SUMMARY

In recent years, machine learning has increased in popularity, driven by advancements in
computing power and the exponential growth of data. The availability of large datasets is
crucial for deep learning solutions, significantly enhancing model performance. In healthcare,
increased computing power has empowered researchers to utilize machine learning models to
analyze and extract features from various medical datasets effectively. The results extracted
from data using these trained machine learning models can contribute to personalized medicine
by enabling tailored treatment plans, thereby improving patient outcomes. However, healthcare
data is typically private and confined to specific legal entities, creating isolated data islands.
Different hospitals, for example, possess electronic health records (EHR) of distinct patient
groups, and sharing these records is challenging due to their sensitive nature. This restriction
hinders for example, the development and implementation of deep learning approaches that
require extensive healthcare datasets to train accurate, high-quality models. Furthermore, the
fragmented nature of healthcare data prevents comprehensive analysis across diverse patient
populations, limiting the ability to derive insights that could lead to better diagnostic tools and
treatments. As a result, there is a pressing need for methods that can leverage distributed data
without compromising privacy and security.

In this paper, we present a study on the application of Federated Learning (FL) for extracting
mutational signatures from genomic data in healthcare. Traditional methods of analyzing
mutational signatures, which are unique patterns in cancer genomes indicating different muta-
tional processes, often require centralized data storage. This poses significant privacy concerns,
as healthcare data is highly sensitive and typically decentralized across various institutions.
Despite the genomic data on human cancer being available as anonymized versions of the raw
data, future research may want to train and extract signatures on raw data which is governed by
privacy regulations such as GDPR.

The primary problem addressed in our research is the challenge of extracting meaningful
mutational signatures from decentralized genomic data while ensuring data privacy. Current
centralized approaches necessitate data aggregation, which is infeasible due to privacy and
legal constraints. Here, we explore the use of FL, a technique where machine learning models
are trained across multiple decentralized devices holding local data samples, without exchang-
ing the data itself. Specifically, we utilize Non-negative Matrix Factorization (NMF) and
autoencoders (AE) as methods for mutational signature extraction within the FL system. The
study aims to evaluate the performance of these methods compared to traditional centralized
approaches. This involves testing the FL system on both synthetic datasets and real-world
genomic data, including those from prominent cancer genome repositories such as The Cancer
Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). We assess
the accuracy of the methods in a FL setting in identifying mutational signatures and compare it
with centralized methods, considering the trade-offs in computational time due to the distributed
nature of FL.

Our main findings demonstrates that FL. achieves comparable accuracy to centralized ap-
proaches in extracting mutational signatures. However, it incurs higher computational costs,
highlighting a trade-off between data privacy and computational efficiency. Despite this, FL
presents a viable solution for privacy-preserving analysis in genomic studies, ensuring that
sensitive patient data remains decentralized. Future work is suggested to focus on optimiz-
ing computational resources and improving the efficiency of FL algorithms, particularly in
handling large-scale genomic datasets. Additionally, exploring adaptive techniques for local
hyperparameter tuning and aggregation of models trained on differently sized datasets could
further enhance the performance and applicability of FL in healthcare.

In conclusion, we demonstrate that FL. can be effectively applied to mutational signature
extraction, offering a promising approach for privacy-preserving, collaborative genomic re-
search. Our results support the notion that FL can bridge the gap between the need for large,
diverse datasets and the imperative of protecting patient privacy.
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ABSTRACT

Cancer is a genetic disease caused by various factors, with
each mutational process leaving a unique, identifiable signa-
ture within the genome. These mutational signatures provide
valuable insights into the origins and development of cancer,
aiding in the creation of targeted treatments. This study evalu-
ates the use of federated learning (FL) for mutational signature
extraction using Non-negative Matrix Factorization (NMF) and
autoencoders (AE). The framework assesses performance on
both synthetic and real-world genomic datasets, comparing FL
methods to centralized approaches. The results show that FL.
achieves comparable accuracy in identifying mutational signa-
tures but incurs increased computational time due to the dis-
tributed nature of the process. This suggests that FL is a viable
alternative for privacy-preserving analysis, though it requires
careful management of computational resources.
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1 INTRODUCTION

In recent years, machine learning has risen in popularity, driven by
advancements in computing power and the rapid growth of data [12].
The large amount of available data is essential for deep learning
solutions, greatly affecting the performance of the models.

In the field of healthcare, the increase in computing power has
enabled researchers and scientists to leverage machine learning mod-
els to effectively analyze and extract features from various medical
datasets. The outcome of trained models in personalized medicine
contributes to tailored treatment plans, leading to improved patient
outcomes [17]. However, healthcare data is typically private and
isolated to legal entities, resulting in data islands in which the data
is not allowed to be shared due to privacy restrictions. For instance,
different hospitals possess electronic health records (EHR) of dis-
tinct patient groups, and sharing these records is challenging due to
the sensitive nature of the data. This restriction impedes for example,
the development and application of deep learning approaches that
rely on large healthcare datasets to train accurate and high-quality
models.

To address this issue, federated learning has emerged as a poten-
tial solution. Federated learning (FL) is a way of training machine
learning algorithms collaboratively by distributing the algorithm to
the data, instead of the data to the algorithm [29]. This approach miti-
gates the privacy concerns associated with traditional approaches, as
raw data remains decentralized and is processed at the institutions.
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In cancer genomic studies, mutational signature analysis stands
out as an important task [33]. This analysis involves the examination
of patterns in genetic mutations within cancer genomes, providing
insights into the underlying mutational processes driving the devel-
opment of a cancer. By leveraging methods and machine learning
techniques, such as NMF [11] and AE [25], researchers can effi-
ciently analyze large-scale genomic datasets to uncover these muta-
tional signatures [36]. Traditionally, mutational signature extraction
approaches are performed on genomic datasets that are derived from
a large collection of cancer patient samples. These datasets are com-
piled through collaborative efforts involving genomic initiatives such
as The Cancer Genome Atlas (TCGA) [32] and the International
Cancer Genome Consortium (ICGC) [7]. The Pan-Cancer Analysis
of Whole Genomes (PCAWG) study [8] offers a publicly available
and extensive repository of cancer genome datasets, encompassing
over 2,600 whole genomes sourced from the ICGC. These datasets
represent a diverse collection of cancer patient samples, capturing
various mutation types suitable for mutational signature extraction.

It is important to note that while TCGA and ICGC repositories
contain vast amounts of data, our study specifically focuses on utiliz-
ing the anonymized subset provided by the PCAWG initiative. This
subset maintains a high level of data aggregation, thereby safeguard-
ing patient privacy.

While mutational signature extraction methods such as NMF
and AE have traditionally been applied in centralized settings, their
adaptation to distributed settings present unique challenges. The in-
creasing adoption of privacy restrictions and data-sharing constraints
by legal entities possessing cancer patient data necessitates the ex-
ploration of alternative methodologies. Although current datasets for
mutational signature analysis are anonymized and comply with pri-
vacy regulations, it is imperative to consider the potential challenges
that may arise in the future.

