
Comprehensive review of
state-of-the-art post-quantum

cryptographic algorithms

Master’s thesis
Authored by Adrian Flutur

Aalborg University
Department of Electronics and IT

Copyright © Aalborg University 2024

,rt
AALBORG UNIVERSITY

Department of Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Comprehensive review of state-of-the-art
post-quantum cryptographic algorithms

Theme:
Cyber Security

Project Period:
Spring Semester 2024

Project Group:
1010

Participant(s):
Adrian Flutur (aflutu22@student.aau.dk)

Supervisor(s):
Edlira Dushku (edu@es.aau.dk)

Page Numbers: 43

Date of Completion:
May 30, 2024

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.aau.dk

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Research contributions . 2

2 Background 3
2.1 Post-quantum cryptography . 3

2.1.1 Quantum computers . 3
2.1.2 Current state of PQC . 4

2.2 NIST standardization contest . 6
2.2.1 Current state of the standardization process 6
2.2.2 Discontinued algorithms . 6

2.3 PQC on ARM architectures . 8

3 Methodology 10
3.1 Preparing the testing environment . 10

3.1.1 Hardware configuration . 10
3.1.2 Software configuration . 11

3.2 Review criteria . 13

4 Results 14
4.1 Model properties . 14
4.2 Model performance . 18
4.3 Result analysis and considerations . 38

5 Conclusions 40

Bibliography 41

iii

Acronyms

KEM Key Encapsulation Mechanism. v, vi, 9, 15–19, 21, 23–30, 38, 40

NIST National Institute of Standards and Technology. vi, vii, 1, 2, 5–10, 13, 14, 16, 17, 38,
40

OQS Open Quantum Safe. 11

PQC Post-Quantum Cryptography. vi, vii, 1, 2, 4–18, 38, 40

SIG Digital Signature. v, vi, 9, 16, 18, 19, 22, 31–37, 39, 40

SoC System-on-a-Chip. 11

VM Virtual Machine. 11, 12

iv

List of Figures

4.1 KEM algorithms keygen time benchmark (x86) 23
4.2 KEM algorithms keygen time benchmark (ARM) 24
4.3 KEM algorithms encaps time benchmark (x86) 25
4.4 KEM algorithms encaps time benchmark (ARM) 26
4.5 KEM algorithms decaps time benchmark (x86) 27
4.6 KEM algorithms decaps time benchmark (ARM) 28
4.7 SIG algorithms keypair generation time benchmark (x86) 31
4.8 SIG algorithms keypair generation time benchmark (ARM) 32
4.9 SIG algorithms sign time benchmark (x86) . 33
4.10 SIG algorithms sign time benchmark (ARM) 34
4.11 SIG algorithms verify time benchmark (x86) 35
4.12 SIG algorithms verify time benchmark (ARM) 36

v

List of Tables

4.1 Mathematical models for KEM PQC algorithms. 15
4.2 Mathematical models for SIG PQC algorithms. 16
4.3 NIST security levels. A PQC algorithm being on a specific level should be

as hard to break as that level’s reference classic algorithm. 17
4.4 The list of all KEM candidate algorithms along with their parameters and

specifications. Sizes are expressed in bytes. Abbreviations: PK = public key,
SK = secret key, CT = ciphertext, SS = shared secret. 17

4.5 The list of all SIG candidate algorithms along with their parameters and
specifications. Sizes are expressed in bytes. Abbreviations: PK = public key,
SK = secret key, SIG = signature. 18

4.6 KEM algorithms CPU cycles for all operations (x86) 29
4.7 KEM algorithms CPU cycles for all operations (ARM) 30
4.8 SIG algorithms CPU cycles for all operations (x86) 37
4.9 SIG algorithms CPU cycles for all operations (ARM) 37

vi

Abstract

In the era of rapid advancements in quantum computing, the field of Post-Quantum
Cryptography (PQC) has garnered significant attention as a crucial research area dedi-
cated to developing cryptographic algorithms resilient against both classical and quan-
tum computer attacks. This project presents a review of the state-of-the-art post-quantum
cryptographic algorithms, looking into their foundational mathematical problems, design
principles, and performance metrics. We analyze a wide array of algorithm families of
post-quantum cryptographic algorithms, with a particular emphasis on the algorithms
participating in the National Institute of Standards and Technology (NIST) standardization
contest. We overview the variations, strengths, weaknesses, and potential real-world appli-
cations of each algorithm. Our review not only highlights the algorithms that have already
been selected for standardization but also looks at newly proposed algorithms and those
that have been deprecated. Furthermore, we benchmark and compare the performance
of these algorithms on regular computers and resource-constrained devices, drawing in-
sights from both the latest research findings and our own results. This review serves as a
resource for anyone seeking to navigate the complex landscape of post-quantum crypto-
graphic algorithms, helping them choose the most appropriate algorithm for their systems
and use cases.

vii

Chapter 1

Introduction

The advent of quantum computing has raised significant concerns about the security of
cryptographic systems that rely on the hardness of mathematical problems, such as factor-
ization and discrete logarithms, to protect sensitive information. As quantum computers
become increasingly powerful, the security of traditional cryptographic algorithms is fac-
ing unprecedented challenges. The potential development of large-scale quantum comput-
ers poses a significant threat to the current public-key cryptography infrastructure. The
risk of a quantum attack on these systems grows, threatening the confidentiality and in-
tegrity of data transmitted over the internet. In response, researchers have been actively
exploring the development of Post-Quantum Cryptography (PQC) - a new generation of
cryptographic algorithms resistant to attacks from both classical and quantum computers.

The review begins by discussing the fundamental concepts of quantum computing and
its impact on cryptography, highlighting the need for post-quantum cryptographic solu-
tions. It then presents the various mathematical models and properties of PQC algorithms.
By reviewing the latest research and developments in PQC, this project aims to provide a
valuable resource for researchers and specialists seeking to understand the current land-
scape of post-quantum cryptography.

Furthermore, the review examines the ongoing standardization efforts led by NIST in
the United States, which aims to identify and standardize the most suitable post-quantum
cryptographic algorithms for future use, when standard cryptography will be discontin-
ued. NIST have initiated a public competition to identify and standardize post-quantum
cryptographic algorithms that can resist attacks from both classical and quantum adver-
saries. This project goes into the realm of post-quantum cryptography from the perspec-
tive of NIST’s ongoing efforts to evaluate and select quantum-resistant algorithms. By
providing an overview of NIST’s PQC standardization process, we aim to shed light on
the diverse range of candidate algorithms.

1

2

1.1 Research contributions

We evaluate each algorithm in terms of its underlying mathematical problem, design prin-
ciples, and performance metrics. We provide an up-to-date review of the latest NIST PQC
standardization process developments, analyzing algorithm performance based on metrics
such as key size, execution time of cryptographic operations, and real-world practicality.
By examining the new algorithms submitted to the ongoing rounds of the competition,
we aim to highlight their potential advantages and drawbacks. Furthermore, we also look
over the previously considered algorithms that have been removed from the standardiza-
tion process due to security vulnerabilities.

While most research on post-quantum cryptographic algorithms today focuses on al-
gorithm performance on regular computers running the x86 architecture, this review also
extends the analysis to ARM platforms - widely used in mobile and embedded devices.
We benchmark the NIST candidate algorithms on the ARM Cortex-A series processor se-
ries, running on Raspberry Pi 4. By assessing the performance of these algorithms on the
ARM platform, we provide valuable insights into their suitability for resource-constrained
environments and help developers optimize their implementations for better efficiency.

By addressing these particular aspects, we believe this project has the potential to make
a significant contribution to the field of post-quantum cryptography. Our review provides
a holistic view of the current state of post-quantum cryptographic algorithms and their
practical implications, to help future researchers and developers select the best algorithm
suited for their quantum computing requirements.

The rest of the project is organized as follows: Section 2 reveals background on quan-
tum computers, PQC, the NIST standardization contest, and related work. In Section 3 we
present the methods and steps used for performing the analysis. Section 4 displays the
results and their analysis, and Section 5 concludes the project.

Chapter 2

Background

2.1 Post-quantum cryptography

2.1.1 Quantum computers

Quantum computers, a revolutionary advancement in computing technology, leverage the
principles of quantum mechanics to perform calculations at an exponentially faster rate
compared to traditional computers. While this breakthrough holds immense potential for
various fields, it also poses a significant threat to the current state of internet security.
Many widely used public-key cryptography algorithms, such as RSA and ECC, which
form the backbone of secure online communications, are vulnerable to attacks by quantum
computers. As the development of quantum computers progresses rapidly, it is crucial to
explore and implement solutions that can withstand their immense computational power.
This is where post-quantum cryptography comes into play.

The threat posed by quantum computers to our digital infrastructure may not be such
a distant concern. Experts estimate that within the next 10 to 20 years, quantum computers
could become powerful enough to crack the encryption algorithms currently in use. This
poses a severe risk to the security of sensitive data, financial transactions, and confidential
communications. As our reliance on digital technologies continues growing, it is imper-
ative to proactively address this threat and develop robust solutions that can withstand
quantum attacks.

As of early 2024, the most powerful quantum computers from giant companies such as
IBM, Google, or Intel already have more than 100 qubits. One popular example is IBM’s
Osprey with 433 qubits [1]. However, these quantum computers are still noisy and inca-
pable of running large-scale quantum algorithms such as Shor’s or Grover’s algorithms,
which could threaten existing cryptographic systems. Shor’s algorithm, developed by Pe-
ter Shor in 1994, is a quantum algorithm for integer factorization [2]. It is particularly
significant because it can factor large integers exponentially faster than the best-known
classical algorithms. The algorithm consists of two main parts:

3

4

• A quantum part that uses the quantum Fourier transform (QFT) to find the period
of a function related to the integer to be factored.

• A classical part that uses the period found in the quantum part to determine the
factors of the integer.

The quantum part of the algorithm exploits the superposition and entanglement prop-
erties of quantum bits (qubits) to perform the QFT efficiently. This allows the algorithm
to find the period of the function in polynomial time, which is exponentially faster than
classical methods. The impact of Shor’s algorithm lies in its potential to break widely used
public-key cryptography systems, such as RSA, which rely on the difficulty of factoring
large integers. If a sufficiently large and error-corrected quantum computer is built, Shor’s
algorithm could render these cryptographic systems insecure.

On the other side, Grover’s algorithm (developed by Lov Grover in 1996) is a quantum
search algorithm that provides a quadratic speedup over classical search algorithms for
unstructured search problems [3]. Grover’s algorithm can find the desired element in
approximately

√
N steps, providing a quadratic speedup over classical search algorithms.

This speedup is significant for large databases but less dramatic than the exponential
speedup provided by Shor’s algorithm for factoring.

It is estimated that a quantum computer with several thousand error-corrected qubits
would be required to break current public-key cryptography, such as RSA and elliptic
curve cryptography. Researchers are working on developing more reliable and scalable
quantum computers, while also advancing post-quantum cryptography to ensure the long-
term security of digital systems and communications.

2.1.2 Current state of PQC

Post-quantum cryptography refers to a set of cryptographic algorithms designed to be
secure against attacks from both classical and quantum computers. These algorithms rely
on different mathematical problems that are significantly harder for quantum computers
to solve, providing a higher security level than traditional algorithms. PQC explores a
range of mathematical frameworks, each with its own unique properties and advantages.

