
Summary
The report presents the application of a variational autoencoder (VAE) tested on synthetic
datasets. This β-VAE model was developed to uncover mutational signatures, estimate
exposures, and provide confidence intervals, offering a probabilistic approach to
understanding mutation patterns.

Mutational signatures represent characteristic mutation patterns within a genome, often
indicative of underlying processes such as exposure to environmental factors or biological
mechanisms like DNA repair defects. Accurate extraction and estimation of these signatures
and exposures are crucial for tailoring specific cancer treatments.

Traditional methods for extracting mutational signatures typically use Non-Negative Matrix
Factorization (NMF). NMF is favored due to its ability to decompose the mutational
frequency matrix into non-negative components, representing signatures and exposures.
State-of-the-art methods have been successful but lack the ability to provide confidence
intervals, which can limit the understanding of the certainty of the result.

The β-VAE developed in this study consists of an encoder, a probabilistic latent space, and a
decoder. The encoder maps input data into a lower-dimensional latent space, which
captures the exposures of mutational signatures. The decoder reconstructs the input data
from this latent representation. The unique aspect of this model is its ability to estimate
confidence intervals by analyzing the means and variances in the posterior distribution. This
allows the model to not only capture the mutational signatures (in the decoder weights) but
also estimate the exposures (in the latent space) with a measure of certainty.

The model was tested on several synthetic datasets, designed to simulate various cancer
types and mutational scenarios. The experiments revealed that the β-VAE performs
competitively when β is set to lower values, achieving high cosine similarity with ground truth
signatures. However, compared to established methods, the VAE showed slightly lower
precision in signature extraction. The introduction of confidence intervals, however, added a
valuable dimension to the analysis, enhancing the interpretability of the results.

However, the current performance suggests that additional refinement and exploration of
alternative probabilistic models and mixture distributions are necessary to achieve
competitive accuracy with state-of-the-art tools. The report suggests integrating these
models with the VAE framework to enhance its predictive capabilities and provide a more
comprehensive tool for mutational signature analysis.

The study concludes that while the β-VAE shows promise in extracting mutational signatures
and estimating exposures, it requires further refinement to match the precision of current
state-of-the-art methods. Future research should explore alternative probabilistic models and
mixture distributions to improve prediction accuracy. The unique contribution of confidence
intervals remains a significant advancement, providing deeper insights into the certainty of
the extracted mutational signatures and exposures.
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Abstract

This report investigates the use of variational autoencoders for identifying mutational signa-
tures within cancer genomics data. Mutational signatures represent characteristic patterns
of mutations that can indicate underlying mutational processes, such as exposure to envi-
ronmental factors or defects in DNA repair mechanisms. Traditional methods for extracting
these signatures often employ Non-Negative Matrix Factorization (NMF). However, recent
research explores the potential of autoencoders as a viable option within this field. This pa-
per developed a β-VAE to find exposures, mutational signatures, and confidence intervals.
The contribution of confidence intervals is unique to this paper and is derived by analyz-
ing the probabilistic latent space. While experimental results demonstrate that theβ-VAE
can achieve competitive performance, it lags behind state-of-the-art methods in terms of
signature extraction. The findings highlight the need for further refinement and suggest
future directions, including the exploration of alternative probabilistic models to enhance
prediction accuracy.
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1 Introduction

A characteristic pattern of mutations is called a mutational signature. A mutational sig-
nature reflects the underlying mutational processes that have taken place within a genome.
These mutational signatures are typically related to environmental factors such as expo-
sure to smoking and sunlight. Otherwise, they can be associated with internal biological
processes such as defective DNA repair. Identifying the mutational signatures and their
exposures can assist in specializing treatment [1][2][3]. Moreover, there exist multiple cate-
gories of mutations such as base substitutions (single and doublet), insertion, and deletion.
In this project, we will exclusively focus on single base substitution (SBS) mutations. SBS
mutations occur when a certain nucleotide base is replaced. There are 6 different possible
substitutions (when considering strand symmetry): C > A, C > G, C > T, T > A, T > C
and T > G [4]. If one includes the neighboring bases of the substituted base, which can be:
A, C, T, and G it results in 96 combinations.

For some time researchers have been trying to uncover these mutational signatures, using
techniques suited for this category of problem. This means the category of ”cocktail party”
problems, which entails separating the individual sources from a mixture of sources. The
individual sources can be likened to mutational signatures in this instance and a mutational
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frequency matrix to a mixture. The most commonly used method within this field is
NMF (Non-Negative Matrix Factorization), which state-of-the-art methods described by
Alexandrov et al. [5], Alexandrov et al. [6] Islam et al. [7] utilize. NMF is especially suited
for this problem as it requires a non-negative constraint to model mutational signatures
and exposures. However, recently researchers have studied whether autoencoders (AEs)
can uncover mutational signatures, namely, Pancotti et al. [8] and Pei et al. [9]. AEs can
put a non-negative weight constraint on the weights and use linear activation functions such
as ReLU needed to model mutational signatures and exposures. The results of [8] indicate
that AEs serve as a competitive method, in a scenario where the true signatures are known.

An aspect AEs and NMF do not consider when producing the mutational signatures
and exposures for each signature is the distribution of the original data. This can be a
problem as the certainty of the results is unaccounted for. It only concerns itself with
producing similar results in terms of comparing the input to the output, i.e., minimizing
the reconstruction loss. A branch of AEs that has not yet been explored within this field
(to our knowledge) is the variational autoencoder (VAE). VAEs consider the distribution of
the original data by incorporating the KL divergence into their loss function alongside the
reconstruction loss.

This project focuses on developing a VAE based on the AE defined in Pancotti et al.
[8]. For this approach, a β-VAE whose latent space follows a folded normal distribution
has been developed, alongside the alterations to facilitate utilization of the additional data,
specifically, the means and variances. The means and variances of the posterior distribution
are used to approximate the exposures and confidence intervals. The structure of the β-
VAE closely follows the one described in Pancotti et al. [8], meaning the signature extraction
and refitting are handled nearly identically, but with significant change and addition in the
production of exposures and confidence intervals. A theoretical use-case of such a model
would be to evaluate the certainty of a predicted exposure of a mutational signature within
a genome. Doctors would be able to use the confidence intervals to ascertain with what
certainty a patient had the predicted exposure of any given mutational signature.