As legislation evolves and data collection practices advance, there
is a possibility that mutational signature analysis could encounter pri-
vacy issues. For instance, future analyses may involve the integration
of additional sensitive data or require access to more comprehen-
sive datasets. In such scenarios, maintaining patient privacy while
conducting mutational signature extraction in a distributed setting
becomes increasingly complex.

Existing research in FL has demonstrated its efficiency in var-
ious applications, including predictive maintenance, natural lan-
guage processing, and healthcare analytics [24, 31]. For instance,
Google has successfully applied FL to improve predictive text sug-
gestions on mobile keyboards without compromising user privacy
[22]. Similarly, researchers have explored FL in medical imaging
tasks, demonstrating its potential to develop robust models while
preserving patient privacy [35]. As the size of the datasets increases



in the future, researchers may face the challenge of efficiently ana-
lyzing distributed data.

While existing research in the landscape of cancer genomics
has explored the application of NMF and autoencoders for muta-
tional signature extraction in a centralized setting, there is limited
research on extending these methods to a decentralized setting. FL
presents unique challenges and opportunities for mutational signa-
ture extraction, including privacy-preserving model training across
distributed data sources and collaboration between institutions. How-
ever, the adaptation of NMF and autoencoder-based approaches to
FL frameworks for mutational signature extraction remains largely
unexplored.

The challenge lies in developing or leveraging novel methods and
models that can effectively integrate NMF and autoencoder-based
methods into a federated setting while addressing the complexities of
decentralized data sources. Additionally, ensuring the scalability and
efficiency of these techniques in federated settings pose a significant
challenge when dealing with large-scale genomic datasets.

Therefore, the objective of this project is to explore the perfor-
mance of a federated learning system utilizing NMF and AE as
mutational signature extraction methods compared to centralized
learning approaches.

Our main findings demonstrate the potential of federated learning
as a privacy-preserving approach for collaborative model training
across decentralized data sources. By extending mutational signature
extraction methods to a federated learning setting, we can extract
mutational signatures at a level that is competitive in performance to
in a centralized learning setting.

2 BACKGROUND

Before delving into our research, it is important to understand two
key concepts; federated learning and mutational signatures. These
concepts serve as the foundation for exploring the performance of
a federated learning system using mutational signature extraction
methods. In addition, we explain the methods associated with muta-
tional signature extraction.

2.1 Federated Learning

Federated learning is an approach to collectively train a model across
different devices such as phones or computers (referred to as clients)
without sharing their private data. The learning task is coordinated
by a central server that handles the construction and maintenance of
a global model to the clients in the environment. Each client has a
local training dataset that is isolated from the central server and other
clients, therefore they can be seen as data islands. The central server
distributes a copy of the global model (local model) to each client,
where the client performs local computations, updates the local
model, and sends this back to the central server. The global model is
updated and maintained by the central server alone, and therefore
only the updated local model needs to be communicated from a client.
In addition, the local models are discarded once they have been sent
back to the central server as they serve no purpose once they have
been applied. The process of updating the global model is typically
done by an aggregation algorithm, wherein the server integrates the
model updates received from the clients to refine the global model
[24]. Equation 1 shows the FedAvg [24] algorithm for aggregating

model updates. This aggregation mechanism is crucial for ensuring
that the global model reflects the collective training of the shared
models. Here, W represents the global model or parameters that
are being updated through aggregation, W; represents the model
parameters of the ith local model or client and n represents the
total number of local models or clients participating in the federated
learning process.
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In contrast to centralized learning, where the model and training
data reside at the same location, one major benefit of federated
learning is that it separates model training from requiring direct
access to the original training data. In this way, FL can potentially
overcome privacy and security concerns with training models on
data that is sensitive of nature. Since the clients only communicate
the model updates to the central server, the privacy of the data at the
clients remains confidential in the environment [24].

The learning task [24] in a federated setting can be described as
the following global objective function:

K
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where w represents the model parameters, K is the number of
clients participating in the federated learning process, n is the total
number of data samples across all clients, and ny is the number of
data samples on client k. Each client k independently computes its
local objective function Fy. (w), which is the average of the individual
loss functions f;(w) over its local dataset Pi. The global objective
function F(w) is then a weighted sum of these local objective func-
tions, with weights proportional to the number of data samples nj
on each client.

In a conventional federated learning setting, the data already re-
side at each client. However, it is possible to create a federated learn-
ing setting based on data partitioning where a dataset is partitioned
and distributed to different clients. Horizontal FL and vertical FL
are two approaches that address different data partitioning scenarios.

In horizontal federated learning, each client has a dataset with the
same set of features but different samples. This means that clients
share a common feature space but the samples are distributed across
clients. Conversely, in vertical federated learning, each client has
a dataset with different features but the same set of samples. This
means that clients share a common sample space but have different
attributes or features for these samples [34].

2.2 Mutational Signatures

Mutational signatures are unique patterns of mutation types that
arise from different mutational processes [5]. These processes can
include environmental exposures, endogenous cellular processes, or
DNA repair mechanisms. Each mutational process leaves a char-
acteristic imprint on the genome, resulting in a unique mutational
signature [10]. These signatures are typically represented as matrices
or vectors, capturing the frequency of specific mutation types across



different contexts. For example, one mutational signature might in-
dicate exposure to ultraviolet (UV) radiation from the sun, while
another might suggest a malfunction in DNA repair mechanisms.

In this study, we focus on single base substitutions (SBSs), which
involve changes to individual nucleotide bases, and exclude other
types of mutations such as double base substitutions (DBSs) and
small insertions or deletions (indels). SBSs are a class of somatic
mutations commonly sorted into six subtypes; C:G > A:T, C:G >
G:C, C:G>T:A, T:A > AT, T:A > C:G, and T:A > G:C. Strand
symmetry ensures that changes in one strand maintain the same
alterations in the paired strand, preserving the structural integrity of
the double helix. For instance, a change from C to T on one strand
corresponds to a change from G to A on the complementary strand
[28].

The surrounding sequence context of a mutating base is critical in
defining the mutation’s signature. By examining the nucleotide bases
neighboring the mutating base, one on each side, a 4 X 4 matrix of
potential nucleotide combinations can be generated. Considering the
six subtypes of mutations, this yields a 96-dimensional feature vec-
tor for each mutational signature. Aggregating these feature vectors
across multiple samples results in a 96 X N matrix, where N repre-
sents the number of samples in the dataset, forming the mutational
catalog of the dataset [28].

To extract mutational signatures from genomic data, various meth-
ods are employed. This includes techniques such as NMF and AE.
NMF can be used to decompose the genomic data into a set of basis
signatures and their corresponding activities in each sample. AE, a
type of neural network, can also be used to learn representations of
the data and extract mutational signatures. These methods will be
elaborated further in the upcoming sections.

2.2.1 COSMIC database. The COSMIC Mutational Signatures
database [5] contains signatures derived from extensive analysis of
the PCAWG dataset and curated scientific papers. These signatures
are identified through thorough examination, by experts in the field,
of specific exposures, providing a comprehensive representation of
mutational processes across various cancer types.

