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Abstract

The purpose of this master thesis is to investigate the accuracy of different approaches
for modelling the wave-structure interaction of the floater of the Exowave WEC. The
Exowave WEC is a fixed oscillating wave surge converter. The wave-structure interaction
is investigated for four different floater geometries. The wave-structure interaction is
investigated by examining the wave excitation forces on the floaters in a fixed position.
Afterwards, the motions of the floaters due to wave excitation forces are examined. Two
experiments are conducted to determine a benchmark for the forces and motions. To
describe the wave excitation forces on the floaters, two calculation methods are considered:
A method based on the Morison equation and a BEM-based method using NEMOH. The
calculation methods are compared to the measured data, showing that both methods can
be used to estimate the wave forces adequately.

Several numerical models based on the equation of motion are investigated using the
calculation methods. A numerical model based on the calculation method using the
Morison equation shows a significant deviation for the motions of the floaters compared
to the measured motion from the experiment. A BEM-based numerical model with a
drag contribution calculated with a relative velocity formulation of the Morison equation
shows promising results. It is attempted to improve the BEM-based numerical model by
implementing experimentally determined damping coefficients.

It is determined that the wave-structure interaction of the floater of the Exowave WEC can
be described with an acceptable degree of accuracy using BEM-based numerical models
utilising both experimental and BEM-based damping.
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List of abbreviations

In this chapter, the abbreviations used in this report are listed. The abbreviation is

mentioned in alphabetical order.

BEM
CAD
CFD
CI
CM
DoF
FVU
LCoE
LPF
NM
PTO
QTM
SFT
SWL
WEC
WG

Boundary element method
Computer-aided design
Computational fluid dynamics
Confidence interval

Center of mass

Degree of freedom

Fraction of variance unexplained
Levelised cost of energy
Linear potential flow
Numerical model

Power take off

Qualisys Track Manager
Stream function theory

Still water level

Wave energy converter

Wave gauge
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List of symbols

In this chapter, the symbols used in the report are explained. The symbol is mentioned in
alphabetical order.

A Cross-sectional area [m?]

a Wave amplitude [m]

c Phase velocity [m/s|

ch Hydrodynamic damping coefficient [Nm/(rad/s)|
Contrib | Wave energy contribution [%)]

Ca Added mass coefficient [-]

Cb Drag coefficient |-

D Diameter or cross-sectional dimension |[m]|

E Error [—|

In Normal force [N/m]|

FE, Normal force [N]

Ferys Wave excitation force in surge direction [N]
Fepoy Wave excitation force in heave direction [N]
Feoss Wave excitation force in pitch direction [N]

ft Transverse force [N/m)|

F Transverse force |N]

F, Horizontal force along of the wave direction [N]
F, Horizontal force transverse of the wave direction|N]
F, Vertical force [N]

H Wave height [m]

h Water depth [m]

Hoo Significant wave height based on frequency domain analysis [m]
H, Significant wave height [m|

I Mass moment of inertia [kg - m?]

KC Keulegan-Carpenter [—|

k Wave number |—|

L Wave length [m)]

le Characteristic length |m]|

M Moment around hinge [Nm]|

M, Buoyancy moment [Nm]

M, Wave excitation moment [Nm|

Mey norm | Normalised wave excitation moment [Nm/m]
M, Gravitational moment |[Nm)|

My Hydrostatic moment [Nm)|

M,qaq Radiation moment [Nm]|

m Mass of floater model [kg|

mp, Hydrodynamic added mass moment of inertia [kg - m?]
n Normal vector |-|

P Possibility of occurrence |%)]

Poave Wave power [kW /m]|

Pd Dynamic pressure [Pa)

Drotal Total hydrostatic pressure [Pa|
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Reynolds number |[-|

Distance from hinge to area [m]|

Distance from hinge to centre of buoyancy |m)]
Distance from hinge to centre of gravity [m]
Distance from hinge to bottom of floater |m]
Distance from hinge to top of floater or 1 [m]
Wave steepness [—|

Wave period [s]

Time |s]

Peak period |s]

Measured torque around the z-axis [Nm)|
Measured torque around the y-axis [Nm)|
Measured torque around the z-axis [Nm)|
Fluid particle velocity in z-direction [m/s]
Velocity of body in still water [m/s]
Maximum particle velocity in z-direction [m/s]
Relative velocity [m/s]

Normal velocity [m/s]

Fluid particle velocity in z-direction [m/s]
Position in the z-direction [m]

Position vector x = (x,y, z) [m]

Position in the z-direction [m)|

Water surface elevation from SWL (positive upwards) |m]
Angular position, velocity and acceleration [rad, rad/s, rad/s?|
Initial angular position [rad]

Dynamic viscosity [Pa/s]

Kinematic viscosity [m?/s]

Density of fluid [kg/m?]

Velocity potential [m?/s]

Velocity potential [m?/s]

Phase [°]

Phase in the surge direction [°]

Phase in the heave direction |°]

Phase in the pitch direction |°]

Wave frequency [rad/s|
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Introduction

The consequences of climate change are widespread and the effects are rapidly increasing.
Climate change causes more extreme weather and climate events leading to the loss of
homes and human life along with irreversible damage to nature [IPCC, 2023|. One of
the main causes of climate change is that the world’s energy production is dominated by
the use of fossil fuels. It is estimated that fossil fuels contribute to almost 90% of all
CO2 emissions which makes it the leading cause of climate change according to Freund
et al. [2005|. Furthermore, fossil fuels are a finite resource and will therefore at some
point be depleted with the rate it is being used at the moment. Besides, a considerable
amount of the world’s fossil fuel deposits are located in some politically unstable countries
which enhances the interest in becoming independent of the fossil fuel supply [IEA, 2024].
Therefore, there is a great interest in being able to meet the energy requirement locally
and sustainably. This means that there is a need for alternative energy sources. [I[PCC,
2023|

Renewable energy sources must be a part of the solution to alternative energy
sources. Renewable energy sources are defined as energy sources that are unlimited and
environmentally beneficial compared to fossil fuels. A key factor in the transition from
fossil fuels to renewable energy sources is the levelised cost of energy (LCoE). The LCoE
describes the cost of energy production throughout the lifetime of a specific energy source.
To motivate the transition from fossil fuels to renewable energy sources, the LCoE of a
renewable energy source should be close to the same as for fossil fuels. Comparing the
LCoE in 2010 and 2020 a decrease in the LCoE can be seen for several types of renewable
energy sources. The LCoE of solar energy and wind power technologies has significantly
dropped in the period. The LCoE of these renewable energy sources is the same or even
less than the LCoE of fossil fuels in the same period. [[RENA, 2021]

Another essential part of converting to renewable energy is the ability to create a stable
energy production from renewable energy. This is accomplished by having a variety of
energy sources that can fulfil the need for energy at all times. Furthermore, a vast portfolio
of technologies within renewable energy is necessary to ensure sufficient solutions to fit the
local demand. [Pecher and Kofoed, 2017]

Wave energy is a renewable energy source that is largely unutilised in comparison with
other renewable energy sources. Wave energy has the potential to supply a significant part
of the world’s energy demand. Wave energy has the advantage that it produces a more
stable energy output compared to other renewable energy sources such as wind and solar
energy. [CorPower Ocean, 2022]

Wave energy is less developed than other renewable energy sources such as wind
turbines but to reduce the cost and increase wave energy utilisation further research and
development is needed. In order to utilise ocean wave energy, a wave energy converter
(WECQ) is required. A WEC consists of four subsystems, which are the hydrodynamic,
reaction, power take-off, and control subsystems. The hydrodynamic subsystem is a
mechanical energy conveyer that converts a hydrodynamic motion to a mechanical motion.




1. Introduction

The reaction subsystem consists of the foundation and support structure. The power take-
off subsystem (PTO) is required to turn the mechanical motion into applicable energy.
The control subsystem is used to optimise the PTO by controlling it in order to extract
as much energy as possible. [Pecher and Kofoed, 2017|

The design of a WEC has a significant
influence on the ability to extract wave
energy. The six degrees of freedom (DoF) <
for the motions of a WEC are shown yaw

in Figure 1.1. There are many possible

J

] y

designs for a WEC, however there are some pitch

types that are more prevalent than others.

heave

${§

Among the more common designs are ) )

. ©  wave direction
point absorber buoys, surface attenuators, - >
oscillating water columns, and overtopping ( + X
devices |The Liquid Grid, n.d]. The point surge
absorber buoy is fixed to the seabed and roll
utilises the wave energy in a single point

by a heave motion. It is one of the

most developed methods to utilise ocean
wave energy. The surface attenuators are

) . Figure 1.1. Illustration showing the six DoF of
often constructed as a modular design with

a body.

flexing joints in between which are oriented

in the wave direction. The contribution of

motion for energy production is primarily from surge, sway, and heave. The oscillating
water columns are fixed constructions that are designed to trap air which is compressed by
the wave-induced pressure. The compressed air can then pass by a turbine and produce
energy. Lastly, the overtopping devices also run a turbine by letting water pass through
it. The overtopping device lets the waves overtop where the water is trapped on top of the
device. The water is forced down by gravity and runs a turbine. Several full-scale tests
have been conducted on the different concepts of WEC but they are still in the research
and development phase. A sketch of the WECs is shown in Figure 1.2. [Pecher and Kofoed,

2017]
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© 2008 AQUARET
(a) Point absorber

©,2008;/AQUARET

(¢) Osciliating water column

© 2008 AQUARET

(b) Surface attenuator

© 2008 AQUARET
(d) Overtopping

Figure 1.2. Common wave design for a WEC. [Aqua-RET, 2008]

This thesis investigates the Exowave WEC
which is a new suggestion for a WEC. The
Exowave WEC is a fixed oscillating wave
surge converter. It consists of a structure
that is fixed to the seabed, on top of which
a bottom-hinged floater is placed. The
hydrodynamic subsystem in the Exowave
WEC is a floater which is activated by the
motions of the waves. The floater moves by
rotating around the hinge which engages a
PTO system. The principle is illustrated
in Figure 1.3. The hinge is able to swivel
so that the rotation of the floater is in the
wave direction in order to maximise energy

-,
~-

A’/ \\A

PTO

Figure 1.3. Sketch of the Exowave WEC
activated in rotation by waves.

extraction. Therefore, the movement of the floater is effectively restricted to one DoF

which is the pitch motion around the hinge. Additionally, having a structure that is fixed

to the seabed ensures that most of the wave energy goes into the movement of the floater.

|Exowave, 2024]




1. Introduction

One of the problems with wave energy utilisation lies in creating a technology capable of
extracting energy from waves while withstanding extreme wave forces. The wave energy
that a body absorbs depends on the forces on the body and the motions of the body.
Therefore, it is of great interest to be able to predict the forces and the movement of the
body in order to optimise the PTO subsystem. In order to predict the forces and motions
of the floater, it is necessary to develop numerical models that are able to describe the
wave-structure interaction with sufficient accuracy.

The aim of this thesis is to investigate the accuracy of different approaches for modelling
the wave-structure interaction of the floater of the Exowave WEC.

The geometry of the Exowave floater will affect both the forces and the motions of the
floater. To examine the influence of the floater geometry, four different geometries are
investigated. These floaters are shown in Figure 1.4 and are named according to the

figure.
Cylindrical Conical Disc-shaped Spherical
) 2200 / o 4400 4600 » 4300 ‘
1000 1000 500, 1000 1000 1/ SWL
J— \\ . — J— [ _\.\7 J— -
2000 n
500
6400 6000

1000

Figure 1.4. Floaters with intended still water level (SWL). All measurements are in mm.
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There are plans for an open sea experiment of the Exowave WEC at the Danish Wave
Energy Centre (DanWEC) test site off the coast of Hanstholm, Denmark. The DanWEC
is founded to establish a research and science environment in order to conduct full-scale
tests of offshore structures in harsh sea conditions. The Exowave WEC will be placed at
a depth of 14.0m at the DanWEC test site. The placement of the DanWEC test site is
shown in Figure 1.5 along with a wave buoy deployed at 14.5m water depth. The wave
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buoy has made wave measurements at its position. [DanWEC, 2022]
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Figure 1.5. The location of the DanWEC test site off the coast of Hanstholm.




1. Introduction

1.1 Report structure

In this section, the structure of the report is explained. In order to investigate the wave-
structure interaction of the Exowave WEC the report is divided into the determination of
wave forces on fixed floaters and motions of the floaters. Initially, different modelling
approaches are examined for the cylindrical floater since this geometry is common in
offshore structures and is therefore well described in the existing literature. The report
structure is illustrated in Figure 1.6. In the report structure it is shown which of the floater
models are used in the different chapters.

e A
Chapter 3: Analysis of wave / \
climate
N l J
e A
Chapter 4: General
experimental setu
\§ P P J K j

/\

e N
[ Chapter 5: Wave forces Jk—b[ Chapter 6: Motions J
\ — J

— | ——

e N e A
Chapter 7: Influence of

floater geometry

v

Chapter 8: Discussion

|

Chapter 9: Conclusion

( ) N /

Figure 1.6. Report structure.

As can be seen, all four floaters are included until Chapter 5, which is then focused only
on the cylindrical floater. In Chapter 7 the other three floaters are examined.

The present thesis is delimited to examinations of the wave-structure interaction in regular
waves. Furthermore, the energy production of the Exowave WEC is disregarded in this
thesis. This limitation implies that the PTO subsystem and control subsystem are not
examined. The settings of the control subsystem can affect the motion of the floaters. The
limitation is assumed to be acceptable because the setting of the control subsystem is an
extension of the investigated problem.

The sea states are based on data from a wave buoy at DanWEC test site. In this thesis,
the examined water depth is assumed to be constant at all times even though it will in
reality change due to tides.




State-of-the-art

In this chapter, an introduction to different approaches used for modelling wave-structure
interaction is given in order to grant an overview of the prevalent numerical modelling
approaches and the recent stage of development within this research area.

Definitions and symbols used to describe waves are shown in Figure 2.1 along with a
coordinate system. The origin of the coordinate system is set to zero at the still water
level (SWL).

Figure 2.1. Definitions of relevant wave symbols.

Where:

Water surface elevation from SWL [m]
Wave height [m]

Wave amplitude [m]

Wave length [m)]

Water depth [m]

Phase velocity of wave [m/s]

Fluid particle velocity in z-direction [m/s]
Fluid particle velocity in z-direction [m/s|

E R0 T~ @S

When numerical models are used to describe the complex reality of wave-structure
interaction they inevitably do so by introducing simplifications and assumptions which
impact the results. One of the first places where assumptions and simplifications are
introduced is in the description of wave kinematics.

2.1 Wave kinematics

To determine the water surface elevation and the particle velocities, boundary conditions
are applied. The boundary conditions imply no flow through the seabed and that the
waves are periodic. Furthermore, there is a kinematic and a dynamic boundary condition
at the free surface. The kinematic boundary condition, which is shown in Equation (2.1),
states that a particle at the surface will remain at the surface.
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dp On  Op On

Where:
¢ | Velocity potential [m?/s]
t | Time [s]

The dynamic boundary condition states that the pressure at the free surface is equal to
the atmospheric pressure, under the assumption that the influence from wind pressure is
disregarded. The dynamic boundary condition can be seen in Equation (2.2).

1 dy 2 dp 2 Op _
9'77+2'<<ax> +(8Z> +E—0 at z=m (2'2)

Both of the boundary conditions at the free surface are non-linear which makes it impossible
to find an analytical solution for the water surface elevation and the particle velocities.
Therefore, the problem needs to be simplified before the wave kinematics can be described.
The degree of simplification depends on the used wave theory. [Andersen et al., 2014|

In the linear wave theory the assumptions of a deep water wave (H/h << 1) and small
wave steepness (H/L << 1) make it possible to linearise the free surface boundary
conditions. After the linearisation, it is possible to solve the mathematical problem and
achieve solutions for the water surface elevation and the wave kinematics. However, the
linearisation means that the linear wave theory can only accurately describe waves with a
linear behaviour which follows a cosine wave. Measurements have shown that real waves
have a short and steeper crest and a longer and less steep trough compared to the cosine
wave from linear wave theory. [Brorsen, 2007]

To achieve a better description of real waves it is necessary to avoid the gross assumptions
made in linear wave theory. One possible way to avoid this is by the use of Stokes’ wave
theories where the non-linear problem is solved by using a perturbation method [Stokes,
1847]. The Stokes waves have been developed in five different orders where each order
discards less of the boundary conditions. This also increases the calculation time as more
variables are included in the calculation. The fifth order Stokes wave theory is able to
accurately describe waves with large steepness. However, a general problem for the Stokes
wave theories is that they struggle to describe waves in shallow water. [Brorsen, 2007]

Instead, the stream function theory (SFT) can be used to describe waves at all water depths
and all wave steepnesses [Dean, 1965]. Stream function theory uses the stream function
instead of the velocity potential and is based on an approximate numerical solution to the
governing partial differential equations and the boundary conditions are fulfilled at z = 7.
[Brorsen, 2007]

The areas of applicability of the different wave theories are illustrated in Le Mehaute’s
diagram which can be seen in Figure 2.2.
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Figure 2.2. Le Mehaute’s diagram. [Le Mehaute, 1976]

The choice of wave theory and governing equations plays a big part in the numerical
modelling of the wave-structure interaction and is often a compromise between time-
efficiency and accuracy. In the following section, different approaches for modelling wave-
structure interaction are described.

2.2 Numerical modelling of wave-structure interaction

The description of wave-structure interaction, where a wave interacts with a solid body,
is traditionally divided into wave forces on small bodies and large bodies. The size of a
body depends on the relative physical size of the body compared to the size of the wave.
For a large body, the wave is altered when it interacts with the body which leads to the
wave being reflected and diffracted. Reflection is when a wave becomes reflected by the
structure. Diffraction is when a wave interferes with a structure and the wave bends around
the structure. The two phenomena only occur when the characteristic dimension of the
structure is of the same magnitude as the wavelength of the incident wave.

For a small body, it is assumed that the wave-structure interaction does not lead to any
significant changes in the form of the wave, meaning that effects from reflection, refraction,
and diffraction are negligible. Instead, the wave-structure interaction for small bodies is
dominated by two different phenomena which are drag and inertia forces. The drag force
is a force in the opposite direction of the wave velocity, which is caused by form drag and
skin drag. The inertia force is caused by the acceleration of the wave and its direction is

in the wave direction.




