
SUMMARY
This project explores different approaches in terms of pre- and post-processing for improving the results of autoencoder-extracted mutational
signatures.

The signatures we are trying to extract are created when mutations take place in cancer cells and can help determine the cause and origin of
the cancer mutations. Cancer is a genetic disease that can be caused by many different factors which is why these signatures are interesting
since each cause leaves a uniquely discoverable signature in the DNA, which is what we are aiming to extract.

The standard method for the current extraction of mutational signatures is Non-Negative Matrix Factorization (NMF) [19]. Our aim is to
explore autoencoders for this purpose. The idea behind using autoencoders is their ability to encode data into a latent layer, we can then cluster
to try and find the patterns in the data which equals the mutational signatures. We implemented all the different methods to be toggleable, for
the purpose of testing different combinations and gathering a large amount of data to analyze the effects of these different methods.

For autoencoder we have taken inspiration from Pei et al. [13], who introduced their model called DeepMS, which is based on the Denoising
Sparse Autoencoder [10], their approach was able to identify some of the same signatures that Alexandrov et al. [4] did, with the same dataset,
But it’s important that other are able to collaboratively validated this results. Pei used Keras with TensorFlow to implement the underlying
autoencoder, while we’re using PyTorch as our autoencoder.

Through experimenting with various combinations of values for the modules in pre- and post-processing and subsequently running it on the
same dataset, we aim to analyze it, by validating against signatures extracted by Alexandrov et al. [4]. These methods are injection, feature
filtering, and bootstrapping for pre-processing and clustering method, multi run of extraction method clustering, and silhouette metric for
post-processing. This validation is performed by using cosine similarity, where the higher values indicate a greater resemblance to the extracted
signature. The goal is to have a quantifiable metric for determining the performance of each method, thereby gaining valuable insight into their
individual contributions to the extraction process.

The results of our study on different methods for enhancing the capabilities of autoencoders for mutational signature extracting were overall
a success. A potential change to see better results would be changing the amount of method extraction runs. The reason for not changing this
was the overall time cost of increasing the amount of runs. The benefits we could have gained from this would mainly be seen in the effect
of bootstrapping the data. Our main issue holding us back from implementing this change was the time clustering took when increasing the
method extraction runs. The reason behind the clustering being the bottleneck is that it currently is the only process not running on the GPU
and instead running on a CPU, which is slower. This is something we tried to improve and make an implementation running on the GPU but
the cost was worse clustering results were deemed too high.

1

Magni Jógvansson Hansen and Nikolai Eriksen Kure

Autoencoders for Signature Extraction: Systematically
evaluating Pre- and Post-Processing

Magni Jógvansson Hansen
Aalborg University

mjha19@student.aau.dk

Nikolai Eriksen Kure
Aalborg University

nkure19@student.aau.dk

ABSTRACT
Cancer is fundamentally a genetic disorder caused by various differ-
ent factors. Each mutation within the cancer genome leaves a unique
and identifiable signature in the DNA sequence. These signatures
are the focus of this paper, and how they can be used to identify the
cause. In this paper, we aim to enhance the performance and accuracy
of extracted signatures using autoencoders. To enhance the perfor-
mance we explore and analyze different pre- and post-processing
methods and compare the results to a baseline. To determine the
performance of the different methods, by comparing the extracted
signatures to known signatures from COSMIC and Signal. The com-
parison uses cosine similarity as the metric, and then later plotted
for visualization of the results. The findings from the study showed
that the added steps in the pipeline had a good effect and increased
the performance and accuracy of the extracted signatures.

1 INTRODUCTION
Cancer is a genetic disease that can be caused by many different
factors. This then leads to processes that mutate the DNA and cause
uncontrollable cell growth and potentially abnormal cells [7]. These
processes in the DNA lead to somatic mutations which are the
focus area of this paper in the form of mutational catalogs where
these mutations become visible. These catalogs are filled with a
wide variety of somatic mutations, where the damage done has
been logged throughout the lifespan of the cell in its DNA. Each of
these somatic mutations stems from a different mutational processes,
which leaves its own uniquely identifiable mutational signature in the
DNA. Each of these signatures can be linked to a different mutational
process that has taken place [4].

Finding these unique mutational signatures and linking them to
different mutational processes allows for more personalized treat-
ment and a deeper understanding of cancer. These signatures can
be studied by extracting the patterns imprinted by the mutational
processes in the DNA, which is the aim of this paper.

Trying to isolate these mutational signatures, resembles the blind
source separation (BSS) problem since distinguishing what mu-
tational processes are responsible for the exposures. A common
thought experiment to explain this is the "cocktail party" problem;
the basic idea is trying to distinguish one voice in a room full of
voices using microphones. This translates well into how mutational
signatures work, the loudness of the voice resembles the exposures
of the mutational process, the microphones are the DNA itself record-
ing the changes, and these recordings are then the mutational catalog
we aim to understand [4].

In our previous project from our 9th semester [6], we aimed to
develop a new method for extracting signatures with autoencoders
instead of using non-negative matrix factorization. Overall, it was a

success and the method were proven to work but had its limitations,
which we explored and improved upon in this paper.

In this project, our primary goal is to build upon the foundation
laid during our 9th semester [6], aiming for significant improvements
in the framework we developed. Our focus is implementing a series
of pre- and post-processing methods around the existing models. By
implementing these methods, we aim to provide a comprehensive
evaluation of the impact of different approaches has on the extraction
process and improve the quality of results obtained.

Drawing inspiration from the methods outlined in the Alexan-
drov et at. paper [4], bootstrap, and feature filtering1 we intend to
implement and test these techniques, to find the optimal suite for
our specific framework, and autoencoders instead of the NMF ap-
proach they took. They were able to identify 67 distinct mutational
signatures from a dataset that is from Pan-Cancer Analysis of Whole
Genomes (PCAWG) [12] [9], that have been added to the database
COSMIC [1].

The knowledge gained from Alexandrov et al. work, is used as
a guideline as we implement different versions of pre- and post-
processing. The parameters are split into the previously mentioned
pre- and post-processing, for pre-processing we concentrated on the
effects of injection, bootstrapping, and feature filtering. The aim of
these methods where to test their effect when improving the dataset
before it was passed to the autoencoder. Post-processing focused on
different methods to extract signatures from the latent space. This
included clustering methods, optimal cluster amount, and how to
optimally cluster multi-run extractions.

When exploring different combinations of the above-mentioned
parameters, multiple runs were executed to generate data on all the
different effects. To be certain that we’re able to extract signatures,
we’re going to use another dataset that Degasperi et al. [5] used to
extract signatures. They were able to extract and validate against
Alexandrov et al. findings and identify 40 new signatures that were
added to Signal database [3]. These samples of genome datasets are
added together from 3 different sources, called Genomics England
International (GEL) [17], International Cancer Genome Consortium
(ICGC) [11], and Hartwig Medical Foundation (HMF) [15] [3].

The methods tested had the desired effect on the extracted signa-
ture and improved the extracted signature accuracy and the amount
found. Some of the methods tested had better results compared to
others. One of the main reasons behind the difference in success be-
tween our bootstrapping and other versions comes down to the lower
amount of method extraction runs. This was a deliberate choice on
our end as a trade-off for more data on other parameters.

In essence, our project aims to use already explored methods in
new ways to try and push the boundaries of current methods thereby

1In the Alexandrov et al. paper this is called Dimension reduction

2

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

improving the field of mutational signature research and helping
doctors better understand cancer and what causes it.