2.3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a matrix decomposition
technique with the constraint that all entries must be non-negative. It
decomposes an original data matrix A € R™*" into two sub-matrices
W e R™*K and H € RF*" such that A ~ WH.

Mathematically, NMF can be formulated as an optimization prob-
lem, where F denotes the Frobenius norm:
min ||A- WHT||f
W, H

The goal of the approximation is to minimize the reconstruction
error between the original data matrix A and the product of the two
matrices W and H, using loss functions such as Mean Squared Error
(MSE) and Kullback-Leibler divergence (KL). One approach is to
use the Frobenius norm, which measures the difference between A
and WH as the square root of the sum of the squares of all elements.
To achieve this, an iterative process is used where the initial values
of W and H are adjusted to bring the product closer to A continuing
until the convergence requirement is met.

As a result, NMF provides two matrices: the basis matrix W,
which contains the basis vectors or components (signatures), and the
coefficient matrix H, which contains the weights or coefficients that
linearly combine the basis vectors to approximate the original data.
The basis matrix W represents the underlying features or building
blocks of the data, while the coefficient matrix H indicates how these
features combine to form the original data. This decomposition is
particularly useful for revealing latent structures and patterns in the
data.

2.4 Autoencoders

Autoencoders are a type of neural network architecture aimed at
reconstructing its original input. The main objective is to learn an
informative representation of the data. More formally, the goal of an
autoencoder is to learn two functions A : R” — RP (encoder) and
B : RP — R" (decoder), where n represents the dimension of the
input space and p is the dimension of the latent space. The encoder
takes the input data and reduces it to a lower-dimensional latent
space representation. This process involves compressing the input
data into a more compact form by extracting important features. The
decoder receives the latent space representation from the encoder
and attempts to reconstruct the original input data from this repre-
sentation. Together, the encoder and decoder is trained to minimize
the reconstruction error between the input data and the reconstructed
output [14]. The reconstruction error is typically represented by a
loss function £ that measures the dissimilarity between the original
input and reconstructed output. This training process encourages
the autoencoder to learn a compressed version of the input data that
captures its characteristics.

3 RELATED WORK

In this section, we review the existing literature on the application
of NMF and AE in a federated learning setting, focusing on their
relevance to decentralized data analysis and collaborative model
training.

3.1 Distributed NMF

In their paper, Qian et al. [27] proposed a novel distributed NMF
algorithm, DSANLS, tailored for federated environments. Their
method distributes the NMF computation across multiple nodes (K)
in a federated setting.

Initially, the size of the input matrix is reduced by using ma-
trix sketching, where a smaller, approximate representation of the
original data matrix is created. Here each row indices {1, 2, ...m} of
the input matrix is partitioned into K disjoint sets Iy, Iz, ...Ix where
I c {1,2,...,m} is assigned to node r. Similarly each column in-
dices {1, 2, ...n} is partitioned into disjoint sets Ji, Jz, ... Jx . To achieve
load balance, the data is split evenly over the nodes |I,| ~ 2 and
|Jr| = I£< for each node. The factor matrices WandH are also as-
signed to nodes i.e. node r stores and updates W, and Hj, reducing
the size of each non-negative least squares (NLS) subproblem.

Each node then computes NMF on its subset of the data. This
decentralized approach ensures that the sensitive data remains local
to each node, thereby enhancing data privacy and security.



Subsequently, these partial computations are aggregated by com-
bining the W; and H; matrices to reconstruct the global factor matrix,
thus preserving data privacy and security.

Their findings indicate that DSANLS outperforms state-of-the-
art NMF algorithms like MU [23], HALS [20], and ANLS/BPP
[21] in terms of accuracy, as measured by relative error over time,
showcasing its effectiveness in a distributed environment.

3.2 Distributed AE

A study by Cha et al. [16] proposed a method utilizing overcomplete
autoencoders (e.g., the hidden layer having a higher dimension than
the input layer) for generating latent representations of original data
in the context of vertical federated learning.
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Figure 1: Features (fi, f2, ..., f») and patients (p1, pa, ..., pm) Where
each colored column represents the partitioned data at hospital
A, hospital B, and hospital C, respectively

They vertically divide a dataset into subsets and train two over-
complete autoencoder models; one in a centralized setting on the
partitioned data and another in a federated setting on the gener-
ated latent representations. In each subset, a local overcomplete
autoencoder model was trained to generate latent representations
of the original data. These latent representations can be considered
anonymized, as they are distinct from the original data and do not
contain identifiable information, thus respecting privacy restrictions.
Subsequently, the latent representations were aggregated for further
model training by concatenating the latent data from each site as
shown below.
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where D’ represents the aggregated latent representations and
Dj represents the latent representation from a local autoencoder on
partition D;.

The accuracy of the trained models using the original data are
compared to the trained models using aggregated latent data were
compared then, respectively.

Three distinct datasets (Adult income [13], Schwannoma [15],
and eICU [26] datasets) were vertically partitioned into subsets to
simulate distributed data settings. The Adult income dataset and
Schwannoma dataset were split into 3 partitions (or sites) each
and the eICU was split into 7 partitions. The comparison of the
performance between the centralized model and the federated model
revealed that there was a minimal loss in performance across the
Adult income, Schwannoma, and eICU datasets, respectively. The
comparison highlights the effectiveness of federated learning with
autoencoders in preserving privacy while achieving competitive
results compared to centralized learning.

Our FL system will compare the performance of mutational sig-
nature extraction methods in a federated learning setting against
centralized learning setting.

4 METHODOLOGY

In this section, we propose our approach for implementing muta-
tional signature extraction methods in a federated learning system.
This approach aims to leverage the distributed nature of federated
learning to explore the performance of mutational signature extrac-
tion methods in a decentralized setting as opposed to a traditional
centralized setting.

The proposed pipeline consists of several key components, each
playing a crucial role in the implementation and evaluation of the
federated learning system. The pipeline can be summarized as fol-
lows:

Step 0: The central server initializes the global model parameters,
setting the stage for the federated learning process.

Step 1: The central server sends a copy of the global model to the
clients.

Step 2: Each client independently trains the received model on its
local data, extracting mutational signatures through specified meth-
ods.

Step 3: Clients communicate their locally updated models back to
the central server.

Step 4: The server aggregates these updates using the FedAvg algo-
rithm, updating the global model.

These steps are repeated for multiple rounds to progressively im-
prove the global model.

The pipeline ensures that data privacy is maintained by keeping
the raw data decentralized at the clients while leveraging federated
learning to collaboratively train a robust global model. This method-
ology is designed to facilitate the evaluation of mutational signature
extraction methods in a federated setting.

In the following sections, we will describe each step of the pro-
posed framework in detail, focusing on the federated learning setting,
the extraction methods used, the generation of synthetic datasets
for validation, and the clustering techniques applied to refine the
results. Additionally, we will explain the implementation details
of the framework, including the use of the Flower framework to
support the federated learning environment, and the procedures for
evaluating and outputting the results.

