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Abstract:

Recent developments in the state-of-
the-art of audio compression have led
to models achieving low bit rates while
maintaining a good reconstruction of
the compressed embeddings. The
findings make it interesting to explore
model-based techniques for making
audio packages robust to packet loss,
which led to the development of three
models with varying bit rates in this
project. The three models had bit rates
of 768kbps, 192kbps and 6kbps and
were trained on the LibriTTS Corpus
dataset, where data samples had a bit
rate of 384kbps. The largest model
showed the best potential for package
loss, where it had a good reconstruc-
tion ranging from 20% to 80% packet
loss probability. The main limitation of
the results seemed to be the underly-
ing autoencoders, which opens up for
future work applying the same tech-
nique for more improved frameworks
at lower bitrates.
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1. Project Summary

This project investigates to which extent a model-based approach can be used for
encoding packages to be robust for package loss. It covers the theory behind dig-
ital audio structure and what makes it good in terms of sound quality. Where the
main focus was the sample-rate, bit-depth and frame-length. A short introduction
to internet protocols is being introduced, as the choice between UDP and TCP cov-
ers an important concept in the interaction between sender and receiver, mainly
having a potentially slow and stable connection or an unstable and fast connec-
tion. From here, some of the fundamental techniques for handling packet loss are
presented and are mainly divided into sender-based and receiver-based. Finally,
for the problem analysis, the concept of vector quantization is covered, and the
state-of-the-art model SoundStream[24] is reflected upon. Based on this project’s
high performance, their model structure was the initial goal to implement for this
project. Due to limitations of the scope, it was out of reach to implement all the
blocks, and three simplified model versions were made, mainly two normal au-
toencoders and an autoencoder with vector quantization. The dataset used for this
project was the LibriTTS Corpus, where each sample had a bit-rate of 384kbps.
The three model implementations had the following bit-rates when passing the
audio sample through the encoders: 768kbps, 192kbps and 6kbps, where the last
mentioned model uses vector quantization. After having trained the models on the
data set, there was a correlation that the higher the kbps, the better the reconstruc-
tion loss when training without packet loss. When training for packet loss, there
was evidence suggesting that a larger frame length for each packet encoding indi-
cates a better reconstruction loss, but it is not conclusive. The models were trained
for the following packet losses: 20%, 40%, 60% and 80%, where the packet loss
was a probability on whether their packages would be set to minus one. The high
kbps model performed significantly well at all the packet loss rates. In contrast,
the results were not as significant for the lower kbps models, but most likely due
to the baseline structure not being good enough at the autoencoding task.






2. Introduction

Recent developments from Google in their application "SoundStream"[24] have
shown promising results in compressing audio down to a low-bit representation
and reconstructing it back to a high-quality version with respect to the original
audio. The underlying concept behind this is having a model learn a sufficient
amount of relationships and redundancies between its original audio form to out-
putting compressed embeddings at the encoder. Sound streaming with packet loss
remains a crucial element in interactive environments, as it is important to have a
stable flow of communication. Packets going missing means losing information in
the transmission and waiting for them to be requested again could mean that the
information is outdated for the communication. There exist solutions for compen-
sating for missing packages by interpolating between the received packages or by
sending additional information, which is meant for reconstruction by, for example,
performing XOR operations. This project seeks to investigate the opportunities
of using a model-based approach to encode packages with a sufficient amount of
information to be robust for packet loss.

2.1 Initial Problem Statement

"To what extent can Vector Quantization-based generative DNN models
be used for low-delay speech and audio coding that is robust to packet
loss errors?"






3. Problem Analysis

3.1 Digital Sound Coding

This section covers the fundamental theory of going from an analogue signal to a
digitalized signal while presenting values that describe the amount of information
used in audio signals.

3.1.1 Analog to Digital Conversion

The way audio is stored in digital format is important in how well it can be recon-
structed back to its analogue format when playing it again. Starting with a simple
sine wave as seen on Figure 3.1, it can be chosen how many times a second the
signal should be sampled. We define this as the sampling rate, which is defined
as:

sampling_rate[Hz] =1/T (3.1)

Value

TI TT Samples Time [s])

lll “l

Figure 3.1: Illustration of the sampling frequency of an analogue signal.
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Where T is the time between samples, choosing a low sampling rate could mean
losing a significant amount of information from the original signal. In contrast, a
high sampling rate is expensive for the resources. In communications, it is common
to have a sampling rate of 8kHz, 16kHz or 48kHz.[23]

Quantization

After defining how frequently the signal should be sampled, the value of each sam-
ple should be saved. Since the analogue signal is a continuous value, it should be
converted to a discrete signal to be stored in the memory. The more bits allocated
to representing the digitized signal, the more it will look like the original ana-
logue signal. The amount of bits allocated for the digital representation is called
bit-depth, which can be seen on Figure 3.2. A common bit-depth for applications
would be 16 bits.[18]

Digital
1111A )
1110 ]
1101
1100 o
1011 )
1010 bid
1001 o
1000 Samples with orange
0111 ° error line
0110 o
0101 °
0100 o
0011
0010 o
0001 ©

0000 >

Time [s]

Figure 3.2: Quantization of an analogue signal with a 4-bit binary representation for the bit-depth.
This example shows an orange line error between the analogue and digitized signal.

