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Abstract:

This thesis acts as an exploration of the
opportunities found when applying the
acoustophoretic force in an Acoustic Tweez-
ing Aided Flotation (ATAF) system. A novel
dynamic 1D acoustophoretic force expres-
sion is derived and validated for a sim-
ple geometry. This expression is used to
characterize the unknown disturbing forces
an air bubble would experience during
ATAF with direct implementation in an Ex-
tended Kalman Filter(EKF). The EKF pro-
vided the ability to characterize disturbing
forces on a modelled air bubble, but ex-
perimentally, could only characterize distur-
bance forces on bubbles close to the intial-
ization position due to modelling uncertain-
ties. The acoustophoretic force expression is
also used to design a linear control strategy
to cause air bubbles to interact with plastic
particles. Experimentally, the ATAF system
was able to align the x and y positions of the
plastic particles and air bubbles with a sin-
gle transducer using a PI controller and the
natural buoyancy of the air bubbles respec-
tively. The z axis position was not able to
be controlled for in the experimental setup
and this made air bubble and plastic parti-
cle absolute position alignment rare. Cou-
pling between air bubbles and plastic par-
ticles was proven difficult, due to the use
of olive oil, lending no hydrophic attrac-
tive force to the interaction. This thesis con-
cludes that there is a potential for the inclu-
sion of the acoustophoretic force in flotation
plants, though further research is required.
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Synopsis

This master’s thesis acts as an exploration into the potential for integrating the acoustophoretic
force into a flotation system, referred to as Acoustic Tweezing Aided Flotation by this thesis.
This thesis has three focuses; designing a practical "proof of concept" implementation of a
Acoustic Tweezing Aided Flotation system, deriving and validating a dynamic characteri-
zation of the forces present on an air bubble experiencing the acoustophoretic force, and
presenting a control strategy that allows for the facilitation of plastic-air bubble interaction.

This thesis opens with a state of the art where the premise of acoustic tweezing and flota-
tion are presented. This is followed up by a presentation of different studies that apply the
methods of acoustic tweezing on micro plastics and air bubbles. This concludes with a pre-
sentation of the problem statement being : "Design a control strategy that allows for the positional
manipulation of microsized particles that cannot be directly actuated by the acoustophoretic force".

A presentation of a 1D pressure wave approximation is then given. This is shown to
experimentally capture the wave characteristics for measured pressured waves generated by
a transducer in olive oil. The wave equation is then used to define the pressure field and
pressure field gradients used by the acoustophoretic force equation. A numerical study is
then performed on the derived acoustophoretic force expression that shows that there are
acoustic nodes present in the liquid whereby the acoustophoretic force causes particles with
a lower contrast factor to be attracted to. The amplitude of this force is analyzed and it is
shown that a minimum maximum acoustophoretic force is present on air bubbles in a fluid
independent of the wave frequency. The maximum acoustophoretic force field is also shown
to occur during acoustic resonance in the geometry. The movement of the nodes as a function
of frequency are also shown to move more closer to the face of the transducer and less the
further away from the transducer an air bubble would be located.

An equation of motion for an air bubble based on Newton’s Second Law is then presented
and consists of the acoustophoretic force, a viscous drag component, and an uncharacterized
streaming force. This is validated by using experimentally measured bubble positions as the
pressure wave frequency generated by the transducer is changed.

The equations for the acoustophoretic force expression is then implemented in an Ex-
tended Kalman Filter (EKF). The EKF includes a disturbance force state meant to represent
streaming force and other unmodelled dynamics present on the air bubble. This EKF demon-
strated the ability to characterise a disturbance force affecting an air bubble in the nonlinear
model. The node movement expression, as found by using the acoustophoretic force equa-
tion, did not align well with the experimentally shown node positions as the air bubble moved
more than 1 mm away its initial position. For air bubbles that remain close to the initial posi-
tion, it showed a random walk-like characteristic of the acoustic streaming force, though the
amplitude of the disturbance force state is determined by the amplitude of the acoustophoretic
force and modelling uncertainties mean that the reliability of this force estimate is in question.
Considering the sum of forces in the EKF was shown to be able to provide an estimation for
the total forces acting on an air bubble and the movement of experimental air bubbles was
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x Synopsis

compared to simulated air bubbles with the pressure wave input frequencies. Comparing the
characteristics of the experimental and modelled air bubble sum of forces as given by the EKF
provided insight into where modelling uncertainties may have lied.

The acoustophoretic force expression was then linearized and was used to create a PI con-
troller for the x axis position control of the air bubble using the transducer wave frequency as
an input. The varying maximum acoustophoretic force over the control trajectory introduced
a high degree of disturbance to the air bubble. On top of this, different radii of air bubbles
changed the where the break frequency of the air bubble dynamics was located. The PI con-
troller that was implemented provided sufficient disturbance rejection in both the nonlinear
model and experimentally.

This thesis concludes that the inclusion of acoustic tweezing to a flotation plant presents
an oppurtinuty into improving the state of the art for flotation. This thesis also concludes
that the proposed 1D acoustophoretic wave equation provides a meaningful description of
the force acting on an air bubble as the input frequency is changed and that there is potential
for further application of the model.



Chapter 1

Introduction

The presence of microplastics in the world’s fresh water system has shown to be a serious
and wide spread problem.[22] It has been shown that microplastics are slow to degrade nat-
urally, and without active measures put in place, the microplastics concentration is projected
to increase in the coming years. [5] Sources of microplastics to the environment are vast, but
many of these sources can enter the aquatic environment via emissions from sewage treatment
plants[10]. Some amounts of microplastics can be released to aquatic environments from the
effluent water, though the majority of microplastics from sewage treatment plants have been
found to be retained in the sludge. [10] The removal of microplastics presents a difficulty to
the current methods of water processing and is an ongoing topic of research.[18][13]

Within the field of water processing, different approaches have been shown to separate
microplastic from liquids.[24] A method used that comes from the field of mineral processing
is a method called flotation[25] whereby air bubbles are added to a particulate rich liquid
and the interaction between the air bubbles and particulates allows for the removal of the
particulate from the liquid. While flotation has been shown to work well for plastics with a
diameter of greater than 1 mm[23], flotation has difficulty extracting particles smaller than this
size. On top of this, as the particulate density decreases, the efficiency of flotation methods
also decreases[25]. The presence of microplastics in water processing plants often have a low
concentration of plastic by volume and this poses a difficulty to the state of the art of flotation.

One potential solution to the removal of low concentration microplastics plastics from
fluids is to merge the field of flotation with the recent progress in the field of acoustic tweez-
ing.[1] Acoustic tweezing is the process of using ultrasonic acoustic waves to impart a force,
called the acoustophoretic force, to actuate a particle’s position in a fluid. The manipulation of
the acoustic field in the fluid allows for the precise actuation of particulates. Merging recent
advancements from this field with flotation could potentially allow for the ability to precisely
remove low concentrations of microplastics from a body of fluid. [6].

The merging of flotation and acoustic tweezing methods has not been widely researched
and is therefor the motivating initiating problem for this Master’s Thesis:

What are the opportunities and limitations of the application of acoustophoretic forces for acoustic
tweezing aided flotation?

1





Chapter 2

State of the Art

Chapter Abstract

In this Chapter, the initating problem is explored. A state of the art on the state of flotation and
acoustic tweezing of microplastics is presented and is then followed by a literature study on
the progress of acoustophoretic particle control. Flotation systems that can separate plastics
from fluid have been shown to exist and work due to air bubble- plastic interactions in a
fluid. From the field of acoustic tweezing, the primary contributing factor of the amplitude
of the acoustophoretic force is shown to be the difference between the acoustic properties of
the fluid and particle, called the acoustic contrast factor. The low contrast factor leads to air
bubbles being much easier to actuate than plastic particles and for this reason, flotation should
theoretically be able to be matched with acoustic tweezing. The literature on acoustic tweezing
focuses primarily on micro-flow channel systems and therefore, few examples of closed loop
acoustophoretic systems exist. In order for a closed loop control acoustic tweezing aided
flotation system to be designed, a disturbance robust control system must be proposed and
dynamic characterization of the acoustophoretic force is required.

2.1 Flotation

In this section, the challenges associated with the application of flotation on plastic particles
is given. Flotation is a mature technology that has widespread use in the fields of mineral
processing[7], food processing[21], and wastewater treatment.[25]. This field takes advantage
of the natural bouyancy of air bubbles in a fluid that will cause the air bubbles to rise to
the top of a flotation plant. Most solids that are flotated are generally higher density of the
fluid and therefore will naturally drop to the bottom of the container. The focus of the field
is therefor the maximization of the interaction between the air bubble and the solids in the
fluid. For this reason, the flotation plants are usually continually excited by the bubbles being
added to the fluid.

The mechanism for the attachment of the air bubbles and the particulate are the hydropho-
bic nature of the particles in question.[25] When the particles are hydrophobic, they experience
a repelling force from the water and an attractive force towards air bubbles. This causes them
to couple and the buoyancy of the air bubbles then pull the particles to the top of the flotation
plant. Chemical binders are often added to the fluid to change the degree of hydrophobic re-
pelling force the particulate experiences. This has been shown to be able to make microplastic
floteable with the right additive combination to the fluid.[23].

Flotation is often implemented as an open loop process with a focus on high through-
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4 Chapter 2. State of the Art

put.[25] Two configurations are most commonly used. A batch configuration that introduces
a fixed amount of slurry to a contained volume and a continuous system that constantly sup-
plies slurry to the fluid with and inlet and outlet. The flotation efficiency is often expressed as
a first order system with exponentially worsening performance as the particulate concentra-
tions decrease. This leads current state of the art of the particulate/air bubble interactions to
occur as a statistical likelihood. This means that flotation process will never be able to remove
all of a micro plastic from a fluid.

The challenges that are presented by applying flotation to plastic particles are: managing
the air bubble and plastic attractive forces, the geometric design of a plant that can maximize
the flotation for the given use case, and ensuring contact between air bubbles and plastic
before the air bubble rise.[23] The management of air bubble and plastic attractive forces
and the geometric designs of a microplastics flotation plant are both active fields of study.
However, the statistical nature of the bubble particle interactions is an inherit limitation in
the application of flotation and this thesis claims that this may be overcome by the air bubble
actuation potential found in the field of acoustic tweezing.

2.2 Acoustic Tweezing

This section presents the state of the art and discuses the challenges associated with applying
acoustic tweezing to a flotation plant. Acoustic tweezing is a branch of acoustofluidics and is
a young field of study that has found use in particle sorting and medical applications.[1][16]
This is because acoustic tweezing allows for high precision contactless actuation of small
particulates on the micro and nano meter scale. A pressure field is introduced to a defined
geometry and the pressure field characteristics cause the presence of the acoustophoretic force
on particles in a fluid. [20]

Two types of pressure wave manipulation are commonly used for acoustophoretic tweez-
ing; standing acoustics waves, and bulk acoustic waves.[1][19] Bulk acoustic waves use spe-
cialized geometry of the transducer horn to create local pressure minima and maxima in the
fluid. These require a setup specific transducer design and will no longer be considered in
this thesis. Standing acoustic wave acoustic tweezers use the fact that when a continuous
pressure wave is generated in a simple geometry, the pressure wave will reflect and waves
with positive and negative wave propagation directions will be present throughout the cabin.
This leads to there being acoustic nodes and antinodes in the fluid where the time averaged
pressure is a maximum and minimum at the these positions respectively.

Acoustophoretic Force

The acoustophoretic equations, as first presented by Gor’kov and further expanded by Settnes
and Bruus[20] are given below and an overview of the relevant variables can be seen in Table
2.1:

Fap =
4 · π

3
· r3

p ·
(

2
3
· κ̃ · Real( f1 · P∗ · ∇P) − Real( f2 · ρl · V∗ · ∇V)

)
(2.1)
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κ̃ =
κp

κl
ρ̃ =

ρp

ρl
(2.2)

κl =
1

(ρl · cl)2 κp =
1

(ρp · cp)2 (2.3)

f1 = 1 − κ̃ f2 = 2 · ρ̃ − 1
2 · ρ̃ + 1

(2.4)

(2.5)

Table 2.1: This table gives an overview of the variables that define the acoustophoretic force

Variable Parameter Unit
rp Particle Radius [m]

ρl Liquid density
[

kg
m3

]
ρp Particle density

[
kg
m3

]
cl Liquid speed of sound

[m
s

]
cp Particle speed of sound

[m
s

]
κl Contrast Coefficient for liquid Not Shown
κl Contrast Coefficient for particle Not Shown
f1 Monopole Coefficient [ - ]
f2 Dipole Coefficeint [ - ]
∇P Pressure Field Gradient [kPa]
P∗ Pressure Field Complex Conjugate [kPa]
∇V Pressure Field Gradient [kPa]
V∗ Pressure Field Complex Conjugate [kPa]

The relevant physical parameters that define the amplitude of the acoustophoretic force
are the fluid and particle’s densities, their respective speeds of sound, and the radius of the
particle of interest are considered. It can be observed from the equations that the amplitude
of the acoustophoretic force scales with the volume of the particle. It is noted that the mass
of the particle scales with the volume. When considering the dynamics of a spherical particle,
Newtons second law can be used to show that, if ignoring the viscosity of the fluid, this
volume gain will have an influence on the dynamics:

m · ẍ = Fap =⇒ ẍ · ρ =
2
3
· κ̃ · Real( f1 · P∗ · ∇P) − Real( f2 · ρl · V∗ · ∇V) (2.6)

While any fluid that the particle will be submerged in will have a damping dependent
with the particle’s radius and fluid viscosity, it can be seen that the dynamic excitation due
to the acoustophoretic force is independent of the radius. This eases control design by not
needing to consider a change of the highly nonlinear acoustophoretic force due to different
particle sizes.

The other influencing factor in the acoustophoretic force is the monopoole gain f1 and
dipole gain f2. When considering the monopole effect, it can be seen that if the kappa value
of the fluid and particle equal each other, the monopole contribution, f1 becomes equal to
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zero. The greater the numerical difference between the kappa values for the fluid and parti-
cle, the greater monopole influence force becomes. This means that the greater the difference
in density and speed of sound, the greater the potential for acoustophoretic manipulation.
A similar trend can be seen with the dipole coefficient f2, only with the particle and fluid
densities. One advantage of this trend is that it can be intuitively understood that the manip-
ulation of air bubbles could be achieved relatively easily due to the high difference in density
between air and water, whereas particles made out of plastic would likely be less amenable to
aoustophoretic manipulation due their relative similarity to the liquid medium. This means
that the acoustophoretic force could benefit flotation processes as the high bubble density in
the fluid could be given a more deterministic characteristic by the acoustophoretic force.

Another point that can be reasoned from Equation 5.28 is that the amplitude of the
acoustophoretic force is proportional to the derivative of the pressure field. This means that
the higher frequency components defining the pressure wave are, the higher the potential
for acoustic tweezing is. It is for this reason that ultrasonic transducers are used for acous-
tic tweezing as they operate at a minimum with a frequency higher than 20 kHz. The fact
that high frequencies are used means that the wavelengths can be between the micro and
nano meter scale. The lower wavelengths at this frequency means that the movement the
acoustophoretic force is a good match for acoustic tweezing aided flotation.

2.3 Literature Study on the Acoustophoretic Control of Particles

In this section, a review of the control of air bubbles or plastic particles using the acoustophoretic
force is discussed.

A review article from 2020 [6] has shown that little research has been done in the way
of implementing acoustophoretic effects in the process of flotation, though they acknowledge
the potential benefit for the aggregative effects of acoustophoretic force moving air bubbles
towards acoustic nodes. They claim the state of the literature has a focus on using ultrasonic
waves as a pretreatment for the slurry. They found that if the amplitude of the pressure waves
was too great, the adhesian between the air bubbles and coal became less likely, though this
was only described for ultrasonic waves in the 50 kHz range where acoustic cavitation may
occur in the air bubbles. They also recognized the potential for high frequency > 1 Mhz had
the potential for fine movement actuation for the air bubbles in a flotation system.

Muller et al [11] were able to validate the acoustophoretic force expressions on a particle
of radius 5 µm. They were then able to control the motion of this particle by changing the
frequency of the transducers. This was performed in a micro channel with no aggregate flow
of fluid. This corresponds to there being minimal disturbing forces. While this article demon-
strated the ability to use the acoustophoretic force to actuate plastic particles, the limited and
contained geometry have yet to demonstrate the ability to scale the acoustophroetic force to
larger cabins.

Muiak et al [12] designed a particle filter system that caused micro sized particles to be
sorted. This was an open loop configuration that allowed for the collection of different particle
densities into the nodes and antinodes of the standing wave respectively. The transducers were
run at a constant frequency of 960 kHZ and was performed on a micro channel with a length
of 2 times the wavelength of the input frequency. Similiar microchannel flow system have
been designed , however scalability of such systems is quite limited for the use in a flotation
plant.

Kandemir et al [9] have shown that by using two transducers, net movement of particles
on the centimeter scale can be achieved by having a frequency offset on one of the transducers.
They found that with a frequency offset is 1 Hz, the particles traveled from node to node on
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one second periods. This showed the ability to dynamically actuate a particle throughout a
geometry, however the particle position was only be made to be settle at a given predefined
wavelength away from the transducer.

Nguyen et al [15] implemented a closed loop air bubble control system that used camera
feedback and multiple resonating transducers to actuate 2 axis movement of the air bubble.
The system they implemented achieved particle actuated by shifting the phase of one of trans-
ducers, changing where the location of the node was. The system they implemented had a
distance between the transducers of 1.5 mm and were able to move the air bubble around this
area to be able to spell out letters on the micro meter scale.

Literature Discussion

The current state of the art of acoustic tweezing has primarily demonstrated two types of
experimental acoustic tweezing setups. The first is to control the flow of particles in a micro
channel. This type of experimental setup demonstrates the ability for the acoustophoretic
force to actuate particles to defined location while experiencing disturbing forces in the form
of turbulent flow in the fluid. The fact that these types of setups are only made to be a few
wavelengths means that they are kept at the micro and millimeter scale and these types of
setups have not demonstrated the ability to actuate moving particles on the centimeter scale
as would be required for Acoustic Tweezing Aided flotation.

The second type of setup shown are controlled two dimensional acoustic fields that show
multiple axis of particle manipulation. These experimental setups are highly controlled and
the experienced disturbance by the particles are intentionally made minimal. These experi-
mental setups also consists of at least two transducers where acoustic resonance of the cham-
bers can be ensured.

The treatment of the acoustophoretic force when there is not acoustic resonance in the
geometry is generally avoided due to the perceived lack of actuation potential. Little literature
can therefore be found demonstrating the extent of which particles can be made to move to
node locations that do not occur during the acoustic resonance of the geometry. If air bubbles
can be shown to still be controlable when there is not acoustic resonance, the control design
for such system would be made easier as the input wave frequency could simply be used as
a control input. This would allow for the node positions being the functional input to the
system and would mean that the acoustic node and, therefore the air bubble, would be able
to slowly be moved to the position of the plastic particle, causing positional alignment.

When air bubbles are added to a body of water during the process of flotation, turbu-
lence will be present in the water. In order to control air bubbles or particles under these
circumstances, a high degree of disturbance rejecting capability is required.

The literature primarily focuses on actuating air bubbles by changing the phase of the
input wave. For this reason, little analysis can be found characterizing the properties of the
acoustophoretic force as the input pressure frequency is changed concurrently. The existence
of such expressions are a requirement for the characterization of the dynamics for air bubbles
under actuation.

2.4 Conclusion

Implementing acoustophoretic forces in a flotation based system would allow for improving
the state of the art of flotation. While the utilization of the acoustophoretic force is a popular
ongoing topic for research, few centimeter scale experimental setups with visual feedback
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have been shown. In order for a acoustic tweezing aided flotation system to be designed the
following challenges must first be addressed:

• A validated dynamic model of the acoustophoretic force as the reference wave is changed

• The application of the acoustophoretic force to non micro flow systems

• Design of disturbance rejecting control system for actuated air bubbles

This master’s thesis will therefore act as an exploration of these topics.



Chapter 3

Problem Statement and Scope

In this chapter, the problem statement of this Master’s Thesis is presented, followed by pre-
senting the thesis scope and providing a reader guide.

3.1 Problem Statement

The problem statement is the following

Design a control strategy that allows for the positional manipulation of microsized particles that
cannot be directly actuated by the acoustophoretic force.

In order to answer the problem statement, the following sub problems are solved :

• Propose and validate a dynamic model for particles experiencing acoustophoretic forces

• Propose a disturbance observer that can quantify the unmodelled forces on the con-
trolled air bubble

• Design and propose a control strategy that can allow for the positional manipulation of
microsized particles that cannot be directly manipulated by acoustophoretic forces

3.2 Scope

Hardware Configuration

The experimental setup used throughout this Thesis can be seen shown in Figure 3.1. A Table
over the hardware components can be seen in Table 3.1.

9
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Figure 3.1: This figure shows the experimental setup used in this masters thesis. The components labeld are : (1)
Laptop (2) Camera (3) Transducer (4) Cabin (5) Signal Amplifier (6) Wave Generator (7) Syringe. A full description
of these items can be found in Table 3.1.

Table 3.1: Table over the hardware components in the experimental setup.

Component Purpose Description
Windows
Laptop

Controller (1) Interfaces between the Mako 130B and the waveform
generator. Serves as system controller.

MAKO 130B Camera (2) Records movement of particles with a maximum fram-
erate of 50 and resolution of 1024x1280 pixels. This cor-
responds to 76 pixels per mm.

Benthowave
II 7581

Transducer
(3)

Transmits pressure waves to the liquid. Resonant fre-
quency 960 kHz .

Test Cabin Cabin (4) Designed acoustic resonator made with 2 transducers at
a distance of 22.83mm apart. Only 1 transducer is used
during this Thesis.

Falco Systems
WMA-300

Signal Ampli-
fier (5)

Amplifies the voltage of the signal transmitted by the
wave generator.

Keysight
33500B

Wave Genera-
tor (6)

Generates the sinusoidal signal as assigned by the com-
puter.

Medical Sy-
ringle

Syringe (7) Used for shooting bubbles into the liquid

Limitation of Flotation In Scope

This thesis serves as a preliminary exploration into the potential for acoustic tweezing aided
flotation with a focus on the control a single air bubble in the fluid. For this reason, this thesis
will not research the influence of different fluids and chemical additives that would affect the
coupling between air bubbles and plastic particles. This Thesis focus instead, on actuating the
horizontal position of single air bubble such that it is aligned with a single plastic particle. .
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Reader Guide

All of the chapters in this thesis, aside for the conclusion, have abstracts that present the
method and conclusions of the corresponding chapters succinctly. This master’s thesis initially
presents the acoustic tweezing aided flotation proposal as this serves as a system proposal
that satisfies the problem statement of the thesis. This chapter has a practical focus and can
be read with minimal dependence on the other chapters, though it is advisable to read the
abstracts from the remaining chapters first. The remaining chapters serve as presentations
of the findings gathered when analyzing the topics that were required in order to design the
acoustic tweezing aided flotation system. It is advised to read these remaining chapters in
their respective order.

The remainder of this Master’s thesis contains following chapters:
Chapter 4 - Acoustic Tweezing Aided Flotation: This chapter presents a system proposal for
acoustic tweezing aided flotation and discusses the results and difficulties of the implementa-
tion.
Chapter 5 - Acoustophoretic Force : This chapter gives a derivation of the time averaged
acoustophoretic force when a sinusoidal pressure field is present.
Chapter 6 - Particle Modelling : This chapter presents and validates a model for air bubbles
with and without the presence of a ultrasonic pressure field.
Chapter 7 - System Identification of Sonicated Air Bubbles : This chapter presents an Ex-
tended Kalman filter with am additional disturbance state and implements it in the nonlinear
model and on experimental data.
Chapter 8 - Linear Control : This chapter outlines control requirements and presents a linear
analysis of bubbles experiencing the acoustophoretic force. A control proposal for air bubbles
is then tested experimentally.
Chapter 9 - Conclusions : This chapter presents the conclusions of this master’s thesis.





Chapter 4

Acoustic Tweezing Aided Flotation

Chapter Abstract

In this chapter, a proposal for acoustically aided flotation (ATAF) is presented. A two stage
control structure is presented that first moves air bubbles to the plastic particles and then
attempts to move the coupled particles. The control strategy is shown to be capable of actu-
ating the bubble to the x-y axis position of the plastic. However, challenges were shown to be
present due to two reason: (1) the only interacting force between the air bubbles and particles
being the wake generated by the air bubble made attachment infrequent (2) the third uncon-
trollable axis of the air bubbles and particles position caused absolute position misalignment.
The system demonstrated the ability to facilitate air bubble and plastic particle interaction,
though further research is required to make the method viable at a larger scale.

4.1 Introduction

In this chapter, acoustic flotation is presented and discussed. The focus of this chapter is
to demonstrate on the practical applications of the modeling and control strategies that are
presented in this Master’s Thesis to flotation. This chapter consists of the following sections:

• Section 4.2 : System Purpose and Design Motivation

• Section 4.3 : Method

• Section 4.4 : Experimental Results

• Section 4.5 : Discussion

4.2 System Purpose and Design Decisions

The purpose for the proposed Acoustic Tweezing Aided Flotation (ATAF) system is to change
the horizontal position of plastic particles through the use of controlled air bubbles. In Chapter
8, it is shown that a PI controller is capable of actuating the horizontal position of a single air
bubble across multiple milimeters in the test cabin with the use of the pressure wave frequency
as input and is therefore the method used for actuating air bubbles in this chapter.