4.1 Federated Learning Setting

We create a horizontal federated learning setting by partitioning a
dataset by samples (genomes) into a number of distinct subsets. Each
client in the setting will have its own subset to perform a mutational
signature extraction method on. This is done to simulate the idea of
data islands where a dataset of a client cannot be shared with other
clients. To emulate varying scenarios, the dataset is divided into
three subsets (simulating local data for three clients), both evenly
and unevenly distributed among the clients.

In this setting, we have a central server that coordinates interac-
tions among K clients. The central server is responsible for managing
the results received from clients and updating the global model us-
ing a strategy. The strategy specifies how results from the different



clients are aggregated. For this, we use the FedAvg [19] strategy.
In addition, the server manages the number of rounds that clients
undergo in the federated learning process. Here, a round refers to
the complete cycle of communication and computation that occurs
between the central server and the participating clients. We describe
procedure of the central server in Algorithm 1.

Algorithm 1 Central Server Federated Learning

Input: Number of rounds R
Output: None

1: Initialize global model parameters 6

2: for each round in range(R) do

3: Initialize empty list to store client updates G « []
4: for each client k in range(K) do

5: Send global model parameters w to client k

6: end for

7: Wait for all clients to complete their local computations
8: for each client k in range(K) do

9: Receive local model update wy from client k
10: Append w; to G
11: end for
12: Update global model: w = FedAvg(G)
13: end for

4.2 Extraction Methods

4.2.1 Federated NMF. Building upon the NMF algorithm’s ex-
ecution in Section 2.3 in our distributed setup, NMF computations
occur independently at each client using distinct input datasets. This
local computation yields a separate W; matrix at each client, repre-
senting the components extracted from its respective dataset. These
W; matrices are then communicated to the central server.

Upon receiving all W; matrices from the distributed clients, the
server performs aggregation by computing the average of the W;
matrices:

l n
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where n is the number of clients. This aggregation step combines
the component information derived from different datasets, creating
a unified representation of the deconstructed features across all the
diverse datasets processed by the clients. After the first round of
running NMEF, the global W matrix is given to the NMF client as
an input. Then, the global aggregated W matrix is used as an input
into the NMF algorithm, and the reconstruction error between the
W and H matrices is iteratively minimized at each client based on
the original input dataset during each round.

4.2.2 Federated AE. The AE implementation in this study is
based on the DeepMS model proposed by Pei et al. [25], adapted
for a federated learning setting. It consists of an encoder-decoder
neural network architecture which reduces the dimensionality of the
genomic dataset. We describe the procedure of the federated AE in
Algorithm 3.

Algorithm 2 Federated NMF Client

Input: Mutational catalog A, Number of components k, Initial
mutational signature matrix W; (optional)
Output: Updated mutational signature matrix W, Loss
. Initialize matrix A (mutational catalog) and components k
. if W; == 0 then
W, H = NMF(A, k)
else
W, H = NMF(A, W;)
end if
. Loss = reconstruction error(A, W, H)
: return W and Loss to the server

Algorithm 3 Federated AE

Input: Mutation frequency matrix M
Output: Locally updated model ¢’

1: Initialize local model parameters 6

2: Update local model with global model parameters

3: for run in range(10) do

4: Train model and obtain W, H, and loss [

5: end for

6: Perform clustering on W

7: for each signature in W do

8: for component in C do

9: Apply KMeans clustering with component clusters
10: Find cluster centroids, silhouette score, and inertia score
11: end for

12: end for

13: Compute auxiliary loss and select the best cluster centroids
14: Set signatures to the optimal cluster centroids

15: Update local model: 6 — 0’

16: return locally updated model 6’

In the federated learning setup, the clients in the environment
collaboratively train the global model on their local dataset. Each
client initializes the model with the global parameters 6 received
from the central server and performs local training. The local training
process involves multiple epochs of forward and backward passes
through the AE. During each epoch, the training data is passed
through the encoder to generate latent representations, which are
then fed to the decoder to reconstruct the original data.

Once the AE has been trained, we cluster the resultant signatures,
and optimize the clustering results to identify the final mutational
signatures. We elaborate on this approach in Section 4.3.1. In addi-
tion, once all clients have finished their local training and signature
extraction, the resulting locally updated model parameters are com-
municated back to the central server from each client.

4.3 Synthetic Dataset Generation

A synthetic dataset is generated to facilitate the validation of muta-
tional signatures in a controlled environment. This synthetic dataset
is based on mutational signatures from the COSMIC database. The
process for generating the synthetic dataset includes the following
steps:



To proceed, two matrices need to be created: a signature matrix
and a signature exposure matrix. The signature matrix will consist of
the COSMIC signatures that form the basis of the generated samples.
The signature exposure matrix will contain information about the
number of mutations each mutational signature from the COSMIC
database should contribute to the given sample.

Signature selection. A predefined set of mutational signatures
is read from an input file containing all COSMIC signatures, from
which a specified number of signatures are randomly selected. To
minimize redundancy and ensure diversity among the selected signa-
tures, the selection process ensures that the cosine similarity between
any pair of selected signatures does not exceed a pair-wise cosine
similarity of < 0.7.

Signature exposure matrix. The process of constructing the sig-
nature exposure matrix involves several steps. For each sample, a
random value between 500 and 1000 is generated to represent the
total number of mutations. This range is chosen to reflect a realistic
number of mutations typically observed in biological samples. These
mutations are then distributed across the respective signatures in the
matrix. Additionally, two signatures are randomly chosen to have
an exposure of 0 for each sample. This decision is based on the
understanding that not all mutational signatures are active in every
sample. By setting two signatures to zero, we simulate the presence
of inactive signatures, which is a common scenario in real-world
mutational data. The dot product of the signature exposure matrix
and the selected signature matrix is calculated, resulting in a matrix
representing the mutational profile of each sample based on its ex-
posure to each signature. Finally, Poisson noise is added to the dot
product matrix as a percentage of each signature’s mutation amount
[28].

The synthetic dataset enables the validation of mutational signa-
tures under controlled conditions by comparing the identified sig-
natures against the mutational signatures used to create the dataset.
This method ensures that the synthetic data closely simulates real-
world mutational profiles. The procedure of generating a synthetic
dataset is shown in Algorithm 4.

The synthetic dataset is designed to access the performance of the
different methods in a controlled environment.

4.3.1 Clustering. To achieve an accurate representation of the
results from the AE and NMF, post-processing using clustering
is necessary. NMF is run multiple times because the results can
vary with each computation, indicating that a single computation
might not adequately represent NMF’s performance. The same logic
applies to AE, as the latent representation may not be clear from a
single run.

K-means. To cluster the data, we use the K-means [30] algorithm
to partition the input data into K clusters. It assigns each data point
to the nearest cluster centroid and iteratively updates the centroids
until convergence. This method effectively minimizes within-cluster
variance.

