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Abstract
This paper addresses multi-modal sentiment analysis
using text and image pairs, aiming to develop methods
for efficiently capturing a shared compact latent space
to improve sentiment classification. We propose two
methods: An Autoencoder (AE)-based method and
an Attention-based (AB) method, designed to inte-
grate multi-modal data. Experiments on the MVSA
and Meme datasets show that our methods achieve
performance comparable to state-of-the-art models
like VisualBERT and CLIP, but all models struggled
with overfitting, likely due to noisy, low-quality data.
This highlights the need for higher-quality datasets
and advanced noise reduction techniques. Future
work will explore hybrid approaches combining AE
and AB methods with sophisticated fusion strategies
to enhance multi-modal representations.

1 Introduction
In recent years, numerous fields have seen a rapid increase in
recorded data, encompassing a wide range of different modal-
ities for a given task (Sui et al., 2023). However, typically
machine learning models are developed with a single modal-
ity, which leaves additional data unused. Consequently, it
would be beneficial to have a model that can utilize multiple
modalities to capture a more complete understanding of the
data and the relationships between the modalities (Chen and
Luo, 2019).

This is relevant in several domains, e.g. in the medical con-
text, where patient data consists of MRIs, X-rays (images),
bloodwork, ECGs (time series) and clinical notes (text). Us-
ing a single modality for a patient only provides limited infor-
mation about their state. As a result, models utilizing multiple
modalities have been applied to get a better understanding of
the patient, where it has been used to predict breast cancer
(Liu et al., 2022) and more general disease diagnosis and
prognosis. It typically performed better than the uni-modal
variant, however, introducing multiple modalities also came
with a cost of bias and noise (Cui et al., 2023). Data has
inherent noise, and thus if an additional modality only con-
tains redundant information then adding the new modality to
the pipeline will introduce noise which could lead to a worse
performance.

Another critical domain is Sentiment Analysis (SA) which
this paper will focus on due to data availability. The goal
of SA is to predict the emotional tone of the data, e.g. the

sentiment a user feels towards a product, which can be a user
review of the product (Gandhi et al., 2023). In addition, it
can be a social media post containing images, text, video and
sound. In this use case, it is important to use all the modalities
in combination to gauge the sentiment, since a hateful post
could be written with normal text but a sexist image (Chen
and Luo, 2019).

In this paper, we study the task of multi-modal sentiment
analysis with text and image pairs due to their prevalence.
However, the proposed methods can be applied to 𝑁 modal-
ities with any type of data. Despite the potential advantages,
effectively integrating multi-modalities remains a challenging
problem, where the uni-modal counterpart often has superior
performance. The primary goal of this project is to develop
efficient methods that capture a compact and representative
latent space for multi-modal data which can improve the per-
formance of sentiment analysis.

These challenges are addressed by proposing two methods.
A method that utilizes Autoencoders (AEs) (Said et al., 2017)
and an Attention-based method (Yang et al., 2021) (Yu et
al., 2020). They are designed to be efficient and to generate
compact latent representations that contain information from
all modalities.

We validate the methods on two multi-modal datasets: a
Tweet dataset MVSA (Niu et al., 2016) and a Meme dataset
(Javaid, 2024). Both data consist of image-text pairs with
a sentiment. The methods are compared against uni-modal
approaches and state-of-the-art image-text models such as Vi-
sualBert (Li et al., 2019) and CLIP (Radford et al., 2021),
which demonstrates that proposed methods can result in com-
petitive performance while being less complex.

By addressing the challenges of multi-modal data integra-
tion, the aim is to provide methods that can be used as a
foundation for future research and application in the domain
of multi-modal sentiment analysis. Moreover, the aim is to
identify limitations and reasons for the lack of multi-modal
methods. Which we hope will uncover insights that can aid the
research to develop more suitable multi-modal approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews multi-modality learning representation meth-
ods. Section 3 will introduce the proposed methods. Section
4 will describe datasets and the experimental setup. Section
5 will present the results from the experiments and analyze
them. Lastly, Section 6 will conclude and suggest directions
for future work.