The system has a two step process chain. The first is to actuate an air bubble towards a
a plastic particle. The second step is to actuate both the particle and the air bubble together.
This can be seen loosely represented in Figure 4.1

13
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Figure 4.1: This figure shows a block diagram over the configuration of the Acoustic Tweezing Adided Flotation
system proposal. The green circle represents an air bubble and the red star represents the plastic particle. The
black dotted lines represent a potential trajectory for the air bubbles. The lower bubbles and stars represeent
the initial positions and the top dots represent the desired final positions. The rectangular box to the left of the
window represents the transducer supplying the pressure waves.

4.3 Method

System Process Description

A block diagram showing the system process chain can be seen in Figure 4.2 and an overview
of the switch case program implemented in MatLAB can be seen shown in Table 4.1

System Reference

In the first control case, case 6, the reference of the focused air bubble is that of a plastic
particle that is within a specified region of the camera frame. A maximum slew rate for the
controller of 1 mm/s is included in the change of the reference to reduce the maximum rate
of change of the acoustic node that the air bubbles is attracted towards. This ensures that the
controller does not move the node faster than the air bubble can feasibly follow.

In the second control case, case 7, the reference for the air bubble and plastic particle is
made to be 1 mm closer to the transducer than the original position at the start of this step. A
0.1 mm/s max slew rate is added to this reference to reduce the chance of the air bubble and
plastic particle losing contact to each other during actuation.

Controller

A windows computer running MatLAB is used as the controller for the control system. This
is selected as the control controller because it is able to interface with the camera used and the
signal generator. The control frequency is set to 10 Hz as this was the highest frequency that
could be run on the computer with the ATAF system running.

The controller used is a PI controller with a proportional gain of 106 and a integrator gain
of 100. When the control case is initialized the initial frequency is set to 700 kHz. A saturation
limit is added to the controller that does not allow the frequency to be less than 400 kHz or
greater than 1100 kHz. This is because the transducer’s pressure wave output is shown to be
significantly lower in outside of these limits. [2].

Choice of Particle and Fluid

Throughout this thesis, a commercially available olive oil is used as the fluid medium in which
air bubbles and particles are actuated. This is due to its high viscocity at room temperature.
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Figure 4.2: This figure gives a visual repre-
sentation of the switch case structure process-
ing chain during Acoustic Tweezing Aided
Flotation.

Case 1.) System Idle
1. Initialize Variables
Case 2.) System Initialize
1. Connect to the oscilloscope and waveform generator
Case 3.) Particle Tracking : Sample Time = 0.25s
1. Search for air bubbles in the defined window
2. Search for plastic particles the allowed window
Case 4) Focus Bubble and Particle Focusing
1. Select single bubble and particle and record reference frame.
2. Select single plastic particle and define a focus frame near this

particle
Case 4.2) Initialize Particle Focusing with predetermined Bubble
1. Find focused bubble in focus search frame
2. Search for plastic particles in the initial window
Case 5.) Show frames of bubble and plastic : Sample Time =
0.1s
1. Find focused bubble in focus search frame
2. Find focused plastic particle in focus search frame
Case 5.1) Show frames of bubble and plastic : Sample Time =
0.1s
1. Find focused bubble in focus search frame
2. Find focused plastic particle in focus search frame
3. Increase transducer voltage by 25 % of nominal voltage and set

input frequency to finit
Case 6) Control Running
1. Find focused bubble in focus search frame
2. Find focused plastic particle in focus search frame
3. Run controller with max slew rate of 1 mm/s
Case 7) Control Coupled air bubble / plastic object
1. Find focused bubble in focus search frame
2. Find focused plastic particle in focus search frame
3. Run controller with max slew rate of .1 mm/s

Table 4.1: This table gives an overview of what occurs in the
switch case structure during the operation of the Acoustic Tweez-
ing and Flotation system.

This causes the air bubbles to have a lower terminal floating velocity and greatly reduces
the sink time of the plastic particles relative to water. This allows for easier simultaneous
manipulation of air bubbles and particles. All of the experiments throughout this thesis use
this same fluid.

The plastic particles is used for this Thesis are a PET plastic which has a density and speed
of sound that is similiar to olive oil. This one type of particle is used throughout the whole
thesis.

Transducer Thermal Considerations

The transducer voltage has been reduced to zero when the control steps are not active. This
is because the transducer’s face that has contact with the liquid will heat up when it’s voltage
is high. The ambient oil temperature is 23 degrees when the system is off. It has experimen-
tally been found that the transducer face temperature will increase to up to 35 degrees if the
transducer is run at full voltage for half an hour. This causes a temperature gradient in the
oil whereby the oil close to the transducer begins to flow up to the top of the cabin and a
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continuous circular flow becomes present in the cabin. The viscous flow in the cabin them
makes bubble control very difficult. When the transducer is only enabled during the control
case, the transducer heating is kept to a minimum and this effect is only present directly at
the face of the transducer.

Visual Processing

From an image processing perspective, the plastic particles appear very similar to air bubbles
and a number of examples of particles and bubble can be seen shown in Figure 4.3

Figure 4.3: This left figure shows a single air bubble. The right figure shows three plastic particles with two air
bubbles visible. In the right figure, the bubble to the top left is seen to be out of focus. Transient circular shading
can also be seen in both figures and this is likely air bubbles or particles that are highly out of focus.

Bubble Visual Processing

The bubbles are initially found using MatLAB’s imfindcircles() function set to find dark circles
and then sorted by the function’s ideal circle metric. In order to help make sure that the found
bubbles found are not plastic particles, the center of the particles are compared to the mean
brightness of the frame. If the found circle is a plastic particle, the middle of the particle will
be very dark and, if it is a bubble, it will appear hollow and a much brighter middle pixel
color. If the middle pixel is too dark, the circle will be dismissed and if it is bright enough,
the circle will be accepted as an air bubble. This works the majority of the time, but if it does
not, the system user can select another bubble.

During the tracking stage, a selected portion of the frame is searched for bubbles. This
portion has been decided to be the bottom middle of the frame. This is because the bubbles
will naturally float to the top of the frame and searching the bottom of the frame increases the
chance that the bubble can feasibly be moved to a plastic particle reference before disappearing
from above the top of the frame. This also has the advantage of reducing the visual processing
requirement of the controller.

During the focus stage, a specific bubble is selected. The center pixel of the circle plus the
radius of the bubble plus 2 pixels are recorded to the system as a pixel map. This pixel map
acts as a reference pixel frame that the following frames are processed to be compared to.
Every time a new frame is read, the location of the saved bubble from the previous frame is
taken and this location is used to create another pixel map, referred to as the compare bubble
frame. This compare bubble frame contains the previous frames bubble center location plus
75 pixels in every direction. This means that a 150 by 150 pixel window from the newly read
frame is stored. The reference pixel frame is cross correlated to the compare bubble frame
and a heat map with a global minimum is found. This global minimum shows the point that
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appears most similar to the reference frame and it is here that bubble location of this new
frame is taken to be.

The reference frame is overlaid with an exponentially increasing two dimensional function
with a minimum at the previous frame’s bubble location. This is because multiple bubbles
can appear in this compare bubble frame and the cross correlation can incorrectly select one
of the other bubbles as being most similar to the reference frame. This overlaid map weights
the bubble correlation towards the previous bubbles location. This is shown to be beneficial
because bubble’s do not move very much between frames. This has been shown to improve
performance and bubble detection stability.

Plastic Visual Processing

Plastic particles are first found after the air bubbles. This is because the frame that is searched
for to find plastic particles is made to be 75 pixel above the air bubbles. This is so that the
bubbles has an opportunity to reach the plastic particles as they float to the top of the cabin.

Plastic particles are also found using the MatLAB imfindcircle() function, however a smaller
radius is used and a higher sensitivity to the circular shape was used. This caused more par-
ticles to be found. In order to make sure the bubbles that were found weren’t bubbles, the
middle pixel was checked to make sure it was dark.

During the focus stage, every time a new frame was read, the imfindcircles() function was
run using a frame window size within 50 pixels of the previous particle location. If the particle
was not found in the new frame, the frame sensitivity was increased until a particle was found
and the particle closest to the previous particle location was taken. This method was selected
because the particles move very little every frame and the method demonstrated the ability to
track the plastic particles adequately.

4.4 Experimental Results

Many attempts have been made to cause the bubbles to interact with the plastic. Two examples
of running the ATAF system are shown; the first demonstrates the movement of and air bubble
and plastic particle before and after coupling and the second demonstrates the interaction
between the air bubble plastic when they come in contact, but do not successfully couple.

4.4.1 Coupled Movement of Plastic and Air Bubble

In this section, an example of an air bubble being actuated to the position of a plastic particle
and the collective movement of the coupled air bubble and plastic particle is shown. A number
of frames of the air bubble interacting with and then moving a plastic particle can be seen
shown in Figure 4.4.

Figure 4.4: This figure shows the movement of an air bubble and plastic particle during the contact phase of the
Acoustic Tweezing Aided flotation. The air bubble has a radius of 60 µm. The position of the frame is held over
the frames shown. The air bubble achieves contact with the plastic particle between frames 95 and 103 and looses
contact between frame 118 and 125. The frames shown occur over 4 seconds.
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The horizontal and vertical positions of the air bubble and plastic particle shown in Figure
4.4 have been plotted and can be seen in Figure 4.5.

Figure 4.5: This figure shows the air bubble vertical and horizontal position during the operation of the ATAF.
The black line at approximately 3.5 seconds refers to when the air bubble acquires the plastic particle as its x axis
position reference. The offset seen in the horizontal error in the bottom right figure between 4 and 9 seconds is
due to the radii of the air bubble and plastic particle to cause a position difference between each other despite
being in contact.

When looking at the horizontal position data in the lower bottom left plot in Figure 4.5, it
can be seen that the ATAF system has successfully caused the air bubble to move the plastic
particle. When looking at the air bubble and plastic particle horizontal positions between 3.5
and 4 seconds, the acoustic force causes the air bubble to align the air bubble x position to
the plastic particle, whereas the acoustophoretic force does not cause a discernible change to
the plastic particle x location. From 7 seconds to 10 seconds, it can be seen that the controller
was not able to actuate the air bubble and plastic particle to its desired reference. Despite
this, during this time, both the air bubble and plastic particle positions are moved together.
Without successful coupling, the movement of the plastic particle would have been negligible.
For this reason, the ATAF system is considered "successful" despite the controller not moving
the coupled air bubble plastic particle object to the desired reference position after the plastic
became coupled to the air bubble.

It can be seen, when looking at the vertical error in the top right plot of Figure 4.5 that
the coupling to the air bubble also changed the change of floating velocity of both the air
bubble and plastic particle. This can be seen when comparing the vertical error between the
air bubble and plastic particle between 0 to 6 seconds and then from 6 to 9 seconds. The fact
that the vertical error is maintained at zero between 6 and 9 seconds when the air bubble
and plastic particle are in contact, demonstrates that they both impart an attractive force on
each other. This attractive force effectively causes there to be a collective buoyancy force on
the coupled plastic-air bubble object. When looking at the top left figure, it appears to be the
case that the coupled floating velocity is more similar to the plastic particle than it is to the
free air bubble floating velocity. If the air bubble that achieved coupling with the plastic was
larger than the one shown, the buoyancy experienced by the air bubble would likely cause
the coupled air bubble plastic particle object to float at a higher rate, though it may also have
caused the two to disengage from each other faster than they did.

The coupling between the air bubble and plastic particle is interpreted by the author to be
similar to a spring force. If the air bubble experiences a force vector that is greater than the
maximum spring force, the air bubble becomes decoupled to the plastic particle. This appears
to occur at 9 seconds as this is when the horizontal error between the air bubble and plastic
particle quickly changes value. After this point, the vertical error begins to increase again.

It can be noted in Figure 4.5 that the control reference was unintentionally changed to
the plastic particle once the air bubble and plastic particle became coupled. This resulted in
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the controller rapidly changing the frequency in a manner which made the bubble not follow
along the reference very well. This occurs at approximately 6 seconds.

4.4.2 Contact without Coupling

For the majority of air bubble plastic particle interactions observed experimentally, the air
bubble comes in contact with the plastic particle and affects the movement of the plastic
particle, but coupling does not occur. An example of this occurring is analyzed in this section.
Selected frames of the contact between the air bubble and plastic particle can be seen shown
in Figure 4.6.

Figure 4.6: This figure shows an example of an air bubble interacting with a plastic particle, but successfully
coupling does not occur. The interacting air bubble has a radius of 72 µm. The blue squares represent the plastic
particle position of four frames previous to the one shown and the orange square show the current position of the
plastic.

It can be seen in Figure 4.6 that in frames 180 and 184, the plastic particle unaltered velocity
moves it slightly in the direction to the left of the frame. This is contrasted to what occurs
after air bubble plastic contact as can be seen in frames 196, 200, and 204 where the plastic
particle begins to move to the right side of the frame. The vertical and horizontal positions of
the plastic particles can be seen shown in Figure 4.7

Figure 4.7: This figure shows the horizontal and vertical positions of the air bubble and plastic particles shown in
Figure 4.6 as the ATAF system is run.

When looking at the horizontal positions of the plastic particle and air bubble in the top
plot of Figure 4.7, the air bubble demonstrates the ability to follow the trajectory of the plastic
particle with the control enabled. It can be seen that when the control is first activated, the
air bubble initial moves in the wrong direction before aligning position with the particle. The
initial movement is likely due to the transducer voltage being ramped up once the ATAF
system is enabled and this making the nearest acoustic node to be at a location that does
not align with the air bubbles initial location. It can also be seen between 23 and 24 seconds
that, as the vertical position of the air bubble quickly changes, a small air bubble horizontal
position error occurs , but this is quickly attenuated by the PI controller.
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It can be seen that from 0 to 3 seconds and between 18 and 25 seconds, the air bubble floats
to the top of the cabin as is expected for an air bubble in a fluid. However, between 3 and
17 seconds, the air bubble sinks slightly and maintains depth in the fluid. The ATAF system
was kept running during this period and control over the x axis position of the air bubble is
maintained. At 17 seconds, the air bubble began to float up to the plastic particle again. This
demonstrates the pressure field causing a force on the air bubble on the vertical axis as well
as the horizontal axis.

Contact is achieved between the air bubble and plastic particle at approximately 25 sec-
onds, as it is here where both the air bubble vertical and horizontal positions align. It can
be seen when comparing the horizontal position of the plastic particle in the top plot, before
and after 26 seconds, that the horizontal velocity of the plastic particle is changed. The plastic
particle quickly looses contact with the air bubble at 27 seconds, however, as can be seen by
the air bubble and plastic particle horizontal positions diverging from eachother.

4.5 Discussion

The discussion is broken up into two section: a discussion of the results of the ATAF in the
context of the literature on the field of acoustofluidics and a discussion of the implementaion
and design of the ATAF system.

4.5.1 Literature Discussion

The direct actuation of air bubbles to the position of micro plastic demonstrated by the ATAF
system has reinforced the claim that the inclusion of ultrasonic waves in the fluid can be a
useful tool to help facilitate air bubble plastic particle interaction made by Chen et al. [6] in
their review article of ultrasonic forces and flotation. It was found during the operation of the
ATAF system that the primary difficulty was facilitating the coupling between the air bubble
and plastic particle. This challenge is also one cited by Chen et al, however, the fact that no
hydrophobic force is present in olive oil means that it is unclear whether difficulty in coupling
was due to the presence of the ultrasonic field or a similar difficulty in causing couple would
occur without the acoustic field.

With the initial frequency of the transducer used by this thesis being set to 700 [kHz],
there were over 10 wavelengths of the pressure wave in the cabin. The fact that the air bubble
maintained close proximity to the nearest node supports the finding by Musaik et al [12]
where they caused particles to aggregate to the acoustic nodes in the microchannel. The
ability to control the air bubble by changing the locations of the acoustic nodes demonstrates
that the bubble aggregating effect of the acoustophoretic force is not limited to micro scale
geometries.

The ability for air bubbles to be actuated across multiple milimeters by changing the pres-
sure field frequency demonstrates the viability of actuating individual air bubbles by changing
the frequency of the pressure wave. The flexibility of provided by this method could be com-
bined with the phase shifting node position methods shown by Kandemir et al [9].

The ATAF system achieves 1 dimensional actuation of the air bubbles with the use of only
a single transducer. This success of the air bubble actuation of demonstrated by the ATAF
system shows that the benefits of ultrasonic actuation can be achieved without the need for
two or more transducers as has been shown by the literature. [9] [12] [11] This suggests that
the application of the acoustophoretic force in industrial processes may have a lower barrier
for entry than what is suggested by the literature.
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4.5.2 Design Discussion

Particle-Bubble Interactions

The decision to have the fluid in the cabin to be olive oil made it very difficult to have the
air bubble interact with the plastic particles. Because no hydrophobic effects are present, the
only attractive force between the plastic particle and air bubble is due to the wake effect that
is caused by the air bubble moving. Further testing would benefit from using water as a fluid
medium. It is worth noting however, it has been shown by Chen et al [23] that plastic particles
have a low natural hydrophobic nature. It is likely that a chemical binder may be required to
achieve a large performance boost than what was shown when using olive oil as the fluid.

The difference when switching from olive oil to water is that the viscocity of water is
over an order of magnitude greater than olive oil at room temperature.[3] This presents both
opportunities and challenges. This has the advantage of there being a smaller frictional coef-
ficient due to the air bubble velocity. This means that less of the kinetic energy transferred to
the air bubble is dissipated due to friction, resulting in a higher maximum potential for the
movement of air bubbles due to the acoustophoretic force. The challenges that this presents
are that the terminal velocity of air bubbles becomes much greater. This means that the ATAF
system has less time to facilitate coupling between the air bubble and plastic particle. This
puts a higher demand on the control structure and would likely require a higher performance
controller and higher framerate camera than what is used by this thesis.

Acoustic Change of Viscous Forces

An unforeseen challenge presented during the actuation of air bubbles is the vertical force
that the acoustophoretic force experimentally imparts on an air bubble. The off axis force
his caused some air bubbles to be "locked" and would greatly reduce their terminal floating
speed. This can be seen shown when looking at the air bubble’s vertical position in the bottom
plot of Figure 4.7 on page 19. For smaller particles, this meant that particles would sometimes
not move at all for multiple seconds. The reason for the change in the vertical force balance
affecting the air bubble is suspected to be due to the acoustic field being a three dimensional
field. For this reason, the acoustic nodes considered by this thesis likely have a much more
complex geometric component to them than is assumed by the 1D force equation and there
are actually pressure field gradients in the y axis as well as the x axis. As was shown in
Section v6.3.3, this effect went away when no pressure wave was present. One solution that
was experimented with is to reduce the transducer supply voltage once the x axis position is
aligned. The bubble will then float up to the plastic particle where the voltage can then be
enabled again. Further iterations of the acoustic tweezing aided flotation would benefit from
including this in the control strategy.

Flattened Multi Dimensional Control Problem

In order to have the bubble and particle interact, they must be in the same x, y and z plane.
The system presented in this chapter, only controlled the x position directly. The y position
alignment occurred due to the buoyancy force on the bubbles that causes itself to raise. This
axis is managed by making sure that the air bubbles that are selected have an initial depth
that is greater than the plastic particle. The natural buoyancy of the air bubbles then causes
the y axis alignment.

The last directional plane, the z plane, is not controlled by the method presented. The
camera used has a defined focal range where the edges of the air bubbles and plastic particles
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are most clear. Bubbles which have highly defined edges are selected by the use of the imfind-
circles() most defined circles object parameter. The focal range of the used camera is expected
to be around 4-7 mm, as has been estimated by comparing the definition of different objects
being moved towards and away from the camera. This high focal range means that, even if
air bubbles are assumed to be on the same z plan axis, the majority of the time, the distance
between them is greater than the sum of the radii between the air bubble and plastic particle.
For this reason, it can be expected that, if the average air bubble has a radius of 150 mm and
the average plastic particle has a radius of 100 mm, the chance of them actually interacting is
less than one in 10. Experimentally, the amount of air bubbles and plastic particles that were
actuated to be on the plastic x and y axis positions, but did not demonstrate any interaction,
was actually much higher than this. This suggests that, when actuating a single air bubble to
a specific plastic particle, that a more controlled micro-scale environment would be a better
experimental setup to research this type of interaction.

Timing And Hardware Considerations

The controller was able to run at a frequency of 10 Hz. The maximum frame reading speed
was 0.02 seconds, and the image processing took approximately 0.03 seconds for each frame.
The remaining time requirements was used on the visual representation of the status of the
system. This included showing the frame of the particles and plastic during control. This was
required because the visual algorithm had the tendency to loose focus on particles or change
the air bubble reference occasionally. When this happened, the system can be considered to
fail, but did not always register an error. The control response is shown to be acceptable with
this sample time. Using a faster PC could allow for the improvement of the performance of
the system. The higher the framerate that the control strategy is run on, the better the tracking
stability. On top of this, the higher potential bandwidth of the control algorithm. This would
have the added benefit of further improving the disturbance rejection frequency response and
a higher effective bandwidth could be used in the controller.

4.6 Conclusion

The acoustic tweezing and flotation system presented in this chapter has shown the ability
to facilitate air bubble and particle interaction. Difficulty in the actuation of plastic particles
was present due to the lack of particle/air bubble attractive force and the limitation of 2 axis
of control for what is a three dimension control problem. This chapter has, demonstrated the
potential for acoustic tweezing aided flotation as an opportunity for improving the state of
the art of flotation.



Chapter 5

Dynamic Acoustophoretic Force Modelling

Chapter Abstract

This chapter derives and validates a dynamic expression for the acoustophoretic force that a
particle experiences in a fluid. In Section 5.2, the time averaged acoustophoretic force bound-
ing equations are presented. In Section 5.3, a one dimensional unsteady model for pressure
waves in a cabin are introduced. The steady state and transient wave expressions appears
to align well with experimentally measured pressure waveforms and the wave equation is
deemed validated. In Section 5.4, the wave model is applied to the acoustophoretic force ex-
pression is derived for the steady state and transient acoustophoretic force field. The force
field is expressed as an infinite series of sinusoidal expressions that exponentially decay as
the number of terms increases due to the damping from reflection. The amplitude of the
acoustophoretic force field is shown to be dependent on how close the input frequency is to
resonance. The movement of the generated acoustophoretic nodes due to changing the input
frequency is shown to correlate with how close the particle is to the transducer face. There is
maximum node movement potential directly at the face of the transducer and zero potential
for moving the node position directly at the opposing cabin wall.

5.1 Introduction

In this chapter, a dynamic model for the time averaged amplitude of acoustophoretic forces
is presented. This is done by first presenting and validating a transient one dimensional
wave equation solution. A steady state and transient infinite series for the amplitude of
acoustophoretic forces is then proposed. A discussion of the potential for particle actuation
as a function of changing the transducer output frequency is then performed.

The contents of this chapter are broken up into the following sections

• Section 5.2 : Acoustophoretics Equations

• Section 5.3 : Transient 1D Wave Equation

• Section 5.4 : Analytical Acoustophoretic Force Expression

• Section 5.5 : Analysis of the Dynamic Acoustophoretic Force

23
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5.2 Acoustopheretics

In an inviscid fluid, the time average of the acoustophoretic force, Fap a particle in a fluid will
experience is repeated:[20]:

Fap =
4 · π

3
· r3

p · (
2
3
· κ̃ · Real( f1 · P∗ · ∇P) − Real( f2 · ρl · V∗ · ∇V)) (5.1)

Where P∗ and V∗ are the complex conjugates of the pressure and velocity fields in the
fluid, respectively. The rest of the expressionare are given given in terms of the densities, ρ

and speed of sounds c where the subscript l indicates the liquid and p the particle:

κ̃ =
κp

κl
ρ̃ =

ρp

ρl
(5.2)

κl =
1

(ρl · cl)2 κp =
1

(ρp · cp)2 (5.3)

f1 = 1 − κ̃ f2 = 2 · ρ̃ − 1
2 · ρ̃ + 1

(5.4)

(5.5)

It can be observed from 5.28 that, when neglecting change of particles’ and fluids’ radius
and density due to pressure oscillations, the only time varying components are P, ∇P, V,
∇V. The radius and density oscillatory effects are negligible relative to their steady state
values, and therefore, their exclusion from the analysis is deemed an acceptable assumption.
In conclusion, in order to model the dynamics of the acoustophoretic force, only time varying
pressure and velocity fields propagating through a fluid must be derived.

5.3 Transient 1D Wave Equation

This section derives an expression for a pressure wave and as a function of the distance from
the pressure wave source in a fluid. This is then validated in Section 5.3.3 on page 28.

Wave Analysis Assumptions

In the analysis of this chapter, one dimensional waves are considered. This is because the
wave generating transducer’s face is set to be orthogonal to the axis that the particles will
be actuated along. Higher dimensional wave analysis would require a much more intensive
analytical treatment and is therefore beyond the scope of this thesis. 1-Dimensional treatment
is also shown to describe the majority of particle movement under acoustophoretic force and
is therefore deemed an acceptable assumption.

The source of the pressure wave in this chapter is assumed to be an ideal wave generator.
That is to say that the dynamics associated with changing the transducer emitting state from
off to on are neglected. While every transducer and voltage supply have associated dynamics,
these are largely present in the underlying electrical system. As a rule of thumb, electrical
systems are much faster than the mechanical excitation associated with the vibration that
generates the pressure waves and is therefore deemed and acceptable assumption. This as-
sumption is discussed when comparing the transient behavior of the presented wave equation
to experimental results in Section 5.3.3 on page 28. .