2 BACKGROUND
The goal of this section is to introduce key theories and methods
used in this paper. This includes the computational methods used for
the extraction, and the different pre- and post-processing methods
used in the development of the framework.

2.1 Single-Base Substitutions
Single-Base Substitutions (SBS), are a class of somatic mutations in
DNA. An important attribute of DNA is strand symmetry, which is
responsible for ensuring the structure of the double helix is preserved
[4], meaning they are stored in these six sub-types; C:G > A:T, C:G >
G:C, C:G > T:A, T:A > A:T, T:A > C:G, and T:A > G:C. The context

Type G1 G2 G3 G4 G5
A[C>A]A 53 33 131 279 54
A[C>A]C 43 19 81 199 54
A[C>A]G 16 5 11 32 11
A[C>A]T 28 19 70 202 38

Table 1: A sample of the data the framework uses

of the surrounding bases is an important part when working with
signatures and mutations in general. When handling the surrounding
bases we concentrated on one base to each side for increased context,
as we can have 4 different bases, therefore having 4x4 different
possibilities of neighbor to the mutation. With one base on each side
and types of mutations, it added up to 96 possible mutations (e.g.,
4 × 4 × 6 = 96 possible pairs). The format of the data when working
with neighbors becomes as shown in table 1, where [C>A] is the
mutation type C:G > A:T, and the bases beside the mutation are its
neighbors.

2.2 Autoencoders
An autoencoder stands as a distinct variant within the field of neural
networks, developed to transform input data into a more compressed
latent representation of said data, a process often referred to as di-
mension reduction. This representation is then utilized to reconstruct
the original input as accurately as possible.

This is achieved by utilizing two different functions, an encoding
function that is responsible for transforming the input data into
the compressed latent layer, and a decoding function that takes the
compressed representation layer and tries to reconstruct the original
data. By using these two methods in correlation with each other the
model aims to find an efficient compressed representation of the
input data provided [10].

The model achieves this representation over iterations of the
data and measures the progress with the use of a loss function. A
loss function in the case of an autoencoder is often referred to as
reconstruction loss which measures the difference between the input
data and the reconstructed output. The lower the reconstruction,
loss the better the model is interpreting the input data in its latent
space. Within autoencoders, various loss functions such as Kullback-
Leibler divergence (KL) and Mean Squared Error (MSE) are utilized

to estimate the reconstruction loss, indicating how well the dot
product of𝑊 and 𝐻 describes the original dataset.

2.3 Non-negative Matrix Factorization
Non-negative Matrix Factorization (NMF) [19] is a technique used
for breaking down matrices into non-negative components. This
method is used for dimensionality reduction in multivariate data
analysis to find the patterns in the DNA. Each component, represent-
ing a linear combination of the initial attributes, comprises solely
non-negative coefficients.

Given a matrix 𝐴 ∈ R𝑚×𝑛
+ , NMF decompose 𝐴 into two matrices

𝑊 ∈ R𝑚×𝑘
+ and 𝐻 ∈ R𝑘×𝑛+ , such that 𝐴 ≈ 𝑊 · 𝐻 , where 0 < 𝑘 <

𝑚 | 0 < 𝑘 < 𝑛.
To achieve this approximation, NMF employs an iterative ap-

proach. Starting with initial values for 𝑊 and 𝐻 , the algorithm
adjusts these matrices iteratively to minimize the difference be-
tween their product and 𝐴. This process continues until convergence,
where either no significant changes occur over several iterations or
the maximum specified iterations are reached. For NMF the same
loss functions can be used as mentioned in the section 2.2 regarding
autoencoders apply.

In practical applications, NMF effectively transforms the original
data into a new set of attributes, represented by the components
derived through the factorization process. Alexandrov et al. [4] used
NMF to extract signatures, by letting matrix A be the dataset of
genomes, and W and H matrices be the exposure of a given set of
signatures and the extracted signatures.

2.4 Bootstrap
By using Bootstrap, we can create multiple samples with some
variation on its mutations, based on properties of the original dataset,
while keeping the representative of the original dataset in the new
dataset. This can help to extract more signatures which wouldn’t be
found in the original dataset [16].

2.5 Feature Filtering
Feature filtering is a method to reduce the overall dimensions of
data by cutting out statistically less important data while keeping
the important properties of the data. This is done to decrease com-
putation time when training our model, but more importantly, it can
improve the accuracy of the model [14]. The implementation of
feature filtering in our framework is based on a cut-off threshold that
decides if the mutation contributes enough of the overall mutations
to stay in the dataset. If the mutation doesn’t meet the cut-off they
are removed and reintroduced as zeros when extracted signatures are
done, the feature filtering threshold has been tested with different
values to find the best result.

3 RELATED WORK
In this section, we review and discuss other papers within the same
field of research.

This paper is a further development of our 9th semester paper
[6]. We utilized the knowledge gained from a semester exploring
the domain and improved on the developed framework from our 9th

semester [6]. To improve the framework from our last semester we
looked at Alexandrov et al. [4] and Degasperi et al. [5] papers for

3

Magni Jógvansson Hansen and Nikolai Eriksen Kure

ways to extend the current framework, which we go more in-depth
below here and in appendix A.

The paper our project is based on, is the Alexandrov et al. paper
on mutational signature extraction with NMF [4]. At the time this
field was still new and therefore lacked a good understanding of
both mutational signatures and how to extract them. This makes
this paper one of the groundbreaking methods used to extract these
signatures and develop the research field.

Their solution was based on NMF for extracting the signatures
from the input data. Their NMF was created with a focus on the con-
vergence criteria to help stability and make it reliable over multiple
runs.

Their work led to the development of the SigProfleExtractor
Python library2. This software framework offers a streamlined method
for signature extraction from the input data and a search space. With
this method, researchers can effortlessly extract and try to understand
the different signatures found across the different types of cancer
tested. The framework gives both a data and visual representation of
the signatures extracted in the process, which allows the researchers
to compare different signatures found across the cancer types and
patients and find common signatures.

The approach of using machine intelligence, more specifically
autoencoders, to try and work around the limitations of NMF ap-
proaches was developed in a study by Pei et al. [13]. Their approach
utilized a denoising space autoencoder intending to improve the
precision of extracted signatures from various datasets used in train-
ing. The model used tried to break down the input into a latent
layer which then could be reconstructed in the decoder part of the
autoencoder, to get as low a reconstruction error as possible. This
then allowed them to look at the latent layer to see which patterns
it had generated and these would then be the signatures. Before the
signatures could be used they were clustered together with the use of
cosine similarity since each latent node can be processed as a vector.

Another relevant paper is by Genomics England and Andrea
Degasperi et al. [5]. Their approach is similar to Alexandrov et
al. by also using NMF, but in addition using GINI, to see which
signatures had the most exposures for each genome and removing
those genomes from the dataset, then run again, to see if they could
find rare signatures, that weren’t able to be extracted in the previous
run. The main part of their paper we were interested in was the
dataset they used. Since that dataset has a higher genome count,
resulting in a greatly increased amount of training data. The paper
was also a good insight into new processes to explore for a potential
increase in the accuracy of extracted signatures.

In our study of the papers above we analyze the different pre-
and post-processing methods. The idea behind this is to utilize these
methods with the autoencoder developed in our 9th semester [6]
project. To improve the framework and explore the effects on ex-
tracted signatures.