Finally, the bit rate can be calculated after determining the sampling rate and

bit depth. The bit rate represents the information contained in the file per second.
It is calculated by:

bit_rate[bps] = bit_depth|bits| x sampling_rate[Hz| x channel _amount (3.2)



3.2. Packet Coding 7

3.2 Packet Coding

When sending a stream of audio for communications, the stream is usually split
up into time segments, which we define as frames (see Figure 3.3). The frame
is coded into a packet with additional meta-data concerning the packet’s origin.
Here, a trade-off exists with choosing how large this window should be. If the sys-
tem is defined to have a long time segment for each frame, the packet receiver will
have to wait a significant amount of time before receiving it. In contrast, having a
small time segment will be inefficient for packetization as it may prove overhead
in transmitting the information through the number of packets sent or the amount
of information sent. In the state of the art, a low frame length is typically chosen
for audio compression, where the authors of Lyra[17] suggest a window of 20ms.

A

Frame 1 | Frame 2 | Frame 3 | Frame 4 | Frame 5 | Frame 6 | Frame 7 | Frame 8 | Frame 9 | Frame 10
Value (20ms) | (20ms) | (@0ms) |(20ms) |(20ms) [(0ms) |(20ms) |(20ms) | (20ms) |(20ms)

.—’ 3-.‘.._...
o Le

o- Le
o

] g
J IT 200 ms o,

-.,_I

v

Figure 3.3: Simplified version of 20ms frame segmentation of a 200ms digital signal, which converts
10 frames (190hz sample frequency for simplicity in the example).
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3.3 Transport Protocols

After coding the framed audio stream into packages, they are ready to be sent to
the receiver. The common transport protocols are Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP).[12] The main difference between the two
is that the TCP uses a three-way handshake to ensure the reliability of the connec-
tion. The handshake consists of the client first sending a synchronization number,
after which the server sends an acknowledgement of the connection and finishing
it; the client acknowledges the server’s response (see Figure 3.4).[14]

TCP HANDSHAKE UDP
REQUEST
—
[ SYN [ RESPONSE
= —
SYN ACK 11 RESPONSE I 1|
— i —
[ ACK - RESPONSE I

— —

Sender Receiver Sender Receiver

Figure 3.4: TCP vs UDP communication (Figure from: [8]).

This process of validating the client-server connection and the integrity of the
packets makes the protocol unreliable for time-sensitive information. In interactive
environments, the amount of time it takes for the data to arrive from the sender
to the receiver is crucial for the flow of the communication. If a packet is lost, it
may not be worth requesting a new one since, by the time it arrives, it may not be
relevant to the current context of the communication.

The more preferred protocol for the transport layer regarding time-sensitive
information is UDP, which is faster but does not guarantee packet transfers. When
using this protocol, the receiver only requests packages without a handshake, after
which the sender sends packages without validating their arrival and integrity.

3.3.1 Packet Loss

The amount of packet loss introduced at a connection over time is defined as a
packet loss rate (PLR), which we define as:

NTX _ NRX

N
PLR — T * 1000/0 (3.3)

Where N is defined as the number of transmitted packets and N*X is defined
as the number of packets received. It should be noted that multiple errors exist
within packet loss, where Jérémie Lecomte and Tom Backstrom[4] define them as
bit-errors, lost packets and delayed packets. The area of focus for this project is
lost packets.
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3.4 Packet Loss and Concealment

The need for speed and packet integrity has introduced a list of methods for han-
dling the problem of packets going missing during transmission for "best-effort de-
livery" protocols. This section covers three categories described by Jérémie Lecomte
and Tom Backstrom, the authors of [4] for handling packet loss mainly sender-
based, receiver-based and interactive methods. The authors[4] define the term
concealment as a way of hiding the error and the term recovery as retrieving the
original input after an error occurs in the signal.[4]

3.4.1 Sender-based

Interleaving

The timeframes are distributed across multiple packets so that the packet loss error
is distributed over a longer period of time at the cost of a longer delay.[4] For
example, having four time-frames across four packets, the first index of each packet
would be from the first packet, and the second index would be for the second
packet (see Figure 3.5).[4] While the method still leaves errors for the receiver, it is
effective in smoothing them out over a larger time frame.[4]

13

4| |5‘6‘7‘8‘ ‘9|]0|]1|]2

14 ‘ 15 ‘ 16 ‘ Original stream

Interleaving

10 | 14 317 Interleaved stream

Lossy transmission
channel

Corrupted stream

De-interleaving

Reconstructed stream

Figure 3.5: Interleaving of 4 packets (Figure from: [4]).

Forward Error Correction

Using Forward Error Correction (FEC) adds redundant information, which can
later be used for error correction when retrieving the packets.[4] An example of
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FEC is the XOR operation, which effectively retains information about packets that
can be used for reconstruction. By defining a variable z (see Table 3.1) as an XOR
operation of x and y:

Package x | Package y | Package z (x XOR y)
0 0 0
0 1 1
1 0 1
1 1 0

Table 3.1: XOR truth table

The x or y packets can now be obtained by doing XOR operations on the ob-
tained packages:

x XORz= x XOR (x XORy) =y (3.4)

Yy XORz= y XOR (x XORy) =x (3.5)

Assuming that at least two of the three packets arrive without bit errors, the
packet receiver would always be able to recreate the original output of x and y.

Multiple Description Coding

A Multiple Description Coder (MDC) splits a signal into multiple channels. Ideally,
if one of the channels is received, a good quality can be obtained, and if both
channels are retrieved, an ideal quality can be obtained as seen on Figure 3.6.[4]

» Dec | —— Good Quality
Raw Video MDC » Dec?2
> > — Highest Quality
» Dec 3 —  Good Quality

Figure 3.6: Example of MDC for a video stream (Figure from: [2]).