The transducer pressure wave output frequency response is not analyzed in this chapter.
The fact that true pressure wave amplitude being generated by the transducer varies has
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experimentally found to not play a large role in the overall dynamics present on air bubbles
experiencing the acoustophoretic force in this Thesis. The pressure output frequency response
of the transducer is therefore assumed to be flat response and the divergence from this is
considered a modelling uncertainty

5.3.1 Wave Analysis Derivation

As an initial analysis point, the pressure wave in the fluid is modelled as a harmonic time
varying wave. An expression for the harmonic pressure field, Pharm is given as the follow-
ing[17]:

Pharm(t, x) = Pamp · ej·(ω·t−k·x) (5.6)

Pamp is the amplitude of the pressure wave. k is the wave number of the wave given by
Equation 5.7, c is the speed of sound in the fluid, and ω is the angular velocity of the pressure
wave. t and x refer to to time and distance from the wave source, respectively.

k =
ω

c
(5.7)

The pressure wave propagation through the liquid can be modelled as the product of a
step function and the harmonic wave equation. The step function causes the pressure field to
propagate through the space of the fluid. The pressure wave travels at the speed of sound, c.
A representation of this traveling field, Pharm.p can be seen in Equation 5.8, where u(t − x/c)
represents the step function propagating along the x axis away from the source.

Pharm.p(t, x) = Pamp · ej·(ω·t−k·x) · u(t − x
c

) (5.8)

Whereby, the step function can be seen expressed in Equation 5.9

u(y) =

{
1, y >= 0

0, y < 0
(5.9)

An inverted pressure wave, Pharm.p.i, is now presented. The property of this wave is that
when the inverted wave is added to the wave shown in Equation 5.8, the total pressure field is
zero. This mathematical abstraction serves as a method for being able represent the gradual
disappearance of a field as this inverted wave "propagates" and cancels out the previous wave.
This is shown in Equation 5.11 where Pharm.p.i is added to another pressure wave, that is 180deg
out of phase of the initial wave. This inverted wave begins to propagate when the wave source
is no longer emitting. The time at which this occurs is denoted Tend. This can be seen in the
following Equations:

Pharm.p.i(t, x) = Pamp · ej·(ω·t−k·x+π) · u(Tend − (t − x
c

)) (5.10)

P(t, x) = Pharm.p(t, x) + Pharm.p.i(t, x) (5.11)

It can be noted that after Tend there is no longer a pressure field present in the fluid.
When the wave has propagated throughout the length of the cabin, it will reflect off of the

oposing wall to the transducer. When this occurs, some of the energy of the wave is dissipated
on the wall and the remaining wave energy will be sent in the opposite direction back towards
the transducer. The wave amplitude as it propagates towards the transducer will be reduced
by a damping factor, β. To express this, the pressure field approximation is supplemented
with the inclusion of another pressure wave expression, PR1. The corresponding step function
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acts in the opposite direction due the opposite travel direction. Because the time expressed
in the equations shown starts from when the wave is first reaches the opposing end of the
geometry, a delay variable, Tdelay is added to this reflecting wave’s step function. This refers
to the time it takes for the wave to first reach the chamber wall.

PR1(t, x) = β · Pamp · ej·(ω·t−k·(L−x) · u(t − Tdelay −
L − x

c
) (5.12)

Tdelay =
L
c

(5.13)

L represents the length of the chamber. It can be noted that the direction of propagation in
the step function from Equation 5.12 is opposite of that of Equation 5.8. It can also be seen that
the sign of the x coefficient in the exponential equation has also been inverted from Equation
5.8 and it is positive in Equation 5.12

The corresponding inverse of this Equation 5.12 can be seen as follows:

PR1.i(t, x) = β · Pamp · ej·(ω·t−k·(L−x)+π) · u(Tend − (t − Tdelay −
L − x

c
)) (5.14)

The fact that the wave will propagate an infinite times from each wall is used to create a
general equation for the the waveform that is produced by the transducer.

Ptot = Ple f t + Pright + Ple f t.i + Pright.i (5.15)

Ple f t =
∞

∑
n=1

β2·(n−1) · Pamp · ej(ω·t−k·x−k·L·2·(n−1)) · u(t − x
c
− 2 · (n − 1) · Tdelay) (5.16)

Pright =
∞

∑
n=1

β1+2·(n−1) · Pamp · ej(ω·t−k·x−k·L·2·n) · u(t − (1 + 2 · (n − 1)) · Tdelay −
L − x

c
) (5.17)

Ple f t.i =
∞

∑
n=1

β2·(n−1) · Pamp · ej(ω·t−k·x−k·L·2·(n−1)+π) · u(Tend − (t − x
c
− 2 · (n − 1) · Tdelay)) (5.18)

Pright.i =
∞

∑
n=1

β1+2·(n−1) · Pamp · ej(ω·t−k·x−k·L·2·n+π) · u(Tend − (t − (1 + 2 · (n − 1)) · Tdelay −
L − x

c
))

(5.19)

5.3.2 Quasi Standing Waves

An interesting property that emerges from the expression for the pressure field shown in
Equation 5.15 is that the summation of sinusoidal waves in a given space expresses the pres-
sure field as a quasi standing wave. For the purposes of this thesis, quasi standing waves
refers to pressure waves where the RMS of the sinusoidal waves along the x-axis is position
dependent and not time dependent with local mimimum and maximums for every wave-
length throughout the cabin. This can be seen when considering the harmonic wave equation
shown in Equation 5.6 as a sum of two opposite direction travelling waves with the same
frequency and amplitude :

P(x, t) = P1 · eω·t−k·x + P2 · eω·t+k·x = (P1 + P2) · eω·t·i · (ek·x·i + e−k·x·i) (5.20)
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Taking the real component of Equation 5.20 gives the pressure amplitude of the wave and
can shown to be the following:

Preal(x, t) = (P1 + P2) · cos(k · x) · cos(ω · t) (5.21)

In the steady state case where one of the waves has a different amplitude and phase, the
resultant pressure wave is the following:

P(x, t) = P1 · ei(ω·t−k·x+ϕ1) + P2 · ei(ω·t−k·x+ϕ2) = ei·ω·t · (P1 · e(i·(ϕ1−k·x) + P2 · e(i·(ϕ2+k·x)) (5.22)

Taking the real part of Equation 5.22 gives the following:

PRe(x, t) = P1 · (cos(ϕ1 − k · x + ωt) + P2 · cos(ϕ2 + k · x + ω · t) (5.23)

It can be noted that if, for a given frequency, that the wavelength is equal to the length of
the chamber, the resultant pressure field from Equation 5.23 will appear similar to Equation
5.21. While the intuition behind Equation 5.23 is not as clear as Equation 5.21, the resultant
pressure field at different frequencies has been plotted using a c value of 1430, a damping
coefficient of 0.7, and initial field amplitude of 1 and can be seen in Figure 5.1.

Figure 5.1: Plots of the RMS of the generated pressure fields as a function of distance from acoustic source. Because
the RMS taken, this pressure wave is considered position dependent and not time dependent.

It can be seen from the location of the peaks of Figure 5.1 that there is a dependency
between peak location along the x axis and frequency. This is to be expected as the wavelength
of the waves changes as a function of frequency. Another point of note is that, as the frequency
changes, the minimum and maximum values of the RMS of the fields change. This can be
seen further illustrated in Figure 5.2.

Figure 5.2: Minumum and maximum values of the pressure RMS tract the length of the cabin as a function of
frequency.
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It is the case that the difference between the minimum and maximum RMS of the signals
in Figure 5.2 is shown to be independent of frequency. While the difference between the
minimum and maximum RMS of a pressure wave is independent of frequency, this is not
the case for the amplitude of the acoustophoretic force. This is because the amplitude of
the acoustophoretic force is shown to be proportional to the product of itself and its spatial
derivative.This means that the higher the positional RMS gradient of the pressure wave, the
greater the acoustophoretic force.

5.3.3 Validation of Wave Expression

The experimental setup shown in the system scope has been used to test the validity of the
presented pressure wave expression. In this section, the transducer used is the Benthowave
BIL 8501-1000 driven at 150 V peak to peak sinusoidal waves. These tests were performed
using olive oil as a fluid medium at room temperature with a speed of sound, cl.oo of approx-
imately 1505 m/s and a density ρl.oo of approximately 860 kg/m3. 180 Wavelengths at a given
frequency were generated by the wave generator and measurements of the pressure field were
recorded using a hydrophone as shown in Figure 5.3.

Figure 5.3: This figure shows an image of the hydrophone and the transducer used to record pressure wave data
and the yellow line denotes the position the image recognition algorithm considers the transducer face. The black
region along the right side of the figure is the transducer face. This figure shows the features that have been
extracted from the image processing. The red ’+’ on the hydrophone is the calculated center of the hydrophone.

Steady State Wave Comparison

For the steady state wave comparison, the hydrophone was used to record a waveform every
6 seconds. Just before querying the oscilloscope for the waveform, the camera took a picture
of the fluid with both the transducer and the hydrophone visible.The distance between the
center of the hydrophone was away from the transducer face was calculated. Between the
six seconds interval between recordings, the hydrophone was slid slightly either forward or
backward in the fluid. The RMS of the measured hydrophone voltage was then taken after the
initial transient of the pressure wave had subsided The RMS of input waves with a frequency
of 900 kHz has been plotted and can be seen shown in Figure 5.4. This experimental RMS
data is plotted alongside the analytical RMS wave pressure generated using Equation 5.15 on
page 26 after it has settled. A damping coefficient of 0.6 was used, and an added positional
offset was added to the modelled wave to help align the modelled data with the experimental
data. This position delay was added because the true speed of sound of the fluid is not known
and therefore, the lack of alignment is assumed to be due to this. This is deemed acceptable
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because this analysis is more interested in testing to what extent the wave equation is able to
capture the relative change of wave position RMS as a function of changing position.

Figure 5.4: This figure shows a comparison of the steady state RMS of the wave equation as stated in Equation
5.15 as a function of position and the RMS of experimentally measured pressure waves at 900 kHz.

It can be seen that the trends of Figures 5.4 correspond well with the modelled waves. It
can be noted that movement of the hydrophone between samples was difficult to perform over
a larger range of positions than what was plotted in Figure 5.4. This is due to the wavelength
of the pressure wave at 900 kHz being approxiamtely 2.5 mm and the measurements were
taken by hand.

Transient Response

For the wave transient comparison, the hydrophone was used to record a waveform every 6
seconds. Just before querying the oscilloscope for the waveform, the camera took a picture of
the fluid with both the transducer and the hydrophone visible.

Four waveforms have been selected to be compared to the measured responses and can
be seen plotted in Figure 5.5. It can be noted that the amplitude of the axis of all Figures is
held constant. This is because the output amplitude of the pressure wave that the transducer
produces is the same regardless of distance and allows for the visualization of the relative
changes in amplitude.

It can be seen from Figure 5.5(a) through 5.5(d) that, the transients of the modelled waves
appear to correspond well with the overall tendencies of experimentally measured data.

When looking at the plots shown in Figure 5.5, it can be seen that the pressure starts at
zero with a delay before the pressure wave starts. This is because, as modelled, the pressure
wave has to first propagate to the location of the hydrophone. In the case plotted, this distance
is in between 9 and 11 mm relative to the cabin length’s 22.83 mm. Throughout all figures,
the pressure wave has fully settled at around 100 micro seconds. The time it takes for a wave
to propagate from the transducer to the opposite wall of the cabin is approximately 16 micro
seconds. It can be seen from the figures that number of reflections it takes to achieve pressure
field steady state time state is approximately 6 reflections, or 100 µs.

Figures 5.5(b) and (d) appear to correspond particularly well with the analytical approx-
imation. The distances from the transducer causes the analytical expressions of the pressure
wave to be near maximums and minimums for (b) and (d) respectively. This corresponds to
the hydrophone being close to the node and anti nodes of the pressure field. This indicates
that the analytical approximation appears to be a good approximation for the wave generated
by the transducer.

It can be noted that the transducer dynamics have been chosen to be ignored for the
analytical wave expression. This results in the blocky nature of the wave approximation.
While the step change nature of the modelled waves do not precisely reflect the transducer
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(a) 9.17 mm (b) 10.23 mm

(c) 10.54 mm (d) 10.72 mm

Figure 5.5: The top plots in each figure show the force amplitude generated by the transient one dimensional
wave approximation at different positions. The bottom plots in each subfigure show the force as measured by a
hydrophone submerged in a fluid when the Bentowave transducer is made to generate 200 wavelengths at 700
kHz. The y axis are held constant between the different figures for the experimental data and the modelled waves.

turn on and turn off dynamics, the relative amplitudes appear similar and this assumption is
validated.

Comments on Validation

There are several difficulties when comparing the modelled pressure wave response and the
recorded one. The angle of incidence between the hydrophone and the generated wave was
not able to be controlled, so the exact amplitude of the generated pressure field is difficult
to verify. The spatial measurement characteristics of the hydrophone are not known and it
could be the case that slightly angle differences could lead to large changes in measured in
amplitude. However, the angle appeared to very similar between every queried sample, so
this is assumed to be a negligible effect.

Another aspect of this validation that must be considered is that the speed of sound, cl.oo
has not been experimentally validated for the given liquid in the fluid and has been taken as
an approximate value for this type of fluid. The pressure field has also only been measured
at discrete points at different distances away from the transducer face and, as such, the full
continuum of the pressure field cannot be known. For these reasons, it is expected that, at a
given distance away from the transducer face, an unknown position error exists in the resultant
pressure waves. The positive and negative trend of the pressure amplitude for the analytical
expression and the measured data appears to align, and, for this reason, the analytical wave
expression is accepted.

As a whole, the proposed wave equation appears to do a good job at representing the
experimentally measured pressure wave along a single axis away from the transducer.
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5.4 Analytical Acoustophoretic Force Expression

The full derivation and simplification of the acoustophoretic force expression using the tran-
sient wave expression is mathematically tedious and can be found in Appendix A. This in-
cludes a dynamic model for the transient of the acoustophoretic force during the initial pro-
pogation of the pressure wave. The camera that is used by this thesis has a maximum fram-
erate of 50 Hz. This is multiple orders of magnitude slower than the initial pressure wave
transient and, for this reason, only the steady state expression is shown in this section.

An expression for calculating the acoutophoretic force up until the mth set of reflections
has been shown to be equal the following:

Fp(m) =
2 · P2

amp · ω

c
·

m

∑
n=1

[n−1

∑
i

β2(n+i)−3 · sin
(

2Lω

c
(n − i − 1) · L − x)

)
+ β2(n+i)−3 · sin

(
2Lω

c
· ((n − i + 1) · L − z)

)
+ Fp,last(n)

]
(5.24)

Where:

Fp,last(n) = β1+(n−1)·4 · sin
(

2ω

c
(L − x)

)
(5.25)

Practically, when Equations 5.24 and 5.25 are given numerical values for β, c, ω, and
L, an expression for the force field can be expressed as the summation of a single cos and
sin function with an angular frequency of 2 · ωk, where k is the wave number of the fluid.
The final wave field can therefore be expressed as the following, where n is the number of
reflections and ai and bi are the numerically solved contributions from the ith set of reflections:

Fp, f inal =
n

∑
i=1

ai · cos(2 · k · x) + bi · sin(2 · k · x) = Famp · sin(2 · λ · x + ϕ) (5.26)

This allows for easy modelling of the system during steady state. The derivation from the
force contribution from the velocity field, V at steady state, is the same as that for the pressure
field due to the velocity field simply being a 90deg phase shifted version of the pressure field
with a static gain [17]. This is given as the following:

Fv(n) = Fp(n) ·
(
− i

ω · ρ

)2

(5.27)

Therefore, the the total acoustophoretic force is given below:

Fap =
4 · π

3
· r3

p ·
(

2
3
· κ̃ · f1 · Fp(n) − f2 · ρl · Fv(n)

)
(5.28)

5.5 Analysis of the Dynamic Acoustophoretic Force

In this section, the acoustophoretic model presented in this chapter are now shown un-
der different operating conditions. Unless otherwise stated, the parameters of this analysis
are that shown in Table 5.1. These values are taken as they are used when validating the
acoustophoretic forces in Chapter 6 and, as such, variance from these values give insights
relevant to the interests of this thesis. Variance of the following parameters are considered;
pressure wave frequency, reflection coefficient of the chamber.



32 Chapter 5. Dynamic Acoustophoretic Force Modelling

Table 5.1: This is the table over initial parameters in this section

Parameter Description Value Units
L Distance from transducer to wall 22.83 [mm]
ρa Density of Air 1.27 [kg/m3]
cl Speed of sound in Olive Oil 1500 [26] [m/s]
ca Speed of sound in Air 343[14] [m/s]
ρl Olive Oil Density 860 [kg/m3]

Pamp Pressure Wave Amplitude 1 [kPa]
β Reflective Damping Coefficient 0.6 []

Acoustophoretic Force as a Function of Frequency

The model presented in this chapter shows that acoustophoretic nodes and antinodes are be
present along the x axis at a position that is dependent on the frequency. This can be observed
for three frequencies in Figure 5.6.

Figure 5.6: This figure shows the time averaged acoustophoretic as a function of distance from the transducer.

The first observation that can be made from Figure 5.6 is that the time averaged force field
oscillates between a maximum and minimum value in a sinusoidal manner over the x axis. It
can be found that the distance between oscillations is half the wavelength of the pressure field
present in the fluid. Should a particle or air bubble be at a position where the force is not
zero, it will experience a force in the direction of then nearest pressure node. The node of this
wave is one of two equilibrium points that a bubble could find itself at. The other is that of a
half wavelength away from a node, as no forces will be acting on the particle in this position.
However in reality, streaming effects that exist in the fluid will push the bubble away from
this position, so further consideration of it will not be made.

Another observation that can be made is that, as the transducer frequency is changed, the
location of the node is also changed. The relative change of the node appears to be lesser, the
closer it is to the opposing end of the chamber. This can more clearly be seen shown in Figure
5.7.
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Figure 5.7: This figure shows the change of the acoustic field plotted at three different distances from the trans-
ducer. (Left) : 0 to 3mm. (Middle) : 9.5 to 12.5 mm. (Right) : 19 to 22 mm. This figure highlights relative movement
of the maximum and minimums of the field at three different distances from the transducer.

From Figure 5.7, it can be seen that the movement of the node moves as a function of
frequency and original node position. When looking at the left plot of Figure 5.7, the peak
location change from a frequency of 800 kHz to 810 kHz is approximately .4mm. Comparing
this to the right plot, the same change in peak location appears to be less than .1 mm. This
shows that the nodes move much more as function of change in frequency the closer it is to
the transducer with almost no movement at the maximum distance away from the transducer.

The movement of specific nodes as the input frequency is changed has been plotted in
Figure 5.8. Nodes at approximately 0, 5, 12, 17, and 20 mm are shown to move over the
frequency range of 600-800 kHz.

Figure 5.8: This figure shows the movement of node postions as a function of frequency. The different full colored
lines at the beginning of the x-axis ( 600kHz) is where the initial node positions are. The different colors refer to
the different start positions of the individual nodes with the dotted lines showing the upper and lower bounds of
the given node’s movement. (Blue) moves 6 mm, (Red) : moves 4mm (Yellow) : moves 3 mm. (Purple) Moves 2
mm, (Green) : Moves 0.2mm.

The fact that the movement of the particle is dependent on the position of the particle
also presents a control difficulty. Giving a particle a reference position may not be feasible
from a given initial position and frequency, given a limit change of frequency is allowed. One
fortuitous observation that can be made from 5.8 is that the movement of the nodes appears
to be smooth in the region from 601 to 799 kHz.
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5.5.1 Acoustophoretic Force Amplitude as a Function of Damping

It was shown in the previous analysis step, that the amplitude of the acoustophoretic field
is dependent on frequency. To more clearly show this dependence, the acoustophoretic force
max amplitude has been plotted as a function of frequency over a 100 kHZ span and can be
seen shown in Figure 5.9.

Figure 5.9: This figure shows the maximum value of force a 127µ m air bubble could experience as a function of
frequency with a different damping values. The amplitude of the input pressure wave is 1kPa and is the same for
every beta value.

In Section 5.3.3, it was found that a damping coefficient, β that seemed to fit reasonably
well with the experimental data was a value of 0.6. For a beta value of 0.6, the maximum to
minimum acoustophoretic force relationship is approximately a factor of 4. If the reflectivity
is greater that this, then the ratio between the maximum and minimum force will become
greater. An interesting thing to note is that the minimum force appears to be independent of
damping coefficient. This means that, if the input to the system is the wave frequency, the
input gain always has a minimum value and that particle position actuation through the use
of acoustophoretic force should always be feasible.

5.6 Conclusion

In this chapter, a derivation of the dynamics pressure field has been derived and validated.
A dynamic model for the acoustophoretic force as a function of fluid and particle parameters
has been derived.

The expected relationship between acoustic wave frequency and force amplitude has been
shown to be nonlinear, though apparently periodic as a function of frequency and shown
to be bounded with respect to amplitude and continuous. The fact that the acoustophoretic
force can be shown to maintain a minimum value and sign suggests that control of individual
particles, if the contrast factors are large enough, should be possible to design.



Chapter 6

Air Bubble Modelling

Chapter Abstract

In this chapter, a model for the movement of particles is proposed and validated. The model
consists of using Newton’s second law to define the equation of motion for air bubbles. The
motion along the horizontal axis has been shown to mostly be due to the viscous damping
component of the fluid and the acoustophoretic force. The vertical movement has been shown
to be due to viscous effects and buoyancy. It was shown that when the acoustophoretic force
is present in the cabin, the viscous damping effect appeared to be lower, though this is inter-
preted as being part of an unknown streaming disturbance force in the fluid. Experimentally,
bubbles were shown to move and settle at the acoustic nodes in the fluid, thus validating the
x axis component of the acoustophoretic force expression.

6.1 Introduction

This chapter presents the actuation potential of air bubbles in commercially available olive oil
by the acoustophoretic force. Olive oil has been selected at the fluid medium due to its high
viscosity which acts to limit the terminal flotation velocity caused by the inherit buoyancy of
the air bubble.

In this chapter, the general equations of motion are presented for a particle in a fluid
with and without sonication. After this, the acoustophoretic force model is validated with
experimental data. The findings of this chapter will be used when designing control structures
for particles in the following chapters.

This chapter will be broken up into the following sections:

• Section 6.2 : Air Bubble Motion Without Pressure Field

• Section 6.3: Air Bubble Movement With Pressure Field Present

6.2 Air Bubble Motion Without Pressure Field

In this section, the motion of air bubbles are analyzed when no acoustic pressure field is
present in the chamber. Air bubbles’ vertical motion in olive oil are analyzed. This is done so
that the viscous force can be found and is required to model the horizontal movement of air
bubbles when the acoustic field is present.

The force balance for an air bubble along the vertical axis experiencing is assumed to con-
sist of three components; a viscous damping component, a buoyancy force, and an unknown
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36 Chapter 6. Air Bubble Modelling

streaming effect. The unknown streaming effect is due to turbulent motion in the fluid af-
fecting the air bubble. This turbulence occurs because air bubbles are forcefully added to the
fluid in order for there to be air bubbles present.This causes a turbulent internal fluid flow in
the chamber. The force due to turbulence is not analyzed in this chapter, but acknowledged to
be present in the motion measurements. The force balance can be expressed as the following
along the vertical axis, y:

M · ÿ = Fvisc + Fbouy + Fstreaming (6.1)

In this chapter, the viscous damping force is assumed to only be a linear function of
the velocity of the particle and therefore the Stokes Drag force is used.[4]. The Coloumb
and Stiction based nonlinear properties of the friction are chosen to implicitly be included
in the unknown streaming disturbance present in the fluid. The particles in this chapter are
assumed to be spherical in shape and therefore, the orientation of the particle does not affect
the amplitude of the force. The viscous force can therefore be expressed as the following:

Fvisc = −Bvisc · ẏ, Bvisc = rp · µ · 6 · π (6.2)

Where µ refers to the dynamic viscosity of the fluid. Equation 6.1 can be rewritten into a
state space formulation in the following manner:

ẋ = A · x + B · (Fbouy + Fstreaming), y = C · x (6.3)

Where

A =

0 1

0 − B
M

 , Bvisc =

 0
1
M

 , C =
[
1 0

]
, x =

[
y
ẏ

]
(6.4)

Fbouy is the difference between the up-drift and gravity forces on the particle given as the
following:

Fbouy = Fup − M · g (6.5)

With the upthrust, Fup being given as the following, where ρl is the density of the liquid,
Vb is the volume of the spherical particle, and g is the gravitational constant taken to be 9.82.

Fup = ρl · Vb · g (6.6)

The mass of the air bubble can be seen as the following:

M =
4π

3
· r3

p · ρair (6.7)

Drag Coefficient of Air Bubble

When the air bubble rises due to buoyancy, it will attain a terminal velocity, ẏterm whereby the
buoyancy force is equal to the drag force. This terminal velocity can be seen as a function of
particle radius by using Equation 6.1 and setting the acceleration to 0:

ẏterm =
2 g rp

2 ρl − 2 g rp
2 ρair

9 µ
(6.8)

For validation, the positions of a series of air bubbles in olive have been recorded at room
temperature as they float to the top of the liquid. The dynamic viscocity, µ of olive oil is
taken to be 0.04 [3]. It has, on review of this thesis been shown that this viscocity of olive
oil is appropriate for an olive oil temperature of approximately 40 degrees Celcius. At a
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temperature of 25 degrees, the viscocity has a value of 0.08. The terminal velocities can be
seen plotted as a function of bubble radius alongside Equation 6.8 as a function of the rp in
Figure 6.1 for olive oil at a temperature of 40 degrees and 25 degrees.