4 METHODOLOGY
In this section we are describing the process of how our extended
framework is different and how we aim to provide quantifiable data
on the effect of different pre- and post-processing.

2https://github.com/AlexandrovLab/SigProfilerExtractor

Figure 1: Flowchart of the updated framework, based on
PCAWG breast dataset

In the flowchart 1 the flow of the extended SEEF framework is
shown. All the steps and matrixes passed between each step are
in an abstract format. Post-processing steps include clustering the
latents with K-Means and the silhouette metric being used is cosine.
The multi clustering step is described in subsection 4.7. Ending
with evaluating the extracted signatures against known ones and
visualizing the results for analysis.

4.1 Method Comparison
To give quantifiable statistics on how each of the different pre- and
post-processing methods impacted the result we are using cosine sim-
ilarity to determine this, by validating extraction signatures against
reference signatures.

4.2 Method Evaluation
To evaluate the performance of the parameters, we need a way to
determine the accuracy of the extraction method. Taking inspiration
from Alexandrov et al. [4] and Degasperi et al. [5], who used cosine
similarity to validate their signatures. Cosine similarity utilizes the
property of interpreting the signatures as vectors to compare how
similar they are. The equation to compare two vectors in cosine
similarity is defined as follows:

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴, 𝐵) =
∑𝑛
𝑖=1𝐴𝑖𝐵𝑖√︃∑𝑛

𝑖=1 A
2
𝑖
∗
√︃∑𝑛

𝑖=1 B
2
𝑖

(1)

[18] where n is the given size of the dimension, the value ranges
from 0 to 1, 0 indicates they’re orthogonal, and 1 indicates they are
the same vector. Using cosine similarity also allows us to validate
against reference signature in COSMIC [1] and from Signal [3].
One potential issue, with only using Cosine similarity, is that we
can’t say if multiple extracted signatures are matching to the same
reference signatures. To solve this issue, we employ the Hungarian
algorithm [2], where the reference signature is the column, and the
extracted signatures are the row, and the cosine similarity is the
weight, normally the Hungarian algorithm focuses on getting the
lowest overall weight, but in our case we need the highest weight.

4.3 Datasets
The real datasets used to perform evaluation of the framework are
PCAWG and GEL, as described in section 1. These are the same
datasets that Alexandrov et al. and Degasperi et al. used to identify
their signatures. As described in section 1 we inject synthetic data
into the real dataset.

4

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

4.3.1 Real Data. Both real datasets consist of samples taken
from 22 different organs, and we have specifically focuses on breast.
The dimensions of these two datasets with breast are different. The
PCAWG dataset comprises of 96 rows (SBS mutation types) by 214
columns (samples) [9], while the dimension for GEL dataset has 96
rows by 2572 columns [5].

4.3.2 Signatures Data. The reference signatures are in two dif-
ferent datasets, COSMIC and Signal, as described in section 1. We
can evaluate the framework, by validating the extracted signatures
against the reference signatures, by using cosine similarity to de-
termine the accuracy of the signatures. Additionally, all extracted
signatures get counted and compared to reference signatures to see
how many of the found signatures have a good match with already
referenced signatures.

4.3.3 Synthetic Data. Comparing synthetic data is a slightly
different approach than with the real data process mentioned in
section 4.3.2. When it comes to synthetic data the framework is
already aware of which signatures were used to generate the dataset
and that is therefore the signatures it is looking for in the data. This
also means it can tell if the extraction method found the correct
number of signatures or if it found too many or too few since the
number of signatures and which ones were known in advance when
the dataset was generated. Otherwise, the process is similar to the
real data.

Algorithm 1 SynthData algorithm from our 9th semester paper [6]

Input: Array of random given amount reference signatures S,
Sample amount N

Output: Mutation catalog
1: for i = 0 to N do
2: 𝑥 = {𝑦 | ∀𝑥 ∈ 𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 [1, 1, 0, 0, 1] 𝑦 = 𝑥 · 𝑃𝑜𝑖𝑠 (1)}
3: 𝑥𝑠 =

∑4
𝑖=0 𝑥𝑖

4: 𝑃 = 𝑥
𝑥𝑠 · unif(500, 1000)

5: 𝑉 = 𝑆 ⊙ 𝑃

6: 𝑁𝑜𝑖𝑠𝑒 = {𝑦 | ∀𝑥 ∈ [0..95], 𝑦 = 𝑃𝑜𝑖𝑠 (1)}
7: 𝑁𝑜𝑖𝑠𝑒𝑆𝑢𝑚 =

∑95
𝑖=0 𝑁𝑜𝑖𝑠𝑒

8: 𝑁𝑜𝑖𝑠𝑒 = 𝑁𝑜𝑖𝑠𝑒
𝑁𝑜𝑖𝑠𝑒𝑆𝑢𝑚

∗ 𝑃𝑖 ∗ 0.01
9: 𝐹𝑖𝑛𝑎𝑙 = 𝑉 ⊙ 𝑁𝑜𝑖𝑠𝑒

10: end for

The algorithm 1 is from our 9th semester paper [6] since the
method for generating synthetic data is the same. The algorithm
works by selecting a set amount of reference signatures that have a
shared cosine similarity lower than 0.7 to ensure different signatures.
Secondly, a matrix for exposure is generated with random values
between 500-1000 in order to represent the mutations in each sample.
This mutation count is then distributed among the mutations in the
signature and aa set amount of the signatures are selected to have
zero mutations. To finalize the synthetic data the dot product of the
two matrices is calculated and Poisson noise is added.

4.3.4 Injected Data. Injected data is a new dataset in the up-
graded framework, so it also needs a new and updated comparison
method to go along with it. With this kind of data, the framework
knows which signatures were injected, but it doesn’t know about

which ones are in the real data. So, when this option is used the
framework combines the two methods mentioned above.

4.4 Ground Truth
By using ground truth, we are able to assess whether the method
extraction is extracting signatures from the dataset. To do this we
need to use a custom-made signature, that we can reference back to,
to be certain that it is able to extract it.

Figure 2: Signature of our custom-made one

Using the custom-made signature shown in figure 2, we can create
synthetic data from it to inject into the real dataset, and we can be
certain that we’re extracting our own signature, when running on
both datasets, as it has a maximum cosine similarity 0.75296 to
Signal and 0.68001 to COSMIC.

4.5 Clustering Method
To gain useful information about the latent space, we need to run
clustering on it, as there is a chance that some of the latent are not
distinct enough. Therefore it should be clustered together with its
neighbor, and to find the correct number of clusters we run from 2
up to the latent dimension.

4.5.1 K-Means. The K-Means algorithm groups data points into
a specific amount of clusters set by K, and adds them to a group of
data points. The most common way of doing this is by calculating the
squared Euclidean distance to each centroid, and then adding it to the
cluster where the distance is the lowest. The points of the centroid
for each cluster will be defined as the sum of all Euclidean distances
from centroids to each data point that belongs to that cluster and
divided by the amount of data points in that cluster. [8]

4.5.2 Cosine Clustering. Cosine Clustering is based on how the
K-Means algorithm works, but instead of using squared Euclidean
distance to calculate the distance we use cosine similarity, where the
highest value for each data point will be assigned to that cluster, you
still have to specify the number of how many clusters it should use.