In this paper, Pancotti et al. [8] was expanded by developing a β-VAE, in addition
to the capability to estimate confidence intervals by sampling the means and variances
of the posterior distribution. The model can successfully produce signatures, exposures,
and confidence intervals. When compared to 11 other signature extraction methods, it
ranks in the middle, proving it is competitive, yet falls behind start-of-the-art methods
such as SigProfilerExtractor [7] and MUSE-XAE [8]. Furthermore, the experiments found
that using a β of 0 produced the most competitive results, which renders the loss function
equivalent to the autoencoder [8]. Showing the β-VAE is not using the capabilities of a
VAE to its utmost potential.

2 Related Work

Many methods have been developed to uncover mutational signatures and exposures from
cancer genomics data obtained through cancer genome sequencing, with most employing
variations of NMF [7]. In this chapter, a few of these methods are summarized with a
focus on autoencoders, as this paper aims to develop a variational autoencoder, which is
uncommon in this area.
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Pei et al. [9] uses a denoising sparse autoencoder, whose encoder is a linear layer followed
by a ReLU activation function. The decoder is a linear layer followed by a softmax function.
It is a denoising sparse autoencoder as it adds a noise matrix to the input matrix. It trains
over the mutation types and reduces the dimension of N cancer samples to 200. Meaning
it trains over the features rather than the samples. This structure means the mutational
signatures are captured within the latent space z and the exposures in the encoder weight
matrix W .

Alexandrov et al. [5] described a framework utilizing NMF to extract signatures from
the dataset. This framework was revised in Islam et al. [7] and named SigProfilerExtractor.
SigProfilerExtractor decomposes the input matrix M and searches for the number of active
signatures k. In each decomposition, SigProfilerExtractor performs 100 independent factor-
izations, and for each repetition, M is Poisson resampled and normalized. Subsequently, M
is factorized with a multiplicative update NMF algorithm, minimizing the objective func-
tion based on the Kullback-Leibler divergence. Lastly, a custom partition clustering, which
uses the Hungarian algorithm to compare repetitions, is applied to the 100 factorizations to
find stable solutions. SigProfilerExtractor selects the centroid of stable clusters as the opti-
mal solution. This process stabilizes the solutions as NMF lacks uniqueness with multiple
convergent stationary points [7].

Pancotti et al. [8] proposes one of the few existing autoencoders with promising results.
The autoencoder has a hybrid architecture where the encoder is nonlinear and the decoder
is linear. The benefit of this is the autoencoder will be able to identify nonlinear patterns
while still ensuring the interpretability of the data. The decoder also has a non-negative
weight constraint, as this is where the mutational signatures are captured. The exposures
are modeled in the latent space. The encoder has 3 linear layers with a batch normalization
and softplus activation function after each linear layer. The decoder has a singular linear
layer without any activation function. Compared to state-of-the-art mutational signature
extraction techniques, such as SigProfilerExtractor, it performs favorably. It scores a mean
AUC F1-score of 0.92 with a standard deviation of 0.05, while SigProfilerExtractor scores
a mean of 0.90 with a standard deviation of 0.06 [8].

These methods have proven to be reliable in extracting signatures and exposures, but
are unable to provide confidence intervals. The contribution of this paper is to develop
a variational autoencoder and use the means and variances in the posterior distribution
learned by the model to give this estimation. Additionally, the capabilities of the varia-
tional autoencoder will be evaluated, both in terms of extracting signatures and estimating
exposures.

3 Background

In this section, we provide a detailed description of the problem and the model employed
to address it.

3.1 Variational autoencoders

The variational autoencoder [10] consists of an encoder, a multivariate Gaussian distribution
in the latent layer, and a decoder. With this regularized latent space, it allows for the ability
to generate new data from the latent space. The objective of the encoder is to map the input
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into a lower-dimensional latent space, with the objective of the decoder being to reproduce
the input. Its structure can be seen in Figure 1. It is possible to make it conform to different
distributions, however, modeling it after a multivariate Gaussian distribution is standard
practice. To sample the latent, it uses the mean and log-variance learned by the encoder. It
uses the log-variance since it can have both positive and negative values, which is beneficial
for the learning process. Whereas, the variance can only have positive values. Secondly, it
uses an epsilon which is drawn from a standard Gaussian distribution i.e. N (0, 1). Thereby,
a sample is given by z = µ + σ · ϵ. The loss function consists of two terms, one term is
responsible for minimizing the reconstruction loss (RL) i.e. creating an output similar to the
input, typically measured using Mean Squared Error (MSE). The second term is ensuring
the latent space is continuous and conforms to a standard Gaussian distribution, typically
measured using KL divergence. There exist multiple types of VAEs, one of which is the
β-VAE [11]. The β-VAE adds a hyperparameter in front of the KL divergence that can
be seen in Equation 1, this can enable the VAE to learn complex patterns in the data by
adding more flexibility in the latent distribution.

Loss = RL+ β ·KL (1)

Figure 1: Architecture of a standard VAE [12]

3.2 Uncovering mutational signatures

In the area of uncovering mutational signatures from a mutational frequency matrix a
commonly used approach is non-negative matrix factorization (NMF). NMF algorithms
factorize an input matrix X into two matrices W and H, with all three matrices having all
positive elements [13]. This is essential as X is the mutational frequency matrix, the rows
of which are mutation types and columns of cancer samples, the entries in the matrix count
the times a specific mutation type has occurred within each cancer sample. The W matrix
has the NMF components, which in this case are mutational signatures. A mutational
signature can be described as a vector of length 96, each entry has the rate at which the
specific mutation type occurs in a cancer sample, and the sum of these rates adds to 1 if it
has been normalized. TheH matrix, its rows has the mutational signatures and the columns
are the cancer samples, each entry is the amount of mutations a mutational signature has
contributed to in every cancer sample. Summing a column in this matrix would have the
total mutation count for that cancer sample. The product of W and H approximates X,

4



which can be written as WH ≈ X. NMF can be used for source separation, as it is in this
case.

Autoencoders can be constructed to mimic the same concept, where the product of the
latent space z and the decoder weight matrix W reconstruct the dataset X used as input for
the model. This concept can be written as X̂ = zW T , where X̂ is the reconstructed dataset.
Using this architecture the mutational frequency matrix would be X, z the exposures, and
W the mutational signatures.