Figure 6.1: Comparison of the analytical and experimental terminal velocities of air bubbles where ρl = 860, µ =.04.
The orange and yellow lines are the analytical estimated terminal velocity and the dots are the terminal velocities
of measured air bubbles.

It can be seen from Figure 6.1 that the terminal floating velocity of air analytical expression
becomes very poor for air bubbles with a lower radius than 160 µm. There are two possible
reasons for this. The first is likely due to the method of calculating the bubble radiuses. The
image detection algorithm uses an edge detection algorithm to define where the air bubbles
are. The edges that are observed in the images are dark lines that are several pixels thick.
This outer edges of these dark circles are what is defined as the particle radius. For a bubble
radius of 120m, the diameter of the bubble is approximately 16 pixels wide. This means that
if the true inside of the bubble is first after a layer of 3 or 4 dark pixels, it is very likely that
the bubble radius would be overestimated by approximately a factor of 2.

Another reason why the estimate is poor is due to the fact that the frictional properties for
small air bubbles may not be the same for larger bubbles. It could be reasoned that, as the air
bubbles reduce in size, the energy required to cause small movements in the fluid does not
scale linearly in comparison to when a larger amount of fluid is moved. Further exploration
of this is beyond the scope of this thesis.

Due to aforementioned oversight by the author, the kinematic viscocity of the olive oil is
taken to be 0.04 throughout the remainder of the thesis.

6.3 Air Bubble Movement With Pressure Field Present

In this section, the acoustophoretic model derived in Chapter 5 is validated. This section is
broken up into validation sections: a qualitative validation where attraction of air bubbles to
the modelled acoustophoretic nodes is demonstrated, and a parametric analysis in order to
determine the amplitude of the acoustophoretic force. The bounding equation of motion for
an air bubble’s x axis motion is given as the following:

ẍp = Fap − B · ẋp + Fstreaming (6.9)

The nonlinear state space representation of particle movement is therefore taken to be

ẋ = A · x + B ·
(

Fap + Fstreaming
)

, y = C · x (6.10)
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Where

A =

0 1

0 − B
M

 , Bvisc =

 0
1
M

 , C =
[
1 0

]
, x =
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ẋp

]
(6.11)

6.3.1 Qualitative Acoustophoretic Force Validation

In this section, the trends of bubbles moving towards the acoustic nodes due to the acoustophoretic
force is demonstrated. This is tested by applying pressure waves to the chamber filled with
olive oil when bubbles were present. The frequency of the input wave is then increased at
approximately one second intervals. This has the effect of changing where the nodes are in
the fluid, causing a force to be present on the particle until its position settles at a node.
The movement of multiples particles as the frequency being generated by the transducer is
changed can be seen shown in Figure 6.2.

Figure 6.2: This top plot shows bubble position as the frequency generated by the transducer is changed and the
bottom plot shows the driving frequency of the transducer. The voltage of the transducer is held constant at 150V
peak to peak. The dotted lines in the top figure show the calculated node positions and the colored lines represent
experimentally found bubble positions as acquired from analyzing video footage.

It can be seen from Figure 6.2 that the bubbles are attracted to the pressure nodes in the
fluid. It was also observed that bubbles would sometimes travel from the nodes closer to
the transducer to nodes further away from the transducer. An example of this can be seen
at approximately 1 second on the bubble being represented by the green line. This bubble
moves from the node at approximately 7.5 mm to the node at approximately 8.5. This effect
was observed to occur more frequently for bubbles closer to the transducer. This is assumed
to be due to the pressure wave having some degree of damping as a function of wave travel
distance. Before the pressure wave has any reflections, its amplitude is the greatest. It could be
theorized that, if this wave component with the highest amplitude has a position dependent
damping, this would create a force gradient with a maximum value at the transducer face and
minimum at the opposite chamber wall. The influence of this effect would then be attenuated
for every consecutive wave reflection. This effect was found to occur more often, the closer
the transducer was run to the transducer’s resonant frequency of 960 kHz where the pressure
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wave output is greatest. However, this effect did not occur very often, and would mostly occur
when the turbulent flow was greatest. It is therefore considered to be a part of the unknown
streaming force.

It can be surmised from Figure 6.2 that the qualitative property of the acoustophoretic
forces attracting air bubble to the nodes of the quasi standing waves appears to be validated.

6.3.2 Parametric Analysis

From the acoustophoretic equation presented in Section 5.2 , it is shown that the amplitude of
the acoustophoretic force is dependent on the square of the pressure amplitude of the wave.
The actual amplitude of the pressure fields present in the fluid is not given by the transducer
manufacturer[2] and difficult to measure experimentally, and for this reason, the pressure
wave amplitude has been fitted to experimental data.

A single particle from the data in Figure 6.2 has been taken and has been plotted in Figure
6.3. The input frequency provides concurrently larger input frequency steps to the system
and this allows for showing the acoustophoretic model over a large range of the changed
node locations and current bubble positions.

Figure 6.3: This figure shows the movement of a particle when affected by different input wave frequencies by
the transducer. An offset of 0.3 mm is added to the modelled data to make them lie on top of each other. The
modelled pressure wave amplitude is set to be 1 kPa and the fluid viscosity is set to .04. The particle radius here
is measured and modelled to be 145 µm.

The disturbing acoustic streaming force has a stochastic element and which can cause the
bubble to not lie directly at a given acoustophoretic node. An example of this can be seen in
Figure 6.3 between 0 and 2 seconds. This is because the acoustophoretic force is a force that is
greater the further away from the acoustic node the bubble is and therefore a relatively small
acoustic streaming force could displace the bubble slightly. Multiple frequency change steps
to the bubble are therefor necessary to properly validate the movement of particles.

It appears to be the case that the experimental bubble dynamics shown in Figure 6.3 aligns
very well with the modelled bubble bubbles. Both the steady state movement of nodes and
the velocity of the air bubbles as the pressure wave frequency is changed appear very similar
to each other. While more rigorous analysis could be performed to find a better value for the
pressure wave amplitude, the results appear to align well enough that it would be unclear
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to what extent a greater numerical analysis of system parameters would provide a benefit
and not just result in over fitting . For this reason, a pressure wave amplitude of 1kPa and a
damping coefficient of 0.6 are accepted.

It was shown in the acoustophoretic force analysis in Section 5.5 that the change of the
nodes relative to the change in frequency became less pronounced the further away from the
transducer the bubbles were. To show that this also is the case experimentally, a number of
bubbles are plotted at varying distances from the transducer and can be seen in Figure 6.4.

Figure 6.4: This figure shows how multiple bubbles move the same input frequency timeseries. The axis limit
ranges are the same for all figures. The air bubbles radiuses are, from the top to bottom, : 133, 127, 101, and 105
micro meters. The input transducer frequency is the same as Figure 6.3. The movement of the modeled total node
movement from the top figure down to the bottom figure are : 0.90 mm, 0.63 mm, 0.39 mm, and 0.28 mm. The
axis limits are held the same in all plots to show the different absolute node movements.

It can be seen when comparing the bubble positions in the top and bottom plots of Figure
6.4 at 1 and 8 seconds that the total movement of both the measured and modeled bubbles
reduces the further away from the transducer. The movement characteristics of the modelled
and experimental data align very well for the four different bubbles shown.

To show that the the model for air bubble movement is appropriate, an air bubble with a
size of 101 micro meters has been taken from Figure 6.4 and its velocity has been compared
with simulated bubbles using different bubble radiuses in Figure 6.5.
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Figure 6.5: This figure shows the measuremtent velocity of a bubble simulated with the inputs of Figure 5.5
WATCH THIS compared to simulations of the same inputs whereby the radius is different from the measured
data. The subplots show only when the input frequency is changed.

It can be seen in Figure 6.5 that for first, third and fourth figure, using the experimen-
tally measured bubble radius causes the velocity of the modelled data to best align with the
measured. It can be seen, however, that the peak value of the measured velocity does not
necessary equal the peak value of the simulated. This could be due to the liquid parameter
uncertainty, amplitude of the simulated pressure waves not aligning with the experimental,
or the damping coefficient of the waves not equaling the experimental conditions. However, it
is clear that the velocity change of the simulation appears very similar to the experimentally
found data.

Analysis Comments

One consideration that must be taken into account when analyzing the motion of the bubble
as a frequency reference is changed is the location of the particle relative to the transducer.
The video that recorded the fluid with the air bubbles in it did not show the edge of either
transducer. With a horizontal video resolution of 1280 pixels and a pixel per meter value
of 1.33e-5, the video frame shows approximately 17 mm. While it was not measured it is
assumed the center of the video corresponded to the center of the distance between the two
transducers. This means that, when measuring from the left side transducer, the particle
positions should have an offset of 2.7 mm.

The calculation of the acoustophoretic force is proposed analytically as an infinite sum.
However, in order to calculate the force an air bubble would experiences, the expression has
been calculated numerically. In order to model this practically, only 15 reflections are taken
into account. This is because the amplitude of the reflective bubbles after this many reflections
is less than 1e-8 of what the original pressure amplitude is.

6.3.3 Vertical Acoustic Interference

It has been experimentally observed that the presence of a pressure field in the cabin seems
to apply a force on the bubble in the vertical direction. This changes the force balance of an
air bubble to being the following:

ÿ · m = Fbouy − Fdrag + Fsonication (6.12)

An experimental test was performed under the same conditions as 6.1. However, in the
beginning of the video, sonication was enabled for two seconds and then turned of. The
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positions of the air bubbles was recorded and their terminal velocites were found. The results
of this test can be seen plotted in Figure 6.6

Figure 6.6: This figure shows the analytical expression (yellow and purple) for the expected terminal velocity of
particles for air bubbles and the terminal velocity bubbles before and after a 900 kHz sinusoidal wave with a peak
to peak voltage of 150 Volts from the Benthowave Transducer is activated. The same bubbles are analyzed with
and without the pressure field present.

It can be seen in Figure 6.6 that there is a offset in the average terminal velocities of the
air bubbles when the pressure field is present. This corresponds to this pressure field having
a vertical force component that is a function to both the velocity of the particle and being
depedent to the radius of the bubble squared.

There also appears to be a stochastic element to the change of the damping during the
presence of the acoustophoretic force. It is likely that what appears to be stochastic is due to
the two or three dimensional nature of the pressure field that is present in the liquid. It can
be seen in its datasheet[2] that the Benthowave transducer has a multipole force generation
characteristic that is not captured by the 1 dimensional approximation. It is unknown however,
to what degree of accuracy one would have to be achieve in modelling before deterministic
properties of the pressure waves can be determined with any degree of certainty. For this
reason, this off axis force will have to be accepted as an intrinsic part of the system whereby
the divergence from the expected force is accepted as system disturbance.

6.4 Conclusion

In this chapter, the model for the aristocratic forces presented in Chapter 5 was validated. The
dynamics of air bubbles excited by acoustophoretics is dominated by the characteristics of the
acoustophoretic force. The initial position of the air bubbles has shown to play a large role
in the potential for actuation by changing the frequency of the pressure wave affecting the air
bubble. The similarity between the modelled air bubbles and experimental dynamics means
that the nonlinear model can be used as a tool for further developing identification methods
and control strategies for air bubbles.



Chapter 7

System Identification of Bubble Move-
ment

Chapter Abstract

This Chapter presents an Extended Kalman Filter used to characterize the unmodelled force
affecting the movement of air bubble. The scope and purpose of the system identification
methods used are introduced in Section 7.2. In Section 7.3, the model for an air bubble expe-
riencing an acoustophoretic force implemented is implemented in the EKF. The EKF includes
a disturbance force state that represents the non-modelled forces in the system. The selec-
tion process of the covariances in the EKF is presented which used the nonlinear model of
an air bubble with simulated measurement noise to assign variance values which minimizes
the error between output of the EKF and the nonlinear model. The disturbance force state
of the EKF is then shown to be able to observe the amplitude and duration of a simulated
disturbance force affecting the air bubble in the nonlinear model. The disturbance force es-
timate in the EKF is shown to be sensitive to noise on the measurements. The EKF is then
used to observe experimental datasets from frequency step inputs and control data. The node
position estimate of the EKF caused the disturbance state to attribute the difference between
the experimental node positions and modelled node positions as a disturbance force. The EKF
was shown to provide a reasonable estimate for the disturbing streaming force when the air
bubble movement was small, but did not provide a good estimate when the air bubble moved
far away from the initial node position. The sum of forces in the process model was shown to
be able to be used as a potential tool for improving the modelling parameters.

7.1 Introduction

It has been shown in Chapter 6 that the experimentally measured movement of air bub-
bles corresponds fairly well with the proposed dynamic model of particles excited by the
acoustophoretic force. However, there are still distinct points when the model diverges from
the experimental data and this has, until now, been accepted to be due to an uncharacterised
streaming effect in the fluid. This chapter gives a proposal for characterising this disturbance
force on air bubbles with the use of an Extended Kalman Filter (EKF). In the process of devel-
oping this EKF, a Linear Kalman Filter was developed. The implementation of the LKF and a
discussion of its findings can be seen in Appendix B. This chapter is broken into the following
sections:

• Section 7.2 : System Identification Design goals
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• Section 7.3 : Extended Kalman Filter

• Section 7.4 : Selection of Covariance Parameters

• Section 7.5 : EKF on Nonlinear Model Data

• Section 7.6 : EKF on Experimental Data

• Section 7.7 : Improving Model Parameters With EKF

7.2 System Identification Design Goals

In this section, the system identification scope, goals, and an overview of the input data used
in this chapter are presented.

Scope

The Extended Kalman Filter methods used in this chapter is a parametric method. The ex-
pected parametric structure is shown in Figure 7.1.

Figure 7.1: This figure shows an approximation of what the system structure is assumed to look like for a bubble’s
x axis motion. B corresponds to the viscous damping component of the fluid and m refers to the mass of the air
bubble.

It can be observed from Figure 7.1 that the streaming effect is modelled as process noise
with a streaming effect block. In this chapter, the process noise is assumed to be a stationary
white noise input, whereas the streaming effect is some unknown transfer function that gives
the streaming force a defined spectral characteristic. In reality, the streaming effect transfer
function may not necessarily be a stationary transfer function. However, Kalman Filters have
been shown to still give physically insightful estimates of unknown system parameters over
a broad range of individual parameter nonlinearities. The Kalman Filters’ state estimates are
therefore interpreted by the author and discussed as they are shown.

Goal 1: Improved Estimation of System Behavior

There is a lack of an established model for the movement of particles in experimental setups
similar to the one used by this thesis. A number of parameters in the dynamic model for air
bubbles have been estimated such as the pressure wave amplitude, the exact densities and
speeds of sound of the fluid and air bubbles, and the acoustic reflective damping coefficient
of the cabin. For this reason, it is not unlikely that the system model parameters could be
improved by analyzing the disturbing forces that are not classified by the presented model for



7.2. System Identification Design Goals 45

air bubbles. Therefore, improvements to the estimation of air bubbble dynamics will act as a
metric for increasing the trustworthiness of the presented model and, therefore, is a desirable
system identification outcome for this chapter.

Goal 2: Characterization of Acoustic Streaming Effect

It has previously been established in this thesis that the dominating factors that affect air bub-
bles during acoustophoretic actuation are: the acoustophoretic force, viscous damping, and a
streaming effect of the fluid. While fairly good estimates can be made for the acoustophoretic
force and viscous damping effects, it is impractical to try to estimate the streaming force. This
is because estimation would require advanced imaging methods or computational fluid dy-
namic based models that cannot be simulated online. These methods are beyond the scope of
this thesis, and the dynamic characterization of the unknown disturbance force using Kalman
Filters is assumed to result in a similar outcome at a significantly reduced computational
cost. The characterization of this complex disturbance is therefore a desired outcome of the
methods used in this section.

Input and Data Selection

For the purpose of the design of the Extended Kalman Filters in this chapter, the system
identification time series dataset set is a recorded air bubble that was used in Section 6.3. The
air bubble trajectory and pressure wave frequency input can be seen shown in Figure 7.2.

Figure 7.2: This figure shows the position and velocity of an experimentally recorded bubbles. The input freqency
to the transducer is shown in the bottom figure. [color=green]The bottom figure needs updating

The input frequency and position dataset begins after the bubble has settled. The step
times have also been selected so that the bubbles appears to have settled before the input
is changed. The dataset has been selected because it shows how the bubbles responds to
different wave frequency step sizes. This has been included because the acoustophoretic force
has nonlinear components related to the amplitude of the wave frequency and position of the
air bubble. The selected dataset demonstrates the air bubbles moving absolute position and
has a wide range of input amplitudes and is therefore an appropriate test dataset.
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7.3 Extended Kalman Filter

It has been shown in Appendix B that the Linear Kalman Filter is capable of generating what
appears to be a reasonable estimate for what an acoustic streaming is. However, the fact that
the estimation of dynamics present in the LKF are required to conform to the static system
matrices upon initialization caused the disturbance state to have a hard time being decoupled
from the disturbance due to linearization. Nonlinearities have been shown to exist in the
amplitude of the acoustophoretic force as a function of the input frequency. Nonlinearities
have also been shown to exist in the movement of nodes as a function of frequency. It is
therefore beneficial to include these nonlinearities directly in the Kalman Filter and this has
done with the use of an Extended Kalman Filter (EKF).

This section consists of first presenting the bounding equations of the EKF, followed by
showing an implementation of the acoustophoretic equations in the EKF. [8]

Extended Kalman Filter Bounding Equations

The EKF algorithm consist of two steps: a prediction step where a system process model is
used to estimate what the change of the system states is expected to be and an update step
where the measured states are used to update the estimated value of the system states. The
EKF can be used to estimate system state values given a discrete system in the form :

ẋk = f (xk, uk) + vk, yk = g(xk, uk) + nk (7.1)

Where n(k) refers to a zero mean Gaussian noise with covariance N that represents the
measurement noise, and v(k) refers to the process noise affecting state with covariance M. The
covariances are defined as the following, where E{x} refers to the expected value of x:

E{v(k) · vt(k)} = N E{n(k) · nt(k)} = M (7.2)

The EKF generates an estimate for x, denoted x̂, which attempts minimizes the square
error of x, where k is a given time step and j are the previous data values. It can be noted that
the EKF cannot be said to be an optimal system observer due to the nonlinearities present in
the system model:

x̃(k|j) = x(k) − x̂(k|j), min||x̃(k|j)||2 (7.3)

The state estimate is given by the following expression:

x̂(k + 1k + 1) = x̂(k + 1) + K(k + 1) · [y(k + 1) − Cd(k) · x̂(k + 1|k)] (7.4)

Here, K refers to the Kalman gain which is updated depending on how similar the mea-
sured states are to the process model in the EKF. The physical intuition behind this matrix
is that a high relative gain value indicates more faith in the system model and a lower rel-
ative gain value indicates more faith in the measurements. The EKF estimation algorithm
prediction step consists of the following:

x̂(k + 1|k) = x(k|k) + Ts · f (xk, uk) (7.5)

P−1(k + 1) = Ad(k) · P(k) · AT
d (k) + V · M · VT (7.6)

Equation 7.5 generates an updated estimate for the value of the x state based on the sys-
tem model and is shown using a Forward Euler discretization, though other discretization
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methods may be used. The discrete Jacobian of the system process model, Ad, for the given
timestep and the discrete linearized output matrix Cd are used when updating the system
state error covariance matrix , P−. To calculate P−, the previous timestep’s predicted state er-
ror and the preassigned covariance matrices M are also used. The system and output matrices
are expressed as the following:

Ad(k) =
δ f (xk, uk)

δxk
, Cd(k) =

δg(xk, uk)
δxk

(7.7)

The update step consists of three equations: updating the Kalman Gain in the form of
Equation 7.8, updating the state estimate using Equation 7.9 , and updating the error state
covariance using Equation 7.10.

K(k + 1) = P−(k + 1) · CT
d (k) · [Cd(k) · P−(k + 1) · CT

d (k) + N]−1 (7.8)

x̂(k + 1k + 1) = x̂(k + 1) + K(k + 1) · [y(k + 1) − Cd(k) · x̂(k + 1|k)] (7.9)

P(k + 1) = [I − K(k + 1) · Cd(k) · P−(k + 1) (7.10)

In Equation 7.10, I refers to an identity matrix with dimensions equal to the number of states.

Implementation of Acoustophoretic Force in EKF

This section shows how the nonlinear acoustophoretic force expression is implemented in
the EKF. The expression for the system process matrix can be seen shown in Equation 7.11,
where xp refers to the air bubble position and Fdist refers to an immeasurable disturbance state
attributed to the streaming effect in the fluid.

ẋ1

ẋ2

ẋ3

 =

 fx1

fx2

fx3

 =

 ẋp

ẍp

Ḟdist

 =


x2

Fap

m
− x2 ·

B
m

+
x3

m
0

 (7.11)

The output state matrix is constant, linear, and represents measuring the position and velocity
states of the particle:

Cd(k) = Cd =
[

1 0 0
0 1 0

]
(7.12)

The air bubble is assumed to be settled at the location of a node during the initialization
of the EKF. This means that the initial node position can be excluded from the expression
of the acoustophoretic force. The acoustophoretic model presented by this thesis has been
shown to be good at predicting the movement of particles and nodes, but has offset errors for
the location of specific nodes. If this initialization offset is added to the acoustophoretic force
equation for a specific bubble, the fluid streaming disturbance force will not have to take into
account this disturbance. The acoustophoretic force, Fap, can therefore be approximated as the
following :

Fap = k f · sin(2 · λ · (∆xnode − ∆xp) (7.13)
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The expression for the system matrix, Ad, is now given using Equation 7.7 :

Acont|k =


0 1 0

−2 k f λ cos (2 λ (∆xnode − ∆x)) − B
m

1
m

0 0 0

 (7.14)

The difference between the expression given in Equation 7.14 and the system matrix used
for the Linear Kalman Filter is that, for every timestep, k f , λ, and xnode all have to be evaluated.
While this puts a higher computational strain on the control system, this demand is still
small compared to the image processing involved in air bubble position measurement and is
therefore deemed an acceptable inclusion.

The evaluation of the node position for a given timestep is performed in the same manner
that is done when performing the initial linearization shown in Section 8.4 on page 70.Repeated
briefly, this is done by finding the nearest acoustic node using a 1D search algorithm to define
this node position as being where the acoustophoretic force is a minimum. The difference
between the nearest node and the initial air bubble position is subtracted from the node posi-
tion in initialization of the EKF. The movement of this found node is then calculated for every
timestep as a function of the input frequency.

The amplitude of k f is found by using a lookup table that has been found at 1 kHz fre-
quency interval. The k f value can be seen plotted as a function of frequency in Figure 7.3.

Figure 7.3: This figure show the maximum acoustophoretic force an air bubble with a radius of 100 µm experiences
as a function of frequency.

The state estimation is performed using a Forward Euler Approximation in the following
form :

x1.k+1
x2.k+1
x3.k+1

 =

x1.k
x2.k
x3.k

 + Ts ·


x2.k

1
m

(
−2 · k f .k · λkcos(2 · λk · (∆xnode.k − ∆x1.k)

)
0

 (7.15)

It has been found, when implementing the EKF in Simulink, that using the camera’s fram-
erate of 50 Hz as the sample rate for the state estimation, the EKF does not produce a mean-
ingful estimate for the system state and state estimation blowup occurs. This is assumed to
be because the movement and acceleration of a particle between sample steps is too large
to accurately estimate accurate state positions. The solution for this instability is to perform
oversampling in the state estimation. The state estimation step time has therefore been set
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to 1e − 4 s. This means that the state estimation runs approximately 200 times between each
frame. The rest of the EKF algorithm still uses the camera frame rate as a sample time and
only samples from this over sampled state estimation every time a new frame is processed.
This has been shown to provide calculation stability. It can be noted that k f and the node
position change are also only updated with the framerate. This is acceptable because the the
nearest node to the air bubble does not change in the intersample period and the frequency is
not changed between framerate samples.

7.4 Selection of Covariance Parameters

One of the challenges present when designing Kalman Filters as trustworthy disturbance
observers is the selection of appropriate covariance values. This is because, if the values are
selected incorrectly, the output of the EKF will not produce a good representation of the
disturbance force present in the system. In this section, the EKF has been implemented in
the nonlinear model and the selection process of the noise variances of the process noise and
measurement noise values are presented. The initial state covariance, P− is selected to be zero.
The measurement noise matrix, N, state process noise matrix, M, and P− matrix are defined
to be the following:

N =
[

σx 0
0 σv

]
, P− =

[
0 0
0 0

]
M =

mx 0 0
0 mv 0
0 0 md

 (7.16)

It can be seen that there is assumed to be no cross state covariance in the measurement and
process noise matrices. This is because states in the system represent physically independent
variables where it can be understood that the variables do not interact aside for how they do
in the system process model. While adding cross state variances may improve the accuracy
of the EKF state estimates, it adds significant complexity to the solution space as it more than
doubles the amount of parameters that must be tuned. For this reason the cross state variances
has been held at zero.