2 Related Work
Multi-modal classification
Multi-modality classification focuses on integrating multiple
modalities into a shared discriminatory space. The difficulty
is to identify redundant and complementary information (Xu
et al., 2019). The general framework can be seen in Figure
1, where we consider 𝑁 modalities (e.g. images, text...). The
datasets can be defined as:

D = {(𝑚1,1, 𝑚1,2, . . . , 𝑚1,𝑁 , 𝑦1),
(𝑚2,1, 𝑚2,2, . . . , 𝑚2,𝑁 , 𝑦2),
. . . ,

(𝑚𝑀,1, 𝑚𝑀,2, . . . , 𝑚𝑀,𝑁 , 𝑦𝑀 )}

(1)

where we have 𝑀 data points and 𝑚𝑀,𝑁 denotes the 𝑀th
data point of modality 𝑁 . In this definition, every data point
contains all modalities which is not always the case. Each
modality has its own model that is used to extract salient fea-
tures. This model consists of an encoder, and an optional
classifier, which is the difference between early and late fu-
sion (sometimes the latter also appends the predicted class
probabilities) (IV et al., 2021). The individual salient features
are defined as 𝜙𝑚1 , 𝜙𝑚2 , . . . , 𝜙𝑚𝑁

, hereafter a fusion network
combines the features into a shared space

𝑧 = {𝜙𝑚1 ⊕ 𝜙𝑚2 ⊕ · · · ⊕ 𝜙𝑚𝑁
} (2)

where ⊕ can be any operator that joins the latent repre-
sentations. The most common choice is concatenation and
addition, however, it can be arbitrarily complex. Given
two vectors a = [𝑎1, 𝑎2, . . . , 𝑎𝑛] and b = [𝑏1, 𝑏2, . . . , 𝑏𝑚].
The concatenation of a and b, denoted a ⊕ b, is given by
c = [𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑚] where c is the concate-
nated vector. The addition operator is defined as traditional
vector addition, which requires the vectors to be the same size
(IV et al., 2021)

The entire pipeline can be split into the five following stages:
Preprocessing, Feature Extraction, Fusion, Primary Learning
and Classification, where each stage is an important part that
plays a role in the final performance. Preprocessing should
be considered for each modality and be performed with do-
main expertise. The feature extraction can be any model e.g.
traditional approaches like Random Forests and dimension-
ality reduction, however, it is typically done by Deep Neu-
ral Networks (DNNs) such as Convolutional Neural Networks
(CNNS) for images, and Recurrent Neural Networks (RNNs)
for textual and time series data (IV et al., 2021). As men-
tioned, fusion combines the extracted features, where three
strategies exist: early, late and cross-modal. Early combines
the features before without a learning network, whereas late
fusion has an individual classifier for its respective salient fea-
tures before it is fused. Lastly, cross-modal has its individual
learning model distribute information to the other learning
networks (IV et al., 2021).

Uni-modal Sentiment Analysis
Standard methods for text SA typically embed the text with
bag-of-word or TD-IDF, which is fed to a standard classifier

Figure 1: The general framework for multi-modality classifi-
cation with 𝑁 modalities. It shows how each modality has its
own feature extractor that is fused into 𝑧 which is the input to
a classifier.

such as Support-Vector-Machines (SVMs), Naive Bayes or an
MLP. More advanced deep learning (DL) networks have better
performance but require more data (Nandwani and Verma,
2021).

One such prominent DL method is BERT (Bidirectional
Encoder Representations from Transformers), which achieves
state-of-the-art performance in text classification. It uses
a transformer-based architecture in a bidirectional manner,
which captures the context of the text from both directions.
This results in a context-rich text embedding (Devlin et al.,
2018).

Image SA is typically performed with CNNs due to them
easily learning the hierarchical features of raw images. A
famous architecture that has achieved state-of-the-art perfor-
mance and is often used as a baseline is the ResNet (He et al.,
2015)

Multi-modal Sentiment Analysis
A method proposed by (Zhang et al., 2020) uses a Denois-
ing AE (DAE) for the text as they argue text is very noisy.
To extract image features they use a VAE-ATT, which is a
Variational AE that uses attention. Hereafter, they propose a
novel fusion method known as CFF-ATT, which calculates an
attention matrix 𝑀 that captures the correlation between the
text embedding 𝐸 and the image embedding 𝐺. This matrix
𝑀 is then used to compute the attention-weighted features of
the image which is denoted by 𝐽. Hereafter, 𝐸 and 𝐽 are con-
catenated and go through a fully connected layer to produce
the final fused output (Zhang et al., 2020).

