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Renal cell carcinoma (RCC) is the most common type
of kidney cancer, accounting for 90% of all cases. Un-
derstanding RCC’s onset, progression, and response to
treatments is critical to improving patient outcomes. Sur-
vival Analysis, a branch of statistics, provides essential
tools for examining time-to-event data, which is pivotal
in these efforts. However, the high-dimensional nature
of medical data, particularly transcriptomic data, poses
significant challenges for traditional regression methods.

In this study, we utilized data from the JAVELIN Re-
nal 101 trial, a randomized phase 3 trial comparing the
efficacy of two treatment arms: an immunotherapy regi-
men (avelumab + axitinib) and a tyrosine kinase inhibitor
(TKI) named sunitinib. This trial aims to measure how
long the cancer does not progress after treatment. Each
patient’s data includes detailed transcriptomic profiles,
which quantify RNA transcripts produced from each gene,
reflecting gene expression levels in tissues. This informa-
tion is crucial because certain gene expressions are closely
linked to cancer development.

Patients are assigned a Progression-Free Survival (PFS)
value, indicating the duration they remain without cancer
progression, and a censoring value, which notes if they
left the study early for reasons unrelated to the primary
endpoint. The high-dimensionality of this dataset, com-
bined with a relatively small sample size, necessitates
advanced techniques for dimensionality reduction. To
address this, we employed autoencoders to compress the
data into latent, meaningful features.

We utilized several metrics commonly employed in
Survival Analysis to evaluate our models. These include
the Concordance Index (C-index), which measures rank
correlation between predicted risk scores and event times,
and the time-dependent area under ROC, which evaluates
the true positive rate against the true negative rate at
various time points. To derive risk scores, we applied
the COX Proportional Hazards model, a semi-parametric
method that assumes the effect of features on the hazard
is constant over time. However, as this model cannot
directly estimate survival functions, we used Breslow’s
estimator, a non-parametric approach, to estimate these
functions and predict PFS.

Given the complexity and perceived opacity of neural
networks, especially autoencoders, we incorporated in-
terpretability into our models by analyzing the mutual
information between the original genes and the latent
representations. This step helps to clarify which genes
are most represented in the latent variables, making the
models more transparent and their results more under-
standable.

Our preprocessing steps involved several key actions:

removing genes expressed only in a small subset of pa-
tients, filtering out incomplete histological characteristics,
and selecting genes specific for CCR. We normalized the
transcriptomic data based on the highest expressed gene
to ensure consistent scaling across the dataset.

We developed two types of autoencoders: the tabular
autoencoder, which processes data in a tabular format
and independently encodes and decodes features, and
the graph autoencoder, which processes data through a
graph where edges represent protein-to-protein interac-
tions (PPI). For each autoencoder type, we tested multiple
penalties:

• Denoising Penalty: Adds noise to input data to im-
prove generalization.

• Sparse Penalty: Penalizes large activations to ensure
meaningful feature extraction.

• Variational Penalty: Fits latent representations to a
Gaussian distribution, making the model generative.

• Combined Penalties: Investigates the effects of com-
bining denoising and sparse penalties.

The PPI network for the graph autoencoder was con-
structed using kidney-specific interactions, filtered to in-
clude only RCC-relevant genes. We performed thorough
graph analysis to ensure a well-connected network with-
out loose components.

Our results indicate that autoencoders can effectively
compress high-dimensional data into latent features. The
tabular autoencoder excels in data reconstruction be-
cause it treats genes independently. In contrast, the
graph autoencoder, while constrained by the network’s
specifics, better captures the biological relevance of the
data. Among the penalties, the denoising penalty was
most effective for reconstruction, while the sparse penalty
yielded the most meaningful latent features and the most
accurate predictions. Variational autoencoders were less
effective due to the constraints imposed by fitting to a
specific distribution.

In terms of predictive performance, the graph autoen-
coder generally outperformed the tabular autoencoder,
likely because it leverages significant biological interac-
tions in the PPI network. The sparse penalty, in particular,
identified meaningful representations, resulting in the
most accurate predictions.

Our interpretability analysis highlighted the genes
most frequently associated with the significant latent fea-
tures identified by the COX model. Genes such as LRP2,
NAT8, ACE2, CYP4A11, and EMX2 were found most fre-
quently in our latent features, underscoring their potential
importance in RCC.
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This research demonstrates that autoencoders are pow-
erful tools for handling high-dimensional medical data
and can be effectively combined with statistical models
to enhance data compression and regression tasks. The
study also emphasizes the importance of selecting appro-
priate penalties based on the specific task and incorpo-
rating interpretability to better understand the models’
results. While our focus was on RCC, the methodology
can be extended to other medical fields, showcasing its
versatility.

Future work could involve validating our results with a
new cohort of patients, exploring other statistical methods
such as parametric modeling, and enhancing interpretabil-
ity and visualization techniques to gain deeper insights
into the data. By continuing to refine these approaches,
we can improve the accuracy and applicability of pre-
dictive models in various medical contexts, ultimately
benefiting patient care and treatment outcomes.
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Abstract

