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Nielsen and Olesen’s paper [3] address the challenge of automated consistency checking
(ACC) on clinical trial databases within the pharmaceutical domain. Clinical trials are
essential for pharmaceutical companies to get regulatory approval for new drugs, and the
trial databases must comply with numerous regulations to get this approval. This process is
typically labor-intensive and costly due to the complexity and volume of regulatory texts.
While state-of-the-art software tools exist to automate the consistency checking process,
they are manually implemented.

The authors therefore address the gap of automating rule extraction from regulatory
documents and serializing them into machine-readable templates needed for automated
consistency checking. The aim of the paper reads: How can NLP algorithm(s) be used
to extract requlatory rules from pharmaceutical documents and serialize them into CDISC
conformance rules used for automated consistency checks? They break down this question
into three subproblems: identifying rules within regulatory documents, classifying these
rules into relevant categories, and extracting necessary data elements from the rules for
serialization.

The research focuses on the domain Study Data Tabulation Model (SDTM) and draws
inspiration from the software tool CDISC Open Rule Engine (CORE) [2]. The authors
construct an in-domain dataset from the SDTM Implementation Guide (SDTMIG) v3.4,
preprocessing PDF sentences, and using ground-truth labels from the CDISC Library API
[1]. Various machine learning models and text embedding methods are experimented with.
Sentence classification is tackled using a Support Vector Machine (SVM) with TF-IDF
embeddings, achieving an F2-score of 0.79, favoring recall over precision. For operator
classification, a K-Nearest Neighbors (KNN) classifier with TF-IDF embeddings is used,
achieving an F2-micro score of 0.71. Named entity recognition (NER) is addressed using a
fine-tuned version of Legal BERT, which significantly outperformed a naive model, achieving
an F2-score of 0.69 for extracting elements. Lastly, the outputs of these models are used to
generate simple CDISC conformance rules. These experiments demonstrate that the pro-
posed NLP pipeline effectively identifies and classifies rules and extracts relevant elements,
showing the potential for automating the generation of CDISC conformance rules.

The proposed NLP pipeline demonstrates a feasible approach to automating rule extrac-
tion and serialization in the pharmaceutical domain. However, the process is not without
limitations. The dataset was limited in size and variety, affecting model training and per-
formance. The quality of ground-truth labels was inconsistent, and complex rules involving
nested conditions were not fully addressed by the current pipeline. Despite these challenges,
the study showcases significant progress toward efficient and accurate ACC in clinical trial
data management.

Future research should focus on constructing a comprehensive in-domain dataset, en-
hancing data preprocessing steps, and improving the quality of ground-truth data. Ad-
ditionally, investigating advanced methods for handling complex rules and incorporating
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latent element extraction could further enhance the system’s robustness. Addressing these
areas could lead to more accurate and reliable automated consistency checks, ultimately
improving the efficiency of regulatory compliance in the pharmaceutical industry.

In conclusion, the paper presents a promising approach to automating rule extraction
and serialization using NLP techniques. By breaking down the problem into manage-
able subproblems and addressing each with tailored machine-learning models, the authors
demonstrate the potential for automating the compliance process in clinical trial data man-
agement.
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Abstract

For pharmaceutical companies to get new drugs to market,
they first must get clinical studies approved. This entails
following rigid rules defined in large regulatory documents.
This is both a costly and time-intensive process when done
manually. The field of automated consistency checking (ACC)
can assist in automating this process.

As regulatory documents are large, complex, and contain
rich natural language, implementing ACC solutions is com-
plex. However, natural language processing (NLP) methods
have become increasingly powerful in recent years, provid-
ing a better use case for ACC.

Thus, this paper investigates ACC in the pharmaceutical
domain in collaboration with Novo Nordisk. The paper ex-
plores the problem of ACC by dividing it into multiple NLP
subproblems and presents a pipeline for ACC. The pipeline
consists of identifying sentences representing rules in reg-
ulatory documents and extracting relevant data from these
rules needed to serialize them into CDISC Core rules.

This paper demonstrates how an in-domain dataset can
be constructed needed to implement machine learning mod-
els. Using this dataset, we train multiple machine-learning
models to solve each subproblem. For the first problem of
identifying rules, an SVM classifier using TF-IDF embeddings
obtains an F; score of 0.79, outperforming other baselines
and fine-tuned versions of BERT models. To assign operators
to the classified rules, an MLkNN classifier also using TF-IDF
embeddings obtains an F,-micro score of 0.71 . Lastly, to
extract elements such as columns and values from the rule
sentences, a fine-tuned version of LegalBERT can be used,
obtaining an F, score of 0.69.

Utilizing the output of these three models, we show that
it is possible to generate simple rules, which can be used to
implement ACC on clinical trial study databases.

1 Introduction

Pharmaceutical companies like Novo Nordisk need regu-
latory approval to get new drugs approved. This requires
clinical trial study databases to comply with numerous reg-
ulations established by the organization CDISC and other
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regulatory authorities. This compliance process is both labor-
intensive and costly when done manually.

Automated consistency checking (ACC) is the field focus-
ing on automating the consistency of data to regulatory rules.
The unstructured and rich natural language found in regu-
latory documents adds to the complexity of ACC. In recent
years, several natural language processing (NLP) techniques
have advanced and found use cases within ACC.

NLP and ACC have been researched in regulatory fields
such as law [35] and architecture, engineering, and construc-
tion [34]. Despite its significant impact, ACC within the
pharmaceutical industry is largely unexplored.

To address this gap, we collaborate with Novo Nordisk
and provide this feasibility study.

In this paper, we focus on two NLP tasks: text classification
and named entity recognition.

Text classification (TC) can be used to identify relevant
text, such as rules, in regulatory documents. As mentioned,
these texts can be complex, and thus, state-of-the-art meth-
ods usually solve this task with semantic methods. This can
be, incorporating semantic information such as ontologies
into machine learning models [29] or utilizing deep learning
and contextual embeddings [26].

Named entity recognition (NER) is used to find relevant
entities within text. Similarly, state-of-the-art methods for
NER also involve deep learning models [36] and the BIO-
tagging scheme [38].

Currently, state-of-the-art methods within ACC in the
pharmaceutical domain are software tools implemented by
the company Pinnacle21 or the open-source tool CDISC
Open Rule Engine (CORE). However, this software is devel-
oped manually, and the process of identifying sentences as
regulatory rules, and converting them into machine-readable
language is not automated. Thus, we focus on applying the
above-mentioned NLP techniques to regulatory documents
to address this problem.

In this thesis paper, we aim to answer the question of

How can NLP algorithm(s) be used to extract regulatory
rules from pharmaceutical documents, and serialize them into
CDISC conformance rules used for automated consistency checks?
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Focusing on the domain of rules for SDTM defined by
CDISC, and inspired by the rule conformance checking soft-
ware CORE, we break down the task into three NLP-related
subproblems. At a general level, the first subproblem deals
with identifying rules in regulatory documents. The remain-
ing two subproblems deal with extracting data from these
rules, which is necessary for serializing them into CDISC
conformance rules.

At the technical level, we construct an in-domain dataset
consisting of preprocessed PDF sentences from SDTMIG v3.4.
Using ground-truth labels from the CDISC API, we set up
and experimented with sentence classification, multi-label
operator classification, and named entity recognition models,
combining them with different text embedding methods. We
then use the output of these models to serialize simple CDISC
conformance rules.

The proposed pipeline displays how NLP and machine
learning can be used in the pharmaceutical domain for ACC.

The paper is organized as follows. Section 2 and 3 provide
related work on the NLP topics, and the project background
and data, respectively. Section 4 gives formal definitions of
the three subproblems. In Section 5 we provide a relevant
analysis of the CDISC data concerning the three subproblems.
Section 6 presents the paper’s methodologies, and in Sec-
tion 7 we present the results from our experiments on these
methodologies. Lastly, Section 8 gives discussion points and
future directions ideas on our solutions, and finally, Section 9
presents the conclusion of this paper.

2 Related Work

To answer the problem statement of this paper, we need to
investigate and experiment with different natural language
processing (NLP) and machine learning methodologies.

The task of extracting rules from unstructured pharma-
ceutical documents can be handled using text classification
(TC) methods. Furthermore, obtaining rule data necessary
for serializing the rules can be handled using TC and named
entity recognition (NER).

To perform machine learning on any kind of text data,
it is first necessary to map the text to some feature space
(embeddings). Text embeddings are a fixed-length numerical
representation that captures the meaning and content of
a given sequence. In recent years, researchers have used
deep learning models, such as large language models (LLM),
to solve these kinds of tasks [18]. Authors Zhe Zheng et
al investigate different methods to obtain text embeddings
(both static and contextual) and their performance on TC
and NER tasks [37]. They found the contextual embeddings
from BERT to produce the best results.

The paper "Classifying Free Texts Into Predefined Sections
Using Al in Regulatory Documents: A Case Study with Drug
Labeling Documents" [25] investigates drug-label classifica-
tion on unstructed FDA documents. The study investigates

the performance of fine-tuned BERT models and baseline
SVM and RF models on binary and multiclass tasks. Both the
tasks and the domain are therefore very similar to this study.
However, the baseline models in this study are only fed TF-
IDF embeddings and not contextual embeddings, making the
comparisons unfair. The paper also investigates a somewhat
limited multiclass setting of four classes. Lastly, the paper
only reports accuracy metrics, a very limited way to evaluate
models on these tasks.

In classification settings where the instances of interest
are rare, or where many classes are of interest, but only
a few are common, it is important to consider methods to
deal with imbalance in classes. The paper "Learning from
class-imbalanced data: Review of methods and applications"
looks into this by reviewing methods of dealing with class
imbalance [27]. The authors found that for areas associated
with clinical data, resampling-based ensemble classifiers are
widely used, but other areas focus more on feature engineer-
ing processes. Specifically, they found that the resampling
method ‘SMOTE’ generally performed well [16].

In the construction domain, BERT has also been used
successfully for TC and NER tasks. On the TC problem, Zhe
Zheng et al investigate many different versions of BERT
fine-tuned on their dataset [37]. Similarly, the authors of
the ACC system for financial agreements iSyn also fine-tune
ten models, mostly BERT, on their own labeled dataset [19].
For the NER problems, Zhou et al [38] showcase how BERT
can be used to recognize entities in regulatory construction
documents. A commonly used method for tagging entities is
the BIO tagging scheme [20, 38].