There are several families of post-quantum cryptographic algorithms, each based on
different mathematical problems believed to be hard for both classical and quantum com-
puters. The main families are listed below:

• Lattice-based cryptography: These algorithms rely on the difficulty of finding "short
vectors" in a high-dimensional lattice. They are based on mathematical problems
related to lattices, such as the Learning With Errors (LWE) and the Ring Learning
With Errors (RLWE) problems. Examples include CRYSTALS-Kyber, CRYSTALS-
Dilithium, and NTRU.

5

• Code-based cryptography: They utilize error-correcting codes, leveraging the com-
plexity of decoding random linear codes, such as the McEliece cryptosystem and
its variants, like the Classic McEliece and BIKE (Bit Flipping Key Encapsulation)
schemes.

• Multivariate cryptography: These algorithms are based on the difficulty of solving
systems of multivariate polynomial equations over finite fields. Examples of these
include the Rainbow algorithm.

• Hash-based cryptography: Hash-based cryptography employs one-way hash func-
tions to offer digital signatures resistant to quantum attacks. They use hash functions
to construct digital signature schemes, such as the SPHINCS+ scheme.

• Isogeny-based cryptography: These algorithms are based on the difficulty of find-
ing isogenies between elliptic curves, such as the SIKE (Supersingular Isogeny Key
Encapsulation) scheme.

However, at this time there appears to be a limited number of reviews that evaluate the
overall performance and effectiveness of various PQC algorithms and schemes.

Dimitrios Sikeridis et al. described the results of their performance analysis on a small
subset of PQC algorithms in their study [4], where they showed that the PQC algorithms
that had the best performance for time-sensitive applications were Dilithium and Fal-
con. When the hardware had floating point operations available, Falcon seemed to be a
more suitable choice. Any other applications such as VPNs or SSH servers that did not
need frequent connection establishments could make use of the other algorithms as well.
Furthermore, it was shown that slower signing times can significantly impact the total
throughput measured by a server. They expect that signatures and key sizes to have a
significant impact on the duration of connection handshakes in real-world protocols.

Manohar Raavi et al. also attempted to analyze the performance of digital signature
PQC algorithms in their paper [5]. For key generation, their data showed that Dilithium
was between 102 and 32004 times faster than the other algorithms. When analyzing mes-
sage signing, their results indicated that Dilithium was between 8 and 192 times faster than
the other family of algorithms. Furthermore, Dilithium was the fastest for message verifi-
cation as well, with up to 755 times faster than the other algorithms, but being only 0.01
milliseconds faster than Falcon. They have concluded that Dilithium was the fastest algo-
rithm across all algorithms, having the best execution times and being the most memory
efficient.

We believe this project will provide better insights based on a more complete perfor-
mance analysis of NIST PQC algorithms. We benchmark each available algorithm and we
discuss their strengths, drawbacks, and practicality.

6

2.2 NIST standardization contest

2.2.1 Current state of the standardization process

Recognizing the need for standardized post-quantum cryptographic algorithms, various
organizations are actively involved in the evaluation and selection process. National In-
stitute of Standards and Technology (NIST) is leading a crucial effort to standardize PQC
algorithms [6]. Through a rigorous process of evaluation and testing, NIST aims to identify
and standardize a set of algorithms that can be widely adopted and trusted. The Euro-
pean Telecommunications Standards Institute (ETSI) and the European Union Agency for
Cybersecurity (ENISA) are also actively engaged in standardization efforts for PQC. These
collaborative efforts are essential for ensuring interoperability, security, and trust across
different systems and platforms, laying the foundation for a robust and secure global in-
frastructure.

After three rounds of evaluation and analysis, NIST has selected the first set of al-
gorithms for standardization [7]. The public-key encapsulation mechanism chosen for
standardization is CRYSTALS-Kyber, and the digital signature algorithms are CRYSTALS-
Dilithium, Falcon, and SPHINCS+. These selections are based on the computational hard-
ness of problems involving structured lattices, except for SPHINCS+, which uses an un-
derlying mechanism based on hash functions.

The PQC standardization process has progressed with a fourth round, focusing on
KEMs [8]. The KEMs under consideration are BIKE, Classic McEliece, HQC, and SIKE.
Notably, there are no remaining digital signature candidates under consideration, leading
NIST to issue a call for additional digital signature proposals. This call for submissions
closed on the 1st of June 2023, and on the 17th of July 2023, NIST announced additional
Digital Signature candidates for the PQC standardization process [9]. There are already
numerous candidates and the process is still ongoing at the time of this writing.

NIST has expressed its gratitude to the community and submission teams for their con-
tributions to the standardization process. They encourage continued participation from
those whose schemes were not initially selected, emphasizing the importance of collective
efforts in developing future post-quantum standards and selecting robust and secure al-
gorithms to safeguard against the potential vulnerabilities posed by quantum computing
advancements.

2.2.2 Discontinued algorithms

Amongst the several algorithms that were considered for the NIST PQC standardization
process, some of them didn’t make it through the selection criteria due to various reasons,
such as being proven insecure after successful cracking attempts by security researchers
outside of NIST.

During the NIST PQC standardization contest, the SIKE (Supersingular Isogeny Key
Encapsulation) algorithm was found to be insecure [10, 11]. Belgian researchers Wouter

7

Castryck and Thomas Decru successfully cracked the SIKE algorithm in approximately
62 minutes using a single core on a six-core Intel Xeon CPU E5-2630v2 @ 2.60GHz. Their
attack targeted the algorithm’s reliance on supersingular isogenies, a mathematical concept
that forms the basis of SIKE’s security. This finding led NIST to determine that SIKE
would not be standardized due to its vulnerability to the attack demonstrated by Castryck
and Decru [12]. Following those events, the team behind SIKE added a note to their
website to alert potential users of the fact that the algorithm should not be used anymore
[13]. The cracking of SIKE highlights the ongoing challenges in developing cryptographic
algorithms resistant to quantum computing threats. Despite the setback, it underscores the
importance of rigorous testing and analysis in the cryptographic community to identify
vulnerabilities early in the development process. This incident serves as a reminder of the
dynamic nature of cryptography and the necessity for continuous research and adaptation
to maintain the security of digital communications.

Another example of a successful attack on a PQC algorithm has been provided by
Ward Beullens, a Post-doc at IBM Research. The Rainbow PQC algorithm was identified
as insecure due to a practical key recovery attack published by Beullens [14]. This attack
demonstrated that Rainbow could be compromised, leading to concerns about its security
in the face of advancing quantum computing capabilities. The implications of this find-
ing suggest that Rainbow is no longer a viable candidate for adoption in cryptographic
systems designed to withstand quantum attacks. The attack on Rainbow highlighted the
limitations of relying solely on computational complexity as a defense mechanism in cryp-
tography. The size of the public key in the Rainbow signature scheme was another factor
contributing to its insecurity. Before Beullens’ work, the large size of the public key was
already a disadvantage. However, the subsequent attacks necessitated even larger key
sizes to maintain security, thus making the algorithm less practical for widespread use.
In contrast, other PQC algorithms like Dilithium and Falcon, which rely on hard lattice
problems, were not affected by the same vulnerabilities. These algorithms operate under
a fundamentally different mathematical concept, offering a potential alternative for secure
cryptographic systems in the quantum age. The discovery of the Rainbow algorithm’s
insecurity reveals the ongoing challenges in developing robust PQC solutions.

Given these considerations, we decided not to include SIKE and Rainbow in our tests.
We assumed that their inherent flaws and vulnerabilities make them unsuitable for cryp-
tographic applications in the context of preparing for the quantum era. Cryptographic
systems require not just theoretical resistance to quantum attacks but also practical secu-
rity that can withstand real-world scrutiny and exploitation. The focus shifts towards
algorithms that offer stronger theoretical foundations, proven security properties, and
practical efficiency, ensuring the integrity and confidentiality of communications in the
face of evolving quantum computing capabilities.

8

2.3 PQC on ARM architectures

The current state of research regarding the performance of NIST PQC algorithms on ARM
platforms, specifically Raspberry Pi devices, indicates a mix of challenges and opportuni-
ties. The performance of PQC algorithms varies significantly based on the optimization of
the algorithm implementations. Optimized implementations tend to perform better across
different hardware without causing significant bottlenecks, whereas poorly optimized im-
plementations can lead to performance issues.

This variability suggests that the choice of algorithm and its implementation can have
a substantial impact on their performance on ARM platforms like Raspberry Pi, which
has also been shown by Sean Zakrajsek in his research [15]. However, they have also
concluded that the performance of these algorithms tested on Raspberry Pi 4 was not
significantly different compared to the same algorithms tested on Raspberry Pi 3B+. The
reason behind this is that they only used the fastest implementations of the respective
algorithms, along with the shortest key lengths and small sample sizes. Sean’s work
also revealed that some PQC algorithms may face compatibility issues when compiled
on certain ARM platforms. For instance, the SUPERCOP toolkit, which includes various
PQC algorithms, had difficulties compiling on the ARMv6 architecture of the Raspberry
Pi Zero W. Three of the algorithms within their study encountered compilation problems
on Raspberry Pi devices. This highlights potential barriers to deploying these algorithms
on ARM platforms, particularly on older or less powerful models.

In 2024, Thomas E. Carroll et al. explored the possibility of using PQC in electric
vehicles in their study [16]. They concluded based on the conducted experiments and
assessments that they are confident PQC algorithms could be implemented and perform
well in EV hardware.

Furthermore, Kathryn Hines et al. worked on a study where they analyzed the practical
power consumption of a limited set of PQC algorithms on multiple devices, including
Raspberry Pi 3 and 4 [17]. They demonstrated that it could be feasible to execute post-
quantum algorithms on resource-constrained devices and power consumption is not likely
to be a concern. It is also mentioned that PQC algorithms consume more power than the
classical ciphers such as RSA on desktop environments, but they consume similar amounts
of power as the classical ciphers when tested on the Raspberry Pis.

The individual performance of multiple PQC algorithms was also tested on Raspberry
Pi 3 by Basel Halak et al. in their research [18]. Their results revealed that Kyber and
Dilithium were the most resource-efficient solutions for embedded devices in a client-
server scenario. Their results showed that the performance of these algorithms outper-
formed all other PQC algorithms, including the current schemes that use elliptic curve
cryptography. The study has also mentioned that the digital signature scheme SPHINCS+
was revealed to have significant latency and energy costs, making it less suitable for IoT
devices.

As NIST progresses towards finalizing its PQC standards, future research should focus

9

on optimizing the performance of these algorithms on a wider range of hardware such
as ARM Cortex-A and Cortex-M series processors. Additionally, exploring the memory
usage and other resource constraints of these algorithms on ARM platforms will be crucial
for their deployment in resource-constrained environments.

This project aims to provide a more complete performance analysis of NIST PQC al-
gorithms on ARM, for both KEMs and SIGs. While several studies point out performance
metrics on specific embedded devices running a small set of algorithms, we try to com-
pare results and metrics gathered from benchmarking all available algorithms using the
Raspberry Pi 4 to get a full view of the picture. Lastly, we compare these results with the
metrics gathered from the same benchmarks executed on a regular machine, so we can
examine and point out each algorithm’s strengths and drawbacks when using them on
embedded platforms.