Survival analysis heavily impacts the study of diseases by providing statistical methods and metrics to analyze
time-to-event data, crucial in understanding disease progression and the effectiveness of treatments. However, in
the medical domain, the data is often high-dimensional, complicating the regression of such methodologies. For
this reason, in this work, we have focused on compressing the high-dimensionality found in the transcriptomic
data of patients treated with an immunotherapy (avelumab + axitinib) and a TKI (sunitinib) into latent, mean-
ingful features using autoencoders. We then applied a statistical methodology based on the COX Proportional
Hazards model, a semi-parametric approach, combined with Breslow’s estimator to determine the survival
functions of the patients and predict each patient’s Progression-Free Survival (PFS). We extensively analyzed
different penalties as well as their combinations. Due to the nature of the transcriptomic data, we extended the
model to accept not only tabular data but also its graph variant, where the edges represent protein-to-protein
interactions between genes, which proved to be a more meaningful approach. Finally, since neural networks,
and especially autoencoders, are often seen as black boxes, we worked on interpretability by identifying the
mutual information between the genes in the original data and the representations of the latent features. This
approach attempts to clarify which genes are most presented in which latent variables. Our results show that
certain types of autoencoders are more relevant depending on the situation. To obtain accurate reconstruction,
denoising autoencoders prove useful. To find meaningful representations of the data, the sparse variant is the
best option. Moreover, these penalties can be combined to achieve both accurate representations and meaningful
latent features. The interpretable models also suggested that genes such as LRP2 and ACE2 are highly related to
renal cell carcinoma. We present this work as extensive research demonstrating the usefulness of autoencoders
in high-dimensional problems.

1 - Introduction

Kidney cancer is the 12th most common type of cancer
worldwide, accounting for 2.4% of all cancers, with over
330.000 new cases every year. Renal cell carcinoma (RCC)
is the most common type of kidney cancer, representing
over 90% of all cases [1, 2]. Early diagnosis of RCC
is crucial for effective treatment and reducing mortality
rates [3]. Unfortunately, the risk factors for the disease are
not completely clear yet due to its complexity [4]. There
exist several treatments for this type of cancer such as
immunotherapies, which can be targeted towards certain
cells of the immune system, and chemotherapies, which
target all rapidly dividing cells.

In the treatment process, patients usually undergo clin-
ical trials to evaluate the safety and efficacy of new ther-
apies or drug combinations. These trials are critical for
advancing medical knowledge and improving treatment
options for future patients. During this procedure, doc-
tors measure the Progression-Free Survival (PFS) of a pa-
tient, the amount of time for which the patient’s condition
has not reached a certain event, such as death. Moreover,
when the patient’s monitoring is cut short, they may get
a censored PFS value, indicating that we do not know the
exact time when the event occurred [5]. Survival analysis
focuses on predicting the PFS of newly arrived patients
based on available treatments.

Patients are mainly described by transcriptomic data,

which are positive continuous variables representing the
frequency of gene expression in their system. Gene ex-
pression profiling is an effective technique to measure
the expression of genes in the cells, especially during the
onset of cancer [6].

An effective solution to predict the survival of a patient
for a specific treatment is to use statistical methods, such
as regression models. These models can integrate a series
of covariates and learn coefficients based on the impor-
tance of the features. However, these methods are often
employed on low-dimensional data [7].

Due to the amount of genes in the human body, how-
ever, the data becomes high-dimensional, especially com-
pared to the low number of patients (or samples) in the
trial. An efficient way to handle high-dimensional data
is through the use of dimensionality reduction. In this
regard, machine learning offers a variety of useful method-
ologies, from which we can highlight autoencoders. Au-
toencoders compress data into lower-dimensional rep-
resentations while retaining essential features, which
can prove an interesting method for transcriptomic data.
While PCA is an effective method of dimensionality re-
duction, in a low sample setting with complex data,
where non-linear relationships are present, non-linear
approaches are more suitable.

An important characteristic in transcriptomics is the
interaction between genes. These are called protein-to-
protein interactions (PPI) and they give information on
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which genes are related to eachother. These interactions
can be represented in a network where genes are no
longer independent from eachother and information flows
through these interactions. Graph autoencoders can be
assimilated with this type of data to make meaningful
representations.

Aside from making predictions, machine learning mod-
els are often seen as a black box. No matter how precise
a regression model is, it is crucial to know how it inter-
preted the data and made a certain choice. Therefore, we
decided to analyze the latent representations obtained by
the autoencoder through the use of mutual information,
an information theory technique.

Current works have been elaborated following a similar
path. On the one hand, regression analysis was employed
using a semi-parametric model called COX Proportional
Hazards for survival analysis of pancancer patients. The
number of genes chosen for the work was low, as statisti-
cal models are sensitive to high-dimensional data [8]. On
the other hand, other works used machine learning tools
such as autoencoders on lung cancer survival scenarios,
however only the denoising variant was employed, which
also lacked interpretability [9].

As such, the main goal of this work is an exploratory
and interpretable analysis of different autoencoders in
predicting an accurate PFS for new patients treated with
either avelumab and axitinib, an immunotherapy; or suni-
tinib, a tyrosine kinase inhibitor (TKI), a pharmaceutical
drug targeted towards angiogenesis.

The structure of the presented work is as follows: in
Section 2, we will provide a formal description of the
problem we intend to address. Following that, in Section
4, we will elaborate on the methodology utilized to solve
the problem. Section 5 will detail the results achieved
through the application of the methodology, and in Sec-
tion 6, we will discuss these findings. Lastly, Section 7
will draw conclusions from this work and emphasize the
highlights of the report.

2 - Problem Definition

Patients participating in the current study are character-
ized by transcriptomic, clinical and histologic data. On
the one hand, patients are characterized by their whole
exome sequencing, a technique that indicates how ex-
pressed, or how frequent, a gene is in the patient. On
the other hand, some measurements obtained clinically
and histologically can also indicate the status of a patient,
such as the size of the tumor before any treatment is ap-
plied. As such, let X ∈ RN×M, the dataset representing
renal-cell carcinoma patients, where N is the number of
patients, and M is a mixture of genetic features: the ex-
pression of each gene in each patient and clinical features.
While clinical features vary in what they measure, the
expression level of a gene g is always such that g ≥ 0.
The dataset is inherently high-dimensional feature-wise
since the amount of features that characterize each pa-
tient surpasses the number of patients that are included
within. Moreover, let the matrix Y ∈ RN×2 regarding

survival data, where each patient ni ∈ [0, N] holds a pair
of values (yi, δi), representing the patient’s Progression
Free Survival (PFS) and censoring value, respectively.

