(0T1, α1), . . . , (0TL(Φ)−1, αL(Φ)−1), (c, idRk)

)
it holds that

R(Ψ) = c, L(Ψ) = L(Φ),
W (Ψ) = 0, N(Ψ) = N(Φ).

Now assume ∥P∥ℓ0 ≥ 1 and ∥Q∥ℓ0 ≥ 1, from which it follows that ∥P∥ℓ0,∞ ≥ 1 and
∥Q∥ℓ0,∞

∗
≥ 1. Thus for any general affine linear map T it holds that

∥T∥ℓ0 ≤ ∥P∥ℓ0,∞
∗
∥T∥ℓ0 ,

∥T∥ℓ0 ≤ ∥Q∥ℓ0,∞∥T∥ℓ0 .

According to Lemma C.2 with the weight matrices T = Ti for i ∈ {1, . . . , L(Φ)} and
S = P or S = Q it holds that

∥T1P∥ℓ0 ≤ ∥T1∥ℓ0∥P∥ℓ0,∞
∗
,

∥QTL(Φ)∥ℓ0 ≤ ∥Q∥ℓ0,∞∥TL(Φ)∥ℓ0 .

By defining

Ψ :=
(
(T1 ◦ P, α1), (T2, α2) . . . , (TL(Φ)−1, αL(Φ)−1), (Q ◦ TL(Φ), idRk)

)
it holds that

R(Ψ) = Q ◦ R(Φ) ◦ P, L(Ψ) = L(Φ), N(Ψ) = N(Φ),

and

W (Ψ) = ∥T1 ◦ P∥ℓ0 + ∥Q ◦ TL(Φ)∥ℓ0 +
L(Φ)−1∑

n=2
∥Tn∥ℓ0

≤ ∥Q∥ℓ0,∞∥P∥ℓ0,∞
∗

L(Φ)∑
n=1
∥Tn∥ℓ0

≤ ∥Q∥ℓ0,∞∥P∥ℓ0,∞
∗
W (Φ).

By defining W1 := ∥Q∥ℓ0,∞∥P∥ℓ0,∞
∗
W , part (i) is proven.

(ii) Define L1 := L(Φ1) and L2 := L(Φ2) and let

Φ1 :=
(
(T1, α1), . . . , (TL1−1, αL1−1), (TL1 , idRk1)

)
,

Φ2 :=
(
(S1, β1), . . . , (SL2−1, βL2−1), (SL2 , idRk2)

)
.

Moreover, define

Ψ1 :=
(
(T1, α1), . . . , (TL1−1, αL1−1), (TL1 , idRk1),

(S1, β1), . . . , (SL2−1, βL2−1), (SL2 , idRk2)
)
,

Ψ2 :=
(
(T1, α1), . . . , (TL1−1, αL1−1), (S1 ◦ TL1 , β1)

(S2, β2), . . . , (SL2−1, βL2−1), (SL2 , idRk2)
)
.

16

J. Lund & M. Kjær Chapter II. Neural Networks

These neural networks play the role of the two different compositions, and the principle
of the construction is illustrated in Figure II.6. Note that since Tℓ, where ℓ ∈ {1, . . . , L1},
and Sℓ, where ℓ ∈ {1, . . . , L2}, are affine-linear maps with the right dimensions, and
since αℓ and βℓ still satisfies the condition in the definition, both Ψ1 and Ψ2 are
generalized ϱ-networks. Moreover, it holds that

R(Ψ1) = R(Ψ2) = R(Φ2) ◦ R(Φ1),
L(Ψ1) = L1 + L2,

L(Ψ2) = L1 + L2 − 1,
N(Ψ1) = N(Φ1) +N(Φ2) + k1,

N(Ψ2) = N(Φ1) +N(Φ2),
W (Ψ1) = W (Φ1) +W (Φ2).

Since ∥TL1∥ℓ0,∞
∗
≤ max{d1, N(Φ1)}, it holds that

∥S1 ◦ TL1∥ℓ0 ≤ ∥S1∥ℓ0∥TL1∥ℓ0,∞
∗
≤ ∥S1∥ℓ0 max{d,N(Φ1)},

according to Lemma C.2. As 1 ≤ max{d,N(Φ1)} it follows that

W (Ψ2) =
L1−1∑
ℓ=1
∥Tℓ∥ℓ0 + ∥S1 ◦ TL1∥ℓ0 +

L2∑
ℓ=2
∥Sℓ∥ℓ0

≤
L1−1∑
ℓ=1
∥Tℓ∥ℓ0 + max{d,N(Φ1)}

L2∑
ℓ=1
∥Sℓ∥ℓ0

≤ W (Φ1) + max{d,N(Φ1)}W (Φ2).

Note that if Φ1 and Φ2 are strict neural networks, then Ψ2 is a strict neural network.
It does not hold for Ψ1 because the last term in Φ1 contains an identity map, which
breaks the strictness. ■

Φ1:
Rd1 Rk1T1 α1 TL idRk1

Φ2:
Rd2 Rk2S1 β1 SL̃ idRk2

Ψ1 = Φ2 ◦ Φ1 for d2 = k1:
Rd1 Rk2T1 α1 TL idRk1 S1 β1 SL̃ idRk2

Ψ2 = Φ2 ◦ Φ1 for d2 = k1:
Rd1 Rk2T1 α1 TL−1 αL−1 S1 ◦ TL β1 S2 β2 SL̃ idRk2

Figure II.6: Illustration of the principle of the two possible implementations of composition,
as constructed in the proof of Lemma II.17.

Note that the previous results all consider an upper bound, but this is not necessarily an
optimal upper bound. These results will mostly be used for realization, where there exists
an underlying neural network, which is not explicitly mentioned at the time.

The previous results imply that the class of realizations of generalized neural networks
admits good closure properties under linear combinations and compositions of functions,
which do not hold in general for realizations of strict neural networks.

17

III | Activation Functions

The choice of activation function influences the approximation properties of a neural network.
Therefore the choice of activation function is important, as well as the properties they have.
The chapter is based on [12, p. 259-276].

A specific activation function that is widely used is the rectified linear unit, abbreviated
ReLU, and it is defined in the following:

Definition III.1: ReLU & its Powers
Let r ∈ N. Then ϱr : R→ R given by

ϱr(x) := xr
+ := (max{0, x})r

is called ReLU for r = 1, its powers are called ReLU-r for r > 1. Additionally,
ReLU-0 is defined by the Heaviside functions given by ϱ0 := χ[0,∞).

Neural networks with ReLU activation function or its powers are also called ReLU-networks,
or ReLU-r-networks. Notice per definition that ϱr ∈ Cr−1(R), for r ∈ N. The motivation for
using ReLU as an activation function is based on its wide use in other practical applications
such as areas within machine learning. Other examples of activation functions as well as
ReLU and one of its powers are illustrated in Figure III.1.

ReLU Function: Sigmoid Function: Step Function 0/1:

ReLU-2 Function: Tanh Function: Step Function −1/1:

Figure III.1: Illustration of different activation functions.

Notation:
For the rest of the report let ϱr be ReLU-r for r ∈ N0.

III.1 Connections Between Activation Functions
This section explores general connections between activation functions such as when one
is a realization of a neural network, and when one is a composition of another activation
function.

18

J. Lund & M. Kjær Chapter III. Activation Functions

The first result shows that if an activation function σ is a realization of a ϱ-network, then
σ-networks can be converted to a ϱ-networks with controlled complexity.

Lemma III.2:
Let ϱ, σ : R→ R be activation functions where σ is non-constant. Assume that there
exists a Φσ ∈ NN ϱ, 1, 1

w, ℓ, n, with L(Φσ) = ℓ, w, n ∈ N such that R(Φσ) = σ. Then for all
W,N ∈ N0 ∪ {∞}, L ∈ N ∪ {∞}, and d, k ∈ N, it holds that:

(i) If ℓ = 2, then NNσ, d, k
W, L, N ⊆ NNϱ, d, k

n2W, L, nN .

(ii) If ℓ > 2, then NNσ, d, k
W, L, N ⊆ NNϱ, d, k

nW +wN, (L−1)ℓ+1, (n+1)N .

Proof
(i) Let Ψ ∈ NN σ, d, k

W, L, N be given by

Ψ :=
(
(T1, α1), . . . , (TL(Ψ)−1, αL(Ψ)−1), (TL(Ψ), idRk)

)
.

It is desired to prove that there exists some

Φ ∈ NN ϱ, d, k
n2W, L, nN ,

such that R(Ψ) = R(Φ). If L(Φ) = 1, then N(Φ) = 0, so Ψ ∈ NN ϱ, d, k
n2W, L, nN . Therefore

assume that L(Ψ) > 1.
Let Nm be the number of neurons in the m’th layer of Ψ. By Lemma C.3, with

d = Nm there exists a

Φm :=
(
(Tm,1, βm), (Tm,2, idRNm)

)
∈ NN ϱ, Nm, Nm

wNm, 2, nNm

for each m ∈ {1, . . . , L(Ψ)− 1} such that R(Φm) = αm, where

βm : RN(Φm) → RN(Φm),

with N(Φm) ≤ nNm, ∥Tm,1∥ℓ0,∞ ≤ n, and ∥Tm,2∥ℓ0,∞
∗
≤ n. Now define

S1 := T1,1 ◦ T1,

Sm := Tm,1 ◦ Tm ◦ Tm−1,2

SL(Ψ) := TL(Ψ) ◦ TL(Ψ)−1,2,

for 1 < m < L(Ψ) and

Φ :=
(
(S1, β1), . . . , (SL(Ψ)−1, βL(Ψ)−1), (SL(Ψ), idRk)

)
.

Then per construction, it holds that L(Φ) = L(Ψ). By considering the first five terms
in the tuple one can see that

S3 ◦ β2 ◦ S2 ◦ β1 ◦ S1 = (T3,1 ◦ T3 ◦ T2,2) ◦ β2 ◦ (T2,1 ◦ T2 ◦ T1,2) ◦ β1 ◦ (T1,1 ◦ T1)
= T3,1 ◦ T3 ◦ (T2,2 ◦ β2 ◦ T2,1) ◦ T2 ◦ (T1,2 ◦ β1 ◦ T1,1) ◦ T1

= T3,1 ◦ T3 ◦ α2 ◦ T2 ◦ α1 ◦ T1,

19

J. Lund & M. Kjær Chapter III. Activation Functions

since R(Φm) = αm per construction. Thus by following the same steps for all terms in
the tuple, it holds that R(Φ) = R(Ψ). Per assumption n ≥ 1, so by Lemma C.2 it holds
that

∥S1∥ℓ0 ≤ ∥T1,1∥ℓ0,∞∥T1∥ℓ0 ≤ n2∥T1∥ℓ0 ,

∥Sm∥ℓ0 ≤ ∥Tm,1∥ℓ0,∞∥Tm∥ℓ0∥Tm−1,2∥ℓ0,∞
∗
≤ n2∥Tm∥ℓ0 ,

∥SL(Φ)∥ℓ0 ≤ ∥TL(Φ)∥ℓ0∥TL(Φ)−1,2∥ℓ0,∞
∗
≤ n2∥TL(Φ)∥ℓ0 ,

for 1 < m < L(Φ). From this and the construction of Φ it follows that

W (Φ) =
L(Φ)∑
m=1
∥Sm∥ℓ0 ≤ n2

L(Φ)∑
m=1
∥Tm∥ℓ0 = n2W (Ψ),

N(Φ) =
L(Φ)−1∑

m=1
N(Φm) ≤ n

L(Φ)−1∑
m=1

Nm = nN(Ψ),

which proves (i).

(ii) The proof of

NNσ, d, k
W, L, N ⊆ NNϱ, d, k

nW +wN, (L−1)ℓ+1, (n+1)N .

is done by induction on L ∈ N. For L = 1 it is clear that

NNσ, d, k
W, 1, N ⊆ NNϱ, d, k

nW +wN, 1, (n+1)N

since w ≥ 1, n ≥ 1 and the activation function plays no role for neural networks with
no hidden layers and neurons.

Now for the induction step assume that the statement holds for L and consider
f ∈ NNσ, d, k

W, L+1, N . If f ∈ NNσ, d, k
W, L, N then by the induction assumption

NNσ, d, k
W, L, N ⊆ NNϱ, d, k

nW +wN, (L−1)ℓ+1, (n+1)N

⊆ NNϱ, d, k
nW +wN, Lℓ+1, (n+1)N ,

so assume that f /∈ NNσ, d, k
W, L, N . Then there exists a neural network

Ψ :=
(
(T1, α1), . . . , (TL, αL), (TL+1, idRk)

)
∈ NN σ, d, k

W, L+1, N ,

with R(Ψ) = f , and TL+1 : RkL → Rk, where kL is the number of neurons in layer L.
Define

ΨL :=
(
(T1, α1), . . . , (TL−1, αL−1), (TL, idRkL)

)
∈ NN σ, d, kL

WL, L, NL
,

where WL := W (ΨL) and NL := N(ΨL). Thus it follows that

WL + ∥TL+1∥ℓ0 = W (Ψ) ≤ W,

NL + kL = N(Ψ) ≤ N.

By the induction hypothesis, it holds that

R(ΨL) ∈ NNσ, d, kL
WL, L, NL

⊆ NNϱ, d, k
nWL+wNL, (L−1)ℓ+1, (n+1)NL

.

20

J. Lund & M. Kjær Chapter III. Activation Functions

Consider

ΦL :=
(
(S1, β1), . . . , (SL̃−1, βL̃−1), (SL̃, idRkL)

)
∈ NN ϱ, d, kL

nWL+wNL, (L−1)ℓ+1, (n+1)NL

with R(ΦL) = R(ΨL). Thus f = TL+1 ◦ αL ◦ R(ΦL). Furthermore by Lemma C.3 it
follows that there exists a

Φα :=
(
(U1, γ1), . . . , (Uℓ−1, γℓ−1), (Uℓ, idRkL)

)
∈ NN ϱ, kL, kL

wkL, ℓ, nkL

with R(Φα) = αL and ∥Uℓ∥ℓ0,∞
∗
≤ n. Thus for the neural network

Φ :=
(
(S1, β1), . . . , (SL̃−1, βL̃−1), (SL̃, idRkL),

(U1, γ1), . . . , (Uℓ−1, γℓ−1), (TL+1 ◦ Uℓ, idRk)
)

it holds that R(Φ) = f . Moreover,

L(Φ) = L̃+ ℓ

≤ (L− 1)ℓ+ 1 + ℓ

= Lℓ+ 1,

N(Φ) = N(Φα) +N(ΦL) + kL

≤ nkL + (n+ 1)NL + kL

= (n+ 1)(NL + kL)
≤ (n+ 1)N,

and by Lemma C.2

W (Φ) = W (Φα) + (W (ΦL)− ∥Uℓ∥ℓ0) + ∥TL+1 ◦ Uℓ∥ℓ0

≤ wkL + (nWL + wNL) + ∥TL+1∥ℓ0∥Uℓ∥ℓ0,∞
∗

≤ w(kL +NL) + (WL + ∥TL+1∥ℓ0)n
≤ wN + nW.

Thus f ∈ NNϱ, d, k
nW +wN, Lℓ+1, (n+1)N , which was desired. ■

In the case where σ is an s-fold composition of ϱ, an improvement of Lemma III.2 can be
improved to the following:

Lemma III.3:
Let ϱ, σ : R→ R be an activation function, let s ∈ N, and let

σ := ϱ ◦ · · · ◦ ϱ︸ ︷︷ ︸
s terms

.

Then for all W,N ∈ N0 ∪ {∞} and L ∈ N ∪ {∞} it holds that

NNσ, d, k
W, L, N ⊆ NNϱ, d, k

W +(s−1)N, (L−1)s+1, sN .

An analogous statement holds for strict neural networks, where NN is replaced with SNN.

21

J. Lund & M. Kjær Chapter III. Activation Functions

Proof
Let

Φ :=
(
(T1, α1), . . . , (TL(Φ)−1, αL(Φ)−1), (TL(Φ), idRk)

)
∈ NN σ, d, k

W, L, N .

It is desired to prove that there exists some

Ψ ∈ NN ϱ, d, k
W +(s−1)N, (L−1)s+1, sN

such that R(Ψ) = R(Φ). If s = 1 or L(Φ) = 1, then the result follows trivially, so assume
that s ≥ 2 and L(Φ) ≥ 2.

For ℓ ∈ {1, . . . , L(Φ) − 1} let Nℓ denote the number of neurons in the ℓ’th layer of
Φ, and define αℓ := α

(1)
ℓ ⊗ · · · ⊗ α

(Nℓ)
ℓ , where α(i)

ℓ ∈ {σ, idR}. For ℓ ∈ {1, . . . , L(Φ) − 1},
j ∈ {1, . . . , Nℓ}, and i ∈ {1, . . . , s} define

β
(j)
(ℓ−1)s+i :=

ϱ, if α(j)
ℓ = σ,

idR, if α(j)
ℓ ̸= σ,

β(ℓ−1)s+i :=
Nℓ⊗
j=1

β
(j)
(ℓ−1)s+i.

Moreover, for ℓ ∈ {1, . . . , L(Φ)− 1}, and i ∈ {2, . . . , s}, define

S(ℓ−1)s+1 := Tℓ : RNℓ−1 → RNℓ ,

S(ℓ−1)s+i := idRNℓ .

By construction, it holds that

αℓ ◦ Tℓ = β(ℓ−1)s+s ◦ · · · ◦ β(ℓ−1)s+1 ◦ S(ℓ−1)s+1

= β(ℓ−1)s+s ◦ S(ℓ−1)s+s ◦ · · · ◦ β(ℓ−1)s+1 ◦ S(ℓ−1)s+1

= βℓs ◦ Sℓs ◦ · · · ◦ β(ℓ−1)s+1 ◦ S(ℓ−1)s+1

and thus

R(Φ) = TL(Φ) ◦ αL(Φ)−1 ◦ TL(Φ)−1 ◦ · · · ◦ T1 ◦ α1

= TL(Φ) ◦ βs(L(Φ)−1) ◦ Ss(L(Φ)−1) ◦ · · · ◦ S1 ◦ β1.

Then the ϱ-network

Ψ :=
(
(S1, β1), . . . , (S(L(Φ)−1)s, β(L(Φ)−1)s), (TL(Φ), idRk)

)
∈ NN ϱ, d, k

WΨ, (L(Φ)−1)s+1, sN

⊆ NN ϱ, d, k
WΨ, (L−1)s+1, sN ,

where

WΨ := W (Ψ)

= ∥TL(Φ)∥ℓ0 +
(L(Φ)−1)s∑

j=1
∥Sj∥ℓ0

= ∥TL(Φ)∥ℓ0 +
L(Φ)−1∑

ℓ=1

s∑
i=1
∥S(ℓ−1)s+i∥ℓ0

22

J. Lund & M. Kjær Chapter III. Activation Functions

= ∥TL(Φ)∥ℓ0 +
L(Φ)−1∑

ℓ=1

(
∥S(ℓ−1)s+1∥ℓ0 +

s∑
i=2
∥S(ℓ−1)s+i∥ℓ0

)

= ∥TL(Φ)∥ℓ0 +
L(Φ)−1∑

ℓ=1
(∥Tℓ∥ℓ0 + (s− 1)Nℓ)

=
L(Φ)∑
ℓ=1
∥Tℓ∥ℓ0 + (s− 1)

L(Φ)−1∑
ℓ=1

Nℓ

= W (Φ) + (s− 1)N(Φ)
≤ W + (s− 1)N.

Therefore Ψ ∈ NN ϱ, d, k
W +(s−1)N, (L−1)s+1, sN . Additionally, if Φ is a strict neural network, then

Ψ is strict as well. ■

The previous results consider the case where σ can be implemented by a ϱ-network. The
next result considers the case where σ is the limit of a sequence of ϱ-networks.

Lemma III.4:
Let ϱ, σ : R→ R be activation functions, and let σ be continuous. Assume that there
exists a family Φm ∈ NN ϱ, 1, 1

w, ℓ, n parameterized by m ∈ R, with L(Φm) = ℓ ∈ N, and
w, n ∈ N0 such that

σm := R(Φm) −−−→
m→0

σ,

with locally uniformly on R. Then, for any d, k ∈ N, W,N ∈ N0, and L ∈ N, it holds
that

(i) If ℓ = 2, then NNσ, d, k
W, L, N ⊆ NNϱ, d, k

n2W, L, nN .

(ii) If ℓ > 2, then NNσ, d, k
W, L, N ⊆ NNϱ, d, k

nW +wN, (L−1)ℓ+1, (n+1)N .

The closure is with respect to locally uniform convergence.

Proof
Let f ∈ NNσ, d, k

W, L, N . Then there exists a

Ψ :=
(
(T1, α1), . . . , (TL̃−1, αL̃−1), (TL̃, idRk)

)
∈ NN σ, d, k

W, L̃, N
,

such that R(Ψ) = f , with L(Ψ) = L̃ ≤ L, and

αℓ :=
Nℓ⊗

n=1
σ(ℓ)

n ,

where σ(ℓ)
n ∈ {σ, idR}. It is desired to construct a sequence fm that converges to f and use

Lemma III.2 on this sequence.
For 1 ≤ ℓ ≤ L̃ construct

α
(n)
m,ℓ :=

σm, if σ(ℓ)
n = σ,

idR, if σ(ℓ)
n = idR,

αm,ℓ :=
Nℓ⊗

n=1
α

(n)
m,ℓ

23

J. Lund & M. Kjær Chapter III. Activation Functions

and

Ψm :=
(
(T1, αm,1), . . . , (TL̃−1, αm,L̃−1), (TL̃, idRk)

)
∈ NN σm, d, k

W, L̃, N
.

Note that αm,ℓ is just αℓ, where σ is replaces by σm. Define fm := R(Ψm) ∈ NNσm, d, k

W, L̃, N
. By

Lemma C.4 fm → f locally uniformly since σ is continuous and σm → σ locally uniformly
on R as m→ 0.

Per assumption σm ∈ NNϱ, 1, 1
w, ℓ, n so Lemma III.2 gives that

fm ∈ NNσm, d, k

W, L̃, N
⊆

NNϱ, d, k

n2W, L̃, nN
, if ℓ = 2,

NNϱ, d, k

nW +wN, (L̃−1)ℓ+1, (n+1)N , if ℓ > 2.

This shows the desired result, since L̃ ≤ L and fm → f locally uniformly. ■

Next, a relation between the strict and generalized neural networks is highlighted under
specific assumptions on the activation function. To prove this, the network compatible
topology family is required, see Definition C.5.

Lemma III.5:
Let d, k ∈ N, L ∈ N ∪ {∞}, N ∈ N0 ∪ {∞} and W ∈ N0. Moreover, let ϱ : R→ R be a
continuous activation function and assume that ϱ is differentiable at some x0 ∈ R with
ϱ′(x0) ̸= 0. Then it holds that

NNϱ, d, k
W, L, W ⊆ SNNϱ, d, k

4W, L, 2N ,

where the closure is with respect to locally uniform convergence.

Proof
At first, it is desired to construct a network compatible topology family. For d, k ∈ N, define

Gd,k := {f : Rd → Rk | f continuous},

and let Td,k denote the topology of locally uniform convergence on {f : Rd → Rk}. For Td,k

to be a network compatible topology family, the conditions (i)-(iii) in Definition C.5 have to
hold. Since affine-linear functions are continuous, (i) holds, and (iii) holds by Lemma C.4.
To check if (ii) holds, consider a f (n)

i : R→ R satisfying

f
(n)
i −−−→

n→∞
f

(0)
i

locally uniformly for all i ∈ {1, . . . , p}. Then it holds that

f
(n)
1 ⊗ · · · ⊗ f (n)

p −−−→
n→∞

f
(0)
1 ⊗ · · · ⊗ f (0)

p

locally uniformly. Thus by defining G := {Gd,k}d,k∈N and T := {Td,k}d,k∈N, it holds that
(G, T) is network compatible topology family.

It is now desired to use Proposition C.6. Therefore it is required to check that ϱ ∈ G1,1,
and that there exists a n ∈ N such that for all m ∈ N there exist affine linear maps
Fm : R→ R, Dm : Rn → R, and Em : R→ Rn such that

Fm := Dm ◦ (ϱ⊗ · · · ⊗ ϱ) ◦ Em

24

J. Lund & M. Kjær Chapter III. Activation Functions

satisfying Fm → idR as m→∞ with locally uniform convergence. The first condition holds
since ϱ is continuous.

To check the last condition let c := ϱ′(x0) ̸= 0, and εm := |c|/m for all m ∈ N. By
definition of the derivative, there exists a δm > 0 such that∣∣∣∣∣ϱ(x0 + h)− ϱ(x0)

h
− c

∣∣∣∣∣ ≤ εm = |c|
m
, (III.1)

for 0 < |h| ≤ δm. Now, define the affine-linear maps

Em : R→ R2, x 7→
(
x0 + δmx√

m
,x0

)T

,

Dm : R2 → R, (x1, x2) 7→
√
m(x1 − x2)
δmc

,

Fm : R→ R, x 7→ (Dm ◦ (ϱ⊗ ϱ) ◦ Em) (x).

Then let x ∈ R satisfy 0 < |x| ≤
√
m and define h := δmx/

√
m for which it holds that

0 < |h| ≤ δm. By multiplying the left term in (III.1) with |h|/|c| it holds that∣∣∣∣∣ϱ(x0 + h)− ϱ(x0)
h

− c
∣∣∣∣∣ |h||c| =

∣∣∣∣∣ϱ(x0 + h)− ϱ(x0)
h

h

c
− ch

c

∣∣∣∣∣
=
∣∣∣∣∣ϱ(x0 + h)− ϱ(x0)

c
− h

∣∣∣∣∣ .
Therefore (III.1) implies that∣∣∣∣∣ϱ(x0 + h)− ϱ(x0)

c
− h

∣∣∣∣∣ ≤ |c|m |h||c| = |h|
m
.