To add clarity in the presentation for the parameter selection process, the final tuned
covariance values are shown in Equation 7.17.

N =
[

3.2e − 12 0
0 3.2e − 9

]
, P− =

[
0 0
0 0

]
M =

2.2e − 11 0 0
0 5.4e − 9 0
0 0 1e − 16

 (7.17)

7.4.1 Measurement Noise Selection

The noise covariance function can be estimated directly from the variance of measured po-
sition values when the input to the system is at rest. This can be approximated using the
sample covariance as given by the following equation:

cov(A, B) =
1

N − 1

N

∑
i=1

(Ai − µA) · (Bi − µB) (7.18)

Where µ refers to the sample means of dataset A and B. Due to the variance of the mea-
sured states being the covariance of the measured states themselves, the equation for the
sample variance can be used instead:
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σ̂A =
1

N − 1

N

∑
i=1

(Ai − µA)2 (7.19)

A section of the identification data has been selected that has been detrended and the
sample covariances of the position, σxp, is 3.2e-12. and the velocity variance is the calculated
at the numerical derivative of this value.

To show how the EKF estimates the position and velocity states when being run in the
nonlinear model as the covariances deviate from the simulated noise can be seen shown in
Figure 7.4.

Figure 7.4: This figure shows the position and velocity state estimates generated by the EKF when the covariances
are changed. The simulated noise has a variance of 3.2e-12 respectively. The red line represents selecting the
covariances to be that which has the same ratio of position to velocity measurement noise covariances as the
simulated noise on the measurements. The blue line represents having a higher position variance than the initial
and yellow represents having a higher velocity variance.

It can be seen from Figure 7.4 that, while the position and velocity output states of the EKF
follow the trajectories of the sampled data from the nonlinear model, there is an apparent
tradeoff between the accuracy of the position data and the velocity estimate errors as the
covariance values change. This can be seen when comparing the blue lines in the left and
the right plots. These both have higher velocity state covariance relative to their position
variances, therefore their velocity error is lower. The opposite pattern can be seen for the
yellow lines in both figures which are better at estimating the position than velocity.

Due to the cross coupling between position and velocity variances when selecting ap-
propriate measurement variance values, a larger solution space of the velocity and position
measurement states variances has been found. This consists of running the EKF outputs for
different values of position and velocity variances in the nonlinear model, with noise simu-
lated on the position and velocity data. The metric for quantifying the performance of the
EKF is therefore to calculate the error between the output of the EKF and the modelled posi-
tions and velocities without noise on the signal. A conglomerate error value is then found by
calculating the minimum velocity and positional RMS error for each queried simulated in the
solution space. This minimum error is then subtracted from every error value in the solution
space and the logarithm of this normalized RMS is calculated across the solution space. These
new normalized minimum position and velocity errors are squared and added to each other.
This is referred to as the conglomerate error. When the conglomerate error is at a minimum
refers to the points where the EKF is able to best estimate the position and velocity values. A
surface plot over the queried solution space can be seen in Figure 7.5
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Figure 7.5: This figure shows the RMS error solution space of varying velocity and position variances in the EKF
when varying the process variance values of the position and velocity states. The axes of the two plot are held
the same with the left plot. There are 12 queried values in the position and velocity variances that the errors have
been found in.

It can be seen when comparing the position and velocity solution spaces from the left and
middle plots of Figure 7.5 that, by adjusting the measurement noise covariances, either a good
position or velocity estimate can be found. When looking at the conglomorate error in the
right plot, there is a trough of values where the congolomorate error is minimized. On thing
that is interesting when looking at the conglomorate error, is that the minimum error shown in
the trajectory has an approximate conglomorate error value of 2. The minimum conglomorate
error occours when the ratio between the velocity and position noise is the same as that which
is simulated.

The value that has been selected that for the measured noise sigma values are given seen
below:

N =
[

3.2e − 12 0
0 3.2e − 9

]
(7.20)

7.4.2 Process Noise Variance Estimation

This section demonstrates the design process of finding appropriate values for the process
noise state variances. First the disturbance state estimation analysis is shown and then the
position and velocity state variance analysis is presented.

Disturbance State Estimation

The process noise for the disturbance state acts as a force affecting the change of the velocity
state, therefore the process variance values of the position and velocity states has been initially
been set to zero. This is because the individual state estimate diverging from the measure-
ment data is already attributed to the measurement noise. As an initial analysis point, the
EKF has been implemented with a disturbance state covariance value, md of 1e-15 and the po-
sition states of the EKF can be seen plotted alongside the modelled air bubble position as the
frequency input is changed in Figure 7.6. It can be noted that, because the nonlinear system
equations are implemented directly in the EKF, the only disturbance in the system is due to
the discretization of the system equations and interpolation effects in the calculation of the
maximum acoustophoretic force.
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Figure 7.6: This figure shows the position the EKF state outputs over different disturbance state variances as the
frequency input is changed..

It is to the surprise of the author that increasing the variance of the disturbance state does
not cause the output of the EKF to match that of the simulated measurement state input. It can
be seen however, that, as the disturbance state covariance increases , the measured position
state begins to take in the characteristic change of the simulated measurement noise on the
signals. This can be seen in the middle plot in between 4.6 and 4.7 seconds when comparing
the green lines with the yellow and blue lines. The yellow line, representing a higher variance
oscillates more with the measured noise than the blue line which has a lower covariance. This
is also the case on the not shown velocity state.

It is worth considering that the step nature of the input excites high frequency components
of the system dynamics. These high frequency components cannot be properly adapted to for
frequencies above the Nyquist Frequency by the EKF without process noise covariance on the
measured states. For this reason, the way that the disturbance appears in the position state
is due to the EKF first adapting the disturbance state which is then used to calculated the
change of the velocity state. The velocity state is then integrated and it is first here that the
position is able to be made to follow the measured data. This adaptive EKF delay means that
that the EKF disturbance state measurement effectively has a maximum bandwidth which is
dependent on the sample rate for the EKF.

Position and Velocity State Variance

Implementing position and velocity state variances can be interpreted as allowing the state’s
process to deviate from the system model. Because the EKF is calculated at a sample frequency
of 0.02, higher frequency dynamics can not be adapted to by the EKF. The inclusion of these
state variances allows for an instantaneous dynamic to be present on the air bubble, attributed
to process noise, that is not captured by the EKF. Process noise has the property as being a
statistical distribution and therefore, can changing instantaneously.

The error solution space of varying the position and velocity state variance has been found
in a similar manner as the solution space for varying the velocity and measurement solution
spaces in Figure 7.5 on the previous page and can be seen shown in Figure 7.5 with a distur-
bance state variance of 1e-16. The initial search values selected for the position and velocity
variance values are the respective state’s measurement noise variances.
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Figure 7.7: This figure shows the solution space for the position and velocity errors of the EKF compared the
nonlinear model when varying the process variance values for the position and velocity states. The nonlinear
model was modelled with noise on the position and velocity states and the output of the EKF is compared to the
modelled air bubble position and velocities without noise. 12 values of position and velocity variance are shown
varied.

When looking at the cool spots in the position error RMS in left graph Figure 7.7, it can
be seen that the minimum error values lie on the edge of the queried solution space. This
suggests that the state variance of the velocity should be further explored beyond the limits
shown in Figure 7.7. It can seen in the middle plot, that the position error RMS approaches a
minimum in the shown solution space. It can also be seen in the right plot that the minimum
conglomorate error is shown to be close to zero. This means that, by increasing the state
variances, the tradeoff between position and velocity state accuracy is minimized. It has not
been shown, but another iteration of the solution space was solved for and the following
values have been selected for the M matrix which corresponded to a minimum conglomorate
error.

M =

2.2e − 11 0 0
0 5.4e − 9 0
0 0 1e − 16

 (7.21)

The tuned EKF position and velocity states of the EKF can be seen plotted alongside the
input states with and without noise in Figure 7.8.

Figure 7.8: This figure shows the position and velocity outputs of the EKF as implemented in the nonlinear model
right as the wave frequency is changed. Noise is simulated on the position and velocity measurements and the
positions and velocities with and without the noise are shown.

It can be seen in Figure 7.8 that the velocity and position EKF states are are now able to
instantaneously follow the measured states. It can be seen that, when comparing the blue and
yellow lines in the different plots that the EKF velocity state appears to adapt to the noise on
the measured signal. However, the measurement noise appears to be attenuated and the state
errors have been shown to be minimized. On top of this, if the variance is made lower than
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it is, the EKF cannot fully capture the true higher frequency dynamics of the air bubble. It
may be the case that more tuning of the disturbance state covariance may be able to further
improve the performance of the EKF but the performance of the EKF is deemed acceptable at
the shown iteration.

7.5 EKF on Nonlinear Model Data

In this section, the output of the EKF is analyzed when being implemented in the nonlinear
model. This is done by analyzing the forces that the EKF estimates there to be when running
the nonlinear model. A simulated disturbance force is then applied to an air bubble in the
nonlinear model during the system identification test trajectory and the EKF’s ability to detect
this disturbance is analyzed..

Considering the EKF Force Estimation

The trustworthiness of the EKF state outputs is determined by its ability to accurately char-
acterise the dynamics of the process it is observing. In this section, this is analyzed by con-
sidering the force balance in the system process as simulated by the nonlinear model and
comparing it to the force estimates in the EKF.

Every time a measurement is read by the the EKF, the prcoess model in the EKF directly
estimates the forces that affect the air bubble that cause the change of the air bubble states.This
can be seen in Equation 7.22.

ẍ2 =
1
m

·
(
−B · x2 + Fap + Fdist

)
(7.22)

If the EKF force balance can be shown to be able to replicate the total forces in the nonlinear
model, it can be considered to be able to accurately characterize the system dynamics. This
can then be taken to say that it can correctly observe the disturbance force amplitude that
deviates from this model, such as the streaming effect in the fluid. In order to demonstrate
the EKF’s capability of doing this, the force values as calculated in the EKF process model
and the, the acoustophoretic force and friction force, as simulated in the nonlinear model, are
measured and compared. The friction, acoustophoretic, and disturbance force terms, have
been plotted in Figure B.4.

Figure 7.9: In the top plot of this figure, the force balance as output by the nonlinear model and the forces,
as calculted in the EKF process model right as the input frequency is changed in a frequency step. The bot-
tom plots show, the "Sum of EKF Forces" refers to the sum of the disturbance force state, the process modelled
acoustophoretic force, and the friction force present in the EKF model. The "Sum of Modelled Forces" refers to the
sum of the acoustophroretic force and friction force that are present on the modelled air bubble.
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When looking at the forces in the top two plots of Figure 7.9, a number of observations can
be made. The first is that the predicted acoustophoretic force, as seen by comparing the purple
and blue lines, appears to be overestimated by the EKF, however its decaying characteristic
appears to be similiar to what the modelled acoustophoretic force is. The second thing that
can be observed is that the EKF friction force appears to have a timestep delay as can be seen
by comparing the green and red lines. This occurs due to the low sampling time of the EKF,
causing there to be a delay. When looking at the disturbance force, as represented by the
yellow line, it appears to be good at counteracting the overestimation of the acoustophoretic
force amplitude and compensating for the underestimation of the friction force amplitude.

When looking at the sum of forces in the bottom plots of Figure 7.9, it can be seen that,
when input is first changed, the EKF appears to overestimate the total forces present on the air
bubble. After this overestimation, for the next couple of timesteps after the change of input,
the EKF underestimated the total the force on the air bubble. This is due to the adaptive nature
of the EKF causing the disturbance force to try to compensate for the incorrectly estimated
total force on the air bubble on the first timestep. It is also the case that the EKF has a, not
shown, Kalman gain K and process model P matrix that is adapting to the measured states in
the system. These adapting matrices attempt to cause the estimation state error to converge.
The low sampling frequency means that a satisfactory rpresentation of the air bubble force
balance in the EKF, right as the input is changed, difficult to achieve.

When considering the sum of forces in the EKF and modelled forces in the bottom plots
of Figure 7.9, it can also be seen that the noise on the measured states cause there to be a
stochastic variance on the sum of modelled force in the EKF. This can be seen in the bottom
right plot between 5.8 and 6.2 seconds. It can also be considered that the mass of the air
bubble is small relative to the forces acting on it and therefore high frequency components of
the system dynamics necessarily will affect the air bubble to a high degree. In this manner, it
is difficult to decouple the noise on the air bubble from the true system dynamics

It is, however, clear from the data in the bottom plot when the input to the system, and,
therefore, the total forces acting on the bubble, is changed. It is therefore assumed that a
lower frequency input dynamic would also be detectable as a function of the sum of EKF
forces. Overall, this analysis demonstrates that the EKF is capable of characterizing the air
bubble dynamics in the nonlinear model to a fair degree.

Ability to Observe Disturbance Force

In this section, the ability for the EKF to correctly characterise a step disturbance acting on the
air bubble is shown. To demonstrate this, a disturbance step of 2e-7 N has been simulated as
affecting the air bubble between 2.2 and 3 seconds and can be seen shown in Figure 7.10.
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Figure 7.10: This figure shows the response of the EKF to a force step of 20e-7 N that occours between the times
of 2.2 and 3 seconds. The "EKF Modelled Fap" refers to the acoustophoretic force estimate from the EKF process
model in the middle plot. The "Actual Fap" refers to the modelled acoustophoretic force acting on the air bubble.

It can be seen that in Figure 7.10 that the EKF is able to both determine the amplitude
and duration of the disturbance force affecting the bubble. It can be seen that the EKF is
also capable of maintaining a good estimate for the acoustophoretic force when the air bubble
moves to a different acoustic node. This can be seen in the top plot by the bubble position
moving one wavelength away from its original node between 2 and three seconds. It can
however, be seen as the air bubble settles at the new node at 2.8 seconds the disturbance force
appears to have a small positive dip. This is due to the high frequency dynamic present on the
acoustophoretic force as it quickly changes value. This dip is also shown to quickly disappear.
Overall, the EKf is able to demonstrate the ability to characterise a disturbance force affecting
the air bubble on the nonlinear model.

7.6 EKF on Experimental Data

In this section, the results of applying the EKF is shown on experimental data. This is first
shown on the system identification dataset. The EKF is then applied to a control trajectory
test set shown in Section 8.5 on page 77.

7.6.1 EKF on System Identification Test Set

The results of applying the EKF to an experimental test data set can be seen shown in Figure
7.11. The position and input frequency data has also been used to simulate the acoustophoretic
force that would be experienced in the nonlinear acoustophoretic force model and this can be
seen in the yellow line in Figure 7.11. The maximum acoustophoretic force for the given input
frequencies has also been found and the maximum and minimum force an air bubble could
experience before moving to a different node is shown as the dotted lines in Figure 7.11.
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Figure 7.11: This figure shows the output of the EKF when being applied to the experimental system identification
dataset. The frequency input is the same as what is shown in Figure 7.10. In the bottom plot, the "EKF Predicted
FAP” is the acoustophoretic force generated by the EKF process model. The "Simulated FAP" is acquired by finding
the force that the nonlinear acoustophoretic force expression would give for the air bubble position. "Max Fap"
refers to the calculated kmax for the input frequency.

The first thing that can be noted by the disturbance state of the EKF, as denoted by the blue
line in the bottom plot in Figure 7.11, is that the disturbance state remains close to zero over
the full dataset. This suggests that the air bubble remains close to the modelled node position
over the full test dataset. It can also be seen, by looking at the blue line in the bottom plot
that, while there are small disturbance force peaks when in the input is changed. It can also
be seen that the highest disturbance force occurs when the maximum acoustophoretic force is
highest. While this may be a true representation of the disturbance force on the bubble, it may
also be the case that the maximum acoustophoretic force is estimated incorrectly. It can be
understood that the maximum movement a bubble will experience from an acoustophoretic
node would likely occur when the maximum acoustophoretic force is lowest. This aligns
well with the fact that the air bubble has a large relative movement between 2 and 3 seconds
when the acoustophoretic force is low. However, there is also a relatively high amount of
movement between 4.5 and 5.5 seconds when the acoustophoretic force should be highest and
it is therefore difficult to say conclusively how trustworthy the amplitude of the disturbance
estimate is.

When looking at the acoustophoretic force in Figure 7.11 between 2.2 and 6.8 seconds,
the acoustophoretic force slowly goes from being negative at 2.2 seconds, to positive at 3.2
seconds, and back to negative from 5 seconds to 6.8 seconds. This flowing characteristic of the
disturbance aligns well with the interpretation of the acoustic disturbance force as a slowly
changing random walk force. Skepticism must, however, be held when attempting to interpret
the amplitude of the disturbance force, because a small change of the speed of sound in the
fluid could or a different reflective damping coefficient could quickly lead to the modelled
acoustophoretic force amplitude being very different from what is modelled.

Overall, the step-like nature of the input allows for observing the flowing nature of the
fluid streaming effect. However, the step like nature of the input does not allow for discerning
the reliability of the EKF over a larger range of air bubble positions, nor does it allow for
seeing how the motion of the air bubble changes to a continuously changing input frequency.

7.6.2 Characterizing the Linearly Controled Bubble Response

In this section, control response data is analyzed to demonstrate the EKF’s ability to illuminate
parametric modelling uncertainty in the presented acoustophoretic force expression. For the
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control response shown in Section 8.5 on page 77, the frequency input is a function of the
reference position which changes slowly over the dataset. The input dataset for the test data
shown in the previous section consists of a series of discontinuous steps between input values.
The air bubble position, velocity, and input frequency, is taken from the control trajectory and
is considered as just an input dataset for the EKF in this section. In this manner, the air bubble
reference and control error are disregarded and not considered.

The calculation of the disturbance force is dependent on the fact that the acoustic node
location is predicted correctly. The node position calculation in the EKf is shown plotted
alongside the measured air bubble position over the control trajectory in Figure 7.12. For
reader clarity, the acoustophoretic force expression present is repeated below.

Fap = kmax · sin(2 · λ(xnode − xnode.init) − (xp − xp.init)) (7.23)

Figure 7.12: This figure shows the EKF’s estimated node movement. The initial node position is taken to be
the position of the node at 25 seconds. The minimum and maximum wavelength is 1.2 and .9 mm occurring at
frequencies of 800e and 700 kHz respectively

It can be noted that the node position is controlled by a PI controller which functionally
places the acoustic node closer to the reference location than the bubble. For this reason, it is
not expected that the air bubbble position and node position should lie on top of eachother.
The node position should instead oscilate between being at a higher position than the air
bubble when the bubble has a positive velocity and a lower position when there is a negative
velocity present. It can be seen that this is not the case in the dataset, as the node does not
travel the same distance that the air bubble travels. It can be seen that, as the air bubble is
moved further away from the initial position, the EKF node position appears to underestimate
the change of the node position. Because the EKf has no mechanism for adapting to modelling
uncertainties due to incorrect estimation of the node location, the disturbance force cannot
give a meaning estimation for the streaming force on the bubble.

The input can be seen to change continuously between input values in the bottom plot
of Figure 7.12. When a continuous input is used for the EKF, the relatively large instanta-
neous change that were found in disturbance state due to modelling discretization should
be less prevalent. This is due to the fact that the node position is changed slowly, so the
acoustophoretic force will change slower, and therefore, have lower amplitude high frequency
components. This suggests that the maximum change of acoustophoretic force between time
steps should be smaller, and the EKF should be better at maintaining state estimate continuity.
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Consideration of the Force Balance

The EKF has shown the ability to maintain force balance continuity fairly well in the nonlinear
model. This section analyzes the force balance as given by the EKF as the node settles at the
end of the dataset. The fact that the force continuity is maintained by the EKF means that
Fdist is solved for such that the change of the velocity corresponds to the forces present in the
system. The equation of motion for the air bubble as implemented in the EKF is repeated
here:

ẍp = ∑ F = −b · ẋp + Fap + Fdist (7.24)

The force balance over the last couple seconds of the control trajectory, as calculated by the
EKF, is shown in Figure 7.13. The last seconds of the control dataset is selected because the
node position offset is taken to be at the settled node location, and therefore, the results of the
EKF node estimate going from poor to good are shown.

Figure 7.13: This figure shows the last seconds of the control trajectory. The "EKF sum of forces" in the middle
plot refers to the disturbance state plus the acoustophoretic force expression plus the friction as calculated by the
EKF process mode.

It can be seen in Figure 7.13 that the disturbance force returns to zero at the end of the
dataset. This is due to node position appearing to correlate well the experimental bubble lo-
cation. However, it can be seen in the middle plot, when looking at the the sum of forces and
estimated forces without the disturbance force, the modelled force appears to be mostly can-
celled out by the disturbance force. This is not what is expected, as, if the forces affecting the
air bubble was properly estimated by the EKF, the disturbance should have minimal influence
on the sum of forces.

The summation of the forces of the forces modelled by the EKF does, however give an idea
of the total experimental forces present on the air bubble. When considering what constitutes
the acoustophoretic force expression, there is both the node position and the amplitude of the
attractive domain force. If the EKF process model is correct, the characteristics of the EKF sum
of forces should align with the sum of the acoustophoretic force and friction the air bubble
experiences as describe the by EKF process model. This can be seen to begin to be the case
as from 22 seconds to 25 seconds. This is assumed to be the case because the node estimation
becomes much closer to the "true" node location. It must, however, be held in mind, that the
EKF was shown to not give a completely accurate estimate for the sum of forces on the air
bubble when a step input was used. For this reason, further analysis is required to discern
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how well the modelled sum of forces by the EKF can be considered representative of the true
sum of forces present on an air bubble.

7.7 Improving Model Parameters With EKF

It is stated as a goal in the start of this chapter, that the system identification methods pre-
sented should be able to provide the ability to improve the system model. This section dis-
cusses methods in which the EKF can achieve this aim. This is done by first comparing the
sum of forces that the EKF provides when applied to the previously shown control data. A
discussion of how the nonlinear model can be used, along with the output of the EKF on
experimental data, to tune the modelling parameters..

EKF Force Balance Compared to Maximum Acoustophoretic Force

In the control data trajectory, it was shown that the steady state error in the node position
estimation limited the EKF’s ability to characterise the acoustic streaming force affecting the
air bubble. The other parameter of the acoustophoretic force, the maximum acoustophoretic
force, is independent of the air bubble position and only a function of the input frequency.
Because the input frequency is varied between 800 and 610 kHz over the control data input and
the fact that acoustic resonance occurs with approximately 32 kHz intervals, the amplitude of
the acoustophoretic force is expected to experience multiple maximums and minimums over
the control input dataset as the velocity of the air bubble is high. Because the frequency is
changed in a manner reminiscent to a ramp function in the control data, it can be expected
that, as the input causes the acoustic field to go in and out of acoustic resonance, the sum of
forces should oscillate in a similar manner. This is because the force acting on an air bubble
goes from minimums to maximums as a function of this resonance. To demonstrate this being
the case, the absolute sum of forces present in the EKF process model, has been shown plotted
alongside the modelled maximum acoustophoretic force as it is changes due to the input and
can be seen in Figure 7.14 on the facing page

It can be seen when looking at between 7 and 9 seconds in the top plot of Figure 7.14 that
the maximum sum of force present on the air bubble ocurs the input frequency is changing.
The fact that force peaks are present supports the peaky nature of the acoustophoretic force
model. On top of this, the sum of forces have peak values that appear at a similar frequency
in which the simulated maximum acoustophoretic force occurs. As a whole, the peaks from
the sum of EKF forces appear to line up with the maximum acoustophoretic force.

There are also a number of points where the peak force experienced by the air bubble does
not precisely align with the modelled maximum acoustophoretic force. This can be seen to
be the case at approximately 7 seconds where the maximum sum of forces peaks after the
modelled force peaks. This may, however, be due to the adaptive nature of the sum of forces
presented by the EKF. The sum of forces adapts to conform to the measurement data and this
could likely cause a delay on where the maximum force peak occurs. This is reinforced by the
fact that the resonance occurring at this time is only present for a very short amount of time
as seen in the yellow lines.

The analysis of the sum of forces affecting the air bubble is made difficult due to the fluid
streaming force affecting the air bubble. The presence of this force could make the air bubble
be pushed away from the acoustic nodes at any time over the dataset. This means that there
is an expected variance on the peak locations when looking at specific given force peak.

Overall, the sum of force peaks appear to align well with the modelled acoustophoretic
force peaks and it is difficult to decouple the adaptive nature from the EKF disturbance state
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Figure 7.14: This figure shows the sum of forces generated by the EKF when using the experimental control dataset
compared to the maximum acoustophoretic force that is generated by the acoustophoretic force expression for the
given frequency. The sum of force in the left axis of the top plot refers to the summation of the acoustophoretic
force, the friction force, and the disturbance state force as is calculated in the process model.

measurement from the "true" force maximums and minimums affecting the bubble..

Comparing Modelled Data to Experimental Control Data

It has been shown that it is difficult to make qualitative arguments about the nature of the
force experienced by an air bubble from the sum of forces by the EKF from experimental data
alone. However, the fact that the maximum force, as calculated by the EKF, experienced by
the air bubble aligns relatively well with the maximum acoustophoretic force suggests that
further analysis of the control data may be able to provide additional information about the
acoustophoretic force affecting the air bubble. In this section, the control input frequency
data and initial air bubble position are used as inputs in the nonlinear model. The results
of using the EKF on the modelled air bubble is then compared to the results of the EKF on
the experimental bubble location. This is used to show where the modeling uncertainties are.
The nonlinear model response to the control frequency input and initial position can be seen
plotted alongside the measured control data in Figure 7.15.
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Figure 7.15: The control input frequency dataset is used as the input for the nonlinear model and has been plotted
along the experimentally found bubble movement. In the bottom plot, there are two different axis for the blue and
orange lines, respectively, and this allow for easier comparison of their waveform characteristics.