Definition 2.1 (Censoring Event for a patient)
Censoring in a patient, denoted by δi ∈ {0, 1}, is a bi-
nary indicator reflecting whether the endpoint (event) has
been observed. In the context of renal-cell carcinoma, δi = 1
indicates that the i-th patient did not show progression of
cancer during treatment.

Definition 2.2 (Progression-Free Survival (PFS)) The
PFS for a patient, represented as yi ∈ R, measures the duration
in months during which no cancer progression is observed.
This metric is influenced by the censoring status δi of the i-th
patient, as it considers potential future events for those not
reaching the endpoint during the study and can be interpreted
as:

yi =

{
t if δi = 1

c if δi = 0

where t is the event time when an event occurred, and c the
time of censoring.

These definitions are fundamental in survival analysis,
as they provide insights into whether and when a patient
experiences the key event of interest. The goal is that,
given a new patient j with data Xj, we want to predict
the PFS value in Yj.

Our models will utilize these data points to forecast
outcomes, assessed using various metrics including the
Concordance Index (C-index) and the Area Under the receiver
operating characteristic Curve (AUC).

Definition 2.3 (Concordance Index (C-index)) The C-
index measures the rank correlation between predicted risk
scores f̂ and event times y. Let the comparable pairs CA and
the concordant pairs CB for any pair of samples (i, j) be such
that:

CA = {(i, j) | yj > yi ∧ δi = 1}
CB = {(i, j) ∈ CA | f̂i > f̂ j ∧ yj > yi}

where CA represents the pairs for which we know at least
there is one sample with a smaller observed event time, and
CB those pairs in CA whose assigned risks correlate with the
survival times of the samples. Then, the C-index is obtained by
computing the ratio of their cardinalities:

Cindex =
|CB|
|CA|

Definition 2.4 (Time-dependent area under ROC) The
time-dependent ROC is an extended version of the original
ROC, used to evaluate the discriminative capability of a model
at a specific time t, given the predicted risks f̂ . Given their
survival times yi, we group patients into cumulative yi ≤ t
and dynamic yi > t cases. We then compute the true positive
rate over the cumulative cases, and the true negative rate
over the dynamic cases, using f̂i ∈ f̂ as threshold. We obtain
the time-dependent ROC, from which we can compute its
area under the curve to obtain an overview of the model’s
performance at instant t.
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Both the C-index and the AUC are metrics for eval-
uating survival analysis models. The C-index gauges
overall performance, while the AUC identifies specific
time points of predictive weakness.

With these foundational concepts, we explore the fol-
lowing challenge.

Problem 2.1 (Accurate PFS prediction for RCC data)
Given a dataset X characterized by low sample size, censoring
and high dimensionality with renal-cell carcinoma data, our
objective is to derive meaningful low-dimensional embeddings
through the use of autoencoders that report on accurate PFS
predictions and satisfactory C-index and time-dependent area
under ROC.

3 - Background

In this section we go over a series of autoencoders, both
differing in the type of data they compress, tabular and
graph data, as well as different penalties such as the
denoising penalty to improve the generalization, or the
sparse penalty to obtain meaningful representations. We
also introduce statistical methods such as COX Propor-
tional Hazards and Breslow’s estimator which were used
to predict the risks and PFS of the patients.

3.1 Autoencoders
An autoencoder is a neural network designed to repre-
sent high-dimensional data in a lower-dimensional space.
It operates under the assumption that high-dimensional
data reside in or near a low-dimensional manifold within
the input space [10]. Autoencoders consist of two compo-
nents: an encoder fe that compresses the data x ∈ Rd into
a low-dimensional representation z ∈ Rp (where d > p),
and a decoder fd that performs a reconstruction x̂ ∈ Rd

from z. These components are trained to minimize a loss
function that measures the quality of the reconstruction
[11, p. 677]:

L( fe, fd, x) = (x̂ − x)2 = ( fd( fe(x))− x)2

Standard autoencoders can be extended to regularized
variants in order to achieve specific tasks such as a better
generalization or more meaningful representations. [12]

The first such variant is the denoising autoencoder
[13], which introduces a controlled amount of noise ϵ ∼
N (0, 1) to the input, yielding a noisy version x̃ = x + ϵ.
The reconstruction loss is then adapted to accommodate
the noisy data, in order to minimize:

L( fe, fd, x) = ( fd( fe(x̃))− x)2

This process enhances the autoencoder’s ability to gener-
alize from variations of the input data [13].

The second variant is the sparse autoencoder [14], which
aims to reduce as much as possible the magnitude of
the weights used in the neural network. This variant
can be applied in two different ways: by using ℓ1/ℓ2
regularization or KL divergence. While the former are

straightforward and drive the weights towards zero, the
latter encourages the activation distribution to follow a
certain distribution of our choice, becoming the better
option. [15] The KL divergence penalizes the divergence
between the activations of the hidden layers qk and a
target distribution ρ. This penalty can be written as:

Ω(x, fe) = λ · ∑
k

KL(ρ∥qk)

The third type of regularization is the variational au-
toencoder [16]. This unique variant regularizes the latent
space, making it continuous and making the model gen-
erative. Instead of mapping the input data to a latent
space, the variational autoencoder finds the underlying
distribution of the data, and then samples from it using
the reparameterization trick. [16] The penalty term that
allows for this regularization is called the divergence loss
and can be written as

Ω(z, q, p) = KL(q(z)∥p(z|x))

where q(z) is the approximate posterior distribution and
p(z|x) is the true posterior distribution.