3.4. Packet Loss and Concealment 11

3.4.2 Receiver-based
Insertion-based

For insertion-based methods, the silence substitution involves muting the part
where the missing packet is.[4] Noise substitution is described as having white
noise represented at the lost packages with lower intensity than the surround-
ing frames.[4] For packet repetition, the previous frame is repeated at the missing
packet.[4] In contrast to the two previous methods, the packet repetition resembles
some of the sound characteristics of the context.[4]

Waveform Matching

The waveform matching technique includes matching the frame’s start and end
to the borders” waveform in the surrounding frames by taking a template of the
previous frames.[4]

3.4.3 Interactive Methods

For interactive methods, the encoder and decoder can interact to vary the strategies
in the context of the current packet loss.[4] For example, the receiver of the missing
packets responds to the sender of the missing packets, either by asking for a re-
transmission of the missing/broken packages or by switching up the sender-based
methods to adapt to the packet loss.[4]
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3.5 Vector Quantization

When using vector quantization a vector is taken in as an input and is then quan-
tized by looking into a codebook of template vectors. By doing this, the vectors
have a significantly lower data size representation, as the original data can be rep-
resented as an index in a codebook at the cost of losing some information. The
reference vector is found by minimizing the distance from the input to the nearest
code vector:

k* = argmkin||x — el (3.6)

Where c; represents the code vector for the codebook, x as the input and k* as
the optimal solution.[6]

This method is suitable for lossy compression tasks, where it is given that
some information is lost.[6] Recent development within audio compression [24][11]
makes use of this technique, where the authors obtain a significant compression
rate by making use of vector quantization.

As seen on Figure 3.7, the method uses clustering algorithms, where a set of
code vectors represents a set of data points. The vectors are typically optimized
using Expectation Maximization (EM) or a gradient descent approach where the
loss is minimized by backpropagating through the neural network with the chain
rule.[6] As illustrated, the vectors represent the high-frequent data points well,
whereas the outliers would have a high reconstruction loss.

Figure 3.7: Codebook for Vector Quantization. Red circles are the code vectors, grey dots are the
data points, and the blue walls are Voronoi Cells. (Figure from: [6])
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After optimizing the codebooks, they can be used for inference. As seen on
Figure 3.8, the process starts by finding the closest code vector as described in
Equation 3.6. From here, the index can be sent through the channel to the receiver
so they can look it up in the codebook.

Reconstructions

Source
output ?
Group Unblock
into
vectors [ 3
Encoder + Decoder
Find Closest Channel | Table
Codevector - "1 Lookup
Codcbook index index Codebook

CIOTTTTTITTTT T %

Figure 3.8: Process of converting a source vector into an index from the codebook and reconstructing
it by lookup. (Figure from: [10])

By doing this method, a compression rate of the set of vectors to indexing can
be defined:

input size(bits) = vector_size * bit_precision (3.7)

codebook index size (bits) = Ceil (\/codebook vector count) (3.8)

In the example from Figure 3.8, the codebook has 14 different codebook vectors
representing 6 feature vectors, meaning the index representation could be repre-
sented as 4 bits:

4? = 16 codebook vectors (3.9)

Compared to the original latent space output, which is typically 32 bits preci-
sion per node, meaning that in this example, it would have a vector with the size
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of 6, resulting in 6*32bits = 192 bits. It makes the quantized latent space 2.08% of
the original latent space size for transmission through the channel.

3.6 Related Work

3.6.1 SoundStream

Google recently developed a neural network-based codec using the encoder-decoder
system with a discriminator and vector quantization (see Figure 3.9) called Sound-
Stream[24]. The codec showed promising results compared to their state-of-the-
art, encoding sound down to 3kbps and decoding them back to their original form
while maintaining a good perceptual score.[24] In addition to their compression re-
sults, they also show promising results for their denoising feature. They showcase
that they can dynamically turn this feature on and off during interference, which
makes it effective for cases where noise may happen dynamically. Finally, they
also show scalability for their bitrates in their model, making it flexible to handle
multiple compressions and could serve as an interactive method between sender
and client depending on the current bandwidth.[24]

Nﬂ

Transmitter
edefado o/- \ ncoder

ncoder, ecoder AR .
P ’ $ wwm
" 1
" ‘\‘“ L b E Receiver
Denoising HH J'IJU_LHJ'ln J
J

A

Decoder
on/off : ‘
H ‘w

L

Figure 3.9: Model Architecture of SoundStream at training and inference. (Figure from: [24])
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Figure 3.10: Encoder and Decoder of SoundStream. (Figure from: [24])
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Encoder Blocks

The encoder consists of four encoder blocks, where the features passed through the
network are down-sampled for each block (see Figure 3.10). The down-sampling
process consists of three Residual Units containing two one-dimensional convolu-
tional layers, and at the end of the unit, an additional one-dimensional convolu-
tional layer is present.[24] The channels are doubled when the features are passed
through the encoder block.[24]

Decoder Blocks
The decoder follows the same procedure as the encoder; it uses the same residual
units, and the channel amount is halved for each decoder block.[24]

Residual Vector Quantization Layer

The model utilizes a residual version of vector quantization, which involves pass-
ing through multiple stages of vector quantization.[24] The use of residual vector
quantization allows for having varying bitrates, which scale with a lower compu-
tational cost.