NMEF. To achieve an accurate representation of the outcomes,
the NMF algorithm is executed several times for each number of
components. The results are then combined and used as input to
the K-Means algorithm. The number of clusters that K-means are

Algorithm 4 SynthData

1: Input: Array of 5 random COSMIC signatures S, Number of
samples N

2: Output: Mutation catalog

3: fori=1to N do

4 Generate random vector x by shuffling [1, 1, 0,0, 1]

5: Apply Poisson distribution to each element in x

6: Compute the sum xs of all elements in x

7: Generate probability vector P as P = (x/xs) X
Uniform(500, 1000)

8: Compute mutational profile V as the element-wise product
of S and P

9: Generate noise array Noise with 96 elements from Poisson
distribution

10: Compute the sum NoiseSum of all elements in Noise

11: Normalize Noise as Noise = (Noise/NoiseSum) X P; X0.01

12: Compute the final mutational profile Final as the element-
wise sum of V and Noise

13: end for

looking for is set to the component value used to create the input.
K-means then fits the given components into the original component
value clusters. This creates an instance of K-means for each different
set of components used. Here, a limit of 300 iterations is set. To
calculate the optimal amount of components in the original dataset,
the silhouette score is determined for each instance of K-Means. This
silhouette score is then used in an auxiliary loss function, along with
the reconstruction error of the NMF. These values are normalized
to get them on a similar scale, contributing an equal amount to the
calculation. Equation 3 is used to measure the optimal amount of
clusters.

auxiliary = loss — 1 * silhouette 3)

Following [28], we use the lowest value obtained from the aux-
iliary loss function to determine the optimal amount of clusters, as
it maximizes the silhouette score and minimizes the reconstruction
loss. An example of the loss function compared to each component
value is showcased in Figure 2. This example is produced based on
the federated NMF, using three rounds, with an input of a synthetic
dataset, created using five signatures, evenly distributed among three
clients. After the optimal amount of clusters is found, the cluster
centroids are extracted, which are the mutational signatures.

The SigProfilerAssignment [18] tool is used to extract the weights
(exposure). The tool is extracting the weight by locking the W and
A matrix and fitting the weight in the A * WH equation.

AE. When the AE is done training, it extracts 200 latent variables.
These latents are used as an input for the K-means algorithm. Then
K-means is run with a K value ranging from 2-200, which represent
the number of latents. For each instance of K-means, the silhouette
score is determined along with the inertia score. The inertia is a way
of measuring how well the data points are clustered, specifically
the sum of the squared distances between each data point and the
nearest cluster center. The inertia score and silhouette score are
used to create the auxiliary loss as described in Equation 4. Instead
of using the reconstruction error, the inertia score is used as the



Auxiliary loss

2 3 4 5 3 7 8 9 10
Number of components

Figure 2: Example of an auxiliary loss function with the compo-
nent value 5

first parameter. The reasoning behind using the inertia score is that
the reconstruction loss for the autoencoder does not change post
training. If the inertia score was not added to the equation it would
only consider the silhouette score, meaning that it would favour less
clusters. The optimal amount of clusters is found using the same
approach as 2. The cluster centroids are found using the determined
K, resulting in the final mutational signatures for the AE. The weight
for the AE is determined using the SigProfilerAssignment [18] tool,
equal to the approach with NMF.

auxiliary = inertia — 1 * silhouette @)

4.4 Implementation

This section will provide a comprehensive explanation of the imple-
mentation of the FL system and the integration of new extraction
methods into the Fl system.

4.4.1 Flower. To facilitate the federated learning environment, we
have utilized the Flower framework [3]. Flower provides a platform
for federated learning, providing the necessary architecture and
implementation to distribute and train a shared model over a set of
participating clients. By leveraging Flower, we are able to extend the
mutational signature methods using built-in functions that allow us
to distribute the results of models being trained and the aggregation
of this.

4.4.2 Signature Extraction. The architecture of the framework is
designed to facilitate the evaluation of various extraction methods. To
initiate the extraction process, the user specifies both the dataset and
the signature extraction method. Each extraction method contains
information about its clustering approach, which varies depending
on whether the method is NMF or an autoencoder. When adding a
new method, the only prerequisite is that the input and output formats
remain consistent throughout the pipeline. Specifically, the input
to the extraction methods includes the dataset, the search space for
the latent variables when using an autoencoder, and the components
when using NMF. The output generated by these methods includes
signatures, error metrics, and weights.

4.4.3 Evaluating the Signatures. Before beginning the evalua-
tion process, it is important to determine whether a ground truth set
of signatures has been provided. If a ground truth set is available,
the evaluation will be conducted against these provided signatures,

which were used to create the synthetic dataset. If no ground truth
set of signatures is available, the evaluation will instead compare the
identified signatures against the COSMIC signatures database.

4.4.4 Outputting the Results. When the evaluation is completed,
files containing the results from the specified extraction methods
are produced. The results include information about the number of
extracted signatures, the matched signatures and pair-wise cosine
similarity, above a certain threshold.

S EXPERIMENTAL EVALUATION

In this section, we explain how we perform experiments with mu-
tational signature extraction methods on both synthetic and real
datasets and evaluate their performance in a federated setting com-
pared to in a centralized setting.

5.1 Experimental Setup

We outline the setup for our experiments aimed at evaluating the
performance of a mutational signature method. We utilize synthetic
datasets as well as a real dataset to assess the method’s performance
under different circumstances.

5.1.1 Datasets and Horizontal Division of Data. The evalu-
ation of the mutational signature extraction methods is performed
on two different types of datasets; a synthetic dataset and a real
dataset referred to as WGS PCAWG dataset [8]. In addition, for the
experiments we want to run the federated learning setting with three
clients to simulate three distinct data islands. The experiments on
the methods in the centralized learning setting will be performed
on the original dataset, whereas in the federated learning setting the
methods will be run on the partitions based on the original dataset.
We present the following datasets for our experiments in Table 1.

Table 1: Dataset Information

Dataset Type Division Dimension

Synth5  Synthetic 3 clients
WGS Real 3 clients

96 X 500
96 x 2780

Synth5

The SynthS dataset is a synthetic genomic dataset generated using
the procedure shown in Algorithm 4. It consists of 96 mutation types
(rows) and includes 500 samples (columns). It is based on 5 random
signatures from the COSMIC database [S] which do not exceed a
pair-wise cosine similarity of < 0.7. We horizontally divide this into
three partitions to simulate three data islands.

WGS

The WGS dataset [8] is a real genomic dataset consisting of 2780
columns representing the occurrence or frequency of mutations.

5.1.2 Method Evaluation. Following [28], we differentiate be-
tween the accuracy when applying the methods to real and synthetic
datasets. We employ cosine similarity to compare the extracted sig-
natures with the known signatures as shown in Equation 5.



T A-B
cosine similarity (A, B) AT X B] 4)
where A and B represent the vectors of extracted and known
signatures, respectively. This measure helps quantify the similarity
between the signatures, providing insight into the accuracy of the

extraction methods.