These variants can be combined to further enhance
latent representations [17].

Additionally, autoencoders are applicable to graph-
structured data. Graph Autoencoders (GAE) take a graph
G = (V, E), with V as nodes and E as edges, and
A ∈ RN×N as the adjacency matrix. The aforementioned
regularization techniques are also viable in GAEs, target-
ing either the graph’s features, its adjacency matrix, or
both [18].

3.2 Statistical approaches
Utilizing statistical methods allows us to make inferences
and predictions regarding the survival of new patients.
This survival is characterized by a survival function S(t),
which models the probability that an event has not oc-
curred by time t, and a hazard function h(t), the instanta-
neous likelihood of an event occurring at time t since no
event has occurred before time t. The choice of method
depends on the distribution of the data. Given the com-
plex nature of RCC data and the lack of assumptions we
can make about its distribution, semiparametric models,
particularly the COX Proportional Hazards (PH) model,
are suitable choices.

In the context of the COX PH model, the survival and
hazard functions are defined as follows:

S(t) = S0(t)exp(X·β)

h(t|X) = h0(t) exp(X · β)

where β is an array of coefficients associated with the
covariates X, S0(t) is the baseline survival function, and
h0(t) is the baseline hazard function.

A significant advantage of the COX PH model over
other models is that to find the hazard ratio between
patients, h(t|pA)

h(t|pB)
, we can omit h0(t). This allows us to
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determine the risk between patients without making as-
sumptions about h0(t).

Estimating the survival function S(t) for a patient in-
volves estimating S0(t) = exp(−H0(t)), where H0(t) is
the baseline cumulative hazard function. We can use
Breslow’s nonparametric estimator to estimate H0(t) and
thereby S(t) [19].

The COX PH model has a regularized variant that
incorporates both Lasso (ℓ1 norm regularizer) and Ridge
(ℓ2 norm regularizer) penalties, combined to form an
Elastic Net, which is beneficial for feature selection. [20]

The Elastic Net formulation is given by:

λ

[
α

P

∑
p=1

|βp|+
1
2
(1 − α)

P

∑
p=1

β2
p

]

where λ is the regularization parameter controlling the
overall strength of the regularization, α gauges the bal-
ance between the ℓ1 and ℓ2 regularizations, P is the total
number of features, and β are the coefficients obtained in
the COX PH model.

4 - Materials and Methods

In this section we will go over the data we used and
how we preprocessed it, as well as the creation of the PPI
network that is to be integrated in the graph autoencoder.
Finally, we will explain the design choices we have taken,
as well as the implementation of the autoencoders and
the statistical models.

4.1 Data Preparation

Data description The data used in this study are derived
from the JAVELIN Renal 101 trial [21], a randomized
phase 3 trial. The primary aim of this trial is to investigate
and compare the efficacy between two treatment arms: an
immunotherapy regimen involving avelumab and axitinib,
and a tyrosine kinase inhibitor (TKI) named sunitinib.
The trial included 886 eligible patients, all diagnosed with
previously untreated renal cell carcinoma, over 18 years
of age, and randomly assigned to the immunotherapy or
sunitinib treatment arm. Of these 886 patients, 726 have
transcriptomic measurements consisting of 22,955 genes,
represented by positive real values.

Additionally, there are six histology measurements
available for the patients. These measurements include
metrics such as the percentage of cancer cells in the tumor
area and the number of infected cells in the invasive mar-
gin. It is crucial to note that all these measurements are
taken prior to treatment, ensuring they are not influenced
by the treatment itself. Furthermore, demographic infor-
mation, including the patient’s age, sex, Progression-Free
Survival (PFS), and censoring status, is also recorded for
each patient.

Both treatment arms are similar in all respects: there
are 354 patients in the avelumab+axitinib treatment arm,
of which 157 (44.35%) are censored. In the sunitinib

Figure 1: (a) Genetic distribution and (b) PFS distribution
among treatment arms

treatment arm, there are 372 patients, with 171 (45.96%)
censored.

Figure 1a displays the genetic data distribution for
each treatment arm, showing that both distributions are
very similar and should not introduce any bias in the
model’s predictions. Similarly, Figure 1b illustrates the
PFS distribution for each treatment arm, which is also
very similar, further indicating that the two groups are
comparable.

Data filtering and preprocessing The JAVELIN Renal
101 trial dataset contains a total of 22,955 genes. Many
of these genes are irrelevant to the development of the
disease or are expressed only in a small subset of patients.
This introduces noise that can complicate the model’s
inference based on the overall genetic expression of the
patient.

To reduce this noise, several filtering steps were ap-
plied:

1. Gene Filtering: Genes specific to certain individuals,
characterized by low expression in most patients and
higher expression in a small subset, were removed.
Let G be the set of genes expressed in each patient,
and Xg be the expression for a gene g ∈ G. The
genes removed satisfied the following condition:

∀g ∈ G :
(
median(Xg) < 2 & Q3(Xg) < 4

)
This means that genes with a median expression
lower than 2 and an upper quartile lower than 4
were excluded.

2. Integration of Histology Features: Since the his-
tology features available were all pre-treatment,
they were integrated to enhance the statistical
model’s inference. Out of the seven histology
features, only two were measured in all pa-
tients: he_tumor_cell_content_in_tumor_area and PD-
L1_total_immune_cells_per_tumor_area, measuring the
percentage of cancer cells and the number of PD-L1+
cells in the tumor area, respectively. Only these two
features were included to avoid further reducing the
sample size.