4.6 Optimal Amount Clusters
The problem with the optimal amount of clusters in a given latent
space is not knowing what the optimal amount of clusters is, nor
how one should define it. Therefore, we first need to run through
all possible amounts of clusters in a given latent space, defined as:
𝑘 = {𝑥 ∈ Z+ |2 < 𝑥 < |𝑙𝑎𝑡𝑒𝑛𝑡𝑠𝑝𝑎𝑐𝑒 |}, To define how we choose the
optimal amount, we define it differently for each clustering method.
For K-Means we define it as:

𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 = �𝑖𝑛𝑒𝑟𝑡𝑖𝑎 − 𝛼 ∗ �𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 (2)

The values are normalized, indicated by .̂ Inertia is the sum of
the squared distance of each sample in a given cluster. Silhouette

5

Magni Jógvansson Hansen and Nikolai Eriksen Kure

calculates the difference between the sample distance to its given
cluster, and its mean nearest cluster distance. The score ranges from
-1 to 0, -1 indicates that it’s assigned to the wrong cluster, 0 indicates
that the clusters are overlapping, and 1 indicates that the sample is
assigned to the correct cluster. The 𝛼 parameter is used as a weight to
determine how much contribution the silhouette score to the equation
2, 3, and 4. For the optimal amount of clusters in Cosine Clustering,
we define the equation as:

𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 = 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑚𝑒𝑎𝑛 + 𝛼 ∗ 𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 (3)

Cosine similarity mean is the sum of each sample cosine similarity
score to its given cluster centroid, divided by the amount of samples
in a given cluster.

4.7 Optimal Cluster Selection in Multi Run
Extraction

When picking the optimal solutions for the cluster result, there are
two ways of choosing. The first way is to pick the most optimal
cluster out of all the method extraction runs. The problem with
this approach is that all the other runs become discarded, and the
variation in those runs are lost.

Figure 3: Illustration of Optimal Cluster Selection in Multi Run
Extraction

Therefore, a new implementation was made, that would concate-
nate the optimal cluster from each method extraction run, and cluster
again. By concatenating all clusters from each method extraction
run together, the variation from both bootstrapping and each method
extraction is preserved, since bootstrap is run for each method ex-
traction. We can see how this works in figure 3, where A shows the
approach of picking the optimal cluster from a given method extrac-
tion run and discards the other, and B shows the new implementation
where the optimal cluster is chosen from each run and cluster again.

If chosen using the first implementation the equation for K-Means
is defined as follows:

𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 = 𝑙𝑜𝑠𝑠 − 𝛼 ∗ �𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 (4)

The loss in equation 4 is the loss value from each method extraction
run, while using the second implementation K-Means uses equation
2 for finding the optimal amount of clusters in the given space, and
cosine uses 3.

4.8 Output
The output of the framework is a series of files containing data
about how many signatures were found, how they matched up with
reference signatures, and general information about the run. This is
the same as the previous framework developed in the 9th semester
[6], in addition, the functionality added in this semester will also
be outputted. This extra output will be the information about how
different methods impacted the results and raw data to avoid needing
to run the entire process when exploring output data.

4.8.1 Pre-process Parameter. The pre-process parameter is
saved into a tsv file, which contains the extraction method used,
the number of times the method extraction is set to run, what the
feature filtering threshold is set to, if feature filtering was applied,
to what mutation type it was applied to, if bootstrap was used on
the data, what synthetic injection percentage was used, what noise
percentage was used, how many rows and columns are in the dataset
before going into method extraction.

4.8.2 Latent Space. For each method extraction run, the latent
space is saved.

4.8.3 Signatures. After the optimal clusters has been chosen, the
centroids is saved into a signatures.tsv file.

4.8.4 Cosine Matrix. The cosine matrix is the file that contains
cosine similarity between the clustered latent and known mutational
signatures from either COSMIC or Signal.

4.8.5 Known Signatures. The known signatures file is a file that
focuses on assigning each latent to a unique reference signature with
the highest cosine similarity.

4.8.6 Best Match. The best Match file, contains the best overall
extracted signatures to reference, by using the Hungarian algorithm

4.8.7 Results. The results are saved into a tsv file. It contains
the pre- and post-process parameters that were used, how many
signatures were found, how high of a cosine similarity they have
against reference signatures from either COSMIC or Signal.

4.8.8 Visual Results. The Visual Results files, are the saved
images of the box-plot for the pre- and post-process parameters that
were used.

5 EXPERIMENTAL SETUP
In this section, we present and analyze the experimental findings
from the improved SEEF framework. This includes how the different
pre- and post-processing methods affect the accuracy of the extracted
signatures

5.1 Dataset
The evaluation of the different pre- and post-processing methods
is done on a few different datasets, real dataset, real dataset with
synthetic dataset by injection. The synthetic data is generated with
the same process as in our previous project, with the addition of the
capability of creating injected data sets too. These injected datasets
allow us to inject a percentage based on sample size into real data to
make sure we can extract signatures we know to be in there.

6

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

5.1.1 Real Datasets. As mentioned in section 4.3.1 we are using
two different datasets to extract signatures from PCAWG and GEL,
and they have different amount of samples.

Total sum Mean Median STD Max Min
GEL 16.841.637 6.548 3.497 10.777 243.907 808
PCAWG 1.515.569 7.082 4.639 7.874 65.065 1.203
Table 2: quantitative description of the two breasts datasets

As seen in table 2 the datasets are different, interestingly the std,
for GEL is higher than PCAWG, as GEL is 10 times bigger than
PCAWG, GEL has the largest genome that has over 200.000 muta-
tion, while PCAWG largest has just over 65.000, but interestingly
the mean and median for PCAWG is higher than GEL.

5.1.2 COSMIC Database. COSMIC is a database comprised
of mutational signatures that have extracted 87 signatures with the
current state-of-the-art methods for signature extraction. The dataset
used to compile the data is the PCAWG dataset. Some of the ex-
tracted signatures have also been validated with real-life research
and some have just been found in many patients [1].

5.1.3 Signal Database. The Signal database [3] is a mutational
signature database from the University of Cambridge using COSMIC
as a reference, they have been able to extract 121 signatures. We
chose to use the organ-specific breast reference signatures from
Signal based on GEL, that contains 28 signatures they extracted,
rather than the whole dataset. As we’re using the GEL dataset to
extract signatures from.

5.1.4 Synthetic Dataset Generation. In short, synthetic data
can be generated from COSMIC, Signal, or custom-made signatures,
combined with random amounts of exposure in each patient. The
amount of signatures and patients used is a parameter when running
the data generation. This process is explained in section 4.3.3.

5.1.5 Injected Dataset Generation. Injected data works by uti-
lizing the synthetic data generation tool described in section 4.3.3 to
generate the part injected into the real data. The amount of injected
data into the real data is controlled by a parameter for what percent-
age of the data should be injected. When the desired amount of data
is generated the final step is concatenating the generated data onto
the real data and shuffling the columns.

5.2 Parameter
The parameters are split into three different groups, pre-processing,
post-processing, and method extraction.

5.2.1 Pre-processing. In pre-processing, we have 6 different
parameters we can change, before it goes into the method extraction
part. feature filtering, bootstrap, injection, and noise.

5.2.2 Method Extraction. For our method extraction, we used
Optuna3 to help find the suitable hyper-parameters for the autoen-
coder. The hyper-parameters that were tuned are epochs, batch size,
latent dimension, and the learning rate. Through Optuna recommen-
dation and observation of the results, the conclusion was that epochs
3https://optuna.org/

should be set at 500, batch sizes at 8, learning rate at 1-e03, and
latent was most optimal at 200.