3.7 Final Problem Statement
A final problem statement was chosen based on the problem analysis:

"To what extent can Vector Quantization-based generative DNN models
be used for low-delay speech and audio coding that is robust to packet
loss errors?"






4. Dataset

4.1 LibriTTS corpus

Data set accessed through https://openslr.org/60/.

4.1.1 Motivation for usage

In the field of speech synthesis, the LibriTTS is one of the standardized datasets
used for benchmarking performance.[9] It was created by Zen et. al [25] as a
modification of the original dataset LibriSpeech to suit the purpose of text-to-
speech(TTS) research.[25] The samples from the original "LibriSpeech ASR corpus"
originate from a set of audiobooks, where the authors[21] trained models to align
the original text to the read text to generate sentence samples for the data set.[21]
Additionally, a significant change is that it has a higher sampling rate of 24kHz
in contrast to the previous 16kHz.[25] The new modifications of the dataset for
the LibriTTS corpus preserved only the data samples which fit a set of require-
ments[25]:

¢ Alignment of sample to text

Length of sample

The average word duration

Signal-to-Noise-Ratio (SNR)

Where 30% of the original data were removed due to misalignment, 25% due to
SNR and less than 1% due to the length of the sample and the word duration.[25]

4.1.2 Specifications

For the project’s current scope, it was chosen to work with the "clean" dataset in
contrast to the "other" dataset, which is more challenging. The samples from the
dataset have a sample rate of 24kHz and a bit rate of 384kbps - resulting in a bit-
depth of 16 bits for representing each sample. For each data sample in the data

17
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set, the .wav file has two .txt files with the original text from the speech input and

a normalized text from the speech.

Split type Size Samples Duration Speakers
Development (clean) 1.2GB 5736 8.97 hours 40
Training (clean-360) 27.0GB 116500 191.29 hours 904
Testing (clean) 1.2GB 4837 8.56 hours 39

Table 4.1: Distribution of the clean splits of the LibriTTS corpus data set. [25]

4.1.3 Dataset Distribution

Development duration distribution
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Figure 4.1: Distribution of the sample length of the development data set (100 bins)




4.1. LibriTTS corpus
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Figure 4.2: Distribution of the sample length of the training data-set (100 bins)
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Figure 4.3: Distribution of the sample length of the testing data set (100 bins)
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414 Examples

Sample 0: "A 'JOLLY' ART CRITIC"

10000

7500

5000

Frequency [Hz]

2500

0.2 0.4 0.6 0.8 1.0 12 1.4
Time [s]

Sample 1: "There is a healthy bank-holiday atmosphere about this book which is extremely pleasant.”
10000
7500

5000

Frequency [Hz]

2500

Sample 2: "Mr. Quilter is entirely free from affectation of any kind."
10000
7500

5000

Frequency [Hz]

2500

Figure 4.4: Frequency Spectrograms of the first three samples from the development dataset[25].



4.2. Pre-processing 21

Mel filter bank Mel filter bank

Mel filter bank

Sample 0: "A 'JOLLY' ART CRITIC"

40

0.2 0.4 0.6 0.8 1.0 1.2 14
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Sample 1: "There is a healthy bank-holiday atmosphere about this book which is extremely pleasant.”
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30
20
10 || &
AREE iR B

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [5]

Figure 4.5: MEL Spectrograms of the first three samples from the development dataset[25].

4.2 Pre-processing

For the data preprocessing, each sample was split into frames of 20ms with a non-
overlapping window, and any last samples below 20ms would be removed from
the dataset. With a sample rate of 24kHz, each frame would have:

24000Hz * 0.02s = 480 samples 4.1)

480samples * 16bit depth = 7680 bits (4.2)






5. Methodology

5.1 Development

The models were developed in Python (3.12.2) using TensorFlow[3] for modelling.
The training of the models was monitored using the development platform Weights
and Biases[5], where logs were kept for comparison across the different runs. Dur-
ing the development, Github Copilot[16] and ChatGPT[1] were used to improve
the model implementation and debugging process.

5.1.1 Hardware

Most of the model training was done on the cloud platform Strato provided by
CLAAUDIA[7]. The machine which was used had 16 VCPUs and 64 GB RAM.

5.2 Concept

y, Sender N

( \
J) 3 = *.Hw. = = 16 packetsxabis

L\\ 20ms signal (480 samples) ﬂ /

1\
25% packet loss
during transmission

imt \

Receiver 3

v \

nnnnnnnnnnnnn

<1 12 packets x 4 bits
K

/ffa =

0
0

20ms signal (480 samples)

Figure 5.1: Model concept for having a sender send a voice packet, which has a 25% packet-loss
probability of being lost during transmission and the receiver decoding the packages.
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A A X A A
B B B X B
C C C Cx
3/3 packets received 2/3 packets received 2/3 packets received  2/3 packets received
0% packet loss 33% packet loss 33% packet loss 33% packet loss

A % A X A
B X B B X
Cc cX CcX
1/3 packets received 1/3 packets received  1/3 packets received
66% packet loss 66% packet loss 66% packet loss

Figure 5.2: Concept of decoder variant to multiple packet losses at inference.