Thus for x ∈ R satisfying 0 < |x| ≤
√
m it holds that

|Fm(x)− x| =
∣∣∣∣∣
(
ϱ

(
x0 + δmx√

m

)
− ϱ(x0)

) √
m

δmc
− x

∣∣∣∣∣
=
∣∣∣∣∣(ϱ (x0 + h)− ϱ(x0))

√
m

δmc
− h
√
m

δm

∣∣∣∣∣
=
∣∣∣∣∣ϱ(x0 + h)− ϱ(x0)

c
− h

∣∣∣∣∣
√
m

δm

≤ |h|
m

√
m

δm

= |h|√
mδm

= |x|
m

≤ 1√
m
.

Additionally the inequality |Fm(x)− x| ≤ 1/
√
m holds for x = 0. Therefore it holds that

|Fm(x)− x| ≤ 1/
√
m for all x ∈ R, where |x| ≤

√
m, which is Fm → idR as m → ∞ with

locally uniform convergence. Now Proposition C.6 gives the desired result. ■

25

J. Lund & M. Kjær Chapter III. Activation Functions

Note that the convergence in the lemma is only locally uniformly. Later on, it is proven
that this is not strong enough to ensure equality of the associated approximation spaces on
unbounded domains. Therefore a specific condition on the activation function is needed, to
ensure that strict and generalized neural networks yield the same approximation spaces on
unbounded domains. This is the focus of the next section.

III.2 Functions that can Represent the Identity
This section is devoted to a condition on the activation function that is needed to get the
desired result in the unbounded domain. This condition is that functions can represent a
function with n term. This is given in the following definition:

Definition III.6: Representation of a Function with n Terms
Let ϱ : R → R, and let n ∈ N. Then ϱ can represent f : R → R with n terms, if
f ∈ SNNϱ, 1, 1

∞, 2, n, that is if

∃
{
a(1)

m

}n

m=1
,
{
a(2)

m

}n

m=1
,
{
b(1)

m

}n

m=1
⊂ R, b(2) ∈ R :

f(x) = b(2) +
n∑

m=1
a(2)

m ϱ
(
a(1)

m x+ b(1)
m

)
∀x ∈ R.

A special case of interest is when ϱ can represent the identity idR : R → R with n terms.
The primary example of an activation function with these properties is ReLU and its powers.
This is stated in the following lemma since idR is a monomial of degree 1. As a preliminary
denote the space of all polynomials of degree at most n, by Rdeg≤n[x].

Lemma III.7:
Let r ∈ N. Then ϱr can represent any polynomial of degree less or equal to r with 2r+ 2
terms.

Proof
As a preliminary, note that for x ≥ 0

ϱr(x) + (−1)rϱr(−x) = ϱr(x) = xr
+ = xr,

and for x < 0

ϱr(x) + (−1)rϱr(−x) = (−1)rϱr(−x) = (−1)r(−x)r
+ = (−1)r(−x)r = xr.

Let Ty be the translation operator given by Tyf(·) := f(· − y), for functions f : R→ R and
y ∈ R, and let gn : R→ R be given by x 7→ xn for n ∈ N0, with convention g0 = 1. Then by
defining

Vn := span{Tygn | y ∈ R}

26

J. Lund & M. Kjær Chapter III. Activation Functions

Lemma C.7 gives that Vr = Rdeg≤r[x] with dimension r + 1. Now assume f ∈ Rdeg≤r[x].
Then there exist ci, yi ∈ R for {1, . . . , r + 1} such that for all x ∈ R

f(x) =
r+1∑
m=1

cm(Tymgr)(x)

=
r+1∑
m=1

cm(ϱr(x− ym) + (−1)rϱr(−(x− ym))),

where the last equality holds from the preliminary step at the start of the proof. Thus every
polynomial of degree at most r can be represented by ϱr with 2(r+ 1) = 2r+ 2 terms, which
was desired. ■

The next lemma considers the effect of an activation function being able to represent the
identity.

Lemma III.8:
Let ϱ : R→ R be an activation function, let d, k ∈ N, W,N ∈ N0 and let L ∈ N ∪ {∞}.
Assume that ϱ can represent the identity with n terms. Then

NNϱ, d, k
W, L, N ⊆ SNNϱ, d, k

n2W, L, nN .

Proof, see Appendix B.

These representations of polynomials now allow for the representation of multiplication
maps, which is stated in the following lemma.

Lemma III.9:
Let d ∈ N≥2 and k ∈ N. Assume that ϱ : R→ R can represent all polynomials of degree
2 with n terms. Then the following holds:

(i) The multiplication function Md : Rd → R, given by x 7→
d∏

j=1
xj satisfies

Md ∈ NNϱ, d, 1
6n(2m−1), 2m, (2n+1)(2m−1)−1, m := ⌈log2(d)⌉.

In the case where d = 2, it holds that M2 ∈ NNϱ, 2, 1
6n, 2, 2n.

(ii) The multiplication map M : R× Rk → Rk, given by (c, x) 7→ cx satisfies

M ∈ NNϱ, 1+k, k
6kn, 2, 2kn.

27

J. Lund & M. Kjær Chapter III. Activation Functions

Proof
(i) For simplicity define

wm := 6n(2m − 1), vm := (2n+ 1)(2m − 1)− 1,

for m ∈ N. At first, the goal is to prove that

M2m ∈ NNϱ, d, 1
wm, 2m, vm

.

This part is done by induction on m ∈ N. At first, consider the setup for m = 1. Per
assumption, ϱ can represent all polynomials of degree 2 with n terms. Therefore there
exist c, αi, βi,∈ R for i ∈ {1, . . . , n}, such that for all x ∈ R it holds that

x2 = c+
n∑

j=1
βjϱ(x− αj).

By defining the affine-linear maps

T1 : R→ Rn, x 7→ (x− αj)n
j=1,

T2 : Rn → R, y 7→ c+
n∑
j

βjyj,

x2 can be expressed as

x2 = T2 ◦ (ϱ⊗ · · · ⊗ ϱ)︸ ︷︷ ︸
n factors

◦T1(x) ∀x ∈ R.

Furthermore, define

T0 : R2 → R2, (x, y) 7→ (x+ y, x− y),

T3 : R2 → R, (x̃, ỹ) 7→ 1
4(x̃− ỹ).

In general, it holds that

xy = 1
4
(
(x+ y)2 − (x− y)2

)
∀x, y ∈ R,

so by defining S1 : R2 → R2n and S2 : R2n → R by

S1 := (T1 ⊗ T1) ◦ T0,

S2 := T3 ◦ (T2 ⊗ T2)

respectively, it holds that for all x, y ∈ R

xy = (S2 ◦ (ϱ⊗ · · · ⊗ ϱ)︸ ︷︷ ︸
2n factors

◦S1)(x, y).

Note that the maps S1 and S2 satisfies that

∥S1∥ℓ0 ≤ 4n ≤ 6n,
∥S2∥ℓ0 ≤ 2n.

28

J. Lund & M. Kjær Chapter III. Activation Functions

Thus by defining

Φ1 := ((S1, ϱ⊗ · · · ⊗ ϱ), (S2, idR))

it holds that Φ1 ∈ NN ϱ, 2, 1
6n, 2, 2n, and R(Φ1) = M2. Hence

M2 ∈ SNNϱ, 2, 1
6n, 2, 2n ⊆ NNϱ, 2, 1

6n, 2, 2n,

as desired for m = 1. Note this completes the case where d = 2 in (i).
For the induction step assume that the statement holds for m and define the affine

linear maps U1, U2 : R2m+1 → R2m by

U1(x) := (x1, . . . , x2m) =: x̂,
U2(x) := (x2m+1, . . . , x2m+1) =: x̃

for x ∈ R2m+1 . Then

M2m+1(x) = M2m(x̂)M2m(x̃)
= M2(M2m(U1(x)), M2m(U2(x))).

By the induction hypothesis, there exists a neural network

Φm := ((V1, α1), . . . , (VL−1, αL−1), (VL, idR)) ∈ NN ϱ, 2m, 1
wm, 2m, vm

,

with L := L(Φm) ≤ 2m such that M2m = R(Φm). Since ∥Uj∥ℓ0,∞
∗

= 1 for j ∈ {1, 2}
Lemma C.2 gives that

∥V1 ◦ Uj∥ℓ0 ≤ ∥V1∥ℓ0 , j ∈ {1, 2}.

For j ∈ {1, 2} define

Ψj := ((V1 ◦ Uj, α1), (V2, α2), . . . , (VL−1, αL−1), (VL, idR)),

for which it holds that W (Ψj) ≤ W (Φj), N(Ψj) ≤ N(Φj), and L(Ψj) = L, that is

Ψj ∈ NN ϱ, 2m, 1
wm, 2m, vm

,

and R(Ψj) = M2m ◦ Uj. Hence

(M2m ◦ U1,M2m ◦ U2) ∈ NNϱ, 2m+1, 2
2wm, 2m, 2vm

,

per Lemma II.16. Now since M2 ∈ NNϱ, 2, 1
6n, 2, 2n, Lemma II.17(i) gives that

M2m+1 = M2 ◦ (M2m ◦ U1,M2m ◦ U2) ∈ NNϱ, 2m+1, 1
2wm+6n, 2m+2, 2vm+2n+2.

By rewriting the upper bound for neurons and connections, it follows that

2wm + 6n = 12n(2m − 1) + 6n = 6n(2m+1 − 1) = wm+1,

and

2vm + 2n+ 2 = 2(2n+ 1)(2m − 1) + 2n
= (2n+ 1)(2m+1 − 2) + 2n+ 1− 1
= (2n+ 1)(2m+1 − 1)− 1
= vm+1,

29

J. Lund & M. Kjær Chapter III. Activation Functions

which shows that

M2m+1 ∈ NNϱ, 2m+1, 1
wm+1, 2(m+1), vm+1

,

which completes the induction part.
Now let d ∈ N≥2 and define P : Rd → R2m given by

x 7→ (x, 12m−d) = (x, 02m−d) + (0d, 12m−d),

where m := ⌈log2(d)⌉. Per construction it is an affine linear map, and ∥P∥ℓ0,∞
∗

= 1.
Moreover, it holds that Md = M2m ◦ P, and per Lemma II.17(i) it holds that

Md ∈ NNϱ, d, 1
wm, 2m, vm

,

which was desired.

(ii) Consider Φ ∈ SNN ϱ, 2, 1
6n, 2, 2n, with L(Φ) = 2. Per (i) it holds that M2 : R2 → R

given by (x1, x2) 7→ x1x2, satisfies that M2 = R(Φ). For m ∈ {1, . . . , k} define
Pm : R× Rk → R× R, given by (c, x) 7→ (c, xm). Note Pm is linear with

∥Pm∥ℓ0,∞ = 1 = ∥Pm∥ℓ0,∞
∗
.

Therefore Lemma II.17(i) gives that M2 ◦ Pm = R(Φm) where Φm ∈ SNN ϱ, 1+k, 1
6n, 2, 2n and

L(Φm) = L(Φ) = 2. By defining M : R× Rk → Rk given by (c, x) 7→ cx it holds that

(M2 ◦ Pm)(c, x) = cxm = [M(c, x)]m.

Hence

M = (M2 ◦ P1, . . . ,M2 ◦ Pk)

and Lemma II.16 implies that M ∈ NNϱ, 1+k, k
6kn, 2, 2kn, as desired. ■

Remark III.10:
To use Lemma III.9 the activation function must be able to represent all polynomials of
degree 2. By Lemma III.7 this holds for ϱr with r ≥ 2. However, per Lemma III.7 this
does not hold for ϱ1, since it is only guaranteed that ϱ1 can represent polynomials of
degree less or equal to 1.

30

IV | Realization of B-splines

The so-called B-splines are a well-studied area of approximation theory and they are widely
used in applications. Based on the previous chapters, this chapter aims to establish a theory
that allows neural networks to realize B-splines. At first, B-splines are introduced. Next,
realizations of B-splines are highlighted in the main result. The chapter is based on [12, p.
290-295, 303-304, 338-340] and [5, p. 633-639].

Definition IV.1: B-splines
Let n ∈ N0. The B-spline of degree 0 is given by β

(0)
+ := χ[0,1). The B-spline of

degree n is given by the convolution of β(0)
+ with itself n+ 1 times, that is

β
(n)
+ := β

(0)
+ ∗ · · · ∗ β

(0)
+︸ ︷︷ ︸

n+1 terms

.

The initial four B-splines are illustrated in Figure IV.1, visualizing that the B-splines become
smoother, as the degree increases.

Figure IV.1: Plot of B-splines β(n)
+ with n ∈ {0, 1, 2, 3}.

The next result shows that B-splines are non-negative and the support is restricted based on
the degree.

Proposition IV.2:
Let n ∈ N0, and let β(n)

+ be a B-spline of degree n. Then β
(n)
+ is non-negative and

supp
(
β

(n)
+

)
⊆ [0, n+ 1].

Proof, see Appendix B.

31

J. Lund & M. Kjær Chapter IV. Realization of B-splines

The first result, with a focus on approximating B-splines, is the following, which gives
a decomposition of B-splines using ReLU activation functions. This decomposition of the
B-splines is also called the Irwin–Hall distribution.

Theorem IV.3: Irwin-Hall Distribution
Let n ∈ N0, and let β(n)

+ be a B-spline of degree n. Then β
(n)
+ ∈ SNNϱn, 1, 1

2(n+2), 2, n+2 and it
can be decomposed as

β
(n)
+ = 1

n!

n+1∑
k=0

(
n+ 1
k

)
(−1)kϱn(x− k).

Proof
The claim is proven through an induction argument for n ∈ N0. For n = 0 consider the
claimed decomposition:

1
0!

1∑
k=0

(
1
k

)
(−1)kϱ0(x− k) = ϱ0(x)− ϱ0(x− 1)

= χ[0,∞) − χ[1,∞)

= χ[0,1)

= β
(0)
+ ,

which proves the initial step.
Now for the induction step assume that the statement holds for n − 1. Consider β(n)

+ ,
where the three cases x < 0, x ∈ [0, n+ 1], and x > n+ 1 are considered.

First, consider x < 0. Then both β
(n)
+ (x) = 0 and ϱn(x − k) = 0 for k = 0, . . . , n + 1.

Thus the decomposition holds for x < 0.
Now consider x ∈ [0, n+ 1]. By the induction hypothesis, it holds that

β
(n)
+ (x) = β

(n−1)
+ ∗ β(0)

+ (x)

=
∫ ∞

−∞
β

(n−1)
+ (x− t)β(0)

+ (t) dt

=
∫ 1

0
β

(n−1)
+ (x− t) dt

= 1
(n− 1)!

n∑
k=0

(
n

k

)
(−1)k

∫ 1

0
ϱn−1(x− k − t) dt.

Now split the interval [0, n + 1] into sub-intervals and consider x ∈ [K,K + 1] for some
arbitrary fixed K ∈ {0, 1, . . . , n}. The index k is considered in different cases: k = K, k < K,
and k > K. With a focus on the integral, it holds that∫ 1

0
ϱn−1(x−K − t) dt =

∫ x−K

0
(x−K − t)n−1 dt

= 1
n

(x−K)n,

for k = K, and ∫ 1

0
ϱn−1(x− k − t) dt =

∫ 1

0
(x− k − t)n−1 dt

= 1
n

((x− k)n − (x− 1− k)n) ,

32

J. Lund & M. Kjær Chapter IV. Realization of B-splines

for k = 0, 1, . . . , K − 1. Consider the partial sum for k = 0, 1, . . . , K − 1: Splitting the sum
and reordering the terms implies that

K−1∑
k=0

(
n

k

)
(−1)k

∫ 1

0
ϱn−1(x− k − t) dt

= 1
n

K−1∑
k=0

(
n

k

)
(−1)k ((x− k)n − (x− 1− k)n)

= 1
n

(
K−1∑
k=0

(
n

k

)
(−1)k(x− k)n −

K−1∑
k=0

(
n

k

)
(−1)k(x− 1− k)n

)

= 1
n

(
K−1∑
k=0

(
n

k

)
(−1)k(x− k)n −

K∑
k=1

(
n

k − 1

)
(−1)k−1(x− k)n

)

= 1
n

(
xn +

K−1∑
k=1

((
n

k

)
+
(

n

k − 1

))
(−1)k(x− k)n +

(
n

K − 1

)
(−1)K(x−K)n

)

= 1
n

(
xn +

K−1∑
k=1

(
n+ 1
k

)
(−1)kϱn(x− k) +

(
n

K − 1

)
(−1)Kϱn(x−K)

)
.

For k = K + 1, . . . , n ∫ 1

0
ϱn−1(x− k − t) dt = 0,

since the input in ReLU is non-positive. Thus, the partial sum for k = K + 1, . . . , n is equal
to zero. Overall for x ∈ [K,K + 1] it holds that

β
(n)
+ (x) = 1

(n− 1)!
1
n

(
xn +

K−1∑
k=1

(
n+ 1
k

)
(−1)kϱn(x− k)

+
(

n

K − 1

)
(−1)Kϱn(x−K) +

(
n

K

)
(−1)Kϱn(x−K)

)

= 1
n!

(
xn +

K−1∑
k=1

(
n+ 1
k

)
(−1)kϱn(x− k) +

((
n

K − 1

)
+
(
n

K

))
(−1)Kϱn(x−K)

)

= 1
n!

K∑
k=0

(
n+ 1
k

)
(−1)kϱn(x− k),

where the binomial coefficients are summed using Pascal’s rule. Notice

0 =
n+1∑

k=K+1

(
n+ 1
k

)
(−1)kϱn(x− k),

since x ∈ [K,K + 1], and the input in ReLU is non-negative. Using this it holds that

β
(n)
+ (x) = 1

n!

n+1∑
k=0

(
n+ 1
k

)
(−1)kϱn(x− k),

for x ∈ [K,K + 1]. Since K was arbitrary this gives the decomposition for x ∈ [0, n+ 1].
For x > n + 1 the proof follows by similar arguments as for x ∈ [0, n + 1]: By setting

K = n + 1 and repeating the same steps for k = K and k < K, it follows that the claim
holds.

33

J. Lund & M. Kjær Chapter IV. Realization of B-splines

With the decomposition in place, it remains to show that β(n)
+ ∈ SNNϱn, 1, 1

2(n+2), 2, n+2. By
defining α1 : Rn+2 → Rn+2 given by α1 := ϱn ⊗ · · · ⊗ ϱn, and

T1 : R→ Rn+2, T1(x) := (x− k)n+1
k=0

T2 : Rn+2 → R, T2(y) := 1
n!

n+1∑
k=0

(
n+ 1
k

)
(−1)kyk,

it holds that β(n)
+ = T2 ◦ α1 ◦ T1. Note that ∥Ti∥ℓ0 = n+ 2 for i ∈ {1, 2}. Thus by defining

Φ := ((T1, α1), (T2, idR)) it holds that

L(Φ) = 2, N(Φ) = n+ 2, W (Φ) = 2(n+ 2).

Overall Φ ∈ SNN ϱn, 1, 1
2(n+2), 2, n+2. ■

Remark IV.4:
Note that Theorem IV.3 deduce that B-splines can be decomposed by ReLU activation
functions, which is the first motivation for approximating B-splines by ReLU-networks.
This decomposition is an important property, that is going to play a key role in connecting
B-splines and ReLU-networks.

Since ϱn ∈ Cn−1, the decomposition in Theorem IV.3 implies the following:

Corollary IV.5:
Let n ∈ N, and let β(n)

+ be a B-spline of degree n. Then β
(n)
+ ∈ Cn−1

c (R).

B-splines are originally univariate functions, however, through the application of the tensor
product, a multivariate version can be generated.

Definition IV.6: Multivariate B-spline
Let n ∈ N0, d ∈ N and let β(n)

+ be a B-spline of degree n. The multivariate B-spline
of degree n denoted by β(n)

d : Rd → R is given by the tensor product

β
(n)
d (x1, . . . , xd) := β

(n)
+ (x1) · · · β(n)

+ (xd)

Notation:
For the rest of the report let β(n)

+ be a B-spline of degree n, and β
(n)
d be a multivariate

B-spline of degree n, where n ∈ N0 and d ∈ N.

Note that β(0)
d := χ[0,1)d . It is desired to generalize the decomposition in Theorem IV.3 to

multivariate B-splines. First, a realization of multivariate B-splines is considered for degree
n ∈ N.

34

J. Lund & M. Kjær Chapter IV. Realization of B-splines

Theorem IV.7: Realization of Multivariate B-Splines
Let d, n ∈ N and assume n ≥ min{d, 2}. Then β(n)

d ∈ NNϱn, d, 1
W, L, N with L := 2 + 2⌈log2(d)⌉,

and

W :=
28d(n+ 1), if d > 1,

2(n+ 2), if d = 1,

N :=
13d(n+ 1), if d > 1,
n+ 2, if d = 1.

Proof
Per Theorem IV.3, it holds that

β
(n)
+ ∈ NNϱn, 1, 1

2(n+2), 2, n+2,

which gives the claim for d = 1. Therefore assume d > 1. Thus n ≥ min{d, 2} = 2, per
assumption. It is intended to construct the multivariate B-splines by using the established
operations on generalized neural networks and β

(n)
+ . Define fj : Rd → R given by

fj := β
(n)
+ ◦ πj

with πj : Rd → R given by πj(x) = xj , for j ∈ {1, . . . , d}. Since ∥πj∥ℓ0,∞
∗

= 1, Lemma II.17(i)
with P = πj and Q = I, implies that

fj ∈ NNϱn, 1, 1
2(n+2), 2, n+2.

By forming the vector function f := (f1, . . . , fd), Lemma II.16 shows that

f ∈ NNϱn, d, d
2d(n+2), 2, d(n+2).

Since n ≥ 2, Lemma III.7 gives that ϱn can represent any polynomial of degree two with
m := 2(n+ 1) terms. Thus the assumptions in Lemma III.9 are satisfied. Therefore there
exists a multiplication function

Md ∈ NNϱn, d, 1
6m(2j−1), 2j, (2m+1)(2j−1)−1,

where j := ⌈log2(d)⌉, such that β(n)
d = Md ◦ f . Next, the aim is to express the upper bounds

in terms of d. Using 2j−1 < d ≤ 2j, the following three inequalities holds:

2j − 1 ≤ 2(d− 1),

6m(2j − 1) ≤ 12m(d− 1)
= 24(n+ 1)(d− 1),

(2m+ 1)(2j − 1)− 1 ≤ (4m+ 2)(d− 1)− 1
= (8n+ 10)(d− 1)− 1.

35

J. Lund & M. Kjær Chapter IV. Realization of B-splines

Thus

Md ∈ NNϱn, d, 1
24(n+1)(d−1), 2j, (8n+10)(d−1)−1.

Using Lemma II.17(ii) on the underlying neural networks for Md and f , it holds that

β
(n)
d ∈ NNϱn, d, 1

2d(n+2)+24(n+1)(d−1), 2j+2, d(n+2)+(8n+10)(d−1)−1+d.

Now, the goal is to simplify the upper bounds, to get the claim. Using basic calculus it holds
that

2d(n+ 2) + 24(n+ 1)(d− 1) ≤ d(2n+ 4 + 24n+ 24)
= d(26n+ 28)
≤ 28d(n+ 1),

and

d(n+ 2) + (8n+ 10)(d− 1)− 1 + d ≤ d(n+ 2 + 8n+ 10 + 1)
= d(9n+ 13)
≤ 13d(n+ 1).

All in all, this proves the claim. ■

Some preliminary lemmas are needed to construct a similar result for B-splines of degree
zero. For this, a function with specific properties is required. These are given by:

(Pσ) σ : R→ R such that for all x ∈ R it holds that 0 ≤ σ(x) ≤ 1 and

σ(x) =
0, if x ≤ 0

1, if x ≥ 1.

Lemma IV.8:
Let r ∈ N. Then there exists a σr ∈ SNNϱr, 1, 1

2(r+1), 2, r+1 which satisfies (Pσ).

Proof
The goal is to construct a function that satisfies the claim. First, define

gn(x) :=
∫ x

0
β

(n)
+ (t) dt.

Per Proposition IV.2 β(n)
+ is non-negative and zero except for x ∈ [0, n+ 1], where n ∈ N0.

Thus gn is non-decreasing. Since the integrants are non-negative, Tonelli’s theorem implies
that ∥β(n)

+ ∥L1(R,R) = 1 for all n ∈ N0, since ∥β(0)
+ ∥L1(R,R) = 1. Choosing x ≥ n + 1, the

integral gn(x) include the support of β(n)
+ . Thus gn(x) = ∥β(n)

+ ∥L1(R,R) = 1 for x ≥ n + 1,
culminating in

gn(x) =
0, if x ≤ 0,

1, if x ≥ n+ 1.

36

J. Lund & M. Kjær Chapter IV. Realization of B-splines

From Corollary IV.5 β(n)
+ ∈ Cn−1

c (R,R) for n ≥ 1. Hence gn ∈ Cn(R,R) for n ̸= 1. Moreover,
g0 ∈ C0(R,R), since β(n)

+ is bounded.
Now define

σr(x) := gr−1(rx).

Using the properties for gr−1 it holds that σr ∈ Cr−1(R,R). To verify that σr satisfies (Pσ)
consider the cases: x ≤ 0 and x ≥ 1. For x ≤ 0, it holds that σr = 0. For x ≥ 1, it holds
that rx ≥ r = (r − 1) + 1. Therefore

σr(x) = gr−1((r − 1) + 1) = 1.

Next, it is desired to show that σr ∈ SNNϱr, 1, 1
2(r+1), 2, r+1. To do so the goal is to construct a Φ

where σr = R(Φ). Therefore let 0 ≤ k ≤ n+ 1. Then it holds that∫ x

0
ϱn(t− k) dt = 0

for x ≤ k, and ∫ x

0
ϱn(t− k) dt =

∫ x

0
(t− k)n dt

=
∫ x−k

0
tn dt

= (x− k)n+1

n+ 1
for x > k. Overall ∫ x

0
ϱn(t− k) dt = ϱn+1(x− k)n+1

n+ 1 .

Using the decomposition of β(n)
+ in Theorem IV.3, gn can be rewritten as

gn(x) = 1
(n+ 1)!

n+1∑
k=0

(
n+ 1
k

)
(−1)kϱn+1(x− k).