3. Selection of RCC-Specific Genes: To further re-
fine the dataset, genes specific to renal cell carci-
noma (RCC) were selected using DisGeNET [22],
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a platform that aggregates information on human
disease-associated genes and variants. Gene-disease
associations were queried for RCC (CUI: C0007134)
and three related conditions: conventional (clear
cell) RCC (CUI: C0279702), hereditary RCC (CUI:
C2608055), and familial RCC (CUI: C2931352). This
resulted in a total of 4,447 gene-disease associations
(GDAs), corresponding to 2,582 unique genes, rep-
resented in symbol format, a type representation for
genes. When intersected with the original expression
data, the total number of relevant genes was reduced
to 2,403.

We also applied several pre-processing steps. Regard-
ing the features, which consist of genetic and histology
variables, we normalized the genetic expressions based
on the maximal global expression value. This is because
transcriptomics is based on counting, ensuring that vari-
ations in gene expression levels are accounted for. For
the histology variables, traditional normalization was ap-
plied.

As for the labels, since the PFS value is measured in
months, we converted it to trimesters to facilitate better
clinical analysis.

As a result of preprocessing, we ended up with 726
patients, 354 in the avelumab+axitinib arm, and 372 in the
sunitinib arm, where each patient has 2,403 genes.

4.2 Protein to protein interaction network

Figure 2: Visualization of the pipeline to create the PPI networks
associated to each patient.

Having obtained a relevant set of genes associated with
the disease, we decided to build a PPI network, a graph-
ical representation of the physical interactions between
proteins within a biological system. This representation
is intended to give context to the model on how informa-
tion flows through the different genes in our dataset. We
obtained the PPI data from PPT-Ohmnet, an interaction
network from the Stanford Network Analysis Platform
(SNAP) [23]. PPT-Ohmnet has a collection of physical PPI
networks across different human tissues. In this network,
proteins are represented as nodes, and the edges are the
physical interactions between proteins.

Given the nature of RCC, we selected the sub-network
that includes only kidney tissues. This subnetwork con-
sists of 3,304 nodes and 52,126 edges. Due to the network
being generic to the kidney, we still needed to perform fea-
ture selection to only obtain those genes relevant to RCC.
As such, using the 2,403 genes obtained in Section 4.1, all
relevant to RCC, we retrieved the related kidney-specific
interactions, removing self-loops and disconnected com-
ponents smaller than five nodes, as shown in Figure 2.
Genes in PPT-Ohmnet are represented in Entrez ID for-
mat, a different form of representation than the genes
queried from DisGeNET. For this reason, we translated
between different gene representations using a library
called mygene [24].

We retrieved 837 nodes. Given the limited number
of nodes, we created a recursive neighbor lookup with
a depth of 3 to add similar genes to the gene pool us-
ing breadth-first search. This resulted in a PPI network
consisting of 2,870 nodes, where each node holds the
expression level of a given gene.

We performed a graph analysis to ensure that no mean-
ingful bridges existed within the graph. A bridge would
indicate that the graph is comprised of two or more large
components, affecting the flow of information. Addi-
tionally, we calculated the betweenness and closeness
centralities of the graph, producing a mean and standard
deviation of 5.90 × 10−4 ± 0.02 and 0.37 ± 0.04, respec-
tively. A betweenness of 1 would suggest that a path in
the network has a large influence on the flow of informa-
tion, and a closeness of 1 would indicate that nodes are,
on average, very close to each other. These values indicate
that we have an interconnected graph with multiple paths
where information can flow and where all nodes are not
adjacent to eachother.

With the PPI network ready, we created one for each of
the 726 different patients. The networks between patients
are identical except for the node attributes, which hold
different expression levels for each gene, depending on
the patient. In addition, the graphs are attributed with
the histology features aforementioned for each patient.

4.3 Design

The models developed for this work all follow the same
pipeline, seen in Figure 3. They compress the data using
an autoencoder, and once the representation is learned,
the latent representation is fed to the COX PH model,
which computes the hazard ratios of the patients and re-
turns the coefficients assigned to each feature. This model
is combined with Breslow’s estimator [19] to estimate
survival functions for prediction.

The key difference between the models lies in the type
of autoencoder used. Two different autoencoders were
developed for this work: (i) a tabular autoencoder, which
considers only tabular data where the genes are not
placed within a context and can be freely combined, and
(ii) a graph autoencoder, which considers the previously
mentioned PPI network and reconstructs the features
based on the context provided by the graph. Both autoen-
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Figure 3: Pipeline for training and evaluating the models. X
represents the genetic and histology data, while Y represents the
set of PFS and censoring values for the patients.

coders compare the Mean Squared Error (MSE) between
the original and reconstructed features.

We incorporated cross-validation (CV) in our model
generation process. During CV, we further divided the
data of the training folds into 85% for training and 15%
for validation. The autoencoders were trained using the
training set, and to prevent overfitting, we evaluated the
models on the validation set. Finally, the remaining fold
was used for testing.

Figure 4: Architecture of the tabular autoencoder.

The architecture of the tabular autoencoder can be seen
in Figure 4. All blocks used combine linear layers in order
to reduce the dimensionality of the input, along activation
functions such as tanh and sigmoid. The sigmoid activa-
tion function was employed in order to obtain a latent
representation with values between 0 and 1, which could
then be concatenated with the histology features, which
are normalized as well.

Additionally, a BatchNorm layer [25] was added to
normalize the data to a mean of 0 and unit variance. This
step significantly improved the generalization process.
Finally, dropout layers, where 20% of weights are set to
zero, were added to prevent the model from overfitting
to the training data.