So far, NER models are limited to extracting only those
entities explicitly mentioned in the text. is that only entities
explicitly mentioned in the text are caught. Authors Eylon
Shoshan and Kira Radinsky approach this problem as latent
entity extraction (LEE) [32]. In their paper "Latent Entities
Extraction: How to Extract Entities that Do Not Appear in
the Text?", the authors group together related entities based
on co-occurrence in distinct classification tasks. Then, they
use deep learning models to classify and assign entities to
the text.

3 Project Background & Data

This background section is mostly repeated from the previ-
ous semester’s report [28], as the project background has
not changed.

3.1 Clinical Trials Overview

The primary objective of clinical trials is to facilitate the safe
and effective introduction of new drugs into the market. To
achieve this goal, authorities require complete transparency
and traceability of all data throughout the process. The pro-
cess starts with the invention of a new molecule in a lab and
progresses through various stages of testing until a drug is
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approved for public use. These stages are also referred to as
clinical trials.

The clinical trials are split into two stages, preclinical and
clinical. The following descriptions of these stages come
from [22][p. 8-11].

Preclinical Trial. During the preclinical trial phase, re-
searchers conduct studies exclusively on animals. This al-
lows researchers to; identify any significant concerns before
progressing to human trials, examine the drug’s effect on
pregnant subjects, and evaluate the toxicology * of the drug.

Clinical Trial. In the clinical trial stage, the subjects are
now human, and the stage is divided into four phases.

o Phase 1: Safety, pharmacokinetics, or pharmacodynamics-

focused testing on many healthy individuals or a se-
lected population of patients with the disease.

e Phase 2: Efficacy and safety testing on patients to
determine drug efficiency on diseases and provide a
more robust safety profile.

e Phase 3a: Same objective as phase 2, but with more
in-depth testing on a larger patient group for safety
and rare side effects control.

e Phase 3b: Tests on specialized groups (e.g., children)
parallel to Phase 3a.

o Phase 4: Post-market non-interventional trials, where
the objective is further to understand the safety and
efficacy of the drug, for example, collect data about
the people taking the drug and use that for analysis.

To complete the clinical trial phase and move the drug to
market, phase 3a must be completed.

3.2 Data Flow in Clinical Trials

When conducting clinical trials a lot of data has to be col-
lected, stored, and managed. The data utilized in this paper
focuses on regulatory rules regarding data concerning phases
2 and 3. Consequently, this dataflow is shown in Figure 1
and will now be explained.

Data flow
s Tracability
<
. Data Data q Aa
SN
Transparency 4
Data flow formats
eCRF SDTM ADaM

EDC TFL
v - N > >
V-
 —

Figure 1. Data flow and relevant formats of the
data in clinical trials from patient to final report.

1A glossary of terms such as toxicology can be found in Appendix A.1

Each observation or data point can come from multiple
sources. One example of a data source is a doctor’s visit,
where the patient’s data is collected in an Electronic Case
Report Form (eCRF). Other sources include samples sent
directly from labs or electronic data from wearable devices.
The raw data from these sources is stored in an Electronic
Data Capture (EDC) system.

The EDC data is mapped almost one-to-one, with min-
imal processing, to a data management system. This sys-
tem is standardized by the Study Data Tabulation Model
(STDTM). Depending on the subject of the observations,
they will belong to different domains, which are stored in
various datasets. Finally, these datasets can be processed by
Biostatistics in an Analysis Data Model (ADaM) and further
processed for internal reports in one of the following formats
Table, Figure, or Listing (TFL).

Since the SDTM datasets are sent to authorities for clini-
cal trial approval, traceability and transparency are crucial.
Any data processing must be well-documented and based
on sound motivation. To achieve this, SDTM is rigid in its
rules and documentation requirements, thereby achieving
transparency during the data flow. With transparency comes
traceability, meaning data can be traced back to its source.
Additional factors for this is the SDTM-annotated Case Re-
port Form (CRF) document, which is a PDF document con-
taining all mappings from CRF to SDTM, or the Define-XML
file describing metadata; the origin, format, and possible
transformations of every single data item.

Examples of eCRF, SDTM, and ADaM can be found in
Appendix A.2.

3.3 SDTM Rules

The rules for SDTM and ADaM are defined by the Clinical
Data Interchange Standards Consortium (CDISC), an inter-
national non-profit organization. However, CDSIC’s rules
can be overruled by regulatory bodies such as the U.S. Food
and Drug Administration (FDA) or the European Medicines
Agency (EMA). Because of this hierarchy, and in some cases
contradictions, understanding what rules exist and which to
follow in different situations is a complex task.

In this paper, the focus is on CDISC rules regulating SDTM
[5]. As of 2024, CDISC’s SDTM rules are divided into three
concepts:

e The SDTM model. This model is available in PDF and
describes a specific version of SDTM.

e The SDTM Implementation Guide (SDTMIG). These
guides are also available in PDF and cover guidance
on how to implement an SDTM version

e Conformance Rules (CR) covering both SDTM and
SDTMIG. These documents are Excel documents and
cover data on rules across SDTM and SDTMIG ver-
sions.
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In Figure 2 we show the current structure of the three
types of documents. The figure illustrates how each CR Ex-
cel document, can be based on several SDTM and SDTMIG
documents. Furthermore, it also illustrates how, for example,
CR v1.1 does not contain rules from SDTM v2.0 and SDTMIG
v3.4, while CR v2.0 covers all the shown documents.

Figure 3 shows two examples of rules concerning SDTM.
The first is rules written in a free-text format and the second
in a tabular format. Besides free text and tables, the SDTM
and SDTMIG documents contain other structures such as
images, bullet points, lists, and more.

the scientific subject matter of the data or to its role in the trial. Each domain dataset is distinguished by a unique 2-
character code that should be used ly th of the sut This code, which is stored in the SDTM
variable named DOMAIN, is used in 4 ways: as the dataset name, as the value of the DOMAIN variable in that
dataset, as a prefix for most variable names in that dataset, and as a value in the RDOMAIN variable in relationship
tables.

All datasets are structured as flat files with rows representing observations and columns representing variables; each
dataset is described by metadata definitions that provide information about the variables used in the dataset. The
Define. XML specification provides additional information.

(a) Example of how rules in SDTM can be defined in free-text
format [5].

Role

E3

Variable
Name

Variable Label Type Description

If the value for --TRT is modified for coding purposes, then the

--MODIFY |Modified Treatment|Char y
Name Qualifier of -- modified text is placed here.
2 |--DECOD Char ized or dictionary-derived name of the topic variable, --
Treatment Name Qualifier of - [TRT, or the modified topic variable (--MODIFY), if applicable.
TRT Equivalent to the generic drug name in WHODrug, or a term in

SNOMED, ICD-9, or other published or sponsor-defined

w

--MOOD Char Record Qualifier [Mode or condition of the record (e.g., "SCHEDULED",

"PERFORMED").

(b) Example of how rules in SDTM can be written in tabular
format [5].

Figure 3. Examples of the different structures used in CDISC
documents.

The PDF documents can be found on CDISC’s website, and
the corresponding rulesets for the documents, are released
through the CDISC Library API [8] as JSON files.

Lastly, this project also uses the FDA Validator Rules v1.6
ruleset as additional rules for training data. This ruleset
contains descriptions of 728 FDA rules, and can be found on
the FDA website [21].

CDISC Conformance Rules

The purpose of SDTM rules is to apply a certain industry
standard to the clinical trial data in the data management
step. Currently, there exists certain automated consistency
checking (ACC) software that can apply the given rules on
datasets, and check for consistency. One is the commercial
software tool Pinnacle 21 [3], and more recently the open-
source tool CORE [9].

To formalize the rules, P21 used XML standards [2] and
CORE uses JSON [17]. However, the process of identify-
ing sentences representing rules and converting them into
machine-readable data in the specified format is currently
not an automated process.

This is also the goal of this paper. We provide a feasibility
study, going in-depth with the possibility of automatically

™o

identifying rules in regulatory documents, and extracting
data necessary to formalize them.

As we have restricted this study to focus on SDTM rules
by CDISC, we draw inspiration from CORE and its JSON
structure. A snippet of this structure is shown in Template 1.

{"Rule_id": rule_id,
{ "Cited_Guidance": rule_text },
{ "Check": {
"name": element,
"operator": operator,
"value": element

b

}

Template 1. Simplified JSON template from CORE showing
a simple rule.

In this template, we have the unique identifier for the rule
(Rule_id), the citation which is the reference text of the rule
(Cited_Guidance), and data on how the rule check should be
applied (Check). In this project, we focus on the citations,
and the data under the ‘Check’ key, which will be defined
later.

The CORE template shows simple rules. These only use a
check condition to look for rule consistency. However, there
are also rules in CORE that check for more complex logic.
The structure of these rules is shown in Template 2

{"Rule_id": rule_id,
{ "Cited_Guidance": rule_text 3},
{ "Check": {
"all": [
{
"name": element,
"operator": operator,
"value": element
s
{

"name": element,
"operator": operator,
"value": element
3

13
33
Template 2. Simplified JSON template from CORE showing
a complex rule.

In this template, we can see that the rule uses multiple
names, operators, and values. Additionally, we have the in-
troduction of the ‘all’ keyword. This specifies that all checks
must be consistent for the data to comply with the rule. The
other possible keyword is ‘any’, indicating that if at least one
of the checks fails, the data fails to comply with this rule.
These keywords can be nested to multiple degrees.
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SDTM v1.4
(26-Nov-2013)

SDTM v2.0
(29-Nov-2021)

SDTM v1.7
(20-Nov-2018)

SDTM and SDTMIG
Conformance Rules v1.1
(07-May-2020)

SDTM and SDTMIG
Conformance Rules v2.0
(29-Nov-2021)

SDTM and SDTMIG
Conformance Rules v1.1
(07-May-2020)

Figure 2. The structure of SDTM, SDTMIG, and Conformance Rules as described by CDISC [10].

4 Problem Definitions

In this section, we break down the aim of this paper, and for-
mally define the problem of extracting rules from regulatory
documents and serializing them for automated consistency
checks.

This section is based on the previous semester’s report
[28] but with modifications.

In the following, we consider sentences as ordered set of
words from a given vocabulary ending with a full stop. These
words are also called dictionary terms, and in this project, we
consider the set of English words, numbers, domain abbrevi-
ations, and punctuation symbols. Thus we define sentences
as follows

Definition 4.1 (Sentence). Let W be a dictionary of terms
and S be a sequence of n terms, |S| = n, from W. A sentence
can consist of all possible subsets of W, that is S € P(W),
where P represents the powerset.

These sentences can be found in documents. We consider
the set of sentences in these documents to be ordered, and
thus, we define a document as

Definition 4.2 (Document). Let a document d be a se-
quence of m sentences, such thatd = (Sy,...,S,) and |d| = m.