3.3 MUSE-XAE framework

The variational autoencoder model operates within the framework developed by Pancotti
et al. [8], where it replaces the autoencoder model described by [8]. In this framework, the
mutation frequency p for each of the mutational types gets determined. New data points
are generated by bootstrapping cancer samples t times, using a multinomial distribution
M(N, p), where N is the total number of mutations. This sequence produces the augmented
mutational matrix, which gets repeated t times to increase the size of the dataset. This
augmented mutational matrix is subsequently used to train the model. To select the optimal
amount of signatures K, a revised version of the NMFk approach was utilized. NMFk
was originally described in [14]. Specifically, for each number of candidate signatures k,
the model is trained n times. Afterward, k-means clustering with matching is performed
on the set of decoder weights matrices {W1k...Wnk}, using cosine similarity as a distance
measurement. This results in finding a consensus signatures matrix Sk. The k-means
clustering uses the Jonker-Volgenant algorithm [15] in the linear assignment problem to
find k clusters of equal size n. Only solutions with a mean- and minimum silhouette score
above a predetermined threshold are considered. Finally, the signature matrix with the
lowest reconstruction error is the optimal solution [8].

After finding the optimal signature matrix Sk it gets normalized, and the matrix is used
to initialize the decoder weight matrix W . The model trains a second time, where the
decoder is frozen, which means it is not trainable. This process is referred to as refitting, its
objective is to find the exposure of the mutational signatures within each cancer sample.

4 Methodology

This section describes the datasets and databases utilized in this paper, as well as the
framework within which the model operates. The process of converting the MUSE-XAE
autoencoder [8] into a variational autoencoder, along with the decisions made during this
transformation, will also be detailed.

4.1 Datasets

Each scenario has a mutational frequency matrix that the variational autoencoder trains
on. The mutational frequency matrix is a 96 x n matrix, where every row is a mutation
type, and the columns are the cancer genome samples. For every mutational frequency
matrix, there is a 96 x m matrix and a corresponding m x n matrix, where m is the number
of mutational signatures. The 96 x m matrix denotes the signatures, and the m x n matrix
denotes the exposure of each signature within each cancer sample. The signature can be seen
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as a vector of length 96, often summing to 1 as it has been normalized. Every scenario was
fetched from an FTP server (ftp://alexandrovlab-ftp.ucsd.edu/pub/publications/
Islam_et_al_SigProfilerExtractor/) provided by the authors of Islam et al. [7].

PCAWG

PCAWG is an international effort to identify mutational patterns in more than 2,800 cancer
whole genomes from the International Cancer Genome Consortium. To facilitate apt com-
parison, the tumors have been subjected to rigorous quality control testing. The research
has been coordinated by a series of work groups comprising 700 scientists [16].

COSMIC

COSMIC is a database of mutational signatures. It was created by extracting mutational
signatures from the PCAWG dataset made available by the ICGC Data Portal. It is de-
scribed as a reference set of high-confidence signatures, curated by experts in the field [17],
some of the signatures do not have known causation and are less established. The naming
conventions follow the structure of starting with the mutation category, SBS in this case,
and ending with numbering to distinguish them. An example of such a signature can be
seen in Figure 2, with mutation types on the x-axis and rates on the y-axis.

Figure 2: SBS-5 from the COSMIC database

Scenario 2

Based on adenocarcinoma, which is the most common type of pancreatic cancer, accounting
for 90 percent of pancreatic cancer diagnoses. The SBS signatures primarily contributing
include SBS1, SBS3, and SBS5 amongst others [4]. It contains 1,000 synthetic samples,
which model a subset of the PCAWG dataset. In total, 11 ground-truth signatures were
based on COSMIC [7].

Scenario 4

Based on renal cell carcinoma (most common kidney cancer) and ovarian adenocarcinoma.
The tumors were generated using flat, relatively featureless mutational signatures in a re-
alistic context, one of which can be seen in Figure 2. The primary contributing signatures
include SBS3, SBS5, and SBS40 [4]. It contains 1,000 synthetic samples, 500 of each cancer.
In total, there are 11 ground-truth signatures that were based on COSMIC [7].
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Scenario 6

Based on transitional cell carcinoma of the bladder and skin melanoma. The tumors were
generated using signatures with overlapping and potentially interfering signature profiles.
The primary contributing signatures include SBS2, SBS13, SBS7a, and SBS7b amongst
others [4]. It contains 1,000 synthetically generated samples. In total, 11 ground-truth
signatures were based on COSMIC. The potential interference between SBS2 and SBS7a,
SBS7b [7].

Scenario 8

Based on renal cell carcinoma and ovarian adenocarcinoma. The tumors were generated
using flat, relatively featureless mutational signatures in a realistic context. Renal cell
carcinoma has a lot of load from SBS5 and SBS40, whereas ovarian adenocarcinoma has
a high load from SBS3 [4]. It contains 1,000 synthetically generated samples, 500 of each
cancer. In total, there are 3 ground truth signatures based on COSMIC. This dataset was
generated in a simplified fashion, where only three 3 signatures are present [7].

Scenario 14

Whole genome samples that match the ones found in PCAWG. It includes 300 spectra of 9
cancer types, these cancer types being: bladder transitional cell carcinoma, esophageal ade-
nocarcinoma, breast adenocarcinoma, lung squamous cell carcinoma, renal cell carcinoma,
ovarian adenocarcinoma, osteosarcoma, cervical adenocarcinoma, and stomach adenocar-
cinoma. Totaling in 2,700 cancer samples. In total, there are 21 ground truth signatures
based on COSMIC [4]. This is a synthetic recreation of the overall PCAWG dataset to
ascertain the performance with a dataset trying to mimic the mixture of signatures and
cancers [7].