5.2.3 Post-processing. When method extraction is done, we
have options to choose from on how the post-processing should go,
as mentioned in section 4, we can choose what kind of clustering
method we want to use, how to pick the optimal solution, how
the silhouette score should be, and how much weight should the
silhouette score have.

5.2.4 Combination of Parameters. With this we have multiple
parameters to tune, but the focus lies on 10 parameters. Those 10
parameters are; the number parameters are alpha, latent, feature fil-
tering, injection, and noise, the Categorical parameters are clustering
method, optimal clusters selection, and silhouette metric, and for the
Boolean parameter, we have bootstrap.

Latent. With latent dimension tuning, when training on the two
datasets, the latent starts from different sizes, because of the differ-
ence between the two dataset sizes as described in section 4.3.1 af-
fecting how big the latent dimension can be; therefore when training
on PCAWG starts from 200, while GEL starts from 250. Alexan-
drov et al. and Degasperi et al. ran with component sizes 20 and 10
individually, which is lower than our optimal results. Therefor the
tuning steps are down to 20, with an increment of 50.

Feature Filtering. As mentioned is inspired by Alexandrov et al.
paper [4], they use 1% as their threshold, to find if it is optimal for
autoencoder, we start from 0 to get a baseline, and then step up to
1%.

Injection. With Injection we only need to prove that it is learning,
which allows us not to run it with such fine increments. Therefore
we start with 0% injections to get a baseline of cosine similarity
against the custom-made signature and see if it increases the more
injection data is put into the real data.

Noise. To see if by adding noise the autoencoder gets better at
learning the underlying structure of the data, therefore we start from
0% to get a baseline, and go up to 5%.

Clustering Method. As explained in section 4.5, we implemented
two different methods: K-Means and cosine clustering.

Cluster Selection in Multi Run. As explained in section 4.7 cluster
selection only has two options, the first option is picking the single
best run, which was the implementation from the previous paper,
and the second option is the new implementation.

Silhouette Metric. Silhouette has multiple metrics it can use to
calculate it’s score for the clusters in a given space, the standard
metric is Euclidean distance. We want to see whether using cosine
similarity to calculate the score, we can improve the evaluation
against reference signatures, as we are using cosine similarity to
validate extracted signatures against reference signatures.

𝛼 . To see how much effect silhouette score has on picking the op-
timal cluster, we are starting with the silhouette having equal weight
to the equation, as from the previous paper, and then incrementally
step down to 0.6.

With this the list of each parameters that both dataset ran on are
as follow:

7

Magni Jógvansson Hansen and Nikolai Eriksen Kure

Feature filtering = [0, 0.001, 0.003, 0.005, 0.007, 0.009, 0.01]
Injection = [0, 1, 5, 10]
Noise = [0, 0.01, 0.03, 0.05]
Bootstrap = [True, False]
Clustering method = [K-means, Cosine]
Cluster selection in multi run = [single, multi]
silhouette metric = [cosine, euclidean]
𝛼 = [1, 0.9, 0.8, 0.7, 0.6]

The only difference is the latent list. For PCAWG it is as follows:
latent = [200, 150, 100, 50, 20]

While for GEL the latent list is:
latent = [250, 200, 150, 100, 50, 20]

As the combinations are different for each data, the post-process
combination is the same, which comes to 40 combinations, while
pre-processing and method extraction are different. For PCAWG the
combination comes to 1120, and for GEL it’s 1344. The combination
total for the PCAWG becomes 44800, and for GEL it’s 53760. The
combination is run 3 times.

5.3 Parameter Runs
When a pre-parameter combination is run, the 40 different combi-
nations post-parameter is then run on the latent space, the method
extraction run runs 10 times. This full process runs 3 times.

5.4 Parameter Results Setup
The parameter results are split into 3 groups, pre-process parameters,
post-process parameters, and injection. For pre- and pro-process, the
injection parameter gets filtered out if it’s over 0, to not influence
the results. The value is then aggregated into the mean value. For
injection it does not get aggregated, but the max, mean, and min get
calculated. Then each is box-plotted.

8

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

Figure 4: Boxplots of clustering methods and alpha variable post-processing

6 EXPERIMENTAL RESULTS
In this section, we explore the findings from the different tests of
multiple combinations of pre- and post-processing. This includes
different plots to help distinguish the best combination of parameters
for extracting the most accurate signatures.

Figure 5: Box-plot of injection percentage

6.1 Ground Truth
Before we look at the findings, we need to know if the autoencoder
is able to learn from the dataset, and to do that, we have to look at
the injection part, to see if the cosine similarity to the custom-made
signature is higher when injection percentage increases.

The autoencoder is able to extract the custom-made signature
from the PCAWG dataset, and we can see that in figure 5 that the
higher the injection percentage is, the higher and more consistent
the extract becomes, and we know this is not a false positive as
described in section 4.4 the maximum cosine similarity for custom-
made signature to reference signature is 0.68001.

6.2 Parameter Results For Pre- and
Post-processing

In this section, we present the results from the test of different
combinations of pre- and post-processing methods and the optimal
options.

6.2.1 Post-processing results. With the problem as described
in section 4.7, picking the single best extraction, seems correct as
can be seen in figure 6. When concatenating all optimal clusters and
clustering again, it results in a more accurate extraction of signatures
from both datasets. For both clustering methods with silhouette
metrics, they both performed better when using the opposite metric,
through all cosine similarity threshold steps. When the 𝛼 weight is
lower, it is able to extract more signatures through all steps, except
at 0.99 for K-Means against Signal reference signatures, where 0.8
weight has worse 𝑄3, but better 𝑄1 and median. When looking
through figures 7, 4, and 6, the K-Means is able to extract around
double the signatures than Cosine cluster.

6.2.2 Optimal post-parameter. When looking through the fig-
ures for both datasets, it becomes clear that K-Means is the clustering
method to use, the silhouette should be using Cosine as its metric,
the 𝛼 weight should be at 0.6, and the lastly the type clustering
should be using the multi-implementation

9

Magni Jógvansson Hansen and Nikolai Eriksen Kure

Figure 6: Box-plots of optimal selection in multi run post-processing
A1 & A2

Figure 7: Box-plots of the clustering methods post-processing
A1 & A2

6.2.3 Pre-parameters results. Looking at latent results in fig-
ures 8, the autoencoder extracted more signatures for both datasets,
bigger the latent dimension is. Interestingly the feature filtering
threshold has a limit on how high it can be before it starts extracting
less signatures, as can be seen in figure 9, and the limit is different

between the two datasets. For COSMIC it started performing worse
higher than 0.003, while the value 0.01, which Alexandrov et al. [4]
used, performed worse than the baseline. The noise value, performs
similarly between the two datasets, where 0.01 noise is the limit,
before the extractions gets worse. When it comes to bootstrapping

10

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

the current amount of method extraction runs makes the results
negligible.

11

Magni Jógvansson Hansen and Nikolai Eriksen Kure

Figure 8: Boxplots of latent space pre-processing
A1 & A2

Figure 9: Boxplots of the feature filtering pre-processing

12

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

Figure 10: Boxplots of the noise pre-processing

Figure 11: Boxplots of the bootstrapping pre-processing

13

Magni Jógvansson Hansen and Nikolai Eriksen Kure

7 DISCUSSION
In this section, we discuss and provide an in-depth analysis of the
topics mentioned in the sections: Methodology and Experimental
Findings.