Since we have more than one document, we also define a
collection of documents (corpus) as D = {dy, ..., dx}.

In each document, a subset of sentences may contain infor-
mation describing a regulatory rule, R C {S}. Rules stipulate
how something should take place, or how data should be-
have in a certain situation. The remaining sentences provide

context to rules, are examples of rules, or give otherwise
necessary information regarding the domain. The problem
then becomes finding a function to identify these rules. That
is, for every sentence S in d, classify the sentence as a rule
or not by assigning a label {0, 1}, where 1 represents a rule
and 0 is everything not a rule.

Problem 1. Given {S}, the problem of sentence classifi-
cation require to find a function f:

fAst = A{o01}
such that, f(S) = 1iff S is a rule and f(S) = 0 otherwise.

For all sentences where f(S) = 1, we denote this set R.

Example: Figure 4 shows a snippet of a regulatory doc-
ument containing sentences. In this example, we have high-
lighted three sentences of two rules such that d = (51, Sz, S3)
and R = {S,, S3}. Using a sentence classification model, the
goal is to label f(S1) =0, f(S2) =1, f(S5) = 1.

Besides classifying sentences as rules, it is also important
to capture the essential information from a rule. Three pieces
of information jointly describe a rule; what the rule applies
to, how the rule checks for conformance, and what it checks
for.

CDISC describes how the rule checks for conformance in
the rulesets under the operator key. Examples of operators
include exists and equal_to. To represent these categorical
operators as binary labels we define operators as follows

Definition 4.3 (Operators). LetO =o0;: j=1,...,qbe the
set of all operators from the operator key. Furthermore, the
operator set for a rule r € R is denoted by the indicator
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authorities. (See the Case Report Tabulation Data Definition Specification [Define-XML], available at
www.CDISC.org). | Define-XML specifies seven distinct metadata attributes to describe SDTM data:

. ‘The Variable Name (limited to 8 characters for compatibility with the SAS Transport format) | s2

e |A descriptive Variable Label, using up to 40 characters, which should be unique for each variable in the dataset | 53

e The data Type (e.g., whether the variable value is a character or numeric)

Figure 4. Snippet from a regulatory document containing sentences and rules.

vector Yy, such that Y, = [y,1, yr2, . . . yrq] Where each y; is
a binary indicator variable defined as follows

1 ifo; is in the operator set for rule r
Yrj = .
0 otherwise

CDISC similarly describes what the rule applies to and
what it checks for in the ruleset under the name and value
keys, respectively. respectively. The values found in these
keys are complex and can consist of several forms of data
types. Typically, the values for name are datasets or dataset
columns that the rule applies to. value on the other hand, can
consist of datasets, columns, numbers, or strings. We group
values from both of these keys using the term elements.

Definition 4.4 (Elements). Let E = {ey, ..., e, } be the set
of possible elements, and L = {name, value, None} the ele-
ment label set.

We describe two additional problems to extract operators
and elements. The first is to assign operators to the rule
approximations R from the sentence classification model. In
this case, a rule can have multiple operators assigned to it,
making this a multilabel classification problem.

Problem 2. Given O and ﬁ, the problem of multilabel
operator classification require to find a classifier g:

g:lé—)YU{e}

such that Y is the indicator vector representing the operators
for R and € is introduced as a special symbol to address
scenarios where no valid operator from O is assigned.

We use € to effectively capture the case where the output
should explicitly indicate the absence of an assignment of op-
erators. This is necesarry in the scenario when a sentence not
representing a rule is passed from the sentence classification
model f into the multilabel classification model g.

The second problem is to extract what elements a rule uti-
lizes in the conformance check. This extraction can be done
using named entity recognition (NER). NER is the process
of locating and classifying the set of elements E in the rule
into the predefined element categories L.

Problem 3. Given a rule R of n terms, the set of element
labels L, and a set of elements E, the problem of named
entity recognition requires finding a function h:

h:R— PE)Ue

such that h(R) = ER is the subset of elements found in the

rule R that are tagged with the entity types in L. Additionally,
€ is the set of terms not tagged with entity types from L.

Again, we use € to specify the terms in rule sentences
corresponding to no entity types.

Example: Following the previous example, where sentence
Sy is classified as a rule, the first step is to assign operators
to the rule. In this case, a single operator is needed, namely
longer_than. In this case, the function g(S;) should return a
1 only for the entry of the longer_than operator, and 0 for all
other entries. The second step is to extract the relevant elements
for this rule. In this case, "Variable Name" should be tagged
with the "name" label and "8" the "value" label, such that the
two elements extracted from h are {"VariableName”, 8}.

We can utilize the combined output of classifying docu-
ment sentences as rules and extracting essential information
from each rule to validate the conformance of a rule if it is
structured in the specified JSON template previously shown
in Template ??.

Lastly, an important part of this study is to reflect on the
usefulness of the proposed solutions to the three defined
problems. For the outputs of the models to be useful, and
thus the pipeline a success, a level of trust in the system is
needed.

To quantify the performance of a given model, we use
three evaluation metrics. These metrics are precision, recall
and F,-score.

Definition 4.5 (Metrics). Given the number of true positives
TP, false negatives FN, and false positives FP from a model
output, the evaluation metrics are defined as:

_ TP
Recall = TPiFN

Precision = 575
Precision-Recall

Fy = (14 B) - (2 brecision) thecl

We use the F; score, to indicate the importance of recall.
Retrieving as many relevant instances as possible is impor-
tant for the usefulness of the pipeline, even with a tradeoff
in precision in mind.

For the multilabel classification problem in Problem 2,
the above definitions extend into macro and micro versions
[31]. The micro versions aggregate performance across all
instances, treating each equally, emphasizing the model’s
overall accuracy. The macro metrics evaluate performance
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for each class independently and then average these scores,
ensuring each class is equally represented.

5 Data Analysis

In this section, we present an analysis of the operator clas-
sification problem and the named entity recognition task
(Section 5.1 and 5.2). Analysis of the sentence classification
problem is presented in our previous work [28].

The numbers in this analysis are calculated on the data
found in the SDTMIG v3.4 JSON file containing data on the
regulatory rules.

5.1 Operator Analysis

Figure 5 shows the frequency of each operator. We can see
that a few operators are very frequent, such as non_empty
and equal_to. We can also see that most of the operators are
much less frequent, with some operators only appearing once
in the dataset, such as suffix_matches_regex or ends_with.

Based on the operator frequencies, we further investi-
gate the possible data imbalance, with the imbalance metrics
MeanlR, MaxIR, and SCUMBLE, which are commonly used
in multi-label classification tasks.

To understand MeanIR and MaxIR, we first define the
imbalance ratio per label (IRLbI) [13].
Definition 5.1. [13] Given the set of operators O, and
the true label set Y, for rule r, IRLb] is defined as the ratio
between each operator o € O and the majority operator o’.

maxy’ eo (er; h(o’, Yr))
2rti h(o, Yy)

1 o€y,

IRLbI(0) =
0 o¢Y,

> h(O! Yr) = {

Thus, for the most frequent operator, IRLbl equals 1. For other
operators, the larger the value, the higher the imbalance level
for the operator is.

As IRLbl is calculated for each operator, measures such as
MeanlIR and MaxIR are also reported. MeanlR is the average
of all IRLbl values and is, therefore, the mean imbalance
ratio across operators in the dataset. Similarly, MaxIR is the
imbalance ratio of the majority operator against the minority
operator.

In our case, MeanlIR is 8.24 and MaxIR is 27.66. This means
that, on average, the most frequent operator is 8.24 times
more frequent than other operators. Similarly, the most fre-
quent operator is 27.66 times more frequent than the most
rare operators.

Lastly, we report a SCUMBLE score, representing the con-
currence among frequent and infrequent operators. This lets
us investigate how often rare operators are in the same op-
erator set as frequent operators and is designed to assess
whether certain data augmentation methods can be assumed
to be appropriate for the dataset [14].

Definition 5.2. [14] SCUMBLE is defined as

1 < 1
SCUMBLE(d) = — 1- —— ( IRLbli,o)
m Z: IRLb; g

i=

A small SCUMBLE score denotes a dataset where con-
currence among imbalanced labels is rare, and on the other
hand, a large score will mean infrequent and frequent la-
bels appear together more often. Charte et. al [15] denote a
SCUMBLE larger than 0.1 as high. In our case, the SCUMBLE
score equals 3.28, indicating a very high level of concur-
rence between infrequent and frequent operators within the
dataset.

Based on Figure 5, MeanIR, MaxIR, and SCUMBLE values,
we can conclude that we are dealing with an imbalanced
multi-label dataset. Such imbalance between labels can af-
fect the performance of classification models as they may
overfit on the more common operators while underperform-
ing on the rare ones. To handle the skewness of operators
in the classification task, we will investigate different data
augmentation methods.

5.2 Element Analysis

To investigate the rule elements (names and values), which
are relevant for the named entity extraction problem (Prob-
lem 3), we look at the name and value keys in the SDTMIG
v3.4 ruleset. In this ruleset, there are 155 rules.

Figure 6 shows where the names and values occur in the
text based on document level and sentence level. It can be
seen that even on the document level, some rule elements are
not mentioned. If we go further down in the figure and look
at the sentence level, the amount of rule elements mentioned
significantly drops. On the lowest filter, we can see that only
42% of rules mention all names in the rule sentence, and
likewise, only 19% for the values.

For the elements not present on the document level, we
further analyze how many unique elements this affects.

e Names: 25 out of 139 names (18 %)
e Values: 43 out of 106 values (41 %)

Out of these unique elements, we also analyze how many
rules use them, and are thus affected by them not appearing
in the document.

e Names: 22 out of 155 rules (22%)
e Values: 46 out of 155 rules (44%)

This will impact Problem 3 as the NER model can only
extract elements present in the rule sentences.

A possible solution to this issue, is to set up the NER model
as a latent entity extraction model as shown in the paper
"Latent Entities Extraction: How to Extract Entities that Do
Not Appear in the Text?" [32]. This LEE model involves
setting up each element as a classification class, and grouping
classes together in distinct tasks, based on the classes co-
occurence.
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Figure 5. The distribution of operators.
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Figure 6. Funnel plot that shows the number of rules at each
stage of the element occurrence analysis.

#Rules

#Rules using
an element

#Rules with at
least one element
in document

#Rules with all
elements mentioned
in document

#Rules with at
least one element
in citation

#Rules with all
elements mentioned
in citation

Table 1. The frequency of distinct and unique names and
values across all versions of SDTMIG.