2. State-of-the-art

The drag force is a viscous force that can be neglected if separation does not occur. It is
also necessary to consider whether separation occurs since this also affects the wave forces.
The Keulegan-Carpenter number, K C, which is shown in Equation (2.3), can be used to
indicate whether separation will occur. [Keulegan and Carpenter, 1958|

Umaz - T'

KC = D

(2.3)

Where:

Umaz | Maximum particle velocity in z-direction [m/s]
T Wave period [s]
D Characteristic dimension [m)]

If the KC' number is small, it is assumed that separation does not occur and potential
theory can be used. For large K'C' numbers separation does occur and drag forces need
to be considered. For a large body effects from flow separation are not as important and
drag forces are negligible meaning that it is reasonable to assume that the flow is inviscid
and irrotational. Therefore, potential theory can be used.

The numerical modelling of the wave-structure interaction for a WEC ranges from the
computationally expensive computational fluid dynamics (CFD) to solutions using linear
potential flow (LPF) such as the boundary element method, which has a low computational
cost. The development of computational capacity has made it possible to achieve high-
fidelity hydrodynamic modelling of WECs. However, despite the increase in computational
capacity, these high-fidelity models come with a significant computational cost. Because
of this lower fidelity solutions are often used for hydrodynamic modelling in the industry.
Listed below are some commonly used approaches for the numerical modelling of wave-
structure interaction.

e The Morison equation
e The boundary element method (BEM)
e Computational fluid dynamics (CFD)

These approaches are described in the following sections.

2.2.1 The Morison equation

In the case of a small body where both drag forces and inertia forces may be important,
Morison et al. [1950] proposed calculating the total force on the body as the sum of these
two forces. The Morison equation for the sectional wave-induced normal force on a fixed
structure is shown in Equation (2.4).

FK added mass
d d 1
fu(z,t) :p-A-£u+CA'p-A-%u+§-CD-p-D-u- |ul (2.4)
inertia drag

10



2.2. Numerical modelling of wave-structure interaction Aalborg University

Where:

p Density of fluid [kg/m3]
A | Cross-sectional area [m?|

D | Diameter or cross-sectional dimension [m]
Cy4 | Added mass coefficient |-]

Cp | Drag coefficient |-]

The Morison equation is a semi-empirical equation, which is expressed by the empirically
determined Morison coefficients, C4 and Cp. The drag term which includes the drag
coefficient, Cp, indicates the resistance of an object in a fluid. This is due to the drag
force being opposite of the movement in a fluid. The inertia term which includes the
added mass coefficient, C'4, is a summation of the Froude-Krylov force and the added mass
contribution. The Froude-Krylov force is the force that acts on the body as if the body
were transparent to the motion of the wave. The Froude-Krylov force can in some cases
have a significant contribution to the total force on a body. The added mass contribution
is due to the inertia a solid body has when it is accelerated through a fluid as it has to
move its mass and the mass of some of the surrounding fluid.

The total normal force exerted on the floater is calculated by integrating over the height
of the floater. The wave kinematics over the height of the floater must be established to
determine the wave forces exerted on the floater. The wave kinematics are expressed as
the particle velocity and the particle acceleration in the Morison equation.

Besides, the original Morison equation, several other formulations exist. One alternative
formulation is for a body moving with the velocity up in still water. This formulation is
shown in Equation (2.5).

d 1
fn(z,t):—p-CA-A-£ub—§'CD-D'p~ub'|ub| (2.5)
By summing Equation (2.4) and (2.5) and introducing a relative velocity u,e; = u — up,
it is possible to express the force on a moving structure in waves with a relative velocity
formulation which is shown in Equation (2.6).

fn(z,t)=p-A- %U—FP‘CA‘A‘%UWH-%'P'CD‘D'Urez < |tper| (2.6)
The Morison equation was originally proposed to calculate forces on cylindrical objects
extending from the seabed to above the wave crest. As such the equation does not account
for changes in velocity due to water flowing over or underneath the structure as in the case
of the Exowave floater.

The Morison coefficients depend on several parameters which means that the Morison
coefficients can not be characterised in any simple way. The Morison coefficients are
determined as averaged values that depend on the shape and size of the body along with the
inclination of the body. Furthermore, the coefficients depend on the Keulegan-Carpenter
number, KC', the relative roughness, and the Reynolds number, Re, which is shown in
Equation (2.7). [Sarpkaya et al., 1982]

11



2. State-of-the-art

Re = 1 — (2.7)

Where:

v | Kinematic viscosity [m?/s]

The Morison coefficients are often determined based on literature such as DNV GL [2017].
When it is not possible to look up values for the coefficients in the existing literature,
the coefficients can instead be determined from physical tests, where the time series of
the surface elevation and the force are measured. It is then possible to determine the
Morison coefficients by using e.g. the least squares method where an error, F, between the
measured force, Fyeqsured, and a force calculated with the Morison equation, Fajorison, 18
defined as in Equation (2.8).

E = Freasured — FMorison (28)

The coefficients are then determined by finding the minimum of E? by setting both of its
derivatives equal to 0 as shown in Equation (2.9).

dC 4 dCp

In the case of the Exowave WEC, the floater is a truncated object that does not follow the
original assumptions used in the Morison equation. Therefore, the floater is also exposed
to a tangential force. The tangential force can be calculated by using the dynamic pressure
caused by a change in surface elevation. The dynamic pressure is wave-induced and can
be calculated using Equation (2.10). [Andersen et al., 2014]

_cosh(k - (z+ h))

cosh(k - h) (2.10)

pi(z) =p-g-n

Where:

pa | Dynamic pressure |Pal
k | Wave number [1/m]

Equation (2.10) is only valid under the SWL therefore an approximation is needed when
the surface elevation is positive. The approximation is instead to use the hydrostatic
pressure distribution above the SWL as shown in Equation (2.11).

ptotal(z) =p-g- (T, - Z) (211)

Where:

Dtotal | Total hydrostatic pressure |Pa]

12
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The tangential force is calculated using the dynamic pressure and the affected area of the

floater.

Despite its shortcomings, the Morison equation is widely used since it can accurately
predict the extreme wave force when calibrated coefficients are used. However, when
designing a WEC it is necessary to predict not only the size of wave forces but also their
variation with time. The Morison equation has the ability to implement a suitable wave
kinematic to describe the waves, which can be advantageous. The Morison equation allows
solving problems in a time domain which makes the equation straightforward and a popular
approach.

2.2.2 The boundary element method

In the case of a large body that reflects and diffracts the incident wave, the Morison
equation is no longer considered to be a viable option for estimating wave forces and
therefore a different approach is needed.

A common approach for computing wave forces on larger structures is by the use of the
boundary element method (BEM). The BEM is based on potential theory and estimates
the correct wave-structure interaction. However, the BEM assumes linear wave theory
and therefore simplified wave kinematics are used in some cases. Another assumption in
the BEM is that the motions of the body are small and that the geometry of the body
below the SWL does not change. In reality, the Exowave WEC will rotate around the
hinge resulting in large motions and therefore violate this assumption. In the BEM, it
is assumed that the fluid is incompressible and that the flow is inviscid and irrotational.
Therefore, the velocity potential, ®, needs to satisfy Laplace’s equation, which is shown
in Equation (2.12). [Faltinsen, 1990; Lee and Newman, 2005]

Vi =0 (2.12)

It is assumed that linear wave theory applies and that body motions are small. These
assumptions make it possible to linearise the boundary conditions. The velocity potential
can then be expressed as shown in Equation (2.13).

®(x,t) = Re{o(x)e*!} (2.13)

Where:

x | Position vector x = (z,y, 2) [m]
w | Wave frequency |rad/s|

Because of the linearisation, the velocity potential can be expressed as the sum of the
diffracted potential, ¢4, and the radiated potential, ¢,.. The diffracted potential is the sum
of the incident potential, ¢;, and the scattered potential, ¢s. This is shown in Equation
(2.14).

¢:¢d+¢r:¢i+¢s+¢r (2'14>
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When using the BEM to described the flow around a body, Laplace’s equation and three
boundary conditions are fulfilled. The first boundary condition is at the free surface, this
is shown in Equation (2.15).

9¢(x)

w2
— ?gi)(x) =0 forz=0 (2.15)

The second boundary condition is at the seabed, this is shown in Equation (2.16).

9¢(x)

=0 forz=-h (2.16)

The third boundary condition is on the surface of the body, this is shown in Equation
(2.17).

9¢(x)

=V, on the surface of the body (2.17)

Where V,, is the normal velocity for a point on the surface on the body and n is the
normal vector. When using the BEM the three-dimensional flow problem around the body
is transformed into a two-dimensional problem by approximating the body’s geometry by
several panels which makes it possible to solve the set of equations.

The assumptions used in the BEM make it a time-efficient method, but the gross
assumptions used in linear wave theory make it necessary to validate the use of BEM
in the modelling of WECs.

2.2.3 Computational fluid dynamics

Computational fluid dynamics involves finding approximate solutions to models of fluid
behaviour such as the Navier-Stokes equations and the continuity equation, shown in
Equation (2.18) and (2.19) respectively. The equations are shown for incompressible flow.

ov
p <8t + (V- V)V> = —Vp+pg +uVV (2.18)
V-V=0 (2.19)

Where V = [uvw]T and p is the dynamic viscosity.

Solutions are found by replacing the partial differential equations with a set of approximate
algebraic equations that are then solved numerically.

The algebraic equations are obtained from a discretisation of the Navier-Stokes equations
by e.g. mesh-based methods. This makes it possible to describe the continuous flow field
with discrete values at specified locations in the mesh. [Gerhart et al., 2016]

CFD is a method with high fidelity due to a limited number of simplifying assumptions
in comparison with other methods. However, this also contributes to the significant
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computational cost involved in using the method. The time-consuming nature of CFD
modelling can render it impractical for industry-use where less computationally expensive
solutions are sought, especially in the preliminary investigation. Using CFD for modelling
fluid-structure interaction is out of the scope of this thesis.

In this thesis, the main focus is on the Morison equation and the boundary element
method because of their time-efficiency and widespread use in the offshore industry.
These reasons mean that it is of interest to examine whether reliable descriptions of
the wave-structure interaction can be achieved with these approaches. The reduction
of computational cost in these approaches is in large part caused by the introduction of
assumptions and discretisation, however, this also has unknown effects on the results.
Therefore, it is necessary to examine these effects by performing physical tests to gain a
greater understanding of the validity of the assumptions used in these approaches.

2.3 Motions of the body

The floater model moves as a 1-DoF system, which is able to move in rotation around
the hinge when activated by waves. The motions of the floater are calculated using the
equation of motion, as shown in Equation (2.20).

I-6(t) = My (0) + Myaa(6,0) + My (0) (2.20)

Where:

I Mass moment of inertia [kg - m?]
6, 0, 0 | Angular position, velocity and acceleration of floater model [rad, rad/s, rad/s?|

My Wave excitation moment [Nm)|
M,qq | Radiation moment [Nm|
My Hydrostatic moment [Nm)|

The restoring hydrostatic moment consists of a moment from buoyancy, M;, and an
opposing moment from gravity, M, as shown in Equation (2.21).

Mps =My —Myg=p-g-V-sin(0)-ry(0) —m-g-sin(0)-ry (2.21)

Where:

rp | Distance from hinge to centre of buoyancy |[m]|
m | Mass of floater model |kg]|
rq | Distance from hinge to centre of gravity [m]|

It should be noted that the distance from the hinge to the centre of buoyancy, r,, depends
on the angular position of the floater since the centre of buoyancy changes as the floater

becomes more submerged.
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The radiation moment is calculated as shown in Equation (2.22).
Myaq = —my, - 0(t) — ¢y - 0(t) (2.22)

Where:

my, | Hydrodynamic added mass moment of inertia [kg - m?]
¢n, | Hydrodynamic damping coefficient [Nm/(rad/s)]

Based on the hydrodynamic modelling approaches described in this chapter it can be
concluded that there is no single way to describe the wave-structure interaction of a WEC.
Therefore, it is of interest to examine the validity of different approaches both for the
determination of forces on the floaters and the motions of floaters. However, before this
can be examined it is necessary to investigate the wave climate to which the Exowave
WEC will be subjected.
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In this chapter, the wave climate at the DanWEC test site is analysed and the wave force
regimes are investigated with respect to the Exowave floaters.

3.1 MetOcean study

A MetOcean study is conducted to estimate the waves impacting the floater models. The
MetOcean study is conducted with data from a bouy at the DanWEC test site. The buoy
has measured the significant wave height, H,,0_pyuoy, for approximately 4.5 years from late
2016 to late 2022 with some downtime. The missing data in the downtime is excluded.
The sea condition at the wave buoy is estimated to be comparable to the condition at the
Exowave WEC because the water depths are nearly identical and the placements are close.
The MetOcean study determines five representative sea states, with the focus on having
a good representation of the probability of occurrence, P. The MetOcean study and the
selection of the five sea states are described in Appendix A on page 91. The sea states are
identified by a significant wave height, H,,o, and a peak period, T),. The water depth, A, is
14.0 m at the Exowave WEC. In order to indicate which of the sea states have the largest
contribution to possible energy production of the WEC, the wave energy contribution is
determined.

The wave power, Pyqve, for each sea state, is determined and multiplied by the possibility
of occurrence, P, to provide the wave energy contribution. The sea state parameters
are shown in Table 3.1. As shown in the table, the wave energy contribution is most
considerable for sea state 4.

Sea state Hp,o [m| Ty [s| L [m| Contrib %] P [%] Pueave kW/m| P - Pyaye [kW/m]

1 0.63 4.1 26.6 3.4 31.1 4.3 1.3
2 1.08 5.7 48.6 8.8 20.3 10.8 2.2
3 1.28 4.7 34.4 0.8 11.4 18.3 2.1
4 1.94 6.1 54.2 32.6 21.3 92.1 19.6
) 291 7.1 68.8 22.6 5.7 112.9 6.5

Sum 73.2 89.8 - 31.6

Table 3.1. Sea state parameters determined by the MetOcean study at DanWEC test site.

The sea states are used to describe regular waves. The waves for each of the sea states can
be classified as shallow water waves, intermediate depth waves, or deep water waves. The
classification is determined as a ratio between the water depth, h, and the wavelength,
L. The wavelength is determined by the dispersion relationship. The particle movement
depends on the classification of the sea states. This is because the movement of the particle
changes from being circular for a deep water wave to being elliptical for a shallow water
wave. The sea states are classified using the relations shown in Equation (3.1).
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h 1
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The classification of the sea states is shown in Table 3.2.

Sea state [-] 2 [] Classification
1 0.54 Deep
2 0.30  Intermediate
3 0.42  Intermediate
4 0.27  Intermediate
5 0.21  Intermediate

Table 3.2. Classification of sea states.

The sea states are classified as deep to intermediate depth waves. This means, that the

particle movement is circular for sea state 1 and in between circular and elliptical for the

other sea states.

3.1.1 Le Mehaute’s diagram

In order to determine which wave theory is suitable for determining the wave kinematics
of the sea states, Le Mehaute’s diagram is implemented. Le Mehaute’s diagram can be
applied to the problem because the waves are regular. Le Mehaute’s diagram also indicates

if a wave is at risk of breaking due to the steepness of the wave becoming too high. The

Le Mehaute’s diagram is shown in Figure 3.1 including the sea states.
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Figure 3.1. Le Mehaute’s diagram. [Le Mehaute, 1976]
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As can be seen in the Figure, Le Mehaute’s diagram indicates that the sea states can be
described with Stokes’ second to third order theory and the sea states are intermediate to
deep water waves. It can also be seen that linear wave theory can not fully describe the
waves of the sea states.

3.1.2 Chakrabarti diagram

The relation between the sea states and the size of the body is also important since this
can be used to indicate the nature of the forces on the body. To determine whether a body
should be considered small or large in comparison to the waves, Chakrabarti’s diagram of
wave force regimes can be used. On the x-axis of the diagram is the diffraction parameter
7w+ D/L and on the y-axis is H/D. In Figure 3.2 the results for Chakrabarti’s wave force
regimes are shown. [Chakrabarti, 2005]
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Figure 3.2. Diagram of wave force regimes with results for the floaters.
[Chakrabarti, 2005]
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As can be seen in the figure the results for the conical, disc-shaped, and spherical floaters
are almost identical because of the similar characteristic dimensions. The wave forces
on all of the floaters are expected to be inertia-dominated for most of the sea states.
Furthermore, the diffraction parameter 7D/L < 0.5, indicates that diffraction is small and
that the floaters can be considered small in most cases. When a floater can be considered
small it means that the structure will have a small influence on the wave field which fulfils
the assumptions of the Morison equation. It can also be seen that the disc-shaped, conical,
and spherical floaters are in the diffraction region for sea state 1. In the other sea states
these floaters are not far from the diffraction region. This indicates that the BEM can also
be used to investigate the wave-structure interaction.

To describe the influence of viscous forces the Keulegan-Carpenter number, KC, can be
used. KC is shown for the sea states in Table 3.3. In the calculation of KC the maximum
particle velocity is determined by stream function theory and the characteristic diameter
is set to the maximum diameter of the floaters.

KC [
Sea state | Cylinder Cone Disc Sphere
1 0.99 047 045 048

1.88 0.86 0.83 0.88
2.19 1.03 0.98 1.05
3.64 1.69 1.62 1.73
6.61 3.11 298  3.19

Ot = W N

Table 3.3. KC for the floaters.

According, to Stansby [1992| separation of the flow occurs when KC' > 5 for a circular
cylinder in elliptical orbit flow. This means that drag force can influence the model when
KC > 5. When KC < 5 separation does not occur and the drag force is negligible. A
small KC' < 5 also indicates that potential theory could be applied to the problem, due
to the flow being inviscid and irrotational.

Based on the classification of the waves at the DanWEC test site, a suitable method to
determine the forces can be selected. The Le Mehaute diagram indicates that the wave
kinematics of the sea states will not be precisely determined by linear wave theory which a
BEM uses. The wave forces regimes based on Chakrabarti specify that the forces are inertia
dominated for the sea states which indicates that the Morison equation will be suitable.
The KC number for the cylindrical floater indicates that there is a larger influence from
drag forces in sea state 5, which supports the use of the Morison equation. The KC' also
indicates that BEM can be applied for the other sea states. Based on the Chakrabarti
diagram and KC it is determined that both the Morison equation and the BEM can be
applied to estimate the wave forces on the floaters.