It can be seen in the top plot of Figure 7.15 that the node movement of the modelled air
bubble does not exactly capture the experimental air bubble movement change. This suggests
that the modelled speed of sound in the liquid is likely higher than that of the experimental
fluid. A higher speed of sound would cause the acoustic wavelength in the fluid to be shorter
and, therefore there will be less node movement.

Another modelling uncertainty that can be seen when looking at the middle plot in Figure
7.15 is that the modelled velocity underestimates estimates the experimental velocity. This can
be seen to be the case over the whole dataset. This could be caused by a number of factors.
One reason could be due to the friction expression for air bubbles not being representative of
the single constant damping coefficient used. In the air bubble modelling chapter, it was also
suggested that the air bubble recognition algorithm may greatly overestimate the air bubble
radius due to the low resolution of the camera used. This would also mean that the air bubble
actually has a lower radius than what is modelled. This would lower the frictional coefficient
experienced by the bubble relative to the acoustophoretic force and could cause the velocity
to peak in a manner more reminiscent of the measured data.

The input frequencies to the nonlinear and experimental model is the same and, for this
reason, the times at which the air bubble velocity changes the most, and, therefore, where
the air bubble experiences the highest acoustophoretic force are expected to line up with
eachother. It can be seen that this is not entirely the case when looking at the velocity and
sum of forces output by the EKF in the last 10 seconds of the control trajectory. This can be
seen plotted more clearly in Figure 7.16

Because the frequency input and sampled measurements fed to the EKF in the nonlinear
model are sampled at the same sample frequency as the experimental data, the influence of
the delay effect from the EKF adapting to the data can be expected to be the same. For this
reason, if the nonlinear model and the experimental are both excited primarily by the acoustic
force, the times at which the sum of forces are highest should be the same. When comparing
the experimental and modelled EKF force sums in the bottom plot of Figure 7.16, it can be
seen that the frequency of the maximum sum of forces occurs appears to be different form
each other. This can be seen between the times of 20 seconds and 25 seconds in the bottom
plot where the experimental force peaks at a higher frequency than the modelled. This likely
occurs due to the previously noted incorrect estimate for speed of sound in the fluid. This
speed of sound determines at what frequencies the acoustic resonance occurs in the fluid. The
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Figure 7.16: This figure shows the last 10 seconds of the velocity and sum of forces data shown in Figure 7.15

results shown in the figure further reinforces the fact that the speed of sound is estimated
to be higher than what the experimental fluid’s speed of sound is, because a lower speed
of sound in the fluid would mean that the frequency interval between acoustic resonance
occurring in the fluid would be greater. This would lead to the acoustic force peaks occurring
at a lower frequency than what is used in the nonlinear model, similar to what is shown in
the experimental data.

7.7.1 Model Improvement Discussion

The qualitative differences between the modelled and experimental air bubble velocity change
and sum of force characteristics shown in Figure 7.16 are admittedly quite minimal. This,
added to the fact that the noise is present on the signals, suggests that the used acoustophoretic
force expression is a good estimation for the true experimentally occurring acoustophoretic
force. To conclusively improve the air bubble model, a different dataset would be beneficial.
Using a simple input frequency ramping input would likely allow for more clear differences
in the trends between the modelled and experimental change of velocity characteristics. If this
was the case, the limitation of the EKF sample frequency would not play as large of a role
when interpreting the force balance of the EKF process model.

The generated sum of forces by the EKF can be considered as producing an expression that
has the same qualitative characteristics as the true forces affecting the air bubble. Skepticism
must be held when comparing the amplitude between the experimental and modelled sum
of forces as there is likely an experimental streaming force, that is hard to decouple from the
shown force. The sum of forces amplitude is also hard to use as a metric as there are multiple
factors that cause a force difference between the experimental and control data and it is easy
to misattribute amplitude differences to the wrong modelling parameters. With that said,
comparing the characteristics between the modelled force and experimental force generate
by the EKF has demonstrated the ability to be used as a metric for improving modelling
parameters.

One potential improvement for the EKF would be to add a node movement offset state.
This would potentially allow for the EKF to able to characterise the streaming force on the air
bubble over a larger position range. This was not included in the presented EKF as the tuning
of this extra state must be performed with caution, as it would be very easy for the streaming
force affecting the bubble to be attributed to the change of this state. The fact that there exists
a mapping between the true node position and the input frequency would need to be taken
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into account and this would likely require a different type of Kalman Filter.

7.8 Chapter Conclusions

This chapter has shown that the presented Extended Kalman Filter has demonstrated the abil-
ity to characterise the acoustic streaming force on an air bubble when the air bubble remains
close to its initial position. It has also demonstrated the ability to potentially be used as a tool
for improving the parameter estimation in the air bubble model. The fact that the node posi-
tion of the modelled air bubble was not the same as the experimental air bubble movement in
the control dataset was a conclusively limiting factor in the ability for the EKF to be used to
characterise the streaming force affecting the air bubble over as the air bubble moved far away
from its initial position. When interpreting the output of the EKF, the frequency components
of the system dynamics present on the air bubble must also be taken into account. Overall,
the EKF has demonstrated promise as a tool that can be used when analyzing the position
and velocity data of air bubbles experiencing the acoustophoretic force.



Chapter 8

Air Bubble Linear Control Design

Chapter Abstract

This chapter presents the control scope and a linear control structure proposal to actuate air
bubbles. This consists of defining the control requirement and presents a system reference
trajectory with a maximum reference position change of 1 mm/s and zero steady state error.
The acoustophoretic force is then and the dynamics of air bubbles is shown to be a static
gain at low frequencies and has a second order damping characteristic close to the Nyquist
frequency set by the camera frame rate. Two PI controllers are then designed. The first was
shown to be tuned too aggressively and the disturbance present due to the difference between
the nonlinear model and the linearized model caused instability. A second controller was then
designed with a lower proportional gain that was shown to work experimentally and in the
nonlinear model over a large range of air bubble radii. The second controller demonstrated
good disturbance rejection and had satisfactory performance for the designed requirements.

8.1 Introduction

In this chapter, the acoustophoretic force is linearized and the linearized dynamics for air
bubbles experiencing the acoustophoretic force are analyzed. This analysis is used to design
a linear control strategy that can actuate the air bubbles along a predefined reference both in
the nonlinear model for and experimentally. This chapter consists of the following sections:

• Section 8.2 : Control Objectives and Scope

• Section 8.4 PI Controller for Individual Particle

• Section 8.5 : Updated PI Controller

8.2 Control Objectives and scope

Control Scope

Air bubbles larger than 200 µm will not be considered when designing the control structure.
This is because their bouyancy force in olive oil makes it so that it is deemed impracticable to
cause it to actuate to a position before it floats beyond the range of the camera.

It has also been decided that particles smaller than 50 mm will not attempted to be con-
trolled. This is because the radius of these particles are less than 5 pixels and the image
recognition algorithm used by this thesis cannot reliably recognise objects of this size. On top
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of this, in olive oil, these particles float very slowly in the fluid and are therefore, limited in
the number of solid particles they can quickly be actuated toward.

In order to simplify the control design process, the amplitude of the voltage supplied to the
transducer is held constant. While the Bentowave transducer does has a frequency dependent
pressure output wave amplitude gain, what this output gain actually is taken appearing in
the form of a disturbance.

The input frequency has also been given a saturation limit of 400 kHz to 1200 kHz. When
the controller is initialized, an initial frequency of 800 kHz is assigned to the transducer. This
has been implemented because the datasheet for the Bentowave shows that its output pressure
wave amplitude is greatest in this range.[2]

Design Objectives

In designing the control structure for the air bubbles, the interest of this thesis is to achieve
multiple aims. These will be presented and explained in terms of priority below.

Design Objective 1: Dynamic Performance : 1 mm per second

The first control objective is the dynamic performance of the air bubble actuation. The reason
for this requirement is that the air bubbles that will be actuated experience a buoyancy force.
The purpose of the designed control structure is to cause a bubble to reach a plastic particle
before the bouyancy causes the bubble to float past the plastic. A value of 1 mm per second
has been selected due to it being lower than the approximate maximum speed that was seen
when changing the input frequency when designing the Extended Kalman Filter in Chapter
7. This has been shown to be a sufficient requirement to achieve bubble/plastic collision.

Design Objective 2: Zero Steady State Error

Zero steady state error is a requirement because the control goal is to cause air bubbles to
interact with solid particles in the fluid. For this reason, it is required that air bubbles must
be made reach the reference location with zero steady state error to ensure contact.

Design Objective 3: Capable of Rejecting Streaming Disturbances

Bubbles are added to the olive oil by manually shooting a syringe filled with air into the
cabin. The bubbles are added with a high force because it is the impact of the air with the
bottom of the cabin that causes the volume of air to break apart chaotically and spreading
small bubbles throughout the cabin. When this occurs, a chaotic turbulent flow is present in
the cabin. This turbulent flow of the fluid imparts a force on the bubbles and plastic particles
in the fluid. This acts as a disturbance on the particle that the control strategy must be able to
reject. It is also recognised that the 1D field wave approximation used in this thesis is only an
approximation of the actual pressure field in the cabin and therefore, modelling uncertainties
exist will appear as disturbances must be rejected.
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Control Reference Trajectory

A reference control trajectory has been selected that controllers designed in this section are
tested on. This trajectory can be seen in Figure 8.1.

Figure 8.1: This figure shows the control reference trajectory the controllers will be tested on.

The selected trajectory shown in Figure 8.1 consists of moving the bubble up and down
with a max slew rate of 1 mm/s. When the controller is initialized, the initial bubble position
is added to the control trajectory. The maximum movement that the controller makes the
bubble move is 4.5 mm. This trajectory requires a large input frequency range, making sure
that the controller will be able to make bubbles move to many of the plastic particles in the
recorded image frame.

8.3 Linearization of Air Bubble Model

In this section, physical intuition, along with a first order Taylor Approximation is used to
generate a linear parametric model for air bubbles. This model is used for the design of the
linear controllers presented in this chapter.

The force acting on an air bubble has been shown to be a attraction towards the nearest
node of the quasi standing waves. For this reason, if the pressure wave that is being trans-
mitted from the transducer is held constant, the x axis motion of the particle, xp, can be
approximated as a mass damper system with a nonlinear spring component and an unknown
streaming force:

m · ẍ = bvisc · ẋ + Fstreaming + Fap( f , x) (8.1)

Where the acoustophoretic force can be expressed as Equation 8.2, with kamp( f ) being the
mapping of the amplitude of the acoustophoretic force to a given frequency:

Fap = kamp( f ) · sin(2 · λ · (xnode − xp)) (8.2)

When the frequency is held to be constant, the node position, xnode can be seen to be
mapped to a set of locations that exist a half wavelength of the acoustic pressure wave from
eachother. That is to say that there are multiple node positions in the fluid that are all constant
for a given frequency. It has also been shown in Section 5.3.3 on page 28 that the settling time
of the pressure wave is approximately 2 orders of magnitude faster than the refresh rate of
the camera used. This means that when the frequency is changed, the node location can be
considered to change instantaneously from the perspective of the controller.
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Figure 8.2: This figure shows a mass damper system made to be representative of the forces acting on a air bubble
when acoustophoretic forces are present.

For a small change of frequency where the node movement, incited by knode(∆ f ), is small,
there can be assumed to be a linear mapping between between the node position and fre-
quency. This was shown during the analysis of the acoustophoretic force characteristics in
Figure 5.8 on page 33. In this way, the node position from Equation 8.2 can be linearized to
the following:

FAP = kamp( f ) · sin(2 · λ
(
(xnode, f 0 + knode.∆ f · ∆ f ) − (xp0 + ∆xp)

)
) (8.3)

If the air bubble has settled and the streaming effects are small when the system is initial-
ized, the initial node position and bubble location can be assumed to lie on top of eachother
and these terms can be disregarded. The acoustophoretic force can thereafter be expressed as
the following:

FAP,∆ = kamp( f ) · sin(2 · λ(knode.∆ f · ∆ f − ∆xp) (8.4)

This function is linearly approximated using a first order Taylor Approximation as Equa-
tion 8.5. This approximation requires the assumption that the particle will always be close to a
node or else the sin(x) = x approximation does not hold. This approximation also assumes that
the acoustophoretic force is constant over the frequency range used. This will be discussed
shortly.

FAP,∆ = kamp. f0 · 2 · λ · knode.∆ f · ∆ f − kamp. f0 · 2 · λ∆xp (8.5)

Replacing the coefficients multiplied by ∆ f and ∆x in Equation 8.5 with k f and kxp re-
spectively, where k f is the change of node position due to frequency and kxp is the linearized
amplitude of the acoustophoretic force, allows for expressing the acoustophoretic force in
change variable form. The change variable expression for the equation of motion for a parti-
cle is expressed by placing Equation 8.5 into Equation 8.1 with the new coefficients:

m · ∆ẍp = −b · ∆ẋp − kxp · ∆xp + k f · kxp · ∆ f + Fstreaming (8.6)

This expression can now be rewritten in the Laplace domain:

∆xp(s) =
−k f · kx

m · s2 + b · s − kx
· ∆ f (s) +

1
m · s2 + b · s − kx

· Fstreaming(s) (8.7)

The state space formulation of the linearized system equations are shown below, with the
exclusion of the disturbance state, Fstreaming:

ẋ = A · x + B · Frad, y = C · x (8.8)
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Where

A =

 0 1

−
kxp

M
− B

M

 , B =

 0
k f · kxp

M

 , C =
[

1 0
0 1

]
, x =

[
∆x
∆ẋ

]
(8.9)

:
Numerical values are found for k f and kxp for the initial bubble position and wave fre-

quency are now found and the output of the linearized model is shown. kxp will be considered
first. This term corresponds to the maximum acoustophoretic force a bubble could experience
if it was in an antinode. To demonstrate the variance of the maximum acoustophoretic force
amplitude as a function frequency, it has been solved for numerically for a bubble with radius
of 100 µm and is shown plotted in Figure 8.3.

Figure 8.3: This figure shows the maximum attractive force an air bubble with a radius of 100 µm will experience
in olive oil as a function of frequency.

It can be seen that the value of maximum acoustophoretic force and, therefore kxp, varies
periodically as a function of frequency with a slight gradient over the range shown. The
value that has been selected as a linearizatino point is 1.5 · 10−7 because it is at approximately
halfway between the maximum and minimum values. This means that the streaming force
estimate will always be somewhat close to the expected value, though it is worth considering
that, it can still be off by a factor of up to 2.5. Bubbles are expected to controlled to different
reference locations and this is done by moving acoustic nodes along with the air bubble. For
this reason, the frequency is expected to span over multiple acoustic maximums and mini-
mums during the control trajectory and, therefore, choosing a middle value for the amplitude
of the acoustophoretic force is a necessary and acceptable compromise.

It can be noted from Equation 5.28 on page 31 that the kxp coefficient scales with an η

value as given below, where rp0 is 100 µm as given in Equation 8.10.

η =
(

rp

rp0

)3

(8.10)

The second value that must be estimated is k f . If the air bubble dynamics are considered
to be similar to a mass spring damper system, this coefficient can be thought of as the pre-
stressing a spring could experience that would make the bubble attracted to different steady
state locations. It has been shown in Figure 5.8 on page 33 that the change of node positions
is dependent on the initial bubble position.

The method selected for numerically linearizing the change of node position is to use the
acoustophoretic force expression to find the nearest node location from an initial air bubble po-
sition. The method of finding the nearest node location is to perform a one dimensional search
algorithm to find the nearest node by defining this to be the point where the acoustophoretic
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force is at a minimum. The found nearest node location will be within one half wavelength of
the reference air bubble location and therefore, the movement of this node is deemed repre-
sentative of the movement for the real experimental node. With an input frequency of greater
than 700 kHz, the modelled node location will always be within 1 mm of the the reference
bubble and therefore, the modelled bubble should move similarly to the reference bubble. Af-
ter this nearest node is found, the simulated frequency in the acoustophoretic force is adjusted
by 5 hertz in the positive and negative direction and the found change of the node locations
are used to calculate k f using Equation 8.11:

k f =
∆xnode

∆ f
=

xnode. f +5Hz − xnode. f−5Hz

10Hz
(8.11)

The node change constant can be seen for the different initial bubble locations in Table 8.1.

Table 8.1: This table shows the different node constant values as the distance from the transducer is changed. The
initial bubble location refers to the experimentally found initial bubble position.

Initial Bubble Location k f

8.4 2.653e-8
12.7 1.873e-8
15.4 1.248e-8

It can be noted from Table 8.1 that the change of the node location varies by a factor of
greater than 2 for the bubble locations shown, with the bubbles closer to the transducer having
a greater node movement coefficient. This corresponds to there being a different input gain
value, k f in the system, as the absolute value of the position state diverges from the initial
linearization point. This also means that, as the bubble begins to move further away from
the initialized node, the greater the error of the node position estimation and, therefore, the
greater the expected disturbance experienced by the air bubble as compared to the linearized
dynamics.

8.4 Design of PI controller For Specific Particle

This section presents the design process of a PI controller that is capable of controlling the
horizontal position of an air bubble in olive oil. This is done by first analyzing the air bubble
linear dynamics, followed by assigning PI controller parameters. The designed controller is
then tested on the nonlinear model and on experimental data. A specific air bubble with a
radius of 100µm at an initial distance from the transducer of 8.4 mm is used when designing
the PI controller.

Initial linearized values for have been evaluated for the chosen bubble and can be seen
shown in in Table 8.2.

Table 8.2: This table gives an overview of the air bubble parameters upon initialization of the LKF.

Position Nearest Node rp Kx Value K f Value B M
8.4 8.6 127e-6 1.7e-8 3.1e-3 9.6e-5 7.5e-9
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8.4.1 Linearized Model Dynamics

The state space matrix form of the linearized system is repeated below:

Ẋ = A · X + B · u (8.12)

Y = C · X (8.13)

Where

A =

 0 1 0
−k f

m
− B

m
1
m

 , B =

 0
kx · k f

m

 (8.14)

The linear model has been plotted alongside experimental data and can be seen in Figure
8.4.

Figure 8.4: The linear model is plotted alongside the experimental data from a constantly increasing step input.
For a particle with a radius of 100 µm and an initial distance of 8.4 mm from the transducer face.

It can be seen in Figure 8.4 that the linear model appears to fit very well with the exper-
imental data. For this reason, the linear model is deemed acceptable for control design. To
better understand the dynamics for the air bubble, a bode plot of the pulse transfer function
system dynamics has been plotted and can be seen shown in Figure 8.5.

Figure 8.5: This figure shows the bode plot of the pulse transfer function of an air bubble with a radius of 127 µm
at a distance of 11 mm away from the transducer. The black line indicates the Nyquist frequency and is located at
25 Hz, or 157 rad/s.
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A couple of things can be noted from this bode plot. The first is that, for frequencies
less than 10 rad/s, the system response is a static gain. This makes intuitive sense as when
the input frequency is changed, the position of the attractive domain force is changed to a
given position and it is here that the air bubble will settle. It is worth acknowledging that the
steady state gain is dependent on the distance the air bubble is from the transducer. To ease
analysis, this section only analyzes the dynamics for a given air bubble at a given position
and this change of steady state gain can be considered as a disturbance. Air bubbles are only
made to move up to 3 mm from the initial linearization point and therefore this disturbance
is assumed to be small and manageable by the low frequency disturbance rejecting properties
of a PI controller.

There is also a break point at approximately 10 rad/s and this is due to the viscous effect
of the fluid, giving the system a natural damping. The damping of the system also changes
with how close the system is to resonance. When the input frequency is close to resonance,
the acoustic attractive force will be greater and the break frequency will be pushed to a higher
frequency. The opposite occurs when the input frequency is far away from resonance. The
selection of the attractive node force for the linearization point is such that the acoustic force
amplitude will be both greater and less than the linearization point as the input frequency
changes during particle position actuation.

8.4.2 Specifying Bubble Dynamics

A simple PI controller has been designed such that the gain margin and phase margin is high.
The bode plot of this can be seen in Figure 8.6. The controller parameters can be seen in the
Equation below:

Gcont.c(s) =
ki

s
· (s + kpol) =

5e6
s

· (s + 100) (8.15)

Gcontr.d(z) = kp +
Ts · ki · (z + 1)

2 · (z − 1)
(8.16)

Figure 8.6: The bode plot of the pulse transfer function of the system and PI controller. The black line indicates
the Nyquist Frequency of the system. The gain margin is 28 deg at 157 rad/S and the phase margin is 78 deg.

It can be seen in Figure 8.6 that the bandwidth of the system is just over a decade before
from the Nyquist Frequency. The controller design goals stated that the dynamic response
of the system should be able to follow a reference of 1 mm/s. For this reason, the controller
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is decided to be tuned fairly aggressively and, an outcome of this is to make the bandwidth
fairly close to the Nyquist Frequency. A difference between the bandwidth and the Nyquist
Frequency is deemed to be acceptable for the linear system, and has been shown to be suffi-
cient in the nonlinear system. To demonstrate this, the controller has been implemented and
the control response from the nonlinear and the linear model have been plotted alongside
each other in Figure 8.7

Figure 8.7: This figure shows the position response of an air bubble being controlled by the PI controller with a kp
value of 5e6 and a ki value of 100 implemented in the nonlinear model on an air bubble with a radius of 127µm.

It can be seen from Figure 8.7 that the controller is able to actuate the bubble to the desired
location. However, at times, 16 and 21 seconds, the controller appears to have difficulty
actuating the particle and oscillation can be seen when the reference velocity changes sign. The
fact that this oscillation only occurs intermittently suggests that the disturbance the system
experiences can be shown to vary throughout the assigned reference trajectory. This oscillation
coincides with the amplitude of the acoustophoretic force being near a minimum. This reduces
the actuation potential of the input and causes the air bubble to oscillate.

To further demonstrate the difference between the linear and nonlinear model, the position
and velocity error when implementing the controller on the linear and nonlinear model can
be seen plotted in Figure 8.8

Figure 8.8: This figure shows the position error (top) and velocity error (bottom) when implementing the linear
controller in the nonlinear and linear model, respectively

When looking at the top plot in Figure 8.8, a number of observation can be made about
the controller design. The first is that the low frequency response between the linear and
nonlinear model appears to be similar. The difference is the oscilation that occurs when the
velocity reference is not zero. This oscillation occurs due to the constantly changing damping
of of the system associated with the amplitude of the attractive force varying greatly over the
large range of frequency that the input experiences.
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Disturbance Rejection

The oscillatory disturbance that the controller has to reject in the nonlinear model is due to
the changing maximum acoustophoretic force on the air bubble as the frequency is changed.
This changing force can be interpreted as a disturbance force that the PI controller has to
reject. The frequency of this disturbance fdist can be understood as a function of the slew
rate and the input frequency. The maximum and minimum force every time the input causes
acoustic resonance in the system. Acoustic resonance occurs every time half the pressure
wave wavelength aligns with the length of the chamber. Resonance is modelled to occur at
the following frequencies:

Freq 720 [kHz] 752 [kHZ] 783 [kHz]
Frequency Difference Between Resonance 32 [kHz] 32[kHz] 31 [kHz]

Using the previously established knode value, the expected disturbance frequency, fdist can
be solved for by using the following equation, where vmax is the maximum allowed change of
reference position:

fdist =
vmax

[m
s

]
Node Movement per Freq

[ m
Hz

]
· Freq per Resonance [Hz]

=
.001

knode · 32000
[Hz] (8.17)

This can then be used to calculate what the frequency of the expected disturbance is when
the bubble is moving at the maximum reference velocity:

Distance From Transducer 8.4 [mm] 12.7 [mm] 15.4 [mm]

kx

[ m
Hz

[
2.65e-8 1.86e-8 1.25e-8

fdist[Hz] 1.2 1.68 2.488

It can be noted that the further away the bubble is from the transducer, the higher the
expected disturbance frequency will occur. Because the kx value is lower for the further away
bubbles, these bubbles also experience a lower steady state gain. This lower steady state gain
reduces the bandwidth of the PI controller. Because the controller cannot be tuned more
aggressively due to Nyquist Frequency stemming from the sample frequency of the camera,
this disturbance must be accepted as an expected component of the system’s control response
and little more can be done to mitigate this effect.

Disturbance is also present to the system in the form of the acoustophoretic streaming
force. To test to what extent the control system is able to reject disturbance forces, a sawtooth
disturbance force, meant to represent the unknown streaming force has been modelled in the
nonlinear system and the control response when this occurs can be seen plotted in Figure 8.9.
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Figure 8.9: This figure shows the difference between the error of the system with and without a sawtooth distur-
bance with an amplitude of 10e-8 N and a frequency of .5

It can be seen in Figure 8.9 that the linear controller that has been designed is capable of
rejecting a periodic sawtooth disturbance with an amplitude of 10 N. The disturbance rejecting
capability of the PI controller is shown to be able to acceptably reject the disturbance. It can be
noted that if the disturbance is greater than this, the controller fails. This is acceptable, because
the disturbance shown in the Extended Kalman Filter in Figure 7.11 on page 57 showed that
the disturbance is shown not to often be higher than this.