4.2 Variational autoencoder construction

In this chapter, we describe the steps to convert the MUSE-XAE autoencoder into a varia-
tional autoencoder. We chose MUSE-XAE as a starting point because it has demonstrated
superior results in uncovering mutational signatures compared to NMF methods such as
SigProfilerExtractor proposed by Alexandrov et al. [5]. As can be seen in Figure 3 the
encoder consists of 3 linear layers. L1 is a linear layer with 96 input neurons and 96 output
neurons. L2 is a linear layer with 96 input neurons and 48 output neurons. L3 is a linear
layer with 48 input neurons and 24 output neurons. It uses layer normalization and GELU
activation function between the linear layers. The output of L3 is reduced to the latent
dimension in the µ and σ linear layers. The results of the µ and σ are passed through the
sampling layer, which produces the latent space z. The decoder has a singular linear layer,
with a non-negative weight constraint and a minimum volume regularizer. The exposures
will be captured in the latent space z and the signatures within the weights of the decoder,
where each signature is a vector of size 96, making up a matrix of size 96 x m. Where m
stands for the number of mutational signatures.
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Figure 3: Conversion of the MUSE-XAE autoencoder [8] into a VAE, with the changes
detailed in this chapter

4.2.1 Distributions

The prior distribution is a half-normal distribution derived from a Gaussian distribution
with a mean of 0 and a standard deviation of 1. Meaning, it would be a fold at the mean of 0
of a standard normal distribution. The posterior distribution is a folded normal distribution.
The reasoning behind using these distributions is that it forces the latent space to exclusively
have positive numbers, which is necessary for modeling mutational count data. Additionally
using a Poisson distribution is impossible as using a discrete probability distribution does
not work with the reparameterization trick [18].

The folded normal distribution [19] is related to the Gaussian distribution, as it is a
transformation of the Gaussian distribution using the absolute value. A folded normal
distribution records the magnitude for each absolute value, as the sign is not considered.
This is the reasoning behind its name, as the distribution’s negative entries are folded onto
its positive counterpart.

A half-normal distribution [19] is a special case of a folded normal distribution. It is a
transformation of the Gaussian distribution N (0,σ2) using the absolute value. Thereby, it
is a fold at the mean of an ordinary normal distribution when the mean is 0.

However, a point of contention arises when using a folded normal distribution, as it is
impossible to calculate the ICDF (Inverse Cumulative Distribution Function) since it has
an intractable integral. The ICDF can be used to get the likelihood of realizing a random
variable within a given range for a probability distribution. Meaning, it could be used to
derive a confidence interval. Thereby, a method of gaining the confidence interval for a
folded normal distribution is by sampling from the distribution and examining the numbers
at the desired percentile.

4.2.2 Variational autoencoder definition

The function in Equation 2 is the encoder, that is responsible for mapping the matrix X
into the latent space z. The function in Equation 3 is the decoder, which is responsible
for mapping the latent space into a reconstruction matrix X̂. The latent space follows the
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posterior distribution, which is a folded normal distribution in this instance, mathematically
it is written in Equation 4.

f(X) = z (2)

g(z) = X̂ (3)

z ∼ FoldedNormal(µ, σ2) (4)

4.2.3 Loss function

The loss function is defined as:

Loss = RL+ β ·KL+ α · det(WW T + I) (5)

Where the Kullback-Leibler (KL) divergence [20] measures the distance between the
prior and posterior distributions. The mathematical definition of KL divergence between
two Gaussian distributions, where the prior has been set to N (0,1) and the posterior has a
variable mean and standard deviation:

DKL(N(µ, σ2)||N (0, 1)) = log(σ) +
1 + µ2

2σ2
− 1

2

=
1

2

(
log(σ2) +

µ2 + 1

σ2
− 1

)
= −0.5

(
1 + log(σ2)− µ2 − σ2

)
(6)

As evident by the definition of KL divergence, it is used to measure how different two
probability distributions are. The KL divergence in variational autoencoders is used to
push a posterior distribution towards a prior distribution, where the prior distribution is
predetermined.

The β variable is used to control the impact of the KL divergence, in this instance,
the value of the β variable has been set to varying values which will be expounded upon
during the experiments. The reconstruction loss (RL) used in this instance is the Poisson
loss function, Poisson is commonly utilized to model count data [21].

The KL divergence is calculated using the formula, which was derived in Equation 6:

KL = −0.5
(
1 + log(σ2)− µ2 − elog(σ

2)
)

(7)

where taking the exponential of the expression log(σ2) is equivalent to the variance i.e.
σ2. The reasoning behind using the KL divergence between two Gaussian distributions
instead of the KL divergence between a folded normal distribution and a half-normal distri-
bution is that the latter does not have a closed-form solution. This simplifies the problem
significantly and provides an estimate as to the KL divergence between the corresponding
half-normal distribution and folded normal distribution.

In Equation 7, µ2 penalizes means far from zero, ensuring the posterior centers around
the mean of the prior. log(σ2) penalizes very large and very small values as it moves away
from 1. elog(σ

2) directly penalizes large values of σ2, and since it appears with a negative
sign a higher value of σ2 increases the KL divergence, contributing to the penalty. Thereby,
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minimizing the term favors σ2 being close to 1. This means the posterior near an underlying
N (0,1), which becomes a half-normal(1) when taking the absolute value.

The RL is calculated using the formula as provided by [22]:

RL = X̂ −X · log(X̂) (8)

The Poisson loss function, also known as negative log-likelihood for the Poisson dis-
tribution, is commonly used to model count data [21]. Firstly, X̂ discourages the model
from predicting higher values than necessary, pushing the model to not overestimate counts.
Secondly, −X · log(X̂) encourages the model to predict values as close as possible to the
true counts, as an accurate prediction would ensure that log(X̂) is close to log(X), leading
to minimized loss. log(X!) has been omitted as it is constant w.r.t to the inputs.

The last term, α · det(WW T + I), is the minimum volume regularizer used by Pancotti
et al. [8]. It is part of the decoder with the objective of finding a more disentangled
representation. α is used to control the strength of the regularizer and is 0.001 by default.

4.2.4 Sampling

The sampling is accomplished by using the formula:

x = |µ+ σ · ϵ| (9)

Sampling from the underlying normal distribution that the folded normal distribution is
modeling and taking the absolute value is equivalent, to directly sampling from the folded
normal distribution. The ϵ variable is drawn from a standard Gaussian distribution.

4.2.5 Layers, normalization and activation functions

First and foremost batch normalization was changed to layer normalization as it does not
infer bias within the samples, also, batch normalization is mostly used when the scale of
the data is important to preserve. However, before the data goes into the model it has been
normalized, therefore it removes the incentive to use batch normalization.