Frequency
Distinct Names | 211

Unique Names | 50

Distinct Values | 112

Unique Values | 33

Table 1 shows the number of distinct and unique names
and values across all versions of SDTMIG.

This analysis indicates that using the LEE model for our
dataset is not applicable, as we would obtain an excessively
high number of classes (211+122) even when grouped. More-
over, as one-third of the elements are unique, their infrequent

appearances would pose significant challenges to learning
these classes properly.

Therefore, we limit this Problem 3 by discarding elements
not explicitly mentioned in the sentence. Instead, we focus
on learning a NER model, which can only extract elements
present in the rule sentences.

6 Problem Solution Methods

In this section, we first present the construction of our SDTM
domain dataset consisting of sentences and labels (Section 6.1),
and the embedding methods used to obtain numerical fea-
tures of the sentences (Section 6.2). Then, we present the
different methods used to solve the problems of sentence clas-
sification (Section 6.3), operator classification (Section 6.4),
and named entity recognition (Section 6.5).

6.1 Construction of Dataset

As described in Section 3, the CDISC Library API can extract
data for our domain. We use the API to obtain four files;
the SDTMIG v3.4 PDF file, and three JSON files containing
data regarding all rules for SDTMIG v3.2, v3.3, and v3.4
respectively.

We use these files to construct a dataset from which we
can obtain sentence embeddings (features) and rule labels,
operators, or elements (classes) to feed into supervised ma-
chine learning models in our experiments depending on the
problem at hand.

The raw text sentences in the dataset are obtained and
labeled from the PDF and JSON files as follows:

e Using Python, we process the SDTMIG v3.4 PDF and
extract all relevant sentences. The sentences are thus
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comprised of natural language text found in the PDF
document.

o The processed sentences from the PDF are manually
labeled by us, using ground-truth rule labels found
under the ‘Cited_Guidance’ key in the SDTMIG v3.4
JSON file.

e To obtain more sentences labeled as rules, we incorpo-

rate rule sentences directly found in the ’Cited_Guidance’

key in the SDTMIG v3.2 and v3.3 JSON files, as well as
additional rule sentences found in the FDA Validator
Rules v1.6 Excel file [21].

SDTMIG v3.4 CDISC API

AN
{}

SDTMIG v3.4 ruleset

Manual
Annotation

Text

Extraction

Sentences

Drop duplicate sentences
CDISC API

L
8585 Negative 258 Positive n
Labels Labels
SDTMIG v3 2&v3.3

Merged Sentences
v v
110Rules [/ (192*126)
Rules
— )

v

O

Dataset (8,585 Non-Rules and 977 Rules)

FDA ruleset ruleset

728 Rules

Figure 7. Visualization of the presented data preparation
flow. We manually label the processed sentences from SDT-
MIG v3.4 PDF and augment them with additional rules from
other rulesets. This results in a dataset with 8, 585 non-rules
and 977 rules after dropping duplicate sentences.

Figure 7 showcases the dataset preparation flow, where
we manually label the processed sentences from SDTMIG
v3.4 PDF using ground-truth labels from the JSON files and
incorporate additional rules from other sources. This process
is described more in-depth in our previous work [28].

Similar to the rule labels, the operator and elements labels
are also found in the JSON files under the ‘Check’ key. The

FDA Excel file does not contain this data and is thus not in-
cluded in the data for the problems of operator classification
and element extraction (Problems 2 and 3). The operators
are represented in the dataset as binary indicator variables,
creating an indicator vector for each rule. The elements are
represented in the dataset using the BIO-tagging scheme,
where each word in the rule sentence is tagged with a label
from the label set O, B-name, I-name, B-value, and I-value.
We perform the tagging automatically using Python.

To simulate the process of obtaining a new document to
extract data from, we set up the following constraint on
the dataset splits: the test rules are the manually labeled
sentences from SDTMIG v3.4 as this is the latest version,
while the training and validation data are rules from older
versions SDTMIG v3.2 and v3.3 (and FDA Validator Rules
v1.6 rules for the sentence classification problem).

We ensured there were no duplicate sentences to prevent
data leakage between different dataset splits. We defined
duplicates based on their TF-IDF embeddings. This method
is necessary because sentences in different versions of the
SDTMIG often have very minor differences, such as an extra
space or comma. Simple text matching would not catch all
true duplicates. TF-IDF embeddings effectively identify du-
plicates. Before splitting the data into training and validation
sets, we removed all duplicates from these sets. If a duplicate
sentence was found between these sets and the test set, it
was kept in the test set, to simulate the process of obtaining
a new document, and because the test set is already limited
in size.

6.2 Sentence Embedding Methods

To obtain numerical representations (embeddings) of the
sentences in our dataset, we tokenize them and embed them
using either static or contextual methods.

For the static embeddings, we use the three methods Bag of
Words (BoW), Term Frequency-Inverse Document Frequency
(TF-IDF) [1], and the pretrained embeddings Word2Vec (W2V)
[24].

The BoW methodology employs a frequency-based ap-
proach wherein the initial step involves enumerating the
unique terms, denoted as |W|, present across all m sentences.
This enumeration influences the dimensionality of the fea-
ture vector associated with each sentence. To mitigate exces-
sively lengthy feature vectors, we incorporate a term-sorting
step based on frequency, limiting the maximum length of
the feature vector to 2, 000. Following this preprocessing,
the frequency of each term within a sentence is counted
and inserted into the respective sentence’s feature vector.
The second static embedding method, TF-IDF captures the
importance of terms in a document while keeping in mind
that some terms are more frequent than others. The second
static embedding method, TF-IDF, is designed to quantify the
relevance of terms within a document, taking into account
the variable frequency of terms across documents. Like BoW,
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the length of the embedding is the number of unique terms,
|W|, which we sort and limit to 2, 000. Then, each sentence’s
feature vector is populated using the following definition:

Definition 6.1 (TF-IDF). Given the frequency of term ¢
within a document d denoted ¢ f (¢, d), and the inverse docu-
ment frequency defined as

idf (t,D) = log(
Then, TF-IDF is defined as
tfidf(t,d,D) = tf(t,d) - idf (¢, D)

where the denominator is the number of documents the term
t appears in.

|D|

{deD:ted})

The last static embedding method, W2V, is a group of mod-
els developed by Google and pretrained on large amounts of
data. The models have two objectives: given a context win-
dow predict the target word or given a target word predict
the context words. These objectives are learned using large
neural networks, and the hidden layer weights are extracted
as word embeddings.

For the contextual embeddings, we use both pretrained
and finetuned versions of the LLM BERT, specifically Distil-
BERT [30] and LegalBERT [12].

Both of these are based on BERT, which is a large language
model also developed by Google. BERT is based on the trans-
former architecture, which is bidirectional and considers
both contexts of words from left and right are considered. It
is pretrained on different tasks, resulting in contextualized
embeddings that capture relationships between words. The
text embeddings obtained through the BERT models are 768
dimensional feature vectors.

DistilBERT is a distilled version of BERT designed to be
smaller and faster, while still retaining most capabilities of
the larger version. LegalBERT is a BERT model finetuned on
several large legal datasets.

Lastly, for DistilBERT and LegalBERT, we also use versions
that are finetuned on our dataset.

The text embeddings obtained from these embedding meth-
ods are the features fed into the different machine learning
models trained during our experiments.

6.3 Sentence Classification Method

For the sentence classification problem (Problem 1), we set
up multiple binary classifiers to predict whether a sentence
represents a rule. The following section on sentence classifi-
cation is largely a repetition of the work done in the previous
report [28].

The binary sentence classifiers we use are Support Vector
Machines (SVM), Random Forest (RF), K-Nearest Neighbor
(KNN), and Extreme Gradient Boosting (XGB). We use these
four classifiers in combination with the static embedding
methods, as well as the two BERT models that are not fine-
tuned on our dataset. For the two BERT models finetuned

on our dataset, we employ a simple linear neural network
(NN) as a classification head on top of the BERT architecture.
The weights of the classification layer are learned during the
model finetuning,.

Table 2. The number of non-rules (sentences not la-
beled as rules) and rules in each of the three dataset
splits. The rules in the test set are manually labeled
SDTMIG v3.4 rules. The rules in training and valida-
tion are extracted from rulesets not SDTMIG v3.4.

Split Non-rules Rules
Training 5845 792
Validation 664 74
Test 1100 110

Table 2 shows the size of each split constructed from the
dataset for the sentence classification problem.

As each split is imbalanced in the form of non-rules versus
rules, we ensure that each model weights each class during
training based on the frequency of instances. We give the
minority class a weight of 1, and the other class a weight
equal to that class’ frequency divided by the frequency of the
minority class. Thus, the more frequent class gets a weight
lower than 1.

6.4 Operator Classification Methods

For the operator classification problem (Problem 2) defined as
amulti-label classification task, we employ several classifiers.
Additionally, to handle the operator imbalance problem pre-
sented in Section 5.1, we use data augmentation techniques.

Data Augmentation Methods. The analysis of operators
revealed a high imbalance in the frequency of the different
operator sets. To handle this imbalance we focus on over-
sampling techniques to produce synthetic instances of each
class. We do not undersample the majority operator set, as
its frequency is only 83.

To generate synthetic instances of the less frequent oper-
ator sets, we use the KNN-based approach to oversampling,
Synthetic Minority Over-sampling Technique (SMOTE) [16].
SMOTE augments our dataset by generating new samples
through interpolating of existing minority classes.

Definition 6.2 (SMOTE). Given an embedding x;, and a
sampled neighbor x,, amongst k-nearest neighbors to x;, a
new synthetic embedding xp.,, is defined as

Xnew = Xi + A+ (Xpn — X;)
where A is a number in the interval [0, 1].

Creating synthetic instances with SMOTE requires a mini-
mum of two examples, and preferably more for diverse inter-
polations. Due to this requirement, we remove all operators
from the dataset that appears less than three times.
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Table 3 shows statistics after dropping the low-frequency
operators.

Table 3. Statistics of the operator dataset after drop-
ping low-frequency operators.

Statistic

#Rules 274
#Operators 13
#Operator Sets 50
Average #Operators

1.6
per Rule
Average #Rules

26
per Operator

Furthermore, before augmenting the dataset with SMOTE,
we consider the issue when the operator set consists of a
frequent and less frequent operator. In Section 5.1 the co-
occurrence of such sets in the whole dataset was measured
using SCUMBLE. Handling this issue is important because
oversampling a set with a high SCUMBLE value creates more
instances of high-frequency operators. Therefore, before ap-
plying SMOTE, we use a method called ‘REMEDIAL’ [15].
This method examines the SCUMBLE value of each instance,
and if it is larger than the mean SCUMBLE value for the
dataset, the operator set of this instance is decoupled, mean-
ing identical feature vectors are created for each operator in
the set.