In the following section, the use of the BEM and the Morison equation for the Exowave
WEC will be evaluated.
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3.2 Discussion

As described previously both the Morison equation and the BEM can be applied to
calculate wave forces on the floaters. Even though two possible methods of estimating
the wave forces on the floaters have been identified there are still uncertainties regarding
both methods. As shown in the Le Mehaute diagram the waves from the sea states can
not be described using linear wave theory. This makes it necessary to validate the use of
the BEM for the calculation of the floater’s wave-structure interaction.

The Morison equation can be applied when the floaters are considered to be small. DNV
GL [2017] suggests using the Morison equation when the structure can be defined as a
small body. If the relation shown in Equation (3.2) is fulfilled the body can be considered
small.

L>5-D (3.2)

This is fulfilled for all the floaters. However, there are also uncertainties concerning the
use of the Morison equation.

According to DNV GL [2017] the Morison equation can be applied to two-dimensional
problems, which is an approximation of the true problem. It is assumed to be an acceptable
approximation due to the placement of the WEC being close to the coast where the waves
behave more in two dimensions than they do far from the coast due to refraction.

As stated the Morison equation uses the Morison coefficients which can be found in the
literature. The values of the coefficients in the fixed upright position for cylinders are
well established by tests performed on similar geometries. The cylindrical floater deviates
from the literature due to the floater being truncated. The coefficients to the cylindrical
floater in the existing literature are determined for a cylinder extending from the seabed
to above the wave crests. Therefore, the possibility for the water to flow above or beneath
the cylindrical floater is not taken into account. As the waves for the higher sea states go
over the top of the floater, there is a possibility that the Morison coefficients change as
the fluid behaves differently over the top of the cylindrical floater, than it does around the
sides of the cylindrical floater.

The Morison coefficients regarding the spherical floater are established for it in a fully
submerged state. The spherical floater is in this case not fully submerged and will deviate
from the literature. However, the Morison coefficients for the conical and the disc-shaped
floaters are not described in literature.

Furthermore, the Morison coefficients from the literature in DNV GL [2017] are normally
used to estimate a design load scenario. This means that the estimated coefficients are
conservative which is not desirable if the motion of a WEC is examined. [Sarpkaya, 2010]

The Morison equation normally determines the force in a fixed upright position however,
as the floaters rotate around the hinge their angular position will change. Therefore, the
geometry of the floaters, relative to the propagating wave, changes due to the tilting of
the floaters. Because of this, it is expected that the Morison coefficients change for the
floaters as the tilting occurs. Furthermore, the cross-sectional area and the volume which
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are included in the Morison equation change as the angular position changes. An example
of a floater in a tilted position is shown in Figure 3.3, which also shows the placement of
the hinge and the wave direction.

Wave direction

—»

Figure 3.3. The cylindrical floater tilted at a 40°. All measurements are in mm.

To investigate the validity of using the Morison equation and the BEM on the floaters, an
experiment is utilised. The aim of the experiment is to examine whether the BEM can be
used to accurately describe the wave-structure interaction of the floater even though the
waves can not be described by linear wave theory. Furthermore, it is examined whether
the Morison equation can be used to describe the wave-structure interaction of varying
floater geometries.
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setup

In this chapter, the general experimental setup which is used throughout the different
experiments is described. The experiments are performed on scaled floater models. The
experimental setup in this chapter is used for the experiments where forces on fixed floaters
are measured. The fixed floaters are placed in different angular positions. In Table 4.1 the
angles in which the floaters are examined are shown.

Angle [°]

Floater model | -40 -30 -20 -10 0 10 20 30 40
Cylindrical X X X X X X X
Disc-shaped X X X X X X X

Conical X X X X X
Spherical X

Table 4.1. Angles and floater models that the force experiment was performed at.

Furthermore, the experimental setup is used in experiments where the motions of the
floaters are examined in both decay and wave excitation tests.

4.1 Experimental setup

The wave flume in the Department of the Built Environment at Aalborg University is
utilised for the experiments. The wave flume is used to investigate two-dimensional
problems. As stated in Chapter 1 on page 1, the movements of the Exowave WEC can
be described as a 1-DoF system, which means that the wave flume is a fitting tank to use
for the experiments. The wave flume is 1.5 m wide and 22.5 m long, including an inlet, a
wave generator, and passive absorption. The bathymetry of the wave flume is flat. The
dimensions of the wave flume can be seen in Figure 4.1, where the first illustration is of
the wave flume seen from above and the second is from the side at the cross-section A-A.
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Figure 4.1. Wave flume including the wave gauges (WG). All measurements are in mm.
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As can be seen, the wave flume contains three wave gauges (WG), which are used to
measure the surface elevation at selected points in the wave flume. A WG measures the
electrical resistance between two parallel rods when they are submerged in the water.
The WGs are calibrated by measuring the resistance at two points with a change of 100
mm in the surface elevation. A linear calibration function is then fitted to determine the
surface elevation. WG 1 is placed just in front of the wave generator and WG 2 is used
to investigate possible interference from reflection as the waves propagate along the wave
flume. WG 3 is located at the intended placement of the floater models. The purpose of
WG 3 is to measure the surface elevation at the position of the model. The placement of
WG 3 is then the point of interest in the wave flume. WG 2 and WG 3 in the wave flume
can be seen in Figure 4.2.

Figure 4.2. WG 2 and WG 3 in the wave flume.

4.1.1 Wave generator

A VTI piston wave generator generates the sea states in the wave flume. The wave
generator moves a vertical paddle in the z-direction. The wave generator generates the
waves by the program AwaSys version 7.0, which determines the movement of the paddle
in order to match the predefined wave height, H, and the wave period, T'. The software
used in Awasys is based on Zhang and Schaffer [2005]. The waves are created to match
a predefined wave theory, which in this case is selected to be tenth order stream function
theory. Apart from settings of linear waves and active absorption are also set in the AwaSys
software.

4.1.2 Wave absorption

A wave will reflect on a smooth surface normal to the wave direction. A reflected wave
will interact with an incident wave and will disturb it. The wave flume is constructed with
a passive wave absorption stationed at the end of the wave flume. The purpose of wave
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passive absorption is to minimise the reflection in the wave flume. As the wave collides
with the passive wave absorption some of the wave energy will dissipate. The part that
is not absorbed will be reflected at the end of the wave flume and go through the passive
wave absorption again. It is almost inevitable that some wave energy will be reflected into
the wave flume and interfere with the incoming waves. Furthermore, the wave generator
is adjusted to actively absorb the waves which means that the wave generator adjusts the
waves that are being generated according to the incoming waves in the flume. In order
to ensure that the influence of the reflected waves is negligible, the waves of interest are
narrowed down to the first three fully developed waves. Additionally, the passive wave
absorption ensures that the water in the wave flume settles down quickly. This means,
that the wait time in between each test is shorter than in a similar flume without the

passive wave absorption.

4.2 Scaling

In order to conduct the experiment in the flume, the floater models and the sea states
must be down-scaled to match the flume’s size. The geometrical scale ratio, A, for the
scaled floater models is 20. The scaled floater models are shown in Figure 4.3. The global
coordinate system is shown as an example on the cylindrical floater model.

Cylindrical Conical Disc-shaped Spherical
Za
220 230 ‘ . 215
50 X 50 v/ SWL
320 300

110 50

Figure 4.3. Floater models with intended SWL. All measurements are in mm.

The sea states are scaled according to the Froude model law which describes the ratio
between the inertial forces and gravitational forces. The scaling depends on the geometrical
scale ratio of the model. The scale ratios used to determine the scaled sea states are shown
in Table B.1.

Physical parameter Unit Scale factor
Wave height and length  [m)] 20
Wave period [s] V20

Table 4.2. Scale factor for the physical parameters. [Hughes, 1993]
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The scaled sea states are shown in Table 4.3.

Sea state Hyp,o [cm| T, [s| & [cm)]

1 3.13 0.92 72.0
5.38 1.27 72.0
6.41 1.05 72.0
9.71 1.36 72.0
14.54 1.58 72.0

Ot = W N

Table 4.3. Sea states scaled accordingly to the scale ratio of 20.

Each sea state is used to describe a regular wave.

4.3 Test plan

In preparation for the experiments on the floater models, the sea states were examined in
the wave flume. The sea states were examined for the time it took after a wave series for
a sea state was finished until the water in the wave flume was still. A wave series for a
sea state was run for 60 seconds and after the wave series, the water in the flume was still
after three to four minutes depending on the sea state. The wait time between each wave
series was set to five minutes to ensure that the water was still.

The surface elevation at the wave gauges is measured for the sea states and used later to
align the waves from the different tests. The program WaveLab versions 3.87 and 3.888

are used for measuring. [Frigaard and Andersen, 2014]

The general experimental setup is used in experiments to measure both the forces and
motions of the floater models. In Chapter 5 the forces on a fixed cylindrical floater model
are examined. In Chapter 6 on page 49 the motions of the cylindrical floater model
are examined. The cylindrical floater model is investigated at first because a cylinder is
a common geometry for offshore structures and as such it is well described in existing
literature. In Chapter 7 on page 63 the same examinations are performed for the three
other floater models.
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Wave forces on the fixed
cylindrical floater model

This chapter will establish two calculation methods that are set up to estimate the wave
forces on the fixed cylindrical floater model. The calculation methods used to determine
the wave forces are based on the Morison equation and a BEM calculation using NEMOH.
In order to validate the calculation methods, an experiment in the wave flume is conducted.
The experiment measures the wave forces on the cylindrical floater model which can then
be compared to the results from the calculation methods. The cylindrical floater model
will be investigated at angles from -40° to 40° which is within the expected interval of
rotation for the WEC.

5.1 Experimental investigation of wave forces

The purpose of the experiment is to measure the wave-induced forces that impact the
cylindrical floater model when it is mounted in a fixed position. Furthermore, the effect of
changing the angular position of the WEC is examined by performing experiments with
the cylindrical floater model in a tilted position.

5.1.1 Setup and equipment

The primary experimental setup is described in Chapter 4 on page 23, but a variation to
the general experimental setup is required to measure the forces on the cylindrical floater
model. The cylindrical floater model is placed at the position of WG 3 as shown in Figure
5.1.

¥ 22500 p
Wave R R
gencrator] it e oy

WG 1 WG 2 Model
| 77722 -
Wave &L
generator Ab§QrP:;10n
9840
)

Figure 5.1. Flume including the cylindrical model. All measurements are in mm.

The cylindrical floater model is mounted to a 6-axis force transducer. The 6-axis force
transducer is an ATI Industrial Automation Gamma IP68 force transducer which can
measure forces and moments in three dimensions. The measurement range is 65 N for Fy,
200N for F, and 5 Nm for the moments. The accuracy of the 6-axis force transducer was
compared to a bending beam force transducer. In the comparison, it was determined that
the 6-axis force transducer gives reliable results for the forces. Furthermore, the use of the
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5. Wave forces on the fixed cylindrical floater model

6-axis force transducer results in an experimental setup with a higher stiffness meaning it
is less susceptible to the influence of dynamic amplification. This comparison can be seen
in Appendix B.4 on page 102.

The setup for mounting the 6-axis force transducer and the cylindrical floater model
is shown in Figure 5.2. The cylindrical floater model is connected to the 6-axis force
transducer by a joint which makes it possible to angle the model. The 6-axis force
transducer is connected by clamps to a stiff construction which is reinforced with inclined
struts. The eigenfrequency of the setup is also tested to determine if the model will go into
resonance with the waves as resonance will affect the accuracy of the measurements. The
test is done by subjecting the end of the cylindrical floater model to an impulse load. It is
concluded that the eigenfrequencies are sufficiently high so that the measurements will not
be influenced by dynamic amplification. The eigenfrequencies can be seen in Appendix B
on page 95.

Figure 5.2. Setup for the 6-axis force transducer mounted with the cylindrical floater model.

The signals from the 6-axis force transducer and the wave gauges are obtained by using a
data acquisition system. The signal from the wave gauges is passed through a wave gauge
sensor before entering the data acquisition. To limit noise from the force measurements
both a digital and analogue low-pass filter are used, which removes the higher frequencies
of the measured signals. The 6-axis force signal is passed through the analogue 8 Hz low-
pass filter before entering the data acquisition system. The setup with the data acquisition
system is shown in Figure 5.3.
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5.1. Experimental investigation of wave forces

Aalborg University

Figure 5.3. Setup with a low-pass filter at the top, data acquisition system in the middle, and

the wave gauge sensor at the bottom.

5.1.2 Test plan

As mentioned, the cylindrical floater model is fixed
at different angles to evaluate how the forces change
with the angle of the model. The cylindrical
floater model is investigated in the expected interval
of rotation within +40° to resemble the expected
movement. The real rotation is around the hinge
near the bottom of the wave flume. However, when
the forces are measured the cylindrical floater model
is fixed at the top of the model and is also rotated by
a joint at the top of the model. The joint and the 6-
axis force transducer can be seen in Figure 5.4. The
angle of the cylindrical floater model is measured by
a digital protractor to ensure it is within 0.1° of the
desired angle.

Figure 5.4. The force transducer with
the cylindrical floater model at 0°.
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5. Wave forces on the fixed cylindrical floater model

As the WEC rotates it will become more submerged. To resemble the cylindrical floater
model’s position in the z-direction when rotating around the hinge as shown in Figure
5.5a. The height of the 6-axis force transducer is therefore adjusted in the experiment to
match the new position of the cylindrical floater model as shown in Figure 5.5b

¥ SWL
- e <\
N
40
¢
(a) Actual rotation. (b) Rotation during the experiment.

Figure 5.5. The cylindrical floater model at an angle of 40°. All measurements are in mm.

The cylindrical floater model is tested in positive and negative angles. A rotation in the
wave direction is positive. The cylindrical floater model is tested in the following angles:
0°, £10°, £20°, £40°. For every angle, all five sea states are tested. Each sea state is
repeated five times in order to have a representative dataset and exclude any small errors
linked with a physical experiment.

5.1.3 Measured results

As stated earlier, the cylindrical floater model is exchanged with the WG 3 in this
experiment. The forces on the model and the surface elevation at WG 3 are aligned
using cross-correlation between the measurements of the surface elevation at WG 1. The
measured forces are narrowed down to the first three fully developed waves to minimise
the influence of wave reflection in the wave flume. The first three fully developed waves
are shown in the marked area in Figure 5.6.
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Figure 5.6. Surface elevation measured at WG 3 for sea state 4. The marked area is for the
selected three fully developed waves.

The forces measured by the 6-axis force transducer are plotted with the surface elevation
for WG 3 of the first three fully developed waves. This is shown for the cylindrical floater
model for sea state 4 at 0° in Figure 5.7. The measured force, F, shows that the force
peaks before the wave crest. This means that the force in the x-direction is partly or
fully inertia dominated. The measured force, F},, is approximately zero, which means that
the transverse forces are negligible and support that the problem is investigated as a two
dimensional problem. The measured force, F,, varies with the surface elevation due to
the buoyancy of the cylindrical floater model. The buoyancy does not contribute to a
moment in this case due to it is placed at an angle of 0°. The torsional moment, T, and
T, are approximately zero due to Fy being approximately zero and the cylindrical floater
model is symmetrical around its centroidal axis. The torsional moment, T}, is shown with
a calculated moment around the hinge, M, which is in phase. The rest of the measured
forces are shown in Appendix D on page 151.
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Figure 5.7. Output data for the cylindrical floater model at 0° for sea state 4.
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5.2. Method 1: Morison based calculation Aalborg University

In the following section two calculation methods are presented. The results from the
calculation methods are compared to the measured wave forces from the experiment.
Because of the controlled environment under which the experiment is conducted, the
experimental data is used as a benchmark for validating the numerical results from the
different calculation methods. However, Some errors have not been possible to avoid and
could therefore have influenced the measured wave forces. These possible errors are listed
in the following:

e The surface elevation which is used to align the data is measured without the model in
the wave flume. The wave height could have slightly changed due to some reflection
of the waves with the model. The data is narrowed down to the first three fully
developed waves, which should ensure that the reflection has a small effect.

e The angle and the placement in the wave flume of the cylindrical floater model in the
experiment were set up manually with care and precision but the actual angle and
height in the wave flume could deviate from the theoretical values. The accuracy of
the angle was within 0.1° according to a digital protractor. This could have a small
influence on the measured wave forces but is estimated to be negligible.

e The water depth could deviate from the experiment where the surface elevation was
measured at WG 3 and the experiment where the wave forces on the model were
measured. This could have a small influence on the wave period. However the effects
of this is considered to be negligible.

Even though there are some possible errors related to the experiment on the cylindrical
floater model, the measured wave forces are still assumed to be the benchmark used to
validate the calculation methods.

5.2 Method 1: Morison based calculation

Method 1 is based on the Morison equation. To determine the wave excitation force by
the Morison equation it is necessary to establish the geometry of the model, the wave
kinematics, and the Morison coefficients. The wave excitation forces on the cylindrical
floater model are determined by dividing it into a normal force and a tangential force.
Both forces have a significant influence when the model is rotated and are thus both of
interest. The calculation is performed with a time step corresponding to the sampling
frequency used in the experiment. The cylindrical floater model is imported into the
calculation method as an STL model. An STL model describes the surface geometry of
the floater model by using triangular panels.

The wave kinematics for each of the five sea states are determined using fifth order stream
function theory. The wave kinematics are determined in sectional strips. The sectional
strips are made by dividing the distance from the seabed to the wave crest into 3000 equal
divisions. This means that each strip is approximately 0.3 mm. The sectional strips are
used to determine the resulting Morison force on the cylindrical floater model.

5.2.1 Normal force

The normal force is determined by the Morison equation and is always calculated normal
to the centroidal axis of the floater model.

33



5. Wave forces on the fixed cylindrical floater model

The wave kinematics are found for each sectional strip and then projected normal onto
the cylindrical floater model using simple trigonometry. At each sectional strip, the cross-
sectional area and diameter used in the Morison equation are determined normal to the
centroidal axis.

The sectional strips are shown as blue dashed lines in Figure 5.8. The wave kinematics
are determined in the dots where the sectional strips intersect the centroidal axis of the
floater model. Because the horizontal position of the dots changes with the angle of the
cylindrical floater model the wave kinematics are shifted horizontally to account for the
change in position.