VisualBERT is another method for integrating text and im-
ages. It is mostly used for image captioning, where it locates
regions of the images that are associated with words, however,
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it can also be applied to SA. The text input consists of the Bert
text embedding and a pre-computed image embedding such
as ResNet. These in combination are treated as sequences
where it uses attention to learn how the image is contextually
related to the text. This results in an information-rich shared
representation that can be used for a classifier (Li et al., 2019).

CLIP (Contrastive Language-Image Pre-training) is a state-
of-the-art image-text classifier that is designed to learn a joined
representation. It revolutionized this by having a contrastive
learning goal, where it takes a batch of image-text pairs and
learns to minimize the distance between the correct pairs and
maximize the distance for incorrect pairings. CLIP is pre-
trained on a large and diverse dataset that allows it to easily be
fine-tuned to various downstream tasks such as SA (Radford
et al., 2021).

In summary, there exist various methods for multi-modal
SA that can generate a powerful embedding, however, it re-
mains a challenge to generate a representative embedding ef-
ficiently.

3 Methodology
Before dwelling into the proposed method architectures, we
will first investigate the overall pipeline which is shown in
Figure 2. The first grey box shows how a multi-modal dataset
consisting of text, images and labels is split into training,
test and validation (70-20-10). The individual modalities are
preprocessed accordingly. The next box model architecture,
where the text is embedded by a Bert-model followed by a
text-encoder. The image is only embedded by an image cnn-
encoder (however, one could also use a ResNet for an initial
embedding). The encoded modalities are fused and fed to a
classifier. This model is fit on the training set while validating
on a separate set to ensure that it is not overfitting. The trained
model is lastly evaluated on the unseen test set. Hereafter, we
will explore the individual steps and the proposed methods.

Data preprocessing
The preprocessing for the different modalities remains impor-
tant and is performed in the following manner. The text is
cleaned by:

1. Converting to lowercase to ensure uniformity

2. Convert URLs to a unique placeholder

3. Replace user mentions (e.g @username is converted to
< 𝑈𝑆𝐸𝑅 >)

4. Expand hashtags (converting #MachineLearning into
machine learning).

The desired goal is to have a contextual text embedding,
wherein there exist various strategies such as GloVe or BERT.
We choose to convert the text into a sequence of tokens us-
ing a BERT-tokenizer. The sequence of tokens is fed to a
pre-trained BERT model. It outputs a set of contextualized
embedding for each token in the input sequence. Hereafter,
we use [CLS] token embedding, which is used for aggregation
of information from the whole sequence, as this results in a
contextual full-sentence embedding.

Figure 2: The overall architecture is illustrated through two
boxes. The first box illustrates how the data is split and prepro-
cessed. The second box shows the model architecture which
is fitted on the training set. Lastly, the trained model is evalu-
ated on the test set.

The image is processed in a simple manner, where it is
resized to a predefined dimension (3, 224, 224) and each pixel
value is normalized. Additionally, one could use a pre-trained
ResNet to get a high-quality image embedding. This ResNet
embedding was only used for VisualBert and thus was not
included in the pipeline shown previously.

Autoencoder-Based Multi-Modal Learning
In this method, the goal is to use AEs to integrate multiple
modalities into a shared latent representation, that is compact,
discriminatory of representative of all modalities. The main
idea is to have modality-specific AEs that learn to produce
compact features. The individual features are fused into a
shared representation 𝑧, where the separate decoders have to
use the fused features to reconstruct their original representa-
tion. Since 𝑧 is constrained to be small, it ensures that rep-
resentation is compact while containing information from all
modalities. This method has a dual-objective training strategy,
where it optimizes the reconstruction loss and classification
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loss.

Figure 3: The multi-modal Autoencoder architecture shows
the overall structure of the network. Each modality is em-
bedded into a latent representation that is fused into a shared
representation, hereafter each modality has its own decoder
that uses the shared representation to reconstruct the original
input. The fused input is also used by a classifier

The overall architecture can be seen in Figure 3 which
illustrates the aforementioned strategy. Each modality 𝑖 (e.g.
text, images...) has its own encoder 𝐸𝑖 . We can define the
reconstruction loss for the 𝑗 th data point for the 𝑖th modality
accordingly:

𝑀𝑆𝐸𝑖 = (𝑥 𝑗 − 𝑥 𝑗 )2 = (𝐸𝑖 (𝑚𝑖, 𝑗 ) − 𝐺 (𝑧 𝑗 ))2 (3)

which is the Mean Squared Error (MSE) between the original
input 𝑥 and the reconstruction 𝑥, and 𝑧 is the fused repre-
sentation. Moreover, the MSE for the 𝑗 th data point for all
modalities is:

𝑀𝑆𝐸 =

𝑁∑︁
𝑖=1

(𝑥𝑖, 𝑗 − 𝑥𝑖, 𝑗 )2 (4)

The AE is crafted to handle the specific type of data (e.g.
CNN for images). The encoder maps the original modality
input to a latent representation 𝑥 of size 𝐷𝜙 , which is defined
to be the same for each modality to ease the fusions step.