Chapter 3

Methodology

We will perform a series of experiments executing cryptographic operations using the
NIST PQC algorithms on two distinct platforms: x86 and ARM. These experiments will
follow the same setup and steps on both platforms. However, there will be two different
sets of operations that will be executed for the KEM and SIG algorithms respectively. The
operations for KEM algorithms will be: generating the keys, secret encapsulation, and
secret decapsulation. The operations for SIG algorithms will be: generating the keys,
secret signing, and secret verification. After gathering the data for all these algorithms, we
will compare the results and provide insights based on the key sizes, execution times, and
CPU clock cycles.

3.1 Preparing the testing environment

First, it is essential to establish the test machines and environments. The experiments will
be conducted on two distinct architectures: x86 and ARM. Although the software config-
uration is largely similar for both architectures, there are minor differences that warrant
discussion. The x86 architecture, known for its widespread use in personal computers and
servers, will serve as one of the primary test platforms. Similarly, the ARM architecture,
which has gained prominence in mobile and embedded devices, will be employed as the
second test platform. While the fundamental software setup process remains consistent
with that of the x86 architecture, there are certain considerations specific to ARM that
must be taken into account. These may include differences in instruction sets, memory
alignment, and optimization techniques.

3.1.1 Hardware configuration

The first step before conducting tests on PQC algorithms is to carefully select the ap-
propriate hardware and architecture for the test machines. To maintain the integrity of
the experiments and ensure the reliability of the collected data, it is crucial to document

10

11

and standardize the software setup process for both architectures. This includes speci-
fying the operating system versions, software libraries, and configuration settings used.
By establishing a consistent and well-defined environment, the experiments can be easily
replicated and validated by other researchers. This transparency allows for a thorough
understanding of the experimental conditions and aids in the interpretation of the results.

For our testing purposes, we will employ two distinct machines with different archi-
tectures and specifications. The first machine will be a Linux Virtual Machine (VM) on
x86 architecture running Debian 12. Debian 12 is known for its stability, security, and ex-
tensive software repository, which makes it an ideal choice for setting up a controlled test
environment. The VM will be hosted on a system equipped with a powerful Quad-core
AMD Ryzen 7 5000 Series (x86-64) processor running at a base frequency of 3.2GHz. This
processor architecture is commonly found in modern desktop systems today, making it a
good standard environment for testing PQC algorithms. The VM will be allocated 4GB of
RAM, which should be sufficient for running the algorithms and collecting performance
metrics without encountering memory constraints. We will use the 64-bit version of De-
bian 12 on the VM, as it can take full advantage of the 64-bit architecture and address more
memory compared to its 32-bit counterpart.

The second machine in our testing setup will be a Raspberry Pi 4 Model B, a popular
single-board computer that features a Quad-core Cortex-A72 (ARM v8) 64-bit System-on-
a-Chip (SoC) running at 1.8GHz. This machine represents a more resource-constrained
device with an ARM architecture, which is widely used in embedded systems, mobile de-
vices, and IoT applications. The Raspberry Pi 4 will have 2GB of RAM, which is a common
configuration for this model and should be adequate for running PQC algorithms with-
out experiencing severe memory limitations. On the Raspberry Pi 4, we will install the
64-bit version of Raspberry Pi OS, the official operating system for Raspberry Pi devices.
This version of the OS is optimized for the ARM v8 architecture, ensuring better perfor-
mance and compatibility compared to the 32-bit version. By testing PQC algorithms on the
Raspberry Pi, we can evaluate their performance and behavior on a resource-constrained
device with an ARM architecture, which is essential for understanding their applicability
in a wide range of real-world scenarios.

3.1.2 Software configuration

To ensure a consistent testing environment across both the virtual machine and the Rasp-
berry Pi, it is crucial to configure them identically, with the same set of tools and de-
pendencies. This step is essential for obtaining accurate and comparable results when
conducting experiments on PQC algorithms. For our experiments, we will be utilizing
the liboqs library, which is an integral part of the Open Quantum Safe (OQS) project [19].
The OQS project aims to develop and promote the use of quantum-resistant cryptographic
algorithms, ensuring the security of digital communications in quantum computing.

To begin the setup process, we must first acquire the source code of the liboqs library

12

from the designated GitHub repository. It is important to ensure that we are fetching
the most up-to-date version of the code to guarantee compatibility with the latest PQC
algorithms and any recent bug fixes or performance improvements. Once the source code
has been obtained, the next step is to install all the necessary dependencies as outlined in
the library’s installation documentation. These dependencies include specific versions of
compilers, libraries, and build tools that are required for the successful compilation and
execution of the liboqs library. With the dependencies in place, we can proceed to build
the liboqs library from its source code. To accomplish this, we will employ the CMake
build file generator, which simplifies the process of creating build files across different
platforms and environments. Afterwards, we will utilize the Ninja build system known
for its fast and efficient build times to compile the library and generate the necessary
binaries and artifacts. We must follow the same build process on both the Linux VM
and the Raspberry Pi to maintain consistency in the testing environment. This includes
using identical versions of the liboqs library, dependencies, and build tools, as well as any
compiler flags or optimization settings that may impact the performance or behavior of
the PQC algorithms.

Once the hardware and software components have been properly configured and the
liboqs library has been successfully built on both the VM and the Raspberry Pi, we can
move forward with conducting PQC experiments. These experiments will involve execut-
ing various operations on multiple families of PQC algorithms such as Kyber, Dilithium,
SPHINCS+, BIKE, HQL, and more. We will collect performance metrics and resource uti-
lization data and compare the results of the two architectures we have chosen for our tests.
By comparing the results obtained from the Linux VM (running on x86 architecture) and
the Raspberry Pi (running on ARM architecture), we can gain valuable insights into the
performance characteristics and resource requirements of PQC algorithms across different
hardware architectures and environments. This information can help with decisions re-
garding the selection and deployment of PQC algorithms in real-world scenarios, taking
into account factors such as processing power and memory constraints. Moreover, the data
collected from these experiments can contribute to the ongoing research and development
efforts in the field of post-quantum cryptography. Providing empirical evidence of the
performance and resource utilization of PQC algorithms on different platforms makes our
findings valuable in the refinement and optimization processes of these algorithms, as well
as guiding the design of future cryptographic systems.

With the hardware and software components properly configured, we can proceed
with running PQC experiments on both the Linux VM and the Raspberry Pi, comparing
the performance and resource utilization across the different architectures (x86 and ARM)
and environments.

13

3.2 Review criteria

Mathematical models

We will outline the methodology employed to analyze the mathematical models at the
foundation of the NIST PQC algorithms. The primary objective is to gain a basic under-
standing of the mathematical foundations upon which these algorithms are built. We do
not evaluate the security claims or proofs for the PQC algorithms. These will be concluded
by NIST during their standardization process.

Empirical analysis and measurements

Empirical analysis and measurements provide valuable insights into the performance, ef-
ficiency, and practicality of PQC algorithms. As previously mentioned, we will analyze
execution times for key generation, encryption and decryption, and key sizes on both
platforms to collect relevant metrics. The empirical analysis of PQC algorithms focuses on
evaluating their performance using a testing suite based on the algorithm implementations
located in the liboqs library. First, we measure the time these algorithms take to generate
a new key pair. This metric represents the efficiency of the key generation process and its
suitability for real-time applications. We then evaluate the performance of encryption and
decryption functions, measuring the time required to encrypt and decrypt a given amount
of data. Finally, we analyze the key sizes required by different PQC algorithms. Small key
sizes are desirable for resource conservation and they are also particularly crucial when
deploying PQC in resource-constrained environments like embedded devices.

Real world use-cases

This review does not intend to pick a single winner from the entire pool of candidates, but
rather it tries to carefully analyze all possibilities and then offer practical advice on what
algorithm may be suited for various real-world use cases. We start by benchmarking the
algorithms according to the criteria already mentioned above, then we formulate opinions
based on the results.

Chapter 4

Results

4.1 Model properties

This section provides an overview of the mathematical models that form the foundation
of the PQC algorithms, illustrated in Tables 4.1 and 4.2. We also provide a list of different
variants of each algorithm based on their documentation and the documentation available
in the liboqs library, which can be found in Tables 4.4 and 4.5. In-depth specifications and
implementation details for each algorithm can be found in the design papers which has
been submitted to NIST, available on their respective websites.

Mathematical models

Algorithm Mathematical model

BIKE BIKE is based on the difficulty of decoding random quasi-cyclic codes.
Quasi-cyclic codes are a class of error-correcting codes with a specific
structure that allows for efficient computations. The security of BIKE
relies on the hardness of the Quasi-Cyclic Syndrome Decoding problem,
which involves finding the nearest codeword to a given vector in a quasi-
cyclic code [20].

Classic McEliece McEliece is based on the difficulty of decoding random linear codes. The
security of McEliece relies on the hardness of the Syndrome Decoding
problem, which involves finding the nearest codeword to a given vector
in a random linear code. McEliece uses Goppa codes, a class of error-
correcting codes, to construct the public key and perform encryption
and decryption operations [21].

14

15

FrodoKEM FrodoKEM is based on the hardness of the LWE problem, similar to
Kyber. However, FrodoKEM uses a different structure for its keys and
ciphertexts, which allows for a more conservative parameter selection
and increased security at the cost of larger key sizes and slower opera-
tions compared to Kyber [22].

HQC HQC is based on the difficulty of the Syndrome Decoding problem for
Hamming Quasi-Cyclic (HQC) codes. HQC codes are a class of error-
correcting codes with a quasi-cyclic structure and a specific distance
metric called the Hamming distance. The security of HQC relies on
the hardness of finding the nearest codeword to a given vector in an
HQC code [23].

Kyber Kyber is based on the hardness of the LWE and MLWE problems, which
involve solving a system of noisy linear equations. The security of Kyber
relies on the difficulty of distinguishing between random samples and
samples from an LWE distribution. Kyber uses a structured lattice called
a module lattice, which allows for smaller key sizes and faster operations
compared to standard LWE-based schemes [24].

ML-KEM ML-KEM is based on the hardness of the MLWE problem, similar to
Kyber and CRYSTALS-Dilithium. However, ML-KEM uses a different
algebraic structure for its keys and ciphertexts, which allows for a more
efficient implementation and smaller key sizes compared to Kyber [25].

NTRU-Prime NTRU Prime is based on the hardness of the Short Integer Solution (SIS)
problem, which involves finding short vectors in a lattice. The algorithm
uses polynomials over finite fields and applies operations such as poly-
nomial multiplication and reduction modulo a composite modulus to
generate public and private keys [26].

Table 4.1: Mathematical models for KEM PQC algorithms.

16

Algorithm Mathematical model

CRYSTALS-Dilithium CRYSTALS-Dilithium is based on the hardness of the MLWE and SIS
problems. The MLWE problem, similar to Kyber, involves solving a
system of noisy linear equations over a module lattice. The SIS problem
involves finding a short integer solution to a system of linear equations.
Dilithium combines these problems to create a secure digital signature
scheme [24].

FALCON FALCON is based on the hardness of the SIS problem over NTRU lat-
tices. NTRU lattices are a special class of lattices with a specific algebraic
structure. FALCON uses the properties of NTRU lattices to construct a
hash-and-sign digital signature scheme with fast signing and verifica-
tion operations [27].

ML-DSA ML-DSA is based on the hardness of the MLWE and SIS problems, sim-
ilar to CRYSTALS-Dilithium. However, ML-DSA uses a different alge-
braic structure and signature scheme, which allows for more efficient im-
plementations and faster signing and verification operations compared
to Dilithium [28].