Additionally, the last dense layer of the encoder was changed to two dense layers, one for
the means and one for the log-variance. Also, it includes a sampling step where it utilizes
these means and log-variances to construct the latents as demonstrated in Equation 9.

No activation function is employed after the two new dense layers as the goal of one
would only be to ensure the data is positive, this is already accomplished by sampling from
a folded normal distribution. Furthermore, using ReLU would only ensure the mean and
log-variance is positive. Thereby, if the mean was sufficiently close to 0 it could still generate
negative samples when using a Gaussian distribution as the standard deviation could swing
the samples into the negatives.

GELU (Gaussian Error Linear Units) is the activation function between each linear
layer of the encoder. It weights inputs by their percentile, rather than gating them by
their sign. Thus, it can be thought of as a smoother ReLU [23]. The activation function
in [8] is softplus in the signature extraction phase and ReLU during refitting. Hendrycks
and Gimpel [24] finds that GELU improves performance across various machine intelligence
tasks. Anecdotally, performance improvements were noticed when converting to GELU.
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4.2.6 Exposures (latent space)

After the model has been trained, the exposures are calculated using inference. Firstly, the
means and variances of the posterior distribution still follow a Gaussian distribution as it
applies the absolute function in the sampling step. Thereby, the means and variances need
to be converted to the corresponding means given a folded normal distribution, by using the
formula in Equation 10 [25]. Once this is accomplished, the folded mean of each signature
is compared to the total sum of folded means within a cancer sample, and the percentage
each signature makes up is multiplied by the mutation count for the given sample in the
input matrix to calculate the scaled exposures.

foldedµ = σ ·
√

2

π
· e

−0.5

(
µ2

σ

)
+ µ · erf

(
µ

σ ·
√
2

)
(10)

4.2.7 Confidence intervals

The dataset gets passed through the trained model from the refitting part. The exposures
of each cancer sample get sampled 1000 times using the posterior distribution. The 1000
samples are the input for the percentile function [26], which determines the samples at the
0th and 95th percentile. The percentiles are scaled by the same factor as the means of each
signature described in Section 4.2.6.

5 Experiments

In this chapter, the results regarding the effects of utilizing a variational autoencoder will be
explored. Both in terms of accurately determining the underlying signature and whether the
statistical component provides a meaningful benefit to assessing the exposures of signatures.

5.1 Procedure

In conducting the experiments, three distinct configurations of the framework were used to
evaluate our solution.

• The first configuration utilizes the VAE to reveal these signatures by leveraging prob-
abilistic inference in the latent space. The objective of this configuration is mainly
to determine the ability of the VAE to extract signatures, secondary to estimating
exposures and confidence intervals using these signatures.

• The second configuration employs the MUSE-XAE autoencoder to uncover signatures
embedded within the input data. The objective of this configuration is to determine
the ability of the VAE to estimate exposures and confidence intervals in the refitting
process given signatures extracted by a state-of-the-art method.

• The third configuration skips the signature extraction step and is directly given the
ground truth signature to perform the refitting step. The objective of this configu-
ration is to determine the ability of the VAE to estimate exposures and confidence
intervals in the refitting process given the optimal case.

11



For all three configurations, the VAE was utilized to generate exposures during the
refitting process. The parameters (excluding β) for the models were: learning rate of 0.001
and Adam Optimizer. The latent space size varied throughout the uncovering of signatures.
The optimal number of signatures was selected by the MUSE-XAE framework, the latent
size was hereby determined before the refitting. It is limited to 1000 epochs for uncovering
signatures, however, it uses early stopping with the patience set to 30. Refitting is limited
to 10000 epochs, it uses early stopping with the patience set to 100. In each of the three
variations the tests of the β value were conducted using every scenario, where the β value
ranged from 0 to 1.

5.2 Metrics and baselines

To compare signatures we utilize cosine similarity, which is standard practice. A cosine
similarity of 1 indicates the signatures are identical, whereas a cosine similarity of 0 indicates
entirely independent signatures. Mean Squared Error (MSE) is used when calculating
the squared difference between the actual exposures and the exposures predicted by the
refitting part. The metric, lower, refers to the actual exposures above the lower bound
of the confidence interval, upper refers to actual exposures below the upper bound of the
confidence interval and coverage refers to the actual exposures within the coverage of the
confidence interval.

5.3 Signature extraction

In this section the effects of involving KL divergence as part of the loss function when
optimizing the signature uncovering part of the model, specifically the relation of the cosine
similarity between the extracted and ground truth signatures will be explored. This will be
done while changing the β value to observe its impact.

Dataset β = 1 β = 0.1 β = 0.01 β = 0.001 β = 0

Scenario 2 0.669 ± 0.072 0.660 ± 0.075 0.739 ± 0.137 0.881 ± 0.141 0.973 ± 0.036

Scenario 4 0.833 ± 0.062 0.821 ± 0.064 0.833 ± 0.061 0.829 ± 0.096 0.967 ± 0.050

Scenario 6 0.693 ± 0.121 0.693 ± 0.119 0.813 ± 0.117 0.925 ± 0.085 0.967 ± 0.064

Scenario 8 0.889 ± 0.040 0.927 ± 0.036 0.926 ± 0.037 0.922 ± 0.045 0.965 ± 0.035

Scenario 14 0.633 ± 0.112 0.656 ± 0.109 0.741 ± 0.108 0.853 ± 0.126 0.966 ± 0.039

Table 1: The avg. cosine similarity and standard deviation for varying β values in each
scenario

Figure 4 displays a signature extracted using the first configuration outlined in Section
5.1. The ground truth signature is SBS3 from the COSMIC database, which is located at
the bottom of the figure. The extracted signature is VAE-SBSA, which is located at the
top of the figure. The signatures presented have a cosine similarity match of 0.9813, which
indicates that they resemble each other closely. These signatures were explicitly chosen as
they had a cosine similarity match of 0.9813, which is close to the average of 0.973 when
using a β value of 0.
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Figure 4: Sig. match when β = 0, the x-axis denotes mutation types and the y-axis denotes
the percentage a specific mutation type makes up of the total signature compo-
sition

Figure 5 displays a signature extracted using the first configuration outlined in Section
5.1. The ground truth signature is SBS40a from the COSMIC database and is located at
the bottom of the figure. The extracted signature is VAE-SBSG and is located at the top
of the figure. The signatures presented have a cosine similarity match of 0.6814, which
indicates that they loosely resemble each other. These signatures were chosen to provide a
signature match that had a cosine similarity close to the average of 0.678 when using a β
value of 1.