In Figure 5.8 a sketch of the sectional strips along with the normal force, f,, and the
tangential force, f; at a strip are shown.

AZ

Figure 5.8. Cylindrical floater model at 40 © including a sketch of the sectional strips. Dots show
where the normal force, f,, and tangential force, f; are calculated.

The total normal force, F;, is determined by integrating the Morison force on each of the
strips over the cylindrical floater’s length. For the integration, Simpson’s rule is used,
which is a numerical integration method where the weight of each data point changes.

Determination of Morison coefficients

When fitting the Morison coefficients the drag coefficient is set to 0 as its influence is
minimal. The added mass coefficient is fitted by combining the measured data in the x-
direction and the z-direction to a normal force and comparing it to the normal force from
the calculated with Method 1, F,.

The fitting of the coefficients is conducted using the least squares method. The least
squares method determines the minimum squared error between the measured force and
the Morison force. The Morison coefficients are fitted to obtain the minimum squared
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5.2. Method 1: Morison based calculation Aalborg University

error. The fitting is performed with an accuracy of 0.01. The equation for the least
squares method is shown in Equation (5.1).

E2 = Z(Fn,Measured - an,Morison)2 (51)

5.2.2 Tangential force

The Morison equation is only used to calculate a force normal to the cylindrical floater
model. Therefore a tangential force is calculated using the wave-induced pressure on the
top and bottom area of the model. These areas are shown in Figure 5.9 along with the
points where the tangential force is calculated.

AZ

/swL fi g

WG 3

Figure 5.9. cylindrical floater model at 40° including a sketch of the areas and points used to
determine f; at.

Since the wave-induced pressure is zero at n = 0, the tangential force is zero. The wave-
induced pressure acts normal on the top and bottom of the cylindrical floater model.
The bottom of the cylindrical floater model is always submerged which means that the
tangential force on the bottom varies with the surface elevation because the area is
constant. The tangential force on the top of the cylindrical floater model is zero when no
water is above the model. For the larger sea states and when the floater model is rotated at
an angle, the surface elevation becomes larger than the freeboard of the cylindrical floater
model. This means that the tangential force on the top of the floater model becomes

negative.

5.2.3 Moment around hinge

The moment around the hinge is calculated by using the normal force on the cylindrical
floater model at each sectional strip denoted by f,,. At each of the sectional strips, the arm
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5. Wave forces on the fixed cylindrical floater model

to the hinge is known. The total moment around the hinge is determined by summation
by using Simpson’s rule.

5.3 Method 2: BEM calculation

As an alternative to the Morison equation, a BEM model is used to examine the wave
excitation forces on the floater model. The BEM calculations are performed using the
open-source BEM solver NEMOH v.3.0.2 [Kurnia and Ducrozet, 2022]. NEMOH uses the
governing equations and modelling principles described for the BEM in Section 2.2.2 on
page 13.

To perform the BEM calculation in NEMOH,
it is necessary first to describe the geometry

of the floater. This is done by creating a 0 - X n
mesh of the floater’s geometry in the CAD §X N
program Autodesk Fusion version 2.0.18961. -0.05 | —crzi
When creating the mesh for NEMOH the ][
part of the floater above SWL is ignored and 0.1 ”7
there is no lid on the mesh at the SWL. ‘T -0.15. Wi
Therefore, there are only panels for z < 0. In N é; g
Figure 5.10 an example of a mesh is shown. 0.2 H [
After creating the mesh as an STL file it is -0.25 z]
converted to a NEMOH-compatible mesh file M
using the open-source BEM mesh converter -0.3 Wil
BEMRosetta. 0.05 I -fz—
Furthermore, an input file containing compu-

tational parameters such as the water depth, Yy [m]

fluid density, etc., is made. This file also in-

cludes the reference point coordinates which  Figure 5.10. Mesh for the cylindrical floater
are the coordinates of the hinge. In Table 5.1 model at an angular position of 0°.

the computational parameters for the cylin-

drical floater model at an angular position of

0° are shown as an example.

p [kg/m3] h[m] No. of panels [-] Ref. coordinates [m]
1000  0.72 743 (0, 0, -0.42)

Table 5.1. Overview of computational parameters for NEMOH.

A short convergence analysis is performed for the model at an angular position of 0° to
examine the necessary number of panels in the numerical model. After determining a
sufficient number of panels for the model at an angular position of 0° the same panel
resolution is used when the floater model is rotated. The results from the convergence
analysis are described in Appendix C.5.1 on page 126.
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5.3. Method 2: BEM calculation Aalborg University

5.3.1 NEMOH results

The NEMOH calculation outputs hydrodynamic coefficients such as added mass and
damping. Furthermore, wave excitation forces along with phases for these forces, ¢, are
given for the 6 degrees of freedom. The wave excitation forces consists of Froude-Krylov
and diffraction forces. The output is given dependent on the wave frequency w. The
calculation is performed with a resolution of 0.1 for the wave frequencies. The force output
is normalised with respect to the wave amplitude a. The excitation force and phase results
for the cylindrical floater model at § = 0° are shown in Figure 5.11, 5.12 and 5.13 for
surge, heave and pitch respectively. The wave frequencies for the sea states are shown in
the figures as dashed lines.
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Figure 5.11. NEMOH normalised force and phase output for surge for the cylindrical floater
model at 6 =0°.
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Figure 5.12. NEMOH normalised force and phase output for heave for the cylindrical floater
model at § =0°.
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Figure 5.13. NEMOH normalised force and phase output for pitch the cylindrical floater model
at 6 =0°.

To determine the wave forces on the cylindrical floater model first, the normalised force
for the given wave frequency is determined with linear interpolation. Then the forces on
the cylindrical floater model are determined by multiplying the normalised forces with the

water surface elevation and applying the phase shift to the force.

5.4 Validation of calculation methods

In this section the measured results from the experiment described in Section 5.1.3 on
page 30 are compared to the calculated forces determined with Method 1, and Method
2. Only some of the results are shown in this section showing common tendencies for the
results. Results not shown here are shown in Appendices E on page 253 and F on page 355.

Method 1 is only used in the same angles as the experiment since the added mass coefficient
is fitted to the measured data. The Method 2 calculations are performed on the cylindrical
model at angular positions from -40° to 40°. In the interval -20° to 20°, 5° increments are

used, outside of this interval 10° increments are used.

As shown in the experiment the cylindrical floater model is rotated around a joint that
is connected to the 6-axis force transducer. The STL model in Method 1 is placed in the
same place as the floater model in the experiment. For Method 2, the cylindrical floater
model is rotated around the hinge near the bottom. This means, that the cylindrical
floater model ends up being placed at a different x-coordinate, but the z-coordinate is the
same. To compare Method 2 to the measured force and Method 1, the cylindrical floater
in Method 2 is shifted to match the other ones.

The results are shown in the global coordinate system. In Figures 5.14, 5.15 and 5.16,
the calculation methods are compared to the measured force. Furthermore, a calculation
using Morison coefficients suggested by DNV GL [2017] is included. This is denoted DNV
on the plots. For the DNV calculation, the added mass coefficient is set to 1 and the drag
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coefficient is set to 0.7. The DNV calculation is only included in 0° because it does not
calculate the tangential force, which has an effect when the model is tilted. The confidence
interval (CI) is also shown in the figure. It should be noted that the CI is narrow and
therefore the measurements and the CI appear to be coinciding.
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Figure 5.14. Horizontal force over time for the cylindrical floater model at 0° for sea state 5.

As can be seen in Figure 5.14, the measured surface elevation, 7, and the surface elevation
calculated by fifth order SFT, n (SFT), are shown. The measured surface elevation

compared to the calculated surface elevation is close to being the same which supports
the use of SFT.

The measured horizontal force shows that the force is inertia dominated since it peaks as
the acceleration of the particle is largest. This supports the fact, that the drag coefficient,
Cp, is set to zero for Method 1 when the floater model is fixed because its influence
is minimal. Method 1 with the fitted C4 = 0.64 for the horizontal force follows the
measured time variation best based on the figure. The calculation using DNV coefficients
overestimates the horizontal force due to C4 being higher. Method 2 overestimates the
horizontal force as well. Furthermore, the horizontal force in the BEM peaks at a different
time than the measured horizontal force. This is due to the BEM using linear wave theory
and the surface elevation can not be described by linear wave theory.
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Figure 5.15. Vertical force over time for the cylindrical floater model at 0° for sea state 5.

As can be seen, in Figure 5.15 the measured vertical force drops as the wave becomes higher
than the freeboard of the cylindrical floater model. This is due to the wave overtopping
which results in a downward force on the top of the cylindrical floater model. Method 2 does
not take into account the pressure on the cylindrical floater model due to potential theory
which does not include hydrodynamic activity above SWL. Method 1 takes the overtopping
into account with the tangential force calculated by the wave-induced pressure. As shown
in the 5.15, the assumption used in Method 1 results in a good description of the time
variation of the vertical force.

g 0.1
Z 2.0
S 0.05
£ 10 :
i
- —
g g
5 0.0 0 -
o IS
©

-1.0
. -0.05
E <
g-2.0
2 Il Il Il Il 1 Il Il Il Il Il 0.1

16.5 17 17.5 18 18.5 19 19.5 20 20.5 21 ’
Time [s]
Method 1

Measurements (mean) 95% CI on sample mean

CA =0.64 CD =0.00

DNV
C,=1.00 C,=0.70 Method 2

n (measured)

Figure 5.16. Moment around the hinge over time for the cylindrical floater model at 0° for sea
state 5.

The moment around the hinge dictates the movement of the model which is important to
predict the movements and energy production of the WEC. As can be seen in the 5.16
the time variation of the moment around the hinge is described well by Method 1. In
comparison, the DNV-based calculation overestimates the moment, which again illustrates
the importance of using fitted Morison coefficients. Method 2 results in an overestimation
of the moment and a slight deviation with respect to the peak.
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In Figures 5.17, 5.18 and 5.19 the calculation methods are compared to the measured force.
The figure is shown for sea state 3 with the model at an angle of 20°.
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Figure 5.17. Horizontal force over time for the cylindrical floater model at 20° for sea state 3.

The horizontal force is shown in Figure 5.17 where both the calculation methods follow
the measured horizontal force. Method 2 overestimates the maximum force in comparison
with Method 1, which is close to the measured values but slightly offset at the peak.
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Figure 5.18. Vertical force over time for the cylindrical floater model at 20 ° for sea state 3.

In Figure 5.18 the vertical forces are shown. The calculated vertical force by Method 1
shows a sudden dip in the force. This is because the cylindrical floater model is submerged
which results in a negative tangential force on top of the model. The vertical force then
has a local minimum at the wave crest for Method 1 since the cylindrical floater model is
submerged. Method 2 follows the progress of the measured vertical force but overestimates

the maximum force. Method 1 does not follow the progress of the measured vertical force
well.
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Figure 5.19. Moment around the hinge over time for the cylindrical floater model at 20 ° for sea
state 3.

Figure 5.19 shows the moment around the hinge. Both calculation methods follow the time
series of the measured moment, especially in the minimum values. The steepness of the
measured moment is not symmetrical around its peaks. Method 2 estimates the moment
as being symmetrical which deviates from the measured but the peak of the moment is at
the same time. Method 1 is non-symmetrical and the moment does not peak at the same
time as the measured moment.

In Figures 5.20, 5.21 and 5.22 the angle of the cylindrical floater model changes from 20°
to —20° . This means that the top of the cylindrical floater model is pointed towards the
wave direction.
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Figure 5.20. Horizontal force over time for the cylindrical floater model at —20 ° for sea state 3.
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Figure 5.21. Vertical force over time for the cylindrical floater model at —20° for sea state 3.

The added mass coefficient in Method 1 is slighter smaller than in 20°. The overall
tendencies of the forces are the same as for the cylindrical floater model in 20°.
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Figure 5.22. Moment around the hinge over time for the cylindrical floater model at —20° for
sea state 3.

Method 2 in Figure 5.22 shows the moment around the hinge and estimates the moment’s
variation over time with good precision apart from at the peak. Method 1 estimates the
time variation of the moment with good precision but is offset compared to the measured
moment.

The relation between the wave force in the z-direction and z-direction is shown in Figures
5.23 and 5.24. The figures provide an insight into the time variation of the wave forces
over the three wave periods shown in the previous figures. Method 1 is divided into the
normal force and tangential force contribution in the figures.
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FZ [N] —— Measurements (mean)
3L Method 1
- ---Normal

----Tangential
Method 2

-3+

Figure 5.23. Horizontal force, F,,, compared to the vertical force, F,, for the cylindrical floater
model at 20° for sea state 3.

As can be seen in the figure, Method 1 drifts slightly. This is because the wave kinematics
are determined by setting the discharge of the water to zero, which creates a small current
that influences the wave kinematics. Method 2 estimates the wave forces better than
Method 1 in 20°. Method 1 overestimates the negative tangential force on the cylindrical
floater model in the first quadrant.

The relation between the wave force in the z-direction and z-direction in —20° is shown
in Figure 5.24. Method 2 does not match the measured results as well at —20° as it did
at 20°. However, Method 1 still gives decent results.
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Figure 5.24. Horizontal force, F,, compared to the vertical force, F,, for the cylindrical floater
model at —20° for sea state 3.

Method 2 does not match the measured results as well at —20° as it did at 20°. However,

Method 1 still gives decent results.

Added mass coefficients

Method 1 based on the Morison equation determines the added mass coefficient by fitting
it to the measured data. The added mass coefficients are shown in Table 5.2.

Angle [°]
Sea state | -40 -20 -10 0 10 20 40
1 140 096 0.883 098 1.06 1.13 1.44

1.42 091 091 0.89 090 0.88 147
1.45 095 094 096 1.00 1.05 1.50
1.39 094 091 091 091 090 1.39
1.17 075 0.70 0.64 0.60 0.54 0.88

U= W N

Table 5.2. Added mass coefficients for the cylindrical floater model.

As stated earlier, DNV GL [2017] uses an added mass coefficient of 1.0 for a cylinder
from the seabed to above the wave crest. Based on the fitted added mass coefficients in
the table, it is observed that the coefficients are close to 1.0 for sea states 1 to 4 within
the interval —20° to 20°. This emphasises that DNV GL [2017] is conservative but still
close to the fitted coefficients. The added mass coefficients in the outermost angles deviate
from the other coefficients. This is possible due to the wave-structure interaction behaving
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5. Wave forces on the fixed cylindrical floater model

considerably different at these angles. Furthermore, the added mass coefficient for sea
state 5 is smaller than the others. This can be due to a larger drag contribution which is
not included in the least squares fit.

5.5 Evaluation of calculation methods

In this section, the two calculation methods are evaluated based on the results presented
in the previous section. The calculation methods are evaluated by calculating the fraction
of variance unexplained (FVU). Which gives a fraction of how much the results from the
calculation methods vary from the measured data. For an FVU-value of 0, there is no
variation between the calculated and measured results. The FVU is calculated as shown
in Equation (5.2).

FVU = Var(Fcalc - Fmeas)

var(Fieas) (5:2)

In the following, figures showing the FVU for each sea state at different angles are
presented. If the FVU is larger than 0.6 the marker is shown at the top of the figure and
the FVU value is written next to it. Figure 5.25 and 5.26 show how well the calculation
methods follow the measured data for the horizontal force.
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Figure 5.25. FVU for the horizontal force using Method 1.
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Figure 5.26. FVU for the horizontal force using Method 2.

Method 2 is fairly consistent with estimating the horizontal forces, and Method 1’s accuracy
varies more depending on the sea state and angle. Method 2 shows better accuracy in the
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smaller sea states than the higher ones. This is due to the assumption of linear wave theory
which can not be used to accurately describe the waves from the sea states. Sea states 1
to 3 are closer to following the assumptions used in linear wave theory. The accuracy of
the calculation methods for the vertical forces is shown in Figure 5.27 and 5.28.
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Figure 5.27. FVU for the vertical force using Method 1.
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Figure 5.28. FVU for the vertical force using Method 2.

The accuracy of Method 1 varies as it also did for the horizontal forces. In general, the
FVU is below 0.2 for the first four sea states. For sea state 5 larger deviations occur,
particularly for large positive angles. The accuracy of Method 2 is again highly dependent
on which sea state is being investigated. It is accurate for most of the sea states except
for sea state 4 and sea state 5 where larger deviations occur.

The accuracy of the moment calculation based on the two different methods which are
later used to determine the motions of the floater model are shown in Figure 5.29 and
5.30.
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Figure 5.29. FVU for the moment using Method 1.
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Figure 5.30. FVU for the moment using Method 2.

In 0° the horizontal force is the sole contribution to the normal force. This implies that the
FVU of horizontal force has the largest contribution to the FVU of the moment around the
hinge. The FVU using Method 1 becomes larger with the angle of the floater model except
for the outermost angles. As shown sea state 5 has a smaller FVU in negative angles than
in positive angles. In Figure 5.30 the FVU for the moment is shown using Method 2. The
FVU shows an almost constant value for each sea state at different angles unless for sea
state 5. Sea state 5 is the sea state with the steepest waves and linear wave theory is in
this case a gross assumption to the problem. The lower sea states in the outermost angles
have a small FVU value. This is because the cylindrical floater model is fully submerged
which is closer to the assumptions used in BEM.

Method 1 describes the wave forces on the cylindrical floater model well at 0° for all sea
states. Method 1 is imprecise when the cylindrical floater model is placed at an angle. This
is due to Method 1 not estimating the wave-structure interaction with the same precision
as the BEM even though the added mass coefficient is fitted to the measured data. Method
2, which is based on the BEM, is an adequate solution for particularly the sea states with
smaller wave heights and lower wave steepness. This is because these waves are closer
to the assumptions in linear wave theory which is used in BEM. Method 2 captures the
wave-structure interaction as the cylindrical floater model is placed at an angle particularly
when the cylindrical floater model is fully submerged at £40°. This is because Method
2 does not account for the part of the model above the SWL. The drag contribution is
assumed to be negligible therefore it is not included in the calculation methods on the

fixed cylindrical floater model.

In Chapter 6, the calculation methods presented in this chapter will be used in numerical
models to predict the motions of the cylindrical floater model.

48



Motions of the cylindrical
floater model

This chapter will examine the validity of different numerical models used for determining
the motions of the cylindrical floater model. This is done by comparing numerical results
with experimental results obtained during both decay tests and tests where the floater
model is excited by waves.