Thus σr can be rewritten as

σr = 1
r!

r∑
k=0

(
r

k

)
(−1)kϱr(rx− k). (IV.1)

By defining α1 : Rr+1 → Rr+1 given by α1 := ϱr ⊗ · · · ⊗ ϱr, and

T1 : R→ Rr+1, T1(x) := (rx− k)r
k=0

T2 : Rr+1 → R, T2(y) := 1
r!

r∑
k=0

(
r

k

)

it holds that σr = T2 ◦ α1 ◦ T1. Note that ∥Ti∥ℓ0 = r + 1 for i ∈ {1, 2}. Thus by defining the
neural network Φ := ((T1, α1), (T2, idR)) it holds that

L(Φ) = 2, N(Φ) = r + 1, W (Φ) = 2(r + 1).

Overall Φ ∈ SNN ϱr, 1, 1
2(r+1), 2, r+1, which completes the proof. ■

Lemma IV.8 constructs a function that satisfies (Pσ). The next lemma approximates
indicator functions using functions that satisfy (Pσ).

37

J. Lund & M. Kjær Chapter IV. Realization of B-splines

Lemma IV.9:
Let W,N,L ∈ N, and assume σ ∈ NNϱ, 1, 1

W, L, N(Ω) satisfies (Pσ). Then the following holds
for d ∈ N:

(i) For 0 ∈ (0, 1/2), there exists a function h : Rd → R such that

h ∈ NNϱ, d, 1
2dW (N+1), 2L−1, (2d+1)N

where 0 ≤ h(x) ≤ 1 for x ∈ Rd, supp(h) ⊆ [0, 1]d, and∣∣∣∣h(x)− χ[0, 1]d(x)
∣∣∣∣ ≤ χ

[0, 1]d/[ε, 1− ε]d(x) ∀x ∈ Rd. (IV.2)

(ii) There exists a L̃ ≤ 2L− 1 such that for all hyper-rectangle

[a, b] :=
d∏

n=1
[an, bn], d ∈ N, an, bn ∈ R,

each p ∈ (0,∞), and each ε ∈ (0, 1/2), there exists a compactly supported, non-
negative function g : Rd → R such that 0 ≤ g(x) ≤ 1 for x ∈ Rd, supp(g) ⊆ [a, b],∥∥∥∥g − χ[a, b]

∥∥∥∥
Lp(Rd,R)

< ε, (IV.3)

and where g = R(Φ) for some Φ ∈ NN ϱ, d, 1
2dW (N+1), L̃, (2d+1)N , where L(Φ) = L̃.

If d = 1 (i) holds for h ∈ NNϱ, 1, 1
2W, L, 2N , and (ii) holds for Φ ∈ NN ϱ, 1, 1

2W, L̃, 2N
with L(Φ) = L̃,

where L̃ ≤ L.

Proof
(i) The goal is to find a function h satisfying the claim in (i). At first, (IV.2) is proven for

d = 1. Define h1 : R→ R given by

h1(x) := σ
(
x

ε

)
− σ

(
1 + x− 1

ε

)
, (IV.4)

where ε ∈ (0, 1/2). For x ≤ 0, both terms in h1 are zero. For x ≥ 1, both terms are
one, so h1 is zero. For x ∈ [0, ε], the first term is between zero and one, and the last
term is zero. For x ∈ [1− ε, 1] the first term is one and the last is between zero and
one, so subtracted from each other gives a term between zero and one. Lastly, for
x ∈ [ε, 1− ε], the first term is one and the last is zero. These considerations imply that

h1(x) =
0, if x ∈ R \ [0, 1]

1 if x ∈ [ε, 1− ε]
∧ 0 ≤ h1(x) ≤ 1 ∀x ∈ R.

All in all, supp(h1) ⊆ [0, 1] and∣∣∣∣h1(x)− χ[0, 1](x)
∣∣∣∣ ≤ χ[0, 1]/[ε, 1− ε](x) ∀x ∈ R.

By defining h := h1, this proves (IV.2) for d = 1.

38

J. Lund & M. Kjær Chapter IV. Realization of B-splines

Next, the goal is to prove (IV.2) for d ∈ N. Define h2 : Rd → R, given by

h2(x) := σ

(
1− d+

d∑
i=1

h1(xi)
)
, (IV.5)

for x := (x1, . . . , xd). From the properties of σ it hold that 0 ≤ h2(x) ≤ 1, for x ∈ Rd.
For x ∈ [ε, 1− ε]d, it holds that h1(xi) = 1 for all i ∈ {1, . . . d}. For x /∈ [0, 1]d, there
at least exists one i ∈ {1, . . . , d} such that h1(xi) = 0. Consequently

d∑
i=1

h1(xi) ≤ d− 1,

since 0 ≤ h1(xi) ≤ 1 for all i ∈ {1, . . . , d}. Therefore h2(x) = 0 for x /∈ [0, 1]d, which
proves supp(h2) ⊆ [0, 1]d. Moreover∣∣∣∣h2(x)− χ[0, 1]d(x)

∣∣∣∣ ≤ χ
[0, 1]d/[ε, 1− ε]d(x) ∀x ∈ Rd.

Thus by defining, h := h2 (IV.2) is satisfied.
It remains to show that h is in the right function space. To verify this (ii) is proven

in the special case where [a, b] = [0, 1]d. Let λd denote the d-dimensional Lebesgue
measure. Using h as constructed above,∥∥∥∥h− χ[0, 1]d

∥∥∥∥p

Lp(Rd,R)
≤ λd

(
[0, 1]d \ [ε, 1− ε]d

)
= 1− (1− 2ε)d. (IV.6)

The right-hand side tends to zero, as ε→ 0, which proves (IV.3) for [a, b] = [0, 1]d. Per
assumption on σ, there exists an Lσ ≤ L such that σ = R(Φσ) for some Φσ ∈ NN ϱ, 1, 1

W, Lσ , N ,
with L(Φσ) = Lσ. For i ∈ {1, . . . , d}, define fi,1, fi,2 : Rd → R given by

fi,1(x) := σ
(
xi

ε

)
, fi,2(x) := −σ

(
1 + xi − 1

ε

)
.

Using Lemma II.17(i), with

Φ = Φσ, P : x 7→ x

ε
, Q = I,

Φ = Φσ, P : x 7→ 1 + x− 1
ε

, Q = −I,

for fi,1 and fi,2 respectively, there exist Ψi,1,Ψi,2 ∈ NN ϱ, d, 1
W, Lσ , N with

L(Ψi,1) = L(Ψi,2) = Lσ

for any i ∈ {1, . . . , d} such that fi,1 = R(Ψi,1), and fi,2 = R(Ψi,2). Now define the
function F : Rd → R given by

F (x) :=
d∑

i=1
h1(xi) =

d∑
i=1

fi,1(x) +
d∑

i=1
fi,2(x).

Then Lemma II.15(ii) with {Φm}2d
m=1 = {Ψm,1,Ψm,2}d

m=1, implies that there exists a
ΦF ∈ NN ϱ, d, 1

2dW, Lσ , 2dN with L(ΦF) = Lσ such that F = R(ΦF). Note that compared

39

J. Lund & M. Kjær Chapter IV. Realization of B-splines

to h for d = 1 it holds that h = h1 = F and L(ΦF) = Lσ ≤ L. Thus there exists a
h = R(ΦF) where ΦF ∈ NN ϱ, 1, 1

2W, L, 2N . This proves (i) for d = 1.
For d ∈ N, Lemma II.17(i) with Φ = ΦF , P = I and Q = I + 1 − d, gives that

there exists a ΦG ∈ NN ϱ, d, 1
2dW, Lσ , 2dN with L(ΦF) = Lσ such that R(ΦG) = G, where

G : Rd → R is given by

G(x) := 1− d+
d∑

i=1
h1(xi).

Note that per construction of h for general d, it holds that h = h2 = σ ◦G. Using Ψ2
in Lemma II.17(ii), with Φ1 = Φσ and Φ2 = ΦG it holds that there exists a

Φh ∈ NN ϱ, d, 1
W2, 2Lσ−1, (2d+1)N

where Lσ ≤ L and
W2 := 2dW + max{2dN, d}W ≤ 2dW (N + 1).

This concludes (i) for general d. By defining L̃ := 2Lσ − 1 for general d ∈ N and
L̃ := Lσ for d = 1 the special case for (ii) is proven.

(ii) By using the special case of (ii), proven in part (i), it remains to expand the result
from [0, 1]d to general domains [a, b], where a, b ∈ Rd. To do so, define the affine-linear
map T : Rd → Rd, given by

T (x) :=
(
xi − ai

bi − ai

)d

i=1.

Note, that T is invertible since it is bijective, and the inverse T−1 is given by
T−1(y) = ((bi − ai)yi + ai)d

i=1.

Additionally
χ

[0, 1]d ◦ T = χ
T−1([0, 1]d) = χ[a, b],

and compared to the general definition of an affine-linear map, the weight matrix A is
the diagonal matrix with entries (bi − ai)−1, ensuring that ∥T∥ℓ0,∞

∗
= 1. It is desired to

use h constructed in part (i). Note that h is defined by h2 in (IV.5) for general d ∈ N,
and h1 in (IV.4) for the special case d = 1. For general d ∈ N Lemma II.17(i) with
P = T and Q = I implies that there exists a

Φ ∈ NN ϱ, d, 1
2dW (N+1), L̃, (2d+1)N ,

such that h ◦ T = R(Φ) and L̃ = L(Φ) = 2Lσ − 1. If d = 1, then Lemma II.17(i) gives
that there exists a Φ ∈ NN ϱ, 1, 1

2W, L̃, 2N
, such that h ◦ T = R(Φ) and L̃ = L(Φ) = 2Lσ − 1.

By defining g := h ◦ T , (ii) is proven except for (IV.3). Using the change of variables
formula, it holds that∥∥∥g − χ[a,b]

∥∥∥
Lp(Rd,R)

=
∥∥∥∥h ◦ T − χ[0, 1]d ◦ T

∥∥∥∥
Lp(Rd,R)

=
∣∣∣∣det diag

(
(bi − ai)−1

)
i∈{1,...,d}

∣∣∣∣−1/p ∥∥∥∥g − χ[0, 1]d
∥∥∥∥

Lp(Rd,R)

=
∥∥∥∥g − χ[0, 1]d

∥∥∥∥
Lp(Rd,R)

d∏
i=1

(bi − ai)1/p.

Per (IV.6), the first factor can be made arbitrarily small by choosing ε ∈ (0, 1/2)
suitably. As the second factor is constant, this proves (IV.3) for [a, b]. ■

40

J. Lund & M. Kjær Chapter IV. Realization of B-splines

With these lemmas in place, multivariate B-splines of degree 0 are approximation by ReLU-
networks:

Theorem IV.10: Approximation of B-Splines of degree 0

Let d, r ∈ N. Then β(0)
d ∈ NNϱr, d, 1

W, L, N where the closure is taken with respect to ∥ · ∥Lp(Rd,R)
and where

L :=
3, if d > 1,

2, if d = 1,

W :=
4d(r + 1)(r + 2), if d > 1,

4(r + 1), if d = 1,

N :=
(2d+ 1)(r + 1), if d > 1,

2(r + 1), if d = 1.

Proof
Using Lemma IV.8 for each ϱr there exists a σr ∈ SNNϱr, 1, 1

2(r+1), 2, r+1 for r ∈ N, which satisfies
(Pσ). Per Lemma IV.9(ii) with σ = σr, there exists a

L =
3, if d > 1,

2, if d = 1.
,

such that for ε > 0 there exists a function gε = R(Φε) with∥∥∥∥gε − χ[0, 1]d
∥∥∥∥

Lp(Rd,R)
< ε,

where L(Φε) ≤ L and Φε ∈ NNϱr, d, 1
W, L, N with

W =
4d(r + 1)(r + 2), if d > 1,

4(r + 1), if d = 1,

N =
(2d+ 1)(r + 1), if d > 1,

2(r + 1), if d = 1.

Since β(0)
d = χ[0,1]d , it holds that gε can approximate β(0)

d . ■

Comparing n ∈ N and n = 0 it should be noted that Theorem IV.7, provides a better estimate
than Theorem IV.10. In fact, Theorem IV.7 gives a realization, where Theorem IV.10 only
is an approximation.

41

V | Experiments

In application, algorithms based on B-splines are commonly used to approximate functions.
According to Theorem IV.7 and Theorem IV.10 neural networks can approximate multivariate
B-splines arbitrarily well under specific assumptions. Thus intuitively there should exist
equivalent algorithms based on neural networks to approximate functions. However, this
assumption is purely based on a theoretical point of view, and the connection between theory
and application does not always go hand in hand. Thus the goal of this section is to design
an experiment that demonstrates the results in practice. As an initial experiment, it is also
desired to demonstrate that the neural network, can realize univariate B-splines, as given in
Theorem IV.3. The code, data, and plots constructed for these experiments can be found at
https://github.com/Frizlerrr/SpecialeKode. Additionally, an overview of Python files used
for each step can be found in Appendix E.

V.1 Initial Experiment: Realization of B-Splines
The goal of the initial experiment is to implement the decomposition from Theorem IV.3
in practice. This experiment aims to evaluate the realization of univariate B-splines using
neural networks. The initial experiment is structured as follows:

Initial Experiment:
(i) Generating B-splines:

• Generating univariate B-splines of different degrees.
(ii) Construction of Neural Networks:

• Constructing the neural network that can realize B-splines.
(iii) Comparison:

• Comparing B-splines to neural networks before and after training.

This section explains the setup for the initial experiment and presents the findings.

(i) Generating B-splines:
The attempted methods for generating B-splines are the following, mentioned in the order in
which they were attempted:

• Irwin-Hall distribution: The decomposition in Theorem IV.3.

• Recursive: The naive implementation of the recursive formula for B-splines from [7]
given by β(0)

+ = χ[0,1) and

β
(n)
+ (x) = x

n
β

(n−1)
+ (x) + (n+ 1)− x

n
β

(n−1)
+ (x− 1), n ∈ N. (V.1)

• De Boor’s algorithm: Algorithm equivalent with Recursive, [7], using the imple-
mentation scipy.interpolate.BSpline.basis_element from the Python package
SciPy.

42

https://github.com/Frizlerrr/SpecialeKode

J. Lund & M. Kjær Chapter V. Experiments

As the decomposition in Theorem IV.3 allows neural networks to realize univariate B-splines,
generating the B-splines using Irwin-Hall distribution is a natural starting point. Plotting
these shows that for degrees higher than 25 the generated B-splines oscillate near the support
edges. These problems are illustrated in Figure V.1, where the β(27)

+ and β(30)
+ are generated

using Irwin-Hall distribution and plotted in grey. A reason for the oscillations could be
due to numerous errors such as rounding errors.

Considering the generation of B-splines using Recursive, Figure V.1 illustrates that
the generated B-splines using Recursive do not suffer from oscillation. However, the
computational time for β(30)

+ is 14 hours when using Recursive.
The problems with oscillation and computation time can be circumvented by using de

Boor’s algorithm. This algorithm is equivalent to Recursive but with significantly better
computation time. By plotting the B-splines using de Boor’s algorithm for degrees up to
1000 there is no visual indication that any oscillation occurs. This is illustrated for β(27)

+ and
β

(30)
+ in Figure V.1 in doted black, where it is clear that de Boor’s algorithm is as exact

as Recursive. The B-splines used in the initial experiment are therefore generated using
de Boor’s algorithm.

Degree 27:

Degree 30:

Figure V.1: The B-splines β(27)
+ and β(30)

+ generated using Irwin–Hall distribution, Re-
cursive, and de Boor’s algorithm denoted by Irwin, Recursive, and DeBoor, respectively.

(ii) Construction of Neural Networks:
The neural networks constructed to realize the B-splines are based on Theorem IV.3. Recall
from the proof of Theorem IV.3 that the decomposition can be described using the tuple
Φn = ((T1, α1), (T2, ididR)), where α1 = ϱn ⊗ · · · ⊗ ϱn,

T1(x) = (x− k)n+1
k=0 , T2(y) = 1

n!

n+1∑
k=0

(
n+ 1
k

)
(−1)kyk. (V.2)

Thus the structure of the neural networks and the weights used for initialization are based on
Φn. It should be clear that the realization of Φn is exactly the decomposition in Theorem IV.3.
To implement Φn, the Python package Keras with PyTorch as the backend is used.

43

J. Lund & M. Kjær Chapter V. Experiments

(iii) Comparison:
To restrict the analysis, the initial experiment is considered for degrees in {0, . . . , 15}. The
following are considered for each degree:

For every degree in {0, . . . , 15}:
• Mean square error and maximum error over the support.
• Plot comparing the trained and untrained neural network to the B-spline.
• Plot of the difference between the B-spline and both neural networks.

Only a few specific plots are selected as illustrations in the report and can be found in
Figure V.2 to Figure V.5.

Mean Square Error & Maximums Error

The mean square error and maximum error values can be found in Figure E.1 and are plotted
in Figure V.2 with a logarithmic y-axis.

Figure V.2: Plots of the mean square error and maximum error when approximating
B-splines using untrained and trained neural networks that can realize the given B-spline.
The error is only considered within the support of the B-spline.

For degrees less than 7, it is observed that the neural networks approximate the B-splines
within an acceptable boundary, with a mean square error less than 4 · 10−10 and a maximum
error less than 2 · 10−4 for both the trained and untrained neural network. Afterward, the
error increases exponentially. As seen in Figure V.2 the error of the trained and untrained
neural network follows the same exponential growth until degree 7 for the mean square error,
and degree 9 for the maximum error. From here the errors of the trained neural network
escalate rapidly compared to the untrained neural network. As an exception, the error of the
trained neural network decreases significantly at degree 14 compared to degrees 13 and 15.

Behavior of Trained & Untrained Neural Networks

When plotting the B-splines together with the trained and untrained neural networks for
different degrees, it becomes clear that both neural networks have problems with oscillation.
Additionally, the trained neural network has an increasing tendency to deviate from the
desired behavior as the degree increases. Both principles are illustrated in Figure V.3. The
oscillations are not a surprise, since the neural network is based on the decomposition in
Theorem IV.3 which has the same problems, as seen in Figure V.1.

44

J. Lund & M. Kjær Chapter V. Experiments

Figure V.3: Plots of approximations of β(11)
+ , β(13)

+ , and β
(15)
+ , using the untrained and

trained neural network that can realize the given B-spline.

The oscillation in the neural network, and thus the error, can arise from various computational
challenges. Computational limitations like overflow, underflow, and rounding errors mostly
cause these challenges. The scenarios where these challenges typically occur are a consequence
of the bit-precision used for the computations. It should be noted that by default SciPy
uses 64-bit and by default Keras uses 32-bit. The implications of this difference can be seen
in Figure V.4.

Floating Point Numbers Float32 Float64
Machine Epsilon 1.192e-07 2.220e-16

Real Min 1.175e-38 2.225e-308
Real Max 3.403e+38 1.798e+308

Figure V.4: Overview of the relevant values for the data types Float32 and Float64.

This difference in bit-precision is likely why the B-splines realized by the neural networks begin
to oscillate much sooner than the B-splines generated using the Irwin-Hall distribution
even though it is two implementations of the same formula. This difference can be seen
when comparing Figure V.1 and Figure V.3.

The computational limitations of finite precision arithmetic can lead to the following
problems, [14].

• Overflow: Similar to underflow, but at exceptionally large values.

• Rounding error: As a consequence of finite precision arithmetic, rounding errors
occur, and when handling iterative algorithms these errors typically accumulate.

The formula (V.2) includes binominal coefficients which can generate large values where
rounding error is more likely to occur. Summing over these values with likely rounding
errors accumulates the error which typically amplifies the oscillatory behavior, [3]. For the
same reason, ϱn can also cause problems, when the input and n are too large. These are the
likely causes of numerical instability seen in this experiment. Moreover, the formulas include
dividing with n!, which can result in underflow for sufficiently large n. Overall, these factors
contribute to why the oscillation in the neural network can happen and are all common
errors in numerical approximation, [3].

Comparing the trained and untrained neural networks, the results for both the error and
the individual plots indicate that the untrained ones perform better than the trained ones,
as seen in Figure V.3. This might be attributed to the choices made regarding the training
process. This includes the choice of learning rate, as this controls the step size in gradient

45

J. Lund & M. Kjær Chapter V. Experiments

descent during training. Another thing to notice is that the error creeps toward the center
of the support as the degree increases. This means that oscillation affects the crucial parts
of the B-splines for degrees above a certain threshold.

Validity of Neural Networks for Realizing B-splines

Based on the plots of the B-splines a visual inspection indicates that there is an interval
in the support where the B-splines are close to zero. One could argue that a small error is
still okay, as long as it is within such intervals or outside the support. Forcing the neural
network to be zero within these intervals, can hopefully lower the error. Notice that this
approach technically guarantees an error, since the B-splines are not equal to zero in this
interval. However, this error is more predictable and could still be a decrease in the overall
error, compared to the oscillations. One approach to force the neural network to be zero is
by taking the product with an indicator function, which could be implemented as part of
the neural network by Lemma III.9 and Lemma IV.9.

In the case where the error affects the crucial parts of the B-splines, it no longer makes
sense to use the neural network. By considering the plots it is clear that the error becomes
a problem between degrees 6 and 9. A zoomed view of the crucial part of the B-splines is
highlighted in Figure V.5.

Figure V.5: A zoomed view of approximations of β(n)
+ with n ∈ {6, 7, 8, 9}, using the

untrained and trained neural network that can realize the given B-spline.

Where exactly to put the threshold could depend on the context. In this report, the
threshold for when the error becomes problematic is chosen to be at degree 7. Based on these
considerations the neural networks in the main experiment will be limited to a maximum
degree of 6.

46

J. Lund & M. Kjær Chapter V. Experiments

V.2 Setup of the Main Experiment
The focus of this section is to explain the setup for the main experiment and the reasoning for
the choices made. The main experiment consists of three approximations using three different
methods. The first method is a traditional approximation using B-splines. This method’s
primary role is as a baseline for evaluating performance. The second and third methods use
neural networks, where one has a structure equivalent to the B-spline approximation, and
the other follows the same overall structure but with no restrictions to the connections. The
purpose of the main experiment is to evaluate the performance of algorithms based on neural
networks and compare them to the ones using B-splines. Some specific target function is
generated since it is not feasible to cover all types of functions. This includes polynomials
and continuous piecewise polynomials. Overall, the main experiment includes generating the
target functions, approximating these functions using the three approximation methods, and
comparing the results. The main experiment is outlined as follows:

Main Experiment:
(i) Generation of Target Functions:

• Polynomials.
• Continuous piecewise polynomials.

(ii) Approximation Methods:
• Spline: B-spline approximation.
• Equiv: Algorithm equivalent to Spline using neural networks.
• Fully: Fully connected neural network with same structure as Equiv.

(iii) Evaluation:
• Visual inspection of the approximation methods. Include plots of the target

functions and the approximants.
• Average of the mean square error and maximum error.

To simplify the notation the approximation methods are denoted by Spline, Equiv, and
Fully, respectively.

A natural starting point is to implement and run the main experiment for univariate
B-splines.

(i) Generation of Target Functions:
The first step in the main experiment is generating the functions to be approximated. The
first class of functions that are considered are polynomials. This class is chosen since they
are flexible and fit various data types. However, since data is very different depending
on the context of applications, more types of functions are needed. Continuous piecewise
polynomials are very flexible, offering a good balance between smoothness and adaptability.
Real-world data often have different behavior over different intervals, [3]. To represent such
data continuous piecewise polynomials are a good match since they can adjust to local
variations by changing the polynomial in each interval.

Restrictions on the Target Functions

To establish a setup that is easier to compare and evaluate, the target functions f generated
in the main experiment are constructed such that (x, f(x)) ∈ [−1, 1]2. This domain [−1, 1]2 is

47

J. Lund & M. Kjær Chapter V. Experiments

chosen because it includes both positive and negative values and because it is easy to control.
The primary reason for this is to ensure that the randomly generated function does not get
too big or deviate excessively. The restriction makes it easier to compare different solutions
and ensures some control over the functions. The method for enforcing this restriction on
the generated target functions depends on the function type. For polynomials normalizing
the coefficients with respect to ∥·∥L1(R) is one possible method. For the continuous piecewise
polynomials the restriction can be achieved by shifting and scaling.

Within the interval, 500 random points are generated, which is the data used for the
approximation. For the evaluation, 1001 equidistant points are generated where the error of
the approximant is evaluated. The reason for distinguishing between the two cases is based
on that applications typically have limited data available. Additionally, it is good practice
not to evaluate the performance of approximations on the data it was fitted on, [3].

The polynomials are restricted to a maximum degree of 5, and analogously for the
individual polynomials in the continuous piecewise polynomials. Moreover, the intervals
in the continuous piecewise polynomials are restricted to a minimum size of 1/(2k), where
k ∈ {2, . . . , 5} is the number of intervals.

(ii) Approximation methods:
The approximation method used in Spline is well-known and the Python package SciPy
has a ready-to-use implementation in terms of scipy.interpolate.splrep. Note according
to [18] it only works for degrees in {1, . . . , 5}. Equiv and Fully uses the Python package
Keras with PyTorch as the backend to implement neural networks. In contrast to the
definition in the report, these packages use the commonly used definition. The difference
between the definition used in this report and the one more commonly used is described in
Remark A.1. Since Fully is a fully connected version of Equiv, most considerations made
while developing the main experiment are regarding Equiv. Additionally, Spline is used as
a guidance to construct Equiv.

Considerations from B-spline Approximation

Spline uses B-splines translated and scaled based on the knots. Given knots t0, . . . , tk−1,
where k ∈ N, the B-splines are given by β(0)

j = χ[tj ,tj+1) and

β
(n)
j (x) = x− tj

tj+n − tj
β

(n−1)
j (x) + tj+n+1 − x

tj+n+1 − tj+1
β

(n−1)
j−1 (x), n ∈ N. (V.3)

The approximant f from using Spline is given by

f(x) =
J−1∑
j=0

cjβ
(n)
j (x), (V.4)

with n ∈ {1, . . . , 5}, x ∈ R, and where the number of summands J = k − n− 1 ∈ N. Note
that k is the number of knots. The knots divide the interval into subintervals, where each
B-spline is the primary contributor within its subinterval.