Figure 5: Sig. match when β = 1, the x-axis denotes mutation types and the y-axis denotes
the percentage a specific mutation type makes up of the total signature compo-
sition

As evidenced by the results showcased in Table 1, Figures 4 and 5 the VAE extracts sig-
natures matching the ground truth better the lower the β value is set. This is illustrated by
the fact that it has a higher averaging cosine similarity match along with a lower standard
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deviation. Thereby, the VAE will use a β value of 0 when conducting the experiments from
which the F1-score, precision and sensitivity will be calculated across the five scenarios. Ta-
ble 2 showcases a comparison of prominent signature extraction tools, which predominantly
utilize NMF with the exceptions of MUSE-XAE and the VAE that were proposed in this
paper, which both use variations of autoencoders.

Method AUC Precision AUC Sensitivity AUC F1-score

MUSE-XAE 0.911 ± 0.057 0.929 ± 0.035 0.920 ± 0.044

SigProfilerPCAWG 0.893 ± 0.069 0.910 ± 0.047 0.901 ± 0.056

SigProfilerExtractor 0.889 ± 0.070 0.913 ± 0.043 0.901 ± 0.055

SigneR 0.869 ± 0.090 0.910 ± 0.117 0.887 ± 0.094

SignatureAnalayzer 0.855 ± 0.085 0.905 ± 0.031 0.878 ± 0.054

VAE (Ours) 0.857 ± 0.090 0.889 ± 0.054 0.873 ± 0.072

SignaturesToolsLib 0.843 ± 0.081 0.868 ± 0.066 0.854 ± 0.072

MutationPatterns 0.804 ± 0.105 0.921 ± 0.031 0.856 ± 0.066

MutSpec 0.760 ± 0.144 0.919 ± 0.034 0.827 ± 0.095

SomaticSignatures 0.682 ± 0.187 0.860 ± 0.082 0.754 ± 0.142

Maftools 0.639 ± 0.266 0.809 ± 0.130 0.695 ± 0.220

SigMiner 0.541 ± 0.202 0.850 ± 0.119 0.652 ± 0.192

Table 2: Comparison of tools in descending order based on AUC F1-score av-
eraged across the five scenarios, these results are calculated using the
Jupyter Notebook meant for reproducing the results of Pancotti et al.
[8], located at https://github.com/compbiomed-unito/MUSE-XAE/blob/main/

notebook/Paper_results_reproducibility.ipynb

As can be observed in Table 2 the VAE performs slightly lower than average compara-
tively. Therefore, in the experiments concerned with estimating exposures the second and
third variations outlined in Section 5.1 will be utilized. These two disparate variations will
then be compared to capture the significance of having the exact signatures.

5.4 Estimating exposures

Similarly in the experiments showcased in Table 3 the effects of varying the β value can be
observed, it uses the second configuration detailed in Section 5.1 on scenario 2. The entries
are the calculation ascertaining the % of samples contained within the lower, upper, and
coverage of the confidence interval starting at the 0th percentile and extending until the
95th percentile.
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Metrics β = 1 β = 0.1 β = 0.01 β = 0.001 β = 0

Coverage 69.69 69.59 73.69 80.73 22.18

Lower 83.54 83.29 84.88 90.38 41.79

Upper 86.15 86.30 88.81 90.35 80.39

MSE 1426386 1406328 1246748 811503 62718

Table 3: The % of samples that exists within the lower, upper and both bounds in addition
to the MSE (Mean Squared Error) of the exposures as compared to the true values,
for varying β values (using the second configuration on scenario 2)

The analysis of these results, however, is ambiguous. A β value different from 0 does
appear to increase the amount of samples encompassed within the coverage. Additionally,
the MSE increases, signifying the exposure amounts are inaccurately estimated. Further-
more, the exposures of each signature are observed to be identical within the same sample,
indicating that the latent space has become uninformative. Also, the lower bound can be
largely discarded as it is virtually impossible for the folded normal distribution to include
the exposure amount of 0, which a lot of samples contain. To conclude the chosen β value
for upcoming experiments across all scenarios will be 0. In Table 4 the results can be
seen using signatures extracted using the second variation outlined in Section 5.1, where
approximately 72.47% of the ground truth exposures are below the upper bound on average.

Metrics Scenario 2 Scenario 4 Scenario 6 Scenario 8 Scenario 14

Coverage 22.18 8.24 19.86 19.85 1.79

Lower 41.79 34.97 40.94 76.45 15.43

Upper 80.39 73.27 78.92 43.40 86.37

MSE 62718 78338 99156814 253131 35568035

Table 4: The % of samples that are encompassed within the lower bound, upper bound,
and coverage in addition to the MSE of the exposures as compared to the true
values, across the five scenarios (using the second configuration)

Lastly, the ground truth signatures will be inserted into the decoder weights to ascertain
the performance of the refitting if the extraction part is ideal, this is the third configura-
tion outlined in Section 5.1. Table 5 shows the results, where 76.05% of the ground truth
exposures are below the upper bound on average. The MSE also decreased in every sce-
nario, apart from Scenario 6, meaning it resulted in an improvement when it comes to the
correctness of predicted exposures.
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Metrics Scenario 2 Scenario 4 Scenario 6 Scenario 8 Scenario 14

Coverage 30.05 38.10 8.53 45.40 7.47

Lower 53.12 529.1 41.18 79.30 22.79

Upper 76.93 85.19 67.35 66.10 84.69

MSE 4205 11025 28437795 13417 9501559

Table 5: The % of samples that are encompassed within the lower bound, upper bound and
coverage in addition to the MSE of the exposures as compared to the true values,
across the five scenarios (using third configuration)

6 Discussion

This chapter discusses the results, their interpretation, potential alternative approaches,
and possible factors influencing the outcomes.