6.1 Experiments on moving cylindrical floater

The experiment is set up to measure the rotation of the cylindrical floater model around
the hinge when it is subjected to waves. The experiment is performed without a PTO. The
general experimental setup for the experiment is described in Chapter 4 on page 23. An
illustration of the cylindrical floater model including the hinge is shown in Figure 6.1. In
Figure 6.2 a picture of the hinge fastened to a structure of struts and a steel plate is shown.
The hinge is constructed so its only movement is rotation in the wave direction. There is
a little play in the hinge, which means that other degrees of freedom are activated. The
motions in the other DoFs are examined in Appendix C.2 on page 118 and it is determined
that the influence is minimal. After the cylindrical floater model is fastened to the steel
plate, the weight of the steel plate secures it to the bottom.

o ] L VSWL
2 o
o
D~ N
S [N
5«3
(ep)

Figure 6.1. Illustration of the cylindrical  Figure 6.2. Hinge secured to the steel plate
floater model including the hinge and the  placed in the wave flume.
struts.
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6. Motions of the cylindrical floater model

In order to measure the rotation of the model, a motion capture system called Qualisys
Track Manager (QTM) is used [Qualisys, 2020]. Four Qualisys Oqus cameras are used to
capture the motion of the floater model. The motion capture system measures the motion
in three dimensions. The cameras are placed along the wave flume and pointed toward the
model. Three of the cameras are shown in Figure 6.3.

e iaial

Figure 6.3. Three of the four Qualisys Oqus cameras.

The movement is measured by attaching a rigid structure with four reflective markers to
the top of the cylindrical floater model. The four reflective markers form a rigid body
which makes it possible for the cameras to track the motions of the floater model. Figure
6.4 shows the cylindrical floater model in the wave flume, including the reflective markers
on top. Before the movement is measured the motion capture system is calibrated, this
is described in Appendix C.1 on page 117. The system is set up so each reflective marker
needs to be captured by a minimum of two cameras at all times to capture the motion.
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Figure 6.4. Cylindrical floater model in the wave flume with rigid body of reflective markers on
top of the model.

6.1.1 Decay tests

A decay test is performed on the floater model to examine the natural frequencies of
the cylindrical floater model. Furthermore, the decay test is used as an initial step in
the validation of the numerical models. The decay test is conducted by positioning the
cylindrical floater model at an angle and then releasing the model. The movement of the
model is measured during the decay test to establish the decay of the movement. The
water is still at the time of the release and the water depth is at SWL.

6.1.2 Wave excitation tests

The cylindrical floater model is subjected to waves from the five sea states causing a wave
excitation force on the model. The wave excitation force causes the cylindrical floater model
to rotate around the hinge as a 1-DoF system. The rotation of the model is measured in
degrees by QTM.

6.2 Numerical models

In this section, the numerical models are presented. The numerical models are all based
on the equation of motion shown in Equation 6.1.

I-6(t) = Moy (0) + Myaa(6,60) + M;,s(6) (6.1)

To solve the equation of motion it is rewritten as two ordinary differential equations which
are used in a state-space representation of the system. This system is solved using a fourth
order Runge-Kutta differential equation solver following the implementation by Cash and
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6. Motions of the cylindrical floater model

Karp [1990] and Gavin [2020] as described in Iversen et al. [2023]. A time step of 10 ms is
used in the calculation.

All of the numerical models use nonlinear hydrostatics where the buoyancy is dependent
on the angular position of the floater since this alters the submerged volume and the
distance from the hinge to the centre of buoyancy. The numerical models are based on the
hydrostatic moment, Mjp, the radiation moment, M,,q4, and the wave excitation moment,
M,,.. By varying how the three different moments are determined, a number of numerical
models are established.

The mass moment of inertia, I, for the cylindrical floater model is determined in a
pendulum experiment, as described in Appendix C.3 on page 119. It is determined that
I = 0.41kg - m? for the cylindrical floater model.

In Table 6.1 parameters that are used in all of the numerical models are summarised.

plkg/m?] g[m/s’] Afw’] Dm| I[kg-w®] m[kg] 1y [m]
1000 9.82 9507 0.1 0.41 194 0.29

Table 6.1. Overview of parameters used in the numerical models.

The aforementioned parameters and the calculation method for the hydrostatic moment
are in common for the numerical models. However, the approaches used to determine
the radiation moment and the wave excitation moment differ depending on the numerical
model. The differences between the three numerical models are described in the following
sections.

6.2.1 NM1 Model

For the first numerical model, NM1, the radiation moment is calculated based on an added
mass moment of inertia, my, and an experimentally determined hydrodynamic damping
coefficient, ¢j. This is shown in Equation (6.2).

M;yoqg = —myp, - Q(t) —Ch - e(t) (62)

The added mass moment of inertia is calculated using the added mass coefficients, C4, that
are determined from a least squares fit to the experimental data as described for Method
1 in Section 5.2.1 on page 34. The added mass moment of inertia is then determined as
shown in equation (6.3) following the method in Iversen et al. [2023].

Ttop
mh:/ Cp-p-A-r? (6.3)
Tbottom
Where:
T Distance from hinge to area |m|
Thottom | Distance from hinge to bottom of floater [m|
Ttop Distance from hinge to top of floater or 7 [m]
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The damping coefficient, ¢;, is determined experimentally using data from the decay tests
performed on the cylindrical floater model. This is done using the method of extinction
coefficients as described in Himeno [1981]. The method used to determine the damping
coefficient is described in detail in Appendix C.4 on page 121.

The wave excitation moment is calculated with Method 1 based on the Morison equation
as described in Section 5.2 on page 33. However, it should be noted that the velocity and
acceleration are now relative since the floater model is moving. This means that a drag
term is relevant to include due to the relative motion being larger. The drag coefficient
used in the calculation is chosen as 0.7 based on DNV GL [2017] as stated in Section 5.4
on page 38. The added mass coefficients used in the calculation are the ones determined
using Method 1 in Chapter 5. These are shown in Table 5.2 on page 45. The Cy4 value for
the actual angular position is determined using linear interpolation.

6.2.2 NM2 Model

The second numerical model, NM2, is primarily based on the outputs from the open-
source BEM-code NEMOH. However, because of the assumption of potential theory in the
boundary element method, the effects of viscosity are not taken into account in the outputs
from NEMOH. To consider the viscous effects it was chosen to use a drag contribution
calculated with the relative velocity formulation of the Morison equation. To illustrate the
necessity of including the drag contribution, the results for a decay test calculated with
and without a drag contribution are shown in Figure 6.5.

1

Measurements (mean)
—95% CI on sample mean
NM2 (Cp = 0.7)
05 NM2 (No drag)
._‘o O 7 \ /\ \
i \/ \\/
-0.5
_1 | l | | l | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time [s]

Figure 6.5. Comparison of normalised decay time series calculated with and without a drag
contribution.

In the figure, it can clearly be seen that the inclusion of drag improves the accuracy of the
calculated decay time series. This illustrates the necessity of including a drag contribution
in a BEM-based numerical model, especially for longer waves where drag forces have a
larger influence.




6. Motions of the cylindrical floater model

The NEMOH calculations are performed on the cylindrical model at angular positions from
-40° to 40°. In the interval -20° to 20°, 5° increments are used, outside of this interval 10°
increments are used. The NEMOH calculations give the added mass moment of inertia,
my, and the damping coefficients ¢p, as outputs. In Figure 6.6, the added mass moment of
inertia normalised with respect to the mass moment of inertia, I, is shown.

1,

‘—e—Normalised mp,

0.4 | | | l | | l |
-40 -30 -20 -10 0 10 20 30 40

0[]
Figure 6.6. Normalised added mass at 6 from -40° to 40°.

The damping coefficients are dependent on the wave frequency, which means that the
damping changes depending on the sea state. In Figure 6.7 the damping dependent on the
wave frequency for the cylindrical floater model at 8 = 0° is plotted along with the values
for the five sea states.
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Figure 6.7. Damping coefficients for the cylindrical floater at 8 = 0° with values for the sea
states highlighted.
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The damping coefficients for the other angular positions are found in the same way. This
is shown in Figure 6.8 where it can be seen that the largest damping coefficient is for the
smallest sea states.
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Figure 6.8. Damping coeflicients at 6 from -40° to 40°.

For both my, and ¢y linear interpolation is used to determine the values corresponding to
the actual angular position of the cylindrical floater model.

The wave excitation moment is determined using the results from NEMOH as described
for Method 2 in Section 5.3 on page 36. NEMOH outputs a normalised moment and a
phase. Like the damping coefficient, the normalised wave excitation moment depends on
the wave frequency. In Figure 6.9, this is shown for the cylindrical floater model at 6 = 0°
along with the values for the five sea states.
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Figure 6.9. Normalised wave excitation moment at § = 0° with values for the sea states
highlighted.
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6. Motions of the cylindrical floater model

In Figure 6.10 the normalised moment is shown for the different angular positions.
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Figure 6.10. Normalised wave excitation moment at 6 from -40° to 40°.

The value for the normalised moment corresponding to the angular position of the floater
is determined with linear interpolation. The moment at a time step is then determined
by multiplying the normalised moment with the water surface elevation and applying a
phase shift. The water surface elevation is described using fifth order SFT, despite the
assumption of linear wave theory in the BEM.

6.2.3 NM3 Model

The third numerical model, NM3, is a hybrid between the two previously described
models. It uses the added mass coefficient from NEMOH as in NM2 and the same
experimental approach from NM1 to determine the damping coefficient. Like in NM2 a
drag contribution calculated with the Morison equation is used. Again the drag coefficient
is set to 0.7.

The wave excitation moment is calculated from the normalised moment output from
NEMOH in the same way as in NM2.

In Table 6.2 the inputs for the numerical models are summarised.

56



6.3. Validation of numerical models Aalborg University

Model Hydrostatic moment M, Radiation moment M,,q  Wave excitation moment M.,

Nonlinear hydrostatics Added mass .
NM1 with dependenc from Method 1 Moment using
P Y Experimentally determined Method 1.

on position. . .
P damping coeflicient.

Moment using

Nonl‘lnear hydrostatics Add.ed mass a'nd Method 2 with drag
NM2 with dependency damping coefficients o
on position from NEMOH contribution from
P ' ’ the Morison equation.
Added mass Moment using

Nonlinear hydrostatics

. from NEMOH. Method 2 with drag
M3 Wl‘;}; de(i?ﬁiincy Experimentally determined contribution from
P ' damping coefficient. the Morison equation.

Table 6.2. Summary of the inputs to the numerical models.

6.3 Validation of numerical models

To validate the numerical models the results obtained from the numerical models are
compared with the results from the experimental investigation. Initially, the numerical
models are compared to the decay tests performed on the floater model. Afterwards, it is
attempted to validate the numerical models in the case where the cylindrical floater model
is subjected to a wave excitation force.

6.3.1 Decay tests

As a first step in the validation of the numerical models, it is sought to describe the motion
of the floater during a decay test. In the decay tests the equation of motion simplifies, as
shown in Equation (6.4), since the wave excitation moment is zero.

I- H(t) = Mrad(éa 6) + MhS(a) (64)

The simplified equation of motion means that a comparison of the results from the
numerical models and the experimental decay tests can be used to indicate whether the
hydrostatic moment and the radiation moment are accurate.

In Figure 6.11, the results from the numerical models are compared with the mean of the
measurements from the decay experiment. The results are normalised with respect to the
angular position at the start of the decay test, 0go.
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Measurements (mean)
——95% CI on sample mean
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NM2 (Cp = 0.7)
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Figure 6.11. Comparison of normalised decay time series for the numerical models and the
measured data.

In Figure 6.11, it can be seen that for the NM1 model, the amplitudes of the oscillations are
reasonably accurate however, the period of the oscillation deviates from the measurements.
This is possibly caused by the added mass moment of inertia not being calculated with
sufficient accuracy. Both NM2 and NMS& manage to capture the period of oscillation
better than NMI1. This indicates that the added mass moment of inertia calculated by
NEMOH is reasonably accurate. The NM2 model generally overestimates the motions
during the decay test. For NM3 the motion is overestimated at the first trough and peak.
Afterwards, it captures the peaks and troughs with decent accuracy and is mostly within
the 95% confidence interval (CI). Generally for all of the numerical models the damping of
the oscillations is determined with decent accuracy indicating that both the experimentally
determined c¢j, and the calculated ¢, by NEMOH are reasonably accurate when used along
with a drag contribution.

Natural frequencies

As part of the decay test on the cylindrical floater model, the natural frequency
and period of the cylindrical floater model are examined. By investigating the time
between consecutive peaks and consecutive troughs the natural period and frequency are
determined. The natural frequency of the cylindrical floater model is 2.23rad/s and the
natural period is 2.82s.

To examine whether there is a possibility that resonance will occur during the wave
excitation tests the natural frequency is compared to the wave frequencies. The wave
frequencies are shown in Table 6.3.
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Sea state  Wave frequency [rad/s|

1 6.81
2 4.92
3 5.98
4 4.62
5 3.96

Table 6.3. The wave frequencies for the five sea states.

By comparing the wave frequencies and the natural period of the cylindrical floater it is
determined that there is little chance of resonance in any of the sea states.

6.3.2 Wave excitation tests

When the floater model is moved because of wave excitation, an additional moment, M.,
is added to the equation of motion as shown in Equation (6.5).

T-0(t) = Meo(6) + Myaa(6, 6) + Ms(0) (6.5)

In the following, the results from the numerical models are compared to the measured
results from the experiment. Plots are only shown for some sea states. Plots for sea states
not shown here can be found in Appendix C on page 117.

In Figure 6.12, the results from the numerical models for sea state 1 are compared to the
measured results.
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—95% CI on sample mean —— NM2 (Cp = 0.7) —n measured

Figure 6.12. Comparison of results from numerical models and measured results for sea state 1.

In the figure, it can be seen that all of the numerical models produce results that are lower
than the measured results. The Morison-based numerical model NM1 in particular results
in small rotations in comparison to the measured 6. The numerical models NM2 and NM&
give very similar results for 6 with both giving results that are slightly underestimated. All
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6. Motions of the cylindrical floater model

three numerical models result in deviations from the measured values, but it is clear that
NM1 results in the largest deviations by far. A part of this deviation is likely caused by the
introduction of relative velocity and acceleration in the Morison equation, which results in
a smaller moment around the hinge and thus smaller rotations. In Figure 6.13, the wave
excitation moment around the hinge for the three numerical models are compared.
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Figure 6.13. Comparison of M., around hinge for the numerical models for sea state 1.
NB the results for NM2 and NMS3 coincide.

Figure 6.13 clearly shows that NM1 results in a lower moment around the hinge than the
other numerical models. This explains that the 8 values from NMI are smaller than for

the other two numerical models.

In Figure 6.14, the results from the numerical models for sea state 3 are compared to the

measured results.
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Figure 6.14. Comparison of results from numerical models and measured results for sea state 3.
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The same tendencies are seen for sea state 3 with NM1 resulting in larger deviations than
the two other numerical models. For this sea state NM1 also displays a deviation with
regards to the time variation of #. This deviation is not seen for NM2 and NM3 which
describe the variation of 6 well, although the amplitude is somewhat underestimated.

In Figure 6.15 results from the numerical models for sea state 5 are compared to the
measured results.
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Figure 6.15. Comparison of results from numerical models and measured results for sea state 5.

Again the results show that NM2 and NM3 provide a good description of both the time
variation of 6§ and the amplitude of the rotations. The numerical model NM1 gives large
deviations both with respect to the time variation and the amplitude of 6.

6.4 FEvaluation of numerical models

In this section, the performances of the three numerical models are evaluated based on the
results presented in the previous sections.

Decay test

From the numerical models’ description of the decay test, it can be concluded that the
added mass output from NEMOH, used in NM2 and NMS3, is calculated with sufficient
accuracy to describe the period of oscillation of the cylindrical floater model. This indicates
that NEMOH correctly describes the fluid-structure interaction. Contrarily, the method
used to calculate the added mass in NM1 does not provide the same accuracy, which results
in a slight deviation from the measured results. Furthermore, it can be concluded that
both the damping coefficients determined in NEMOH and those determined experimentally
provide a good description of the hydrodynamic damping for the cylindrical floater model
when used along with a drag contribution.

To compare the performance of the numerical models, the FVUs of 8 for the decay test
are determined. The FVU for the decay test is calculated for the interval shown in Figure
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6.11. For NM1 the FVU is 0.16 which is significantly higher than for both NM2 and NMS3,
for which the FVU are 0.04 and 0.03 respectively. The larger FVU for NM1 is mainly
caused by the deviation for the period of oscillation.

Wave excitation tests

Based on the results of the wave excitation tests, it becomes clear that the relative velocity
formulation of the Morison equation, used in NM1, results in an underestimated moment
around the hinge. This leads to smaller rotations than both what is achieved with the
other numerical models and what is measured in the experiment. Moreover, as the waves
become larger NM1 results for the rotations which peak later than the measured rotations,
which leads to significant deviations for the time variation of 6.

In Figure 6.16, the FVU for 6 from the three numerical models are compared.
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Figure 6.16. FVU for the results for 8 from the numerical models.

By comparing the FVU values for the different numerical models it is clear that NM2
and NM3 perform the best for all sea states and result in significantly smaller deviations
compared to NM1. This is true even as the sea states become increasingly steeper. Because
of the assumption of linear wave theory in the boundary element method the NEMOH-
based numerical models, NM2 and NM3, should theoretically perform worse as the waves
become steeper and less linear. However, the two BEM-based models with an included

drag contribution manage to describe all of the sea states with reasonable accuracy.

Overall it can be concluded that the BEM-based numerical models with a drag contribution
show promise in describing the oscillations of the cylindrical floater model in various sea
states. It is now of interest to determine whether the same numerical modelling procedures
can be used to describe the wave-structure interaction of a variation of different floater
geometries.
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Previously, the calculation methods for the force and numerical models for the motions were
only investigated for the cylindrical floater model. This chapter examines the validity of
using the calculation methods described in Chapter 5 on page 27 and the numerical models
described in Chapter 6 on page 49 on the disc-shaped, conical, and spherical floater models.
The floater models are downscaled according to the same factor for the cylindrical floater
model which is 1:20. The floater models are shown in Figure 7.1.