Furthermore, it has to be mentioned that the AEs can be
arbitrarily complex (VAEs, DAEs...), however, we kept them
simple for efficiency. At first, individual classifiers for the
latent representation of modality 𝑖 were trained before the

fusion step, meaning that (𝑁 + 1) classifiers were trained
accordingly. 𝐶𝑖 is the 𝑖th classifier for modality 𝑖, which
was trained to minimize the cross-entropy between L𝐶𝑖

=

CE(𝐶𝑖 (𝑥), 𝑦) = CE( 𝑦̂, 𝑦), but training these classifiers before
the fusion step did not result in accuracy gain and was thus
excluded.

We implement two fusion methods, namely, concat and
addition. The first method concatenates each modality’s latent
representation and is the input to a linear layer. This can be
described as:

ℎ𝑐𝑜𝑛𝑐𝑎𝑡 = [𝜙𝑚1 ⊕ . . . ⊕ 𝜙𝑚𝑁
]

and
𝑧 = 𝑊ℎ𝑐𝑜𝑛𝑐𝑎𝑡 + 𝑏

The second fusion method is the addition, which works as
follows:

ℎ𝑎𝑑𝑑 = [𝜙𝑚1 + . . . + 𝜙𝑚𝑁
]

and
𝑧 = 𝑊ℎ𝑎𝑑𝑑 + 𝑏

This ensures that the fused representation 𝑧 has the same latent
size as the individual latent modalities and can be decoded.

The training procedure uses the dual-objective (reconstruc-
tion and classification), where the overall loss can be defined
as

L =

𝑁∑︁
𝑖=1

𝜆𝑖𝑀𝑆𝐸𝑖 + 𝜆0𝐶𝐸 ( 𝑦̂, 𝑦) (5)

where 𝜆 = [𝜆0, 𝜆1, . . . , 𝜆𝑁 ] are hyperparameters that can be
used to weigh the importance of each reconstruction loss
for the modality and the classification loss. The classifi-
cation loss is the typical cross-entropy defined as 𝐶𝐸 =

− 1
𝑚

∑𝑚
𝑗=1 𝑦 𝑗 log( 𝑦̂ 𝑗 ), where 𝑦 is the ground-truth label and

𝑦̂ is the predicted label. This loss is optimized using the
Adam optimizer.

Attention-Based Multi-Modal Learning
The goal of this method is to use attention to learn inter-modal
relationships, which should create a latent space that focuses
on the most essential parts of each modality in the context of
the other modalities.

Similarly, the network architecture has a unique encoder
for each type of modality that learns compact features of size
𝐷𝜙 . The latent space is forced to be the same size for each
modality in order to easily apply attention to find the inter-
modal relationships. The goal is to learn compact features for
each modality while learning the relationships and having a
discriminatory latent space.

This method will be introduced using two modalities and
afterwards extended to 𝑁 modalities. The full architecture
with two modalities is illustrated in Figure 4. The individual
encoders learn the compact features for each modality, and the
attention between the individual latent features is calculated,
where we learn the attention weights. This can be described
mathematically as follows.

Given two modalities 𝑋1 and 𝑋2 with their encoded repre-
sentations ℎ1 ∈ R𝐷𝜙 and ℎ2 ∈ R𝐷𝜙 , where 𝐷𝜙 is the size of
the latent space:
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Figure 4: The architecture of the multi-modal attention-based
method that is shown for two modalities, where it has a net-
work that learns how modality 1 is related to modality 2, and
also in the opposite direction. The attended features are after-
wards fused and used for a classification network.

• Compute the attention score:

𝑎1,2 = softmax

(
ℎ1𝑊𝑄 (ℎ2𝑊𝐾 )𝑇√︁

𝐷𝜙

)
where 𝑊𝑄 and 𝑊𝐾 are learnable weight matrices.