6.1 Prior distribution

Throughout conducting experiments, it was deduced that a β value of 0 produced the
best results, both when it comes to extracting signatures and when estimating exposures.
This implies that the more the latent space gets pushed towards a half-normal distribution
derived from N (0,1) the worse it performs. This could mean that the selected prior dis-
tribution does not match the data. Employing the half-normal distribution was an initial
decision since sampling the posterior distribution should only result in positive numbers.
However, as was previously mentioned, an equally valid distribution for modeling the latent
space is the exponential distribution. Using the exponential distribution would still fulfill
the requirement of having positive numbers in the latent space, also, the formula for calcu-
lating the KL divergence between two exponential distributions is in closed form [27]. This
means the KL divergence can be directly calculated, and no estimations are needed. Lastly,
the reparameterization trick is possible on this distribution and it is continuous.

The model could theoretically employ a mixture distribution [27] as the prior distribu-
tion, utilizing the VAE to learn the mixture through the KL divergence term in the loss
function. This approach would enhance the expressiveness of the VAE, enabling it to learn
a more complex representation of the data, rather than conforming to a simple half-normal
distribution derived from a standard normal distribution N (0,1). The mixture could be
comprised of various distributions, such as folded normal distributions or exponential dis-
tributions.

6.2 KL divergence and beta

A key difference between a standard autoencoder and a variational autoencoder is the
addition of the KL divergence as part of the loss function. Specifically, the variational
autoencoder developed is a β-VAE, whose loss function has β variable in front of the KL
divergence to control its influence on the total loss. When varying the β value across
multiple datasets a pattern was observed, where a lower β value produced better results
both in terms of extracting signatures fitting the ground truth signatures and accurately
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estimating exposures. The cosine similarity match between the signatures extracted by
the model and the underlying ones increased by an average of 32.4%, when comparing the
extremes. [5] mentions a cosine similarity match of 0.95 indicates that the signatures are
identical, as is evident from Table 1 the instances where it surpasses this threshold is when
β is set to 0. This is fairly uncommon as [11], which proposed the β-VAE, does not mention
the setting β to a value less than 1. Also, when estimating the exposures in scenario 2 a
similar pattern was observed. As is showcased in Table 3, the MSE increased from 55500
to 1425701 when varying β from 0 to 1. This indicates the estimated exposures are more
accurate when using a β less than 1. The observations within the lower bound and the
coverage of the confidence interval did increase, however, this is not significant as it was
more inaccurate in the predicted exposures. The model generally has a hard time predicting
an exposure amount of 0, as it samples from a folded normal distribution, which can account
for these observations. When using a higher β the means and variances of each sample were
nearly identical, a lot more variation was observed when decreasing the β.

A β of 0 means the model has a loss function equivalent to an autoencoder. Additionally,
the posterior distribution is no longer pushed towards the prior distribution. The latent
space is still constructed by sampling from this posterior distribution. Although it is not
explicitly pushed towards a prior, the VAE still attempts to find means and log-variances
resulting in the best outcomes for reconstructing the data.

6.3 Latent space

Examining the latent space of the MUSE-XAE autoencoder and the VAE with varying β
by using t-SNE plots with 2 components reveals a pattern, the plots of which are shown
in Figure 6. By increasing the β, the variational autoencoder appears to be experiencing a
phenomenon known as posterior collapse. Posterior collapse happens when the latent space
becomes uninformative, and the model solely relies on the decoder to reconstruct the data
[28]. The t-SNE plots are based on the latent space produced by the model when trained on
scenario 14. This scenario was chosen as it has 9 different cancer types, making the problem
more pronounced. The cancer samples have been colored based on the cancer type. Ideally,
the samples are clearly separated into clusters, as they are in the upper left and upper right
quadrant of Figure 6. As mentioned in [28] many papers have proposed ways of solving
this problem, such as more complex priors and modified decoder architectures. Tomczak
and Welling [29] proposes the VampPrior, which is a mixture of variational posteriors.
Ultimately, it is difficult to know exactly what causes the posterior collapse.
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Figure 6: t-SNE plots of the latent space when trained on scenario 14

7 Conclusion

In this paper, the aim was to create a model that could provide confidence intervals, ex-
posures, and mutational signatures from a mutational frequency matrix. The confidence
intervals would have the application of providing a certainty estimate on exposure for given
signatures. To achieve this the MUSE-XAE framework [8] was extended by adding the
possibility of arriving at confidence intervals. This was accomplished by replacing the au-
toencoder with a β-VAE, in addition to providing the necessary changes to the framework to
handle the findings of the β-VAE. By training the β-VAE on the different scenarios, it was
found that a β of 0 produced favorable results. Signatures extracted using the variational
autoencoder had an average cosine similarity match varying from 0.965-0.973 when using
a β of 0, it ranged from 0.633-0.889 when using a β of 1 depending on the scenario. This
corresponds to an average increase of 32.4% to the cosine similarity match when comparing
the results produced by the various β values.

Similarly, the exposures derived with the model using a β of 0 had an MSE of 62718
compared to the ground truth exposures. The MSE increased to 1426386 once β was set
to 1. The observations within the lower bound and coverage of the confidence interval did
increase, however, this was not significant as the predicted exposures were more inaccurately
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estimated. This can mostly be explained by the fact that the folded normal distribution
by nature rarely predicts the exposure to be 0, which is the case for many cancer samples.
With this in mind, the most likely case is that the half-normal distribution selected does not
accurately model the data. Resolving this dispute could possibly be achieved by modeling
it after the exponential distribution instead. Otherwise, using a mixture distribution could
be an interesting future direction as it allows for complex probabilistic modeling, where
multiple distributions are used to explain the data.
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atocellular carcinomas identifies new mutational signatures and potential therapeutic
targets. nature, 2015.

[2] Maria Secrier, Xiaodun Li, and Nadeera de Silva. Mutational signatures in esophageal
adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. na-
ture, 2016.

[3] Jennifer Ma, Jeremy Setton, Nancy Y. Lee, Nadeem Riaz, and Simon N. Powell. The
therapeutic significance of mutational signatures from dna repair deficiency in cancer.
nature, 2018.

[4] COSMIC. Single base substitution (sbs) signatures, 2024. URL https://cancer.

sanger.ac.uk/signatures/sbs/.

[5] Ludmil B. Alexandrov, Serena Nik-Zaina, David C. Wedge, Peter J. Campbell, and
Michael R. Stratton. Deciphering signatures of mutational processes operative in hu-
man cancer. Cell Reports, 2013.