8.4.3 Experimental Results

The linear controller has been implemented in the experimental setup. A particle of size 105
micrometers has been controlled and the trajectory can be seen in Figure

Figure 8.10: This figure shows the velocity and position reference for a bubble with particle radius 105 µm. The
top and bottom left show the experimental position and velocity plotted along side the same particle modelled
in the nonlinear model and the reference trajectory. The two right figures shows the modelled and experimental
position and velocity errors.

The data shown in Figure 8.10 is representative of the control response when different
bubbles have been attempted to be controlled. The controller had difficulty controlling par-
ticles over the full reference trajectory. This appears to be the case because the disturbing
oscillation that occours is greater than what has been modelled. The oscillatory nature of
the disturbance and its frequency being similar to that which was modelled suggests that the
qualitative characterization of the disturbing oscillation is correct, though its amplitude ap-
pears to be underestimated. This is likely due to either an underestimation of the amplitude of
the pressure wave generated by the transducer or an incorrectly estimation the wave reflection
damping coefficient in the model.

Another thing that can be considered from the control response shown in Figure 8.10 is that
the controller is capable of actuating the particle for the majority of the reference trajectory
and it is first after 15 seconds that the controller fails. This is the the same case as was
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found experimentally for other bubbles. The experimental implementation of the controller
has shown bubbles are able to be controlled for a travel distance of up to 3.5 mm. If the
plastic particle that the bubble is made to be actuated towards is close enough to the initial
bubble position, the controller may still be viable for its intended purpose, as the disturbance
is shown to be highest when the air bubble travels larger distances. For this reason, if the
air bubble only travels a short distance, the expected disturbance can be expected to be lower.
Ultimately, the failure of the control response shown in Figure 8.10 shows that the PI controller
is likely tuned too aggressively.

Bubbles With Different Radius

One factor that has been shown to worsen the PI controller’s response is if the controlled
bubble radius is not the same as the bubble that was used during linearization. When the
bubble radius is changed, so does its mass and viscous force and therefore, its dynamics. To
show how the PI controller fails to actuate particles with a different radius than was used for
design control, the controller was made to actuate a particle with a radius of 77µm. The results
of using the PI controller in the nonlinear model and experimentally can be seen plotted in
Figure 8.11.

Figure 8.11: This figures shows the control response of an air bubble with a radius of 77µm. The two left plots are
the position and velocity plots. The two right plots are the position and velocity error. The model input saturates
at a frequency of 400 kHz between 4 seconds and 8 seconds. The experimental input frequency saturates from 8
seconds.

It can be seen in Figure 8.11 that the air bubble appears to be easier to control experimen-
tally than in the model, however they both demonstrate failure of the control system. This
is because the input frequency saturates at 6 seconds and is no longer controllable. This has
been shown to be the case for all bubbles with a radius less than 90 µm. To demonstrate what
the influence of changing the mass and damping of bubbles does to the dynamics, bode plots
over the pulse transfer function of air bubbles with different radiuses can be seen shown in
Figure 8.12
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Figure 8.12: This figure shows the bode plot of different air bubble as the the radius is changed.

It can be seen in Figure 8.12 that the break frequency is reduced as the bubble radius
reduces. On top of this, the phase shift is also pushed to lower a frequency. This acts to
reduce the phase margin of the controller and reduces the disturbance rejecting capability,
increasing the likelihood of instability. To more clearly show the trends associated changing
the bubble radius size for the system response with the PI controller, a table over the phase
and gain margins of different air bubble radius has been made and can be seen in Table 8.3.

Table 8.3: This table gives the gain and phase margin of an air bubble as the bubble radius is changed.

Bubble Radius Gain Margin [dB] Phase Margin [deg] Bandwidth [rad/s]
50 257.5 39.1 5.5
75 112.9 54.7 7.1
100 62.6 66.0 7.9
125 39.5 73.3 8.3
150 27.2 78.0 8.5

What can be seen when looking at the phase margins from Table 8.3 is that the smaller the
particle, the lower the phase margins. On top of this, the bandwidth appears to be connected
to the particle radius size, with the larger particles having a higher effecting bandwidth. The
bandwidth trend has diminishing effects after a radius of approximately 100 µm. It can also
be seen that there is a trade off between gain and phase margin as the bubble size reduces,
with small bubbles having a higher gain margin, implying better disturbance rejection, but a
lower phase margin, suggesting higher susceptibility to oscillation and instability.

8.5 Updated PI Controller

Another controller has been designed with a lower proportional gain, kp. The new controlled
system margins and bandwidth can be seen as a function of bubble radius in Table 8.4
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Table 8.4: This table gives the gain and phase margin of an air bubble with the old and new controllers. The old
control parameters are : kp = 5e6 , ki 100. The new control Parameters are kp=2e6, ki = 100.

Old Controller New Controller
Radius GM [dB] PM [deg] BW [rad/s] GM [dB] PM [deg] BW [rad/s]

50 257.5 39.1 5.5 643 56.9 2.9
75 112.9 54.7 7.1 282.4 71.8 3.3
100 62.6 66.0 7.9 156.5 79.2 3.4
125 39.5 73.3 8.3 98.85 83 3.4
150 27.2 78.0 8.5 68.1 85.1 3.5

By reducing the input gain from 5e6 to 2e6, the phase margin is able to be maintained
above 55 deg for the bubble radius range of interest. On top of this, the gain margin is also
maintained to be high. The cost of this is the reduction of the particle bandwidth. However,
the bandwidth range over the bubble radius is held quite stable, only varying by approxi-
mately 17 percent. The consistency of the system response parameters make it a more appro-
priate controller for the control case and it is therefore accepted. The new controller has been
shown to be much more stable than the previous controller and an experimental example of
the control trajectory has been been plotted alongsisde the modelled response in Figure 8.13.

Figure 8.13: This figure shows the experiemtnal control response to the new controller with a bubble radius of 80
µm.

One surprising thing of note when looking at the top right plot of Figure 8.13 is the simi-
larity between the experimental and simulated error dynamics. The error oscillation occurring
when the velocity is not zero has a very similiar oscilation frequency and amplitude as to that
which was modelled as can be seen when comparing the orange and blue lines between 4 and
6 seconds and 7 and 9 seconds. When looking at the bottom right figure, the velocity error
appears to have higher peak values, but otherwise appear to be very similiar in the order of
magnitude. The velocity error is also not used in the control law and therefore the difference
in the amplitude peaks is acceptable.

Node Skipping

While the similiarity between the modelled response and experimental response shown in
Figure 8.13 is striking, this conformity between the modelled response and experimental re-
sponse does not always occur. Sometimes, the acoustic streaming disturbance force influences
a bubble with a high enough force that the bubble is not able to follow the acoustic attractive
force of the nearest node.

The PI controller can be thought to act as a "guide" that pushes the bubble along with a
single acoustic node by moving that node to the desired reference location slow enough that
the bubble can follow along. However, when a bubble starts to experience a disturbance force
that the controller is not able to reject, the integrator component of the controller continues to
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integrate the input value and thus, the node location. This can cause the input to "skip" a node
and have the bubble fall behind to an adjacent acoustic node. An example of the controller
almost loosing control of the bubble but then regaining control can be seen plotted in Figure
8.14.

Figure 8.14: This figure shows the trajectory of a particle with radius of 80µm and a ki and kp of 100 and 2.5e6
respectively. The input gain is seen to almost saturate in the experimental setup at 4 and 6.5 seconds.

It can be seen when looking at the bottom plot of Figure 8.14 that, for the majority of
the bubble trajectory, the experimental and modelled input appear very similar. There are,
however, two locations when they diverge. This is at approximately 4 seconds and 8 seconds.
Here, a large jump occours in the difference between the modelled and experimental input
frequencies. When looking at the middle plot, this can be seen to coincide with the air bubble
getting a high velocity and changing acoustic node paths.

In Figure 8.14 it is shown that the controller is still able to correctly actuate the bubble
even if an acoustic node is "skipped". This has been shown to be the case for the majority of
the bubbles that were actuated, though, sometimes, control of the bubbles was lost. Overall,
despite this occurring, the controller is able to to achieve the design objectives.

8.5.1 Discussion

Node Control

One aspect that was explored during the writing of this thesis was the use of the nonlinear
model to use the modelled node movement as an input saturator. The purpose of this was to
ensure that the input to the system would never cause the bubble to be further away than the
nearest acoutophoretic force peak. In this manner, the acoustophoretic force that the bubble
would experience would be made to be made to saturate at the maximum or minimum of
the sin function. Ultimately the implementation of this proved difficult due how much the
input frequency changed during operation and was replaced by the reference slew rate limitor
which resulted in a similar outcome. Further development of this control strategy could be
explored as an option for an improvement of the control response.
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Dynamic Loop Shaping

Another opportunity for the improvement of the control response that was considered is to
create a different linear controller every time the system is initialized. In this manner, the gain
and phase margin could be specified from the initialization of the control system and a more
consistent control response could be acquired. The controller used in this section was shown
to be able to achieve the design purpose, this method was not required. The bottleneck of
the system was shown to be the low sample frequency from the camera and for this reason,
the method was not implemented, though it is likely this method could improve the control
response.

Tighenting Input Saturation

The input saturation that was implemented for the transducer was put in place to limit the
effect of the transducers output frequency response. This is because the output pressure
amplitude of the transducer at the transducer’s resonant frequency is much higher than at
different frequencies and had a tapering off affect as the frequency difference from resonance
increased. This variation was ultimately accepted as being a part of the disturbance the bub-
bles would experience, as the actual location of the acoustic nodes was not affected by the
transducer output pressure amplitude. Only the amplitude of the attractive acoustophoretic
force was changed due to the transducer frequency response. Because the reference position
trajectory had a fairly slow slewrate, this disturbance was shown not to have that high of an
influence on the overall control response.

A method that was experimented with during this master’s thesis was to limit the span
that the output of the controller would change to be a much tighter frequency range. This
worked by having the transducer simply jump to a lower or higher frequency that would
result in the node position being located at the same distance. This limited the operating the
frequency range the transducer would output and reduced the influence of the transducer’s
own frequency response. The designed PI controller was shown to be mostly robust against
this disturbance, though when the transducer was at resonance, bubbles would sometimes be
pushed from node to node and control was lost. A smaller frequency range would reduce the
influence of this problem and could be a topic for further control design.

8.6 Conclusion

The PI controller designed in this chapter demonstrated the ability to actuate air bubbles over
a large range of positions. The natural disturbance rejecting properties of a PI controller made
it an adequate fit for the design purpose. The control design process was limited by the low
sample frequency of the camera, and a controller with a higher bandwidth than the one shown
would likely experience more stability issues than the one demonstrated.
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Conclusion

This Master’s Thesis has demonstrated both the practical viability for merging the fields
of acoustofluidics with flotation along with presenting an integrated mechatronic based ap-
proach to the analysis of air bubbles experiencing the acoustophoretic force.

The control strategy presented for the single axis control of air bubbles was shown to be
able to facilitate the interaction between air bubbles and plastic in a manner that was satisfac-
tory with the hardware limitations present. The lack of attractive force between the air bubbles
and plastic particles in olive oil means that further testing and iterations of the Acoustic Tweez-
ing Aided Flotation system is required before the system can be considered an implementable
technology, though the opportunities that the approach presents are intriguing.

The 1D dynamic acoustophoretic force equation presented by this thesis was shown to pro-
vide a sound basis for further dynamic analysis of air bubbles. The modelling uncertainties
present during the application of this force expression was also shown to be characterisable
by the presented Extended Kalman Filter for an air bubble at rest with a constant sinusoidal
pressure wave frequency. The Extended Kalman Filter’s lack of robustness against modelling
uncertainties associated with the incorrect selection of modelling parameters means that fur-
ther iterations of the Extended Kalman Filter are required before a "general" solution to the
characterization of the fluid streaming force affecting an air bubble is achieved.

In summary, this Thesis serves as a single straw placed on the hay bale required to achieve
Acoustic Tweezing Aided Flotation.
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Chapter 10

Further Work

The following topics provide areas to continue research on:

More Rigorous Approach to Pressure Field Equation

This Thesis took a minimalist approach to the modelling of the pressure fields in the fluid.
The approach taken by this thesis demonstrated the practical use of a simplified 1D model
of pressure fields. With the computational capacity available in modern engineering, a more
numerically intensive approach, such as computational fluid dynamics, to the characteriza-
tion of the acoustophoretic force is an intuitive next step for the analysis required for higher
dimensional control strategies. With a simple geometry, the multipole output characteristics
of the transducer wave generation could also be taken into account, allowing much higher
degree of accuracy to be achieved while acoustic modelling.

Inclusion of More Axis of Control

The air bubble control structures shown in this thesis only controlled the horizontal air bub-
ble movement directly with the buoyancy effect of air bubbles allowing for effective control
of vertical movement. The last directional plane, the depth plane, was not controlled by the
methods presented.This could be achieved through the use of a second transducer set orthog-
onal to the first transducer. This method does require depth directional feedback. An easy
solution to this is to add a second camera. However, simply pulsing the bubble along this
access could likely also achieve air bubble plastic partial interaction, as when the bubble goes
out of focus of the camera, the bubble edges being to blur and this could potentially used as
a metric for depth directional position.

There is the potential for two axis pressure waves interacting with each other and poten-
tially reducing the control potential for this method. This requires more research, though the
findings by [1] suggest that this may not be a significant hurdle.

Alternative Control Strategies

This thesis has taken focus on the viability for acoustic tweezing to facilitate air bubble particle
interaction. For this reason, an individual bubble control strategy has been selected. However,
when an individual particle is actuated, all of the air bubbles in the fluid also experience an
acoustophoretic force and are attracted to the nearest acoustic node. It could therefore be
theorized that much more plastic could be moved with a "sweeping" air bubble motion. This
could potentially have the effect of performing a windshield wiper movement and a region
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of particles could be swept away from a region of the cabin. This is left as a topic for further
research.

Flotation Based Approach

The ease of implementation of the Acoustic Tweezing Aided Flotation system opens up the
opportunity for taking a more flotation centered approach the analysis of the benefits of in-
cluding acoustophoretic forces of ATAF. The analysis lens of the ATAF system taken by this
thesis is one the field of mechatronic control whereby the micro scale interacting forces be-
tween the air bubbles and microplastics was largely hand waved and the emphasis was placed
on the milliscale actuation of the air bubbles. Taking a more mineral processing and flotation
based approach to ATAF system design would likely produce a more industrially viable ver-
sion of the approach.

Visual Processing

A large amount of time was spent designing the visual processing algorithms used in the
analysis and distinguishment between air bubble and plastic particle.There are qualitative
difference between the properties of air bubble and plastic particles that the imfincircles()
MatLAB function is not good at distinguishing. Recent advancements in machine learning for
visual processing could practically be applied in this pursuit. A machine learning approach
applied to the characterization of air bubbles and particles would likely quickly outperform
the methods used by this Thesis. This could potentially reduce the computational strain on
the controller and provide a benefit in design of similar systems.
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Appendix A

Acoustophoretic Force Derivation

This Appendix links the expressions for the puressure waves to the acoustophoretic force
equation. The MatLAB symbolic toolbox is used to aid in the algebra and symbolic differenti-
ation performed in this section. This analysis will be broken up into three sections: the steady
state pressure field forces, the initial transient, and the stopping transient.

A.1 Steady State Acoustophoretic Forces

The steady state expression for the pressure wave in the cabin can be expressed as the sum of
Equations 5.16 Equations 5.17 when neglecting the heaviside function. The expression for the
pressure field for the first four reflections can be expressed as the following:

P(x, t) =
4

∑
n=1

β2·(n−1) · Pamp · ej(ω·t−k·x+2·(n−1)·L/c) +
5

∑
n=1

β1+2·(n−1) · Pamp · ej(ω·t−k·x+k·(2·n)·L) (A.1)

The complex conjugate of Equation A.3 is given as the following:

P∗(x, t) =
4

∑
n=1

β2·(n−1) · Pamp · ej(−ω·t+k·x−2·(n−1)·L/c) +
5

∑
n=1

β1+2·(n−1) · Pamp · ej(−ω·t+k·x−k·2·n·L) (A.2)

The spatial derivitive of Equation A.3 is given as the following

∇P(x, t) =
5

∑
n=1

−k · β2·(n−1) · Pamp · ej(ω·t−k·x+2·(n−1)·L/c) +
5

∑
n=1

k · β1+2·(n−1) · Pamp · ej(ω·t−k·x+k·2·n·L)

(A.3)
The pressure dependent contribution to the acoustophoretic force from the first reflection

(n = 1) is given as the following :

Fp,n=1 = real(P∗ · ∇P)n=1 =
2 · p2

amp · β · ω

c
· sin(

2 · ω

c
(L − x)) (A.4)

For simplification of the next few terms, the following constants are introduced:

σ1 =
2 · P2

amp · ω

c
, σ2 =

2 · c
ω

, σ3 =
L · ω

c
(A.5)

To ease in readability, the equations are rewritten in vector form:

Fp,n=1 = σ1
[
β
]
·
[

sin(
2ω

c
· (L − x))

]
(A.6)
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Fp,n=2 = Fn=1 + σ1

[
β3

β5

]
·

sin
(

2ω

c
· (−x)

)
+ sin

(
2ω

c
· (2L − x)

)
sin

(
2ω

c
· (L − x)

)


T

(A.7)

Fp,n=3 = Fn=2 + σ1

β5

β7

β9

 ·


sin

(
2ω

c
· (−L − x)

)
+ sin

(
2ω

c
· (3L − x)

)
sin

(
2ω

c
· (−x)

)
+ sin

(
2ω

c
· (2L − x)

)
sin

(
2ω

c
· (L − x)

)



T

(A.8)

Fp,n=4 = Fn=3 + σ1


β7

β9

β11

β13

 ·



sin
(

2ω

c
· (−2L − x)

)
+ sin

(
2ω

c
· (4L − x)

)
sin

(
2ω

c
· (−L − x)

)
+ sin

(
2ω

c
· (3L − x)

)
sin

(
2ω

c
· (−x)

)
+ sin

(
2ω

c
· (2L − x)

)
sin

(
2ω

c
· (L − x)

)



T

(A.9)

An expression for calculating the force up until the mth set of reflections can be given as
the following

Fp(m) = σ1 ·
m

∑
n=1

[n−1

∑
i

β2(n+i)−3 · sin
(

2Lω

c
(n − i − 1) · L − x)

)
+ β2(n+i)−3 · sin

(
2Lω

c
· ((n − i + 1) · L − z)

)
+ Fp,last(n)

]
(A.10)

Where:

Fp,last(n) = β1+(n−1)·4 · sin
(

2ω

c
(L − x)

)
(A.11)

Practically, when Equations A.10 and A.57 are given numerical values for β, c, ω, and
L, an expression for the force field can be expressed as the summation of a single cos and
sin function with an angular frequency of 2 · ωk, where k is the wave number of the fluid.
The final wave field can therefore be expressed as the following, where n is the number of
reflections and ai and bi are the numerically solved contributions from the ith set of reflections:

Fp, f inal =
n

∑
i=1

ai · cos(2 · k · x) + bi · sin(2 · k · x) (A.12)

This allows for easy modelling of the system during steady state.
The derivation from the force contribution from the velocity field, V at steady state, is the

same as that for the pressure field due to the velocity field simply being a 90deg phase shifted
version of the pressure field with a static gain. This is given as the following:

Fv(n) = Fp(n) · (− i
ω · ρ

)2 (A.13)

Due to the expression for the steady state force field existing in the transient expression
for the wave equation, the force field will first be shown at the end of Section A.1.1.
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A.1.1 Initial Transient

In this Section, similiar to how the expression for the steady state acoustic force with re-
flecitons was derived, an expression for the first few terms of the transient wave equations
will be calculated and a general expression for the nth reflection will be extrapolated. The
analytical differentiation will be performed with the help of MatLAB’s symbolic toolbox af-
terwhich, physical intuition about the system will aid in reducing the expression. If one
considers the wave transient before any reflections have occoured, Equation A.14 can be used
to represent the pressure field in a 1D space.

Pinit(t, x) = Pamp · ej·(ω·t−k·x) · u
(

t − x
c

)
(A.14)

The fact that the step response is used has the added benefit of being able to be differenti-
ated analyticaly. Differentiating Equation A.14 gives Equation A.15, where Pharm refers to the
harmonic wave equation as was given in Equation 5.6:

∇Pinit =
δPinit

δx
=

1
c
· δ

(
t − x

c

)
· Pinit(t, x) + u

(
t − x

c

)
· δPharm

δx
(A.15)

δPharm

δx
= −

P2
amp · ω

c
· ej·(ω·t−k·x) (A.16)

Equation A.14 can be combined with Equation A.15 to give an expression for the real
product of the pressure field and its gradient:

Fp,tr,n=0 = Re(P∗
init · ∇Pinit) = −

P2
amp · ω

c2 · δ
(

t − x
c

)
· u

(
t − x

c

)
(A.17)

A couple of observations can be made to Equation A.17. The first is that the product of
the step and impulse function must be equal to the impulse function. A second observation is
that a single wave being generated in a medium will only have an influence on the particles
when it is first turned on. It can also be easily verified that a travelling pressure wave without
an initial transient will have a net force of zero.

Because the heaviside step function and dirac delta function are distributions and not a
function, its arguemnt does not need to be differentiated as according to the chain rule. How-
ever, the dirac function that is present in the system will still be included. This is because the
impulse force that will be calculated will excite a mechanical object; the particle in question.
This particle has an expression for its impulse response therefore meaning that the presence
and amplitude of this dirac function has a physical significance.

The force of the first set of reflections is given using the same notation as the previous
section:

Fp,tr,n=1 = σ1

β0

β1

β2

 ·


− 1

2ω
· δ

(
t − x

c

)
· u

(
t − x

c

)
−sin

(
2ω

c
(L − x)

)
· 1

(
x − 2L

c
+ t

)
·
[
1
( x

c
− t

)
− 1

]
+ σ4

1
2ω

· δ

(
t +

x
c
− 2L

c

)
· u

(
t +

x
c
− 2L

c

)
 (A.18)

Where σ4 refers to the following term :

σ4 = − 1
2ω

·
[

δ

(
t +

x
c
− 2L

c

)
· cos

(
2ω(L − x)

c

)
·
[
1
( x

c
− t

)
− 1

]
+

u(
x − 2L

c
+ t) · cos

(
2ω(L − x)

c

)
· (δ

( x
c
− t)

)] (A.19)
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The argument of the delta and step functions in the first term of Equation A.19 can be shown
to have the following relationship:

δ

(
t +

x
c
− 2L

c

)
=

1, Tδ = 0, Tδ = t +
x
c
− 2L

c
0, Tδ ̸= 0

(A.20)

u
( x

c
− t

)
− 1 = −u

(
t − x

c

)
(A.21)

Where

u(t, x) =

1, T1 ≥ 0, T1 = t − x
c

0, T1 < 0
(A.22)

The expressions for the arguments T1 and Tδ can be shown to have the following relation-
ship be equal to eachother:

Tδ = 0 → t = − z
c

+
2L
c

(A.23)

T1 ≥ 0 → t − z
c
≥ 0 (A.24)

z ≤ L, t ≥ L
c

(A.25)

Because the physical limits of the system are 0 ≤ x ≤ L and t ≥ 0 the contribution from
the dirac function will be present in the system. The time arguemnts in Equation A.19 have
the following relationships:

Tδ = t − z
c

, T1 = t +
z
c
− 2L

c
(A.26)

t +
z
c
− 2L

c
≥ 0, t − z

c
= 0

2z
c
− 2L

c
≥ 0, z ≥ L

(A.27)

The impulse function only has physical significance beyond the boundary conditions and
therefore terms with this value will be neglected when looking at the next terms of the force.
Equation A.18 can be shown to reduce to the following:

Fp,tr,n=1 = σ1

β0

β1

β2

 ·


− 1

2ω
· δ

(
t − x

c

)
sin

(
2ω

c
(L − x)

)
· 1

(
x
c

+ t − 2L
c

)
+ δ(t +

x
c
− 2Td) · cos(

2ω(L − x)
c

)

1
2ω

· δ

(
t +

x
c
− 2L

c

)


T

(A.28)
Which can be rewritten as:

Ftr,M1 = σ1
[
β1
]
· Ftr,M1 + σ5 ·

[
β0
]

δ
t−

x
c

+ σ5 ·
[

β1

β2

]
δ

t+
x
c
−2Td

(A.29)

Ftr,M1 =
[

sin
(

2ω

c
(L − x)

)
· 1

( x
c

+ t − 2Td

)]
(A.30)
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δ
t−

x
c

= δ
(

t − x
c

) [
−1

]
(A.31)

δ
t+

x
c
−2Td

= δ(t +
x
c
− 2Td)

cos
(

2ω(L − x)
c

)
1

 (A.32)

Where

Td =
L
c

, σ5 =
P2

amp

c
(A.33)

The force with reflections corresponding to n = 2 will be shown and simplified one expo-
nent of β at a time:

Fp,tr,n=2 = σ1


β2

β3

β4

β5

β6

 ·


a1

a2

a3

a4

a6


T

(A.34)

Where

a1 =
cos

( 2 L ω
c

)
δ
( 2 L+x−c t

c

) (
u
( x−c t

c

)
− 1

)
2ω

+
cos

( 2 L ω
c

)
δ
( x−c t

c

) (
u
( 2 L+x−c t

c

)
− 1

)
2ω

(A.35)

Looking at the arguments of the second term in Equation A.35, it can be shown using similiar
analysis that was performed for the case where n = 1, that the dirac and heaviside functions
cannot exist within the limits of interest. Therefore, this contribution will not be observed.
The a term can therefore be simplifed to the following:

a1 = − ω

2c2 · cos
(

2Lω

c

)
· δ

(
t − x

c
− 2L

c

)
(A.36)