Figure 5: Architecture of the graph autoencoder.

The graph autoencoder is slightly more complex than
the tabular one. The input graphs, obtained using the Net-
workX [26] library, are processed through a GeneralConv
layer consisting of several message passing layers, which
reportedly yield better results than the default GCN layer
[27].

Similarly to the tabular autoencoder, we add a dropout
layer with a rate of 10%. Once the graphs are processed
through the layer, the information flowed through the
connections present in the PPI network. We then achieve
a compression of the data by using the tabular autoen-
coder defined in Fig. 4. As mentioned in subsection 3.1,
among the different reconstruction options, we chose to
reconstruct the features, as we are particularly interested
in obtaining a representation of the gene expression levels
rather than the connections in the PPI network.

As for the stadistical model, we train the COX PH
model with the latent representation of both the training
and validation sets concatenated, since its implementation
does not include a validation process [28]. We explained
in Section 3 that the elastic net incorporated to the COX
PH model uses a hyperparameter α for regularization. To
find the optimal α, we performed a grid search in the
set [10−4; 10−2], with a step of 2 × 10−4. We keep the α

for which the Concordance Index IPCW is maximal with
the training and validation sets combined. To improve
the regression of the statistical model, we standardize the
data so that it has a mean of zero and unit variance. Once
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the COX model is trained, we use the test set to obtain
the survival functions and the area under the ROC curve,
utilizing the optimal α value identified earlier.

4.4 Implementation

Both autoencoders were implemented with a batch size
of 16 samples, for a total of 100 epochs, with a learning
rate of 1 × 10−4, which decays by a factor of 0.5 every 25
epochs, and latent dimensionalities of 16, 64, 128. Regard-
ing the penalties of the autoencoders, the denoising au-
toencoder applies a noise input of 0.1% to the normalized
data. Adding more noise deteriorates the quality of the
encoding due to the low amount of samples. The sparse
autoencoder uses a regularization strength of 10% and a
parameter ρ of 1× 10−3. To speed up the training process,
GPU compatibility was added to the autoencoders.

For the COX model with elastic net, we used the im-
plementation in the scikit-survival 0.22.2 [28] library, se-
lecting a regularization ratio of α = 0.5 to balance the ℓ1
and ℓ2 regularizations. A grid search was performed to
find the best regularization term λ, within the interval
[10−4; 10−2], with a step of 2 × 10−4. The search focused
on the best concordance index IPCW, a modification of
the original concordance index that provides a better es-
timate when censored data is present [29]. Additionally,
a stratified K-Fold with K = 7 was used to ensure an
equal number of observed samples in both the train and
test sets. Once the COX model returned the coefficients
associated with each covariate, Breslow’s estimator was
used to obtain the survival functions. The PFS prediction
was obtained using the area under the survival function.

Finally, we interpreted the results obtained by the
model. We evaluated the mutual information between
the five latent features with the highest weights, as de-
termined by the semi-parametric model, and the original
transcriptomic data. This evaluation allowed us to identify
the genes most represented within the latent representa-
tions, which were subsequently chosen by the statistical
model.

5 - Experimental Results

5.1 Experiments

We studied how different autoencoder types and penal-
ties performed in predicting PFS and risk scores of new
patients. For both tabular and graph autoencoders, we
evaluated the performance of the sparse, denoising, and
variational penalties, as well as the combination of sparse
and denoising penalties.

For each model, we obtained a series of metrics:

• Autoencoder Reconstruction: Measures how well
the autoencoder can reconstruct the input data.

• MSE between Actual and Predicted PFS: Evaluates
the accuracy of PFS predictions.

• Mean of the Area Under ROC: Indicates the overall
quality of risk assignment by the model.

• Overestimation of PFS Predictions: The percentage
of times the predicted PFS is higher than the actual
PFS of the patient, where 0

The first two metrics are values in the range [0; ∞),
where a value of 0 represents a perfect match in either
the reconstruction or the predictions. The mean of the
Area Under ROC is a value in the range [0; 1], with a
higher value representing better risk assignment by the
model. The overestimation metric indicates how often
the model overestimates the patient’s survival, and thus
a percentage of 0% would indicate that the model never
overestimates the patient’s survival.

Since we are working with autoencoders, we experi-
mented on different latent dimensionalities, specifically
16, 64, 128.

To ensure the validity of the results, we performed a
10-fold cross-validation. We also conducted an analysis
of variance (ANOVA) between the results obtained by
the tabular and graph autoencoders and the different au-
toencoder penalties used, considering a p-value under
0.05 as representing a significant difference. Addition-
ally, we ran the analysis on the different treatment arms
to determine whether the model performed better for
avelumab+axitinib or sunitinib.

5.2 Results
We obtained results for different latent dimensionalities,
specifically L = {16, 64, 128}, to determine how much we
could compress the data without losing valuable infor-
mation. Out of these three dimensionalities, we chose
to elaborate on 64 latent features, not only because of
the significant compression of the original data but also
because the results were very similar to those with higher
dimensionalities.

In Figure 6, we can see the overall results obtained
for L = 64 over 10 folds. We gathered the best results
obtained for each autoencoder type and treatment arm in
Table 1.

Firstly, Figure 6(a) shows the reconstruction loss of the
autoencoder relative to the original transcriptomic data.
Regarding the tabular autoencoders, the reconstructions
over the different folds are very similar, with the best per-
formance by the denoising autoencoder, having a mean
and standard deviation of 43.52± 3.51 in the sunitinib arm.
Meanwhile, the variational autoencoder performed the
worst, with a loss of 86.05± 8.00 in the avelumab+axitinib
arm. The reconstruction performed by the variational
autoencoder was significantly different from the autoen-
coder with no penalty for both the avelumab+axitinib
(p = 1.88e−10) and the sunitinib arm (p = 1.7e−15).