SPHINCS+ SPHINCS+ is based on the security of hash functions and their resis-
tance to collision attacks. SPHINCS+ uses a multi-tree structure of hash-
based one-time signature schemes, called Winternitz one-time signatures
(WOTS), to construct a stateless hash-based signature scheme. The se-
curity of SPHINCS+ relies on the collision resistance of the underlying
hash functions [29].

Table 4.2: Mathematical models for SIG PQC algorithms.

Algorithms, parameter sets, and key sizes

Tables 4.4 and 4.5 present all the algorithms analyzed in this review, along with their
various parameter sets, NIST security levels, public and private key sizes, ciphertext sizes,
shared secret sizes (for KEM algorithms), and signature sizes (for SIG algorithms). KEM
algorithms use the shared secret when establishing a connection between two parties in
cryptographic protocols such as TLS, similar to the way the Diffie-Hellman Key-Exchange
algorithm works.

Security levels illustrated in Table 4.3 represent categories created by NIST, where
algorithms in each category should be at least as hard to break as their reference classic
algorithms such as AES or SHA. NIST has defined five security levels, each corresponding
to different security strengths [6].

17

Security level Reference classic algorithm

1 AES 128
2 SHA 256
3 AES 192
4 SHA 384
5 AES 256

Table 4.3: NIST security levels. A PQC algorithm being on a specific level should be as hard to break as that
level’s reference classic algorithm.

Algorithm Parameter set NIST level PK size SK size CT size SS size

BIKE BIKE-L1 1 1541 5223 1573 32
BIKE-L3 3 3083 10105 3115 32
BIKE-L3 5 5122 16494 5154 32

Classic McEliece Classic-McEliece-348864 1 261120 6492 96 32
Classic-McEliece-348864f 1 261120 6492 96 32
Classic-McEliece-460896 3 524160 13608 156 32
Classic-McEliece-460896f 3 524160 13608 156 32
Classic-McEliece-6688128 5 1044992 13932 208 32
Classic-McEliece-6688128f 5 1044992 13932 208 32
Classic-McEliece-6960119 5 1047319 13948 194 32
Classic-McEliece-6960119f 5 1047319 13948 194 32
Classic-McEliece-8192128 5 1357824 14120 208 32
Classic-McEliece-8192128f 5 1357824 14120 208 32

FrodoKEM FrodoKEM-640-AES 1 9616 19888 9720 16
FrodoKEM-640-SHAKE 1 9616 19888 9720 16
FrodoKEM-976-AES 3 15632 31296 15744 24
FrodoKEM-976-SHAKE 3 15632 31296 15744 24
FrodoKEM-1344-AES 5 21520 43088 21632 32
FrodoKEM-1344-SHAKE 5 21520 43088 21632 32

HQC HQC-128 1 2249 2305 4433 64
HQC-192 3 4522 4586 8978 64
HQC-256 5 7245 7317 14421 64

Kyber Kyber512 1 800 1632 768 32
Kyber768 3 1184 2400 1088 32
Kyber1024 5 1568 3168 1568 32

ML-KEM ML-KEM-512-ipd 1 800 1632 768 32
ML-KEM-768-ipd 3 1184 2400 1088 32
ML-KEM-1024-ipd 5 1568 3168 1568 32

NTRU-Prime sntrup761 2 1158 1763 1039 32

Table 4.4: The list of all KEM candidate algorithms along with their parameters and specifications. Sizes are
expressed in bytes. Abbreviations: PK = public key, SK = secret key, CT = ciphertext, SS = shared secret.

18

Algorithm Parameter set NIST level PK size SK size SIG size

CRYSTALS-Dilithium Dilithium2 2 1312 2528 2420
Dilithium3 3 1952 4000 3293
Dilithium5 5 2592 4864 4595

Falcon Falcon-512 1 897 1281 752
Falcon-1024 5 1793 2305 1462
Falcon-padded-512 1 897 1281 666
Falcon-padded-1024 5 1793 2305 128

ML-DSA ML-DSA-44-ipd 2 1312 2560 2420
ML-DSA-65-ipd 3 1952 4032 3309
ML-DSA-87-ipd 5 2592 4896 4627

SPHINCS+ SPHINCS+-SHA2-128f-simple 1 32 64 17088
SPHINCS+-SHA2-128s-simple 1 32 64 7856
SPHINCS+-SHA2-192f-simple 3 48 96 35664
SPHINCS+-SHA2-192s-simple 3 48 96 16224
SPHINCS+-SHA2-256f-simple 5 64 128 49856
SPHINCS+-SHA2-256s-simple 5 64 128 29792
SPHINCS+-SHAKE-128f-simple 1 32 64 17088
SPHINCS+-SHAKE-128s-simple 1 32 64 7856
SPHINCS+-SHAKE-192f-simple 3 48 96 35664
SPHINCS+-SHAKE-192s-simple 3 48 96 16224
SPHINCS+-SHAKE-256f-simple 5 64 128 49856
SPHINCS+-SHAKE-256s-simple 5 64 128 29792

Table 4.5: The list of all SIG candidate algorithms along with their parameters and specifications. Sizes are
expressed in bytes. Abbreviations: PK = public key, SK = secret key, SIG = signature.

4.2 Model performance

The benchmarking algorithm

In this section, we present our proposed methodology for benchmarking the performance
of selected algorithms using the liboqs library [19]. Our methodology aims to provide a
clear understanding of the performance exhibited by the selected algorithms under both
x86 and ARM platforms, considering metrics such as computational and runtime costs. We
leveraged the liboqs library to ensure we have a standardized implementation and reliable
results across different platforms. We used the provided source code and examples to
create an abstraction layer over the implementation details located inside the library, so
we could adjust runtime parameters and run specific operations directly. The following
method was used to measure the performance of the PQC algorithms:

1. Initialize the liboqs library.

2. Select which KEM and SIG algorithms we want to run.

19

3. Select how many iterations we should use for computing the average results (defaults
to 100).

4. Take each selected KEM algorithm, start a timer and a CPU clock counter, and ex-
ecute the following operations individually: key generation, encapsulation, and de-
capsulation. The operations are executed by the liboqs underlying implementation
code, then the results are gathered by our program.

5. Computing the average times and CPU cycles for the results.

6. Take each selected SIG algorithm, start a timer and a CPU clock counter, and execute
the following operations individually: keypair generation, signing, and verification.
The operations are executed by the liboqs underlying implementation code, then the
results are gathered by our program.

7. Computing the average times and CPU cycles for the results.

8. Print the results.

The above steps provide a high-level overview of the algorithm. These steps ensured
that our proposed method captured the essential performance characteristics of KEM algo-
rithms accurately and efficiently. Below we have also provided the actual algorithm repre-
sented in pseudocode. The algorithm begins with the main() function. We have split KEM
and SIG operations into two sub-routines named kem_execute_and_measure(algorithm,
operation) and sig_execute_and_measure(algorithm, operation) for a clearer understand-
ing of the whole process. These sub-routines end up calling functions inside the liboqs
library. Essentially, the algorithm is a high-level wrapper over the liboqs implementations,
making it easier to benchmark specific algorithms, iterate a specific number of times, pro-
vide custom parameters, and extract the results. The algorithm is presented below:

20

Algorithm 1 Benchmark algorithm - main()

Inputs
▷ kem_algs: list of all supported KEM algorithms
▷ sig_algs: list of all supported SIG algorithms
▷ iters: how many iterations to use for benchmarking (default is 100)
Output
▷ kem_results: a hashmap used to store the results for KEM algorithms
▷ sig_results: a hashmap used to store the results for SIG algorithms

for i = 1 to kem_algs.length do
alg← algs[i]
keygen_results← {}
encaps_results← {}
decaps_results← {}

for j = 1 to iters do
k← kem_execute_and_measure(alg, KEM_KEYGEN)

keygen_results.Add(k)
e← kem_execute_and_measure(alg, KEM_ENCAPS)
encaps_results.Add(e)
d← kem_execute_and_measure(alg, KEM_DECAPS)
decaps_results.Add(d)

end for

kem_results[alg] = (AVG(keygen_results), AVG(encaps_results), AVG(decaps_results))
end for

for i = 1 to sig_algs.length do
alg← algs[i]
keypair_results← {}
sign_results← {}
veri f y_results← {}

for j = 1 to iters do
k← sig_execute_and_measure(alg, SIG_KEYPAIR)
keygen_results.Add(k)
e← sig_execute_and_measure(alg, SIG_SIGN)

encaps_results.Add(e)
d← sig_execute_and_measure(alg, SIG_VERIFY)
decaps_results.Add(d)

end for

sig_results[alg] = (AVG(keypair_results), AVG(sign_results), AVG(veri f y_results))
end for
return (kem_results, sig_results)

21

Algorithm 2 KEM benchmark algorithm - kem_execute_and_measure(algorithm, opera-
tion)

Inputs
▷ algorithm: any of the supported KEM algorithms
▷ operation: any of the supported operations.
Can be one of: KEM_KEYGEN, KEM_ENCAPS, KEM_DECAPS
Output
▷ the benchmark results after running the specified operation using the given algorithm,
as a tuple (time, cpu_cycles)

start_time← get_time()
start_cpu_cycle_counter()

if operation = KEM_KEYGEN then
execute_keygen(algorithm)

else if operation = KEM_ENCAPS then
execute_encaps(algorithm)

else
execute_decaps(algorithm)

end if

cpu_cycles← end_cpu_cycle_counter()
end_time← get_time()
time← end_time− start_time

return (time, cpu_cycles)

22

Algorithm 3 SIG benchmark algorithm - sig_execute_and_measure(algorithm, operation)

Inputs
▷ algorithm: any of the supported SIG algorithms
▷ operation: any of the supported operations.
Can be one of: SIG_KEYPAIR, SIG_SIGN, SIG_VERIFY
Output
▷ the benchmark results after running the specified operation using the given algorithm,
as a tuple (time, cpu_cycles)

start_time← get_time()
start_cpu_cycle_counter()

if operation = SIG_KEYPAIR then
execute_keypair(algorithm)

else if operation = SIG_SIGN then
execute_sign(algorithm)

else
execute_veri f y(algorithm)

end if

cpu_cycles← end_cpu_cycle_counter()
end_time← get_time()
time← end_time− start_time

return (time, cpu_cycles)

23

Results - KEM algorithms

In the following figures, we have listed the results of running the KEM algorithms us-
ing the benchmarking program provided above (Figures 4.1 up to 4.6). Then, we listed
the CPU cycles that have been observed while running those operations in Tables 4.6-4.7.
We displayed the results for all KEM algorithms and operations, for both x86 and ARM
architectures. The operations are, in order: key generation (Figures 4.1-4.2), secret en-
capsulation (Figures 4.3-4.4), and secret decapsulation (Figures 4.5-4.6). The values are
presented in microseconds (µs).