Remark V.1:
Note that the recursive formula in (V.3) differs from the one in (V.1), but is equivalent
when tj = j for j ∈ {0, . . . , k}, where k ∈ N.

48

J. Lund & M. Kjær Chapter V. Experiments

For the approximant f resulting from Spline it holds that f ∈ Cn−1(R,R), where n is the
degree of the B-splines. This is also the case for the ReLU-n-network as ϱn ∈ Cn−1(R,R).
Therefore the degree chosen for Spline and the power chosen for Equiv is equal. This also
aligns with the decomposition in Theorem IV.3.

Construction of Neural Networks for Approximation

The neural network in Equiv is defined using the same formula in (V.4), where the B-splines
are realized using the decomposition in Theorem IV.3, analogous with the initial experiment.
An illustration of the neural network is highlighted in Figure V.6, where the addition of the
grey connection yields the structure of Fully. The second and fourth layer of the neural
network has neurons equal to the number of summands, and the third layer has neurons
equal to (n+ 2)J , where n ∈ N0 is the degree.

x

IdR

...

IdR

ϱn

ϱn

ϱn

ϱn

ϱn

ϱn

ϱn

ϱn

ϱn

IdR

...

IdR

ϱn

...

ϱn

ϱn

...

ϱn

ϱn

...

ϱn

y

Figure V.6: Illustration of the neural network in Equiv with the black connections and
Fully with the additional grey connections, where n ∈ N.

Restrictions for Approximation Methods

Spline, Equiv, and Fully are all restricted to the same number of summands to make
them comparable. For Equiv and Fully this is done by restricting the structure to the one
shown in Figure V.6. For Spline, this is done by controlling the number of knots. Thus the

49

J. Lund & M. Kjær Chapter V. Experiments

same number of B-splines or equivalent structures are used in all approaches, but without
necessarily being equal. The construction of Equiv does not have knots but has weights,
which similarly translate the individual B-splines. These weights are randomly generated and
trained afterward. Thus when choosing the location of the knots in Spline, two approaches
seem natural: choosing the knots randomly or distributing the knots evenly over the interval.
To avoid the case where a knot would be placed at an endpoint of the interval, or very close
by, knots are placed evenly over the interval.

Setting for the Approximation Methods

Given the wide array of parameters available in the approximation methods, a selection of
appropriate parameters are chosen. This aims to cover a representative range of possible
solutions from the approximation methods. Degrees 0 to 6 are chosen based on the initial
experimental and since it contains every possible choice of degree of Spline. The number of
summands is chosen to be 2, 4, 6, 8, and 10. For every one of the previous parameters, the
approximation methods are considered for 100 iteration for each of the two function types.
Overall, the different parameters make it possible to highlight strengths, weaknesses, and
applicability to different scenarios.

As noted in the initial experiment, SciPy and Keras use different bit-precision. Just
using the default precision and the chosen parameter, the main experiment takes around a
week to run. It is expected that the main experiment will take even longer if it is done with
64-bit-precision. Due to time constraints, the default precision is chosen.

Evaluation
To evaluate Spline, Equiv, and Fully, a plot of each function and the corresponding
approximations are considered. This provides a visual representation of how well the approx-
imation method captures the target function. Moreover, it allows for a direct comparison
between the target function and Spline, Equiv, and Fully, which can provide insight into
the limitations of the approximation methods. Additionally, the mean square error and
maximum error are evaluated. The mean square error measures the overall performance
and the maximum error gives insight into the worst-case performance of an approximation.
Together they offer a more complete picture of error from the approximation methods.

V.3 Results & Discussion
This section presents the findings of the main experiment, described in the previous section,
and encompasses a discussion of the results and some general considerations. The individual
approximation performance is examined, by visualisation and comparison. Firstly, it should
be noted that the results are influenced by the approaches chosen for the main experiment.
This includes choices made regarding areas such as the following:

• Types of target functions and implementation.

∗ The restriction on the domain for the target functions.
∗ The degree of the polynomials and the individual polynomials in the continuous

piecewise polynomials.
∗ The minimum size of the interval in the continuous piecewise polynomials.

50

J. Lund & M. Kjær Chapter V. Experiments

• The choice of approximation methods and implementation.

∗ Choice of learning rate and learning rate decay, when training the neural networks.
∗ Early stopping criteria, when training the neural networks.

When comparing the number of plots with the relevant points to highlight, only a few specific
plots are selected as illustrations in the report and can be found in Figure V.7 to Figure V.14.
However, multiple similar figures exist, which all can be found together with the code. As
noted, Spline only works for degrees 1 to 5, so for degrees 0 and 6, only Equiv and Fully
are considered.

Visual Inspection of the Approximation Methods
This subsection is dedicated to describing the behavior of Spline, Equiv, and Fully seen
when plotting the resulting approximants together with the target function. The analysis is
grouped by degree.

Considerations Regarding Degree 0

First, the result for degree 0 is considered. The result from the main experiment resulted in no
significant differences between the Equiv and Fully. They are both similar in performance,
compared to the true data. They both split the sum in the point zero no matter the number
of summands given in the iteration. This principle is illustrated in Figure V.7. Moreover,
roughly half of the time, there are jumps in the transition between the two subintervals,
which also is illustrated in Figure V.7. However, it varies depending on whether it is Equiv,
Fully, or both that exhibit these jumps. Overall, the performance for degree 0 is consistently
poor for both Equiv and Fully.

Figure V.7: A plot from the main exper-
iment with 4 summands, and degree 0. Ex-
ample of a typical scenario for Equiv and
Fully for degree 0.

Figure V.8: A plot from the main experi-
ment with 10 summands, and degree 1. Ex-
ample of Equiv and Fully failing to fit to a
constant.

51

J. Lund & M. Kjær Chapter V. Experiments

There could be multiple reasons as to why the result always divides the interval at 0.
For instance, it could be due to an error in the structure of the neural network. Another
reason could be the training method used for the neural network. Most training methods
use gradient descent, which does not mix well with an activation function with a constant
zero derivative.

Considerations Regarding Degree 1

For degree 1, there is significant fluctuation in whether Equiv and Fully follow the true
data. Sometimes they have acceptable performance, and other times they deviate strongly
from the true data. An example where it deviates can be found in Figure V.8. However,
they usually follow the true data and do not deviate too much. Figure V.9 is one of the
better examples where this is the case. This figure also highlights a typical scenario for
Spline for degree 1. Spline approximate the data significantly better than Equiv and
Fully for higher summands. However, Spline and the true data do not match perfectly,
and for low summands, Spline performed worse than Equiv and Fully. This is highlighted
in Figure V.10. Overall depending on the number of summands it varies whether Spline
performs better than Equiv, and Fully for degree 1.

Figure V.9: A plot from the main exper-
iment with 6 summands, and degree 1. Ex-
ample of Spline, Equiv, and Fully with
acceptable performance for degree 1.

Figure V.10: A plot from the main exper-
iment with 2 summands, and degree 1. Ex-
ample of Spline failing to fit the true data
for 2 summands.

Considerations Regarding Degree 2 to 5

For degrees 2 to 5, Spline performs better and better, which is illustrated in both Figure V.11
and Figure V.12. For Equiv and Fully, they still vary in whether they perform okay or
deviate from the data, and they still typically deviate when the true data follows a straight
line, which is illustrated in Figure V.12. Given 2 summands, Spline performs better and
better the higher the degree. For degree 2 and 2 summands, it varies in which of the three
approximations method fits the true data best. For degrees, 3 and 4 with 2 summands,
Spline is better than Equiv and Fully but does not typically fit the true data perfectly.
However, for degree 5 and summands 2, Spline typically matches the true data. Overall,
Spline performs much better than Equiv and Fully across the number of summands and
degrees 2 to 5.

52

J. Lund & M. Kjær Chapter V. Experiments

Figure V.11: A plot from the main ex-
periment with 8 summands, and degree 4.
Example of Spline, Equiv, and Fully hav-
ing comparable performance.

Figure V.12: A plot from the main ex-
periment with 10 summands, and degree 5.
Example of Equiv, and Fully failing to fit
a constant.

Considerations Regarding Degree 6

As Spline only works up to degree 5, only Equiv and Fully are considered for degree
6. Similar to degrees 2 to 5, they both follow the true data. There are still a few outliers
where one or both of them deviate from the data. An illustration of this can be found in
Figure V.13.

Figure V.13: A plot from the main ex-
periment with 10 summands, and degree 6.
An example of Equiv outperforming Fully
significantly.

Figure V.14: A plot from the main exper-
iment with 6 summands, and degree 5. An
example of Fully outperforming Equiv sig-
nificantly.

General Considerations

Figure V.13 together with Figure V.14, highlights that Equiv and Fully do not yield
the same result. Figure V.13 is an example where Fully deviates and Figure V.14 is an
example where Equiv deviates. Across the different degrees, the results indicate that Spline
performs much better than Equiv and Fully. However, Spline is poor when it comes to

53

J. Lund & M. Kjær Chapter V. Experiments

low summands and low degrees. Spline aside, the Equiv and Fully are behaving similarly
with the occasional deviation. An exception to otherwise consistent performance occurs
when the true data follows a straight line, examples of this can be seen in Figure V.8 and
Figure V.12.

Average of Mean Square Error & Maximum Error
Next, the average of the mean square error and average maximum error across the 100
iterations, for each number of summands and degree as a parameter, are considered. Four
of these 44 pictures are highlighted to illustrate the general principle and can be found in
Figure V.15 to Figure V.18. At first, it should be noted that the result for degree 0 in general
has much higher errors compared to the other degrees. Degree 0 is therefore excluded from
the plots, as their presence would obscure the visualization of the remaining degrees due
to their relatively minor magnitude. The errors clarify that Spline performs better when
increasing the degree or the number of summands. Both errors improve exponentially and
examples can be found in Figure V.15 and Figure V.16. The errors for 2 summands are
generally higher than the other summands. However, it is only the case of 2 summands and
degree 1 where Equiv and Fully are consistently better than Spline. This is also clear
from the illustration in Figure V.15.

Figure V.15: Mean square error of the
approximation methods with degree 1, on the
continuous piecewise polynomials.

Degree 1:

Figure V.16: Mean square error of the
approximation methods with degree 2, on the
continuous piecewise polynomials.

Degree 2:

When comparing the performance of Equiv and Fully, it becomes apparent that their
performance depends on the degree. Fully typically perform better than Equiv for degrees
1 through 3 and Equiv performs best for degrees 5 and 6. This is most clearly seen in
Figure V.17. Degree 4 is a gray area where Equiv sometimes performs best and other times
Fully performs better, but they are relatively close. Equiv improves until degree 3 after
which the performance plateaus. However, there is a slight variation after degree 3, but
does not vary significantly. Fully improves until degree 3 after which the errors increase.
Especially for degree 6 is there a high increase in error which results in a significant distance
between Fully and Equiv, which is illustrated in Figure V.18.

54

J. Lund & M. Kjær Chapter V. Experiments

Figure V.17: Mean square error of the
approximation methods with 10 summands,
on polynomials. Illustrates Fully worsens
after degree 4.

10 Summands:

Figure V.18: Mean square error of the ap-
proximation methods with degree 6, on poly-
nomials. Illustrates the difference in error
between Equiv and Fully for degree 6.

Degree 6:

Based on the comparison between all plots, the performance of Equiv and Fully are not
significantly improved by additional summands. The performance still varies, but not in a
way that signifies a strong correlation. The causes for these unexplained variations could be
the initial weights when training the neural networks, which are randomly chosen.

The fact that Fully worsens significantly more than Equiv after degree 4, could be a
testament to the notion that more weight is not always better. This aligns with the article [16],
where better performance is achieved using sparsely connected neural networks compared to
their fully connected counterparts. Additionally [19] showed that some neurons go dormant
under training, which contributes to the potential advantage of sparsely connected neural
networks over the fully connected counterparts.

Summary of Results:
• Spline performs better than Equiv and Fully except for 2 summands and degree 0.
• Equiv and Fully worsens after degree 4.
• Equiv outperforms Fully for degree 5 and 6.
• Both Equiv and Fully typically fail to approximate constants.

Final Comments on the Main Experiment
Due to time constraints, the main experiment is not generalized to multivariate B-splines.
However, Theorem IV.7 and Theorem IV.10 allow for the generalization from univariate to
multivariate B-splines. This generalization is a natural continuation of the main experiment.
Moreover, it should be emphasized that the main experiment is the first attempt to implement
this idea of a mixture between neural network and B-spline approximation. Both Equiv
and Fully are constructed to emulate the well-known B-spline approximation method. It is
expected that a first attempt may still have room for improvement, hence it is also reasonable
to expect that the outcome may not surpass Spline. Some improvements to the main
experiment that could minimize the gap in performance between Spline and Equiv could
be the following:

55

J. Lund & M. Kjær Chapter V. Experiments

• Inject the weights from Spline into Equiv to insure that Equiv starts at equivalent
performance.

• Insure that the same bit-precision is used throughout the main experiment.

It should be noted that Spline could be further improved by allowing for non-equidistant
knots [20]. Thus it can most likely perform much better in a less restricted setting. For
instance, the placement of the knots in the B-spline approximation does affect the performance.
For lower summands having equidistant knots is likely, not optimal. Basing the knots’
placement on the data’s behavior will improve performance. Additionally in a real-world
problem, the choice of the number of summands and degree would also depend on the given
data and context of the application. As an example, the natural choice of degree might not
have been 1 in Figure V.10, as the data behaves like a polynomial of higher degree. Overall,
this concludes the experiments. However, it should be noted that the significance of the
theoretical framework extends beyond the results of this experiment.

56

VI | Approximation Spaces

With the general setup for neural networks established, and the experiments concluded, the
next step is to prepare some general tools from approximation theory. These tools are used
to associate approximation spaces with a sequence of sets of realizations of neural networks.
The goal is to use approximation theory as a framework to understand the approximation
properties of the realization of neural networks. Since approximation theory is a well-studied
area, the connection between approximation spaces and neural networks opens the possibility
of adapting the analysis to already-known results in approximation theory. This chapter
contains an introduction to these approximations spaces, and it is based on [12, p. 277-292],
[15], [9], and [10, p. 216,234].

VI.1 Approximation Spaces
This section is devoted to introducing some general tools from approximation theory and
defining the approximation spaces that later on are associated with the neural networks. In
classical approximation theory, the notion of approximation spaces refers to quasi-normed
spaces. The general idea is to define a function space by the approximation properties of the
function. More specifically the approximation spaces consist of functions fulfilling a common
upper bound or a common criteria for the decay of the approximation error. One way to
measure the approximation error is by the error of best approximation.

Definition VI.1: Error of Best Approximation
Let X be a quasi-Banach space equipped with the quasi-norm ∥ · ∥X , let f ∈ X and let
Σ ⊆ X be non-empty. The error of best approximation of f from Σ is given by

E (f,Σ)X := inf
g∈Σ
∥f − g∥X ∈ [0,∞).

Note that E (f,Σ)X gives the smallest error one can achieve using Σ.

Notation:
For the rest of this section let X be a quasi-Banach space equipped with the quasi-norm
∥ · ∥X , and let Σ := {Σn}n∈N0 be an arbitrary family, where Σn ⊆ X .

First, the approximation space of interest and its associated quasi-norm is introduced as an
approximation class with an associated function. Later on, it is proven that the approximation
class is indeed a quasi-Banach space with the associated function as its quasi-norm. In this
case, the approximation class is an approximation space.

57

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Definition VI.2: Approximation Classes
Let f ∈ X , α ∈ (0,∞) and q ∈ (0,∞]. Define the approximation class

Aα
q (X ,Σ) := {f ∈ X | ∥f∥Aα

q (X , Σ) <∞},

and the associated function

∥f∥Aα
q (X , Σ) :=


(∞∑

n=1

1
n

(
nαE (f,Σn−1)X

)q
)1/q

, if 0 < q <∞,

sup
n≥1

nαE (f,Σn−1)X , if q =∞.

The function ∥ · ∥Aα
q (X , Σ) is also called the Lorentz norm. The family Σ is called an

approximation method, and typically contains the approximants of interest. Moreover, the
desired rate of decay of E (f,Σn−1)X is prescribed by a discrete weighted ℓq-norm, where the
weight depends on the parameter α > 0. If q =∞,

Aα
∞(X ,Σ) =

{
f ∈ X | E (f,Σn)X = O(n−α)

}
,

and if q <∞, then Aα
q (X ,Σ) ⊆ Aα

∞(X ,Σ). Intuitively speaking, Aα
q (X ,Σ) consists of those

elements of X for which the error of best approximation by elements of Σn decays at least
as O(n−α) for n→∞.

Notation:
For the rest of the report, let Aα

q (X ,Σ), and the associated function ∥ · ∥Aα
q (X , Σ) be

defined as in Definition VI.2.

It should be noted that definitions and notations for quasi-Banach spaces are used in relation
to the approximation class before proving that it is a quasi-Banach space. This is done by
replacing the quasi-Banach space with the approximation class and the quasi-norm with the
function associated with the approximation class. The first definition that this is applied to
is the following:

Definition VI.3: Continuous Embeddings
Let X1,X2 be quasi-Banach spaces, with quasi-norms ∥ · ∥X1 and ∥ · ∥X2 respectively.
Then X1 ↪→ X2 denotes a continuous embedding between X1 and X2, that is

∃C ∈ R : X1 ⊆ X2 ∧ C∥ · ∥X1 ≥ ∥ · ∥X2 .

Moreover, X1 is said to be continuously embedded in X2.

With these considerations, it is now possible to consider continuous embeddings between the
approximation classes.

58

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Proposition VI.4:
Assume Σn ⊆ Σn+1 for all n ∈ N0. If α = β and q ≤ s or if α > β, the continuous
embedding

Aα
q (X ,Σ) ↪→ Aβ

s (X ,Σ)

holds.

Proof
Per assumptions Σn ⊆ Σn+1 for all n ∈ N0. Hence the error of best approximation satisfies
that

E (f,Σn+1)X ≤ E (f,Σn)X , ∀n ∈ N0. (VI.1)

First assume α = β and q ≤ s. Per construction of the quasi-norm and (VI.1), it holds that

∥f∥Aα
q (X , Σ) ≥ ∥f∥Aα

s (X , Σ).

Therefore

Aα
q (X ,Σ) ⊆ Aα

s (X ,Σ),

which gives the desired.
Now assume α > β and q, s ∈ (0,∞]. The setup is divided into three cases: q = s, q < s,

and q > s. First, assume q = s. Then per construction of the quasi-norm and (VI.1), it
holds that

∥f∥Aα
q (X , Σ) ≥ ∥f∥Aβ

q (X , Σ),

and therefore

Aα
q (X ,Σ) ⊆ Aβ

q (X ,Σ).

For q < s, similar steps as before gives that

∥f∥Aα
q (X , Σ) ≥ ∥f∥Aβ

q (X , Σ) ≥ ∥f∥Aβ
s (X , Σ).

Lastly, assume q > s. First assume q <∞, and define p1 := q/s > 1, and p2 such that
1
p1

+ 1
p2

= 1.

Then it holds that

∥f∥Aβ
s (X , Σ) =

(∞∑
n=1

n−1
(
nβE (f,Σn−1)X

)s
)1/s

=
(∞∑

n=1

(
nβ−1/s−(α−1/q)nα−1/qE (f,Σn−1)X

)s
)1/s

≤
(∞∑

n=1

(
nβ−1/s−(α−1/q)

)sp2
)1/sp2 (∞∑

n=1

(
nα−1/qE (f,Σn−1)X

)sp1
)1/sp1

=
(∞∑

n=1

1
n(α−β+1/s−1/q)sp2

)1/sp2

∥f∥Aα
q (X , Σ),

59

J. Lund & M. Kjær Chapter VI. Approximation Spaces

where the inequality follows from Hölder’s inequality for p2 on the first term and p1 on the
last term in the sum. By defining c := (α − β + 1/s − 1/q)sp2, the first sum converges
provided c > 1, per Theorem C.8. By considering

sp2 = s

 1
1− 1

p1

 = s
s
s
− s

q

= 1
1
s
− 1

q

,

it follows that

c =
(
α− β + 1

s
− 1
q

)
sp2

=
α− β + 1

s
− 1

q
1
s
− 1

q

= α− β
1
s
− 1

q

+ 1,

which shows that c > 1. Now assume p =∞. By similar calculations, it holds that

∥f∥Aβ
s (X , Σ) =

(∞∑
n=1

n−1
(
nβE (f,Σn−1)X

)s
)1/s

=
(∞∑

n=1

(
nβ−1/s−αnαE (f,Σn−1)X

)s
)1/s

≤
(∞∑

n=1

(
nβ−1/s−α sup

n≥1
nαE (f,Σn−1)X

)s
)1/s

=
(∞∑

n=1

(
nβ−α−1/s

)s
)1/s

sup
n≥1

nαE (f,Σn−1)X ,

=
(∞∑

n=1

1
n(α−β+1/s)s

)1/s

∥f∥Aα
q (X , Σ).

Similarly, it holds that

(α− β + 1/s)s = (α− β) + 1,

which with the use of Theorem C.8 gives that the first term converges.
For both p <∞ and p =∞, there exists a C such that

∥f∥Aβ
s (X , Σ) ≤ C∥f∥Aα

q (X , Σ),

so

Aα
q (X ,Σ) ⊆ Aβ

s (X ,Σ),

which gives the desired. ■

Note that this result shows that Aα
q (X ,Σ) grows, when α decrease or q increase if α is fixed.

The next result similarly considers the continuous embeddings between approximation
classes but with different approximation methods.

60

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Lemma VI.5:
Assume that the following properties hold:

(i) Σ0 = Σ̃0 = {0}.

(ii) Σn ⊆ Σn+1 ∧ Σ̃n ⊆ Σ̃n+1 ∀n ∈ N0.

(iii) ∃ c ∈ N, C̃ > 0 ∀f ∈ X , m ∈ N : E (f,Σcm)X ≤ C̃E
(
f, Σ̃m

)
X

.

Then for arbitrary q ∈ (0,∞] and α > 0 it holds that Aα
q

(
X , Σ̃

)
↪→ Aα

q (X ,Σ), that is

∃C > 0 : ∥f∥Aα
q (X , Σ) ≤ C∥f∥Aα

q (X , Σ̃) ∀f ∈ Aα
q

(
X , Σ̃

)
, (VI.2)

where C depends on α, q, c and C̃.

Proof
Assume f ∈ Aα

q

(
X , Σ̃

)
. To simplify the notation define

εn := E (f,Σn)X , δn := E
(
f, Σ̃n

)
X
∀n ∈ N0.

Since Σ̃0 = {0}, see (i),

∥f∥X = δ0.

Moreover, as 0 ∈ Σn per (i)-(ii), it holds that

εn ≤ ∥f∥X = δ0 ∀n ∈ N0.

Thus per (iii) there exist c ∈ N and C1 > 0 such that

εcm ≤ C1δm ∀m ∈ N.

Therefore by defining

mn :=
⌊
n− 1
c

⌋
∈ N

for n ∈ N≥c+1 it follows that

εn−1 ≤ εcmn ≤ C1δmn ,

as n− 1 ≥ cmn. Overall it holds that

εn−1 ≤

δ0, if 1 ≤ n ≤ c,

C1δmn , if n ≥ c+ 1.

For n ∈ N≥c+1 it holds that

n ≤ cmn + c+ 1 ≤ (2c+ 1)mn,

61

J. Lund & M. Kjær Chapter VI. Approximation Spaces

since mn ≥ 1 and mn ≥ (n− 1)/c− 1. Hence

nα ≤ (2c+ 1)αmα
n.

Similarly,

1
n
≤ 1
mn

∀n ∈ N≥c+1,

since n ≥ mn. The setup is now divided into two cases: q <∞ and q =∞.
Assume first that q <∞. Using the previous equalities it holds that

∥f∥q
Aα

q (X , Σ) =
∞∑

n=1

1
n

(nαεn−1)q

=
c∑

n=1

1
n

(nαεn−1)q +
∞∑

n=c+1

1
n

(nαεn−1)q

≤ δq
0

(
c∑

n=1
nαq−1

)
+ Cq

1

∞∑
n=c+1

1
n

(nαδmn)q

≤ C2δ
q
0 + Cq

1(2c+ 1)αq
∞∑

n=c+1

1
mn

(mα
nδmn)q,

where

C2 :=
c∑

n=1
nαq−1.

To consider the previous inequalities further it is desired to use the size of the set

{n ∈ N≥c+1 | mn = m} .

This set makes sense, as for n ∈ N≥c+1 such that mn = m for some m ∈ N, it holds that

m ≤ n− 1
c

< m+ 1.

This is equivalent with

cm+ 1 ≤ n < cm+ c+ 1,

so it holds that

|{n ∈ N≥c+1 | mn = m}| ≤ |{n ∈ N≥c+1 | cm+ 1 ≤ n < cm+ c+ 1}| = c.

Using this it holds that
∞∑

n=c+1

1
mn

(mα
nδmn)q =

∞∑
m=1

1
m

(mαδm)q|{n ∈ N≥c+1 | mn = m}|

≤ c
∞∑

m=1

1
m

(mαδm)q

≤ c
∞∑

m=1

1
m

(mαδm−1)q

= c∥f∥q

Aα
q (X , Σ̃).

62

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Overall this gives that
∥f∥q

Aα
q (X ,Σ) ≤

(
C2 + Cq

1(2c+ 1)αqc
)
∥f∥q

Aα
q (X ,Σ̃)

= C∥f∥q

Aα
q (X , Σ̃),

where
C := C2 + Cq

1(2c+ 1)αqc.

Now assume q =∞. Similarly as for q <∞ it holds that
∥f∥Aα

q (X , Σ) = sup
n≥1

nαεn−1

≤ sup
c≥n≥1

nαεn−1 + sup
n≥c+1

nαεn−1

≤ δ0 sup
c≥n≥1

nα + C1 sup
n≥c+1

nαδmn

≤ C2δ0 + C1(2c+ 1)α sup
n≥c+1

mα
nδmn .