The graph autoencoders did not reconstruct the data
as well as their tabular counterparts, with the best recon-
struction obtained by the denoising variation, achieving
a loss of 50.43 ± 5.30 in the sunitinib arm, and the worst
reconstruction by the variational autoencoder, with a loss
of 87.97 ± 8.05 in the combination arm. As previously
noted, the variational autoencoder was significantly dif-
ferent in both the immunotherapy (p = 1.8e−7) and the

Msc Thesis ∼ Aalborg University (2024) 9



Autoencoders in RCC

Figure 6: Results for (a) reconstruction, (b) mean of the area under ROC, and (c) PFS prediction for each type of autoencoder over 10
folds when L = 64.
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Table 1: Best results obtained for each combination arm in the reconstruction of the data, the area under curve and PFS loss. We
specify the penalty they were obtained with, and underlined values represent the best results among the different models.

Type Arm Reconstruction Area under ROC PFS

Tabular

Avelumab+axitinib 46.91 ± 4.55
Denoising

0.56 ± 0.08
Sparse

6.90 ± 1.26
Sparse

Sunitinib 43.52 ± 3.51
Denoising

0.708 ± 0.03
Denoising

4.30 ± 0.95
Sparse

Graph

Avelumab+axitinib 51.67 ± 5.29
Denoising

0.53 ± 0.07
Sparse

6.29 ± 0.45
Sparse

Sunitinib 50.43 ± 5.30
Denoising

0.68 ± 0.06
Denoising

3.45 ± 0.78
Sparse

TKI (p = 8.7e−11) arms. There was a significant differ-
ence between the tabular autoencoder with no penalty
and the graph autoencoder with no penalty for both the
avelumab+axitinib (p = 1.1e−2) and sunitinib (p = 1.0e−4)
treatment arms, indicating that the tabular autoencoder
is indeed better at reconstructing the original data. No
differences were observed between treatment arms.

Regarding Figure 6(b), we see the mean of the time-
dependent area under ROC for each type of autoencoder.
As defined in Section 2, this metric is an overall esti-
mate of how well the statistical model assigns risks to
each sample. A clear distinction in the tabular autoen-
coders is the difference in performance between treatment
arms. The tabular model that obtained the best area is
the denoising variant, with an area of 0.71 ± 0.03 in the
sunitinib arm. Meanwhile, the variational autoencoder
achieved the worst score with 0.45 ± 0.04 in the sunitinib
arm. There was a significant difference when comparing
the default autoencoder with the variational variant in
the sunitinib arm (p = 9.01e−9).

A similar observation can be made for the graph au-
toencoders. The combination of sparse and denoising
obtained the best score of 0.68 ± 0.06 in the TKI, whereas
the variational autoencoder performed the worst with
0.48 ± 0.07 with the immunotherapy. Similarly, the vari-
ational autoencoder was significantly different from the
default one (p = 1.6e−4). There is no significant differ-
ence between the tabular and graph autoencoders when
no penalty is considered, meaning both models assign
similar risks. However, there are differences between the
avelumab+axitinib and sunitinib arms for all penalties
except the variational one for both tabular and graph
autoencoders.

Finally, Figure 6(c) shows the loss in PFS predic-
tions among autoencoders. A similar observation to
the previous figure can be made: overall, patients on
sunitinib are predicted more accurately than those on
avelumab+axitinib. The best variant within the tabular
autoencoders is the sparse one, with a loss of 4.30 ± 0.95
in the sunitinib arm. Meanwhile, the variational autoen-
coder performs the worst, with a loss of 9.49 ± 0.85 in the
avelumab+axitinib arm. Regarding graph autoencoders,
they perform slightly better when working with the im-
munotherapy than tabular autoencoders do. The penalty

that worked best on these autoencoders is the sparse
penalty, with a loss of 3.45 ± 0.78, while the penalty that
performed the worst is the variational one, with a loss of
10.16 ± 1.48. There were significant differences between
the tabular and graph autoencoders in the sparse vari-
ant with the sunitinib arm (p = 4.4e−2), indicating that
the graph model performs better than the tabular one
in the TKI. Furthermore, there are differences between
treatment arms for all penalties in both the tabular and
graph autoencoders. One notable aspect regarding the
PFS prediction is that our models tend to overestimate the
survival of the patients, with all autoencoders showing
an overestimation of at least 70%.

Figure 7: Frequency of each gene appearing in the top five latent
features chosen by the statistical model over 10 folds for the
sparse autoencoder.

Finally, we integrated interpretability into the models
to identify which genes are most represented by the latent
features. Considering the sparse autoencoder, which is
among the models that obtained the best results and is
known for finding meaningful representations, we ob-
tained the five latent features with the highest coefficients
assigned by the COX model. By finding the mutual in-
formation of each of these five latent features with the
original data, we queried the top five genes most corre-
lated to each representation. Figure 7 shows how many
times each gene appeared in the most important latent
features, with genes LRP2, NAT8, ACE2, CYP4A11, and
EMX2 being the most frequent.
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6 - Discussion

We can draw multiple discussion points from the previ-
ously presented results.

Autoencoder performance First and foremost, autoen-
coders accurately recreated the original transcriptomic
data, despite the limited number of samples and the
data’s complexity. These models are, therefore, suitable
for compressing this type of data. The tabular autoen-
coder generally outperformed its graph variant in re-
construction accuracy, even though both used the same
hyperparameters and had very similar architectures.