Real Dataset. We validate extracted signatures against known
COSMIC [6] signatures. Here, we employ the linear sum assign-
ment [9] algorithm to optimally match the extracted signatures with
known COSMIC signatures based on cosine similarity. The algo-
rithm maximizes the total cosine similarity by assigning each ex-
tracted signature to a unique known signature. We choose to employ
a threshold of 0.80 for cosine similarity of the extracted signatures
because it presents are more stringent criterion. Extracting signa-
tures from real-world datasets can be considered more challenging
compared to synthetic datasets, where we have control over the sig-
natures present in the data. This is because we cannot be certain
that an extracted signature from a real dataset actually represents a
distinct mutational signature.

Synthetic Dataset. We validate extracted signatures with known
(predefined) signatures used during dataset generation. The proce-
dure of matching the extracted signatures with known signatures is
identical to when dealing with real datasets, but with the addition of
comparing the estimated weights from the synthetic dataset with the
true weights. This is done using measures such as mean squared er-
ror (MSE), mean absolute error (MAE), and root mean squared error
(RMSE). We quantify matches with cosine similarity similarly to
extracted signatures in real datasets. In this controlled environment
of a synthetic dataset, where the signatures are precisely defined and
the dataset generation process is known, we have the advantage of
assessing the performance of the signature extraction algorithm with
a high level of confidence. Here, we employ a threshold of 0.95 for
cosine similarity as this underscores the need for a high degree of
similarity between the extracted signatures and the known signatures
to consider them valid matches. We want this threshold to reflect the
expectation of a nearly perfect match, given the controlled nature of
the synthetic dataset.

5.1.3 Metrics.

a) Accuracy Accuracy is crucial for evaluating the perfor-
mance of mutational signature extraction methods. It mea-
sures the fidelity of the extracted signatures compared to the
ground truth or validated signatures. In the context of our
experiments, accuracy can be defined as the percentage of
correctly identified signatures against predefined (synthetic)
or validated (real) signatures. We use the cosine similarity
thresholds previously described to classify a signature as
a correctly identified signature. For this, we express the
accuracy as proposed in Equation 6.

number of correctly identified signatures

Q)

accuracy = -
v total number of actual signatures

b) Efficiency In our evaluation, we consider the execution
time of each method. In particular, we are interested in the

efficiency of each method executing in a federated setting
compared to the centralized setting.

6 RESULTS

This section contains the result from the different extraction method
along with a detailed analysis of the evaluation.

6.1 Synthetic Dataset

The performance of the methods in identifying mutational signatures
was evaluated using a synthetic dataset for both settings. Table 2
summarizes the results of this evaluation.

Method | Loss CT Found | >0.8 | >0.95 | b>0.95 | b>0.99
NMF MSE | 27.93 8 8 7 5 2
NMF KL 43.64 10 8 7 5 4

AE MSE | 265.45 65 54 12 4 0

AE KL | 260.39 63 44 6 4 0
FedNMF | MSE | 37.78 7 6 4 4 1
FedNMF | KL 52.41 8 7 4 4 1
FedAE | MSE | 599.67 51 39 10 4 1
FedAE KL | 589.11 43 29 11 4 2

Table 2: Results for Synth5 (true K = 5)
6.1.1 Centralized setting.

NMF results. NMF was able to identify all five signatures when
using a cosine similarity threshold of 0.95 with both the KL diver-
gence and MSE loss functions, giving it and accuracy of 1. However,
a closer examination reveals that KL divergence loss function is
more effective in accurately identifying the signatures. Specifically,
with a higher cosine similarity threshold of 0.99, NMF was able
to find four signatures using KL divergence as the loss function,
whereas it was able to find two using the MSE loss function.

AE results. The AE was able to find four signatures in the syn-
thetic dataset given the five signatures in total, resulting in an ac-
curacy of 0.80. When considering the quality of the identified sig-
natures based on the cosine similarity threshold we sat on 0.95, the
AE produce similar results across the two employed loss functions.
It finds a considerable number of signatures with cosine similar-
ity above 0.8, indicating reasonable similarity to known signatures.
However, this number drops significantly when considering the more
strict threshold of 0.95. This suggests that while the AE can identify
signatures, they may not always closely match the known signatures.

6.1.2 Federated Setting with Even Partition (3 Clients).

NMF results. Federated NMF, with an even partitioning of the
dataset, was able to identify four out of five signatures using a cosine
similarity threshold of 0.95 with both the KL divergence and MSE
loss functions, giving it an accuracy of 0.8. However, when the cosine
similarity threshold was increased to 0.99, federated NMF identified
one signature with both KL divergence and MSE loss functions.

A notable difference between the two loss functions is the compu-
tation time. NMF with KL divergence as the loss function required
15 seconds longer to complete the computations compared to when
using MSE as the loss function.




AE results. Our experiments compared the performance of the
DeepMS AE trained in a federated learning setting against a central-
ized learning setting. Specifically, we evaluated the ability of both
setups to identify mutational signatures following the approach in
Section 4.2. We found that the AE was able to identify the same
number of mutational signatures in both federated and centralized
settings. The experimental results in Table 2 showed that autoen-
coder model did not suffer a loss in terms of accurately extracting
mutational signatures. Similarly to the results in the centralized
setting, the federated AE found four signatures out of the five repre-
sented in total, resulting in an accuracy of 0.80. This indicates that
the federated learning approach does not compromise the accuracy
of the method on a synthetic dataset.

However, we observed that the federated learning setting suffered
from an additional computation time compared to the centralized
setting. For instance, in the centralised learning setting, the compu-
tation times (in seconds) for the AE (MSE) and AE (KL) models
were 265.45 and 260.39. In contrast, the FL approach incurred higher
computation times, with AE (MSE) and AE(KL) models requiring
599.67 and 589.11 seconds, respectively. This was primarily due to
the communication overhead involved in the federated learning pro-
cess. The process of federated learning requires multiple rounds of
communication and computation to collaboratively train a model
across multiple clients while preserving data privacy. These itera-
tive rounds amplify the computation time in the federated learning
setting. It should also be noted that all the local autoencoders in
the federated learning setting train and extract signatures over a
total of three rounds to reap the benefit of a shared model trained
collaboratively over the set of clients.

to when local models were trained on local datasets of equal size.
We discuss this more in Section 9.

6.2 Real-World dataset

We evaluated the performance of the two extraction methods in
both settings on the WGS PCAWG dataset. Table 4 summarizes the
results of this evaluation.

Method | Loss CT Found | >0.8 | >0.95
NMF MSE | 4323.50 77 8 0
NMF KL | 4116.64 86 9 0

AE MSE | 463,61 24 0 0
AE KL 354,06 9 0 0
FedNMF | MSE | 4458.77 95 5 0
FedNMF | KL | 4278.34 98 6 0
FedAE | MSE | 1202.47 53 1 0
FedAE KL 942.12 5 0 0

Table 4: Results for WGS PCAWG dataset

6.2.1 Centralized setting.

NMF results. The centralized NMF on real data determined a
component value of 77 when emloying the MSE loss function and
86 for when employing the KL divergence loss function. However,
only 8 signatures for MSE and 9 signatures had a cosine similarity
of 0.8.