• Apply the attention score to get the attended feature:

ℎ1,2 = 𝑎1,2 ℎ2

The attended feature ℎ1,2 captures the relevant informa-
tion from ℎ2 in the context of ℎ1.

Similarly, ℎ2,1 is calculated which is afterwards fused into
𝑧 = fusion(ℎ1,2, ℎ2,1). This method implements the same
fusion methods as defined in the prior network. The fused
representation is likewise the input to a classification network
where the latent representation before the classification can
be used as the common compact representation.

The objective of this method is to optimize the classification
loss (cross-entropy), which is defined as:

L = 𝐶𝐸 ( 𝑦̂, 𝑦) (6)

which is identical to the classification loss in the previous
method.

This method can be extended given 𝑁 modalities with
their encoded representation ℎ𝑖 ∈ R𝐷𝜙 for 𝑖 = 1, 2, . . . , 𝑁
we would:

1. Compute the pairwise attention scores for each pair of
modalities (𝑖, 𝑗)

𝑎𝑖, 𝑗 = softmax

(
ℎ𝑖𝑊𝑄 (ℎ 𝑗𝑊𝐾 )𝑇√︁

𝐷𝜙

)
2. Compute the attended features for each pair

ℎ𝑖, 𝑗 = 𝑎𝑖, 𝑗 ℎ 𝑗

3. Fuse the attended features

𝑧 = fusion(ℎ1,2, ℎ1,3, . . . , ℎ𝑖, 𝑗 , . . . , ℎ𝑁−1,𝑁 )

however, this would require somewhat expensive calculations
and thus the first method might be more useful for a larger
number of modalities.

4 Experiments
Implementation Details
The models were implemented using PyTorch with the follow-
ing hardware and software. It was trained on a low-performing
GPU: NVIDIA GeForce GTX 980. With the following soft-
ware: Operating System: Windows 10, PyTorch 2.2.2+cu121
and Python 3.11

Experimental Setup
1. Hyperparemeters:

• Batch size: [32, 64]
• Learning Rate: 𝜂 : 0.001
• Epochs: 5 to 15 (early stopping if model overfits)
• Latent encoding size 𝐷𝜙

• 𝜆 parameters (AE method)

2. Training Procedure:

• Optimized using the Adam optimizer
• Dataset split into training, validation and test set

(70-10-20 split)
• Early stopping to prevent overfitting

3. Evaluation Metrics:

• Accuracy, precision, recall and F1-score to evaluate
the performance

• Since the datasets have multiple classes, we evaluate
the macro-metrics (the mean across classes), which
can be calculated as follows:

Macro-Metric =
Metric1 + . . . , +Metric𝑁

𝑁
(7)

where 𝑁 is the number of classes in the dataset,
and the Metric is the evaluation metrics mentioned
above.
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Datasets
MVSA: Sentiment Analysis on Multi-view Social Data (Niu
et al., 2016). This consists of around 20.000 samples of image-
text pairs with a sentiment. Each sample is a tweet (social
media post) which was negative, neutral or positive. It was
annotated by three reviewers. The most frequent sentiment
was used as the overall sentiment. The following IDs were
removed [′3151′,′ 5995′,′ 3910′] due to corrupted files.

The Meme dataset (Javaid, 2024). The dataset consists
of 6992 samples of memes. Each meme contains an image
and the text written on the meme (OCR). E It contains 6992
pairs of images and text of a meme (an image with text that
has a humorous or sarcastic element). Each meme is very-
negative, negative, neutral, positive or very-positive. This
dataset only had a single annotated and was thus used for the
overall sentiment. Only one sample was removed, which was
ID: 5119 due to the image being corrupted.

Baseline Models
The following models are used as baseline:

• Uni-Text: Consists of the CLS BERT embedding which
is fed to a classifier

• Uni-Image: is a CNN for image classification of simi-
lar complexity to the CNN encoder in the multi-modal
methods

• ResNet: a more complex state-of-the-art image classifi-
cation network (He et al., 2015)

• CLIP: learns joint text-image representations through
contrastive learning, which is fine-tuned to our datasets
(Radford et al., 2021)

• VisualBERT: uses transformers to associate the visual
ResNet embedding with text tokens, which is also fine-
tuned to our datasets (Li et al., 2019).