5.3 Model

5.3.1 Vector Quantization

The library used for vector quantization was used from:
https://github.com/lucidrains/vector-quantize-pytorch. A library which has
been created based on the implementations of Deepmind. It consists of variations
from the state-of-the-art research, which utilizes vector quantization like Sound-
Stream[24]. As proposed by [24], a set of centroids are being trained on the first
batch by running the k-means algorithm instead of randomly assigning them.[20]

5.3.2 Loss Functions

Defining the loss functions for training the models, the mean-squared error was
chosen, which is defined as:
MSE = 1 i(yi —Y))? (5.1)
N =
In addition to the MSE of the reconstructed audio compared to the original,
another loss is taken into consideration based on how well the Vector Quantization
performs at indexing its codebook vectors:

1 N
commitment_loss = — x — ci] |2 5.2
_ N 1:21 |2 = cxl| (5.2)

This is a loss function for measuring the distance between the assigned code-
book vectors compared to the original; the commitment loss is used when back-
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propagating to optimize the codebook vectors. Since the reconstructed audio error
might be more important than the commitment loss of the codebook vectors, a
weighted value is applied to the commitment loss defined as a cost to prioritize
between the two:

total_loss = MSE + commitment_loss x commitment_cost (5.3)

Additionally, experimentations were performed with the STFT loss on a dis-
criminator as suggested by the SoundStream[24] architecture, but due to limita-
tions of the development scope, it was not chosen to include a discriminator ap-
proach to the model.

5.3.3 Probability-based packet loss
Defining 10 example packages with a length of 5:

0| [5] (O] [5] [Of (5] [Of [5] O] [5
1l 16| |1] |6] |1]| |6]| |1]| |6] |1] |6
20 |71 2] 7] 12| |71 |2] |7] |2]| |7 (5.4)
31 (8] [3] (8] (3] (8] [3] 8] 3] |8
41 19] [4] (9] [4] (9] 4] (9] (4] 9]
For each of the packages, a random float would be generated:
[0.12 0.34 090 0.71 055 0.64 0.03 0.89 0.40 0.21] (5.5)

A packet loss is defined to be, for example, 30%. All the packages with their
randomly generated associated float to be below the packet-loss threshold would
be marked for having their array set to minus one. We defined this as a boolean
for whether the packet would be received during the transmission:

Random Float | 0.12 | 0.34 | 0.90 | 0.71 | 0.55 | 0.64 | 0.03 | 0.89 | 0.40 | 0.21
Input frame X v v v v v X v v X

Table 5.1: Randomly assigned float to each packet for packet-loss threshold selection.

Applying minus ones to the lost packages indexes retrieved from Table 5.1:

—1] [5] [o] [5] [o] [5] [~1] [5] [o] [-1
—11 |6| |1| |6 |1]| |6]| |-1]| |6] [1] |-1
—1| |7} 12| |7l 12| |7| |=1]| |7] [2] |-1 (5.6)
—1| 8] (3] |8] |3]| [8] |-1| [8] |3] |-1
—11 |9 |4 |9| 4| |9| |-1]| |9] |4] |-1




26 Chapter 5. Methodology

5.3.4 Architecure

Layer (type): Convid-1 Qutputs: [-1, 32, 480] Parameters: 128 J
[ Layer (type): ReLU-2 Outputs: [-1, 32, 480] Parameters: 0 ]
[ Layer (type): MaxPool1d-3 Outputs: [-1, 32, 240] Parameters: 0 ]
[ Layer (type): Convid-4 Outputs: [-1, 16, 240] Parameters: 1,552 }
[ Layer {type) ReLU-5 Outputs: [-1, 16, 240] Parameters: 0 J
[ Layer (type): MaxPool1d-6 Outputs: [-1. 16, 120] Parameters: 0 J
[ Layer (type): Conv1d-7 Outputs: [-1, 8, 120] Param: 392 J
[ Layer (type): ReLU-8 Outputs: [-1, 8, 120] Param: 0 J
|: Layer (type): MaxPool1d-9 Cutputs: [-1. 8, 60] Param: 0 J

[Layer (type) Convid-10 Outputs: [-1, 4, 60] Param: 1 DOJ

[
[

Layer (type): ReLU-11  Outputs: [-1,4,60] Param: 0

Layer (type): MaxPool1d-12  Outputs: [-1,4,30]  Param: D]

[ VQ-Layer-13 [-1, 30, 16] 0 ]

[Layer (type): ConvTransposeid-14  Outputs: [-1, 8, 60] Param: 72]

[ Layer {type) ReLU-15 Outputs: [-1, 8, 60] Param: 0 J

___

Layer (type): ConvIransposeld-16 Qutputs: [-1, 8, 120] Param: 272

T

Layer (type): ReLU-17 Outputs: [-1, 8, 120] Param: 0

Y
N .

L

Layer (type): ConvTransposeid-18 OQutputs: [-1, 8, 240] Param: 1,056

Layer (type): ReLU-1% Outputs: [-1, 8, 240] Param: 0 ]

N

Layer {type): ConvTranspose1d-20  OQutputs: [-1, 1, 480] Param: 85

P
S

Layer (type): Tanh-21  Outputs: [-1, 1, 480] Param: 0

—
L

Figure 5.3: Model architecture for input size 20ms (480samples), where the first index (-1) is a
placeholder for the batch-size.
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5.4 Model Layers

The layers for the encoder and decoder follow a traditional Convolutional Neural
Network (CNN) model structure, with a set of convolutional layers with pool-
ing operations and activation functions being fully connected. As proposed by
the Soundstream paper[24], a vector quantization layer is between the encoder
and decoder, where they are being trained with k-means clustering on the first
batch. It was out of scope to implement the entire SoundStream[24] structure dur-
ing development, so it was gradually implemented considering multiple layers of
complexity and considering the author’s suggestions.