Example: We have a rule with operators non_empty and
not_matches_regex, a frequent and infrequent operator re-
spectively. This operator set is rare, meaning we want to over-
sample this set. However, doing so would also create more
instances of the frequent operator non_empty. Thus, we decou-
ple the operator set. The rule is represented by an embedding
x1 and the label set y; = {1, 1}. Decoupling then produces two
identical embeddings, x11 with label set y11 = {1,0}, and x12
with label set y1, = {0, 1}. Then, the resample method only
resamples the embedding for not_matches_regex x 5.

With this method we reduce the impact of oversampled
frequent operators, while still generating synthetic instances
of the less frequent operators with SMOTE.

After decoupling the operator classification dataset de-
scribed in Section 5, the number of rules increases from 244
to 279. Then, after augmenting the dataset with SMOTE, we
have 924 rule representations. The dataset imbalance metrics
are subsequently lowered with a MeanlIR of 3.19, a MaxIR of
5.97, and a SCUMBLE value of 2.5, compared to the previous
values of 8.24, 27.66, and 3.28, respectively.

Operator Classification Models. There are multiple ways
to handle a multilabel classification problem. In this project,
we try two common solutions: adapt traditional classifiers
to work with multi-labels or transform the problem into
multiple binary classifiers.

For the first class of solutions, we use classifiers KNN,
SVM and a Hierarchical ARAM Neural Network (MLARAM)
adapted to work for multilabel instances [33]. For the second
class, we use classifiers KNN, RF, XGB, and MLP. These clas-
sifiers are binary classifiers. We use these binary classifiers
to translate the problem into learning a classifier for each
class. We investigate three different transformation methods
to achieve this: learning a binary classifier for each operator
(Binary Relevance), learning binary classifiers for each opera-
tor but in a conditioned chain (Classifier Chain), and learning
a binary classifier for each operator set (Label Powerset).

For the operator problem, we employ the best-performing
sentence embedding method from Problem 1 for a gien clas-
sification model. This approach supports the idea of an auto-
mated rule extraction framework, where Problem 2 happens
as a continuation after Problem 1. Thus, we use the output
of the first model as input to the second model.

Operator Datasets. To investigate how the operator clas-
sification model learns to identify operators, we construct
different datasets for training. These datasets are based on
the outputs of the sentence classification model.

Table 4. Each column represents a different dataset,
with the size of the training and test split represented
in the rows. For the validation split 20% of the training
split is used.

Only | Non-rules | Non-rules
Rules | (FP) (TN)

Train | 169 190 190

Test | 105 117 117

Table 4 shows the three different datasets. The ’only rules”
dataset only contains actual rules, which is also the dataset
described in Section 5. This dataset is used to evaluate how
the model can learn to assign operators to rules. Next, we
have the dataset also containing non-rules representing hard
sentences to differentiate from actual rules. These non-rules
are the false positives from the first model sampled into both
the training and test set. The last dataset instead contains
sampled non-rules from the true negatives from the first
model, and thus are easier sentences to differentiate from
actual rules. For the last two datasets, we construct an ad-
ditional class, ‘no operator’, to assign no operators to the
sentences.

Based on which dataset is used for training and testing,
we can more thoroughly investigate how each operator clas-
sification model performs. Models trained on the ‘only rules’
dataset serve as baselines to investigate the performance on
only rule sentences For the dataset containing false positives,
we evaluate model performance in a more realistic setting,
where false positives are part of the output from the sentence
classification model. Assigning the new ‘no operator’ class to

Page 11 of 26



non-rules is essentially the same as the task for the sentence
classification model, which could not be learned at that time.
Therefore, we also include the third dataset containing true
negatives, as these were correctly identified by the sentence
classification model.

6.5 Named Entity Recognition Methods

To identify names and values (elements) mentioned within
rule texts, we employ fine-tuned versions of LegalBERT ded-
icated to token classification. Each token in the rule sentence
is tagged with a BIO-tag, and the objective is to accurately
classify these tags for tokens within the test set rule sen-
tences.

To tokenize the rule sentences, we use the LegalBERT to-
kenizer from HuggingFace [12]. When tokenized, the tags
are also aligned. If a tagged word is tokenized into multiple
tokens, the original tag is retained for the first token while
the remaining tokens are assigned the label —100. This la-
bel ensures that the model disregards these tokens during
both training and inference. The label is also assigned to the
special tokens CLS and SEP.

The task of assigning elements to specific rules follows
the classification of operators, a multilabel task where each
rule may be associated with multiple operators (Template 2).
Since elements are linked to rule operators rather than the
rule text itself, a more complex challenge arises in mapping
extracted elements to the appropriate rule operators. Cur-
rently, this aspect is beyond the scope of this project; our
focus is confined to rules with a single operator, allowing a
direct mapping of elements to that operator.

Thus, the test set for this task consists of rules from SDT-
MIG v3.4 with a single operator. The remaining rules from
SDTMIG v3.4 and the previous versions constitute the train-
ing and validation sets. The size of each split is shown in
Table 5.

Table 5. Size of NER dataset splits, number of distinct ele-
ments, and total number of elements in each split. For the
validation split 20% of the training split is used.

Train | Test
#Rules 350 47
#Distinct Names | 201 201
#Names 723 81
#Distinct Values | 102 102
#Values 634 53

7 Experimental Evaluation and Analysis

In this section, we evaluate and analyze the experimental
results. We first present the setup on which the experiments
are conducted, and then we present the results from each
problem (Sections 7.1, 7.2 and 7.3). Lastly, we present the

overall objective of serializing the model outputs into CDISC
conformance rules (Section 7.4)

Experimental Setup. The experiments are conducted on a
machine with a Tesla T4 GPU, 40GB of RAM, and 10 CPU
cores using Python 3.11 2.

Hyperparameter Tuning. We use hyperparameter tuning
to evaluate different model configurations on a validation set.
The model configuration that achieves the best performance
on the validation set is the model evaluated on the test set.
The tuning experiments are implemented using the Python
library Optuna, which uses a probabilistic model to make
educated guesses on new hyperparameter values to try out
[4].

Depending on the computational load of the model, we
perform either 250 or 100 trials. Any neural network training
is conducted for 20 epochs. The hyperparameters tested for
all models and their ranges are reported in Appendix A.3.

7.1 Sentence Classification Results

Figure 8 shows boxplots for the F, scores across embedding
and classifier combinations described in the sentence classi-
fication methodology Section 6.3.

From the embedding boxplots, we observe that, except
for LegalBERT, the scores across classifiers within the same
embedding method are relatively close. Additionally, the pre-
trained Word2Vec embeddings achieve the lowest scores,
while BoW, TF-IDF, and LegalBERT obtain the highest F;
scores.

For the classifier boxplots, we first highlight that the SVM
classifier exhibits a very high variation in performance based
on the embedding method used, with F, scores ranging from
0.8 to 0.2. Lastly, we note that the NN models on average
obtain high F, scores. However, it is important to reiterate
that these results are based on only fine-tuned versions of
DistilBERT and LegalBERT.

Table 6 further shows the precision, recall, and F; scores
of each embedding and classifier combination, with the four
highest F, scores highlighted.

For the highlighted methods, Table 6 shows while the
recall scores are relatively close around 0.77, the precision
varies the most between methods. TF-IDF embeddings with
an SVM classifier and a finetuned LegalBERT embedding
with NN classifier both obtain precision scores above 0.9,
while the two other methods are under 0.77. However, since
we report F, which prioritizes recall over precision, the fine-
tuned LegalBERT model ranks lower than the other three.

It is also worth noting that besides NN with LegalBERT
which had a high precision of 0.95, two other combinations
achieved higher precision scores: the NN with DistilBERT
and the RF with BoW with precision scores of 0.99 and 0.97
respectively.

The full list of required packages can be found here.

Page 12 of 26


https://github.com/christiannielsen98/DVML-P9-P10/blob/main/requirements.txt

Table 6. Precision, recall, and F; scores for all classifier/embedding combinations.

Classifier
P/R/F, | SVM KNN NN XGB RF
Bow | 0.88/0.61/0.65 | 0.90/0.70/0.73 0.68/0.81/0.78 | 0.97/0.55/0.60
TF-IDF | 0.92/0.76/0.79 | 0.76/0.79/0.78 0.61/0.75/0.71 | 0.74/0.60/0.62
Embedding Word2vec | 0.42/0.17/0.20 | 0.43/0.45/0.44 0.42/0.61/0.56 | 0.40/0.47/0.46
DistilBERT | 0.75/0.48/0.52 | 0.68/0.56/0.58 | 0.99/0.60/0.65 | 0.79/0.57/0.61 | 0.52/0.45/0.46
LegalBERT | 0.69/0.40/0.44 | 0.52/0.56/0.55 | 0.95/0.74/0.77 | 0.65/0.58/0.59 | 0.46/0.48/0.48
Boxplot for each Embedding Figure 9a and Figure 9d have very few false positives, while
1.0 1 Figure 9b and Figure 9c predict significantly more non-rules
as rules. The number of true rules found consistently varies
0.8 1 between 80 and 90, and likewise for false negatives in the 20
% ? to 30 range. These observations indicate that some non-rules
0.6 - ? are hard to distinguish from actual rules, and it is the ability
o % to make this distinction that separates the methods.
0.4 1
0.2 1 ©
Precision/Recall Tradeoff. Based on the observation that
. . . . . using a unified framework for automated consistency checks,
distilbert  w2v bow tfidf  legalbert the sentence classification component would ideally achieve
Embedding as high a recall score as possible. To illustrate the effect
. of recall versus precision for the four previously presented
1.0 - Boxplot for each Classifier methods, ROC and Precision-Recall curves are shown in
Figure 10.
0.8 1 . From the ROC curves in Figure 10 we observe that all
é - models perform better than random guessing with relatively
0.6 - high AUC scores. Of the four models, the KNN with TF-IDF
~ L i (orange) is worth highlighting as it struggles to achieve a
- 041 true positive rate higher than ~ 0.8 without a drastic increase
' in the false positive rate.
024 e For the Precision-Recall curves, we observe two different
' tendencies. The SVM with TF-IDF (blue) and NN with Legal-
0.0 . . . . . BERT (pink) show high recall values for the most part, with
' NN SVM KNN XGB RF the dip in precision scores happening rather late. For the
Classifier remaining methods XGB with BoW (grey) and KNN with

Figure 8. Boxplots for F, scores across embedding and clas-
sifier combination.