5 Results
The following tables are used to compare the proposed
methodologies with the baseline models. There are two ta-
bles for each dataset and the difference is the batch size. Due
to model-complexity ResNet, CLIP and VisualBert were only
evaluated on batch-size 4 − 8. AE-CAT(32) means that it is
an Autoencoder-based method, that uses concatenation for fu-
sion, and the latent size is 32. AB refers to the attention-based
method.

Table 1 and Table 2 show the performance metrics of AE
method for the MVSA dataset. At first glance, it seems most
models perform similarly and no real gain is achieved by in-
tegrating multiple modalities. By viewing 𝐷 as the entire
domain of all data points, and 𝐶text and set of data points
correctly identified by the uni-text, and 𝐶image being the cor-
rectly identified by the image-classifier. Thus the maximum
theoretical accuracy can be defined as:

|𝐶text ∪ 𝐶image |
|𝐷 |

Model Accuracy Recall Precision F1 Score
Uni-Text 0.6432 0.4797 0.5524 0.4996
Uni-Image 0.5917 0.3481 0.5042 0.3196
ResNet 0.5978 0.401 0.4269 0.3829
AE-Cat(32) 0.6361 0.4365 0.5340 0.4309
AE-Cat(64) 0.6340 0.4774 0.5244 0.4875
AE-Cat(128) 0.6366 0.3917 0.6166 0.3801
AE-Add(32) 0.6136 0.3382 0.6549 0.2647
AE-Add(64) 0.6121 0.4378 0.5057 0.4507
AE-Add(128) 0.6251 0.4131 0.4939 0.4151
AB-CAT(32) 0.6131 0.4287 0.5177 0.4433
AB-CAT(64) 0.6310 0.3940 0.5224 0.3860
AB-CAT(128) 0.6220 0.3618 0.5566 0.3213
AB-Add(32) 0.6338 0.4732 0.5430 0.4918
AB-Add(64) 0.6358 0.3762 0.3832 0.3489
AB-Add(128) 0.6327 0.3706 0.3822 0.3395
CLIP 0.6399 0.5238 0.5270 0.5162
Visual-Bert 0.6126 0.3333 0.2042 0.2533

Table 1: Performance comparison of models with the MVSA
dataset with batch size 32. The best value is in bold and
second best is underlined.

Model Accuracy Recall Precision F1 Score
Uni-Text 0.6470 0.4549 0.6272 0.4717
Uni-Image 0.5715 0.3709 0.4253 0.3703
ResNet 0.5978 0.401 0.4269 0.3829
AE-Cat(32) 0.6468 0.4604 0.5505 0.4683
AE-Cat(64) 0.6202 0.4498 0.5140 0.4654
AE-Cat(128) 0.6157 0.4554 0.5292 0.4734
AE-Add(32) 0.6297 0.4544 0.5420 0.4733
AE-Add(64) 0.6368 0.4481 0.5269 0.4630
AE-Add(128) 0.6412 0.4307 0.5492 0.4379
AB-Cat(32) 0.6378 0.5195 0.5245 0.5140
AB-Cat(64) 0.6386 0.4773 0.5243 0.4736
AB-Cat(128) 0.6338 0.3976 0.5366 0.3884
AB-Add(32) 0.6407 0.4939 0.5301 0.4782
AB-Add(64) 0.6409 0.4452 0.5634 0.4589
AB-Add(128) 0.6378 0.4069 0.5735 0.4046
CLIP 0.6399 0.5238 0.5270 0.5162
Visual-Bert 0.6126 0.3333 0.2042 0.2533

Table 2: Performance comparison of models with the MVSA
dataset with batch size 64. The best value is in bold and
second best is underlined.

and it showed that by integrating both modalities we could
potentially get an accuracy of 73.65% and that the multi-modal
methods only capture around 81% of the theoretical accuracy.
However, it was seen that the proposed multi-modal methods
correctly predicted around 150 samples (around 4% of the test
set) that neither uni-modal could predict, which could indicate
that the shared latent representation results in new information
that was not present in the uni-modal perspective.

From these performance metrics, the overall best-
performing models were uni-text and CLIP, but the highest
macro-precision was achieved by the proposed AE-ADD(32)
method. VisualBERT resulted in surprisingly low scores and
only predicted a single class (the majority class, which is
positive tweets) for the entire dataset, which resulted in poor
scores due to the ill-defined macro precision, recall and F1-
score. This is problematic due to the interest lies in identi-
fying hateful/negative tweets, and as a result, I tried random
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oversampling methods and a class-weighted loss function to
penalize misclassifications of the minority classes. This re-
sulted in better classification of the negative tweets but overall
worse metrics. One should consider the desired goal and ac-
cordingly choose a strategy, e.g. by using a different sampling
method or a class-weighted loss function.