5.4.1 Convolutional

Unlike the SoundStream[24] paper, no experimentations were done with the dila-
tion of the convolutional layers. The SoundStream[24] structure has an increasing
dilation size for each ResidualUnit in the encoder block, which should help sam-
pling from a wider context in the feature space. During the development, the
model complexity had been varied. In the final tests, two models were made,
where one of them had the same dimensionality as the input size but with double
bit-depth, meaning that it was double its input size measured in bits. The other en-
coder variation had 25% of the dimensionality as its input, which had a bit-depth
of 32bit and resulted in the encoder output having half the size of its input mea-
sured in bit size. An illustration of a convolution can be seen on Figure 5.4, where
a dilation rate of one is set, with a stride of one and a kernel size of 3x3.

1|0f1fjo|1fo0 1|10(1 1123 31
o|1f1]o|1f1 > 0({1|1]*X|4|5([6|—p
11]0]1Jof1]|0O 1101 71819

1|10j1|1|1]|0 Image patch Kernel

ol 1l 1lol 1l (Local receptive field) (filter) output
110(1]0]|1f0O

Input

Figure 5.4: Convolutional operation example (Figure from: [22]).
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5.4.2 Convolutional Transpose

The model’s decoder blocks are similar to the encoders, where the convolution
operation is a transposed operation and does not have a max pooling operation
at the end. In contrast to the encoder’s convolution operation, where the sliding
window of the kernel is applied to the same size the transposed applies the kernel
window to a smaller dimension in the upsampling process. (see Figure 5.5).

Input Kernel

011 Transposed 114
Conv

213 (Stride 2) 213

Output

0|0 1|4 0|0|1]4

0|0 2|3 0j0|2]3
= + + + =

2|8 3112 218|312

416 6|9 416|169

Figure 5.5: Example of Transposed Convolution operation with stride 2 (Figure from: [15]).

5.4.3 Max Pooling

Max pooling is used for downsampling the feature space. It takes the maximum
value over a filter defined by size and stride. The values which are used by
the model are the same as seen on Figure 5.6, but where the operation is one-
dimensional. The filter used is non-overlapping, with a filter-size of two and a
stride of two.

Single depth slice

X I 2 | 4
max pool with 2x2 filters
SEEmel 7 | 8 and stride 2 6|8
3 | 2 . 3|4
1| 2 .
5 >

Figure 5.6: Max pooling operation (Figure from: [13]).
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5.4.4 Activation Functions

lanh RelJ

Figure 5.7: Hyperbolic Tangent and Rectified Linear Unit activation functions (Figure from: [19]).

For all of the layers except the last the activation function used between the layers
is Rectified Linear Unit (ReLU), which is defined as:
ReLU(x) = max(0,x) (5.7)

In the final layer, the signal is reconstructed back to the input signal’s original
range [-1, 1] by using the Tanh activation function:

eX — X

tanh(x) = e (5.8)

5.5 Model complexities

At the end of the development phase, three different models with varying com-
plexities were made with the following specifications:

Name Architecture Embedding Size | Bit Depth | Bit Size | Bit-rate
Model A Autoencoder 480 32 15360 | 768kbps
Model B Autoencoder 120 32 3840 | 192kbps
Model C | Autoencoder VQ 30 4 120 6kbps

Table 5.2: Model list comparison, where the input is a 20ms frame with 24kHz sampling rate and
16bit-depth.
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Based on the following input frame specifications for the models:

Sample rate

Frame size

Samples

Bit-depth

Bit size

Bit-rate

Input frame

24kHz

20ms

480

16

7680

384kbps

Table 5.3: Defining the frame specifications for reference to model statistics.

5.6 Hyper-parameter Sweeping

A parameter sweep was conducted for the hyper-parameters of the model across
the following:

Hyper-parameter Variations
Epochs 10-50
Batch Size 16-32-64-128-256

0.2-0.4-0.6-0.8-1.0
0.001-0.0001-0.00001
4-8-16-32-64

Commitment Cost
Learning Rate
Vector Quantization Dimension

Table 5.4: Set of hyperparameters with their ranges

For the parameter sweep, a limited set of data set sizes was chosen to limit
the computation time at the benefit of trying more variations. A set of 1000 data
points was chosen, and the average run-time for each sweep was 51.62 minutes.
After splitting the 1000 data points into 0.02sec frame-lengths, the training data
contained 88163 samples, and the validation contained 21998 samples. The initial
sweep contained 216 variations of parameters, where it took a total of 185.83 hours
to compute. Following this sweep, more in-depth sweeps containing wider ranges
were conducted for the parameters relevant to vector quantization and configuring
the learning rates and batch sizes (see Figure 5.8 and Figure 5.10).

The sweeps were computed using a nested for loop with each variation and
were for each epoch logged to a Weights and Biases project. After the sweep was
completed a .csv file was downloaded from the Weights and Biases project with
the hyper-parameter variations together with the training and validation losses.
A pair-wise comparison was done using the file: grid_search_data_analysis.py for
visualizing trends in the parameter adjustments.
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Figure 5.9: Validation loss for vector-quantizer parameter sweep
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Figure 5.11: Validation loss for learning rate and batch size parameter sweep

5.7 GitHub Repository

The code for the project can be found in the GitHub Repository:
https://github.com/LukasKristensen/Master-Thesis


https://github.com/LukasKristensen/Master-Thesis

6. Results

All results presented are from the test split of the loaded data set.