By making the same sets it holds that
sup

n≥c+1
mα

nδmn = sup
m≥1

mαδm|{n ∈ N≥c+1 | mn = m}|

≤ c sup
m≥1

mαδm

≤ c sup
m≥1

mαδm−1

= c∥f∥Aα
q (X , Σ̃),

which overall gives that
∥f∥Aα

q (X , Σ) ≤
(
C2δ0 + C1(2c+ 1)αc

)
∥f∥Aα

q (X , Σ̃)
= C∥f∥Aα

q (X , Σ̃),

where
C := C2δ0 + C1(2c+ 1)αc.

In both cases, C only depends on α, q, c, and C1, which completes the proof. ■

Remark VI.6:
The lemma can be rewritten with the third property replaced by the following:
(iii) Assume that

E (f,Σcm)X ≤ E
(
f, Σ̃m

)
X
∀m ≥ m0 ∈ N.

This holds because of the following: By defining c̃ := n0c, then m0m ≤ m0 for m ∈ N.
Hence Σ̃m ⊆ Σ̃m0m. Therefore

E (f,Σc̃m)X = E
(
f, Σ̃cm0m

)
X

≤ CE
(
f, Σ̃m0m

)
X

≤ CE
(
f, Σ̃m

)
X
.

63

J. Lund & M. Kjær Chapter VI. Approximation Spaces

A list of axioms is needed to verify some properties of the approximation classes. To define
these axioms, define

Σ∞ :=
⋃

n∈N0

Σn.

The axioms are then given by:
(P1) Σ0 = {0}.
(P2) Σn ⊆ Σn+1 ∀n ∈ N0.
(P3) Σn = C · Σn ∀C ∈ R \ {0}, n ∈ N0.
(P4) ∃ c ∈ N : Σn + Σn ⊆ Σcn ∀n ∈ N0.
(P5) Σ∞ is dense in X .

For readers familiar with approximation classes the list of properties might seem incomplete.
A discussion of this can be found in Remark A.2.

With the previous in place it is now desired to prove that the approximation class
Aα

q (X ,Σ) is a well-defined approximation space.

Proposition VI.7: Aα
q (X ,Σ) is an Approximation Spaces

Assume properties (P1)-(P5) hold. Then the classes (Aα
q (X ,Σ), ∥ · ∥Aα

q (X , Σ)) are quasi-
Banach spaces satisfying that Aα

q (X ,Σ) ↪→ X . Moreover if α = β and q ≤ s or if α > β,
then it holds that

Aα
q (X ,Σ) ↪→ Aβ

s (X ,Σ).

Proof
First it is desired to show that (Aα

q (X ,Σ), ∥ · ∥Aα
q (X , Σ)) is a quasi-Banach space. For this

both completeness and that Aα
q (X ,Σ) is a quasi-normed space with quasi-norm ∥ · ∥Aα

q (X , Σ)
must be proven. Moreover it is desired to show that Aα

q (X ,Σ) ↪→ X . To do so it is desired
to use Theorem C.12. Therefore it must be proven that the definition of Aα

q (X ,Σ) matches
their definition of generalized approximation space, see Definition C.9. Per assumption X
is a quasi-normed space, and Σ is defined such that (P1)-(P4) are satisfied, which leaves
S being an admissible sequence space. Note the exact definition of an admissible sequence
space does not matter in this context. In the current setup the sequence space S is implicitly
given by S := {{an}∞

n=1 ⊂ R | ∥an∥S <∞}, where

∥{an}∞
n=1∥S :=

∥∥∥∥{nα− 1
q an

}∞

n=1

∥∥∥∥
ℓp(R)

and α > 0. Hence Remark C.10 gives that S is an admissible sequence space. Therefore is
Proposition C.11 applicable, so Aα

q (X ,Σ) is a quasi-normed space, and
Aα

q (X ,Σ) ↪→ X .
For the completeness Theorem C.12 is used. Per the definition of S, it holds that

lim
k→∞
∥{an}k

n=1∥S = ∥{an}∞
n=1∥S,

so Theorem C.12(ii) is satisfied and thus Aα
q (X ,Σ) is complete. The last part of the

proposition follows directly from Proposition VI.4, because of (P2). ■

Under certain conditions ∥ · ∥Aα
q (X , Σ) is a proper norm. A comment on these conditions can

be found in Remark A.3.

64

J. Lund & M. Kjær Chapter VI. Approximation Spaces

VI.2 Approximation Classes of Neural Networks
Now the focus is restricted to the approximation classes associated with neural networks.
Both generalized and strict neural networks will be studied in this setup. For this section, a
list of assumptions is made. This is stated in the following:

Notation:
For the rest of this chapter let d, k ∈ N, ϱ : R → R be an activation function, L a
depth growth function, Ω ⊆ Rd a subset, and X a quasi-Banach space, equipped with
the quasi-norm ∥ · ∥X , with elements f : Ω → Rk. Moreover, let Σ := {Σn}n∈N0 be a
family, where Σn ⊆ X is arbitrary unless otherwise stated.

The input and output dimensions d and k, as well as the set Ω are implicitly described by
the space X , when used.

This section is devoted to showing that the approximation theoretic properties of the
resulting function classes gives that it does not matter whether the neural networks are
generalized or strict. This holds when assuming that Ω ⊂ Rd is bounded and the activation ϱ
satisfies mild conditions. An equivalent result on an unbounded domain where the activation
function ϱ can represent the identity is also stated. For this, the approximation spaces
associated with neural networks are presented. However, as for the general approximation
spaces, these are later proven to be well-defined. Therefore the use of approximation space
and quasi-norm, is misleading, as it only is an approximation class with an associated
function for now. Similarly, continuous embeddings are used for approximation classes in
the same way as in the previous section.

Definition VI.8: Approximation Families for Generalized Neural Networks
For n ∈ N define the approximation families

W0(X , ϱ,L) := {0} =: N0(X , ϱ,L),
Wn(X , ϱ,L) := NNϱ, d, k

n, L (n), ∞(Ω) ∩ X ,
Nn(X , ϱ,L) := NNϱ, d, k

∞, L (n), n(Ω) ∩ X .

Remark VI.9:
Note that for n = 0, the introduced approximation families are defined to be {0}, even
though NNϱ, d, k

0, L (n), ∞(Ω) and NNϱ, d, k
∞, L (n), 0(Ω) not necessarily are equal to {0}. For instance

NNϱ, d, k
0, L, ∞ is the set of constant functions, see Lemma II.12, and NNϱ, d, k

∞, L, 0 is the set of affine
linear functions.

In the case where the depth growth function is constant, that is L = L for some L ∈ N, L
is replaced with L in the notation, for instance Nn(X , ϱ, L).

65

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Definition VI.10: Approximation Space for Generalized Neural Networks
Define the approximation space and the associated quasi-norms

Wα
q (X , ϱ,L) := Aα

q (X ,Σ),
∥ · ∥W α

q (X , ϱ, L) := ∥ · ∥Aα
q (X , Σ),

with Σn := Wn(X , ϱ,L) for n ∈ N0. Similarly define

Nα
q (X , ϱ,L) := Aα

q (X ,Σ),
∥ · ∥Nα

q (X , ϱ, L) := ∥ · ∥Aα
q (X , Σ),

with Σn := Nn(X , ϱ,L) for n ∈ N0.

The space Wα
q (X , ϱ,L) is referred to as the approximation spaces associated with connection

complexity. Similarly Nα
q (X , ϱ,L) is referred to as the approximation space associated with

neuron complexity. This notation highlights the activation function ϱ and the depth growth
function L , which is chosen because of the role in the approximation spaces. If the depth
growth function is constant similar notation as for the approximation families is used.

Analogously approximation families and spaces are defined for strict neural networks:

Definition VI.11: Approximation Families for Strict Neural Networks
For n ∈ N define the approximation families

SW0(X , ϱ,L) := {0} =: SN0(X , ϱ,L),
SWn(X , ϱ,L) := SNNϱ, d, k

n, L (n), ∞(Ω) ∩ X ,
SNn(X , ϱ,L) := SNNϱ, d, k

∞, L (n), n(Ω) ∩ X .

Similarly as for the generalized neural network, a special notation is used for the case where
the depth growth function is constant.

Definition VI.12: Approximation Space for Strict Neural Networks
Define the approximation spaces and the associated quasi-norms

SWα
q (X , ϱ,L) := Aα

q (X ,Σ),
∥ · ∥SW α

q (X , ϱ, L) := ∥ · ∥Aα
q (X , Σ),

with Σn := SWn(X , ϱ,L) for n ∈ N0. Similarly define

SNα
q (X , ϱ,L) := Aα

q (X ,Σ),
∥ · ∥SNα

q (X , ϱ, L) := ∥ · ∥Aα
q (X , Σ),

with Σn := SNn(X , ϱ,L) for n ∈ N0.

66

J. Lund & M. Kjær Chapter VI. Approximation Spaces

These families are used to compare the relation between the connectivity and the number of
neurons. It should be noted that Σ is the one related to neural networks of fixed or varying
depth L ∈ N ∪ {∞}.

Notation:
For the rest of the report define

L := sup
n∈N

L (n) ∈ N ∪ {∞},

given a depth growth function L .

In the case where L = 2 the neural network is called shallow. The depth growth function
L and L are equivalent, see Proposition C.1. A special case of the approximation spaces
is when the upper bound for the number of connections and the number of neurons is ∞.
These are defined as follows:

Definition VI.13:
Define the space

Σ∞(X , ϱ,L) := NNϱ, d, k
∞, L, ∞(Ω) ∩ X =

⋃
n∈N0

Wn(X , ϱ,L) =
⋃

n∈N0

Nn(X , ϱ,L).

Notation:
For the rest of the report, the families and spaces defined in Definition VI.8 to Defini-
tion VI.13 are used, without referring to the definition.

Per construction
SWn(X , ϱ,L) ⊆ Wn(X , ϱ,L), ∀n ∈ N0,

and similarly for Nn(X , ϱ,L). So the generalized neural networks are at least as expressive
as strict ones. Therefore it makes sense that there is a connection between the corresponding
approximation classes.

Proposition VI.14:
Let α > 0 and q ∈ (0,∞]. Then it holds that

∥ · ∥W α
q (X , ϱ, L) ≤ ∥ · ∥SW α

q (X , ϱ, L),

∥ · ∥Nα
q (X , ϱ, L) ≤ ∥ · ∥SNα

q (X , ϱ, L).

Hence

SWα
q (X , ϱ,L) ↪→ Wα

q (X , ϱ,L),
SNα

q (X , ϱ,L) ↪→ Nα
q (X , ϱ,L).

67

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Proof, see Appendix B.

The converse result holds under mild assumptions on the activation function ϱ when Ω ⊂ Rd

is bounded, where the approximation is in Lp(Ω,Rk). Moreover, it holds on unbounded
domains for ϱ that can represent the identity.

Theorem VI.15: Approximation Classes of Generalized & Strict ϱ-networks
Let Ω ⊆ Rd be a measurable set with non-zero measure. Assume either that

(i) ϱ can represent the identity idR, with m terms for some m ∈ N,

(ii) Ω is bounded, ϱ is continuous, and ϱ is differentiable at some x0 ∈ R with
ϱ′(x0) ̸= 0.

Then for any L , k ∈ N, α > 0, p, q ∈ (0,∞], with X := Xk
p (Ω), it holds that

SWα
q (X , ϱ,L) = Wα

q (X , ϱ,L),
SNα

q (X , ϱ,L) = Nα
q (X , ϱ,L).

Furthermore, there exist CW , CN <∞ such that

∥ · ∥W α
q (X , ϱ, L) ≤ ∥ · ∥SW α

q (X , ϱ, L) ≤ CW∥ · ∥W α
q (X , ϱ, L),

∥ · ∥Nα
q (X , ϱ, L) ≤ ∥ · ∥SNα

q (X , ϱ, L) ≤ CN∥ · ∥Nα
q (X , ϱ, L).

Proof
The proof is stated for the approximation spaces associated with connection complexity since
the proof with neuron complexity is analogous. It will be noted where the proofs differ.

Let X := Xk
p (Ω). The setup is divided into two cases, depending on which assumption is

made:

(i) Assume (i). Then Lemma III.8 gives that

Wn(X , ϱ,L) = NNϱ, d, k
n, L (n), ∞(Ω) ∩ X

⊆ SNNϱ, d, k
m2n, L (m2n), ∞(Ω) ∩ X

= SWm2n(X , ϱ,L),

since

L (n) ≤ L (m2n), ∀n ∈ N.

Therefore

E (f, SWm2n(X , ϱ,L))X ≤ E (f, Wn(X , ϱ,L))X , ∀n ∈ N0.

(ii) Assume (ii). Since ϱ is continuous it holds that all functions f ∈ NNϱ, d, k
∞, ∞, ∞ are

continuous functions f : Rd → Rk. Moreover Ω is compact, as Ω is bounded. Therefore

68

J. Lund & M. Kjær Chapter VI. Approximation Spaces

f↾Ω is uniformly continuous and bounded. Hence it also holds for f↾Ω. Overall the
previous implies that

SWn(X , ϱ,L) = SNNϱ, d, k
n, L (n), ∞(Ω) ∩ X

= SNNϱ, d, k
n, L (n), ∞(Ω).

Similarly as in (i)

L (n) ≤ L (4n), ∀n ∈ N,

and Lemma III.5 gives that

Wn(X , ϱ,L) = NNϱ, d, k
n, L (n), ∞(Ω) ∩ X

⊆ SNNϱ, d, k
4n, L (4n), ∞(Ω)

X

⊆ SW4n(X , ϱ,L)X
,

where the closure is taken with respect to the topology induced by ∥ · ∥X . Since Ω ⊂ Rd

is bounded, the locally uniform convergence on Rd implies convergence in X , which
allows the closure to be replaced in Lemma III.5. Let X ⊆ X be arbitrary. Then the
continuity of ∥ · ∥X gives that

inf
g∈X
∥f − g∥X = inf

g∈X
∥f − g∥X .

So it does not change the distance of a function f to the set X, by switching from X
to X. This gives that

E (f, SW4n(X , ϱ,L))X ≤ E (f, Wn(X , ϱ,L))X , ∀n ∈ N0.

In the proof of the approximation spaces with neuron complexity 4n are replaced by
2n.

Now Lemma VI.5 gives that there exists a CW such that

∥ · ∥SW α
q (X , ϱ, L) ≤ CW∥ · ∥W α

q (X , ϱ, L).

Therefore

∥ · ∥W α
q (X , ϱ, L) ≤ ∥ · ∥SW α

q (X , ϱ, L) ≤ CW∥ · ∥W α
q (X , ϱ, L)

according to Proposition VI.14, which was the desired. ■

Remark VI.16:
From a practical point of view, it is more convenient to work with strict neural networks
instead of generalized neural networks. The problem with this approach is theoretical
since strict neural networks do not possess the same closure properties as generalized
neural networks. However, Theorem VI.15 shows that generalized and strict neural
networks have identical properties, under specific conditions. Under the assumption
that the domain is bounded, they are equal, and in the case of unbounded domains,
it holds for ReLU-networks. So in these cases, it is irrelevant that the construction is
based on the generalized neural networks.

69

J. Lund & M. Kjær Chapter VI. Approximation Spaces

VI.3 Connection Complexity & Neuron Complexity
In this section, the relation between the connectivity and the number of neurons is explored,
as well as the relation to different depth growth functions.

Lemma VI.17:
Let Ω ⊆ Rd be a measurable set with non-zero measure, and X := Xk

p (Ω) for p ∈ (0,∞].
Then for any α > 0 and q ∈ (0,∞] it holds that

Wα
q (X , ϱ,L) ↪→ Nα

q (X , ϱ,L) ↪→ Wα/2
q (X , ϱ,L)

SWα
q (X , ϱ,L) ↪→ SNα

q (X , ϱ,L) ↪→ SWα/2
q (X , ϱ,L).

Furthermore, there exist C,CS > 0 such that

∥ · ∥W α
q (X , ϱ, L) ≥ ∥ · ∥Nα

q (X , ϱ, L) ≥ C∥ · ∥
W

α/2
q (X , ϱ, L),

∥ · ∥SW α
q (X , ϱ, L) ≥ ∥ · ∥SNα

q (X , ϱ, L) ≥ CS∥ · ∥SW
α/2
q (X , ϱ, L).

If L = 2, the exponent α/2 can be replaced by α, which implies that

Wα
q (X , ϱ,L) = Nα

q (X , ϱ,L),

with equivalent norms.

Proof
The proof is stated for the approximation spaces associated with generalized neural networks
since the proof with strict neural networks is analogous. According to Lemma II.13 and
(II.3), it holds that

NNϱ, d, k
n, L (n), ∞ ⊆ NNϱ, d, k

n, L (n), n

⊆ NNϱ, d, k
∞, L (n), n

⊆ NNϱ, d, k
n2+(d+k)n+dk, L (n), n

⊆ NNϱ, d, k
n2+(d+k)n+dk, L (n), ∞

for all n ∈ N0. Therefore the error of best approximation satisfies

E (f, Wn(X , ϱ,L))X ≥ E (f, Nn(X , ϱ,L))X (VI.3)
≥ E (f, Wn2+(d+k)n+dk(X , ϱ,L))X (VI.4)

for all n ∈ N0. Now (VI.3) gives that

∥ · ∥W α
q (X , ϱ, L) ≥ ∥ · ∥Nα

q (X , ϱ, L),

Wα
q (X , ϱ,L) ⊆ Nα

q (X , ϱ,L).

It is now desired to prove that there exists a C > 0 such that

∥ · ∥Nα
q (X , ϱ, L) ≥ C∥ · ∥

W
α/2
q (X , ϱ, L).

70

J. Lund & M. Kjær Chapter VI. Approximation Spaces

The proof is stated for q <∞, since q =∞ is similar. Now define j := max{d, k}. To get
the desired inequality, the sum in the norm is divided in two as follows:

∥f∥q
W α

q (X , ϱ, L) =
∞∑

m=1

1
m

(mαE (f, Wm−1(X , ϱ,L))X)q

=
(j+1)2∑
m=1

1
m

(mαE (f, Wm−1(X , ϱ,L))X)q

+
∑

m≥(j+1)2+1

1
m

(mαE (f, Wm−1(X , ϱ,L))X)q .

For the first term, it holds that
(j+1)2∑
m=1

1
m

(mαE (f, Wm−1(X , ϱ,L))X)q ≤ (E (f, W0(X , ϱ,L))X)q
(j+1)2∑
m=1

mαq−1

= C1∥f∥q
X

≤ C1∥f∥q
N2α

q (X , ϱ, L),

where

C1 :=
(j+1)2∑
m=1

mαq−1.

To consider the last term a connection on the summands in the sum is considered. By
definition of j it holds that

n2 + (d+ k)n+ dk ≤ (n+ j)2. (VI.5)

Assume m satisfies that

(n+ j)2 + 1 ≤ m ≤ (n+ j + 1)2.

By rewriting the upper and lower bound by

(n+ j)2 + 1 = n2 + 2nj + j2 + 1,
(n+ j + 1)2 = n2 + j2 + 1 + 2nj + 2n,

it holds that

m ≤ n2
(

1 + j2 + 1
n2 + 2j + 2

n

)
≤ n2(j2 + 2j + 4)
≤ n2(4j2 + 8j + 4)
= n2(2j + 2)2.

Thus m ≲ n2. Using this it holds that

mαq−1 ≲ n2αq−2.

The sum
(n+j+1)2∑

m=(n+j)2+1
mαq−1

71

J. Lund & M. Kjær Chapter VI. Approximation Spaces

has

((n+ j) + 1)2 − (n+ j)2 = 2n+ 2j + 1

summands. Therefore
(n+j+1)2∑

m=(n+j)2+1
mαq−1 ≤

(n+j+1)2∑
m=(n+j)2+1

C2n
2αq−2

= C2(2n+ 2j + 1)n2αq−2

≤ C2(2n+ 2jn+ n)n2αq−2

= C2(2 + 2j + 1)n2αq−1

for all n ∈ N, where C2 comes from the equivalent relation. By defining C3 := C2(2 + 2j + 1),
which only depends on α, q, and j, and is finite, it holds that

(n+j+1)2∑
m=(n+j)2+1

mαq−1 ≤ C3n
2αq−1 ∀n ∈ N.

Now (VI.4) and (VI.5) gives that for all n ∈ N

(n+j+1)2∑
m=(n+j)2+1

1
m

(mαE (f, Wm−1(X , ϱ,L))X)q

≤
(
E (f, W(n+j)2(X , ϱ,L))X

)q
(n+j+1)2∑

m=(n+j)2+1
mαq−1

≤
(
E (f, Wn2+(d+k)n+dk(X , ϱ,L))X

)q
Cn2αq−1

≤ (E (f, Nn(X , ϱ,L))X)q Cn2αq−1.

Using this by rewriting the following sum to align with the inequality it holds that
∑

m≥(j+1)2+1

1
m

(mαE (f, Wm−1(X , ϱ,L))X)q

=
∑
n∈N

(n+j+1)2∑
m=(n+j)2+1

1
m

(mαE (f, Wm−1(X , ϱ,L))X)q

≤ C2
∑
n∈N

n2αq−1 (E (f, Wn(X , ϱ,L))X)q

≤ C2∥f∥q
N2α

q (X , ϱ, L).

Combining the two terms it holds that

∥f∥q
W α

q (X , ϱ, L) ≤ C1∥f∥q
N2α

q (X , ϱ, L) + C2∥f∥q
N2α

q (X , ϱ, L)

By rewriting this it holds that

∥ · ∥Nα
q (X , ϱ, L) ≥ C∥ · ∥

W
α/2
q (X , ϱ, L).

To prove the last part of the lemma, assume that L = 2. Then by (II.4) it holds that

NNϱ, d, k
∞, L (n), n ⊆ NNϱ, d, k

(d+k)n, L (n), n ⊆ NNϱ, d, k
(d+k)n, L (n), ∞,

72

J. Lund & M. Kjær Chapter VI. Approximation Spaces

which gives that

E (f, Nn(X , ϱ,L))X ≤ E (f, W(d+k)n(X , ϱ,L))X ∀n ∈ N0.

Therefore assumption (iii) is satisfied in Lemma VI.5 and (i)-(ii) holds per construction of
the approximation families. Hence Lemma VI.5 gives that

Wα
q (X , ϱ,L) ⊇ Nα

q (X , ϱ,L)

together with a quasi-norm estimate. Combined with the general setup the spaces coincide
with equivalent quasi-norm. ■

With this statement in place, the relation between approximation classes associated with
different depth growth functions can be considered.

Lemma VI.18:
Assume L1 ⪯ L2, and let c, n0 be defined as in Definition II.6. Then for all α > 0 and
q ∈ (0,∞], there exist constants CW , CN ∈ [1,∞) depending on L1,L2, α, and q such
that

Wα
q (X , ϱ,L1) ↪→ Wα

q (X , ϱ,L2),
CW∥ · ∥W α

q (X , ϱ, L1) ≥ ∥ · ∥W α
q (X , ϱ, L2),

and

Nα
q (X , ϱ,L1) ↪→ Nα

q (X , ϱ,L2) ,
CN∥ · ∥Nα

q (X , ϱ, L1) ≥ ∥ · ∥Nα
q (X , ϱ, L2).

An analogous statement holds for strict neural networks. Moreover, the constants CW

and CN only depends on the constants c, n0, α and q.

Proof
The proof is stated for the approximation spaces associated with connection complexity since
the proof with neuron complexity is analogous. It is desired to use Lemma VI.5. To do so
properties (i)-(iii) are checked. Assumption (iii) is replaced by the equivalent assumption
from Remark VI.6. Per construction of the spaces Wn (X , ϱ,L2) both (i) and (ii) are satisfied.
With the focus on properties (iii) it holds that for n ≥ n0

L1(n) ≤ L2(cn),

per L1 ⪯ L2. This implies that

NNϱ, d, k
n, L1(n), ∞ ⊆ NNϱ, d, k

n, L2(cn), ∞ ⊆ NNϱ, d, k
cn, L2(cn), ∞,

for all n ≥ n0. Therefore the error of best approximation satisfies

E (f, Wcn (X , ϱ,L2))X ≤ E (f, Wn(X , ϱ,L1))X ∀n ≥ n0,

which gives that (iii) in Remark VI.6 is satisfied. Hence Lemma VI.5 gives the desired
result. Note that the lemma also gives that the constant in (VI.2) only depends on the con-
stants c, n0, α and q. The proof for strict neural networks follows by replacing NN with SNN. ■

73

J. Lund & M. Kjær Chapter VI. Approximation Spaces

A similar result in the case of equivalent depth growth functions is stated in the following
theorem.

Theorem VI.19:
Assume L1 ∼ L2, and let c, n0 be defined as in Definition II.6. Then for all α > 0 and
q ∈ (0,∞], there exist constants CW , CN ∈ [1,∞) such that

Wα
q (X , ϱ,L1) = Wα

q (X , ϱ,L2) ,
1
CW

∥ · ∥W α
q (X , ϱ, L1) ≤ ∥ · ∥W α

q (X , ϱ, L2) ≤ CW∥ · ∥W α
q (X , ϱ, L1),

and

Nα
q (X , ϱ,L1) = Nα

q (X , ϱ,L2) ,
1
CN

∥ · ∥Nα
q (X , ϱ, L1) ≤ ∥ · ∥Nα

q (X , ϱ, L2) ≤ CN∥ · ∥Nα
q (X , ϱ, L1).

An analogous statement holds for strict neural networks. Moreover, the constants CW

and CN only depends on the constants c, n0, α and q.

Proof
The proof is stated for the approximation spaces associated with generalized neural networks
since the proof with strict neural networks is analogous. Per assumption, there exist c, n0 ∈ N0
such that

L1(n) ≤ L2(cn),
L1(cn) ≥ L2(n).