Based on these results, we can conclude that basing the
models on pretrained contextual embeddings did not pro-
duce better results compared to the simpler static embed-
dings. However, for the two models in the NN column, where
we finetuned the BERT embeddings instead of using only
pretrained, performance was much better. This showcases
the potential of finetuned contextual embeddings in this
domain.

To illustrate how the four highlighted classifiers performed
on the test set, we present the confusion matrices for each
in Figure 9.

TF-IDF (orange), we can see that they cannot achieve a pre-
cision of 1 without having a recall of 0. The same can be
observed for high recall values, where a steep drop-off in
the precision values happen at recall values of ~ 0.82. Based
on this, we can highlight the advantages of the SVM and
LegalBERT models.

Furthermore, based on the trade-off between precision
and recall analyzed for the four models, we can conclude
that an appropriate model for classifying sentences as rules
is the SVM with TF-IDF method. Figure 10 shows that using
the SVM model, it is possible to obtain a recall just above
0.9, while still achieving a precision value of 0.5.

Using the output of this model as input to the operator
classification task ensures that almost all rules are caught,
while keeping the number of false positives as low as possi-

ble.
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Figure 10. ROC and Precision-Recall curves for the four best
performing methods.

7.2 Operator Classification Results

In this section, we present and analyze the findings from the
experiments conducted on the operator classification meth-
ods described in Section 6.4. We will briefly summarize the
methods again. In this experiment section, we investigate
the performance of multiple different classifiers on a multi-
label classification task. The classifiers are learned on three
different datasets; one containing only rules, and two with
additional sentences not representing rules. Lastly, we inves-
tigate the effect of decoupling the datasets with ‘REMEDIAL’
and augmenting the datasets with ‘SMOTE’.

First, we will present and investigate the results of the
classification method evaluated on the dataset containing
only rules.

Afterwards, we compare those results to those obtained on
similar models on the two other datasets which also contain
false positives or true negatives from the sentence classifica-
tion model.

Experiments on Rules. Figure 11 presents the F,-micro
scores for various classification models on the test set of
the ‘only rules’ dataset. Figures 11a, 11b, and 11c are the
problem-transformed classifiers, while Figure 11d are the
multilabel adapted classifiers.

From Figures 11a, 11b, and 11c it is clear that the primary
influence on the metrics is the chosen data augmentation
method, while the individual problem transformation meth-
ods usually obtain similar results. For the problem transfor-
mation classifiers in Figure 11a, KNN obtains the best results
on the test set, with the highest F, micro score of 0.71 when
no data augmentation is applied.

Figure 11d showing results on the adapted classification
methods, exhibits more variation between the different clas-
sifiers and the different augmentation methods. MLKNN and
MLTSVM consistently outperform MLARAM, with the best-
performing model being MLKNN with an F,-micro score of
0.71.
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Figure 11. Barplots of results from test set for operator classifiers. On the x-axis are different variations of data
augmentation methods tested, while the y-axis shows the highest obtained F,-macro score by the classifier. These

results are from the dataset ’only rules’.

Contrary to our expectations, we observed that the data
augmentation did not lead to better results, compared to do-
ing nothing at all. This is likely due to the dataset imbalance,
which can render the benefit of resampling non-existent [14].

Additionally, the results demonstrate that the simpler clas-
sifier, KNN, in both its problem-transformed and adapted
variants, outperforms all other evaluated classifiers on the
test set. Since KNN is the best-performing model, this in-
dicates that for this problem a direct distance computation
based on TF-IDF embeddings is sufficient to predict the test
classes. Although the MLTSVM model also used TF-IDF em-
beddings, it is not guaranteed that the clusters of classes are
easily linearly separable, as well as the limited training data
can make the decision boundaries hard to learn.

To investigate the results more in-depth, we present eval-
uation metrics on each operator in the ‘only rules’ dataset
in Table 7.

In Table 7 we have separated the operators in the test set
based on the frequency. Those with a frequency lower than
10 are greyed out, as we will not draw any conclusions based
on the metrics for those operators due to their low frequency.

For the high-frequency operators, the results show that the

model is better at classifying operators such as is_not_unique_set

and non_empty compared to exists and empty.

Furthermore, if we calculate the F,-micro and macro scores
on the high-frequency operators, we get 0.71 and 0.70 respec-
tively. The same calculation done on a model that naively
predicts everything as 1, thus getting a recall of 1 for every
operator, yields F;-micro and macro scores of 0.39 and 0.35
respectively.

Thus, we can conclude that classifying operators based
on the distance between nearest neighbors in the TF-IDF
embedding space is more accurate than a naive model.

The data presented so far is based on the ‘only rules’
dataset. We will compare these results with those from the
two other datasets that sampled non-rules from the sentence
classification models output.

Experiments including non-rules. Table 8 compares the
MLKNN model on the ’only rules” dataset with the two
best-performing models on the two other datasets. Here, we
can see that the ’only rules ~ dataset obtains the best results.
Across all three datasets, the best-performing models are the
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Table 7. Evaluation metrics on each operator from the dataset containing only rules as obtained by the MLKNN

classifier. The results are sorted according to the F,-scores.

Operator | Precision | Recall | F2-Score | Frequency
is_not_unique_set 0.91 0.83 0.85 12
non_empty 0.71 0.89 0.85 36

equal_to 0.65 0.71 0.70 24
not_equal_to 0.58 0.73 0.70 15
is_not_contained_by 0.53 0.75 0.69 12
exists 0.44 0.64 0.58 11

empty 0.47 0.44 0.44 16

Table 8. F,-macro and F,-micro scores of the best-performing classifier, embedding, decoupling, and augmentation

method for each of the three operator datasets.

Dataset ;/[n(;(lizl(; ding 23;:5&2%{011 Precision-micro | Recall-micro | F;-macro | F;-micro
Only rules MLKNN with TF-IDF | None and None | 0.62 0.73 0.70 0.71
Non-rules (FP) | MLKNN with TF-IDF | None and None | 0.60 0.62 0.66 0.67
Non-rules (TN) | MLKNN with TF-IDF | None and None | 0.58 0.69 0.65 0.67

KNN models with no decoupling and augmentation done,
which further supports the conclusions based on Figure 11
from the previous section.

The confusion matrices in Figure 12 show predictions on
the no-operator class by the MLKNN classifiers. This class
represents when no operators should be assigned to the sen-
tence for those sentences not representing rules. Figure 12a
shows results for the dataset containing true negatives from
the sentence classification model and Figure 12b for the
dataset containing false positives from the same model.

Comparing the two confusion matrices shows that the
dataset containing false positive sentences is harder to clas-
sify, indicated by the five instances in Figure 12b incorrectly
assigned the no-operator class.

The results for the datasets containing non-rules align
with our expectations described in the operator datasets
methodology Section 6.4.

To summarize the operator classification experiments, us-
ing an MLKNN classifier based on TF-IDF embeddings, we
can assign operators to sentences classified as rules by the
sentence classification model. Furthermore, the performance
of this MLKNN worsens when false positive sentences are
included in the test set. However, regardless of the underly-
ing dataset, we can conclude that the model more accurately
assigns operators compared to a naive approach.

Lastly, we can conclude that while the dataset is very im-
balanced, the efforts to incorporate ‘REMEDIAL’ and ‘SMOTE’
to provide a more balanced dataset did not yield better model
results than the original dataset. We attribute this to the fact
that even after performing the data augmentation methods,
the dataset remains too imbalanced for these methods to
have a positive effect on the model results.

TF-IDF Keyword Analysis. As observed in Table 8, the
optimal classification methodology for all operator datasets
is achieved using an MLKNN classifier with TF-IDF embed-
dings. Similarly, the best model to classify whether a sen-
tence represents a rule or not was also an SVM classifier
with TF-IDF embeddings.

Given that TF-IDF quantifies term relevance in the docu-
ments, the primary factor for our classification tasks appears
to be linked to specific terms occurring in the sentences.

To explore this hypothesis, we conduct an in-depth analy-
sis of the TF-IDF embeddings. We base our analysis on the
task of operator classification and try to identify keywords
for each operator. Subsequently, we use these keywords to
assess their impact on correct operator classifications and
to determine if misclassifications are correlated with these
keywords.

To identify the keywords, we follow these steps:

Page 16 of 26



no operator

1 105 0

False

18 4

Actual label

True

I I
False True
Predicted label

(a) Dataset with true negatives.

no operator

100 5

False

1 8 4

Actual label

True

I I
False True
Predicted label

(b) Dataset with false positives.

Figure 12. Confusion matrices on the no operator class for MLKNN classifiers.

1. Extract all embeddings where the label matches a pre-
dicted operator.

2. Each embedding includes a TF-IDF value for every
term in the sentence, which is used to calculate the
average TF-IDF value across embeddings.

3. Select the top k values, where k = 10 in our case.

4. These top k values represent the most significant key-
words, based on their importance in the entire corpus
and their frequency in the relevant sentences.

Table 9. Top ten keywords for the ‘empty’ operator and their
mean TF-IDF embedding values.

Term | Mean TF-IDF
null 0.16
populated 0.11
must 0.10
arm 0.09
comments 0.06
tedur 0.06
teenrl 0.06
armcd 0.06
unplanned 0.05
armnrs 0.05

Table 9 displays the top 10 keywords for the ‘empty’ op-
erator. Empirically investigating the rules that utilize the
‘empty’ operator shows that the keyword terms intuitively
make sense as to why they are relevant for the ‘empty’ oper-
ator because:

o null and populated are terms relevant when checking
for emptiness.

e must and comments are general terms that can be
expected to be found in rule sentences.

e The specific domain terms arm, tedur, teenrl, armcd
and armnrs, and unplanned are also often used in those
sentences.

Figure 13a shows the overlap of words among the key-
words for each operator. We can see that no operator has a
unique keyword set that distinguishes it from all other opera-

tors. The largest keyword overlap is between the is_not_unique_set

and the equal_to operators, with seven shared keywords.

Figure 13b shows a confusion matrix for all operators.
From this figure, we can see that rules utilizing the ‘empty’
operator, are often incorrectly classified with the ‘non empty’
operator. This can be explained by the overlapping keywords
for the two operators, as seen in Figure 13a.

Table 10. The number of wrongly predicted operators,
and the number of times the wrong operator’s key-
words overlap with the correct operator’s keywords.
The predictions are from the MLKNN classifier on the
‘only rules’ dataset.