Figure 4.1: KEM algorithms keygen time benchmark (x86)

BIK
E-L

1

BIK
E-L

3

BIK
E-L

5

Clas
sic

-M
cE

lie
ce

-34
88

64

Clas
sic

-M
cE

lie
ce

-34
88

64
f

Clas
sic

-M
cE

lie
ce

-46
08

96

Clas
sic

-M
cE

lie
ce

-46
08

96
f

Clas
sic

-M
cE

lie
ce

-66
88

12
8

Clas
sic

-M
cE

lie
ce

-66
88

12
8f

Clas
sic

-M
cE

lie
ce

-69
60

11
9

Clas
sic

-M
cE

lie
ce

-69
60

11
9f

Clas
sic

-M
cE

lie
ce

-81
92

12
8

Clas
sic

-M
cE

lie
ce

-81
92

12
8f

Fro
doKEM

-64
0-A

ES

Fro
doKEM

-64
0-S

HAKE

Fro
doKEM

-97
6-A

ES

Fro
doKEM

-97
6-S

HAKE

Fro
doKEM

-13
44

-A
ES

Fro
doKEM

-13
44

-SH
AKE

HQC-12
8

HQC-19
2

HQC-25
6

Kyber
51

2

Kyber
76

8

Kyber
10

24

M
L-K

EM
-51

2

M
L-K

EM
-76

8

M
L-K

EM
-10

24

sn
tru

p76
1

0

1

2

3

4

5

6

7

8

·105

25
4.

87
7

82
0.

65
2

1,
84

7.
66

9
86

,9
19

.4
58

35
,3

82
.0

63
22

6,
28

8.
47

8
10

0,
97

0.
72

49
0,

20
7.

27
3

21
0,

65
7.

45
8

69
1,

93
0.

5
19

0,
62

8.
96

3
63

9,
69

9.
72

7
19

9,
36

0.
03

8
28

8.
94

2
2,

02
2.

21
8

59
7.

23
4

4,
57

2.
07

5
99

4.
76

6
8,

29
2.

66
8

1,
46

7.
89

4
4,

48
9.

73
7

8,
21

1.
22

7
31

.4
78

52
.1

05
79

.0
53

30
.5

87
49

.1
67

76
.2

22
5,

75
1.

47
9

Avg. keygen time (µs)

24

Figure 4.2: KEM algorithms keygen time benchmark (ARM)

BIK
E-L

1

BIK
E-L

3

BIK
E-L

5

Clas
sic

-M
cE

lie
ce

-34
88

64

Clas
sic

-M
cE

lie
ce

-34
88

64
f

Clas
sic

-M
cE

lie
ce

-46
08

96

Clas
sic

-M
cE

lie
ce

-46
08

96
f

Clas
sic

-M
cE

lie
ce

-66
88

12
8

Clas
sic

-M
cE

lie
ce

-66
88

12
8f

Clas
sic

-M
cE

lie
ce

-69
60

11
9

Clas
sic

-M
cE

lie
ce

-69
60

11
9f

Clas
sic

-M
cE

lie
ce

-81
92

12
8

Clas
sic

-M
cE

lie
ce

-81
92

12
8f

Fro
doKEM

-64
0-A

ES

Fro
doKEM

-64
0-S

HAKE

Fro
doKEM

-97
6-A

ES

Fro
doKEM

-97
6-S

HAKE

Fro
doKEM

-13
44

-A
ES

Fro
doKEM

-13
44

-SH
AKE

HQC-12
8

HQC-19
2

HQC-25
6

Kyber
51

2

Kyber
76

8

Kyber
10

24

M
L-K

EM
-51

2

M
L-K

EM
-76

8

M
L-K

EM
-10

24

sn
tru

p76
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·107

43
,1

57
.3

1
13

2,
15

4.
65

8
33

0,
75

6.
56

3
35

2,
11

1
15

0,
81

9.
70

6
60

4,
44

3.
66

7
46

7,
03

3.
72

7
5,

09
1,

08
5

2,
67

1,
59

6.
5

12
,0

57
,7

06
2,

37
3,

43
9.

33
3

9,
36

8,
49

8
3,

36
9,

55
8

16
,9

10
.0

54
5,

65
1.

16
6

39
,0

93
.5

7
12

,7
85

.4
34

73
,6

93
.8

82
23

,0
56

.5
76

4,
97

5.
54

2
15

,1
49

.1
69

27
,7

02
.9

45
53

.4
76

75
.2

35
10

6.
79

9
85

.3
94

13
5.

89
7

20
5.

36
1

12
,4

73
.7

03

Avg. keygen time (µs)

As we can directly observe, the key generation times of all variants of Classic McEliece
are the highest amongst all other algorithms, on both x86 and ARM platforms. The fastest
times on both platforms are represented by the Kyber and ML-KEM algorithms. However,
Kyber512 running on ARM was 70% slower compared to x86, while ML-KEM-512 running
on ARM reported 180% slower times compared to x86. Surprisingly, BIKE seems to be an
astonishing 16500% slower on ARM compared to x86.

25

Figure 4.3: KEM algorithms encaps time benchmark (x86)

BIK
E-L

1

BIK
E-L

3

BIK
E-L

5

Clas
sic

-M
cE

lie
ce

-34
88

64

Clas
sic

-M
cE

lie
ce

-34
88

64
f

Clas
sic

-M
cE

lie
ce

-46
08

96

Clas
sic

-M
cE

lie
ce

-46
08

96
f

Clas
sic

-M
cE

lie
ce

-66
88

12
8

Clas
sic

-M
cE

lie
ce

-66
88

12
8f

Clas
sic

-M
cE

lie
ce

-69
60

11
9

Clas
sic

-M
cE

lie
ce

-69
60

11
9f

Clas
sic

-M
cE

lie
ce

-81
92

12
8

Clas
sic

-M
cE

lie
ce

-81
92

12
8f

Fro
doKEM

-64
0-A

ES

Fro
doKEM

-64
0-S

HAKE

Fro
doKEM

-97
6-A

ES

Fro
doKEM

-97
6-S

HAKE

Fro
doKEM

-13
44

-A
ES

Fro
doKEM

-13
44

-SH
AKE

HQC-12
8

HQC-19
2

HQC-25
6

Kyber
51

2

Kyber
76

8

Kyber
10

24

M
L-K

EM
-51

2

M
L-K

EM
-76

8

M
L-K

EM
-10

24

sn
tru

p76
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

·104

69
.5

59
18

3.
10

8
42

7.
86

7
45

.1
58

45
.7

29
10

3.
66

5
10

4.
00

4
16

3.
5

16
5.

05
6

67
9.

79
2

70
5.

03
15

2.
23

3
15

2.
12

7
43

5.
36

6
2,

18
3.

53
9

87
1.

45
5

4,
86

8.
83

3
1,

49
4.

47
9

8,
93

7.
09

3
2,

95
8.

15
8

9,
02

4.
09

16
,4

68
.2

37
38

.7
02

61
.4

61
88

.6
14

36
.7

71
54

.5
76

80
.4

76
33

5.
87

9

Avg. encaps time (µs)

26

Figure 4.4: KEM algorithms encaps time benchmark (ARM)

BIK
E-L

1

BIK
E-L

3

BIK
E-L

5

Clas
sic

-M
cE

lie
ce

-34
88

64

Clas
sic

-M
cE

lie
ce

-34
88

64
f

Clas
sic

-M
cE

lie
ce

-46
08

96

Clas
sic

-M
cE

lie
ce

-46
08

96
f

Clas
sic

-M
cE

lie
ce

-66
88

12
8

Clas
sic

-M
cE

lie
ce

-66
88

12
8f

Clas
sic

-M
cE

lie
ce

-69
60

11
9

Clas
sic

-M
cE

lie
ce

-69
60

11
9f

Clas
sic

-M
cE

lie
ce

-81
92

12
8

Clas
sic

-M
cE

lie
ce

-81
92

12
8f

Fro
doKEM

-64
0-A

ES

Fro
doKEM

-64
0-S

HAKE

Fro
doKEM

-97
6-A

ES

Fro
doKEM

-97
6-S

HAKE

Fro
doKEM

-13
44

-A
ES

Fro
doKEM

-13
44

-SH
AKE

HQC-12
8

HQC-19
2

HQC-25
6

Kyber
51

2

Kyber
76

8

Kyber
10

24

M
L-K

EM
-51

2

M
L-K

EM
-76

8

M
L-K

EM
-10

24

sn
tru

p76
1

0

1

2

3

4

5

6

7

8

·104

2,
24

3.
37

1
6,

85
8.

24
7

17
,1

97
.5

84
17

9.
90

7
17

9.
93

2
37

5.
02

8
37

4.
25

9
71

3.
09

5
71

7.
97

1,
66

2.
86

6
1,

66
5.

50
5

79
7.

27
6

79
8.

59
8

17
,1

92
.4

6
6,

35
6.

47
1

39
,5

55
.2

6
14

,2
18

.3
72

74
,8

03
.8

81
25

,7
26

.0
82

9,
93

3.
08

3
30

,2
89

.7
53

55
,4

23
.6

26
58

.5
4

85
.8

64
12

0.
35

1
10

0.
46

1
15

5.
02

1
22

7.
56

1
43

3.
21

5

Avg. encaps time (µs)

For the secret encapsulation operation, FrodoKEM and HQC have reported the slowest
times, being several orders of magnitude slower than ML-KEM, Kyber, or Classic McEliece.
Contrary to the very large initial key generation times, McEliece has the third fastest en-
capsulation times. The fastest times on both platforms are represented, again, by the Ky-
ber and ML-KEM algorithms. Just like before, Kyber512 running on ARM is 50% slower
compared to x86, while ML-KEM-512 running on ARM is 170% slower compared to x86.
Furthermore, FrodoKEM and BIKE are several times slower on ARM as well.

27

Figure 4.5: KEM algorithms decaps time benchmark (x86)

BIK
E-L

1

BIK
E-L

3

BIK
E-L

5

Clas
sic

-M
cE

lie
ce

-34
88

64

Clas
sic

-M
cE

lie
ce

-34
88

64
f

Clas
sic

-M
cE

lie
ce

-46
08

96

Clas
sic

-M
cE

lie
ce

-46
08

96
f

Clas
sic

-M
cE

lie
ce

-66
88

12
8

Clas
sic

-M
cE

lie
ce

-66
88

12
8f

Clas
sic

-M
cE

lie
ce

-69
60

11
9

Clas
sic

-M
cE

lie
ce

-69
60

11
9f

Clas
sic

-M
cE

lie
ce

-81
92

12
8

Clas
sic

-M
cE

lie
ce

-81
92

12
8f

Fro
doKEM

-64
0-A

ES

Fro
doKEM

-64
0-S

HAKE

Fro
doKEM

-97
6-A

ES

Fro
doKEM

-97
6-S

HAKE

Fro
doKEM

-13
44

-A
ES

Fro
doKEM

-13
44

-SH
AKE

HQC-12
8

HQC-19
2

HQC-25
6

Kyber
51

2

Kyber
76

8

Kyber
10

24

M
L-K

EM
-51

2

M
L-K

EM
-76

8

M
L-K

EM
-10

24

sn
tru

p76
1

0

1

2

3

4

5

6

7

8

9

·104

1,
58

1.
17

6
4,

94
0.

49
8 11
,7

07
.8

08
15

,1
10

.2
57

14
,9

72
.1

89
34

,3
91

.9
04

34
,4

88
.1

86
65

,1
01

.3
77

65
,2

18
.3

25
62

,6
40

.7
64

,1
01

.6
96

80
,4

57
.8

73
80

,0
52

.9
68

40
9.

65
2,

15
8.

33
7

80
2.

70
9

4,
81

6.
59

3
1,

42
1.

48
6 8,
80

0.
04

6
4,

48
8.

47
7 13

,5
70

.2
63

24
,7

17
.6

06
10

.8
81

71
.8

67
10

0.
91

2
47

.2
86

67
.7

29
97

.0
41

95
8.