7.1 Cosine Similarity Thresholds
To enhance the understanding of the results, the frequency of the
threshold interval has been significantly increased, since the previous
thresholds failed to provide an accurate insight into the trends due
to the gaps between thresholds. These changes also improve the
signatures due to the large difference between a signature with a
cosine of 0.85 and 0.9.

Figure 12: 3 extracted signatures and their cosine against one of
the reference signatures from Signal

7.2 Pre-processing
Injection. After the exploration phase, we analyzed the results

and concluded that our model can extract the signatures we know are
there. This gives us confidence that the model is working correctly
and can extract correct signatures in big datasets. This feature was
designed and intended to be a method to test our model and ensure
it can extract signatures correctly. The injection feature was a great
addition to the framework for adding confidence and fulfilled that
role well both when testing with real signatures and synthetic test
signatures meant to look nothing like real signatures. These test
signatures were used early on in testing to ensure the feature was
working correctly and that the model could find them at the easiest
level for a start before moving on to real signatures.

Bootstrapping. The results for bootstrapping were better than
expected as seen in A1, A2, B1, and B2 11. The goal of bootstrap-
ping the dataset is to increase the variance of the data and help the
autoencoder to better comprehend and find patterns in the dataset.

This makes the model more versatile by having more examples of
different signatures.

Feature filtering. The model performed better when feature fil-
tering was used due to helping to reduce the dimensions. Reducing
the dimensions makes the dataset easier to learn for the autoencoder,
and makes the signatures more accurate since it helps with the curse
of dimensionality. It can be seen in plots A1, A2, B1, and B2 9,
where the higher cutoffs can be seen to have an improvement over
no cutoff.

Latent. Throughout the exploration of different parameters, it
was discovered that the higher latent values gave significantly better
results. This can be seen clearly in A1, A2, B1, and B2 8. The
higher amount of latent helps by having more nodes to represent the
data and more data when clustering afterward to find the signatures.
This does result in duplicate latents, but is worth it for the overall
extraction result as seen in the previously mentioned plots.

Noise. Adding noise to the dataset before passing it to our autoen-
coder improved the results as can be seen in A1, A2, B1, and B2 10.
This is most likely due to learning the underlying structure and not
the individual signatures. On the other hand, adding too much noise
hinders the extraction process. Leading us to determine adding some
noise will be the optimal solution.

7.3 Method Extraction
The main focus of this paper was on the pre- and post-process, but
we can see that the latent part of method extraction plays a big role
in the extraction of signatures. When adding noise it maybe should
have either increased the epochs or lowered the learning rate, or both,
as it could be not getting enough time to learn to extract signatures,
as mentioned in section 5.2.2. The hyper-parameters for the method
extraction were done on a dataset, without taking into consideration
what would happen if we added noise to the data, or changed the
latent space.

7.4 Post-processing
Alpha. As can be seen in A1, A2, B1, and B2 4 tuning this value

to change the weight of these silhouette metric when determining
the best clusters. It can be seen that the lower end is better for both
methods, but one method clearly finds more signatures than the
other.

Cluster selection in multi run. After exploring the different clus-
tering selection with relation to different methods, it stands to show
the new clustering of the best clusters is performing way better in
A1, A2, B1, and B2 6. This is a good result since this is one of the
custom-made methods used in this paper that is different from the
other approaches taken in previous papers.

Silhouette metric. This is part of what is used for calculating the
correct clusters by trying to ensure clusters are distinct. As can be
seen in A1, A2, B1, and B27, the clusters found with this metric
vary quite a lot depending on what clustering method is used and
less based on the silhouette metric.

14

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

7.5 Datasets
With the addition of the Degasperi et al. paper [5] data, the model
gained a great advantage over our 9th semester [6] version of the
same autoencoder due to the increased performance gain with more
training data.

7.6 Finding the Optimal Parameters
Taking in all the information gained from test runs over 50.000
combinations and careful analysis gave the results shown in 6. With
all the data collected and processed, it allows us to analyze the pro-
cessed data and deduct what the optimal parameters are for extracting
signatures. The parameters are listed in section 8.

8 CONCLUSIONS
In conclusion, we have extended the SEEF framework from our 9th

semester paper [6], with multiple different pre- and post-processing
methods to gain insight into which processes give the best outcome.

The results we discovered during the exploration of the different
combinations, were that some combinations and processes greatly
affected the outcome. Striking the right balance turned out to be
the most important factor when choosing what parameters to use,
and the parameters for one dataset, might not be optimal for another
dataset, but can give a good baseline to start from. After a thorough
exploration of possible combinations, this set turned out to be the
most effective parameter for post-processing: K-Means as the cluster
method, Euclidean as the silhouette metric, 𝛼 weight should be set
at 0.8, and when running multiple method extraction, the optimal
selection multi should be used. The most effective pre-parameters
that worked both on breast datasets turned out to be: noise at 0.01,
the highest latent used is 200 for PCAWG and 250 for GEL, and
for bootstrapping either true or false will have very similar results.
The pre-parameter most effective, that was different, was feature
filtering, where for PCAWG feature filtering is best at 0.03, while
for GEL it is at 0.09.

9 FUTURE WORK
In this section, we discuss potential future directions further devel-
opment on this paper can take.

9.1 Two Neighboring Bases
One proposal is to extend the analysis by taking the two neighboring
bases on each side of a given mutation into account, increasing it to
a total of four bases in each direction. This approach considers 1,536
possible mutation contexts, calculated as 4×4×6×4×4 = 1536. Such
an expansion would allow for a more comprehensive examination
of mutational patterns compared to the 96 mutations we currently
explore.

One issue with the approach of 4 neighboring bases on each side
is a lack of big datasets covering this mutational setup. Hence we
focus on the more common 96 mutational catalog that both COSMIC
and most other research papers also are based on.

Feature
Filtering C>A C>G C>T T>A T>G T>C

0.000 0 0 0 0 0 0
0.001 0 0 0 0 0 0
0.003 4 3 0 1 0 6
0.005 4 7 0 6 3 14
0.007 5 10 0 12 8 14
0.009 6 13 1 14 13 15
0.010 8 13 4 16 14 16

Table 4: Feature filter threshold and what mutation type are
removed from the PCAWG breast dataset

9.2 Mutation Type feature Filtering
One of the things we noticed while analyzing the results, was which
mutations were filtered out depending on the parameter threshold is
set to.

Feature
Filtering C>A C>G C>T T>A T>G T>C

0.000 0 0 0 0 0 0
0.001 0 1 0 0 0 0
0.003 4 4 0 4 0 7
0.005 4 10 0 9 1 14
0.007 6 12 0 13 7 14
0.009 9 13 1 13 12 15
0.010 11 13 1 16 13 16

Table 3: Feature filter threshold and what mutation type are
removed from the GEL breast dataset

The mutation C>T with its neighbors has significantly more mu-
tation than the other mutations with its neighbors, therefore getting
filtered out less, while T>A and T>C are completely removed on
the threshold set to 0.01 for both datasets. Therefore it would be
interesting to see how much its effect on the extraction of signatures
would be, if the filter threshold was set at each mutation type instead,
and not the full datasets

9.3 Bootstrap and Method Extraction Run
Bootstrap depends heavily on the method extraction run, as De-
gasperi et al. ran their extraction at least 300 times [5], Alexandrov
et al. ran theirs 1000 times [9], while we ran it 10 times.