#Misclassifications 68
#Misclassifications

. 51
with keyword overlap
#Misclassifications 17
w/o keyword overlap

More generally, Table 10 shows instances where an incor-
rectly predicted operator shares keywords with the actual
operator. Of the 68 observed misclassifications, 51 involve
cases where the misclassified operator shares keywords with
the correct one. This suggests that the presence of specific
keywords is a key factor in assigning operators to rules.
When misclassifications occur, they tend to arise for opera-
tors sharing overlapping keywords. For the KNN classifier,
misclassification thus occurs because rule sentences with
different operators but overlapping keywords are in close
proximity in the TF-IDF space. The nearest neighbor to base
the classification on, can in that case have a different operator
class.

These issues occur as TF-IDF embeddings are static em-
beddings, and do not learn any contextual information or
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Figure 13. (a) Heatmap showing the overlap in keywords between operators and po(b) a confusion matrix of all

operator classes.

deeper representation of rules. To learn these deeper contex-
tual embeddings, BERT models can be used. Due to limited
resources, we did not fine-tune the BERT models for this
task, and instead used the pre-trained versions. As shown in
the sentence classification experiment results in Section 7.1,
when we fine-tuned the BERT models, we also saw a signifi-
cant improvement in the model results.

In conclusion, based on these observations it is possible
to classify operators to rule sentences using TF-IDF embed-
dings, by effectively capturing the presence of keywords.
However, we also show that this method is limited for com-
plex rules sentence, for example, those where the keywords
are present in the wrong operator class or are simply missing
from the text.

7.3 Named Entity Recognition Results

Table 11. LegalBERT NER results for names, values, and
overall averaged.

Element | Precision | Recall | F2-Score | Frequency
B-value 0.60 0.75 0.71 8
B-name 0.65 0.70 0.69 57
Overall 0.64 0.71 0.69 65

Table 11 shows the performance of the LegalBERT model
on the named entity recognition task. The model achieves
the highest recall and thus F,-score on the value elements,
although there are only eight of these in the test set. For the
majority of elements (names), the model achieves an F,-score
of 0.69.

We can compare these results to a naive model. For the
naive model, we randomly guess a class using uniform prob-
abilities of 1/3. This is favorable compared to considering the
number of instances of each class, as we are only interested
in the two minority classes of names and values, and not the
O class. Such a naive model would obtain an F, score of 0.08,
indicating that the learned model is better at distinguishing
between elements and other tokens.

Y]
51 40 0 17
i)
g
31 2 6 0
= i)
O - 20 4 1386
B—nallme B—vélue CIJ

Predicted label

Figure 14. Confusion matrix on the names and values for
the LegalBERT NER model.
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The confusion matrix in Figure 14 displays the distribution
of predictions across the elements. Names are not confused
with values but are sometimes wrongly labeled as O. Con-
versely, the O label is most often wrongly labeled as a name.

We take a deeper look into the misclassifications of the O
label in Table 12.

Table 12. The wrongly predicted names and values for the
O label.

Token | True Label | Predicted Label
STRAIN O B-name
SBSTRAIN (0] B-name
-DECOD O B-name
-BODSYS (0] B-name
8 (0] B-value

- (0] B-name
SUPPAPFAMH O B-name
—-STAT (0] B-name
-EVAL O B-name
-EVALID (0] B-name
20 (0] B-value
-TESTCD (0] B-name
TESTCD O B-name
ELEMENT (0] B-name
-PRESP O B-name
—ORRES (0] B-name
TSPARM O B-name
-TESTCD (0] B-name
IETEST (0] B-name
40-character (0] B-value
200 (0] B-value
TSPARM (0] B-name
—-STAT O B-name
-OCCUR (0] B-name

Table 12 shows that the elements where the true label is O,
but has been classified as either a name or value empirically
seem to be correct. The elements in the table appear to be
domain column names or values, suggesting a data quality
issue where the correct label is ambiguous.

Lastly, we investigate if the model can generalize to un-
seen elements. Unseen elements are those that did not appear
in the training data, but is present in the test set. This is im-
portant because it is reasonable to assume that new versions
of rule documents may have changed or new column names
or values to check for. Essentially, any new rule would utilize
either a new name or value.

Table 13 presents performance numbers for different el-
ements in the test set, that were not seen during training.
Although the set of these elements is small, we can based on
the recall values conclude that it is possible for the model to
correctly classify some of these unseen elements.

Table 13. The frequency and recall of elements not in the
training set, but present in the test set.

Element | Test frequency | Recall

Name
-TRT 2 0.5
-TERM 2 1.0
TSPARM 2 1.0
-DETECT 1 0.0
-USCHFL 1 1.0
-CAT 1 1.0
-SCAT 1 1.0
-TEST 1 1.0
~IMPLBL 1 0.0
Value
TSPARMCD | 2] 00

The results presented for the NER model show that it is
possible to use and fine-tune a LLM such as LegalBERT to
identify elements within rule sentences. In our experiments,
the finetuned model performs best on the name elements,
which are also the most frequent elements.

In conclusion, the experiments presented in this Section 7,
show that by dividing the problem statement of our thesis
into smaller subproblems and solving these individually, we
can identify sentences as rules using an SVM model, assign
operators to those rules using an MLKNN classifier, and lastly,
extract relevant elements from the rules using a fine-tuned
LegalBERT classifier. The final step for automated consis-
tency checking is to use the combined output of the models
to serialize the data into CDISC conformance rules.

7.4 CDISC Conformance Rule Serialization

In this section, we investigate the possibility of serializing
the outputs of each model into CDISC conformance rules.

Following the JSON template from CORE (Code 1), the out-
put from the sentence classification model is serialized into
the ‘Cited_Guidance’ key. The assigned operators and ex-
tracted elements are similarly serialized into their respective
fields under the ‘Check’ key.

In this experiment, we focus on serializing simple rules
that only utilize a single operator.

Table 14 shows the number of rules with only a single op-
erator that were processed through all steps in the pipeline.
Overall for these 55 rules, 28 of them had correctly assigned
operators, 17 had correctly assigned names, and 26 had cor-
rectly assigned values. Combining all the outputs for each
rule, in total 9 of the 55 rules had all outputs correctly pre-
dicted. This also means that we can serialize 9 of the simple
rules into CDISC conformance rules.

The remaining 46 generated rules differ in the operators,
names, and values compared to the corresponding ground-
truth CDISC conformance rule. While these rules may not
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Table 14. Frequency of matching outputs from each step of
the pipeline. Matching means the output corresponds to the
ground-truth labels.

Frequency
Rules 55
Matching Operators | 28
Matching Names 17
Matching Values 26
Matching All 9

be as expected, their correctness would need to be evaluated
by rule experts.

To conclude this section, we have shown that the con-
structed pipeline for automated consistency checking can
generate simple CDISC conformance rules, although only a
small fraction are generated as expected.

8 Discussion and Future Direction

In this section, we discuss the insights gained from the exper-
iments performed on the three problems: sentence classifica-
tion, operator classification, and named entity recognition.
We also provide comments on possible future directions for
this study.

Embedding Methods

The embedding method that performed best in both the sen-
tence classification and operator classification experiments
was TF-IDF embeddings. We see both benefits and drawbacks
of this.

One benefit of the TF-IDF embeddings are their explain-
ability: one can analyze the embeddings and identify the
terms that impact the classifications the most. This is impor-
tant as transparency and traceability for the clinical study
domain are crucial factors in the approval process. Therefore,
the ability to understand the basis of predictions provides
an advantage.

For the drawbacks, it is important to highlight that TF-
IDF is static frequency-based embeddings, meaning that no
deeper meaning or pattern is learned. This can be a problem
since the ability to perform classifications is restricted to
certain words. Similarly, this superficial understanding of
words can also cause incorrect classifications, as we showed
in Section 7.2 where certain operators shared keywords.

Sentence Classification

In the sentence classification experiments, we found the best
model to be an SVM classifier based on TF-IDF embeddings,
outperforming other methods such as fine-tuned BERT mod-
els.

This was surprising to us, as we did expect BERT models to
perform better at this task given the success of LLMs in other
NLP scenarios. However, it is worth discussing whether our

experiments on the large language models were comprehen-
sive enough. Due to limited resources, we did not investigate
changes in the neural network architecture such as the num-
ber of layers, embedding sizes, and more. Of course, the
best-performing model being an SVM classifier also has its
benefits, as these algorithms are easier to train and are less
of a black-box compared to neural networks.

Lastly, we want to highlight that errors from the sentence
classification model propagate into the operator classifica-
tion and NER models in the pipeline. Therefore, the perfor-
mance of these models are highly dependent on the sentence
classification model output. For the next iteration of this
study, we therefore see significant value in improving this
first model.

Operator Classification

In the operator multilabel classification experiments, we
found the best embedding method to also be TF-IDF but
with an MLKNN classifier for this task.

As explained in Section 5.1, the classes for this problem
are very imbalanced, and thus we investigated augmenting
the dataset with ‘REMEDIAL’ [15] and ‘SMOTE’ [16].

Our results showed that the classifier’s performance on
the unmodified dataset was better, compared to augmenting
it with the above methods. This was surprising to us, but
after calculating the dataset imbalance metrics on the aug-
mented dataset, we saw that the dataset was still relatively
imbalanced. Thus, the steps we took to addresss the data
imbalance problem were not sufficient.

Instead of further investigating augmentation methods to
deal with imbalanced datasets, we would look into collecting
more rules using the CORE operators, and ideally, more
rules using the less frequent operators. This would help in
obtaining a more balanced dataset, and also solve the issue
where we had to remove the operators with a frequency of
less than three times.

Lastly, due to limited resources, we only had the time to in-
vestigate how pretrained versions of BERT performed on this
task. We would have liked to investigate how a fine-tuned
version of the BERT models with a multilabel classification
layer on top would have performed, similarly to the ones we
employed for the sentence classification task.

Named Entity Extraction

For the named entity extraction task, we opted to fine-tune
a LegalBERT model. This model was chosen due to its pre-
training on legal texts, its superior performance compared to
DistilBERT in the sentence classification experiments, and
its context-aware capabilities combined with pretrained lan-
guage model knowledge, which we deemed essential for this
problem.

This pretrained knowledge was evident in the experi-
ments, as the model was able to correctly extract elements
in the test set that were not present in the training set.
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However, a notable limitation of this approach is the model’s
ability to handle latent elements. As discussed in Section 5.2,
a significant portion of the elements referenced in the rules
are not explicitly mentioned in the text, making them un-
detectable by the LegalBERT model. The most obvious way
to mitigate this limitation is to improve the rule sentences
in the data, by explicitly mentioning the relevant elements.
However, this involves modifying the writing of the data
source which is beyond the scope of this project.

Rule Generation

Looking beyond the individual models used to solve each
subproblem and instead focusing on the pipeline, the prob-
lem involved converting unstructured natural language text
to serialized CDISC conformance rules in CORE format.