AE results. In the centralized learning setting, the findings showed
that the AE with MSE loss identified 24 preliminary signatures, none

b>0.99 gf which exhibited a cosine similarity above the designated threshold

af 0.8. Similarly, the AE with KL loss identified 9 preliminary

Method | Loss CT | Found | >0.8 | >0.95 | b>0.95
FedNMF | MSE | 40,27 5 4 1 1 0
FedNMF | KL | 43,50 9 5 2 2 0

signatures, also with none surpassing the cosine similarity threshold

Table 3: Results for Synth5 (true K = 5)

6.1.3 Federated Setting with 60-20-20 Partition (3 Clients).

NMF results. Federated NMF with a 60-20-20 partition of the
dataset identified 1 signature using the MSE loss function and 2
signatures using the KL divergence loss function with a cosine
similarity threshold of 0.95. In this case, the computation times for
both loss functions were nearly identical, differing by approximately
three seconds.

When the cosine similarity threshold was increased to 0.99, nei-
ther method was capable of finding matching signatures.

AE results. Unfortunately, as part of performing the experiments
with the federated AE we encountered an issue on aggregating local
models trained on local datasets of different dimensions. This led
to the central server being unable to perform the aggregation as
intended and send the updated global model to the clients for the
next round. These results would have been ideal to examine the
impact of local models trained on different sized datasets on the
global model. Based on these, we would be able to see for each
round how well local models train and extract signatures compared

of 0.8. These findings suggest that while the AE is able to identify a
set of preliminary signatures, it did not achieve high cosine similarity
scores with the current threshold.

When examining the extracted signatures, it is noteworthy that the
highest cosine similarity match observed was the cosmic signature
SBS34 [2], with a cosine similarity of 0.66 using the MSE loss
function and a cosine similarity of 0.65 using the KL divergence
loss function. Conversely, the lowest cosine similarity match was
the cosmic signature SBS17b [1], with a similarity score of 0.203.

NMEF results. Federated NMF on a real dataset with even partition-
ing determined a component value of 95, indicating the identification
of 95 signatures. However, five of these 95 signatures had a cosine
similarity of 0.8.

AE results. When running the federated AE on the WGS PCAWG
dataset, we found that the choice of loss function had a significant
impact on the result. Here, when running the AE with the MSE
loss function it extracted a single signature above the designated
cosine similarity threshold of 0.80. Compared to its counterpart in
the centralized setting, the results show an increase in performance
in terms of accuracy in a federated setting.

Throughout the training of the federated AE we noticed that
the training loss was not improving when using the KL divergence



loss method. The loss would remain stable regardless of number of
runs for locally training the federated AE and despite getting the
benefit of receiving the global model. This could be connected to
the significant difference in number of extracted signatures between
using MSE loss function and KL divergence loss function.

Centralized | Loss CT Found | >0.8 | >0.95
NMF MSE | 5184.58 95 5 0
NMF KL | 4785.32 98 6 0

Table 5: Summation of results, real dataset, uneven partitioning

6.2.2 Federated Setting with 60-20-20 Partition (3 Clients).

NMF results. Federated NMF on a real dataset with an uneven
partitioning determined a component value of 95, indicating the iden-
tification of 95 signatures. However, only 5 of these 95 signatures
had a cosine similarity of 0.8.

6.3 Summary of Findings

While the federated methods maintains comparable accuracy to the
centralized methods in identifying mutational signatures from a
synthetic dataset, they incur a higher computation time due to the
overhead associated with federated learning. This demonstrates the
trade-off between computation time and data privacy when training
a shared model on data not accessible in a centralized setting. This
could be a key consideration when choosing between centralized
and federated approaches for mutational signature extraction.

6.3.1 Comparison of Methods. To effectively compare the meth-
ods for extracting mutational signatures, we assessed their perfor-
mance using different component ranges and loss functions on both
synthetic and real-world datasets.

Component range for real vs. synthetic data. In the experiments,
the component range varied between the synthetic and real datasets.
For the synthetic dataset, we tested component ranges from two
to ten, given the controlled nature and known complexity of the
dataset (true K = five). However, for the real-world WGS PCAWG
dataset, the component range was extended to 2 to 100 to capture
the potentially higher complexity and variability inherent in real
genomic data.

NMF vs. AE.

o NMF (Non-negative Matrix Factorization):
— Synthetic Data: NMF demonstrated robust performance
in the centralized setting, accurately identifying the ma-
jority of signatures with high cosine similarity (e.g.,
five out of five signatures with KL and MSE loss). In
the federated setting, the accuracy slightly decreased
but remained competitive.
— Real Data: NMF identified a large number of prelimi-
nary signatures, with nine signatures for KL and eight
for MSE meeting the cosine similarity threshold of 0.8.
Federated NMF provided comparable results, but was
able to find fewer signatures above the threshold.
e AE (Autoencoder):

— Synthetic Data: AE identified a large number of prelim-
inary signatures but struggled to achieve high cosine
similarity matches. This pattern persisted across both
centralized and federated settings.

— Real Data: AE’s performance was lower compared
to NMF, with no signatures exceeding the 0.8 cosine
similarity threshold. The federated AE showed similar
trends but required more computational resources due
to communication overhead.

Federated vs. Centralized Approaches. While centralized ap-
proaches generally provided higher accuracy, federated methods
demonstrated significant potential, particularly for NMF. The fed-
erated setting introduced some loss in performance, likely due to
data partitioning and communication overhead, but it also offered
advantages in scenarios where data sharing is restricted. The fed-
erated AE faced challenges in model aggregation, especially with
varying dataset sizes, which highlighted the need for further research
in optimizing federated learning frameworks for such tasks.

6.3.2 Impact of Data Partitioning. We analyzed the performance
under two partitioning strategies: even partition (3 clients) and 60-
20-20 partition (3 clients).

Even Partitioning. With an even partitioning strategy, each client
received an equal portion of the dataset. This approach generally
led to better performance in federated learning, as evidenced by the
federated NMF:

o Federated NMF: Even partitioning allowed for more bal-
anced training across clients, resulting in higher accuracy
and more signatures meeting the cosine similarity thresh-
olds.

Uneven Partitioning (60-20-20). The 60-20-20 partitioning strat-
egy, where one client received a larger portion of the dataset than the
others, highlighted the challenges of imbalanced data distribution:

o Federated NMF: The accuracy decreased under this parti-
tioning strategy. The imbalance likely led to less effective
training for clients with smaller data portions, impacting
the overall model performance. In the synthetic dataset, this
strategy resulted in fewer high-similarity signatures.