ACKNOWLEDGMENTS
We would like to extend a thank you to our dedicated supervisors,
Daniele Dell’Aglio and Rasmus Froberg Brøndum, for great discus-
sion and feedback on our project. They provided valuable knowledge
and insight that contributed to a significant improvement in the qual-
ity of this paper.. We would also like to thank CLAAUDIA4 for
allowing us to use their services for training and running our models.
This project would not have been possible without their services.

4https://www.researcher.aau.dk/contact/claaudia

15

Magni Jógvansson Hansen and Nikolai Eriksen Kure

CODE AVAILABILITY
The source code is available on

https://github.com/Magnijh/Master_thesis

TECHNICAL ASPECT
The code ran on CLAAUDIA, which is an AI cloud. The nodes most
commonly used were a combination of NVIDIA t4 with 16 CPU
cores and NVIDIA A10 with 16 CPU cores. The code is set up to run
as multi-process, our method extraction only has one layer, therefore
takeing less than a minute to run all method extraction runs, but the
clustering part can take up to 2 hours to run. The highest factor to
computation time for clustering is the latent dimension and if using
the optimal selection multi cluster. If only using single a node to run
all combination, expect more than 3 weeks to run through all of the
combinations.

16

https://github.com/Magnijh/Master_thesis

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

GLOSSARY
exposures the frequency and duration of a cell’s exposure to

a specific mutational process. 2

mutational catalogs a detailed log of genetic mutations in a
sample. 2

mutational processes a change in DNA caused by DNA dam-
age, DNA repair, DNA replication etc.. 2

mutational signature a characteristic patterns of somatic mu-
tations in cancer genomes. 2

somatic mutation a mutation occurring in a somatic cell and
inducing a chimera. 2

17

Magni Jógvansson Hansen and Nikolai Eriksen Kure

REFERENCES
[1] [n. d.]. Catalogue Of Somatix Mutations In Cancer. https://cancer.sanger.ac.uk/

signatures/sbs/. Accessed: 2024-01-18.
[2] 2022. Scipy.optimize.linear_sum_assignment. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.optimize.linear_sum_assignment.html
[3] Degasperi A, Amarante TD, Czarnecki J, Shooter S, Zou X, Glodzik D, Mor-

ganella S, Nanda AS, Badja C, Koh G, Momen SE, Georgakopoulos-Soares I, Dias
JML, Young J, Memari Y, Davies H, and Nik-Zainal S. 2020. A practical frame-
work and online tool for mutational signature analyses show inter-tissue variation
and driver dependencies. Nat Cancer (2020). https://doi.org/10.1038/s43018-
020-0027-5

[4] L.B. Alexandrov, S. Nik-Zainal, D.C. Wedge, P.J. Campbell, and M.R. Stratton.
2013. Deciphering signatures of mutational processes operative in human cancer.
Cell Rep (2013).

[5] Andrea Degasperi, Xueqing Zou, Tauanne Dias Amarante, Andrea Martinez-
Martinez, Gene Ching Chiek Koh, João M. L. Dias, Laura Heskin, Lucia
Chmelova, Giuseppe Rinaldi, Valerie Ya Wen Wang, Arjun S. Nanda, Aaron
Bernstein, Sophie E. Momen, Jamie Young, Daniel Perez-Gil, Yasin Memari,
Cherif Badja, Scott Shooter, Jan Czarnecki, Matthew A. Brown, Helen R. Davies,
Genomics England Research Consortium3†, Serena Nik-Zainal, J. C. Ambrose,
P. Arumugam, R. Bevers, M. Bleda, F. Boardman-Pretty, C. R. Boustred, H.
Brittain, M. J. Caulfield, G. C. Chan, T. Fowler, A. Giess, A. Hamblin, S. Hen-
derson, T. J. P. Hubbard, R. Jackson, L. J. Jones, D. Kasperaviciute, M. Kayikci,
A. Kousathanas, L. Lahnstein, S. E. A. Leigh, I. U. S. Leong, F. J. Lopez, F.
Maleady-Crowe, M. McEntagart, F. Minneci, L. Moutsianas, M. Mueller, N. Mu-
rugaesu, A. C. Need, P. O‘Donovan, C. A. Odhams, C. Patch, D. Perez-Gil, M. B.
Pereira, J. Pullinger, T. Rahim, A. Rendon, T. Rogers, K. Savage, K. Sawant,
R. H. Scott, A. Siddiq, A. Sieghart, S. C. Smith, A. Sosinsky, A. Stuckey, M.
Tanguy, A. L. Taylor Tavares, E. R. A. Thomas, S. R. Thompson, A. Tucci, M. J.
Welland, E. Williams, K. Witkowska, and S. M. Wood. 2022. Substitution mu-
tational signatures in whole-genome–sequenced cancers in the UK population.
Science 376, 6591 (2022), abl9283. https://doi.org/10.1126/science.abl9283
arXiv:https://www.science.org/doi/pdf/10.1126/science.abl9283

[6] Rasmussen F, Gislum C, Sinding K.R, Hansen M.J, Jensen M.V, and Kure N.E.
2023. SEEF: A Signature Extraction and Evaluation Framework. (2023).

[7] Cooper GM. 2000. The Cell: A Molecular Approach. 2 (2000).
[8] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan

Taylor. 2023. An Introduction to Statistical Learning. 1 (2023). Accessed:
2024-06-5.

[9] Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A,
Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klim-
czak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V,
PCAWG Mutational Signatures Working Group, Getz G, Rozen SG, Stratton MR,
and PCAWG Consortium. 2020. The repertoire of mutational signatures in human
cancer. Nature 578 (2020), 94–101. https://doi.org/10.1038/s41586-020-1943-3

[10] Andrew NgAndrew Ng. [n. d.]. Sparse autoencoder. 1 ([n. d.]), 19. Accessed:
2024-06-6.

[11] Serena Nik-Zainal, Helen Davies, Johan Staaf, Manasa Ramakrishna, Dominik
Glodzik, Xueqing Zou, Inigo Martincorena, Ludmil B. Alexandrov, Sancha Mar-
tin, David C. Wedge, Peter Van Loo, Young Seok Ju, Marcel Smid, Arie B.
Brinkman, Sandro Morganella, Miriam R. Aure, Ole Christian Lingjærde, Anita
Langerød, Markus Ringnér, Sung-Min Ahn, Sandrine Boyault, Jane E. Brock, An-
negien Broeks, Adam Butler, and . . . Michael R. Stratton. 2016. ntroducing whole-
genome sequencing into routine cancer care: the Genomics England 100 000
Genomes Project. Nature 534 (2016), 47–57. https://doi.org/10.1038/nature17676

[12] PCAWG Consortium. 2020. Pan-cancer analysis of whole genomes. Nature 578,
7793 (2020), 82–93. https://doi.org/10.1038/s41586-020-1969-6

[13] Guangsheng Pei, Ruifeng Hu, Yulin Dai, Zhongming Zhao, and Peilin Jia. 2020.
Decoding whole-genome mutational signatures in 37 human pan-cancers by
denoising sparse autoencoder neural network. Oncogene (2020). https://doi.org/
10.1038/s41388-020-1343-z

[14] Jacob Murel Ph.D. and Eda Kavlakoglu. 2024. What is dimensionality reduction?
1 (2024). Accessed: 2024-06-3.