76

Avg. decaps time (µs)

28

Figure 4.6: KEM algorithms decaps time benchmark (ARM)

BIK
E-L

1

BIK
E-L

3

BIK
E-L

5

Clas
sic

-M
cE

lie
ce

-34
88

64

Clas
sic

-M
cE

lie
ce

-34
88

64
f

Clas
sic

-M
cE

lie
ce

-46
08

96

Clas
sic

-M
cE

lie
ce

-46
08

96
f

Clas
sic

-M
cE

lie
ce

-66
88

12
8

Clas
sic

-M
cE

lie
ce

-66
88

12
8f

Clas
sic

-M
cE

lie
ce

-69
60

11
9

Clas
sic

-M
cE

lie
ce

-69
60

11
9f

Clas
sic

-M
cE

lie
ce

-81
92

12
8

Clas
sic

-M
cE

lie
ce

-81
92

12
8f

Fro
doKEM

-64
0-A

ES

Fro
doKEM

-64
0-S

HAKE

Fro
doKEM

-97
6-A

ES

Fro
doKEM

-97
6-S

HAKE

Fro
doKEM

-13
44

-A
ES

Fro
doKEM

-13
44

-SH
AKE

HQC-12
8

HQC-19
2

HQC-25
6

Kyber
51

2

Kyber
76

8

Kyber
10

24

M
L-K

EM
-51

2

M
L-K

EM
-76

8

M
L-K

EM
-10

24

sn
tru

p76
1

0

0.5

1

1.5

2

2.5

3

·105

35
,2

21
.3

66
11

0,
99

3.
10

9
27

6,
70

6.
21

1
55

,3
82

.3
08

55
,3

78
.0

11
89

,2
57

.7
19

89
,2

51
.7

54
17

0,
77

9.
83

3
17

0,
77

7.
83

3
16

5,
39

9.
83

9
16

5,
40

5.
06

5
20

8,
80

7.
95

8
20

8,
81

4.
12

5
17

,1
63

.4
04

6,
31

9.
47

1
39

,4
51

.3
07

14
,0

88
.7

77
74

,7
45

.7
16

25
,5

65
.1

07
15

,0
47

.0
21 45

,6
11

.7
27

83
,6

19
.5

83
45

.3
16

70
.4

7
10

4.
9

11
6.

51
6

18
0.

33
2

26
2.

03
8

82
6.

38
2

Avg. decaps time (µs)

As for the decapsulation operation, Classic McEliece, HQC, and BIKE are the slowest
among all algorithms, with Kyber and ML-KEM taking the lead as the fastest algorithms
for the third time. FrodoKEM and NTRU Prime deliver reasonable times but are overall
slower than Kyber or ML-KEM. On x86, Kyber512 running on ARM is 316% slower com-
pared to x86, while ML-KEM-512 running on ARM is 146% slower compared to x86. BIKE
is slower on ARM again, this time being about 2100% slower.

29

Algorithm Parameter set Keygen CPU cycles Encaps CPU cycles Decaps CPU cycles

BIKE BIKE-L1 813900 222043 5049663
BIKE-L3 2620801 584691 15778430
BIKE-L5 5903899 1367096 37411798

Classic-McEliece Classic-McEliece-348864 277751053 144205 48284499
Classic-McEliece-348864f 113062779 146002 47843256
Classic-McEliece-460896 723105611 331118 109899019
Classic-McEliece-460896f 322651777 332197 110206402
Classic-McEliece-6688128 1566461648 522302 208031152
Classic-McEliece-6688128f 673157103 527296 208405417
Classic-McEliece-6960119 2211072205 2172064 200168445
Classic-McEliece-6960119f 609155633 2252693 204837204
Classic-McEliece-8192128 1653715821 486318 257103456
Classic-McEliece-8192128f 637055677 485978 255809455

FrodoKEM FrodoKEM-640-AES 923146 1391033 1308876
FrodoKEM-640-SHAKE 6461651 6977126 6896618
FrodoKEM-976-AES 1908273 2784523 2564844
FrodoKEM-976-SHAKE 14609490 15557806 15390881
FrodoKEM-1344-AES 3178513 4775324 4542057
FrodoKEM-1344-SHAKE 26498705 28557939 28120072

HQC HQC-128 4690398 9452380 14342412
HQC-192 14346264 28835990 43363265
HQC-256 26237862 52623777 78984616

Kyber Kyber512 100495 123578 146947
Kyber768 166402 196301 229548
Kyber1024 252506 283057 322345

ML-KEM ML-KEM-512 97646 117404 151008
ML-KEM-768 157004 174295 216329
ML-KEM-1024 243469 257046 309991

NTRU-Prime sntrup761 18378651 1073166 3063519

Table 4.6: KEM algorithms CPU cycles for all operations (x86)

30

Algorithm Parameter set Keygen CPU cycles Encaps CPU cycles Decaps CPU cycles

BIKE BIKE-L1 43157188 2243245 35221271
BIKE-L3 132154590 6858141 110992996
BIKE-L5 330756640 17197480 276706061

Classic-McEliece-348864 Classic-McEliece-348864 352110831 179823 55382157
Classic-McEliece-348864f 150819742 179842 55377900
Classic-McEliece-460896 604443221 374939 89257620
Classic-McEliece-460896f 467033484 374171 89251647
Classic-McEliece-6688128 5091085312 712856 170779674
Classic-McEliece-6688128f 2671596288 717669 170777805
Classic-McEliece-6960119 12057706368 1662518 165399783
Classic-McEliece-6960119f 2373439147 1665121 165404903
Classic-McEliece-8192128 9368497408 796964 208807776
Classic-McEliece-8192128f 3369557376 798264 208813995

FrodoKEM FrodoKEM-640-AES 16909924 17192346 17163302
FrodoKEM-640-SHAKE 5651052 6356375 6319373
FrodoKEM-976-AES 39093476 39555122 39451170
FrodoKEM-976-SHAKE 12785274 14218248 14088638
FrodoKEM-1344-AES 73693745 74803777 74745566
FrodoKEM-1344-SHAKE 23056439 25725917 25564972

HQC HQC-128 4975410 9932981 15046931
HQC-192 15149058 30289608 45611601
HQC-256 27702894 55423494 83619430

Kyber Kyber512 53376 58428 45229
Kyber768 75128 85748 70377
Kyber1024 106696 120239 104810

ML-KEM ML-KEM-512 85298 100363 116427
ML-KEM-768 135809 154898 180242
ML-KEM-1024 205272 227469 261949

NTRU-Prime sntrup761 12473576 433120 826296

Table 4.7: KEM algorithms CPU cycles for all operations (ARM)

The CPU cycles required for running all operations are also provided for complete-
ness. While CPU cycles might not be very accurate in regards to how many low-level
operations the CPU executes within one cycle, they can provide additional profiling data
and reassurance that our runtime times above are indeed correctly measured.

31

Results - SIG algorithms

In the next figures, we have listed the results of running the SIG algorithms using the same
benchmarking program (Figures 4.7 up to 4.12). Then, we listed the CPU cycles that have
been observed while running those operations in Tables 4.8-4.9. We displayed the results
for all SIG algorithms and operations, for both x86 and ARM architectures. The operations
are, in order: keypair generation (Figures 4.7-4.8), signing (Figures 4.9-4.10), and verifying
the signature (Figures 4.11-4.12). The values are presented in microseconds (µs).

Figure 4.7: SIG algorithms keypair generation time benchmark (x86)

Dili
th

iu
m

2

Dili
th

iu
m

3

Dili
th

iu
m

5

Falc
on-51

2

Falc
on-10

24

Falc
on-p

ad
ded

-51
2

Falc
on-p

ad
ded

-10
24

M
L-D

SA
-44

M
L-D

SA
-65

M
L-D

SA
-87

SP
HIN

CS+
-SH

A2-1
28

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
28

s-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

s-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

f-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

s-s
im

ple

SP
HIN

CS+
-SH

AKE-12
8f-

sim
ple

SP
HIN

CS+
-SH

AKE-12
8s

-si
m

ple

SP
HIN

CS+
-SH

AKE-19
2f-

sim
ple

SP
HIN

CS+
-SH

AKE-19
2s

-si
m

ple

SP
HIN

CS+
-SH

AKE-25
6f-

sim
ple

SP
HIN

CS+
-SH

AKE-25
6s

-si
m

ple
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

·105

74
.0

04

13
6.

34
1

21
1.

34
2 13
,1

77
.4

37 35
,7

58
.8

86

13
,1

48
.3

33 37
,2

19
.7

93

76
.7

71

13
8.

41
9

20
9.

49
9

1,
26

1.
48

9

80
,1

90
.6

51

1,
86

2.
75

1

11
8,

76
7.

20
9

4,
93

9.
13

8

77
,7

15
.0

15

2,
01

1.
14

6

12
8,

81
0.

17
9

2,
98

2.
64

3

18
6,

20
4.

48
1

7,
90

9.
55

9

12
7,

45
0.

75

Avg. keypair gen. time (µs)

32

Figure 4.8: SIG algorithms keypair generation time benchmark (ARM)

Dili
th

iu
m

2

Dili
th

iu
m

3

Dili
th

iu
m

5

Falc
on-51

2

Falc
on-10

24

Falc
on-p

ad
ded

-51
2

Falc
on-p

ad
ded

-10
24

M
L-D

SA
-44

M
L-D

SA
-65

M
L-D

SA
-87

SP
HIN

CS+
-SH

A2-1
28

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
28

s-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

s-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

f-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

s-s
im

ple

SP
HIN

CS+
-SH

AKE-12
8f-

sim
ple

SP
HIN

CS+
-SH

AKE-12
8s

-si
m

ple

SP
HIN

CS+
-SH

AKE-19
2f-

sim
ple

SP
HIN

CS+
-SH

AKE-19
2s

-si
m

ple

SP
HIN

CS+
-SH

AKE-25
6f-

sim
ple

SP
HIN

CS+
-SH

AKE-25
6s

-si
m

ple
0

1

2

3

4

5

6

·105

16
4.

60
7

29
9.

78
5

45
2.

53

19
,6

10
.2

67

54
,4

57
.3

98

19
,3

31
.9

23

51
,4

04
.0

41

21
4.

37
7

37
2.

94
2

56
4.

88
9

5,
17

5.
09

1

33
1,

11
0.

06
2

7,
60

8.
66

3

48
0,

75
3.

81
8

19
,7

66
.0

32

31
6,

15
9.

56
2

5,
51

1.
26

35
3,

36
1.

93
3

8,
35

6.
73

1

52
5,

33
9.

6

22
,2

08
.2

48

35
6,

43
1.

13
3

Avg. keypair gen. time (µs)

In the keypair generation step for SIG algorithms, SPHINCS+ and Falcon had the
slowest times, while Dilithium and ML-DSA performed best. On ARM, Dilithium2 was
120% slower than on x86, and ML-DSA-44 was 180% slower than its x86 counterpart.

33

Figure 4.9: SIG algorithms sign time benchmark (x86)

Dili
th

iu
m

2

Dili
th

iu
m

3

Dili
th

iu
m

5

Falc
on-51

2

Falc
on-10

24

Falc
on-p

ad
ded

-51
2

Falc
on-p

ad
ded

-10
24

M
L-D

SA
-44

M
L-D

SA
-65

M
L-D

SA
-87

SP
HIN

CS+
-SH

A2-1
28

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
28

s-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

s-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

f-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

s-s
im

ple

SP
HIN

CS+
-SH

AKE-12
8f-

sim
ple

SP
HIN

CS+
-SH

AKE-12
8s

-si
m

ple

SP
HIN

CS+
-SH

AKE-19
2f-

sim
ple

SP
HIN

CS+
-SH

AKE-19
2s

-si
m

ple

SP
HIN

CS+
-SH

AKE-25
6f-

sim
ple

SP
HIN

CS+
-SH

AKE-25
6s

-si
m

ple
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·106

34
0.