Key Observations.

o Balanced Data Distribution: Ensuring an even distribution
of data across clients is crucial for maximizing the effec-
tiveness of FL methods. Balanced data partitioning leads
to more uniform model updates and better overall perfor-
mance.

e Communication Overhead: FL introduces additional com-
putation time due to communication overhead between
clients and the central server. This was evident in the in-
creased computation times for federated AE and NMF.

o Signature consistency: Out of the five signatures identified
in the FL setting with both even and uneven partitioning on
real data, three of these signatures were also found in the
centralized version with a cosine similarity threshold of 0.8.
This overlap suggests that federated learning can achieve
comparable accuracy to centralized methods in identifying



key mutational signatures, despite the challenges posed by
data partitioning.

7 DISCUSSION

In this study, we research the challenge of adapting NMF and
autoencoder-based methods for mutational signature extraction to a
FL setting, addressing the complexities of decentralized data sources.
We aimed to evaluate the performance of a FL system employing
NMF and AE in comparison to traditional centralized approaches.

Our research builds upon existing methodologies by extending
them to federated settings, where data privacy and decentralization
are paramount concerns. While previous studies have primarily fo-
cused on centralized learning approaches, our work explores the
potential of federated learning in genomic data analysis.

The strength of our approach lies in its integration of NMF and
autoencoder-based methods into a federated learning system, offer-
ing a privacy-preserving alternative to centralized approaches. How-
ever, challenges remain in ensuring the scalability and efficiency of
these techniques in federated settings, particularly when dealing with
extensive genomic datasets. Additionally, the adaptation of NMF
and autoencoders to decentralized environments requires careful
consideration of data distribution and communication overhead.

7.1 Poorly Trained Local Models

One of the notable challenges we observed was that the performance
of the global model could suffer from the aggregation of a poorly
trained local model. When all of the clients finished their local
training, a potential scenario was that a locally trained model would
perform worse than the global model. There was no mechanism for
handling poorly trained local models resulting in a worse global
model being distributed for the next round to the clients. Addressing
this challenge is important for achieving efficient training of global
models in federated learning settings.

To mitigate the impact of poorly trained local models, several
approaches can be researched. Implementing an adaptive weighting
mechanism, where the contribution of each locally trained model
to the global model is based on its performance. For instance, local
models that achieve higher accuracy or lower loss on a validation
set can be assigned greater weight during aggregation, ensuring that
well-performing models have a more significant impact on the global
model. In the case of our proposed framework, this would involve
implementing a custom strategy on the central server to handle this
aggregation.

7.2 Hyperparameter Tuning in Federated
Learning

In FL, hyperparameter tuning presents a unique challenge due to
the decentralized nature of training data and computation. Unlike
centralized settings where the entire dataset is available for train-
ing of the model, FL involves training models across a network of
clients, each with its own local dataset and computation resources.
Each client operates under stringent privacy constraints, limiting
the frequency and the scope of data access. Consequently, hyperpa-
rameter tuning algorithms must be able to overcome the challenge
of optimizing model performance with minimal data availability.

For this, it would be necessary to determine where in the setting to
optimize the hyperparameters and how.

Hyperparameter tuning in FL can be approached by optimizing
both local training and global aggregation parameters. The objective
would be to minimize the over loss across all clients by adjusting
the hyperparameters such as learning rates, the number of local
training epochs, and aggregation strategies. For this project, we
employ a fixed set of hyperparameters for the local models. These
hyperparameters include a learning rate of 1e—3, 500 local training
epochs, a batch size of 8 and a latent dimension of 200. This is based
on the SEEF [28] framework for extracting mutational signatures
in a centralized setting. Here, the hyperparameters were based on
a combination of anecdotal observations and the use of the tool
Optuna [4].

7.3 Cosine Similarity Threshold

During the testing of the federated approach against the centralized
approach, it was observed that both settings identified the correct
number of components and signatures when using the best signatures
with a cosine similarity greater than 0.95. This indicates that the
federated approach is capable of finding the same signatures as the
centralized approach. However, due to the rounds of aggregation in
the federated setting, achieving the > 0.99 cosine similarity threshold
becomes more challenging.

When reviewing other studies that use cosine similarity to mea-
sure mutational signatures, values between 0.80 [25] and 0.95 [11]
are commonly reported. This suggests that the federated approach,
while slightly less accurate than the centralized approach, performs
comparably well given the same amount of data.

When dealing with real data, it is challenging to achieve a cosine
similarity threshold of 0.95 with the COSMIC database, as the input
data used to create the COSMIC signatures differs from the real data
being analyzed. Therefore, a lower cosine similarity threshold, such
as 0.8, is more appropriate for approximating the comparison to the
real signatures.

8 CONCLUSION

In this study, we proposed a federated learning system utilizing NMF
and AE as mutational signature extraction methods while achieving
competitive results compared to centralized learning. We managed
to sucessfully extend mutational signature extractions methods to a
federated learning setting and compare the performance of these to
ones in a centralized learning setting. Our results show that the feder-
ated learning setting has a minimal loss in performance compared to
the centralized learning setting but at an increased computation time.
In addition, the mutational signatures are extracted while preserving
privacy of the original data residing on each client. Our approach
may be a practical solution of training high quality models on data
guarded by privacy restrictions.

However, our research also highlights the need for further research
to address the efficiency challenges associated with federated learn-
ing on large-scale genomic datasets. Future studies could focus on
refining federated learning algorithms to optimize computation time
and resource utilization without compromising model performance.

In conclusion, our findings demonstrate the potential of federated
learning as a privacy-preserving approach for collaborative model



training across decentralized data sources. By extending mutational
signature extraction methods to a federated learning framework, we
can facilitate improved collaboration among legal entities such as
healthcare institutions, all while upholding the privacy of patient
data.

9 FUTURE DIRECTIONS

This section outlines the directions for further investigation in the
domain of mutational signature extraction in a federated learning
setting.

9.1 Local Hyperparameter Tuning

By focusing on hyperparameter tuning in a federated learning setting,
researchers can explore techniques to optimize the local hyperpa-
rameters of clients. Currently, we set the hyperparameters uniformly
across all clients, but there is potential to enhance model perfor-
mance by allowing each client to adapt its hyperparameters to its
own local data characteristics and computational resources.

One approach for future researchers could be to develop optimiz-
ing algorithms that adjust hyperparameters for each client based on
its local dataset and computing capabilities. These algorithms should
consider factors such as the distribution of the data, the amount of
available computation, and the specific learning dynamics of each
client’s dataset. By optimizing the hyperparameters to individual
clients, the overall performance of the federated model could be
improved.

9.2 Handling Aggregation of Local Models
Trained on Different Sized Local Datasets

In the current version of our framework, we were unable to train
and extract mutational signatures in a federated learning setting
where the local datasets are of different dimensions. One potential
direction is to develop adaptive aggregation techniques that can
accommodate variations in the local dataset sizes. This would enable
fair comparions between different federated learning approaches and
facilitate the identification of effective strategies for handling dataset
dimension discrepancies.

ACKNOWLEDGEMENTS

We would like to thank our supervisors Daniele Dell’ Aglio and
Rasmus Froberg Brgndum for dedicated supervision and guidance
throughout this project.

CODE AVAILABILITY

The source code can be found at https://github.com/dunkedolmer/
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