[15] Peter Priestley, Jonathan Baber, Martijn P. Lolkema, Neeltje Steeghs, Ewart de
Bruijn, Charles Shale, Korneel Duyvesteyn, Susan Haidari, Arne van Hoeck,
Wendy Onstenk, Paul Roepman, Mircea Voda, Haiko J. Bloemendal, Vivianne
C. G. Tjan-Heijnen, Carla M. L. van Herpen, Mariette Labots, Petronella O.
Witteveen, Egbert F. Smit, Stefan Sleijfer, Emile E. Voest, and Edwin Cuppen.
2019. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature
575 (2019), 210–216. https://doi.org/10.1038/s41586-019-1689-y

[16] Jack Trainer. 2021. Bootstrapping in Statistics. 1 (2021). Accessed: 2024-06-5.
[17] C. Turnbull. 2018. ntroducing whole-genome sequencing into routine cancer

care: the Genomics England 100 000 Genomes Project. 29 (2018), 783–1078.
https://doi.org/10.1093/annonc/mdy054

[18] Varun. 2020. Cosine similarity: How does it measure the similarity, Maths behind
and usage in Python. 1 (2020). Accessed: 2024-06-5.

[19] Yu-Jin Zhang Yu-Xiong Wang. 2012. Nonnegative Matrix Factorization: A
Comprehensive Review. IEEE Transactions on Knowledge and Data Engineering
25, 6591 (2012), 1353. https://doi.org/10.1109/TKDE.2012.51 Accessed: 2024-
06-5.

18

https://cancer.sanger.ac.uk/signatures/sbs/
https://cancer.sanger.ac.uk/signatures/sbs/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://doi.org/10.1038/s43018-020-0027-5
https://doi.org/10.1038/s43018-020-0027-5
https://doi.org/10.1126/science.abl9283
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abl9283
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1038/nature17676
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41388-020-1343-z
https://doi.org/10.1038/s41388-020-1343-z
https://doi.org/10.1038/s41586-019-1689-y
https://doi.org/10.1093/annonc/mdy054
https://doi.org/10.1109/TKDE.2012.51

Autoencoders for Signature Extraction: Systematically evaluating Pre- and Post-Processing

A CHANGES FROM LAST SEMESTER
This paper is based on continuing the framework from the last paper.
Therefore in this section, we are going through the differences and
the new implementation between the two papers, and how the new
framework fares against the older framework.

A.1 Methodology
This section describe and explain the processes that have been im-
proved to extend the framework developed during the 9th semester
[6].

A.1.1 Pre-processing. In the old framework, the only pre-processing
that would happen was that column-wise would be normalized to
sum to 1, which still happens in the new framework. Now we have
multiple modules that the pre-processing can use. As explained in
section 4, we have bootstrapping, feature filtering, injections, and
noise.

A.1.2 Post-processing. The difference in the post-processing
part is that in the old paper, it would cluster using K-Means, each
latent space from the method extraction individual, then pick the
most optimal cluster with n_cluster from one of the runs. In our
new framework, before it goes to clustering, we check that the latent
space does not have any empty latent, and that there are none latent
duplicates. Then it goes to the clustering part, where we now can
choose what kind of clustering method it should use. Currently
implemented is K-Means and our own clustering method called
Cosine. Afterwards you can choose if you should only pick the most
optimal run from a single method extraction run or concatenate
each optimal run from each method extraction run, and again run
clustering on it, to get the most optimal cluster

A.1.3 Computing Time Optimization. In the last semester, the
whole framework was implemented using only a single process,
while this semester we have implemented the method extraction and
clustering method run to as multi-process, by splitting each run into
its own process.

Single Multi Difference
Each extract run 8 seconds 30 seconds 350 %
Total extract run 83 seconds 32 seconds 159 %
Each cluster run 5 seconds 25 seconds 400 %
Total cluster run 51 seconds 26 seconds 96 %
Total time 134 seconds 58 seconds 131 %

Table 5: Table is based on the mean value of 5 runs, with each
run running 10 method extraction runs thereafter clustering
each method extraction run.

As can be seen in table 5, both extracting and clustering individual
runs take less than 10 seconds to run when running as a single
process, but the problem lies in that it has 10 runs to go through.
Therefore the total time becomes longer than the multi-process, and
it would only get worse for the single process if the amount of
method extraction increases, as it would run sequentially, while with
multi-process it would run all method extraction in parallel.

A.2 Experimental Setup
Each framework ran 100 times on both datasets breast part, with 10
method extraction runs. Results of the 100 runs from each frame-
work, are then box-plotted, to be able to see which framework per-
formed better.

A.2.1 Parameters. The old framework parameters that could be
changed were only those that belonged to the method extraction.
Here were used Optuna to help find the most optimal parameters,
through Optuna, and observation of cosine similarity to reference
signatures. The choice was made that learning rate is set at 1-e03,
epochs at 500, batch size of 8, and latent dimension of 200. These
method extraction parameters are used in both frameworks, to show
the difference that the new pre- and post-processing has on the results

New framework pre- and post-processing parameters. we are
using the optimal parameter that was explained in section 8

A.2.2 Fair Comparison. In the older framework, the evaluation
is missing a check for the order of the mutation type. Therefor when
doing cosine similarity it will give worse results than it should. To
make it a fair comparison between the old framework and the new
one, we have implemented this part in the old framework.

A.2.3 Cosine Similarity Threshold Results. The cosine similar-
ity threshold steps up from 0.85 as that is what was used in our 9th

semester paper [6], and steps up to 0.99, where two extra steps are
included called best>0.95 and best>0.99, which used the Hungarian
algorithm. This can remove duplicates

19

Magni Jógvansson Hansen and Nikolai Eriksen Kure

Figure 13: comparison between the frameworks from this paper and last semester’s paper on both datasets for breast

A.3 Experimental Results
This section, contains the results found from the experimental setup,
providing a comparison between the two frameworks.

As seen in figure 13 the new framework extracts more signatures
in both datasets, through all cosine similarity, for the old framework

its only able to extract signatures with over 0.90 cosine similarity in
PCAWG, but not higher than 0.95 cosine similarity. While the new
framework is able to extract all the way up to 0.99 in PCAWG almost
consistence, but in GEL its only able to extract up to 0.97 consistent.
Therefore we can see that the new methods and small improvements
have improved the performance of the new framework

20

	Abstract
	1 Introduction
	2 Background
	2.1 Single-Base Substitutions
	2.2 Autoencoders
	2.3 Non-negative Matrix Factorization
	2.4 Bootstrap
	2.5 Feature Filtering

	3 Related Work
	4 Methodology
	4.1 Method Comparison
	4.2 Method Evaluation
	4.3 Datasets
	4.4 Ground Truth
	4.5 Clustering Method
	4.6 Optimal Amount Clusters
	4.7 Optimal Cluster Selection in Multi Run Extraction
	4.8 Output

	5 Experimental setup
	5.1 Dataset
	5.2 Parameter
	5.3 Parameter Runs
	5.4 Parameter Results Setup

	6 Experimental results
	6.1 Ground Truth
	6.2 Parameter Results For Pre- and Post-processing

	7 Discussion
	7.1 Cosine Similarity Thresholds
	7.2 Pre-processing
	7.3 Method Extraction
	7.4 Post-processing
	7.5 Datasets
	7.6 Finding the Optimal Parameters

	8 Conclusions
	9 Future work
	9.1 Two Neighboring Bases
	9.2 Mutation Type feature Filtering
	9.3 Bootstrap and Method Extraction Run

	References
	A Changes from last semester
	A.1 Methodology
	A.2 Experimental Setup
	A.3 Experimental Results