Model Accuracy Recall Precision F1 Score
Uni-Text 0.4496 0.2026 0.1734 0.1324
Uni-Image 0.4356 0.2000 0.0871 0.1214
ResNet 0.4574 0.1997 0.2124 0.1321
AE-Cat(32) 0.4378 0.2015 0.2473 0.1251
AE-Cat(64) 0.4235 0.1959 0.1220 0.1284
AE-Cat(128) 0.4263 0.2037 0.1559 0.1567
AE-Add(32) 0.4328 0.2006 0.1499 0.1329
AE-Add(64) 0.4399 0.2033 0.2303 0.1303
AE-Add(128) 0.4328 0.1989 0.1269 0.1226
AB-Cat(32) 0.4356 0.2000 0.0871 0.1214
AB-Cat(64) 0.4356 0.2000 0.0871 0.1214
AB-Cat(128) 0.4356 0.2000 0.0871 0.1214
AB-Add(32) 0.4356 0.2000 0.0871 0.1214
AB-Add(64) 0.4356 0.2000 0.0871 0.1214
AB-Add(128) 0.4356 0.2000 0.0871 0.1214
CLIP 0.4027 0.2013 0.1508 0.1693
Visual-Bert 0.4356 0.2000 0.0871 0.1214

Table 3: Performance comparison of models with the Meme
dataset with batch size 32

Model Accuracy Recall Precision F1 Score
Uni-Text 0.4346 0.2104 0.2016 0.1698
Uni-Image 0.4356 0.2000 0.0871 0.1214
ResNet 0.4574 0.1997 0.2124 0.1321
AE-Cat(32) 0.4020 0.1935 0.1713 0.1524
AE-Cat(64) 0.4278 0.2006 0.1803 0.1425
AE-Cat(128) 0.4256 0.1979 0.2345 0.1330
AE-Add(32) 0.4292 0.2053 0.1966 0.1588
AE-Add(64) 0.4313 0.2031 0.1597 0.1475
AE-Add(128) 0.4192 0.1973 0.1451 0.1431
AB-Cat(32) 0.4356 0.2000 0.0871 0.1214
AB-Cat(64) 0.4356 0.2000 0.0871 0.1214
AB-Cat(128) 0.4356 0.2000 0.0871 0.1214
AB-Add(32) 0.4356 0.2000 0.0871 0.1214
AB-Add(64) 0.4356 0.2000 0.0871 0.1214
AB-Add(128) 0.4356 0.2000 0.0871 0.1214
CLIP 0.4027 0.2013 0.1508 0.1693
Visual-Bert 0.4356 0.2000 0.0871 0.1214

Table 4: Performance comparison of models with the Meme
dataset with batch size 64

Table 3 and Table 4 showcase a similar pattern as the pre-
vious dataset, but a surprise was ResNet that had 2% better
accuracy than all the other models. It can also be observed that
many models had the same performance which is an accuracy
of 0.4356 and an F1-score of 0.1214. This was due to these
models only predicting the majority class. Every AB-method
could only predict a single class and seemed to not capture any
signal, and as a result, additional experiments were conducted.
I created an additional network which had the goal of creating
a common representation of the encoded features. Thus there
were two main networks: one network that fused the attention
features and one network that fused the encoded features. This

method did not result in any performance increase. The AE-
based method did not suffer the same fate. This method had
competitive results with the highest macro-precision score of
0.2345.

In summary, all models including the proposed methods,
performed comparably in terms of the metrics, and the choice
of fusion method nor the size of the shared embedding 𝑧 did
not significantly impact the result.

Approximately 4% of samples were only correctly predicted
by the proposed multi-modal models but not by the maximum
theoretical uni-modal approach, which highlights the poten-
tial of the multi-modal approach to capture a more nuanced
embedding.

Despite the competitive results, it seems that introduc-
ing multiple modalities introduces a bunch of noise into the
dataset, which leads to overfitting the training set. This is
especially problematic in the real world since datasets tend
to be messy and noisy, and thus injecting multiple modalities
might make it more likely that the model captures more noise.