[6] Ludmil B. Alexandrov, PCAWG Mutational Signatures Working Group, and PCAWG
Consortium. The repertoire of mutational signatures in human cancer. Nature, 2020.

[7] S.M. Ashiqul Islam, Steven G. Rozen, and Ludmil B. Alexandrov. Uncovering novel
mutational signatures by de novo extraction with sigprofilerextractor. Cell Genomics,
2022.

[8] Corrado Pancotti, Cesare Rollo, Giovanni Birolo, Piero Fariselli, and Tiziana Sanavia.
Muse-xae: Mutational signature extraction with explainable autoencoder enhances
tumour type classification. biorxiv, 2023.

[9] Guangsheng Pei, Ruifeng Hu, Yulin Dai, Zhongming Zhao, and Peilin Jia. Decod-
ing whole-genome mutational signatures in 37 human pan-cancers by denoising sparse
autoencoder neural network. Oncogene, 2020.

[10] Keras. Variational autoencoder, 2024. URL https://keras.io/examples/

generative/vae/.

[11] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. -vae: Learning basic visual
concepts with a constrained variational framework. ICLR, 2017.

[12] Wikipedia. Variational autoencoder, 2024. URL https://en.wikipedia.org/

wiki/Variational_autoencoder#/media/File:Reparameterized_Variational_

Autoencoder.png.

[13] scikit learn. Nmf, 2024. URL https://scikit-learn.org/stable/modules/

generated/sklearn.decomposition.NMF.html.

20

https://cancer.sanger.ac.uk/signatures/sbs/
https://cancer.sanger.ac.uk/signatures/sbs/
https://keras.io/examples/generative/vae/
https://keras.io/examples/generative/vae/
https://en.wikipedia.org/wiki/Variational_autoencoder#/media/File:Reparameterized_Variational_Autoencoder.png
https://en.wikipedia.org/wiki/Variational_autoencoder#/media/File:Reparameterized_Variational_Autoencoder.png
https://en.wikipedia.org/wiki/Variational_autoencoder#/media/File:Reparameterized_Variational_Autoencoder.png
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html


[14] Benjamin T. Nebgen, Raviteja Vangara, Miguel A Hombrados-Herrera, Svetlana
Kuksova, and Boian S. Alexandrov. A neural network for determination of latent
dimensionality in nonnegative matrix factorization. IOPscience, 2020.

[15] Ray Jonker and Ton Volgenant. A shortest augmenting path algorithm for dense and
sparse linear assignment problems. Springer, 1987.

[16] ICGC. Pcawg - pancancer analysis of whole genomes, 2024. URL https://dcc.icgc.

org/pcawg.

[17] COSMIC. Mutational signatures, 2024. URL https://cancer.sanger.ac.uk/

signatures/#introduction.

[18] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh et al. The concrete distribution:
A continuous relaxation of discrete random variables. NIPS, 2016.

[19] Kyle Siegrist. The general folded normal distribution, 2024. URL "https:

//stats.libretexts.org/Bookshelves/Probability_Theory/Probability_

Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_

Special_Distributions/5.13%3A_The_Folded_Normal_Distribution".

[20] The Book of Statistical Proofs. Proof: Kullback-leibler divergence for the normal
distribution, 2024. URL https://statproofbook.github.io/P/norm-kl.html.

[21] UCLA. Poisson regression, 2024. URL https://stats.oarc.ucla.edu/stata/dae/

poisson-regression/.

[22] Keras. Probabilistic losses, 2024. URL https://keras.io/api/losses/

probabilistic_losses/#poisson-class.

[23] Paperswithcode. Gaussian error linear units, 2024. URL https://paperswithcode.

com/method/gelu.

[24] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arxiv, 2023.

[25] Wikipedia. Folded normal distribution, 2024. URL https://en.wikipedia.org/

wiki/Folded_normal_distribution.

[26] NumPy. numpy.percentile, 2024. URL https://numpy.org/doc/stable/reference/

generated/numpy.percentile.html.

[27] PyTorch. Probability distributions - torch.distributions, 2024. URL https://pytorch.

org/docs/stable/distributions.html.

[28] David Wipf Bin Dai, Ziyu Wang. The usual suspects? reassessing blame for vae
posterior collapse. arxiv, 2019.

[29] Jakub M. Tomczak and Max Welling. Vae with a vampprior. arxiv, 2019.

21

https://dcc.icgc.org/pcawg
https://dcc.icgc.org/pcawg
https://cancer.sanger.ac.uk/signatures/#introduction
https://cancer.sanger.ac.uk/signatures/#introduction
"https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.13%3A_The_Folded_Normal_Distribution"
"https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.13%3A_The_Folded_Normal_Distribution"
"https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.13%3A_The_Folded_Normal_Distribution"
"https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.13%3A_The_Folded_Normal_Distribution"
https://statproofbook.github.io/P/norm-kl.html
https://stats.oarc.ucla.edu/stata/dae/poisson-regression/
https://stats.oarc.ucla.edu/stata/dae/poisson-regression/
https://keras.io/api/losses/probabilistic_losses/#poisson-class
https://keras.io/api/losses/probabilistic_losses/#poisson-class
https://paperswithcode.com/method/gelu
https://paperswithcode.com/method/gelu
https://en.wikipedia.org/wiki/Folded_normal_distribution
https://en.wikipedia.org/wiki/Folded_normal_distribution
https://numpy.org/doc/stable/reference/generated/numpy.percentile.html
https://numpy.org/doc/stable/reference/generated/numpy.percentile.html
https://pytorch.org/docs/stable/distributions.html
https://pytorch.org/docs/stable/distributions.html

	Introduction
	Related Work
	Background
	Variational autoencoders
	Uncovering mutational signatures
	MUSE-XAE framework

	Methodology
	Datasets
	Variational autoencoder construction
	Distributions
	Variational autoencoder definition
	Loss function
	Sampling
	Layers, normalization and activation functions
	Exposures (latent space)
	Confidence intervals


	Experiments
	Procedure
	Metrics and baselines
	Signature extraction
	Estimating exposures

	Discussion
	Prior distribution
	KL divergence and beta
	Latent space

	Conclusion
	Acknowledgements
	Code Availability