However, while the tabular autoencoder can establish
non-linear relationships between all genes, the graph au-
toencoder is constrained by the edges present in the PPI
network. Additionally, the creation of the PPI network
depends on the genes selected in DisGeNet and the neigh-
bor gathering radius used to create the network. Conse-
quently, the graph autoencoder’s reconstruction perfor-
mance is highly dependent on the structure of the PPI
network, which can translate in a disparate reconstruc-
tion.

Regarding the penalties used, the denoising penalty
provided the best reconstruction, particularly for the
graph autoencoder. This aligns with the nature of the
penalty, as the added noise aids in better generalization
[30]. The sparse autoencoder did not reconstruct as well
as the denoising penalty when working with graph data
because its primary aim is to obtain meaningful represen-
tations by deactivating weights in the neural network [31].
Nonetheless, combining sparse and denoising penalties
improved reconstruction quality. Unfortunately, the vari-
ational autoencoder neither reconstructed nor predicted
as well as the other penalties. Variational autoencoders
impose constraints on the latent space to follow a specific
distribution (in our case, Gaussian), which can lead to
information loss in the latent representation [32].

Statistical approach The statistical model we used con-
sists of two parts: the COX model to find hazard ra-
tios (and thus, risks), and Breslow’s estimator, a non-
parametric estimator, to find the survival functions. While
the PFS predictions are accurate, especially for the graph
autoencoder with sparse penalty, there is still a significant
overestimation. This overestimation is due to Breslow’s
estimator’s tendency to overestimate survival probabili-
ties, particularly for small sample sizes [33]. Increasing
the sample size or using a different estimator, could miti-
gate this issue. Despite this, the semi-parametric model
worked well, as evidenced by the areas under ROC, al-
though this was only the case for the sunitinib arm. The
avelumab+axitinib arm’s performance was close to that
of a random model.

Interpretability Aside from performing predictions, we
identified the genes most represented in the latent repre-
sentations of the sparse autoencoder, as seen in Figure 7.

Among these genes, LRP2 and EMX2 are closely related
to renal cancer [34, 35].

Clinical discussion We observed a notable difference
in performance between the avelumab+axitinib and suni-
tinib treatment arms, despite both arms having similar
transcriptomic data, PFS, and censoring. One possible
explanation for this phenomenon is that the immunother-
apy consists of two different mechanisms (avelumab and
axitinib), whereas sunitinib is not mixed with any other
component. Consequently, predicting the response to one
unique mechanism is more straightforward than predict-
ing the response to a combination. An interesting future
direction could be to analyze the difference in response
between sunitinib and one component of the immunother-
apy.

Novelties and limitations This work demonstrates the
feasibility of creating meaningful representations of com-
plex data in a low-dimensional space. Although further
compression of the data is possible, doing so would likely
degrade the statistical model’s predictive performance.

Moreover, our work presents some limitations in its
design which would prove interesting to tackle in the
future.

First, gathering more data can not only improve the
reconstruction capabilities of the autoencoder but also
enhance the inference performed by the statistical model.
Non-parametric and semi-parametric models heavily rely
on the observed data, so increasing the sample size is
crucial for more accurate predictions.

Moreover, the preprocessing of the data, particularly in
creating the PPI graphs, can be further refined. When we
selected the genes from DisGeNet to be part of the graph,
the resulting network was disconnected and sparse, neces-
sitating a neighbor search. However, some of these genes
might not be highly relevant to the disease. Therefore, a
more curated filtering process can be employed to ensure
the inclusion of only the most meaningful genes.

Regarding the statistical model, while the COX elas-
tic net proved to be an efficient tool, further research
could explore the use of parametric models. However,
this would require a thorough understanding of the dis-
tribution of transcriptomic data to select the appropriate
model. Parametric models could potentially provide more
precise predictions if the correct distribution assumptions
are made.

Finally, for interpretability, we attempted to give mean-
ing to the latent representations based on the genes we
analyzed. Methods other than mutual information, such
as alternative interpretability techniques and visualiza-
tions of genes in the latent space, could be explored to
provide deeper insights into the data and the models’
decision-making processes.

Overall, this work shows that autoencoders can be ef-
fectively combined with statistical models to yield mean-
ingful results. Although models like the COX elastic net
can take a long time to produce results, compressing the
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data beforehand can be very useful, provided the model
remains interpretable.

7 - Conclusion

We have conducted extensive research on different au-
toencoder types and variations to analyze their efficacy in
predicting the response of two different treatment arms
used to combat renal cell carcinoma. Despite the complex-
ity of the data, autoencoders have proven to be excellent
tools for compressing the dimensionality of the data into
meaningful features, which can then be utilized by statis-
tical approaches.

Our analyses have shown that the denoising penalty is
optimal for reconstructing data, the sparse penalty is ef-
fective for obtaining latent features, and combining these
penalties can yield both characteristics. The variational
penalty, while crucial in generative scenarios, assumes a
distribution that does not always suit the data.

We believe this methodology can be applied in medical
fields beyond renal cancer, offering a robust approach to
handling high-dimensional data and extracting meaning-
ful insights for various diseases. While not apt for clinical
practices, the possibility of using this tool for screening
patients who are candidates for therapy has a very high
clinical impact, both for the optimization of processes and
costs, as well as for patient survival.

This work can be further extended in multiple ways.
First, a new cohort of patients can be obtained to con-
firm the results we found. Secondly, a more extensive
fine-tuning, as well as model implementation such as β-
VAE can be done. Finally, expanding upon our statistical
approach by adding parametric estimators can help the
predictions made by the model.
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