14
7

54
4.

18
9

69
5.

96
5

3,
67

9.
71

4

8,
02

5.
82

7

3,
66

1.
38

7

8,
09

6.
44

8

33
9.

08
4

56
1.

84
7

67
3.

29
8

29
,3

58
.0

23

61
0,

33
3.

77
8

49
,0

07
.0

1

1,
11

1,
04

0.
6

10
0,

35
8.

22

97
1,

68
4.

66
7

46
,9

90
.2

15

97
5,

50
9.

5

77
,1

66
.5

69

1,
68

4,
09

4

15
9,

60
5.

68
8

1,
52

3,
00

2.
5

Avg. sign time (µs)

34

Figure 4.10: SIG algorithms sign time benchmark (ARM)

Dili
th

iu
m

2

Dili
th

iu
m

3

Dili
th

iu
m

5

Falc
on-51

2

Falc
on-10

24

Falc
on-p

ad
ded

-51
2

Falc
on-p

ad
ded

-10
24

M
L-D

SA
-44

M
L-D

SA
-65

M
L-D

SA
-87

SP
HIN

CS+
-SH

A2-1
28

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
28

s-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

s-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

f-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

s-s
im

ple

SP
HIN

CS+
-SH

AKE-12
8f-

sim
ple

SP
HIN

CS+
-SH

AKE-12
8s

-si
m

ple

SP
HIN

CS+
-SH

AKE-19
2f-

sim
ple

SP
HIN

CS+
-SH

AKE-19
2s

-si
m

ple

SP
HIN

CS+
-SH

AKE-25
6f-

sim
ple

SP
HIN

CS+
-SH

AKE-25
6s

-si
m

ple
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

·106

47
8.

72
9

74
1.

03
1

94
9.

51
5

64
7.

66
2

1,
29

9.
81

2

64
8.

53
8

1,
29

9.
64

8

91
9.

84
1

1,
50

3.
35

1

1,
85

1.
34

6

12
0,

70
3.

54
8

2,
50

4,
61

4

19
8,

27
1.

96
2

4,
39

4,
09

4.
5

40
3,

38
6.

30
8

3,
88

1,
42

6.
5

12
8,

79
5.

87
2

2,
68

6,
38

0.
5

21
6,

79
3.

5

4,
72

8,
70

1.
5

44
6,

93
6.

16
7

4,
25

4,
66

3

Avg. sign time (µs)

For the signing operation, SPHINCS+ and Falcon reported the slowest times again,
being many times slower than others. ML-DSA-44 seems to be the fastest on x86, but
that is not the case on ARM. On the ARM platform, Falcon-512 was faster than both ML-
DSA-44 and Dilithium3. Dilithium2 reported being 40% slower on ARM compared to x86,
while ML-DSA-44 was 170% slower on ARM. However, Falcon-512 surprised us this time
by being 460% faster on ARM compared to x86. This is an interesting observation, and the
CPU cycles in Table 4.8 and 4.9 can confirm that Falcon was indeed faster on ARM.

35

Figure 4.11: SIG algorithms verify time benchmark (x86)

Dili
th

iu
m

2

Dili
th

iu
m

3

Dili
th

iu
m

5

Falc
on-51

2

Falc
on-10

24

Falc
on-p

ad
ded

-51
2

Falc
on-p

ad
ded

-10
24

M
L-D

SA
-44

M
L-D

SA
-65

M
L-D

SA
-87

SP
HIN

CS+
-SH

A2-1
28

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
28

s-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

s-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

f-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

s-s
im

ple

SP
HIN

CS+
-SH

AKE-12
8f-

sim
ple

SP
HIN

CS+
-SH

AKE-12
8s

-si
m

ple

SP
HIN

CS+
-SH

AKE-19
2f-

sim
ple

SP
HIN

CS+
-SH

AKE-19
2s

-si
m

ple

SP
HIN

CS+
-SH

AKE-25
6f-

sim
ple

SP
HIN

CS+
-SH

AKE-25
6s

-si
m

ple
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500
81

.0
53

13
0.

49
4

21
7.

91
5

34
.5

82

66
.5

92

34
.2

31

67
.1

17

82
.7

18

13
1.

12
7

21
4.

84
4

1,
74

2.
88

5

58
4.

93
6

2,
68

2.
35

3

87
9.

64
8

2,
66

8.
88

5

1,
30

4.
83

6

2,
71

6.
30

2

92
8.

68

4,
10

9.
57

6

1,
33

3.
92

8

4,
11

8.
43

2

2,
08

6.
77

1

Avg. verify time (µs)

36

Figure 4.12: SIG algorithms verify time benchmark (ARM)

Dili
th

iu
m

2

Dili
th

iu
m

3

Dili
th

iu
m

5

Falc
on-51

2

Falc
on-10

24

Falc
on-p

ad
ded

-51
2

Falc
on-p

ad
ded

-10
24

M
L-D

SA
-44

M
L-D

SA
-65

M
L-D

SA
-87

SP
HIN

CS+
-SH

A2-1
28

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
28

s-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

f-s
im

ple

SP
HIN

CS+
-SH

A2-1
92

s-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

f-s
im

ple

SP
HIN

CS+
-SH

A2-2
56

s-s
im

ple

SP
HIN

CS+
-SH

AKE-12
8f-

sim
ple

SP
HIN

CS+
-SH

AKE-12
8s

-si
m

ple

SP
HIN

CS+
-SH

AKE-19
2f-

sim
ple

SP
HIN

CS+
-SH

AKE-19
2s

-si
m

ple

SP
HIN

CS+
-SH

AKE-25
6f-

sim
ple

SP
HIN

CS+
-SH

AKE-25
6s

-si
m

ple
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

15
2.

65
1

25
5.

16

43
5.

20
1

98
.1

29

18
8.

77
1

98
.1

78

18
8.

71
3

22
3.

60
8

35
6.

69

58
2.

75
3

7,
15

9.
11

9

2,
47

7.
07

4

10
,5

80
.2

22

3,
61

6.
51

6

10
,4

56
.3

8

5,
34

9.
19

8

7,
72

7.
37

2

2,
66

9.
02

2

11
,6

25
.3

18

3,
97

2.
82

11
,9

97
.4

32

6,
02

0.
62

9

Avg. verify time (µs)

In the final step of verifying the signature, SPHINCS+ remains the slowest among
all candidates. Despite the last results, Falcon-512 was the fastest this time on both x86
and ARM. Dilithium and ML-DSA had slower times than Falcon, but they were decent
nevertheless. On ARM, Falcon-512 was 183% slower than his counterpart on x86, while
Dilithium2 was 80% slower on ARM.

37

Algorithm Parameter set Keypair CPU cycles Sign CPU cycles Verify CPU cycles

Dilithium Dilithium2 236384 1086796 258908
Dilithium3 435570 1738788 416896
Dilithium5 675188 2223749 696235

Falcon Falcon-512 42107493 11758069 110405
Falcon-1024 114267037 25646030 212700
Falcon-padded-512 42014901 11699576 109287
Falcon-padded-1024 118934780 25871634 214377

ML-DSA ML-DSA-44 245223 1083414 264227
ML-DSA-65 442196 1795228 418903
ML-DSA-87 669287 2151338 686410

SPHINCS+ SPHINCS+-SHA2-128f-simple 4030823 93812521 5569170
SPHINCS+-SHA2-128s-simple 256248622 1950327295 1869033
SPHINCS+-SHA2-192f-simple 5952183 156600631 8571166
SPHINCS+-SHA2-192s-simple 379520204 3550344513 2810752
SPHINCS+-SHA2-256f-simple 15782472 320694164 8528107
SPHINCS+-SHA2-256s-simple 248337948 3105029868 4169411
SPHINCS+-SHAKE-128f-simple 6426390 150155947 8679619
SPHINCS+-SHAKE-128s-simple 411612445 3117250934 2967413
SPHINCS+-SHAKE-192f-simple 9530658 246584707 13131736
SPHINCS+-SHAKE-192s-simple 595016155 1086575988 4262350
SPHINCS+-SHAKE-256f-simple 25274532 510019463 13160020
SPHINCS+-SHAKE-256s-simple 407269028 571805159 6667983

Table 4.8: SIG algorithms CPU cycles for all operations (x86)

Algorithm Parameter set Keypair CPU cycles Sign CPU cycles Verify CPU cycles

CRYSTALS-Dilithium Dilithium2 164494 478622 152562
Dilithium3 299681 740926 255054
Dilithium5 452431 949419 435102

Falcon Falcon-512 19610173 647564 98042
Falcon-1024 54457292 1299719 188683
Falcon-padded-512 19331859 648432 98084
Falcon-padded-1024 51403975 1299541 188617

ML-DSA ML-DSA-44 214270 919728 223506
ML-DSA-65 372850 1503247 356602
ML-DSA-87 564798 1851245 582670

SPHINCS+ SPHINCS+-SHA2-128f-simple 5175000 120703506 7159026
SPHINCS+-SHA2-128s-simple 331109920 2504613760 2476982
SPHINCS+-SHA2-192f-simple 7608534 198271744 10580105
SPHINCS+-SHA2-192s-simple 480753943 4394094720 3616431
SPHINCS+-SHA2-256f-simple 19765937 403386092 10456295
SPHINCS+-SHA2-256s-simple 316159584 3881426048 5349109
SPHINCS+-SHAKE-128f-simple 5511175 128795687 7727273
SPHINCS+-SHAKE-128s-simple 353361835 2686380160 2668930
SPHINCS+-SHAKE-192f-simple 8356661 216793344 11625206
SPHINCS+-SHAKE-192s-simple 525339622 4728701312 3972646
SPHINCS+-SHAKE-256f-simple 22208146 446936000 11997354
SPHINCS+-SHAKE-256s-simple 356430916 4254662784 6020513

Table 4.9: SIG algorithms CPU cycles for all operations (ARM)

38

The CPU cycles required for running all operations are also provided for complete-
ness. While CPU cycles might not be very accurate in regards to how many low-level
operations the CPU executes within one cycle, they can provide additional profiling data
and reassurance that our runtime times above are indeed correctly measured.

4.3 Result analysis and considerations

This section highlights real-world use cases for each algorithm participating in the NIST
PQC standardization process. Taking the mathematical models into consideration, lattice-
based algorithms are well-suited for KEMs. They offer relatively small key sizes and ef-
ficient computations, making them promising candidates for general-purpose use. Code-
based algorithms are particularly suitable for applications that require fast encryption and
decryption times, such as secure communication protocols (TLS/SSL). They have larger
public key sizes compared to other PQC algorithms but they also offer fast performance in
exchange. Multivariate polynomial algorithms are mostly fit for digital signature schemes.
They provide fast signature generation and verification times, making them useful for ap-
plications that require frequent signing operations, such as authentication protocols or dig-
ital certificates. Hash-based algorithms are primarily used for digital signature schemes.
They provide long-term resistance against quantum attacks and are appropriate for ap-
plications that do not require frequent key updates. Finally, isogeny-based algorithms
are relatively new and are considered a promising candidate for key exchange protocols
and are particularly attractive for applications that require small key sizes and efficient
computations.