6.1 Baseline Performance

900
800
AE100
700
600

500

kbps

400 g Input
300

AE25
200

AE-VQ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
MSE

Figure 6.1: Bit-rate to MSE curve of the models without packet loss (24kbps, 0.02s frame per sample).

6.2 Inference Latency

The models were run on a personal computer rather than a performance-optimized
cloud computer, which had 16 VCPUs and 16 GB RAM for a more realistic infer-
ence time.

Model | kbps | Inference time (encoding + decoding)
Model A | 768 28ms
Model B | 192 19ms
Model C 6 82ms
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6.3 Packet Loss Curve

6.3.1 Model A - AutoEncoder 200% bit-size output
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0.04 / A
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Figure 6.2: Packet Loss Probability to loss over the various frame lengths for Model A.

6.3.2 Model B - AutoEncoder 50% bit-size output

AE25
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Figure 6.3: Packet Loss Probability to loss over the various frame lengths for Model B.
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6.3.3 Model C - AutoEncoder VQ 1.56% bit-size output
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Figure 6.4: Packet Loss Probability to loss over the various frame lengths for Model C.

6.4 Examples from test split

In Appendix A, a sample for each model and packet loss variation can be seen in
their waveform and in Appendix B, they can be seen as spectrograms. The sound
clips can be accessed in the digital appendix with their ground truth. For reference,
a sample of each model at 40% packet loss with 20ms frame with its ground truth

can be seen:

6.4.1 Model A - AutoEncoder 200% bit-size output
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(a) Autoencoder 768kbps example ground truth
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(b) Autoencoder 768kbps example with 40% Packet
Loss Probability
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6.4.2
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(a) Autoencoder 192kbps example ground truth
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Model B - AutoEncoder 50% bit-size output
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(b) Autoencoder 192kbps example with 40% Packet
Loss Probability

6.4.3 Model C - AutoEncoder VQ 1.56% bit-size output
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(a) Autoencoder with VQ 6kbps example ground truth
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(b) Autoencoder with VQ 6kbps example with 40%
Packet Loss Probability



7. Discussion

7.1 Performance

Based on the results presented in chapter 6, a model-based approach for encod-
ing packets for packet loss robustness showed promising results, which will be
discussed in this section.

7.1.1 Baseline Performance

Starting from the baseline performance as seen on Figure 6.1, the models with
higher kbps outperform the lower kbps models. There was no significant benefit
in the implemented auto-encoder using vector quantization. Even though it was
able to capture the patterns of the sound, it did an insignificant job of capturing
the depth of the information in each sample. It should be mentioned that this
rate is close to the state-of-the-art of audio compression and can be difficult to
outperform. The Model A with double the bit-rate as the input was measured at
an MSE of 0.025 compared to Model B with half the input bit-rate at MSE 0.097.
When comparing Model A to the input sample, they sound alike with some noise.
When comparing Model B to the input, it sounds robotic, indicating that the model
could need further optimization to improve the results.

7.1.2 Packet Loss Robustness

As seen in the results presented in section 6.3, Model A and Model B have a similar
loss going from 0 to 40% packet loss. The performance fluctuates from 60% to 80%
packet loss, possibly due to the random train-test splits. The random splits can
affect the result as it might randomly encounter samples it has not been familiar
with due to dissimilarity between the training data and test data. During the
evaluation, the amount of data trained was reduced due to training time and the
number of models that should be evaluated. An easy solution to preventing this
issue would be to include more of the data set to expose the model to more varied
data.

Besides the variation in test results across packet loss rates, there was a decent
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reconstruction when applying packet loss to the packages for Model A and Model
B. As seen in the spectrograms from section 6.4, Model A has a lot of similarity at
40% packet loss and sounds alike. When comparing Model B’s performance at 40%
packet loss, it does not perform that well but still sounds a lot like the decoded
output with no package loss. Model C has an insignificant result at 40% package
loss as it is not audible at all what is being said in the decoded version. When
looking at the spectrogram of the model output, it only seems to recognize some
of the timesteps of the recording while failing to reconstruct the information.

7.2 Interactive Methods

Since each model variation has a model for the different packet losses, it is effective
for interactive communication between the sender and receiver. If the receiver
experiences no packet loss, it might be better not to encode the packages to get a
better sound quality and instead send the original sound stream. In contrast, if the
receiver experiences a specific packet loss rate in a period, the sender can encode
the packages for that rate.

7.3 Training for packet loss

During development, various approaches were considered for training for packet
loss robustness. For the project’s model implementations, only a single decoder
was implemented for each model variation, where each model was trained for its
own packet loss rate. An alternative approach was proposed to have a decoder
for each variation of the possible packet amount incoming. This would mean that
the encoder would have to encode enough information in the embedding for each
individual decoder to reconstruct it at sound quality matching the packet loss rate
as seen on Figure 7.1.

re A A B
Bo o o °
ce BO co ce

3/3 packets received 2/3 packets received 2/3 packets received  2/3 packets received
0% packet loss 33% packet loss 33% packet loss 33% packet loss

AQ BO® co

1/3 packets received 1/3 packets received  1/3 packets received
66% packet loss 66% packet loss 66% packet loss

Figure 7.1: Concept of having multiple decoders for each packet loss probability. In this example,
the encoder would have encoded a total of three packages: A, B and C.
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For the models, it was implemented to generate new packages with the same
length as the missing packages, with minus one in each index. This approach
seemed to work well as the normal packages would have information in the range
of zero and one.