Conical Disc-shaped Spherical
220 , 230 S 215
50 25 1 SWL
T "1_0_0“ o o
25 [
300
50

Figure 7.1. Floater models with intended SWL. All measurements are in mm.

The same experiments that are performed on the cylindrical floater model are performed
on the three floater models shown in the figure. The forces on these floater models are
examined following the procedure described in Section 5.1 on page 27. The floater models
are examined in the angles shown in Table 7.1.

Angle [°]

Floater model | -40 -30 -20 -10 0 10 20 30 40
Cylindrical X X X X X X X
Disc-shaped X X X X X X X

Conical X X X X X
Spherical X

Table 7.1. Angles which the forces are measured in.

The spherical floater model is solely investigated in 0° due to the symmetry of the floater
model which means that the sectional area does not change as the floater model is tilted.
The spherical floater model would become more submerged as the angle becomes larger,
but it is assumed to have a small effect. The conical floater model is not investigated in
4+40° due to the buoyancy of the floater model. The maximum capacity of the 6-axis force
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transducer is reached when the conical floater model is tilted in 440°.

The motions of the floater models are investigated using the procedure described in 6.1 on
page 49. Both decay tests and wave excitation tests are performed on the floater models.

In the following sections, the calculation methods and numerical models are applied to
examine the forces and motions of the other floater models.

7.1 Forces on the other floater models

The same calculation methods are applied to the different floater geometries which are
Method 1 based on the Morison equation and Method 2 based on the BEM. Method 1
calculates the normal force, F),, on the floater models the same way as for the cylindrical
floater model. This means, that the normal force is calculated normal to the centroidal
axis of the floater models. The tangential force due to wave-induced pressure is included
for the other floater models as well. The tangential force is calculated based on the same
principle, by considering the tangential surface area. Due to the change in geometry for
the other floater models, the tangential surface area is calculated along the height of the
floater instead of as the top and bottom area as for the cylindrical floater model.

7.1.1 Validation of calculation methods on other floater models

The results from calculation methods and the measured data are plotted in the following
figures. In Figures 7.2, 7.3, and 7.4, the measured and calculated forces are shown for the
spherical floater model at an angle of 0°.
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Figure 7.2. Horizontal force over time for the spherical floater model at 0° for sea state 4.
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Figure 7.4. Moment around the hinge over time for the spherical floater model at 0° for sea

state 4.

It shows that the sizes of the horizontal forces are estimated well for both calculation
methods, but Method 2 peaks at a different time compared to Method 1 and the measured
data. Method 1 is performs better when determining the vertical forces as it can account
for overtopping and therefore follows the measured data better than Method 2. Both
calculation methods overestimate the size of the moment compared to the measured
moment.Method 1 predicts the peak and time variation of the moment better than Method
2. The same observations can be made for the other floater models in 0°.

In Figures 7.5, 7.6, and 7.7, the calculated and measured forces are shown for the conical

floater model at 20°.
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Figure 7.5. Horizontal force over time for the conical floater model at 0° for sea state 3.
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Figure 7.6. Vertical force over time for the conical floater model at 0° for sea state 3.
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Method 2 gives a better estimate of the horizontal forces, but a small overestimation is
seen for the positive peak. Method 1 does not follow the time variation very well and the
peaks are slightly underestimated. For the vertical forces, none of the calculation methods
follow the data well. Method 2 does not follow it because of the inability to calculate a
force on top of the model due to overtopping. Method 1 overestimates the vertical force
and peaks at a different time. The moments calculated using the calculation methods show
similar tendencies to the horizontal forces. This is because the horizontal force has the
largest contribution to the moment around the hinge.

In Figures 7.8, 7.9, and 7.10, the calculated and measured forces for the disc-shaped floater
model at an angle of —20°.
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Figure 7.8. Horizontal force over time for the disc-shaped floater model at —20° for sea state 3.

10.0- -10.04

0.02

Vertical force [N]
(@]
1 [m]

-0.02

-10.0 1 1 1 | | | L1 0.04
22.5 23 23.5 24 24.5 25 25.5
Time [s]
Method 1
— Measurements (mean) —————— 95% Clon samplemean ————— ~ - (03 C_=0.00
" . b .
Method 2 —— nmeasured = 00 -------- n (SFT)

Figure 7.9. Vertical force over time for the disc-shaped floater model at —20° for sea state 3.
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Figure 7.10. Moment around the hinge over time for the disc-shaped floater model at —20° for
sea state 3.

Method 2 follows the time variation of the measured horizontal force but overestimates
the force around the crest and trough. Method 1 does not fit the measured data time
variation. This is most likely due to the geometry of the floater model, as the tangential
force is only calculated using the change in pressure and does therefore not account for the
impact of the waves. For the vertical force, Method 1 estimates the time variation well
but overestimates the forces at the peaks. This is due to the structure not affecting the
wave in the calculation method compared to the experiment in which the model affected
the wave. Method 2 gives a better estimate of the moment around the hinge even though

it overestimates the peak.

7.1.2 Evaluation of calculation methods on other floater models

The different calculation methods are compared to the measured data by calculating the
FVU of the moment calculation for each sea state, model, and angle. They can be seen
plotted in the following figures. Figures 7.11 and 7.12 show the FVU for the conical floater
model.
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Figure 7.11. FVU for the moment using Method 1 for the conical floater model.
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Figure 7.12. FVU for the moment using Method 2 for the conical floater model.

The FVU results for the conical floater model show similar tendencies to the FVU results
for the cylindrical floater model. Method 1 at 0 ° is still very accurate for the conical floater
model. Comparing the FVU results for the two floater models in 20 ° it can be seen that the
accuracy of Method 1 becomes more inaccurate in most sea states when using the conical
floater model compared to the cylindrical floater model. Method 2 maintains a similar
level of accuracy for the conical floater model compared to the cylindrical floater model. It
predicts the moments quite well except for sea state 5 which as with the cylindrical floater

results in larger deviations.

Figures 7.13 and 7.14 show the FVU results for the disc-shaped floater model.
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Figure 7.13. FVU for the moment using Method 1 for the disc-shaped floater model.
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Figure 7.14. FVU for the moment using Method 2 for the disc-shaped floater model.

The results for the disc-shaped floater generally display larger deviations from the measured
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results. When multiple markers are above the limit they are drawn at the limit and their
value is written to the right in the colour of the sea state. The FVU shows that the
accuracy when the floater model is at an angle of 0° is great for Method 1. Except for
this using Method 1 on the disc-shaped instead of the cylindrical floater model gives more
inaccurate results for most sea states and angles. The results are especially inaccurate for
the negative angles which is possibly because Method 1 does not accurately calculate the
tangential force on the model.

The tendencies for Method 2 are the same for the cylindrical and disc-shaped floater model
in the interval between —20 ° and 20 ° for sea states 1, 2, and 3. For sea states 4 and 5, the
results for the disc-shaped floater model show larger deviations from the measurements.
This is especially evident in the large angles +40 where Method 2 does not accurately
describe the moment.

Figures 7.15 and 7.16 show the FVU results for the spherical floater model.
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Figure 7.15. FVU for the moment using Method 1 for the spherical floater model.
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Figure 7.16. FVU for the moment using Method 2 for the spherical floater model.

The spherical floater model is only tested at an angle of 0°. The FVU results for Method 1
show that it can accurately predict the moment around the hinge for the spherical floater
model. For the spherical floater model, Method 2 gives reasonably accurate results except
for sea state b, where a larger deviation is observed.

In general, the results for Method 1 show an accurate prediction of the forces at 0° for
all of the floater models. As the floater models are placed at an angle the results show
that Method 1 becomes less accurate. Method 1 uses the correct wave kinematics when
determining the wave forces on the floater models. Nonetheless, the results for sea states

70



7.2. Motions of the other floater models Aalborg University

4 and 5 show larger deviations from the measured results. This is possibly caused by a
larger drag contribution in sea states 4 and 5 which is not considered in the calculations for
Method 1 on the fixed floater models. The results from Method 1 illustrate the complexity
and difficulty of describing the wave-structure interaction using a Morison-based method
when the geometry is changed from cylindrical to more irregular shapes. These difficulties
become more evident as the floater models are angled.

The results for Method 2 show similar tendencies for the different floater models. The
results are more accurate for sea states 1, 2, and 3 and less accurate for sea states 4
and 5. This is likely due to the assumption of linear wave theory used in the BEM. The
results show that Method 2 is more consistent in determining the wave forces in an angled
position. This is because Method 2 captures the wave-structure interaction correctly.

Comparing the two calculation methods shows that the accuracy of Method 2 is better
when applied to the other floater models placed at an angle. Method 1 gives more accurate
results for the floater models at an angle of 0°.

In the following section, the calculation methods applied in this section will be used in the
numerical models to predict the motions of the other floater models.

7.2 Motions of the other floater models

To examine the motions of the other floater models, the same three numerical models
that are described in Section 6.2 on page 51 are used. In the following, the inputs for the
numerical models are described.

In order to calculate a drag contribution in the numerical models it is necessary to
determine the drag coefficients for the floater models. The drag coefficient for a sphere
is well established and can therefore be determined from literature with knowledge of the
flow conditions. The Reynolds number for the sphere in the five sea states ranges from
Re ~2-10* to 9-10*. Considering this the drag coefficient for the spherical floater model
is determined as 0.5. [Schlichting and Gersten, 2017]

The drag coefficients for the conical and disc-shaped floater models are not well established
in literature, which complicates the determination of the drag coefficients. However, in
Iversen et al. [2023] numerical tests were performed using the CFD framework OpenFOAM
in order to determine the drag coefficient of similarly shaped conical frustums with the
results that a drag coefficient of 0.8 should be used. Therefore, a drag coefficient of 0.8 is
used for the conical floater model.

For the disc-shaped floater model, the drag coefficient is determined using a rough estimate
by simplifying the geometry of the floater. The shape of the disc is simplified into an ellipse,
and considering the height and width of the ellipse it is determined that the drag coefficient
is in the interval 0.6 - 1.0 [DNV GL, 2017|. Because the actual floater geometry has sharp
edges, which the simplified elliptical geometry does not have, it is chosen to use a drag
coeflicient of 1.0 for the disc-shaped floater.

In Table 7.2 parameters that are used in the numerical models are summarised. The mass
moment of inertia for the floater models are determined in Appendix C.2 on page 120.
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Floater model I [kg-m?| m [kg] r,[m] Cp []

Conical 0.39 1.23 0.35 0.8
Disc-shaped 0.34 1.08 0.39 1.0
Spherical 0.33 1.12 0.35 0.5

Table 7.2. Overview of parameters used in the numerical models.

The inputs of the added mass, damping, and wave excitation moment are determined in
the same way as described in Section 6.2 on page 51 for the cylindrical floater model.
Therefore, it is not repeated here but can instead be found in Appendix C.5 on page 126.
The NEMOH calculations for the disc-shaped, conical, and spherical floater models are
performed with 10° increments in the interval from —40° to 40°.

7.2.1 Decay tests on other floater geometries

As an initial step in the validation of the numerical models for the other floater models,
it is attempted to describe the motions of the floater during a decay test. In Figure 7.17,
the results from the numerical models are compared to the measured results for the decay
test on the conical floater.
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Figure 7.17. Comparison of normalised decay time series for the conical floater.

For the conical floater both NM2 and NMS3 follow the period of oscillation with good
accuracy, indicating that the added mass moment of inertia from NEMOH is accurate.
The added mass moment of inertia, my, calculated from added mass coefficients, which is
used in NM1 does not accurately describe the period of oscillation. Both the damping from
NEMOH and the experimentally determined damping are slightly overestimated, however
the damping coefficients from NEMOH results in a better description of the decay time
series.

In Figure 7.18, the results from the numerical models are compared to the measured results
for the decay test on the disc-shaped floater.

72



7.2. Motions of the other floater models Aalborg University

1
\ Measurements (mean)
——95% CI on sample mean
-~ NM1 (Cp = 1.0)
051 NM2 (Cp = 1.0)
' ——-NM3 (Cp = 1.0, my, - 0.55)
mC) O -
~
>
-0.5-
_1 1 L | 1 L L 1 L | |
0 1 2 3 4 5 6 7 8 9 10

Time [s]

Figure 7.18. Comparison of normalised decay time series for the disc-shaped floater.

In the figure, it can be seen that the numerical models NM1 and NM2 do not accurately
describe the period of the oscillations during the decay test. This indicates that the added
mass moment of inertia used in these two numerical models is not correct. Because of this,
it is chosen to alter the added mass coefficients from NEMOH in NM3 to provide a better
description of the period of oscillations. This is done iteratively and it is determined that
a 45 % reduction of my, results in a better description of the period of oscillation. The
damping of the oscillations is determined with reasonable accuracy for NM2, especially
at the beginning of the decay time series. For both NMI! and NM3 the damping is
overestimated, which leads to an underestimation of the motions. This indicates that the
experimentally determined damping is too high.

In Figure 7.19, the results for the decay test on the spherical floater are compared to the
measured results.
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Figure 7.19. Comparison of normalised decay time series for the spherical floater model.
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Similarly, the results for the disc-shaped floater NM1 and NM2 have trouble describing
the period of oscillation for the spherical floater model. Again it is chosen to reduce mp
in the third numerical model NM3. This time a reduction of 30 % is used.

Neither the damping from NEMOH nor the experimentally determined damping results
in a good description of the damping observed in the measured decay test. For NM2 the
damping is too low. This is especially evident towards the end of the interval shown in
Figure 7.19 where the results from NM2 keep oscillating when the measured oscillations
have nearly stopped. For NM1 and NM3, which use experimentally determined damping,
the damping is instead too high and the oscillations stop before the measured oscillations.

Natural frequencies

As part of the decay tests on the floater models, the natural frequencies of the floater
models are examined. The natural frequencies are determined from the time difference
between consecutive peaks and consecutive troughs in the decay time series. In Figure
7.20 an example with highlighted peaks and troughs is shown.

10

——Measured decay

Figure 7.20. Decay time series for conical model.

The natural frequencies and periods for the floaters are then determined as a mean value
for the five decay tests. The natural frequencies and periods for the floater models are
shown in Table 7.3.

Floater model Natural frequency [rad/s| Natural period |s]

Conical 4.37 1.44
Disc-shaped 4.32 1.45
Spherical 4.56 1.38

Table 7.3. Natural frequencies for the floater models.

The natural frequency is especially relevant when compared to the frequency of the waves
since resonance can occur if these frequencies are close to each other. In Figure 7.21 the
natural frequencies of the floater models are compared with the frequencies of the waves
in the five sea states.
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Figure 7.21. Comparison of wave frequencies and natural frequencies of floater models.

As can be seen in the figure, the natural frequencies of the floater models are close to the
wave frequency in three of the sea states. In sea states 2 and 4 the natural frequency of
the three floater models are especially close to the wave frequency. Because of this, there
is a possibility that resonance will occur during the wave excitation tests, which will cause

an increase in the motion of the floater.

7.2.2 Wave excitation tests on other floater geometries

In the following section, the results from the numerical models for the wave excitation
tests on the spherical, conical, and disc-shaped floater models are presented and compared
to the measured results. Only some of the results are shown in this section, however all of
them can be found in Appendix C.6 on page 137.

In Figure 7.22, the results for the disc-shaped floater in sea state 1 are shown.
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Figure 7.22. Comparison of results from numerical models and measured results for the disc-
shaped floater in sea state 1.
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In the figure, it can be seen that NM1 underestimates the motions of the floater similarly
to what was observed for the cylindrical floater in 6.3.2 on page 59. The same tendency
is observed for the conical and spherical floaters in sea state 1. NM2 provides a good
description of the motions of the disc-shaped floater only slightly underestimating the
maximum and minimum values of the rotations. For the conical and spherical floater
in sea state 1, NM2 also shows good agreement with the measured results. The third
numerical model NM8 overestimates the motions of both the disc-shaped and spherical
floater. This is possibly caused by the reduction of the added mass to fit the period of
oscillation in the decay tests for these two floaters.

In Figure 7.23, the results for the conical floater model in sea state 2 are shown.
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Figure 7.23. Comparison of results from numerical models and measured results for the conical
floater in sea state 2.

For the conical floater in sea state 2, the first numerical model NM1 again underestimates
the movements. NM1 also does not give usable results for the disc-shaped and spherical
floater in sea state 2. NM2 gives good results for the motions of the conical floater in sea
state 2, although a slight overestimation of the peak rotation is seen. For the spherical
floater model, the same tendency is seen with NM2 giving a slight overestimation at
the peak. For the disc-shaped floater in sea state 2 NM2 underestimates the motions
somewhat, but regardless of the floater geometry NM2 gives useful results. NMS also
gives good results for the conical floater, however for the disc-shaped and spherical floater
these numerical models result in a small phase shift compared to the measured results.

It is observed that large motions are observed for this sea state especially considering the
relatively low wave height. This is likely caused by resonance since the natural frequencies

of all three floater models are close to the wave frequency for sea state 2.

In Figure 7.24, the results for sea state 3 for the spherical floater are shown.
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Figure 7.2/. Comparison of results from numerical models and measured results for the spherical
floater in sea state 3.

In sea state 3 similar results to sea state 1 and 2 are achieved. NM1 underestimates the
motions for all three floater geometries. NM2 describes the motions of all three floaters well
in sea state 3, although it slightly underestimates the motions for the disc-shaped floater.
NMS8 also gives decent descriptions of the floaters’ motions however slight overestimation
is observed for both the disc-shaped and spherical floaters.

In Figure 7.25, the results for the conical floater in sea state 4 are shown.
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Figure 7.25. Comparison of results from numerical models and measured results for the conical
floater in sea state 4.

For sea state 4 NM2 still provides reasonable results for the conical and disc-shaped floater,
even though the motions are somewhat overestimated. However, for the spherical floater, a
large overestimation of the motions is seen along with a phase shift. This results in a large
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deviation from the measured results for the spherical floater when using NM2. The third
numerical model NM3 provides similar results as NM2 for the conical and disc-shaped
floater and better results for the spherical floater.

In Figure 7.26, the results for the disc-shaped floater model in sea state 5 are shown.
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Figure 7.26. Comparison of results from numerical models and measured results for the disc-
shaped floater in sea state 5.

For sea state b only NM3 manages to describe the motions of the floaters with reasonable
accuracy, and even then NM3 still results in a large overestimation of the motions for all
three floater geometries.