Using Lemma VI.18 in both cases it holds that

Wα
q (X , ϱ,L1) ↪→ Wα

q (X , ϱ,L2) , Wα
q (X , ϱ,L1)←↩ Wα

q (X , ϱ,L2) ,
∥ · ∥W α

q (X , ϱ, L2) ≤ CW∥ · ∥W α
q (X , ϱ, L1), CW∥ · ∥W α

q (X , ϱ, L2) ≥ ∥ · ∥W α
q (X , ϱ, L1),

and similarly for the approximation classes Nα
q (X , ϱ,L1) and Nα

q (X , ϱ,L2). Combining
these gives the desired result. ■

If L <∞ then Proposition C.1 gives that L ∼ L, so per Theorem VI.19 it holds that

Wα
q (X , ϱ,L) = Wα

q (X , ϱ,L)

with the norms listed in the theorem. A similar result holds for Nα
q (X , ϱ,L) and strict

neural networks as well.

VI.4 Approximation Spaces of Neural Networks
The goal is to verify that the approximation classes associated with the neural networks
are actual approximation spaces. To do so Proposition VI.7 is used. Therefore it is desired
to prove that properties (P1)-(P5) are satisfied. Domains with certain properties will be
necessary for this section. These domains will be defined in the following:

74

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Definition VI.20: Admissible Domains
Let Ω ⊆ Rd. Then Ω is said to be an admissible domain if it is Borel measurable with
nonzero measure.

Properties (P1)-(P4) hold in a more general setup and are proven in the next lemma. However,
(P5) can fail to hold for certain activation functions, and needs a bit more consideration.

Lemma VI.21:
Let Σn := Wn(X , ϱ,L) or let Σn := Nn(X , ϱ,L). Then Σn satisfies (P1)-(P4), with
c = 2 + min{d, k} in (P4).

Proof
The proof is stated for the approximation spaces associated with connection complexity since
the proof with neuron complexity is analogous. The places where the proof varies are noted.

(P1) Per definition it holds that W0(X , ϱ,L) = {0}, which is property (P1).

(P2) It is desired to prove that Wn(X , ϱ,L) ⊆ Wn+1(X , ϱ,L) for all n ∈ N0. The setup is
divided into n = 0 and n ∈ N.

For n = 0 it is desired to prove that 0 ∈ W1(X , ϱ,L). Lemma II.12 with N = 0 and
L = 1 gives that 0 ∈ NNϱ, d, k

0, 1, 0 . Thus per the construction of the families it holds that

0 ∈ NNϱ, d, k
0, 1, 0 ⊆ NNϱ, d, k

W, L, N ∀W,L,N ∈ N ∪ {∞}.

By choosing N =∞ and W = 1, it holds that 0 ∈ W1(X , ϱ,L), as desired.
Now consider n ∈ N. Let W,N ∈ N0, and assume L ≤ L̃, for L, L̃ ∈ N ∪ {∞}. Per

the construction of the families, it holds that

NNϱ, d, k
W, L, ∞ ⊆ NNϱ, d, k

W +1, L̃, ∞.

Since L is non-decreasing, that is L (n) ≤ L (n+ 1), it holds that

Wn(X , ϱ,L) ⊆ Wn+1(X , ϱ,L) ∀n ∈ N,

which proves property (P2).

(P3) It is desired to prove that c · Wn(X , ϱ,L) = Wn(X , ϱ,L) for all c ∈ R \ {0} and n ∈ N0.
For n = 0 the setup holds per construction of the families. For n ∈ N, the setup is
divided into two cases:

c · Wn(X , ϱ,L) ⊆ Wn(X , ϱ,L),
c · Wn(X , ϱ,L) ⊇ Wn(X , ϱ,L).

For the first part assume f ∈ NNϱ, d, k
W, L, N . Then Lemma II.15(i) gives that cf ∈ NNϱ, d, k

W, L, N

for c ∈ R. Therefore it holds that

c · Wn(X , ϱ,L) ⊆ Wn(X , ϱ,L) ∀c ∈ R, n ∈ N.

The second case is proved using the same procedure but with 1/c, where c ∈ R \ {0}.
Thus the result holds.

75

J. Lund & M. Kjær Chapter VI. Approximation Spaces

(P4) It is desired to prove that there exists a c ∈ N such that

Wn(X , ϱ,L) + Wn(X , ϱ,L) ⊆ Wcn(X , ϱ,L) ∀n ∈ N0.

For n = 0, the setup holds per construction of the families. For n ∈ N, assume
f1, f2 ∈ Wn(X , ϱ,L). Let g1, g2 ∈ NNϱ, d, k

n, L (n), ∞ such that

fm = gm↾Ω, m ∈ {1, 2}.

By defining L := min{L (n), n}, Lemma II.13 gives that gm ∈ NNϱ, d, k
n, L, ∞. Now define

c0 := min{d, k}, and

W1 := 2n+ c0 (L− 1) ≤ (2 + c0)n =: W2.

Using Lemma II.15(ii) with W = n, L = L, N =∞, and n = 2, it holds that

g1 + g2 ∈ NNϱ, d, k
W1, L, ∞.

Since L ≤ L (n), L is non-decreasing, and n ≤ W2, it holds that

NNϱ, d, k
W1, L, ∞ ⊆ NNϱ, d, k

W1, L (W2), ∞.

Therefore

f1 + f2 ∈ Wcn(X , ϱ,L)

for c = 2+ c0. In the case of neuron complexity Proposition II.9 instead of Lemma II.13
is used where L := min{L (n), n+ 1}. ■

Σ∞(X , ϱ,L) is a linear space since Lemma VI.21 gives that (P3) and (P4) is satisfied.
With (P1)-(P4) in place, it remains to prove (P5), which is that Σ∞ is dense in X . As

mentioned, property (P5) can fail to hold for certain activation functions. An example of
such activation functions can be found in Example A.5. Thus (P5) is proven under specific
assumptions. To do so, the density of Σ∞(X , ϱ,L) in X := Xk

p (Ω) is explored. For this, the
concept of a non-degenerate activation function is defined.

Definition VI.22: Non-degenerated
The activation function ϱ : R→ R is called non-degenerate if it satisfies the following:

(i) ϱ is Borel measurable.

(ii) ϱ is locally bounded.

(iii) There exists a closed null-set X ⊆ R such that ϱ is continuous at every point
x0 ∈ R \X.

(iv) There does not exists a polynomial p : R→ R such that ϱ(x) = p(x) for almost
all x ∈ R.

76

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Most of these conditions are fulfilled when the activation function is continuous, see Proposi-
tion C.13. The density of Σ∞(X , ϱ,L) in X := Xk

p (Ω) is first proven for bounded domains:

Theorem VI.23:
Let the activation function ϱ be Borel measurable and locally bounded. Let Ω ⊂ Rd

be a bounded admissible domain, assume L ≥ 2, and let X := Xk
p (Ω), with p ∈ (0,∞).

Then the following holds:

(i) NNϱ, d, k
∞, ∞, ∞(Ω) ⊆ X .

(ii) If ϱ is non-degenerate, then Σ∞ (X , ϱ,L) is dense in X .

If additionally ϱ is continuous then (i) and (ii) hold for p =∞.

Proof
(i) It is desired to prove that NNϱ, d, k

∞, ∞, ∞(Ω) ⊆ Xk
p (Ω). The setup is divided into two cases:

p < ∞ and p = ∞. First consider p < ∞: Per assumption, ϱ is Borel measurable
and locally bounded. Therefore Lemma C.14, with assumption (i)-(ii), gives that all
f ∈ NNϱ, d, k

∞, ∞, ∞ is locally bounded and measurable. Since the domain Ω is bounded it
holds that f↾Ω ∈ Lp(Ω,Rk) for all p ∈ (0,∞]. Therefore it holds that f↾Ω ∈ Xk

p (Ω) if
p <∞, which was the desired.

To prove (i) for p =∞, ϱ is assumed to be continuous. Therefore Lemma C.14,
with assumption (iii), gives that f is continuous. Thus f is uniformly continuous and
bounded on the compact set Ω. Therefore f↾Ω is uniformly continuous and bounded,
so f↾Ω∈ Xk

∞(Ω).

(ii) Similar to the proof of (i), the setup is divided into two cases: p < ∞ and p = ∞.
For p < ∞ let f ∈ Xk

p (Ω), be given by f := (f1, . . . , fk), and assume ε > 0. For all
m ∈ {1, . . . , k} define f̃m ∈ Lp(Rd,R), to be fm in Ω and zero elsewhere in Rd. Per
Theorem C.15 it holds that C∞

c (Rd,R) is dense in Lp(Rd,R). Therefore there exists
gm ∈ C∞

c (Rd,R) such that ∥∥∥f̃m − gm

∥∥∥
Lp(Rd,R)

≤ ε.

Note NNϱ, d, 1
∞, 2, ∞ ⊆ NNϱ, d, 1

∞, L, ∞ holds per assumptions. Now choose R > 0 such that

supp(gm),Ω ⊆ [−R,R]d.

Then The Universal Approximation Theorem, Theorem C.16, with the compact set
K = [−R,R]d and the continuous functions f = gm, gives that there exists

hm ∈ NNϱ, d, 1
∞, 2, ∞ ⊆ NNϱ, d, 1

∞, L, ∞

such that

∥gm − hm∥L∞([−R,R]d,R) ≤
ε

(2R)d/p
.

Now Lemma II.16 gives that

h := (h1, . . . , hk) ∈ NNϱ, d, k
∞, L, ∞

77

J. Lund & M. Kjær Chapter VI. Approximation Spaces

and per Theorem VI.23(i) h↾Ω ∈ Xk
p (Ω). Thus h↾Ω ∈ Σ∞(Xk

p (Ω), ϱ,L). In general for
c1, c2 ∈ R it holds that

(c1 + c2)p ≤ (2 max{c1, c2})p ≤ 2p (cp
1 + cp

2) .

Using this it holds that∣∣∣hm(x)− f̃m(x)
∣∣∣p ≤ (|hm(x)− gm(x)|+

∣∣∣gm(x)− f̃m(x)
∣∣∣)p

≤ 2p

(
εp

(2R)d
+
∣∣∣gm(x)− f̃m(x)

∣∣∣p)

for all x ∈ [−R,R]d. Therefore it holds that∥∥∥hm − f̃m

∥∥∥p

Lp([−R,R]d,R)
=
∫

[−R,R]d

∣∣∣hm(x)− f̃m(x)
∣∣∣p dx

≤
∫

[−R,R]d
2p

(
εp

(2R)d
+
∣∣∣gm(x)− f̃m(x)

∣∣∣p) dx

≤ 2p

(
εp

(2R)d

∫
[−R,R]d

1 dx+
∥∥∥gm − f̃m

∥∥∥p

Lp([−R,R]d,R)

)
≤ 2p (εp + εp)
≤ 2p+1εp.

Since f̃m↾Ω = fm it holds that

∥f − h↾Ω∥p
Lp(Ω,Rk) ≤

k∑
m=1
∥fm − hm↾Ω∥p

Lp(Ω,R)

≤
k∑

m=1

∥∥∥f̃m − hm

∥∥∥p

Lp([−R,R]d,R)

≤ 21+pkεp,

and since ε > 0 was arbitrary, this proves the desired density for p <∞.
For p = ∞, let f ∈ Xk

∞(Ω), be given by f := (f1, . . . , fk), and assume ε > 0.
Lemma C.17 gives that there exists a continuous function f̃ : Rd → Rk such that
f = f̃↾Ω. Let f̃m be the component function in f̃ such that

f̃ :=
(
f̃1, . . . , f̃k

)
,

and choose R > 0 such that Ω ⊆ [−R,R]d. Then for all m ∈ {1, . . . , k} there exist
hm ∈ NNϱ, d, 1

∞, 2, ∞ ⊆ NNϱ, d, 1
∞, L, ∞ such that∥∥∥hm − f̃m

∥∥∥
L∞([−R,R]d,R)

≤ ε

according to The Universal Approximation Theorem, Theorem C.16, withK = [−R,R]d
and f = f̃m.

Now Lemma II.16 gives that

h := (h1, . . . , hk) ∈ NNϱ, d, k
∞, L, ∞.

78

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Since ϱ is continuous h↾Ω ∈ Xk
∞(Ω) per (i). Thus h↾Ω ∈ Σ∞(Xk

∞(Ω), ϱ,L). Therefore
as f̃m↾Ω = fm it holds that

∥f(x)− h↾Ω (x)∥∞ = max
m∈{1,...,k}

∥fm(x)− hm↾Ω (x)∥L∞(Ω,R)

≤ max
m∈{1,...,k}

∥∥∥f̃m(x)− hm(x)
∥∥∥

L∞([−R,R]d,R)

≤ ε.

Since ε > 0 was arbitrary, this proves the desired density for p =∞. ■

Given specific assumptions on the activation function, Theorem VI.23 directly gives that
(P5) is satisfied for bounded admissible domains:

Corollary VI.24:
If L ≥ 2 and ϱ is continuous and not a polynomial, then property (P5) holds for any
bounded admissible domain Ω ⊂ Rd and p ∈ (0,∞].

Proof
Theorem VI.23(ii) will be used, so it is only needed to check whether ϱ is non-degenerate or not
since the rest of the conditions are satisfied by assumption. This holds per Proposition C.18
since it is continuous and not a polynomial. Thus Σ∞(Xk

p (Ω), ϱ,L) is dense in Xk
p (Ω), which

is properties (P5). ■

With this in place, it is desired to prove that (P5) is satisfied for unbounded admissible
domain as well. To do so, some notation is needed:

• The periodization of a function, see Definition C.19.
• The radially decreasing L1-majoriant of a function, see Definition C.20.
• Radon measures, see Definition C.21.
• The dual space for C0(Rd) is denoted by (C0(Rd))∗.

Theorem VI.25:
Let p ∈ (0,∞], and ϱ be Borel measurable and locally bounded, and assume that there
exists some

f ∈ NNϱ, d, 1
∞, L, ∞(Ω) ∩X1

p (Ω)
where the closure is taken in Lp(Rd,R), such that f : Rd → R and the following holds:

(i) There is a non-increasing function g : [0,∞)→ [0,∞) which satisfy that∫
Rd
g(∥x∥Rd) dx <∞

and that
|f(x)| ≤ g(∥x∥Rd) ∀x ∈ Rd.

(ii) The integral ∫
Rd
f(x) dx ̸= 0.

Then Σ∞(Xk
p (Ω), ϱ,L) is dense in Xk

p (Ω) for every admissible domain Ω ⊆ Rd and
every k ∈ N.

79

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Proof
By defining

V := NNϱ, d, 1
∞, L, ∞ ∩X1

p (Rd)

Lemma II.15 gives that V is a vector space. As a preliminary consider A ∈ GL(Rd), and
b ∈ Rd. Then Lemma II.17(i), with P = A · + b, and Q = I gives that if h ∈ V , then
h(A ·+ b) ∈ V . Taking the closure in X1

p (Rd), the same properties holds for V .
To prove the desired first V is proven to be dense in X1

p (Rd), where the setup is divided
into three cases: (i): p ∈ [1,∞), (ii): p ∈ (0, 1), and (iii): p =∞.

(i) Let g̃ be any radially decreasing L1-majorant for 0, see Definition C.20. Then by
assumption (i) it follows that g + g̃ is a radially decreasing L1-majorant for h. By
defining a periodization P of |f |, see Definition C.19, Lemma C.22 shows that

P |f | ∈ L∞(Rd,R) ⊆ Lp
loc(Rd,R),

where the inclusion holds per construction of the spaces. Now since f ∈ Lp(Rd,R) per
assumption, ∫

Rd
f(x) dx ̸= 0,

per (ii), and P |f | ∈ Lp
loc(Rd,R), Corollary C.23 gives that the space

V0 :=
{
fn,m

∣∣∣ dn > 0, m ∈ Zd
}

is dense in Lp(Rd,R), where fn,m(x) := 2nd/pf(2nx −m). Since f ∈ V, it holds that
V0 ⊆ V , according to the preliminary part of the proof. Hence V ⊆ Lp(Rd,R) = X1

p (Rd)
is dense, which completes this part of the proof.

(ii) For p ∈ (0, 1), it holds that f ∈ L1(Rd,R) ∩ Lp(Rd,R), and∫
Rd
f(x) dx ̸= 0.

Therefore Proposition C.24 gives that there exists a λ ∈ R such that

∥λPf(B•)− 1∥Lp(Ω,R) < 1,

where P is a periodization of f with translation matrix B, and Ω = [0, 1)d. By defining
V0 and fn,m the same as in (i) Theorem C.25 shows that V0 is dense in Lp(Rd,R) since

Sc :=
∑
n∈N

∑
m∈Zd

cn,mfn,m, ∀c ∈ ℓp(N× Zd)

is subjective. By following the same step as in (i), it holds that V is dense in Lp(Rd,R).

(iii) For p = ∞, it should be noted that X1
∞(Rd) = C0(Rd,R). Assume for contradiction

that V is not dense in C0(Rd,R). Then there exists a function w ∈ C0(Rd,R) \ V such
that w ̸= 0. It is now desired to use a standard trick for Hahn-Banach Theorem, see
Theorem C.26. To do so consider

inf
v∈V
∥w + v∥∞ > 0

80

J. Lund & M. Kjær Chapter VI. Approximation Spaces

since V is closed. By defining a bigger subspace

Ṽ :=
{
V + cw | c ∈ R

}
every element h := u+ cw ∈ Ṽ has a unique representation, where u ∈ V . Now define

ψ(h) := c inf
v∈V
∥w + v∥∞,

which is a linear function, and is not zero for h, where c ̸= 0. However for h, where
c = 0, h ∈ V , and ψ(h) = 0. Moreover, let P be the operator given by P (h) := ∥h∥∞.
Then

ψ(h) = c inf
v∈V
∥w + v∥∞ < |c|

∥∥∥∥1
c
u+ w

∥∥∥∥
∞

= ∥u+ cw∥∞ = ∥h∥∞.

Now Hahn-Banach Theorem with X = C0(Rd,R), V = Ṽ, and ψ, P given as above
implies that there exists a bounded linear function φ ∈ (C0(Rd,R))∗ such that φ↾Ṽ = ψ.
Moreover φ ̸≡ 0 and φ ≡ 0 on V. To get a contradiction it is desired to prove that
φ ≡ 0.

Now Riesz Representation Theorem, see Theorem C.27, gives that there exists a
finite real-valued signed Borel-measure µ on Rd such that

φ(h) =
∫
Rd
h(x) dµ(x) ∀h ∈ C0(Rd,R).

Note the assumption holds since Rd is a locally compact Haussdorf space. Moreover,
since µ is signed, Jordan Decomposition, see Theorem C.28, gives that there exist finite
positive Borel measures µ+ and µ− such that

µ = µ+ − µ−.

Now let h ∈ C0(Rd,R) be arbitrary, and define fc : Rd → R, for c > 0 given by

x 7→ cdf(cx).

Let Tx be the translation operator given by Txf()̇ := f(· − x). Then it holds that
Txfc(y) = fc(y − x). Thus Txfc ∈ V, for all x ∈ Rd, per the preliminary part of the
proof. Therefore φ(Txfc) = 0 for all x ∈ Rd. It is desired to use Fubini’s theorem on
an integral ∫

Rd
(h ∗ fc)(x) dµ(x).

To do so, it is applied on each of the integrals∫
Rd

(h ∗ fc)(x) dµ±(x).

This is justified, since∫
Rd

∫
Rd
|h(z)fc(x− z)| dz dµ±(x) ≤ µ±(Rd)∥h∥L∞(Rd,R)∥Tzfc∥L1(Rd,R)

= µ±(Rd)∥h∥L∞(Rd,R)∥fc∥L1(Rd,R)

<∞.

81

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Therefore Fubini’s theorem and a change of variables with y = −z gives that∫
Rd

(h ∗ fc)(x) dµ(x) =
∫
Rd

∫
Rd
h(z)fc(x− z) dz dµ(x)

=
∫
Rd
h(−y)

∫
Rd
fc(y + x) dµ(x) dy

=
∫
Rd
h(−y)φ(T−yfc) dy

= 0

for all c > 0.
Per assumption (i) there exists a C <∞ such that∫

Rd
f(x) dx = C.

Since h ∈ C0(Rd,R) is bounded and uniformly continuous, Theorem C.29 gives that
h ∗ fc → Ch as c→∞. Since µ is a finite measure it holds that

φ(h) =
∫
Rd
h(x) dµ(x)

= lim
c→∞

1
C

∫
Rd

(h ∗ fc)(x) dµ(x)

= 0.

Therefore φ ≡ 0 on C0(Rd,R), which is a contradiction.

Now let h ∈ Xk
p (Rd), and define each component function of h by hn for n ∈ {1, . . . , k}, such

that h = (h1, . . . , hk). Then for each hn Lemma C.17 gives that there exists a h̃n such that

hn = h̃n↾Ω .

Let ε > 0 be arbitrary and define p0 := min{1, p}. Since V is dense in X1
p (Rd), there exist

functions f̃n for each n ∈ {1, . . . , k} such that
∥∥∥h̃n − f̃n

∥∥∥p0

X1
p(Ω)
≤ εp0

k
.

By defining

f̃ :=
(
f̃1↾Ω, . . . , f̃k↾Ω

)
it holds that

f̃ ∈ NNϱ, d, k
∞, L, ∞(Ω) ∩Xk

p (Rd) = Σ∞
(
Xk

p (Ω), ϱ,L
)

according to Lemma II.16, where

∥∥∥h− f̃∥∥∥p0

Xk
p (Ω)

=
k∑

n=1

∥∥∥h̃n − f̃n

∥∥∥p0

X1
p(Ω)
≤ εp0 .

Hence
∥∥∥h− f̃∥∥∥

Xk
p (Ω)
≤ ε. Therefore Σ∞

(
Xk

p (Ω), ϱ,L
)

is dense in Xk
p (Ω), since ε > 0 and

h ∈ Xk
p (Rd) was arbitrary. ■

82

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Note the integral in (ii) in Theorem VI.25 is well-defined, since∫
Rd
|f(x)| dx ≤

∫
Rd
g(∥x∥Rd) dx <∞.

With (P1)-(P5) satisfied, Proposition VI.7 is now used to prove that the approximation
classes associated with the neural networks are actual approximation spaces:

Theorem VI.26: Approximation Spaces of Generalized Neural Networks
Let d ∈ N, p ∈ (0,∞] and let Ω ⊆ Rd be an admissible domain. Assume that at least
one of the following properties holds:

(i) The activation function is continuous and not a polynomial, L ≥ 2, and Ω is
bounded.

(ii) The space

NNϱ, d, 1
∞, L, ∞(Ω) ∩X1

p (Ω)

contains some compactly supported, bounded, and positive f .

Then, for every k ∈ N, α > 0, q ∈ (0,∞], and with X := Xk
p (Ω) it hold that properties

(P1)-(P5) are satisfied for

Σn := Wn(X , ϱ,L) ∧ Σn := Nn(X , ϱ,L),

and the classes (
Wα

q (X , ϱ,L), ∥ · ∥W α
q (X , ϱ, L)

)
,(

Nα
q (X , ϱ,L), ∥ · ∥Nα

q (X , ϱ, L)
)

are quasi-Banach spaces.

Proof
No matter which of the assumptions there is made between (i) and (ii) Lemma VI.21 gives
that (P1)-(P4) is satisfied. The setup is divided into two cases: When (i) is assumed and when
(ii) is assumed. For (i) Corollary VI.24 gives that (P5) is satisfied. For (ii) Lemma C.30 gives
that there exists a µ such that the assumptions in Theorem VI.25 are satisfied. Therefore
(P5) is satisfied. Since (P1)-(P5) are satisfied, Proposition VI.7 gives that the spaces are
quasi-Banach spaces. ■

The theorem gives that for X = Xk
p (Ω) and for an appropriately defined family Σ prop-

erties (P1)-(P5) holds, and the constructed approximation classes for neural networks are
approximation spaces.

83

J. Lund & M. Kjær Chapter VI. Approximation Spaces

VI.5 Approximation Spaces of ReLU-networks
The approximation spaces presented in the previous section are now considered in the setup
with specific activation functions, namely ReLU and its powers. Similar to the previous
section it should be verified that the approximation spaces constructed using ReLU and
its powers are well-defined. The approximation classes, for both generalized and strict
ReLU-networks are explored in the following:

Theorem VI.27: Approximation Spaces of Generalized & Strict ϱr-networks
Let d, k ∈ N, p ∈ (0,∞], let Ω ⊆ Rd be an admissible domain, and let X := Xk

p (Ω).
Then the following holds:

(i) For all α > 0, q ∈ (0,∞], and r ∈ N, it holds that

Wα
q (X , ϱr,L) = SWα

q (X , ϱr,L),
Nα

q (X , ϱr,L) = SNα
q (X , ϱr,L),

and there exist CW , CN <∞ such that

∥ · ∥W α
q (X , ϱr, L) ≤ ∥ · ∥SW α

q (X ,ϱr,L) ≤ CW∥ · ∥W α
q (X , ϱr, L),

∥ · ∥Nα
q (X , ϱr, L) ≤ ∥ · ∥SNα

q (X ,ϱr,L) ≤ CN∥ · ∥Nα
q (X , ϱr, L).

(ii) If L satisfies that

L ≥


2 if Ω is bounded,
2 if d = 1,
3 otherwise,

then for all α > 0, q ∈ (0,∞], and r ∈ N, it holds that properties (P1)-(P5) are
satisfied for

Σn := Wn(X , ϱr,L) ∧ Σn := Nn(X , ϱr,L),

and the classes (
Wα

q (X , ϱr,L), ∥ · ∥W α
q (X , ϱr, L)

)
,(

Nα
q (X , ϱr,L), ∥ · ∥Nα

q (X , ϱr, L)
)

are quasi-Banach spaces.

Proof
(i) Firstly note that ϱr can represent the identity using 2r + 2 terms, according to

Lemma III.7. Thus assumption (i) is satisfied in Theorem VI.15, which implies the
claim.

(ii) Assume Ω is bounded. Per the assumption in (ii) it holds that L ≥ 2. Thus assumption
Theorem VI.26(i) is satisfied, which implies that the desired holds.