Going through our empirical measurements, we can provide insights into the perfor-
mance characteristics and practicality. Key sizes, ciphertext sizes, and signature sizes are
also significant factors that need to be taken into account in PQC, as they directly affect
storage requirements, transmission bandwidth, and computational efficiency.

After inspecting the results for the KEM algorithms, ML-KEM and Kyber have had the
fastest computation times overall among all algorithms, operations, and platforms. ML-
KEM is an algorithm that has evolved from Kyber, so they have the same key lengths.
However, ML-KEM performed best in the decapsulation step, while Kyber performed best
in the key generation and encapsulation steps. Both exhibit fast computation times com-
pared to other candidates, thus they would be suitable for high-speed communications in
scenarios such as satellite communication or high-frequency trading systems where low
latency is very important. McEliece reported fast encapsulation times but it has performed
poorly in key generation and decapsulation scenarios. McEliece has bigger key sizes, but
overall smaller ciphertext sizes, which could be interesting when thinking about appli-
cations of PQC on low-resource embedded devices. The NTRU Prime algorithm offers
average performance in all situations, with relatively small key sizes compared to other
PQC schemes, making it attractive for applications with limited storage or bandwidth.
BIKE performed poorly in all three situations, exhibiting very slow times, especially in

39

the key generation and decapsulation phases. The key sizes for BIKE are also big, and
the ciphertext is among the biggest ones, along with FrodoKEM and HQC. HQC reported
reasonable performance during the key generation step but slow execution times in the
encapsulation phase. FrodoKEM has performed well during key generation and decapsu-
lation steps but reported slower times during encapsulation.

By looking at the results for the SIG algorithms, we can notice that SPHINCS+ has
been consistently the slowest algorithm within all tests. One advantage that SPHINCS+
could have is that it uses very small key sizes, which could be favorable over performance
in specific scenarios where small storage size is more important than speed. ML-DSA and
Dilithium were similar in execution times, both exhibiting very fast execution times in all
three scenarios. They seem to be well-suited for applications such as software updates
or code signing. Their efficient signature generation and verification make it suitable for
authenticating firmware updates in embedded systems or verifying the integrity of soft-
ware packages distributed over package repositories. For keypair generation, Dilithium2
and ML-DSA-44 performed very similar. On ARM, Dilithium was slightly faster than the
ARM version of ML-DSA. Falcon has performed extremely well in verifying the signatures,
ending up in the first place as the fastest candidate on both x86 and ARM. Unfortunately,
it did not perform that well within the keypair generation, having the slowest execution
times. However, Falcon-512 surprised us by being almost five times faster on ARM com-
pared to x86 on signing operations. Falcon also seemed to have reasonably small signature
sizes and decent key sizes.

Chapter 5

Conclusions

This study presented a thorough review of the latest PQC algorithms enrolled in the NIST
PQC standardization contest in terms of mathematical models, key generation, encapsu-
lation, decapsulation, key sizes, operation runtime, and real-world usage. Moreover, we
strived to provide a more complete performance analysis of NIST PQC algorithms on
ARM, for both KEM and SIG algorithms. We compared results and metrics gathered from
benchmarking all available algorithms to get a full view of the picture. Lastly, we com-
pared these results, discussing each algorithm’s strengths, drawbacks, and potential use
cases.

The results of this project contribute to the ongoing efforts in standardizing post-
quantum encryption algorithms and give useful recommendations for researchers and
developers. All factors must be taken into consideration when choosing an algorithm for
secure communication. As quantum computing advances, it is critical to monitor and ad-
just cryptographic systems to ensure the secrecy and integrity of sensitive data. Future
research might build on this work by investigating additional post-quantum encryption
methods, evaluating their performance on various operating systems and platforms, and
addressing real-world deployment circumstances. The effective development and imple-
mentation of post-quantum cryptographic algorithms will assure the long-term security
of communications in the age of quantum computing, protecting sensitive data from new
emerging threats.

40

Bibliography

[1] Wikipedia. IBM Osprey quantum computer with 433 qubits. Accessed: 25-05-2024. url:
https://en.wikipedia.org/wiki/IBM_Osprey.

[2] Wikipedia. Shor’s algorithm. Accessed: 25-05-2024. url: https://en.wikipedia.org/
wiki/Shor%27s_algorithm.

[3] Wikipedia. Grover’s algorithm. Accessed: 25-05-2024. url: https://en.wikipedia.
org/wiki/Grover%27s_algorithm.

[4] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. “Post-Quantum
Authentication in TLS 1.3: A Performance Study”. In: IACR Cryptol. ePrint Arch. 2020
(2020), p. 71. url: https://api.semanticscholar.org/CorpusID:210877381.

[5] Manohar Raavi et al. “Security Comparisons and Performance Analyses of Post-
quantum Signature Algorithms”. eng. In: Applied Cryptography and Network Secu-
rity. Vol. 12727. Cham: Springer International Publishing, 2021, pp. 424–447. isbn:
303078374X.

[6] NIST. PQC. Accessed: 15-05-2024. url: https://csrc.nist.gov/projects/post-
quantum-cryptography.

[7] NIST. PQC additional SIG candidates. Accessed: 15-05-2024. url: https://csrc.nist.
gov/news/2023/additional-pqc-digital-signature-candidates.

[8] NIST. PQC standardized candidates and Round 4. Accessed: 15-05-2024. url: https:
//csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4.

[9] NIST. PQC Round 1 of selecting additional SIG algorithms. Accessed: 21-05-2024. url:
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

[10] NIST. SIKE discontinued notice. Accessed: 26-05-2024. url: https : / / csrc . nist .
gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/
submissions/sike-team-note-insecure.pdf.

[11] NIST. CACM - David Geer. Accessed: 21-05-2024. url: https://cacm.acm.org/news/
nist-post-quantum-cryptography-candidate-cracked/.

[12] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on SIDH”.
eng. In: Advances in Cryptology – EUROCRYPT 2023. Lecture Notes in Computer
Science. Cham: Springer Nature Switzerland, pp. 423–447. isbn: 9783031305887.

41

https://en.wikipedia.org/wiki/IBM_Osprey
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://en.wikipedia.org/wiki/Grover%27s_algorithm
https://en.wikipedia.org/wiki/Grover%27s_algorithm
https://api.semanticscholar.org/CorpusID:210877381
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://cacm.acm.org/news/nist-post-quantum-cryptography-candidate-cracked/
https://cacm.acm.org/news/nist-post-quantum-cryptography-candidate-cracked/

42

[13] SIKE. SIKE PQC algorithm. Accessed: 26-05-2024. url: https://sike.org/.

[14] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. eng. In: Advances
in Cryptology – CRYPTO 2022. Cham: Springer Nature Switzerland, pp. 464–479. isbn:
9783031159787.

[15] Sean Zakrajsek. “Performance Analysis of NIST Round 2 Post-Quantum Cryptogra-
phy. Public-key Encryption, Decryption and Key-establishment algorithms on ARMv8
IoT Devices using SUPERCOP”. eng. In: 2020. url: https://repository.stcloudstate.
edu/cgi/viewcontent.cgi?article=1139&context=msia_etds.

[16] Thomas E. Carroll, Addy Moran, and Lindsey Redington. “Exploring the Adoption
Challenges of Post-Quantum Cryptography in EV Charging Infrastructure”. eng. In:
2024. url: https://www.pnnl.gov/main/publications/external/technical_
reports/PNNL-35760.pdf.

[17] Kathryn Hines et al. “Post-Quantum Cipher Power Analysis in Lightweight De-
vices”. In: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless
and Mobile Networks. WiSec ’22. San Antonio, TX, USA: Association for Computing
Machinery, 2022, pp. 282–284. isbn: 9781450392167. doi: 10.1145/3507657.3529652.
url: https://doi.org/10.1145/3507657.3529652.

[18] Basel Halak et al. “Evaluation of Performance, Energy, and Computation Costs of
Quantum-Attack Resilient Encryption Algorithms for Embedded Devices”. In: IEEE
Access PP (Jan. 2024), pp. 1–1. doi: 10.1109/ACCESS.2024.3350775.

[19] Open Quantum Safe. liboqs. Accessed: 15-05-2024. url: https://openquantumsafe.
org/liboqs.

[20] BIKE. BIKE PQC algorithm. Accessed: 26-05-2024. url: https://bikesuite.org/.

[21] McEliece. Classic McEliece PQC algorithm. Accessed: 26-05-2024. url: https://classic.
mceliece.org/.

[22] FrodoKEM. FrodoKEM PQC algorithm. Accessed: 26-05-2024. url: https://frodokem.
org/.

[23] HQC. HQC PQC algorithm. Accessed: 26-05-2024. url: https://pqc-hqc.org/.

[24] CRYSTALS. Kyber/Dilithium PQC algorithms. Accessed: 26-05-2024. url: https://pq-
crystals.org/.

[25] ML-KEM. ML-KEM PQC algorithm. Accessed: 26-05-2024. url: https://csrc.nist.
gov/pubs/fips/203/ipd.

[26] NTRU. NTRU Prime PQC algorithm. Accessed: 26-05-2024. url: https://ntruprime.
cr.yp.to/.

[27] Falcon. Falcon PQC algorithm. Accessed: 26-05-2024. url: https://falcon- sign.
info/.

https://sike.org/
https://repository.stcloudstate.edu/cgi/viewcontent.cgi?article=1139&context=msia_etds
https://repository.stcloudstate.edu/cgi/viewcontent.cgi?article=1139&context=msia_etds
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35760.pdf
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-35760.pdf
https://doi.org/10.1145/3507657.3529652
https://doi.org/10.1145/3507657.3529652
https://doi.org/10.1109/ACCESS.2024.3350775
https://openquantumsafe.org/liboqs
https://openquantumsafe.org/liboqs
https://bikesuite.org/
https://classic.mceliece.org/
https://classic.mceliece.org/
https://frodokem.org/
https://frodokem.org/
https://pqc-hqc.org/
https://pq-crystals.org/
https://pq-crystals.org/
https://csrc.nist.gov/pubs/fips/203/ipd
https://csrc.nist.gov/pubs/fips/203/ipd
https://ntruprime.cr.yp.to/
https://ntruprime.cr.yp.to/
https://falcon-sign.info/
https://falcon-sign.info/

43

[28] ML-DSA. ML-DSA PQC algorithm. Accessed: 26-05-2024. url: https://csrc.nist.
gov/pubs/fips/204/ipd.

[29] SPHINCS+. SPHINCS+ PQC algorithm. Accessed: 26-05-2024. url: https://sphincs.
org/.

https://csrc.nist.gov/pubs/fips/204/ipd
https://csrc.nist.gov/pubs/fips/204/ipd
https://sphincs.org/
https://sphincs.org/

	Front page
	English title page
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research contributions

	2 Background
	2.1 Post-quantum cryptography
	2.1.1 Quantum computers
	2.1.2 Current state of PQC

	2.2 NIST standardization contest
	2.2.1 Current state of the standardization process
	2.2.2 Discontinued algorithms

	2.3 PQC on ARM architectures

	3 Methodology
	3.1 Preparing the testing environment
	3.1.1 Hardware configuration
	3.1.2 Software configuration

	3.2 Review criteria

	4 Results
	4.1 Model properties
	4.2 Model performance
	4.3 Result analysis and considerations

	5 Conclusions
	Bibliography