7.2.3 Evaluation of numerical models for other floater geometries

In this section, the numerical models are evaluated and discussed based on the results,
which are presented in the previous sections.

Decay tests

For the decay tests, only the conical floater model was described with reasonable accuracy
with the numerical models NM2 and NMS3.

For the disc-shaped and spherical floaters, the results from the numerical models do not
match the period of oscillation of the measured results. In an attempt to rectify this,
the added mass moment of inertia was reduced in the numerical model NM3 for the disc-
shaped and spherical floaters. This improved the description of the period of oscillation,
however the decay tests are not accurately described by any of the numerical models.

The poor results for the decay tests for the disc-shaped and spherical floater highlight the
sensitivity to the quality of the decay tests. During the decay tests for these two models, a
large initial angle was used, which can possibly explain the deviations from the numerical
models. Furthermore, the experimental damping is heavily influenced by the accuracy
with which the decay tests are performed.
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As witnessed for the cylindrical floater, NM1 has difficulty predicting the period of the
oscillations during the decay test. This is also observed for the three other floater models
which is further indication that this method of estimating the added mass moment of
inertia is not viable.

Wave excitation tests

To evaluate the accuracy of the numerical models they are compared to the measured
results using the FVU. In Figures 7.27, 7.28, and 7.29, the FVU is shown for the disc-
shaped, conical, and spherical floater respectively.
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Figure 7.27. FVU for the results of the wave excitation tests on the disc-shaped floater.
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Figure 7.28. FVU for the results of the wave excitation tests on the conical floater.
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Figure 7.29. FVU for the results of the wave excitation tests on the spherical floater.

Similar to what was observed for the cylindrical floater model in Chapter 6 on page 49 it is
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found that NM1 generally results in the largest deviations from the measured results. It is
concluded that NM1 has trouble accurately describing the motions of any of the floaters.

The wave excitation moment in NM1 is calculated with Method 1 which is based on the
Morison equation. The Morison equation was originally proposed to determine wave forces
on fixed structures. As shown earlier Method 1 is suitable to determine wave forces on
floater models fixed at 0°. Once the floater models are able to rotate around the hinge,
Method 1 no longer gives reliable results for the wave forces on the floaters. Because of
this, it is not considered a viable method of estimating the motions of a floater subjected
to wave excitation.

The two BEM-based numerical models NM2 and NM3 provide good descriptions of the
motions of all three floater models in sea states 1 to 3. In sea state 4 NM2 and NM3
still yield good results for the conical and disc-shaped floater however, a large deviation
is observed with NM2 for the spherical floater. As expected when the waves become
more nonlinear, the results using the BEM-based models begin to deviate more from the
measured results. This is seen particularly for the numerical model NM2 in sea state 5.
Part of the explanation for the larger deviations in sea states 4 and 5 is likely caused by the
larger deviations for the moment around the hinge, as described in Section 7.1 on page 64.
From the results, it can also be observed that NM3, which uses experimentally determined
damping, results in a better description of the sea states 4 and 5 than NM2, which uses
damping from NEMOH. A possible explanation for this is the assumption of linear wave
theory in the BEM, which means that as the waves get higher and steeper the accuracy of
the BEM results decrease.

In general, it is found that BEM-based numerical models with a drag contribution
calculated with a relative velocity formulation of the Morison equation can be used
to describe the motions of various floater geometries in sea states with a significant
contribution to the total available wave energy.
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Discussion

In this chapter, the calculation methods for the forces on the floaters, the numerical models
for the motions of the floaters, and the results from the present thesis are discussed.

8.1 Forces on the fixed floater models

As described in the thesis two calculation methods are used to examine the forces on
the fixed floater models. Method 1 uses a normal force contribution calculated with
the Morison equation and a tangential force contribution calculated from wave-induced
pressure. Method 2 uses the boundary element method code NEMOH to determine the
forces on the fixed floater models. When using the BEM the part of the floater which is
above the SWL is ignored.

The results obtained with the two calculation methods are compared to measured results
from model scale experiments performed in the wave flume at Aalborg University. The
experiments are performed using regular waves. By comparing the results from the two
methods with the measured results it is determined that both methods can be used with
reasonable accuracy to determine the wave excitation forces on a cylindrical floater model
even when the floater is angled. This is in agreement with expectations because of the
Morison equation’s prevalent use for the calculation of forces on cylindrical structures.

When the floater geometry is changed to the spherical, conical, and disc-shaped floater
models an increase in the deviations is observed for both calculation methods. Method
1 still manages to describe the moment on floater models at an angle of 0° with good
accuracy. However, when the angular position of these floater models is changed it leads
to a significant increase in the deviations for Method 1. These deviations likely occur since
the geometries for these floater models in combination with the angular position of the
floater models are vastly different from the original assumptions for the Morison equation.
Method 2 generally provides more accurate results for these floater models when they are
placed at an angle because the BEM describes the wave-structure interaction correctly
for the geometry below the SWL. Method 2 has larger deviations for sea states 4 and
5. This can be explained by an increase in the wavelength, which potentially violates
the assumption in the BEM that the floater is large in comparison to the wavelength.
Furthermore, BEM uses linear wave theory which can not accurately describe waves of
larger steepness and wave height.

The results for the moment around the hinge are important in the estimation of the
motion of the floaters. Therefore, the accuracy of these results is of particular interest.
The results for the moment from Method 2 generally deviate less from the measurements
than Method 1, however, significant deviations still occur, especially at the largest angles,
+30° and £40°, and for sea state 5, which has a large wave steepness.
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8.2 Motions of the floater models

The motions of the floater models are examined using three numerical models. The first
numerical model uses Method 1 to calculate the wave excitation moments. The other two
numerical models are based on Method 2 and use the BEM-code NEMOH to calculate the
wave excitation moments. The results from the numerical models are compared to results
from decay tests and wave excitation tests performed on moving floater models. The
experiments are performed using regular waves and without a PTO. This is done to examine
the floaters’ motion in different sea states and whether the numerical models can accurately
describe it. The use of regular waves is limited to the calibration and examination of
numerical models since regular waves can not describe a realistic sea environment.

By comparing the results from the numerical models to the measured results from the
experiment it is determined that there is a significant difference in the performance of
the numerical model which is based on Method 1 and the two numerical models based on
Method 2. In most sea states, the Method 1 based numerical model is unable to describe
the motions of the floater models with accuracy. However, the Method 2 based numerical
models with a drag contribution calculated with a relative velocity formulation of the
Morison equation provide an acceptable level of accuracy for various floater geometries.
A similar level of accuracy is achieved using both experimental damping coefficients and
damping coefficients determined using BEM.

This shows that a BEM-based numerical model can be a valuable tool in the initial design
of a WEC. Using the BEM along with a drag contribution it is possible to examine a variety
of different floater designs using a relatively coarse resolution and a simplified approach
to determine the drag coefficient. In this thesis, BEM calculations are performed at a
maximum increment of 10° for the angular position of the floaters and drag coeflicients
are estimated from literature. Despite the coarse resolution for the angular position and
Cp determined based on literature, an acceptable level of accuracy is achieved for sea
states 1 to 4, which contribute to approximately half of the total available wave energy.
Most of the remaining wave energy contribution occurs for significant wave heights that
are similar to the one from sea state 5 or larger. Therefore, it is necessary to examine
other methods to accurately describe the wave-structure interaction for these larger wave
heights.

8.3 Scale effects

To perform the experiments on the floaters it is necessary to scale both the floater models
and the sea states. This scaling is done using the Froude model law, which ensures correct
geometric, kinematic, and dynamic similarity. The Froude model law is used since surface
waves are gravity-driven. It is also possible to scale using the Reynolds number, which is
a ratio between inertia forces and viscous forces. Using Reynolds number to scale ensures
that the viscous forces are scaled correctly between the floater model and the full-scale
floater. Because the Froude model law is used it is not possible to fulfil the Reynolds
model law. This can lead to scale effects due to the effects of viscosity. For the floater of
the Exowave WEC, which has a scale ratio of 1:20, the viscous forces on the model scale
floater are exaggerated by a factor of 89. [Kamphuis, 2000]
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Conclusion

This thesis has investigated the forces and motions of the floater of the Exowave WEC. A
number of approaches for numerical modelling are applied to describe the wave-structure
interaction of the floater. The different approaches are validated by using experimental
data as benchmarks for the forces and motions of the floater. This thesis revolves around
the following statement:

The aim of this thesis is to investigate the accuracy of different approaches for modelling
the wave-structure interaction of the floater of the Exowave WEC.

The wave excitation forces on fixed floaters are examined using two methods. Method 1 is
based on the Morison equation and Method 2 is based on the boundary element method.
It is determined that Method 1 only manages to calculate the forces on the floaters with an
acceptable level of accuracy when the floaters are vertical. Method 1 is unable to accurately
determine the forces on inclined floater models other than the cylindrical floater model.
Method 2 achieves a good level of accuracy both for vertical and inclined floater models
and is able to describe forces on various floater geometries. Method 2, however, struggles

to describe wave forces in larger and steeper waves.

The motions of the floater models are examined using three numerical models NM1, NM2,
and NM3. The numerical models are all solved using a state-space representation of the
equation of motion. NM1 uses Method 1 to calculate the wave excitation moment. Both
NM2 and NM3 use Method 2 to calculate the wave excitation moment and take viscous
forces into account by including a drag contribution calculated with the Morison equation.
The two numerical models differ since NM2 uses BEM-based damping, and NM3 uses
experimentally determined damping. The results show that NM1 is not a suitable option
for calculating the motions of any of the floater models. NM2 and NM3 are both able to
describe the motions of the floater models with an acceptable level of accuracy even for
waves that can not be described with linear wave theory. Using the approach from the
numerical model NM2 has the advantage that it can provide results of good accuracy for
the motions of the floater models using a coarse resolution for the angular positions of the
floaters and without the need for experimental data. Furthermore, it is simple to change
the floater geometry meaning that this approach can be particularly useful in the initial
design of a WECs floater geometry.

Similarly to the examinations of the wave excitation forces it is found that the two
numerical models using Method 2 struggle to describe motions in larger and steeper waves.
The steepest waves examined in this thesis have a wave steepness of 0.042, for these waves
NM2 and NMS3 are unable to provide accurate results for the motions. Despite these
limitations for NM2 and NM3 the numerical models are able to describe the motions of
the floater models in sea states which contribute approximately half of the total available

wave energy.
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9. Conclusion

9.1 Future work

As stated the NM2 and NMS3 are unable to provide accurate results for steep waves.
Because of this, it would be advantageous to examine the limitations more closely and
determine a more exact estimate of the limitations of these numerical models. Furthermore,
the NM2 facilitates the possibility of implementing new floater model geometries. NM2 is
solely based on the BEM-code NEMOH and a drag coefficient estimated from literature,
which makes it possible to examine different geometries for the purpose of determining
a suitable geometry. It should be noted that the results should be validated with an
experiment.

A CFD analysis might be insightful in describing the wave-structure interaction with a
greater level of accuracy. Furthermore, it could be helpful in describing the wave-structure
interaction of floaters in larger and steeper waves. However, CFD is a computationally
expensive and is therefore only recommended for analysis once a floater geometry has been
settled upon.

This thesis is limited to investigating the forces and motion of the floater models. The
following step in the design of a WEC is the determination of the energy production. The
power take-off and control subsystem must be examined to estimate the energy production.
Furthermore, the forces and motion of the floater are investigated for regular waves. In
order to capture a more realistic wave environment, the floater model could be investigated
in irregular waves.

A full-scale test with a PTO is planned for the Exowave WEC. The full-scale test can
contribute valuable insight into the wave-structure interaction for several parameters. A
number of assumptions are applied to determine a representative wave environment in a
down-scaled test because of the use of a model law. The scaling can affect the forces in
a down-scaled test which is not possible to avoid unless another similar test is conducted
with another scale factor. Because of this a full-scale test can provide valuable insight into
the scale effects that will impact the Exowave WEC.
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MetOcean study

In this chapter, MetOcean data is analysed in order to determine representative sea states
that are used in the report, as the focus is the production states and not the extreme sea
states. The sea states are characterised by a significant wave height, a peak period and a

water depth.

A.1 MetOcean data

The data used is from a wave buoy at the DanWEC test site at Hanstholm. The wave
buoy is placed at the planned site for sea trials of the WEC. The location of the wave buoy
is shown in Chapter 1 on page 1 in Figure 1.5.

In Table A.1, the buoy used to measure the data is described.

Wave buoy Model Latitude [°N] Longitude [°E|] Water depth [m]

Wave buoy II  Datawell DRW4/ACM 57.1112 8.5457 14.5

Table A.1. Description of the used wave buoy. [DanWEC, 2022]

The data is from the period July 2016 to October 2022 and is given in intervals of 30
minutes. In Table A.2 a description of the used wave parameters is given.

Parameter Description

H,0 Estimate of significant wave height. H,,0 = 4v/m0
T, Estimate of average wave period. T, = Ty02 = %g

Table A.2. Description of the data from the wave buoy.

The measured significant wave heights are shown in Figure A.1.
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Figure A.1. The measured significant wave heights.

As it can be seen in the figure, the wave buoy had a significant amount of downtime

during 2019 and 2020. The missing data is excluded when calculating the representative

sea states.

A.2 Representative sea states

The wave conditions at the site are initially described using a scatter diagram (H,,o, 1)

showing the percentage of occurrence, P. The scatter diagram is shown in Table A.3. The

representative sea states are framed in the scatter diagram.

H0 T. [s] Sum
[m] 1.75 225 275 3.25 3.75 4.25 4.75 525 5.75 6.25 6.75 7.25 [%]
0.25 0.13 | 1.89 3.50 3.07 2.17 1.17 0.54 0.23 0.15 0.13 0.06 0.01 | 13.03
0.75 0.32  4.39 5.50 2.71 1.21 0.48 0.13 0.07 0.05 | 30.53
1.25 0.01 3.92 1.61 0.65 0.17 0.04 0.00 | 25.26
1.75 5.11 1.59 049 | 0.15 0.05 0.02 | 14.49
2.25 0.23 4.18 2.57 0.57 ‘ 0.16 0.05 0.01 | 7.77
2.75 0.15 276 1.26 | 0.15 0.03 0.01 | 4.36
3.25 0.15 1.54 | 0.49 0.06 0.01 2.25
3.75 0.13 0.75 0.25 0.04 | 1.17
4.25 0.08 0.39 0.12 | 0.58
4.75 0.06 0.19 | 0.25
5.25 0.04 | 0.04
Sum [%] 0.13 2.22 7.90 13.50 1875 21.48 16.61 10.13 5.25 220 1.07 0.49 | 99.74

Table A.3. Scatter diagram from data measured by Wave Buoy II from July 2016 to October
2022 in the percentage of occurrence.

In order to have a more concise description of the wave conditions at the test site, different
bins in the scatter diagram are grouped to form the sea states. The bins are shown in
the scatter diagram and they are chosen to be as few as possible and capture as much of
the percentage of occurrence as possible. The election of the sea states is also based on
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the wave energy contribution. In order to determine the wave energy contribution, the
power in the wave field must be determined. The power in the wave field is determined
by Equation (A.1). The power is proportional to the wave period and the wave height
squared. The power is determined for each bin in the scatter diagram. The wave power is
determine by the energy period, T¢.

p- g

o “H?.T, (A1)
- T

P’wa'ue =

To determine the wave power contribution, the wave power is multiplied by the probability
of occurrence. This is shown in Table A.4 where the unit of the wave power contribution

is in kW /m of a wave.

H o T, [s] Sum
[m] 1.75 225 275 325 3.75 425 4.75 525 575 6.25 6.75 7.25 | [kW/m]|
0.25 0.00 | 0.00 0.01 0.01 0.01 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
0.75 0.01 0.08 0.18 0.17 | 0.15 0.08 | 0.04 0.02 0.01 0.00 0.00 0.73
1.25 0.00 | 0.12 0.58 | 0.61 0.33 ‘ 0.15 0.07 0.02 0.01 0.00 1.88
1.75 0.00 0.08 | 0.95 0.84 0.29 0.10 | 0.03 0.01 0.00 2.32
2.25 0.06 f1.14 0.78 0.19 | 0.06 0.02 0.01 2.25
2.75 0.06 0.62 | 0.08 0.02 0.01 2.03
3.25 0.10 1 1.06 | 0.37 0.05 0.01 1.58
3.75 0.12 0.75 0.27 0.04 1.18
4.25 0.10 0.54 0.17 0.81
4.75 0.10 0.36 0.46
5.25 0.08 0.08
Sum [kW/m| | 0.00 0.01 0.09 0.30 0.84 1.78 247 260 2.17 141 1.02 0.68 13.35

Table A.4. Scatter diagram for wave energy contribution. The energy is shown in kW /m.

The wave energy contribution for each bin is shown in Table A.5. The wave energy

contribution is calculated as a percentage of the wave energy contribution in Table A.4.

H,0 T. [s] Sum
[m] 1.75 225 275 325 375 425 475 525 575 625 6.75 7.25 | [%]
0.25 0.00 | 0.02 0.05 0.05 0.04 | 0.03 0.01 0.01 0.00 0.00 0.00 0.00 | 0.23
0.75 0.03 0.58 1.31 1.30 | 1.12 0.62 0.31 0.13 0.04 0.02 0.02 | 5.47
1.25 0.01 | 0.86 4.35 | 4.59 2.48 1.12 0.49 0.14 0.04 0.00 | 14.09
1.75 0.00 061 | 715 6.32 218 0.74 | 0.24 0.10 0.03 | 17.36
2.25 0.41 8.56 5.81 1.41 0.42 0.15 0.05 | 16.81
2.75 0.47 4.64 0.59 0.14 0.05 | 15.22
3.25 0.73 7.93 276 036 0.06 | 11.84
3.75 0.89 5.62 2.02 031 | 884
4.25 0.73 4.07 1.29 | 6.08
4.75 0.73 270 | 3.43
5.25 0.60 | 0.63
Sum [%] | 0.00 0.06 0.63 2.23 6.30 13.30 1846 19.48 16.24 10.54 7.63 5.10 | 100

Table A.5. Wave energy contribution as a percentage.

For each sea state, a significant wave height and a wave period are calculated using equation
(A.2) and (A.3) respectively.
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The sea states are shown in Table A.6. The table shows the physical parameters connected
with the sea states. The wavelength L is determined by the dispersion relationship. The
different types of wave periods are shown for the sea states.