84

J. Lund & M. Kjær Chapter VI. Approximation Spaces

Now, assume d = 1. Since ϱr is continuous and not a polynomial, Proposition C.18
gives that ϱr is non-degenerated. Then Lemma IV.9 and Lemma IV.8 imply that there
exists a compactly supported, continuous, non-negative function g ̸= 0 such that

g ∈ NNϱr, d, 1
∞, 2, ∞ ∩X1

p (Rd).

Next, assume Ω is unbounded and d > 1. In this case the existence of a

g ∈ NNϱr, d, 1
∞, 3, ∞ ∩X1

p (Rd),

with the same properties follows from analog results. In both cases using Theorem VI.26
gives the desired result. ■

The result states that strict and generalized ReLU-networks yield identical approximation
classes for any admissible domain Ω ⊆ Rd. This holds even for unbounded domains. Moreover,
the theorem gives that the approximation classes of ReLU-networks are well-defined quasi-
Banach spaces, as soon as L satisfies the assumption in (ii).

85

VII | Additional Discussion Points

The main focus of this report is to give an introduction to a general framework for studying
approximation properties of deep neural networks from an approximation space viewpoint.
This framework enables the possibility of transferring various results from approximation
theory to deep neural networks. Since this approach is still a rather new field of research,
there are a lot of unexplored ideas. This both concerns theoretical areas that have not yet
been covered and the expected impact on other areas. This chapter provides insight into
some of these points, as well as already covered problems related to the main focus.

VII.1 ReLU Activation Function
The choice of activation function influences the approximation properties of a neural network,
and therefore the approximation spaces. However, as described in [12, p. 292 around
Theorem 4.1] the activation function can be too powerful. This is highlighted by considering
an activation function where the corresponding approximation space collapses to the whole
space, generating an uninteresting problem from a mathematical perspective. Moreover, from
an applied point of view, the described activation function renders it hopeless to compute
a near-best approximation. Such an activation function is too complex to implement in
practice, which again would constitute an approximation problem. Thus, the activation
function should be chosen carefully. One approach is to choose an activation function that is
commonly used in applications, such as ReLU and its power.

As proven in Theorem VI.27, the approximation classes for ReLU-networks are well-
defined, but compared to the example above it is important that the approximation space
does not collapse to the whole space. Fortunately, the space fulfills this, since [12, Theorem
4.16, p. 299] proves that the space is non-trivial.

The expressivity of neural networks with more general activation functions can be related
to the approximation space constructed for ReLU activation functions. Different examples of
activation functions were introduced earlier, but multiple other examples exist. Activation
function similar to ReLU is illustrated in Figure VII.1.

Leaky ReLU: Parametric ReLU:

Absolute Value: Soft-thresholding:

Figure VII.1: Illustration of different activation functions.

86

J. Lund & M. Kjær Chapter VII. Additional Discussion Points

These examples in Figure VII.1 all have in common that the approximation space with
the specific activation function is identical to the space associated with ReLU activation
functions, [12, Theorem 4.7, p. 295]. Furthermore, this result proves that if ϱ is continuous
and piecewise polynomial of degree at most r, then its approximation spaces are contained in
the approximation spaces associated with ϱr. Similar by comparing different ReLU activation
functions, [12, Corollary 4.14, p.298] yields the connection illustrated in Figure VII.2, for
r ≥ 2.

Wα
q (X , ϱ1,L) ⊆ Wα

q (X , ϱ2,L) = Wα
q (X , ϱr,L)

⊆ ⊆

Nα
q (X , ϱ1,L) ⊆ Nα

q (X , ϱ2,L) = Wα
q (X , ϱr,L)

Figure VII.2: Illustration of the relations between the approximation classes, with r ≥ 2.

Most of the results considered are for ReLU or activation functions related to ReLU. However,
approximation spaces using other activation functions could also be interesting to study.

VII.2 Embeddings with Besov Spaces
To give some insight into the impact of depth on the expressivity of neural networks, [12]
connects the approximation spaces associated with ReLU to classical function spaces, called
Besov spaces. Besov spaces are denoted by Bs

p,q(Ω) := Bs
q(Lp(Ω,R)), where s ∈ (0,∞),

p, q ∈ (0,∞], and where Ω ⊆ Rd is a so-called Lipschitz domain. Functions in these spaces
are said to have smoothness of order s in Lp(Ω,R) with q indicating a finer gradation of
this smoothness, [8, p. 371]. General Besov spaces intersect with C3

c (Ω,R) non-trivially for
open admissible domains Ω ⊆ Rd, [12]. Thus it is interesting to consider the intersection of
C3

c (Ω,R) and the approximation spaces associated with ReLU. With this focus [12, Theorem
4.17, p. 299] shows that

Nα
q (X , ϱ1,L) ∩ C3

c (Ω,R) = {0}

if α > 2(L− 1), and

Wα
q (X , ϱ1,L) ∩ C3

c (Ω,R) = {0}

if α > 2⌊L/2⌋. To have any hope that the intersection is non-trivial, it is therefore crucial
to assume that α ≤ 2(L− 1), α ≤ 2⌊L/2⌋ for Nα

q (X , ϱ1,L) and Wα
q (X , ϱ1,L) respectively.

These requirements give some insight into the impact of the depth on the expressivity of the
neural network.

Focusing on the relation to Besov spaces, [12] consider embeddings from Besov spaces
into the approximation spaces associated with ReLU. Likewise, they consider embeddings
from the approximation spaces into Besov spaces. The established embeddings imply that
functions with very low Besov smoothness and specific properties can be well approximated
by neural networks, given the neural networks are sufficiently deep. In particular, given
specific assumptions on the domain Ω ⊆ Rd, the values r ≥ 2, and L ≥ 2 + 2⌈log2(d)⌉, [12,
Theorem 5.5, p. 305-306] gives that

Bdα
p, q(Ω) ↪→ Wα

q (Xp(Ω), ϱr,L)

87

J. Lund & M. Kjær Chapter VII. Additional Discussion Points

for all p, q ∈ (0,∞] and α such that

0 < α <
r + min{1, p−1}

d
.

Considering these restrictions it holds that for large input dimension d, the condition for L
is only satisfied for quite deep neural networks. Moreover, the Besov smoothness α becomes
quite small as d increases.

[12, Theorem 5.7, p. 306] contains limits on the embeddings from the approximation
space into Besov space as follows: If α < (L− 1) min{s, 2}, then

Nα
q (X , ϱ1,L) ̸↪→ Bs

σ,τ (Ω).

Similar if α < 2⌊L/2⌋min{s, 2}, then

Wα
q (X , ϱ1,L) ̸↪→ Bs

σ,τ (Ω).

A consequence of this result is that for unbounded depth, none of the spaces Nα
q (X , ϱ1,L),

Wα
q (X , ϱ1,L) can be embedded into any Besov spaces of strictly positive smoothness s > 0,

[12, p. 306].
With a focus on input dimension 1 and X = Lp((0, 1),R), an embedding from the

approximation space into a Besov space is obtained in [12, Theorem 5.13, p. 308].

VII.3 B-spline Approximation
As proven in Chapter IV ReLU-networks can approximate B-splines arbitrarily well under
specific assumptions. Therefore it is convenient to further look at functions built on B-splines.
By dilating and translating multivariate B-splines one can consider

βn
j, k, d := 2jd/2β

(n)
d (2jx− k),

for j ∈ Z, k ∈ Zd which together define well-studied wavelet-type system. Per Lemma II.15
and Lemma III.9, the constructed families for the realization of neural networks are closed
under affine linear maps and multiplication, when n ≥ 2. Thus these types of functions can
be realized from a neural network as well. This result with all its conditions can be found in
[12, Lemma 5.3, p. 304]. Using the approximation spaces constructed in Section VI.1 for
these wavelet-types systems and comparing them with the approximation spaces associated
with ReLU constructed in Section VI.2, embeddings are constructed between them, in [12,
Corollary 5.4, p. 305]. These embeddings bridge the gap to the Besov spaces mentioned in
the previous section.

Even though the traditional focus in approximation theory is the approximation of target
functions, this thesis considers the approximation of approximants, such as B-splines. This
approach allows for the use of knowledge regarding the approximation space of B-splines in
connection with neural networks. The result is a theoretical bridge that ensures the inclusion
of the approximation space of B-splines in the approximation space of neural networks. Thus
the neural networks can theoretically approximate just as well or better than B-splines.
Notice, however, that this neither proves nor disproves that neural networks can do better
than B-splines. Getting this clarification will be of significant interest. The goal is to prove
that the approximation space of neural networks covers much more than other approximation
spaces of other classical approximants, such as B-splines, and that the approximation is more
efficient.

88

J. Lund & M. Kjær Chapter VII. Additional Discussion Points

VII.4 Novel Approximation Classes
Focusing on the spaces Nα

q (X , ϱn,L), and Wα
q (X , ϱn,L) they are constructed in a way

that makes them easy to adapt to another setup. This gives some flexibility when working
with them. If the focus is on convolutional neural networks, the weights can be restricted
to convolutional weights. However, a full understanding of the classes is not yet reached,
[8, p. 389]. A finer characterization of the classes is still of significant interest, such as
Nα

q (X , ϱn,L), and Wα
q (X , ϱn,L), where n ∈ {1, 2} and with some assumption on L .

Another point of interest could be to construct more precise upper bounds for the parameters
and possibly optimal upper bounds. Similarly, the results are derived with no constraint on
the neural network parameters. A study of neural networks with restrictions and, or relations
applied to the weights using the approximation space framework could be of interest. This
could for instance be the above example with convolutional weights. Another example is the
so-called ResNet architecture, which has done remarkable work and has empirically shown
that it is easier to train deep neural networks when using the ResNet structure.

Overall, it makes sense to get a better understanding of the corresponding approximation
class. Even though, the understanding of these classes is far from complete, the result in this
report provides some useful insight on the structure. Additionally, understanding the role of
depth growth function, in general, is still an open question. In this report, the primary result
considers the depth L in terms of the associated approximation spaces for ReLU-networks,
for both finite and infinite L.

Generally, methods of approximation are divided into linear and nonlinear approximation.
They are defined in the same way as for neural networks, by constructing sets Σ = {Σn}.
They are called linear if the sets Σn is a linear space of dimension n, and nonlinear otherwise.
Examples of classical linear approximation are polynomials, splines, and wavelets, and
examples of nonlinear approximation are piecewise polynomials, n-term approximation, and
neural network approximation, [8, p. 375-376]. Compared to the constructed family Σ in
this report, this also makes sense, due to (P4), which shows that they are not linear spaces.

Approximation classes for many approximation methods in general, both linear and
nonlinear, are characterized. For instance, the approximation spaces for all classical linear
methods of approximation are characterized for all α ∈ (0,∞), when X = Lp([0, 1],R)
with p ∈ [0,∞) or when X = C([0, 1],R), [10]. A general observation is that the nonlinear
approximation spaces tend to be significantly larger compared to those in the linear case.
However, a precise characterization of these approximation classes is beyond the current
understanding of approximation using neural networks. As noted, the current results,
including the ones presented in this report, only capture some structural elements of these
classes.

VII.5 Model Classes
The approach of this report considers how well the neural network can approximate a target
function. Another important approach is to consider how well the target functions can
be approximated by neural networks. This is in focus in [8] by considering model classes
instead of approximation classes. Similar to the argumentation in this report [8] restricts the
focus on ReLU-1-networks. They show that by increasing the depth the class of realization
increases. Moreover, they compare the approximation efficiency of neural networks to other
classical methods in approximation theory. From an applied point of view, this is of interest,

89

J. Lund & M. Kjær Chapter VII. Additional Discussion Points

as in Chapter V. They introduce tools to evaluate a method of approximation, making it
easier to compare. This includes among other things approximation rates on model classes
and metric entropy. Additionally, they comment that approximation classes are another tool
to compare with, as done in this report, [8, p. 389]. Similarly, [6] takes the same approach by
comparing approximation using ReLU to other classical approximation methods but using
the same approach as in this report namely approximation classes. Similarly to [8], [6] also
focuses on the impact of the depth. For instance, they present the advantages of the deep
neural network versus more shallow neural networks.

The model classes denoted by K contain information about the desired functions f . When
focusing on numerical solutions to partial differential equations K is typically provided by a
regularity theorem. Similarly, if the focus is signal processing, K consists of the information
about the underlying signal, such as band limits or sparsity, [8, p. 377]. In contrast to the
error of best approximation, [8] use the class error given by

E (K,Σ)X := sup
f∈K

E (f,Σ)X ,

which is the worst-case error on K. One could also define the error by averaging. This is
useful when considering stochastic processes with some underlying probability measure. How
good the approximation methods are, dependent on how fast the error E (K,Σ)X tends to
zero. This concept is also used to compare two approximation methods. Note that the error
of best approximation gives the smallest error one can achieve using Σn. However, it does
not address the question of how to find such a best approximation.

VII.6 Approximation using Data
As noted in Chapter I there is typically only training data available when approximating
a target function in applications. A classical example of this is within supervised learning.
From this, the theoretical point of view does not match the task in application. Such training
data alone do not allow any information about how well the target function can be recovered
or how well an approximant can approximate the target function. What is needed for the
latter is additional information about the target function. This information is denoted
model class information and is an assumption typically based on the research field, [8, p.
426]. Moreover, the performance guarantees are necessarily worse than for approximation
where there is full access to the target function. Overall, the application of approximation
using data is a vast area, and examples of these are within image processing, statistical
estimation, regularity for PDEs, and adaptive algorithms, [9, p. 51]. With the focus on
the connection between the theoretical and application point of view, [8] highlights open
issues. For instance, how to numerically impose stability in parameter selection, and how
the imposition of stability limits the performance of the neural network.

90

Conclusion

As shown in this thesis the expressivity and the structure of deep neural networks can be
explored under the mathematical framework of approximation theory. Sets of realizations of
neural networks were presented as a tool to construct the associated approximation spaces.
With this goal, several results describing neural networks and the sets of realizations were
established. This included the complexity of neural networks and elementary properties,
such as linear combination and composition, of the sets of realizations. Additionally, the
activation function ReLU and its power were presented, along with some of their properties.

Through decompositions using ReLU activation functions, it was shown that ReLU-
networks can realize B-splines. This allowed for the construction of an experiment meant
to demonstrate these results in practice. The idea was to create an approximation method
using neural networks which were equivalent to approximation methods using B-splines.
Both methods were then compared on generated target functions using different parameters
in the methods.

The result showed similar performance between the approximation methods using the
constructed neural network and the fully connected neural network, but B-spline approxi-
mation outperformed both of them. The experiment discussion does, however, mention a
few ways to improve the neural network approach, which might make the neural network
approach viable as an alternative to the traditional B-spline approximation. Overall, it is
not evident that the constructed approximation method using neural networks, at this point
in time, is a better fit than the commonly used B-spline approximation. The experiment
served as an indication that the introduced methods could be applicable as an approximation
method, based on the result that neural networks can realize B-splines.

The introduced tools, such as the elementary properties of the sets of realization were
used in conjunction with approximation theory seeking to characterize approximation spaces
of deep neural networks. At first, the spaces were proven to be well-defined. With a focus
on ReLU and its power, some characterization of these spaces was explored. Overall, the
results reveal how certain choices such as a specific type of activation function or skipping
connections, can influence the expressive power of a neural network. Hence, the results provide
insight into the potential adaption of neural network complexity without compromising its
expressivity, which gives a degree of freedom.

Motivated by the focus area, an introduction to further work was discussed using related
articles and open problems. This includes the need for a finer characterization of the
approximation spaces than the one presented in the report.

91

Appendix

92

A | Remarks & Notations

Remark A.1:
Note that the definition of the neural network commonly used in applications differs
from the one presented in this report. Typically the neural network is defined as the
realization. However, given a function f , there is no guarantee that a neural network
Φ with R(Φ) = f is unique. This is the reason for separating the network from the
function, as the number of layers, neurons, or weights of the function f is not well-defined.
Defining

L(f) := min{L(Φ) | Φ neural network with R(Φ) = f}

and similarly for N(f) and W (f) could be an attempt to rectify this problem. However,
this makes the setup less transparent and conceals whether the three values originate
from the same neural network.

Additionally, the definition used in most applications assumes the same activation
function for all neurons in a common layer. By further assuming the activation function
is the same across all layers, except for the last one, this corresponds to the strict neural
networks. Therefore, as the name indicates, the generalized neural network is a more
generalized definition than the one normally used.

The reason for generalizing the definition compared to most applications is founded
on essential properties. In Section II.2, it is proven that classes constructed from neural
networks admit appealing closure properties under linear combinations and compositions
of functions, resulting in a convenient calculus of neural networks. By using the definition
used in most applications or the definition for strict neural networks, these do not hold.

Instead of using the identity in the last entry in the tuple, one could define a αℓ for
ℓ = L by the identity, as in [12]. Nevertheless, for the sake of a clearer distinction from
the other instances of αℓ, this particular choice is not adopted in this report. Moreover,
the definition of the neural network mostly used in applications ends with an affine-linear
map. Preserving this feature, could either be achieved by letting the last layer differ
from the rest by only consisting of the affine linear map or by defining αL = idRNL .
The last option is chosen since it ensures that all layers have the same structure, which
contributes to the closure properties for the classes constructed from neural networks.

The definition of the realization of a neural network again argues for the choices made
regarding the definition of neural networks, as it contributes to the closure properties
for the classes constructed in Definition II.8.

Remark A.2:
The properties (P1)-(P5) plus an additional (P6) property are used in general theory
regarding the approximation classes of the type presented in Lemma VI.5. However,
(P1)-(P5) is enough in this report, so (P6) is left out. The properties as well as some
argumentation for the properties can be found in [12, p. 278] and [10, p. 216].

93

J. Lund & M. Kjær Appendix A. Remarks & Notations

Remark A.3:
Note that ∥ · ∥Aα

q (X , Σ) is not a proper norm. Even if X is a Banach space and q ∈ [1,∞]
it is still only a quasi-norm. Only if additionally all the sets Σn are vector spaces,
∥ · ∥Aα

q (X , Σ) is a norm, see [12, p. 279]. This is the case if c = 1 in (P4).

Definition A.4:
Let d, k ∈ N. Let A ∈ Rd×k, n ∈ {1, . . . , d} and m ∈ {1, . . . , k}. Then

(i) AT ∈ Rk×d is the transpose of A.

(ii) An,− ∈ R1×k, is the n-th row of A.

(iii) A−,m ∈ Rd×1, is the m-th column of A.

(iv) A(n) ∈ R(d−1)×k is A with the n-th row deleted.

(v) A[m] ∈ Rd×(k−1) is A with the m-th column deleted.

Example A.5:
Assume ϱ is a polynomial and let L be bounded. Consider the setup for X := Xk

p (Ω) with
p ∈ (0,∞]. Per construction of the approximation classes Wn(X , ϱ,L) and Nn(X , ϱ,L),
it holds that element in the classes is a realization of a ϱ-networks. Since the composition
of a polynomial with an affine linear map still is a polynomial with a similarly bounded
degree, the realizations can be considered as a composition only of polynomials. When
taking the composition of two polynomials with degree m the result is a polynomial
where the degree m2. Since L is bounded the realizations are the composition of
finitely many polynomials of bounded degree, which is a polynomial of bounded degree.
Therefore Σ∞(X , ϱ,L) only contains polynomials of bounded degree, and the space is
finite-dimensional. However, the space X is infinite-dimensional, so Σ∞(X , ϱ,L) is not
dense in X for non-trivial Ω.

94

B | Additional Proofs

This appendix is a supplement with the proofs omitted in the report.

Proposition II.9
Let Φ be a neural network. Then

L(Φ) ≤ 1 +N(Φ), (II.1)
W (Φ) ≤

(
N(Φ) + din(Φ)

)(
N(Φ) + dout(Φ)

)
. (II.2)

If L(Φ) = 2, then W (Φ) ≤ (din(Φ) + dout(Φ))N(Φ).

Proof
By definition Nℓ ≥ 1 for all 1 ≤ ℓ ≤ L− 1, which implies

L(Φ) = 1 +
L−1∑
ℓ=1

1 ≤ 1 +
L−1∑
ℓ=1

Nℓ = 1 +N(Φ),

proving (II.1). Since A(ℓ) ∈ RNℓ−1×Nℓ , it holds that ∥A(ℓ)∥ℓ0 ≤ Nℓ−1Nℓ for all 1 ≤ ℓ < L.
Therefore

W (Φ) =
L∑

ℓ=1

∥∥∥A(ℓ)
∥∥∥

ℓ0

≤
L∑

ℓ=1
Nℓ−1Nℓ

≤
L−1∑
ℓ1=0

L∑
ℓ2=1

Nℓ1Nℓ2

=
L−1∑

ℓ1=0
Nℓ1

 L∑
ℓ2=1

Nℓ2


=
N0 +

L−1∑
ℓ1=1

Nℓ1

NL +
L−1∑
ℓ2=1

Nℓ2


=
(
N(Φ) + din(Φ)

)(
N(Φ) + dout(Φ)

)
,

which proves (II.2). Now assume L = 2. Then it holds that

W (Φ) = ∥T1∥ℓ0 + ∥T2∥ℓ0

≤ N0N1 +N1N2

= (N0 +N2)N1

= (din(Φ) + dout(Φ))N(Φ),

which completes the proof. ■

95

J. Lund & M. Kjær Appendix B. Additional Proofs

Proposition II.10
Let Φ be a neural network with dout(Φ) = k. If W (Φ) < L(Φ), then R(Φ) = c ∈ Rk.

Proof
First notice that

L∑
ℓ=1
∥Tℓ∥ℓ0 = W (Φ) < L(Φ) = L.

Since ∥Tℓ∥ℓ0 ≥ 0 and the sum has L terms there exists some 1 ≤ ℓ ≤ L such that ∥Tℓ∥ℓ0 = 0,
which implies that Tℓ is a constant map. Therefore R(Φ) is constant as well, since

R(Φ) = TL ◦ αL−1 ◦ TL−1 ◦ · · · ◦ αℓ ◦ Tℓ ◦ · · · ◦ α1 ◦ T1.

■

Proposition II.11
Let ϱ : R → R be an activation function, let d, k ∈ N, W,N ∈ N0 ∪ {∞}, and let
L ∈ N ∪ {∞}. Then{

f : Rd → Rk
∣∣∣ ∃ c ∈ Rk : f = c

}
⊆ SNNϱ, d, k

W, L, N ⊆ NNϱ, d, k
W, L, N .

Proof
Assume f = c ∈ Rk. Then any neural network Φ with TL = c satisfies R(Φ) = c = f . This is
the case both if Φ is strict or not. The inclusion SNNϱ, d, k

W, L, N ⊆ NNϱ, d, k
W, L, N follow directly from

the definition of the sets. ■

Lemma II.12
Let ϱ : R → R be an activation function, let d, k ∈ N, N ∈ N0 ∪ {∞}, and let
L ∈ N ∪ {∞}. Then

NNϱ, d, k
0, L, N = SNNϱ, d, k

0, L, N =
{
f : Rd → Rk

∣∣∣ ∃ c ∈ Rk : f = c
}
.

Proof
Because of Proposition II.11 with W = 0 it is enough to show that

NNϱ, d, k
0, L, N ⊆

{
f : Rd → Rk

∣∣∣ ∃ c ∈ Rk : f = c
}
.

Let f ∈ NNϱ, d, k
0, L, N . Then there exists a Φ ∈ NN ϱ, d, k

0, L, N such that R(Φ) = f . Therefore
W (Φ) = 0 < 1 ≤ L(Φ) implying that f = c according to Proposition II.10. ■

96

J. Lund & M. Kjær Appendix B. Additional Proofs

Lemma III.8
Assume that ϱ : R→ R can represent the identity with n terms, let d, k ∈ N, W,N ∈ N0
and let L ∈ N ∪ {∞} be arbitrary. Then

NNϱ, d, k
W, L, N ⊆ SNNϱ, d, k

n2W, L, nN .

Proof
As in Lemma III.5 it is desired to use Proposition C.6. For d, k ∈ N, define

Gd,k := {f : Rd → Rk},

and let Td,k be the discrete topology on Gd,k. Then (G, T), where G := {Gd,k}d,k∈N, and
T := {Td,k}d,k∈N is a network compatible topology family, see Definition C.5.

By assumption there exist ai, bi, ci ∈ R for i ∈ {i, . . . , n} and some c ∈ R such that

x = c+
n∑

i=1
aiϱ(bix+ ci), x ∈ R.

By defining

Em : R→ Rn, x 7→ (b1x+ c1, . . . , bnx+ cn),

Dm : Rn → R, x 7→ c+
n∑

i=1
aixi,

it follows by the assumption that

Dm ◦ (ϱ⊗ · · · ⊗ ϱ) ◦ Em = idR ∀m ∈ N.

Thus, all the assumptions of Proposition C.6 are satisfied, which gives for all d, k ∈ N,
W,N ∈ N0 ∪ {∞}, and L ∈ N ∪ {∞} it holds that

NNϱ, d, k
W, L, N ⊆ SNNϱ, d, k

n2W, L, nN = SNNϱ, d, k
n2W, L, nN ,

where the closure is taken with respect to the discrete topology. Note that the last equality
holds, since the closure with respect to the discrete topology does nothing, as all sets are
both open and closed in the discrete topology. ■

Proposition IV.2
Let n ∈ N0, and let β(n)

+ be a B-spline of degree n. Then β
(n)
+ is non-negative and

supp
(
β

(n)
+

)
⊆ [0, n+ 1].

Proof
Per definition β

(0)
+ is non-negative and convolutions of non-negative functions are still

non-negative.

97

J. Lund & M. Kjær Appendix B. Additional Proofs

Proving that supp
(
β

(n)
+

)
⊆ [0, n+ 1] is done by induction. It follows directly from the

definition of β(0)
+ that supp

(
β

(0)
+

)
⊆ [0, 1]. For the induction step assume that it holds for

n = k. Since β(k+1)
+ = β

(k)
+ ∗ β

(0)
+ , and

supp
(
β

(k)
+

)
⊆ [0, k + 1], supp

(
β

(0)
+

)
⊆ [0, 1]

it follows that

β
(k+1)
+ (x) =

∫
[0,k+1]∩(x−[0,1])

β
(k)
+ (y)β(0)

+ (y − x) dy.