We have demonstrated how this can be achieved by seri-
alizing the output of each individual model into the JSON
format used by CORE. However, the rules we generated in
this project are simple rules, as they only use a single opera-
tor.

The JSON format used in this project was inspired by
CORE and does not fully capture every complexity in their
implementation. Therefore, we want to highlight some miss-
ing pieces in our pipeline that are needed to fully automate
the process of creating CDISC conformance rules.

First, in our pipeline, the sentence classification model
identifies rules, and the second and third models then assign
operators and extract elements for those rules. As specified,
the operator classification model is multilabel. In the case
of rules using multiple operators, the serialization of these
rules has an additional complexity, in that the extracted
elements need to be specified for the correct operator. This
is a complexity that our pipeline does not solve.

Second, each CDISC rule has an additional detail to the
way rules are checked. In their specification, rules are pos-
sibly nested using ‘any’ or ‘all’ checks. In practical terms,
these checks specify whether only a single consistency check
needs to return an error, or if all checks need to fail. These
any or all checks can even be nested to multiple degrees.
Handling ‘any’ and ‘all’ is also something that our pipeline
currently does not handle, and would require a fundamental
new solution to solve.

Data

In this paper, we specifically focused on data from CDISC
regarding SDTM. This restriction naturally influenced the
amount of data available to us.

Primarily, the amount of available SDTM rules in the JSON
rulesets from the CDISC API was limited. To mitigate this
issue, we included rules from the FDA. However, the total
number of rules is still relatively low, and the number of rules
for the later tasks of operator classification and named entity
recognition is even lower, as only the rules from CDISC had
these assigned. Limited data directly influences the machine

learning models we train during the experiments and the
patterns they can learn. Furthermore, we also saw the data
used for the operator classification task was very imbalanced.

Additionally, the quality of the labels has also been ques-
tionable. For example this was previously shown in Table 12,
where we highlighted the inconsistency of how elements are
encoded.

Improving the data quality of the ground truth data, fur-
ther enhancing our data preprocessing steps in extracting
data from the PDF, and finding more usable high-quality
data are all steps we believe will improve the results from
our models.

Ideally, all of these problems would not exist if a large and
reliable in-domain dataset for regulatory rules within phar-
maceutical documents existed. Such an in-domain dataset
could be the basis of scientific experiments within the topic
of ACC and beyond.

9 Conclusions

This paper aimed to answer the question of How can NLP
algorithm(s) be used to extract rules from pharmaceutical doc-
uments and serialize them into CDISC conformance rules that
can be used for automated consistency checks? by dividing it
into three distinct NLP subproblems.

To identify sentences as rules in the SDTMIG v3.4 docu-
ment, the experiment showed that an appropriate model for
this task is an SVM classifier based on TF-IDF embeddings.
This model demonstrated a good tradeoff between precision
and recall while favoring recall.

To assign operators to the identified rules, we concluded
that using TF-IDF embeddings and a KNN approach, proves
effective in this task. However, this method depends heavily
on specific keywords for the correct assignment of operators.
Additionally, we showed how this task becomes more chal-
lenging in a realistic setting where errors from the sentence
classification model propagate into this model.

For the third problem of extracting elements from the rule
sentences, we demonstrated the potential of fine-tuning a
large language model for extracting these elements, as it
significantly outperformed a naive model. Additionally, the
large language model correctly extracted previously unseen
elements in the test set.

Regarding the utilized models, this paper shows the poten-
tial of fine-tuning large language models. However, as their
performance did not surpass TF-IDF embeddings and sim-
pler classification methods, we concluded that either more
training data to learn better representations is needed, or a
more advanced and newer LLM than BERT is needed.

It was shown how the output of the models can be used
to generate simple CDISC conformance rules. However, to
generate the more complex rules additional complexity is
needed, which the presented pipeline does not handle in the
current iteration.
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In conclusion, this paper showed how the presented pipeline
can be used to obtain simple serialized CDISC conformance
rules using NLP algorithms. This approach provides a struc-
tured and automated method for rule extraction, which can
enhance the efficiency of consistency checks in the pharma-
ceutical domain.

In practice, the pipeline facilitate the ability to review new
regulatory documents and identify all sentences representing
a rule. For these rules, the pipeline can suggest which CORE
operator to use or indicate if none of the current operators
fit. Lastly, the pipeline can go through the rules and identify
the relevant elements mentioned in the rule sentence, such
as columns or values.

To work on this problem further in the future and expand
upon the presented ideas, we recommended constructing an
in-domain dataset to provide the basis of additional and more
consistent examples. This would further improve the accu-
racy and robustness of the rule extraction and serialization
process.
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A Appendices
A.1 Glossary

Some definitions originate from [23].

Term

Definition

ADaM

Analysis Data Model. When clinical trial data flows to biostatis-
tics ADaM determines how this data should be processed and
structured.

AE

Adverse Effect. An adverse effect is an unintended and harmful
reaction to a medical intervention ranging from mild to severe
and potentially temporary or permanent. These effects are cru-
cial for assessing patient safety and treatment efficacy.

CDISC

Clinical Data Interchange Standards Consortium. An interna-
tional non-profit organization that develops standardized data
formats for clinical research, enhancing the quality and efficiency
of trials and regulatory submissions. CDISC standards are es-
sential for data sharing and are often required by regulatory
agencies like the FDA and EMA.

eCRF

Electronic Case Report Form.

Efficacy

Refers to the ability of a drug or treatment to produce a desired
effect under controlled conditions.

Pharmacodynamics

Pharmacodynamics deals with the effects of drugs on the body
and the mechanisms of their action.

Pharmacokinetics

The study of how substances administered to living things be-
have. This can include determining how much of the treatment
gets into the bloodstream if it gets accumulated anywhere, or
determining half-life points.

SDTM

Study Data Tabulation Model. When clinical trial data flows to
data management, SDTM determines how this data should be
processed and structured.

SDTMIG

Study Data Tabulation Model Implementation Guide. A type of
document with in-depth explanations, guides and examples of
how SDTM should be implemented.

Toxicology

Focuses on studying the adverse effects of chemicals, including
drugs, on living organisms to ensure safety and guide dosage
levels.

Traceability

Being able to find the source of the data point at any stage of
the data flow

Transparency

Comply with data format standards and processes, and document
each data processing step
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A.2 Data Examples

Figure 15 shows examples of eCRF, SDTM, and ADaM from
CDISC. For the ADaM example, besides the data displayed,
it also consists of dataset metadata, variable metadata, and a
parameter value list.

Form AE - Adverse Events

AE - Adverse Events

Were any adverse events experienced? OnNo Oves

* What is the adverse event term? | |

* What is the adverse event start date? Set Date | 01 Jan 2000

Is the adverse event ongoing (as of [the OnNo Oes

study-specific time point or period])?

What was the adverse event end date? Set Date | 01 Jan 2000

What is the severity of the adverse Omild OModerate Osevere
event?

(a) Example of an Electronic Case Report Form for adverse

events [7].

Row | STUDYID | DOMAIN | USUBJID | LBSEQ | LBREFID | LBSPID | LBTESTCD LBTEST LBC,
1 XQJ LB XQJO5 1 A9990 1 PROT Protein URINA
2 XQJ LB XQJo5 2 A9991 2 PROT Protein URINA
3 XQJ LB XQJo5 3 A9991 3 CREAT Creatinine URINA
4 XQJ LB XQJOS 4 A9991 4 PROTCRT Protein/Creatinine | URINA
5 XQJ LB XQJo6 1 A8880 1 PROT Protein URINA

(b) Example of an SDTM database on urine protein patients
[11].

G]
PARAM | PARA AVIsi | AV | BA | - o
SPDEVID | TRTOTP | PARAMN | M |AVISITN || e ABLFL
G
Average
Glucose
(mg/dL)
24
Hour
CGM-001] pruG A 1 AVGGL24H Po“ 0 |Baseline| 1137|1137 . v |o70cT2016:1
rior to
the End
of the
Analysis
Interval

(c) Example of an ADaM database consisting of aggregated data
on average glucose measurements [6].

Figure 15. Examples of the different formats used in the
data flow
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A.3 Model Hyperparameters

Table 15. All hyperparameters that are tuned during
an Optuna trial for each classifier. Range specifies what
values Optuna can sample from, either a categorical
range or a numerical range.

Classifier | Hyperparamter | Range Note
Kernel Linear, Polynomial. Gaussian (RBF) or Sigmoid
Controls strength of squared L2-penalty.
SVM ¢ [1e-5, 1e1] Sampled from log distribution.
1 1 .
Y #features-X.var() OT Zfeatures Kernel coefficient.
max_depth [2, 100] Maximum depth of the trees.

max_features

V#features or log, (#features)

Maximum features to consider when
looking for a split.

Minimum number of samples required

min_leaf [1, 4] for a leaf
RF i s 2, 10] Minin}um number of samples required
to split a node.
n_estimators [50, 500] Number of trees in the ensemble.
n_neighbors [1, 10] Number of nearest neighbors to consider
Weights uniform or distance How to weight points in the. neighborhood
KNN in reference to the query point.
s [0.1, 2] Smoothing parameter used in MLKNN
n_estimators [50, 500] Number of boosting rounds
max_depth [2, 50] Maximum tree depth
. Evaluate model using binary
eval_metric error . .
XGB classification error rate
The learning objective, in this
Objective binary:logistic case logistic regression
for binary classification.
Optimizer AdamW, RMSprop or SGD Different optimization algorithms
Loy [1e-5, Te-1] Parameter used in the optimization
algorithms.
NN ~ 32 was the maximum
Batch size 4, 6,8, 16, or 32 }Isrhf;;;?];;gliﬁszﬂoand ~8
limitations in memory on our machine.
Vigilance [0.80, 0.99] I;esPonsib!e 'for the creation of prototypes
uring training of the network
MLARAM Threshold [0.001, 0.05] Contrhols how many prototypes are
used in the prediction
Tradeoff between the loss terms
e K [0.03, 8] in the model
sor_omega [0.1, 2] Smoothing parameter
MLTSVM | Threshold [0.0000001, 0.005] Threshold for label predictions
Lambda [0.1, 2] Regularization parameter
max_iterations [100, 1000] Maximum number of iterations
. . Number of layers and
hidden_layer_sizes | (50), (100), (50, 50), (100, 50) their sizes
Activation identity, logistic, tanh or relu
Solver LBFGS, SGDor AdaM
MLP a [1e-5, 1e-1] Sampled from log distribution
Batch size [4, 128]
Learning rate constant, invscaling or adaptive
max_iter 1000
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