The next contribution is the following :

a2 = u
(

x − 2 L + c t
c

)
sin

(
2 ω x

c

) (
u
(

2 L + x − c t
c

)
− 1

)
− u

(
x − 4 L + c t

c

)
sin

(
2 ω (2 L − x)

c

) (
u
(

x − c t
c

)
− 1

)
−

0.5000 δ
( 2 L+x−c t

c

)
u
( x−2 L+c t

c

)
cos

( 2 ω x
c

)
ω

−
0.5000 δ

( x−4 L+c t
c

)
cos

(
2 ω (2 L−x)

c

) (
u
( x−c t

c

)
− 1

)
ω

−
0.5000 δ

( x−2 L+c t
c

)
cos

( 2 ω x
c

) (
u
( 2 L+x−c t

c

)
− 1

)
ω

−
0.5000 u

( x−4 L+c t
c

)
δ
( x−c t

c

)
cos

(
2 ω (2 L−x)

c

)
ω

(A.37)
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The step function in the first term of Equation A.37 is adequetely simplified. For the
second term, the following relation must hold:

0 ≤
(

t +
x
c
− 4L

c

)
∧
(

t − x
c

)
(A.38)

This first occurs when the first step function is active. The second step function can therefore
be neglected. The fifth and sixth terms can be shown to not exist in the limits where t>0 and
L>=x >= 0. For the fourth and fifth term, it can be shown that the arguments for the heaviside
functions are positive when the delta function equals zero. For this reason, the heaviside
function does not need to be written. a2 can therefore be rewritten to the following:

a2 = u
(

t +
x − 2 L

c

)
sin

(
2ω

c
· (−x)

)
+u

(
t +

x − 4 L
c

)
sin

(
2 ω (2 L − x)

c

)
− 1

2ω
· cos

(
2ω

c
· (−x)

)
· δ

(
2 · L + x

c
− t

)
+

1
2ω

· cos
(

2ω

c
· (2L − x)

)
· δ

(
t +

x − 4L
c

)
(A.39)

The next contribution is given as the following:

a3 = −
0.5000 δ

( 2 L+z−c t
c

)
heaviside

(
− 2 L+z−c t

c

)
ω

+
0.5000 cos

( 2 ω
c · (L)

)
δ
( z−2 L+c t

c

)
heaviside

( z−4 L+c t
c

)
ω

+
0.5000 cos

( 2 ω
c · (L)

)
δ
( z−4 L+c t

c

)
heaviside

( z−2 L+c t
c

)
ω

(A.40)

It can be shown that the heaviside and dirac functions do not exist within the limits of the
system for the second term, reducing a3 to the following:

a3 =
1

2ω

(
−δ

(
t − x

c
− 2L

c

)
+ cos

(
2 ω

c
· (L)

)
· δ

(
t +

x
c
− 4L

c

))
(A.41)

The next contribution is given :

a4 = −u
(

z − 4 L + c t
c

)
sin

(
2 ω (L − z)

c

) (
u
(

2 L + z − c t
c

)
− 1

)

−
δ
( 2 L+z−c t

c

)
u
( z−4 L+c t

c

)
cos

(
2 ω (L−z)

c

)
2ω

−
δ
( z−4 L+c t

c

)
cos

(
2 ω (L−z)

c

) (
u
( 2 L+z−c t

c

)
− 1

)
2ω

(A.42)

This simplifies to the following :

a4 = u
(

t +
x − 4L

c

)
sin

(
2 ω (L − z)

c

)
+

1
2 · ω

· cos
(

2 ω (L − z)
c

)
δ

(
x − 4L + ct

c

) (A.43)
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The final term is the a5 term which is the following :

a5 =
1

2ω
δ

(
x − 4 L + c t

c

)
u
(

x − 4 L + c t
c

)
(A.44)

Which can be rewritten as the following:

a5 =
1

2ω
· δ

(
t +

x − 4 L
c

)
(A.45)

The full simplified expression for the case with 2 sets of reflections can thus be given

Ftr,M2 = Ftr,M1 + σ1

[
β3

β5

]
· Ftr,M2 + σ5

[
β2

β3

]
δ

t−
x
c
−2Td

+ σ5


β3

β4

β5

β6

 δ
t+

x
c
−4Td

(A.46)

Ftr,M2 =

u
(
t − x

c − 2Td
)

sin
(

2 ω (−x)
c

)
+ u

(
t + x

c − 4Td
)

sin
(

2 ω (2 L−x)
c

)
u
(
t + x

c − 4Td
)

sin
(

2 ω (L−z)
c

)  (A.47)

δ
t−

x
c
−2Td

= δ(t − x
c
− 2Td)

−cos
(

2ω

c
· (−x)

)
−1

 (A.48)

δ
t+

x
c
−4Td

= δ(t +
x
c
− 4Td)


cos

(
2 ω (2 L−x)

c

)
cos

( 2ω
c · (L)

)
cos

(
2ω

c
· ( L − x)

)
1

 (A.49)

The third term can be expressed after simplification as the following :

Ftr,M3 = Ftr,M2 + σ1

β5

β7

β9

 · Ftr,M2 + σ5


β4

β5

β6

β7

β8

 δ
t−

x
c
−4Td

+ σ5



β5

β6

β7

β8

β9

β10


δ

t+
x
c
−6Td

(A.50)

Fp,tr,n=3,M =


u
(

t − x
c
− 4Td

)
sin(σ2 · (3 · L − x)) + u

(
t +

x
c
− 6Td

)
· sin(σ2 · (L − x) − 4σ3)

u
(

t − x
c
− 4Td

)
· sin(σ2(3L − x) − 2σ3) + u

(
t +

x
c
− 6Td

)
· sin(σ2(2L − x) − 4σ3)

u
(

t +
x
c
− 6Td

)
· sin(σ2 · (3 · L − x) − 4 · σ3)


(A.51)

δ
t−

x
c
−4Td

= δ(t − x
c
− 4Td)



−cos
(

4ωL
c

)
− cos

(
2ω

c
· (L + x)

)
− cos

( 2 L ω
c

)
− cos

(
2ω

c
· (x)

)
−1


(A.52)
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δ
t+

x
c
−6Td

= δ(t +
x
c
− 6Td)



cos
(

2 ω (3 L−x)
c

)
cos

( 4ω
c · (L)

)
cos

(
2 ω (2 L−x)

c

)
cos

( 2ω
c · (L)

)
cos

(
2 ω ( L−x)

c

)
1


(A.53)

A number of patterns can be recognized to create a general expression for the generated
force as a function of number of reflections. It can be seen that the persistant sinusoidal term
is, as expected, the same expression that was found for the steady state analysis of the force
equation multiplied by a step function corresponding to the number of reflections at a given
time. The impulse component occours due to the gradient between the wave that already
exists and the propogation of the new wave. A general expression of the generated force as a
function of sets of reflections can be expressed as the following:

Ftr = σ1 ·
∞

∑
q=1

u
(

t − x
c
− 2 · q · Td

)
·

q−1

∑
i=1

β2q−1+2·(i−1) · (sin(
2Lω

c
(n − i − 1) · L − x))

+
∞

∑
q=1

u
(

t +
x
c
− 2 · (q)Td

) [q−1

∑
i

β2q−1+2·(i−1)
(

sin(
2Lω

c
· ((n − i + 1) · L − z))

)
+Fp,last(q)

]
+ δR + δL

(A.54)

Delta terms are the following

δL = − pAmp2

c
·

∞

∑
q=1
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Fp,last(n) = β1+(n−1)·4 · sin
(

2ω

c
(L − x)

)
(A.57)

This expression has been implemented in MatLAB and has been shown to produce all of
the terms within the limits of the system as the number of reflections increases.



Appendix B

Linear Kalman Filter

This appendix shows the derivation and results of designing a Linear Kalman Filter for an air
bubble experiencing an acoustophoretic force

B.1 Linear Kalman Filter

The Linear Kalman Filter (LKF) is a linear system observer that can optimally observe the
states of a system disturbed by a process noise and with measurement noise on the outputs,
assuming that the distribution of the process and system noise are gaussian. Kalman Filters
are designed using a state space formulation of the system process whereby the process and
measurement noise covarriances have been estimated. In this manner, the filter is able to
balance both the "estimated" states of the system by using the state space model and the
experimental measured data points to give a processed filtered state estimation.

The fact the designer of a Kalman Filter can choose the structure that the filter attempts to
observe is taken advantage of in this thesis by introducing acoustic streaming force as a state
in the state space formulation. This state cannot be directly measured and will therefore be
observed by the filter. The state is also assumed not to change due to the other states and will
therefore change due to its own state autocorrelation.

This section contains of the following subsections:

• Section B.2 : Linear Kalman Filter Bounding Equations

• Section 8.3 : Linear Air Bubble Model Structure

• Esimating Process and Measuremnet Noise

• Testing and Validating LKF on experimental data

B.2 Linear Kalman Filter Bounding Equations

The linear Kalman Filter can be used to estimate system state values given a discrete system
in the form :

x(k + 1) = A · x(k) + B · u(k) + V · v(k) (B.1)

y(k) = C · x(k) + n(k) (B.2)

97
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Where n(k) refers to a zero mean gaussian noise with covariance, N and v(k) refers to the
process noise of covariance M. The covariances are defined as the following, where E{x}
refers to the expected value of x:

E{v(k) · vt(k)} = ME{n(k) · nt(k)} = M (B.3)

The LKF will generate an estimate for x, denoted x̂, which minimizes the square error of
x, where k is a given time step and j are the previous data values.:

x̃(k|j) = x(k) − x̂(k|j), min||x̃(k|j)||2 (B.4)

The optimal state esimate is given by the following expression:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1) · y(k + 1) − C · x̂(k + 1|k) (B.5)

Here, K refers to the Kalman gain which is updated depending on the state of the Kalman
Filter. The physical intuition behind this matrix is that a high relative gain value indicates
more faith in the system model and a lower relative gain value indicates more faith in the
measurements. The Kalman Filter estimation algorithm consists of the prediction step and
the update step. The prediction step is given as the following two equations:

x̂(k + 1|k) = A · x̂(k|k) + B · u(k) (B.6)

P−1(k + 1) = A · P(k) · AT + V · M · VT (B.7)

Equation B.6 simply generates an estimate for the value of the x state based on the system
model for the given timestep. Equation B.7 is used to calculate an estimate state error covari-
ance, P−, using the the previous timestep’s predicted state error. This covariance matrix is
calculated using the system matrix and measurement covariances.

The update consists of three steps : updating the Kalman Gain in the form of Equation
B.8, updating the state estimate using Equation B.9 , and updating the error state covariance
using Equation B.10.

K(k + 1) = P−(k + 1) · CT [̇C · P−(k + 1) · CT + N]−1 (B.8)

x̂(k + 1k + 1) = x̂(k + 1) + K(k + 1) · [y(k + 1) − C · x̂(k + 1|k)] (B.9)

P(k + 1) = [I − K(k + 1) · C · P−(k + 1) (B.10)

In Equation B.10, I refers to an identity matrix with dimensions equal to the number of states
in x.

B.3 Selection of Covariance Parameters

One of the difficulties in designing trustworthy Kalman Filters as disturbance observers is
the selection of appropriate covariance values. This is because, if the values are selected
incorrectly, the output of the LKF will not produce a good representation of the forces present
in the system.

The initial state covariance, P− is selected to be zero. The measurement noise matrix, N,
state process noise matrix, M, and P− matrix are now selected to be the following:

N =
[

σx 0
0 σv

]
, P− =

[
0 0
0 0

]
M =

mx 0 0
0 mv 0
0 0 md

 (B.11)
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Measurement Noise Estimation

It can be noted that no cross state noise and process covariances are assumed. This is because
the position and velocity are both physically independent states.

The noise covariance function can, fortunately, be estimated directly from the variance of
measured position values when the input to the system is at rest. This can be approximated
using the sample covariance as given by the following equation:

cov(A, B) =
1

N − 1

N

∑
i=1

(Ai − µA) · (Bi − µB) (B.12)

Where µ refers to the sample means of dataset A and B. Due to the variance of the mea-
sured states being the covariance of the measured states themselves, the equation for the
sample variance can be used instead:

σ̂A =
1

N − 1

N

∑
i=1

(Ai − µA)2 (B.13)

A section of the identification data has been selected that has been detrended and the
sample covariances of the position, σxp and velocities, σv are 1.5e-11 and 1.15e-6 respectively.

To get a baseline of how the Kalman Filter performs, it has initially been implemented
in the nonlinear model. In this model, the only disturbances present are in the form of the
differences between the linearized and nonlinear model. A simulated white noise is also
added to the signals read by the LKF. This simulated noise is set to have the same variance as
the experimentally found values. There is no disturbing acoustic streaming force present in
the model. The LKF has been implemented using measurement data input and can be seen
plotted with different measurement covariance values in Figure B.1. This Figure shows the
response at times where the linear model underestimates the acoustphoretic (left) force and is
much more similar to the linearization point (right).

Figure B.1: This figure shows the air bubble position output of the LKF with different values for the system noise
covariance matrix, N. The modelled noise has a value of 3.2e-12 and the process noise value for the disturbance
state, md is 2e-17.

From the plot to the right in Figure B.1, it can be seen that underestimating the noise
covariance, by comparing the blue, purple,and green lines, causes the LKF position state to be
overly reactive to measurement noise. When looking at these lines in the plot to the left, the
lower covariance value causes the LKF to respond more quickly to the uncertainty between
the system model and the true process. The attribution of noise to the system dynamics is
undesireable and choosing covariance values too low can be understood to provide a poor
LKF state estimate.
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It can be seen that overestimating the noise, as can be seen when comparing the the yel-
low lines to the purple and green lines, in both the left and right plot, causes the LKF to
output an incorrect position state estimate. Here, the dynamics of the measured data is not
fully captured as the measurments are interpretted as being mostly noise and the underlying
dynamics are perscribe mostly by the system model.

Overall, the system response when the noise in the system is the same as that which is
simulated, as seen as the red line in Figure B.1, as expected, has the best trade off between
reaction to modelling noise and response to the system dynamics. These values are thefore
accepted as the covariance values for the measurment noise matrix.

Process Noise Estimation

The purpose of the system identification methods used in this chapter are to determine the
forces present in the system. Therefore, the selection of the process noise plays a key role in the
results of this aim. The advantage of using a nonlinear model of the system when designing
the LKF is that the "true" particle position and forces are available for measurement. The
error between the output of the LKF and the simulated positions can be found without noise,
reducing a dimension of complexity when interpreting the output of the LKF.

In order to find an appropriate disturbance state variance, the nonlinear model with the
LKF has been run with different disturbance state covariances. The RMS of the position error
has been used as a metric for the LKF performance. The model has been run with and without
noise on the position and velocity signals read by the LKF. The results of this can be seen in
Figure B.2 .

Figure B.2: This figure shows the RMS of the positions error when there is and is not noise on the position values
as a function of the LKF disturbance state process noise.

It can be seen from the orange line in Figure B.2 that, if no noise is present, there appears
to be a minmum of position state error with a minimum disturbance covariance value at
approximately 2e-16. This error value at this minimum appears to be very similiar to the
RMS that ocurs when the covariance is increased above this value. This would suggest that
any disturbance variance value higher than than 2e-16 would be an acceptable value. This
is however, not the case when noise is present on the signal as can be seen from the blue
line in Figure B.2. When noise is present on the state measurments, there is, instead, a local
minimum of position error with deteriorating estimation perforrmance above this value. This
is because if the process noise variance is too high, the disturbance state will begin to interpret
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the noise in the system as a part of the system dynamics. If it is too low, the LKF will not react
to the measured dynamics of the particle and there will be high position error RMS as can be
seen as the variance trends below 10−17. A disturbance state variance value of 6e-17 has been
selected as this lies at the minimum and should therefore provide the best state estimation.

The measurement noise and process noise matrices that have been selected have the fol-
lowing values:

N =
[

4.2e − 12 0
0 3.2e − 9

]
, M =

0 0 0
0 0 0
0 0 6e − 17

 (B.14)

B.4 Implementation of the LKF

In this section, the LKF is shown to be applied to the nonlinear model and on experimental
data. The results are shown and discussed.

LKF Observing the Nonlinear Model

The response of the tuned LKF on the nonlinear model can be seen shown in B.3. Noise
was added to the measured signals to simulate measured data. Position, velocity, and the
disturbance state values can be seen plotted alongside the test data in Figure B.3.

Figure B.3: Kalman Filter state output data compared with the nonlinear model.

On first inspection of Figure B.3, when comparing the yellow and red lines in the top
two plots, the LKF is appears to be good at filtering both the position and velocity states.
However, when comparing the yellow and red lines in the top plot, at certain times, such as
6.8 and 5.7 seconds, it appears to be the case that the LKF overestimates the change in velocity
and position before realigning with the data. This is likely due to the incorrect estimation of
the amplitude of the attractive domain force causing the linearization the LKF is based off to
diverge from the nonlinear model. The LKF is, however good at realigning to the measured
data and rejecting the noise in the system.
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It can be seen in the bottom plot of Figure B.3 in the disturbance state that there appears
to be a force offset. This offset occurs during the initialization of the LKF and is due to the
fact that the system was not completely settled at a node when the filter was initialized. This
corresponds to the prestressing of the spring-like acoustophoretic force being at a different
position. It can be seen that, because the air bubble has a relatively low movement range, that
this force level appears fairly constant in the data set.

The effect of the linearization of the amplitude of the acoustophoretic force can be seen
in the bottom plot of Figure B.3 by the "peaky" nature of the disturbance force. These peaks
occur when the pressure wave frequency is changed and occur because the amplitude of the
node attractive domain forces are under or over estimated. This can be seen in the force at
approximately 3.2 and 4.4 seconds where the force is first over estimated and the underesti-
mated. For this reason, the disturbance force is adapted to be higher and lower than its steady
state value at these points to compensate for this. This is especially noticeable at 6.7 seconds
where the linearized model greatly understimates the attractive force. This is likely because
the input frequency corresponds with the acoustic field being nearly as far from resonance
as possible with the force being in the minimum in Figure 8.3 on page 69. This incorrect
estimation of the acoustophoretic force amplitude is an inherit characteristic of the LKF being
applied to the system at hand.

LKF Force Estimation

The trustworthiness of the LKF state outputs is determined by its ability to accurately charac-
terise the dynamics of the process it is observing. This is analyzed by considering the force
balance in the system process as simulated by the nonlinear model and comparing it to the
force estimates in the LKF.

Every time a measurement is read by the the LKF, the system model in the LKF implicitly
estimates the forces that affect the air bubble that cause the change of the air bubble states. To
show this, the linearized system equation for the change of the second state have been written
out in Equation B.15.

ẋ2 =
1
m

·
(
−B · x2 + [kxp · k f · ∆ f − kxp · x1 + x3]

)
(B.15)

The square brackets in Equation B.15 refers to the expressions that represents the acoustophoretic
force. This can be compared to the actual implemented nonlinear system model using the
same state notation:

ẋ2 =
1
m

·
(
−B · x2 + Fap

)
(B.16)

If the LKF force balance can be shown to be able to replicate the total forces in the nonlinear
model, it can be considered to be able to accurately characterize the system dynamics. In order
to demonstrate the LKF’s capability of doing this, the acoustophoretic force, as simulated in
the nonlinear model, is measured. The x1, and frequency dependent terms in Equation B.15
are added to each other and shown plotted alongside the simulated nonlinear acoustophoretic
force and the disturbance force term, x3, in Figure B.4. It can be noted that the contributions
from the damping velocity terms are not shown as the B coefficients are the same in the
nonlinear model and the LKF.
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Figure B.4: This figure shows the acoustophoretic force simulated in the the nonlinear model alongside the
acoustophoretic contributions as estimated by the LKF. In the top figure, the "Modelled Acoustophoretic Force"
refers to the simulated acoustophoretic force affecting the air bubble in the nonlinear model. The "Expected
Acoustophoretic Force" is what the estimate step of the LKF estimates the acoustophoretic force to be. The "Distur-
bance Force" is the amplitude of the disturbance state force, x3 in the LKF. The bottom figure plots the summation
of the "Expected Acoustophoretic Force" and the "Disturbance Force" alongside the "Modelled Acoustophoretic
Force".

It can be seen from the top plot in Figure B.4 that the estimation step from the LKF does not
appear to give a good estimate for the acoustophoretic force right when the input frequency
is changed. However, the expected acoustophoretic force does show to settle at approximately
the same time as the simulated acoustophoretic force, if not a little bit slower. This is because
the disturbance state is able to to counteract the estimate of the acoustophoretic expected force
in a similar time frame as it takes for the bubble to settle. The fact that the disturbance state
becomes as large as it does suggests that it will be difficult to decouple the naturally occurring
acoustic streaming effect from the disturbance associated with linearizing the acoustophoretic
force when the input frequency is changing. However, because the disturbance state is able to
settle as quickly as it does, the LKF may be able to characterize the properties of the acoustic
streaming force effect when the input is held constant.

It can be noted from the bottom plot of Figure B.4 that the sum of the disturbance and
expected acoustophoretic force do appear to align quite well the modelled force. However
there does appear to be deviance on the first couple samples after the frequency has been
changed. This could be due to the acoustophoretic force amplitude coefficient being a constant
and causing the LKF’s state estimation to over estimate the acoustophoretic force when the
frequency is changed. This means that the disturbance force has to adaptively counteract this
overestimated force, therefore causing there to be force estimation error when changes occur
in the inputs.

Overall, the fact that the LKF is able to recreate the acoustophoretic present from the
nonlinear model shows that it is capable of characterizing the system dynamics to a sufficient
degree in the nonlinear model.

B.5 LKF Observing the Experimental Data

Now that the linear Kalman Filter has shown promising results in the nonlinear model, it has
been tested on the experimental dataset. The position, velocity, and disturbance states have
been shown plotted in Figure B.5.
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Figure B.5: This figure shows the outputs of the LKF on the system identification dataset. In the top two figures,
the experimentally measured position and velocity are plotted alongside the position and velocity states of the
LKF. In the bottom plot, the "Disturbance Force" is representative of the disturbance state, x3. The "Expected
Acoustophoretic Force" is the sum of the frequency and position force contributions from the estimation step of
the LKF. and "Sum of Disturbance and Expected Force" is the summation of the "Disturbance Force " and the
"Expected Acoustophoretic Force"

When looking at the top two plots of Figure B.5, it can be seen that the LKF appears to
do a good job at filtering the position and velocity data. It can be seen that at certain times,
such as 2.1 seconds and 4.5 seconds,the LKF underestimates the maximum velocity of the air
bubble. Overall, the position and velocity filtering capability of the LKF appears similar to
the results of implementing the LKF in the nonlinear model. It may even be argued that the
LKF provides a better representation of the position data for the experimental data than the
nonlinear model data as the discontinuities seen for the nonlinear model shown in Figure B.3
on page 101 when the input frequency is first changed do not appear to be present in the
top plot of Figure B.5. This could suggest that the linear approximated model may be more
representative of the experimental data than the nonlinear model, but this may just be due to
the characteristics of the acoustic streaming force present in the specific data set.

Somewhat similar discontinuities as were seen in Figure B.3 on page 101 can, however be
seen in the top plot of Figure B.5 at 5.6 seconds. However, it is likely that these are due to the
visual position gathering algorithm used and not a true component of the system dynamics.
This is assumed to be the case as the discontinuities quickly oscilate between positive and
negative velocity values. This is reinforced by that fact that, when the velocity of the bubbles
are high, the edges of the bubbles appear less clear to the video processing algorithm and this
could cause this measurement "noise".

Looking at the disturbance force from the bottom plot of Figure B.5, it can be seen that
there appears to be a drift in the disturbance force between 2 and 5.5 seconds that was not
present in the nonlinear model. The acoustic streaming force was assumed to appear simi-
lar to a filtered gaussian noise and this would likely appear similar to the random walk-like
characteristic of the shown LKF’s disturbance state. However, in the bottom plot at 3.3 sec-
onds, it can be seen that the amplitude of the disturbance is the same scale as the peak
expected acoustophoretic force. This could be due to the amplitude of the disturbance vary-
ing greatly. It is not unlikely that this change of force amplitude is due to the linearization
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of the acoustophoretic force amplitude and similiar to the what was shown in the nonlinear
model. .

With the baseline characteristics of the disturbance force without any streaming effects
present in the fluid established in the previous section, it is of interest to compare the distur-
bance force state from the the nonlinear model alongside the disturbance state to see what
differences there may be. The two disturbance states have been plotted alongisde eachother
and can be seen shown in Figure B.6.

data when the LKF is used, the nonlinear modelled force and the experimental disturbance
force are plotted alongside eachother and can be seen in Figure

Figure B.6: This figure shows the disturbance force that the LKF generated for the nonlinear model (blue) plotted
alongside the experimental data LKF output (orange).

It can be seen from the Figure B.6 that the relative change of the disturbance force in the
experimental data corresponds well with the peaks from the nonlinear model. This can be
observed also at times 0.9 seconds, 3.2 seconds, and 4.2 seconds. However, at times such as
2 seconds, 6.8 seconds, the results are not so promising, as the experimental data does not
line particularely well up with the nonlinear data. The inconsistancy with the results of the
disturbance force means that skepticism must be held when making conclusions about the
force balance when using the LKF when the input is not held constant.
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