Now consider any xk /∈ [0, k+ 2]. In this case it holds that [0, k+ 1]∩ (xk− [0, 1]) = ∅, which
imply that β(k+1)

+ (xk) = 0. This proves that supp(β(k+1)
+) ⊆ [0, k + 2]. ■

Proposition VI.14
Let α > 0 and q ∈ (0,∞]. Then it holds that

∥ · ∥W α
q (X , ϱ, L) ≤ ∥ · ∥SW α

q (X , ϱ, L),

∥ · ∥Nα
q (X , ϱ, L) ≤ ∥ · ∥SNα

q (X , ϱ, L).

Hence

SWα
q (X , ϱ,L) ↪→ Wα

q (X , ϱ,L),
SNα

q (X , ϱ,L) ↪→ Nα
q (X , ϱ,L).

Proof
The proof is stated for the approximation spaces associated with connection complexity since
the proof with neuron complexity is analogous. Per construction

SWn(X , ϱ,L) ⊆ Wn(X , ϱ,L), ∀n ∈ N0.

Hence the error of best approximation satisfies that

E (f, Wn(X , ϱ,L))X ≤ E (f, SWn(X , ϱ,L))X , ∀n ∈ N0.

This and per construction of the quasi-norm, it holds that

∥ · ∥W α
q (X , ϱ, L) ≤ ∥ · ∥SW α

q (X , ϱ, L).

Therefore

SWα
q (X , ϱ,L) ⊆ Wα

q (X , ϱ,L),

which shows that SWα
q (X , ϱ,L) ↪→ Wα

q (X , ϱ,L). ■

98

C | Lexicon

This appendix contains definitions and results that are referred to throughout this report.
These are stated without proof. The purpose of this is to let the reader view the referenced
theory without having to track down the source.

Proposition C.1: [12, p. 286]
Let L <∞, then L ∼ L.

Lemma C.2: [12, Lemma A.3(i), p. 320]
Let p, q, r ∈ N. Let T : Rp → Rq and S : Rq → Rr be linear maps. Then

∥ST∥ℓ0 ≤ ∥S∥ℓ0,∞∥T∥ℓ0 ,

∥ST∥ℓ0 ≤ ∥S∥ℓ0∥T∥ℓ0,∞
∗
.

Lemma C.3: [12, Lemma A.4, p. 321-322]
Let ϱ, σ : R→ R be activation functions where σ is non-constant. Assume that there
exists a Φσ ∈ NN ϱ, 1, 1

w, ℓ, n such that σ = R(Φσ) with L(Φσ) = ℓ ∈ N, w ∈ N0, and n ∈ N.
Then, for any d ∈ N and αi ∈ {σ, idR}, for 1 ≤ i ≤ d, there exists a ϱ-network

Φ :=
(
(T1, β1), . . . , (Tℓ−1, βℓ−1), (Tℓ, idRd)

)
∈ NN ϱ, d, d

dw, ℓ, dn,

for which it holds that R(Φ) = α1 ⊗ · · · ⊗ αd, and

∥T1∥ℓ0,∞ ≤ m, ∥T1∥ℓ0,∞
∗
≤ 1,

∥Tℓ∥ℓ0,∞ ≤ 1, ∥Tℓ∥ℓ0,∞
∗
≤ m.

Additionally, if Φσ is a strict neural network and, αi = σ for all i ∈ {1, . . . , d}, then Φ
can be chosen to be strict.

Lemma C.4: [12, Lemma A.7, p. 330]
Let {fn}∞

n=0 and {gn}∞
n=0 be sequences of functions fn : Rd → Rk, and gn : Rk → Rℓ.

Assume that f0, g0 are continuous and that

fn −−−→
n→∞

f0, gn −−−→
n→∞

g0

with locally uniform convergence. Then g0 ◦ f0 is continuous, and gn ◦ fn −−−→
n→∞

g0 ◦ f0

with locally uniform convergence.

99

J. Lund & M. Kjær Appendix C. Lexicon

Definition C.5: [12, Definition A.5, p. 326]
Let d, k ∈ N, and let X := {f : Rd → Rk}. Let Gd,k ⊆ X, and a topology Td,k on X be
fixed. Define G := {Gd,k}d,k∈N and T := {Td,k}d,k∈N. Then the tuple (G, T) is called a
network compatible topology family, if it satisfied the following conditions:

(i) {T : Rd → Rk | T affine-linear } ⊆ Gd,k ∀ d, k ∈ N.

(ii) Given a sequence {f (n)
m }n∈N0 of functions f (n)

m : R→ R for m ∈ {1, . . . , p}, where
p ∈ N, that satisfies f (0)

m ∈ G1,1 and

f (n)
m

T1,1−−−→
n→∞

f (0)
m ,

it holds that

f
(n)
1 ⊗ · · · ⊗ f (n)

p

T1,1−−−→
n→∞

f
(0)
1 ⊗ · · · ⊗ f (0)

p ,

and f
(0)
1 ⊗ · · · ⊗ f (0)

p ∈ Gp,p.

(iii) If fn : Rd → Rk and gn : Rk → Rℓ for all n ∈ N0, and if

f0 ∈ Gd,k, fn
Td,k−−−→

n→∞
f0,

g0 ∈ Gk,ℓ, gn
Tk,ℓ−−−→

n→∞
g0,

then g0 ◦ f0 ∈ Gd,ℓ and

gn ◦ fn
Td,ℓ−−−→

n→∞
g0 ◦ f0.

Proposition C.6: [12, Proposition A.6, p. 326]
Let ϱ : R→ R and let (G, T) be a network compatible topology family satisfying the
following:

(i) ϱ ∈ G1,1.

(ii) There exists a n ∈ N such that for all m ∈ N there exist affine linear maps
Fm : R→ R, Dm : Rn → R, and Em : R→ Rn such that

Fm := Dm ◦ (ϱ⊗ · · · ⊗ ϱ) ◦ Em

satisfy Fm
T1,1−−−→

m→∞
idR.

Then for all d, k ∈ N, W,N ∈ N0 ∪ {∞} and L ∈ N ∪ {∞} it holds that

NNϱ, d, k
W, L, W ⊆ SNNϱ, d, k

n2W, L, nN ,

where the closure is a sequential closure which is taken with respect to the topology Td,k.

100

J. Lund & M. Kjær Appendix C. Lexicon

Lemma C.7: [12, Lemma A.8, p. 331]
Define Tyf : R→ R given by x 7→ Tyf(x) = f(x− y) for f : R→ R and y ∈ R, and let
Xn : R→ R be given by x 7→ xn for n ∈ N0, with convention X0 ≡ 1. By defining

Vn :={TyX
n | y ∈ R}

it holds that Vn = Rdeg≤n[x], where Rdeg≤n[x] has dimension n+ 1.

Theorem C.8: [17, p. 64, Theorem 4.40]
The series

∞∑
n=1

1
np
,

where p ∈ R+ is convergent when p > 1, and divergent when p ≤ 1.

Definition C.9: Approximation Space [1, Definition 3.4, p. 9]
Let X be a quasi-normed space, let Σ := {Σn}∞

n=0, where Σn ⊆ X , such that (P1)-(P4)
are satisfied, and let S be an admissible sequence space. Then the space

A(X , S) := {f ∈ X | {E (f,Σn)}∞
n=0 ∈ S}

endowed with

∥f∥A(X , S) := ∥{E (f,Σn)}∞
n=0∥S ,

is called an approximation space or a generalized approximation space.

Remark C.10: [1, Remark 3.5, p. 9]
Let bn > 0 be fixed for n ∈ N0 and let p ∈ (0,∞]. If K(n) < K(n + 1) for all n ∈ N0
and S is defined by the quasi-norm

∥{an}∞
n=1∥S := ∥{bnan}∞

n=1∥ℓp(R), (C.1)

then S is admissible if there exists some constant C > 0 such that, for all n ∈ N0

max{bK(n), . . . , bK(n+1)−1} ≤ Cbn

(K(n)−K(n+ 1))1/q ≤ C.
(C.2)

Particularly, if K(n) = Kn with some K ∈ N and bn = (n+ 1)α−1/q with some α > 0,
then (C.2) is satisfied and (C.1) defines an admissible sequence space.

101

J. Lund & M. Kjær Appendix C. Lexicon

Proposition C.11: [1, Proposition 3.8, p. 9]
Let A(X ,Σ) be defined as in Definition VI.2. Then A(X ,Σ) is a quasi-normed space,
which is continuously embedded into X . If X and S are normed spaces and all Σn are
linear subspaces of X , then A(X ,Σ) is a normed space.

Theorem C.12: Completeness of Aα
q (X ,Σ) [1, Theorem 3.12(ii), p. 11]

Suppose that S has the property

∥{an}∞
n=0∥S ≤ C lim

k→∞
∥{an}k

n=0∥S ∀{an}∞
n=0 ∈ S, a0 ≥ a1 ≥ · · · ≥ 0,

where C > 0 is a constant depending only on S. Let X be complete, and assume that a
decreasing sequence {an}∞

n=0 ⊆ [0,∞) belongs to S if and only if

lim
k→∞
∥{an}k

n=0∥S = sup
k
∥{an}k

n=0∥S <∞.

Then A(X , S) is complete.

Proposition C.13: [12, p. 336]
Let ϱ be a continuous activation function. Then it is locally bounded and Borel
measurable.

Lemma C.14: [12, Lemma B.1, p. 335]
Let X be the one of the following classes of functions:

(i) Locally bounded functions.

(ii) Borel-measurable functions.

(iii) Continuous functions.

(iv) Lipschits continuous functions.

(v) Locally Lipschitz continuous functions.

Then if the activation function ϱ belongs to X , it holds that any f ∈ NNϱ, d, k
∞, ∞, ∞ also

belongs to X .

Theorem C.15: [2, Problem 1(b), p. 1]
The space C∞

c (Rd,R) is dense in Lp(Rd,R).

102

J. Lund & M. Kjær Appendix C. Lexicon

Theorem C.16: The Universal Approximation Theorem
[12, Theorem 3.22, p. 289]
Let ϱ : R→ R be a non-degenerated activation function, let K ⊆ Rd be compact, let
f : Rd → R be a continuous function, and assume ε > 0. Then, there exist a N ∈ N and
suitable bj, cj ∈ R, wj ∈ Rd, for 1 ≤ j ≤ N , such that the function g : Rd → R given by

x 7→
N∑

j=1
cjϱ (⟨wj, x⟩+ bj)

satisfies

∥f − g∥L∞(K) ≤ ε.

Lemma C.17: [12, Lemma 3.20, p. 289]
Let Ω ⊆ Rd be an admissible domain, let k ∈ N, and let 0 < p <∞. Then

Xk
p (Ω) =

{
f↾Ω

∣∣∣ f ∈ Xk
p (Rd)

}
,

Xk
∞(Ω) =

{
f↾Ω

∣∣∣ f ∈ C0(Rd,Rk)
}
.

Additionally, Xk
p (Ω) is a quasi-Banach space.

Proposition C.18: [12, p. 336]
If the activation function is continuous, it is non-degenerate if and only if it is not a
polynomial.

Definition C.19: Periodization [4, p. 553, 551]
Let f : Rd → [0,∞] be a function. Then the periodization of f , denoted by Pf , is
given by

Pf(x) := | det(B)|
∑

y∈Zd

f(x−By) x ∈ Rd,

where B ∈ Rd×d is a translation matrix, which is invertible.

103

J. Lund & M. Kjær Appendix C. Lexicon

Definition C.20: [4, p. 551]
Let f : Rd → [0,∞] be a function. Then f has a radially decreasing L1-majoriant if

|f | ≤ µ

almost everywhere for some radial function µ(∥x∥Rd) ∈ L1(Rd,R) such that µ(∥x∥Rd)
decreases as a function of ∥x∥Rd .

Definition C.21: Complex Radon Measure [11, p. 212, 222]
Let X be a locally compact Hausdorff space. A Radon measure is a Borel measure
that is finite on all compact sets, outer regular on all Borel sets, and inner regular on all
open sets. A Complex Radon measures is a Borel measure whose real and imaginary
parts are signed Borel measures.

Lemma C.22: [4, Lemma A.2, p. 551]
Let f ∈ L∞(Rd,R) have a radially decreasing L1-majorant, and assume P |f | is a
periodization of |f |. Then P |f | ∈ L∞(Rd,R)

Corollary C.23: [4, Corollary 1, p. 539]
Let g ∈ Lp(Rd,R), for 1 ≤ p < ∞, and let P |g| be a periodization of |g|, such that
P |g| ∈ Lp

loc(Rd,R) for 1 < p <∞. If∫
Rd
g(x) dx ̸= 0,

then the space

V+(g) := {gj,k | j > 0, k ∈ Zd}

spans Lp(Rd,R), where gj,k(x) := 2jd/pg(2jx− k).

Proposition C.24: Sufficient Conditions [13, Proposition 2(a), p. 241]
Let f ∈ Lp(Rd,R), for p ∈ (0, 1], and let Pf be a periodization of f with translation
matrix B, and assume Ω = [0, 1)d. Moreover, assume f ∈ L1(Rd,R) with∫

Rd
f(x) dx ̸= 0.

Then

∥λPf(B•)− 1∥Lp(Ω,R) < 1,

for some λ ∈ R.

104

J. Lund & M. Kjær Appendix C. Lexicon

Theorem C.25: Synthesis onto Lp [13, Theorem 3, p. 243]
Let f ∈ Lp(Rd,R), for p ∈ (0, 1], and assume that

Q := ∥λPf(B•)− 1∥Lp(Ω,R) < 1,

for some λ ∈ R, where Ω := [0, 1)d. Then S : ℓp(N× Zd)→ Lp(Rd,R) given by

Sc :=
∑
j∈N

∑
k∈Zd

cj,kfj,k,

is open, and subjective, where c := {cj,k}j∈N,k∈Zd and

fj,k := | det(aj)|
1
pf(ajx−Bk) x ∈ Rd.

Indeed, if f ∈ Lp(Rd,R) and Q̃ ∈ (Q, 1) then there exists a sequence c ∈ ℓp(N × Zd)
such that Sc = h and

∥c∥ℓp(N×Zd) ≤ (1− Q̃)− 1
p |λ|| det(B)|∥h∥Lp(Rd,R).

Theorem C.26: Hahn-Banach Theorem [11, Theorem 5.8, p. 158]
Let X be a real vector space, let P a sublinear functional on X , V ⊆ X a subspace, and
ψ a linear functional on V such that ψ(x) ≤ P (x) for all x ∈ V . Then there exists a
linear functional φ on X such that φ(x) ≤ P (x) for all x ∈ X and φ↾V = ψ.

Theorem C.27: Riesz Representation Theorem [11, p. 223, Theorem 7.17]
Let X be a locally compact Hausdorff space, and denote M(X) to be the space of
complex Radon measures on X , and define

Iµ(f) :=
∫

X
f(x) dµ(x),

for µ ∈M(X) and f ∈ Cc(X). Then the map µ 7→ Iµ is an isometric isomorphism from
M(X) to (Cc(X))∗.

Theorem C.28: Jordan Decomposition [11, p. 87, Theorem 3.4]
If µ is a signed measure, there exist unique positive measures µ+, and µ− such that
µ = µ+ − µ− and µ+ ⊥ µ−.

105

J. Lund & M. Kjær Appendix C. Lexicon

Theorem C.29: [11, p. 242-243, Theorem 8.14(b)]
Let f ∈ L1(Rd,R) and assume ∫

Rd
f(x) dx = C ∈ R.

Define fc(x) := c−df(c−1x). If h is bounded and uniformly continuous, then h∗fc → Cf
uniformly as c→ 0.

Lemma C.30: [12, Remark on p. 290]
Let g be bounded and with compact support. Then there exists a non-increasing function
µ : [0,∞)→ [0,∞) such that ∫

Rd
µ(∥x∥Rd) dx <∞

and

|g(x)| ≤ µ(∥x∥Rd) ∀x ∈ Rd.

106

D | Errata to [Gribonval et al., 2021]

Some errata to “Approximations Spaces of Deep Neural Networks”, [12].
• Page 286 line 31− 31: “≤”, should be “⪯”.

• Page 286 line 31: “b+”, should be “b”.

• Page 315 align 1: “ℓ0”, should be “ℓ0”.

• Page 318 align 14: “Rd”, should be “Rk”.

• Page 324 line 24: “α(1)
ℓ ⊗ . . .⊗ α

(Nℓ)
ℓ ”, should be “α(1)

ℓ ⊗ · · · ⊗ α
(Nℓ)
ℓ ”.

• Page 324 line 24: “L”, should be “K”.

• Page 324 line 24: “Kℓ”, should be “Nℓ”.

• Page 326 line 2: “NNϱ, d, k
W +Nw, 1+(L′−1)(ℓ+1), N(2+m)”, should be “NNϱ, d, k

mW +Nw, 1+(L′−1)ℓ, N(1+m)”.

• Page 326 line 2: “NNϱ, d, k
W +Nw, 1+(L−1)(ℓ+1), N(2+m)”, should be “NNϱ, d, k

mW +Nw, 1+(L−1)ℓ, N(1+m)”.

• Page 330 line 23: “f (n)
i → f

(0)
i ”, should be “f (n)

i −−−→
n→∞

f
(0)
i ”’.

• Page 333 line 10: “second part”, should be “first part”.

• Page 333 line 30: “≤ δm”, should be “≤ Cδm”.

• Page 336 line 17, 23: “ 1
(4R)d

”, should be “ 1
(2R)d

”.

• Page 336 line 18 − 19: “is (only) true since we are considering generalized neural
networks”, is misleading since it holds for strict as well.

• Page 337 line 15: “Lp”, should be “Xp(Ω)”.

• Page 337 line 16: Note that “g” defined on line 16 is not the same one given in Claim
(2) in Theorem 3.23 on page 290 line 6.

• Page 337 line 17: “∥Fi −Gi∥p0
Xk

p (Ω)”, should be “∥Fi −Gi∥p0
X1

p(Ω)”.

• Page 337 line 18: “g ∈”, should be “f ∈”.

• Page 337 line 30: There is an error between the reference and the numbers. If the
reference 39 is correct “Theorem 4 and Proposition 5(a)”, should be “Theorem 3 and
Proposition 2(a)”, and if the number is correct the reference 39 on page 365 line 54−55
“14(2), 235-266 (2008)”, should be “14, 1-29 (2007)”.

• Page 338 line 9: (B.1) also holds for 0 < a < 1, so “a ≥ 1” can be omitted.

• Page 346 line 13: “4n(2j − 1)”, should be “6n(2j − 1)”.

• The article is inconsistent in the use of ⊆ and ⊂. For instance, both ⊂ on page 272
line 2 and ⊆ on page 270 line 27 allows equality.

107

E | Code overview

This chapter contains an overview of which files belong to which parts of the experiment:
The initial experiment is the following:

Initial Experiment:
(i) Generating B-splines:

• Generating B-splines: Bspline in FunctionGeneration.
(ii) Construction of Neural Networks:

• Generate neural networks: NNtoBSpline in Interpolation, using CustomModels
in Interpolation/NeuralNetworkMisc. CustomModels construct the layers in the
neural network model and uses CustomActivation and CustomInitializer in
Interpolation/NeuralNetworkMisc.

• Train neural networks on B-spline: BaseBsplineCoef trains the neural networks,
and saves the trained weights in Interpolation/NeuralNetworkMisc/BaseCoef.

(iii) Comparison:
• Plot both B-spline and the neural networks both untrained and trained:

InitialExperiment using the previous files.

Next is the overview of the main experiment:

Main Experiment:
(i) Generation of Target Functions:

• Polynomial and continuous piecewise polynomials: PSF in FunctionGeneration
using RandomCoefficients, and RandomIntervals in FunctionGeneration.

(ii) Approximation Methods:
• Spline: SplineApprox in Interpolation.
• Equiv and Fully: NNtoBspline in Interpolation.

(iii) Evaluation:
• Evaluations of functions and approximations: MainExperiment using BSpline,

PSF in FunctionGeneration, and NNtoBSpline, SplineApprox in Interpolation.
MainExperiment construct plots, mean square error, and maximum error of
functions and approximations.

• Selection of results: PlotFinder using the result from Experiment.

Lastly is an overview of the code to the figures in the report constructed in Python:

Illustration in the report:
• Front page: FrontPage in Plotgenerator.
• Activation function: ActivationFunctions in Plotgenerator.
• B-splines: BSplines in Plotgenerator.

108

J. Lund & M. Kjær Appendix E. Code overview

E.1 Results from Initial Experiment

Degree Mean Square Mean Square Maximum Maximum
Error Untrained Error Trained Error Untrained Error Trained

0 0.000e+00 0.000e+00 0.000e+00 0.000e+00
1 3.382e-16 3.382e-16 5.913e-08 5.913e-08
2 5.160e-14 5.160e-14 1.431e-06 1.431e-06
3 4.002e-13 4.003e-13 5.722e-06 5.722e-06
4 4.229e-12 4.230e-12 1.526e-05 1.526e-05
5 2.869e-11 2.912e-11 4.578e-05 4.578e-05
6 3.719e-10 3.957e-10 1.831e-04 1.831e-04
7 3.024e-09 1.480e-08 7.324e-04 9.766e-04
8 3.802e-08 3.001e-07 2.441e-03 3.174e-03
9 1.233e-06 1.565e-04 1.270e-02 4.492e-02
10 3.307e-06 6.820e-01 2.393e-02 3.295e+00
11 9.691e-05 1.162e+02 1.211e-01 4.546e+01
12 4.845e-04 3.111e+06 3.438e-01 9.341e+03
13 5.125e-03 2.399e+09 1.250e+00 2.674e+05
14 5.822e-02 7.727e+01 5.000e+00 7.650e+01
15 4.407e-01 9.068e+10 9.000e+00 2.083e+06

Figure E.1: Overview of mean square error and maximum error between B-spline and the
neural network, both untrained and trained, from the initial experiment.

109

Bibliography

[1] J. M. Almira and U. Luther. Generalized approximation spaces and applications. Math.
Nachr. 263(264), 3–35, 2004.

[2] S. Arpin. Analysis Prelim August 2011. University of Colorado Boulder, Mathematics
Department, 2011.

[3] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[4] H. Q. Bui and R. Laugesen. Affine systems that span Lebesgue spaces. The Journal of
Fourier Analysis and Applications, 11(5), 533–556, 2005.

[5] P. G. Casazza. Every Frame is a Sum of Three (But Not Two) Orthonormal Bases–and
Other Frame Representations. The Journal of Fourier Analysis and Applications, 1998.

[6] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova. Nonlinear
Approximation and (Deep) ReLU Networks. Constructive Approximation, Springer,
2021.

[7] C. de Boor. A Practical Guide to Splines. Springer, 2001.

[8] R. DeVore, B. Hanin, and G. Petrova. Neural network approximation. Cambridge
University Press, 2021.

[9] R. A. DeVore. Nonlinear approximation. Acta Numerica (1998), pp. 51-150, 2021.

[10] R. A. DeVore and G. G. Lorentz. Contructive Approximation. Springer-Verlag, 1993.

[11] G. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and
Applied Mathematics, second edition, 1999.

[12] R. Gribonval, G. Kutyniok, M. Nielsen, and F. Voigtlaender. Approximation Spaces of
Deep Neural Networks. Constructive Approximation, Springer, 2021.

[13] R. Laugesen. Affine synthesis onto L-p when 0 < p ≤ 1. The Journal of Fourier Analysis
and Applications, 14, 235–266, 2008.

[14] C. Moler. Numerical Computing with MATLAB. SIAM, 2008.

[15] M. Nielsen. General approximation with deep neural networks. Department of Mathe-
matical Scionces, Aalborg University, 2023.

[16] J. Obando-Ceron, A. Courville, and P. S. Castro. In deep reinforcement learning, a
pruned network is a good network. Google DeepMind, 2024.
https://arxiv.org/pdf/2402.12479.pdf [Visited 23/04-2024].

[17] E. T. Poulsen. Funktioner af en og flere variable. Institut for Matematik, Aarhus
Universitet, 1st edition, 2016.

110

https://arxiv.org/pdf/2402.12479.pdf

J. Lund & M. Kjær Bibliography

[18] scipy.interpolate.splrep. SciPy, 2024.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html
[Visited 0/05-2024].

[19] G. Sokar, R. Agarwal, P. S. Castro, and U. Evci. The Dormant Neuron Phenomenon
in Deep Reinforcement Learning. Proceedings of the 40 th International Conference on
Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
https://proceedings.mlr.press/v202/sokar23a/sokar23a.pdf [Visited 23/04-2024].

[20] R. Yeh, Y. S. G. Nashed, T. Peterka, and X. Tricoche. Fast Automatic Knot Placement
Method for Accurate B-spline Curve Fitting, 2020.
https://www.sciencedirect.com/science/article/pii/S0010448520300981 .

111

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html
https://proceedings.mlr.press/v202/sokar23a/sokar23a.pdf
https://www.sciencedirect.com/science/article/pii/S0010448520300981

	Forside
	Titelblad
	Preface
	Introduction
	Chapter overview
	Notation
	Intro to Approximation Theory
	Neural Networks
	Relations Depending on the Complexity
	Operations on Generalized Neural Networks

	Activation Functions
	Connections Between Activation Functions
	Functions that can Represent the Identity

	Realization of B-splines
	Experiments
	Initial Experiment: Realization of B-Splines
	Setup of the Main Experiment
	Results & Discussion

	Approximation Spaces
	Approximation Spaces
	Approximation Classes of Neural Networks
	Connection Complexity & Neuron Complexity
	Approximation Spaces of Neural Networks
	Approximation Spaces of ReLU-networks

	Additional Discussion Points
	ReLU Activation Function
	Embeddings with Besov Spaces
	B-spline Approximation
	Novel Approximation Classes
	Model Classes
	Approximation using Data

	Conclusion
	Appendix
	Remarks & Notations
	Additional Proofs
	Lexicon
	Errata to [Gribonval et al., 2021]
	Code overview
	Results from Initial Experiment