The proposed method has a straightforward and non-
complex architecture that can easily be applied to any domain
with any modalities. It was demonstrated that the proposed
methods could be competitive with a non-overly complicated
model architecture.

6 Discussion
The experiments revealed that the proposed methods: AE
and AB achieved performance comparable to state-of-the-art
models like VisualBert and CLIP. This demonstrates the po-
tential for the simplistic approach to multi-modal sentiment
analysis. Despite the competitive results, the proposed meth-
ods were simple and maintained low complexity compared
to other methods, which highlights the efficiency. Moreover,
it was shown that the models overfitted to the data without
capturing much signal, which had an impact on all the mod-
els. This could indicate that the data was of low quality with
inherent noise. This further highlights, the problem of mul-
tiple modalities, wherein each modality brings noise into the
equation.

Overfitting
One critical observation was the fact that all models (even
the uni-modal) quickly overfit the datasets without capturing
much signal. This could be the result of various factors, e.g.
the dataset being small, low quality and noisy. If this is true, it
could explain why the multi-modal approach did not gain any
significant performance increase by adding a new modality.

This presence of noise can significantly hinder the learning
process of neural networks, meaning the model struggles to
generalize and makes it difficult for a model to learn mean-
ingful patterns, which is only exaggerated in the multi-modal
view.

Limitations
The proposed multi-modal methods performed comparably
to state-of-the-art models like CLIP and VisualBERT. Visual-
BERT was limited due to the nature of the model architecture
as it associated certain tokens with regions in the images. The
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issue is that the input of the model is a sequence of text to-
kens and a sequence of regions in the images. However, there
entire image was only treated as a single sequence, and thus
it might have been difficult to create a high-quality integrated
embedding. The fusion strategy did not influence model per-
formance, however, more advanced fusion strategies were not
implemented. One critical limitation is the quality of the
datasets. The fact that if each modality is very noisy, then
combining them makes it even more difficult for a model to
learn to generalize. Another factor was the class imbalance
which could be combated with other sampling techniques and
a weighted loss function, but this was tested and did not result
in better performance.

Future Work
The research suggests that a large high-quality dataset is re-
quired to evaluate whether or not the model architecture can
capture more signal than the uni-modal approaches. There is
a need for improved data quality or methods that can combat
noisy data. Moreover, more advanced fusion strategies, AEs
and hyperparameter settings (the 𝜆 parameters from the AE
method) need to be investigated.

In addition, a new method that integrates both of the pro-
posed methods with more advanced fusion strategies could be
interesting. This would consist of AE networks that indepen-
dently process each modality, learning compact and represen-
tative latent features and another network that uses attention
to learn the interactions between the modalities. There would
afterwards be two fusion networks. One that fuses the la-
tent features and one that fuses the interaction features. Each
would be optimised for a classification task. Afterwards, these
embeddings are fused by a third network in combination with
a classifier. This hybrid approach is much more complex,
however, it leverages both strengths of the proposed methods
which could result in a more comprehensive multi-modal rep-
resentation, by having multiple networks focus on different
elements. Adding this complexity with low-quality datasets
would probably not result in any performance increase, and
thus the need for higher-quality multi-modal datasets is piv-
otal.

7 Conclusion
In conclusion, this paper presents two methods for multi-
modal learning representation that can be used for sentiment
analysis: an Autoencoder-based method and an Attention-
based method. The primary goal was to develop efficient
techniques that can capture compact and representative latent
spaces for 𝑁 modalities. Through extensive experiments on
two text-image sentiment datasets: MVSA and meme, we
demonstrated that the proposed methods can achieve compet-
itive performance compared to state-of-the-art multi-modal
approaches such as VisualBert and CLIP while maintaining
lower complexity. It also has similar performance to uni-
modal approaches, where it was shown that the multi-modal
approach revealed new unique correct classifications which
highlight the potential of using multiple modalities. How-
ever, it was only able to achieve around 80% of the theoretical
maximum of both uni-modal models.

Our findings highlight several significant challenges that
need to be investigated further for future research: Data Qual-
ity and Noise in Multimodal Integration. The datasets appear
to be of low quality with noise present in both modalities.
This noise overwhelmed the models, which made it incred-
ibly difficult to identify meaningful signal. Moreover, each
modality brings its own noise, and once combined this noise
is amplified, which makes it even harder for multi-modal ap-
proaches to perform effectively. This highlights the need for
higher-quality datasets and potentially advanced noise reduc-
tion techniques.
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