7.3.1 Bursts of packet loss

It should be addressed that packet loss sometimes tends to occur in bursts. This
means that the model encodings are only as effective for packet loss robustness as
the length of the packet loss burst, meaning that if the encoding length is smaller
than the burst, the packages cannot be recovered. Since the model is convolutional,
it is flexible for handling multiple frame lengths, which opens up the opportunity
to use the interaction between the encoder and decoder if the packet loss burst
length is known. The drawback of this approach is a delayed communication flow
since the encoder would have to wait for additional information.

7.4 Future Work

As the model results suggest, the package loss results are only as good as the
base auto-encoder model, which indicates that if future work for the project were
to be done, the main focus would be to improve the models. As proposed by
SoundStream[24], one of the model architectures to investigate could be the GAN.

Additionally, investigating the benefits of using multiple decoders could be an
opportunity, as proposed in section 7.3.

Finally, it could be interesting to investigate the opportunity of using the Multi-
ple Description Coding (MDC) concept for packet encoding, where different packet
losses are weighted depending on the desired sound quality for each packet loss
variety.






8. Conclusion

In conclusion of the project, using models for encoding package robustness for
packet loss showed promising results. Experiments were conducted on varying
the frame length of the packages together with model complexity. Some evidence
suggested that a larger frame length was more effective for making the packages
robust. However, there was nothing conclusive as some results proved uncertain,
possibly due to a lack of data inclusion during training. There was a strong cor-
relation between the model complexity and its ability to reconstruct the input at
a packet loss. The largest model got good results at packet loss rates up to the
highest one tested at 80%, suggesting that this method could be a viable solu-
tion for packet loss. Since the state-of-the-art has encoded packages to even lower
rates while keeping a good reconstruction, it allows future work to be conducted
utilizing some of the same technology together with the project’s findings.
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A. Appendix - Model Outputs
Waveform

In the figures, the blue waveform is the original input, and the orange waveform is
the model output.

A.1 Autoencoder 768kbps trained on 20ms frames (Model
A)
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Figure A.1: Autoencoder 768kbps with 0% Packet Loss Probability
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Figure A.2: Autoencoder 768kbps with 20% Packet Loss Probability
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Figure A.3: Autoencoder 768kbps with 40% Packet Loss Probability
0.4
0.2
0.0
021
04

T T T T T T
0 20000 40000 60000 80000 100000 120000

Figure A.4: Autoencoder 768kbps with 60% Packet Loss Probability
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Figure A.5: Autoencoder 768kbps with 80% Packet Loss Probability

A.2 Autoencoder 192kbps trained on 20ms frames (Model
B)

0.4 4

02 1

00 A

T T T T T T T
o 10000 20000 30000 40000 50000 £0000 70000

Figure A.6: Autoencoder 192kbps with 0% Packet Loss Probability



48

Appendix A. Appendix - Model Outputs Waveform

04 1

02

00 A

044

029

0.0 1

04

02 1

0.0 1

T T T T T T T
10000 20000 30000 40000 50000 EO000 70000

Figure A.7: Autoencoder 192kbps with 20% Packet Loss Probability
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Figure A.8: Autoencoder 192kbps with 40% Packet Loss Probability
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Figure A.9: Autoencoder 192kbps with 60% Packet Loss Probability
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Figure A.10: Autoencoder 192kbps with 80% Packet Loss Probability

A.3 Autoencoder with VQ 6kbps trained on 20ms frames
(Model C)
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Figure A.11: Autoencoder with VQ 6kbps with 0% Packet Loss Probability
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Figure A.12: Autoencoder with VQ 6kbps with 20% Packet Loss Probability
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Figure A.13: Autoencoder with VQ 6kbps with 40% Packet Loss Probability
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Figure A.14: Autoencoder with VQ 6kbps with 60% Packet Loss Probability
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Figure A.15: Autoencoder with VQ 6kbps with 80% Packet Loss Probability
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Spectrogram

B.1

Spectrogram

12000

10000

8000

6000

Frequency [Hz]

4000

2000

(a) Autoencoder 768kbps ground truth for 0% packet
loss

Spectrogram

12000

10000

8000

6000

Frequency [Hz]

4000

2000

Time [sec]

(a) Autoencoder 768kbps ground truth for 20% - 80%
packet loss

Autoencoder 768kbps trained on 20ms frames (Model
A)

Spectrogram

12000

10000

8000

6000

Frequency [Hz]

4000

2000

0.5 1.0 15 2.0 2.5 3.0 3.5
Time [sec]

(b) Autoencoder 768kbps with 0% Packet Loss Proba-
bility

Spectrogram

12000

10000

8000

6000

Frequency [Hz]

4000

2000

Time [sec]

(b) Autoencoder 768kbps with 20% Packet Loss Proba-
bility

53



54 Appendix B. Appendix - Model Outputs Spectrogram

Spectrogram Spectrogram

12000 12000

10000

10000

8000 8000

£ g
g 6000 % 6000
a0  a000

2000 2000

0 0
Time [sec] Time [sec]
(a) Autoencoder 768kbps with 40% Packet Loss Proba- (b) Autoencoder 768kbps with 60% Packet Loss Proba-
bility bility
Spectrogram

12000

10000

8000

6000

Frequency [Hz]

4000

2000

Time [sec]

Figure B.4: Autoencoder 768kbps with 80% Packet Loss Probability
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B.2 Autoencoder 192kbps trained on 20ms frames (Model
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B.3 Autoencoder with VQ 6kbps trained on 20ms frames
(Model C)
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