Sea state Hpo [m| Ty [s| Te[s] Tp[s] h[m|] L [m]
1 0.63 3.2 3.7 4.1 14.0  26.6
2 1.08 4.4 5.1 5.7 14.0  48.6
3 1.28 3.7 4.2 4.7 14.0 344
4 1.94 4.7 5.5 6.1 14.0 54.2
) 291 9.5 6.3 7.1 14.0  68.8

Table A.6. Physical parameter of the five sea states.

The wave energy contribution and the percentage of occurrence among other things are
shown in Table A.7. The percentage of occurrence is almost 90 % which sea states 1, 2,
and 4 have a large contribution to the total occurrence. The percentage of the wave energy
contribution illustrated with Contrib is at 73%.

Sea state  Contrib (%] Annual hours [hour] P [%] Puyave [KW/m| P - Pyape [kW/m]
1 3.4 2725 31.1 8.5 1.3
2 8.8 1781 20.3 21.7 2.2
3 0.8 998 114 36.7 2.1
4 32.6 1863 21.3 184.1 19.6
5 22.6 502 5.7 225.9 6.5
Sum 73.2 7869 89.8 - 31.6

Table A.7. Sea states including the wave contribution.
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Experimental
investigation of forces on
fixed floaters

In this chapter the calibration of the waves generated in the flume and the comparison of
the force transducer setups are described.

B.1 Setup and equipment
The materials used to conduct the experiment are listed below.

e Flume at Aalborg University in the Department of the Built Environment
e Three wave gauges

e Wave gauge sensor

e Wave gauge cables

e Fixed structure and clamps

e Cylinder

e Bending beam force transducer

e (G-axis force transducer

e Cables to the force transducers

e Floater models

o Weights

e Clamps

e Hinge to connect 6-axis force transducer to the floater model
e Digital protractor

e Data acquisition system

e Analog filter at 8 Hz

The flume is 22.5 m long which includes the wave generator and the absorption and 1.5 m
wide. The diameter of the model must not exceed 10 % of the width of the flume to ensure
that the boundaries do not influence the waves at the model. The cylindrical floater model
does not exceed the size. There is no inclination of the bottom in the flume.

B.2 Scaling the setup

In order to conduct the experiment in the flume, the experiment must be downscaled to
match the flume’s size. The floaters and the sea states must be scaled to fit the flume.
The floater models is shown in Figure B.1. Furthermore, the geometrical scale factor for
the scaled floater models is A; = 20.
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Figure B.1. Floater models with intended SWL. All measurements are in mm.

The sea states are scaled according to the Froude scaling law which is an expression between
inertia forces and gravity forces. Therefore, the ratio between the inertia forces and gravity
forces is the same for the full-scale floaters as for the down-scaled floater models. The scale
ratios used to determine the scaled sea states are shown in Table B.1.

Physical parameter Unit  Scale ratio
Wave height and length  |m] As
Wave period [s] Vs

Table B.1. Scale factor of the physical parameters. [Hughes, 1993]

The sea states are shown in Table A.6 on page 94 in the MetOcean study. The sea states
are scaled according to Table B.1. The sea states of the individual scale factors are shown
in Table B.2.

Scale factor 20
Sea state  Hpo [cm| T, [s] d [cm)]

1 3.13 0.92 72.0
5.38 1.27 72.0
6.41 1.05 72.0
9.71 1.36 72.0
14.54 1.58 72.0

T W N

Table B.2. Sea states scaled accordingly to the scale factors.

The scaled setup in the wave flume is shown in Figure B.2.
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Figure B.2. Flume including the model. All measurements are in mm.

B.3 Calibration of the waves generated in the flume

The wave environment in the flume is examined to ensure that the generated waves are
equal to the scaled representative sea states determined in Table B.2. This is ensured
by measuring the waves with the wave gauges and correcting the generated waves. Wave
gauge 3 is used to match the represented sea state due to it is placed where the model is
placed after the calibration is done. Wave gauge 2 and wave gauge 3 are shown in Figure
B.3.

Figure B.3. Wave gauge 2 and wave gauge 3 in the flume.

The waves are calibrated by considering the surface elevation at wave gauge 3. The
calibration is performed by generating waves with different heights until the generated
wave height is acceptable close enough to the represented wave height for the sea state.
The wave period is also checked but the generated period matched the period from the
scaled sea state. There is a wait of five minutes between the generated waves to ensure
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well as the final attempt.

that the water in the flume is still. The process of calibrating the wave height can be seen
in Figure B.4, where the first attempt at generating the correct wave height is shown as

Target Final
0.05 / }‘} | /A‘ — First attempt |
0.04r [/} [ /
{ IIII'|I I,'I I|II'.I I-'I I||I'.I
0.03 +// I\ .’/ \ {ﬂ/ \
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Figure B.4. Comparison of first attempt and final for the correct wave height for sea state 4
with scale 1:20 in the interval for the first 3 fully developed waves.

Table B.3 shows the scaled represented sea states and the calibrated wave heights and wave
periods. The depth is the same for the scaled sea states as for the calibrated sea states.

The wave heights are determined as an average of the first three fully developed waves at
scaled sea state.

wave gauge 3. In Table B.3 it can be seen that the calibrated wave height matched the

Sea state scaled 1:20 Calibrated sea state
Sea state [‘] Hpo [Cm] Tp [S] d H qtivrated [Cm] Teatibrated [S]
1 3.13 092 72.0 3.06 0.923
2 5.38 1.27  72.0 5.35 1.277
3 6.41 1.05 72.0 6.35 1.050
4 9.71 1.36 72.0 9.71 1.360

5 14.54 1.58 72.0 15.60

1.585
Table B.3. The calibrated sea state for the models scaled 1:20.
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B.3.1 Alignment

In order to compare two tests of the same generated wave, it is necessary to be able to align
the waves. The alignment is performed by measuring the wave heights from the calibrated
sea states and using the surface elevation at wave gauge 1 as a baseline. The next time the
same calibrated sea state is carried out, the waves are aligned using wave gauge 1. The
assumption is that the same wave must be generated every time for a sea state and the
surface elevation must then be the same at wave gauge 1. The wave period can deviate
due to a small change in water depth. The raw data is aligned with the calibrated sea
state which is shown in Figure B.5. The data shown is the surface elevation measured at
wave gauge 1 for the calibrated sea state and a test with the same generated waves.
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Figure B.5. Alignment of data to wave gauge 1.

Furthermore, the alignment of the data is also shown in Figure B.6, where the first waves

are zoomed in.
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Aalborg University
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Figure B.6. Alignment of data to wave gauge 1 zoomed in at the first waves.
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B.4 Comparison of force transducer setups

The interest in conducting experiments on inclined floater models necessitates the
measurement of both horizontal and vertical wave excitation forces. This makes the
commonly used bending beam force transducer impractical since it would be necessary
to conduct all experiments twice, first measuring the horizontal force and then the vertical
force. Therefore, a different experimental setup with a 6-axis force transducer is considered.
The 6-axis force transducer measures forces and moments in three dimensions making it
possible to measure all necessary forces in one experiment. Therefore, the purpose of this
comparison is to validate the usage of the 6-axis force transducer.

Before the 6-axis force transducer is used in the main experiments on the floater model,
it is compared to the bending beam force transducer, and analytical solution which is
determined using the Morison equation. This is done using the cylindrical model shown in
Figure B.7. This model is used since it complies with the assumptions used in Morison’s
equation, which are shown in section 2.2 on page 9. The long cylinder prevents overtopping
and the cylinder extends almost to the bottom which ensures that the main flow is around
the body of the model. The model can be seen in Figure B.7. The model is lifted 2 mm
above the bottom of the flume to ensure that the long cylinder model is not supported
on both ends. The setups for the model will be estimated to behave as a fixed cantilever
beam.

100

670

483

—Q

Figure B.7. Long cylinder model with intended SWL. All measurements are in mm.

B.4.1 Setups

Both experimental setups used the aforementioned cylindrical model, which was placed in
the same place in the wave flume. The setups are shown in Figure B.8 and B.9.
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Figure B.8. Setup with the bending beam  Figure B.9. Setup with the 6-axis force
force transducer. transducer.

In the following further explanation of the two setups is given.

Setup 1 (Bending beam force transducer)

The bending beam force transducer consists of an aluminium beam with two full
Wheatstone bridges placed at the slender parts of the beam. The full Wheatstone bridges
measure the moments about y, M1 at the lower bridge, and M2 at the upper bridge. The
moment is measured by having strain gauges placed at M1 and M2. The thickness of the
beam at the position of the bridges is 15 mm and the distance between the bridges is 150
mm. The bending beam force transducer is shown in Figure B.10.

Figure B.10. Bending beam force transducer marked with M1 and M2.

The moments M1 and M2 are calculated with a linear calibration function found by
calibrating the force transducer using weights and varying the arm. This calibration is
performed by knowing the moments at M1 and M2 and then measuring the moments and
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adjusting the range. This calibration is shown in Figure B.11. Afterwards, the resulting

horizontal force and its corresponding attack point are calculated from the moments.

Figure B.11. Calibration of the bending beam force transducer.

Setup 2 (6-axis force transducer)

The 6-axis force transducer is an ATI Industrial Automation Gamma IP68 force transducer
which can measure forces and moments in three dimensions. The measurement range is
65 N for F,, 200 N for F,, and 5 Nm for the moments. The force transducer is shown in
Figure B.12.

Figure B.12. 6-axis force transducer with 50 g weight placed on top.

A calibration matrix is provided for the 6-axis force transducer. Therefore, a calibration
test is not performed. However, to examine the accuracy of the force transducer a similar
test with weights and different arms is performed.
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Seven weights ranging from 0.1 kg to 1.5 kg are placed at different arms and the forces
and moments are measured, of particular interest are the force F}, and the moment M,.
In Figure B.13 and B.14 two examples from this test are shown.

_ , I B A 8 X Y,
Figure B.13. Test with 100 g weight placed  Figure B.14. Test with 200 g weight placed
with an arm of 33 cm. with an arm of 25 cm.

Since both the weight and the arm of the weight are known it is possible to calculate the
theoretical values for F,, and M,. Afterwards, the percent error is calculated. The average
percent error for Fy is 1.63 %, after removal of two outliers this is reduced to 1.43 %.

The average percent error for M, on the other hand is 35.0 %, which is unacceptably high.
The error is much larger for the measurements with short arms, which can be caused by
larger uncertainty regarding the measurement of the arms. If the measurements for the
two shortest arms are removed the average percent error is reduced to 11.4 % which is still
too high.

There is a trend that the measurements of M, are consistently higher than the theoretical
values. This could indicate that the measurement point of origin is not placed where it is
indicated in the manual. By calculating the arm from the measurements for F, and M, it
is found that the arm measured by the force transducer is on average 2.65 cm longer than
the arm of the weight.

The measurement point of origin for the 6-axis force transducer is thus corrected with 2.65
cm as shown in figure B.15.
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, Corrected point ¢f origin

26.5

Original point of|origin

Figure B.15. The manuals and measured point of origin. Measurement in mm.

After this correction, the percent error for the measurements of M, is reduced to 2.0 %.
If the measurements from the two shortest arms are again removed the percent error is
reduced to 0.6 %.

Because of this, it is chosen to correct the measurement point of origin for the 6-axis force
transducer by moving it 2.65 cm further into the force transducer, as illustrated in Figure
B.15. This correction is used in all following data analyses and the experiment on a fixed
floater model.

B.4.2 Dynamic amplification

To investigate the influence of dynamic amplification on the setups the modal parameters
are determined. This is done by subjecting the model to an impulse load by pulling on
a string around the model and then letting go, as illustrated in Figure B.16. This results
in a force decay time series, shown in Figure B.17, which is used to determine the modal

parameters.

b

05 1 15 2 25 3 35 4 45 5
Time [s]

Figure B.16. Method used for subjecting the  Figure B.17. Force decay time series for setup
model to an impulse load. 1.

The eigenfrequencies of the cylinder are shown in Table B.4. The eigenfrequency is
investigated for both the 6-axis force transducer and the bending beam force transducer.
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The result shows that the 6-axis force transducer is significantly stiffer than the bending
beam force transducer.

Measurement 6 axis force transducer [Hz] Bending beam force transducer [Hz]
1 9.28 6.26
2 9.27 6.24
3 9.27 6.24
4 9.25 6.25
5 9.24 6.25
Average 9.27 6.25
Standard deviation 0.016 0.006
Variance 2.84-107* 0.39-10~*

Table B.4. Eigenfrequency measurements of the long cylinder.

The modal parameters, undamped eigenfrequency, f., and damping ratio, {, are calculated
with the program WaveLab 3.87 and are shown in Table B.5.

Setup fe [Hz| (-]  Bessi %] Besss | %]

1 6.25  0.010 4.90 1.49
2 9.27  0.011 0.95 0.65

Table B.5. Modal parameters for the two setups.

The data is filtered using a dynamic amplification filter to remove the effects of dynamic
amplification. A low-pass cut-off frequency of 5 Hz is used. Furthermore, an analogue
low-pass filter with a cut-off frequency of 8 Hz was used in the experiments with the 6-axis
force transducer.

The effect of filtering the data is assessed by calculating the standard deviation of the

difference between the unfiltered data and the filtered data as shown in equation (B.1).

Std(F%UF — Fz,F)
Std(F%F)

60 = (B'l)

This is calculated for a single wave in the force-time series for sea state 1 and sea state 5.
The results are shown in Table B.5. These sea states are chosen since the effect of filtering
is largest for sea state 1 and smallest for sea state 5. The effect of filtering the data is
shown in Figure B.18 and B.19 for sea states 1 and 5 respectively.

107



B. Experimental investigation of forces on fixed floaters

2 | 1
1 == 1 ///f;/
— 1 // 1 P
Z V7 | >
=0 v |/
= /»’"‘/T ///'r
) I : | | L L .
23.8 24 24.2 24.4 24.6 24.8 25
t[s]
1.6
I
—1.4 T e
2 T
F, S
1.2 =
1 | |
24.2 24.25
t[s]
Setup 1 (Unfiltered) Setup 1 (Filtered)
----Setup 2 (Unfiltered) —— Setup 2 (Filtered)
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Figure B.19. Effect of filtering on force time series in sea state 5.

As it can be seen in Table B.5 and in the Figures, the effect from filtering, and therefore also
dynamic amplification, is largest for setup 1. This is likely because of the lower stiffness
of this setup.

B.4.3 Comparison of measurements

To compare the measurements from the two setups, the time series of the force and moment
are compared. Firstly a window of the time series is chosen from the surface elevation time
series at the model. The chosen window is the first three fully developed waves to minimise
the risk of disturbances from reflected waves. The chosen time window is shown in Figure
B.20 for sea state 5. In this section sea state 5 is used as an example. The same procedure

is performed for the other sea states.
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Figure B.20. Selection of time window for sea state 5.

Afterwards, cross-correlation is used to align the force and moment time series with the
surface elevation time series measured at the position of the model. The force and moment
time series for the two setups are means of the 5 tests that are performed. In Figure B.21,
the force and moment time series for the setups are shown along with the surface elevation

at the model. Furthermore, a surface elevation calculated with stream function theory
(SFT) is shown. This surface elevation is used to calculate the force and moment with the
Morison equation. The moments shown in Figure B.21 are at the bottom.
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Figure B.21. Force time series and time series for the moment at the bottom shown for sea state
5.

In the Figure, it can be seen that in general there is good agreement between the
measurements from setup 1, setup 2 and the results from the Morison equation. However,
at the extreme values, there are noticeable differences, particularly for the moment.
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These differences in extreme values can also be seen in Figure B.22 where the moment and
force are shown.

3 s
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~ Setup 2
ol Morison equation (SFT, CD =0.9, CM =2.0)
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Figure B.22. Moment and force comparison.

It can be seen that the largest differences are at the minimal force and minimal moment
where the Morison equation underestimates both the force and the moment.

It is also of interest to calculate the attack point of the force. The attack point is calculated
from the bottom. The attack point and force are shown in Figure B.23.
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Morison equation
(SFT, C,=0.9, C, =2.0)
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Figure B.23. Attack point and force comparison.

In the Figure, it can be seen that there is good agreement, particularly between setup 1
and the results from the Morison equation when it comes to the position of the attack
point. However, setup 2 measures an attack point that is placed lower on the model.

110



B.4. Comparison of force transducer setups Aalborg University

This matches with the calibration of the measurement point of origin of the 6-axis force
transducer, which was estimated.

To further compare the results from the two setups and the Morison equation, the
maximum force, F 4z, is calculated as a mean of the forces from the three first fully
developed waves, shown in Figure B.21. In the same way the minimum force, Fj yin,
maximum moment, M., and minimum moment, M,,;,, is calculated. Furthermore, the
attack point for both the largest and smallest values of F, are determined. This is done
for all sea states. The results are shown in Table B.6.

Sea Fromaz  Femin Mmaz Mmin AP (Pos. F) AP (Neg. Fy)
state [N] [N] [Nm|  [Nm)] [cm] [cm]
Setup 1 1.61 -1.63 0.57  -0.57 35.9 35.6
1 Setup 2 1.62 -1.63 0.56  -0.56 34.5 34.0
Morison eq. 1.58 -1.58 0.56  -0.56 35.2 35.2
Setup 1 2.79 -2.92 0.84 -0.90 29.6 31.6
2 Setup 2 2.68 -2.84 0.77  -0.82 28.5 29.6
Morison eq.  2.66 -2.66 0.79 -0.79 29.5 29.5
Setup 1 3.37 -3.47 1.12  -1.16 33.0 33.1
3  Setup 2 3.29 3.42 1.05  -1.09 324 31.8
Morison eq.  3.20 -3.19 1.05 -1.04 32.6 32.6
Setup 1 4.71 -5.04 1.36  -1.55 29.3 30.2
4 Setup 2 4.60 -4.90 .31 -1.41 28.4 29.1
Morison eq.  4.57 -4.56 1.33  -1.32 28.9 28.8
Setup 1 6.51 -7.21 1.78  -2.16 27.3 29.5
5  Setup 2 6.40 -6.99 1.80 -1.96 27.8 28.4
Morison eq.  6.33 -6.24 1.81 -1.74 28.2 27.6

Table B.6. Results from the two setups and the Morison equation.

In the Table, it can be seen that setup 1 consistently measures the largest forces whereas
the Morison equation generally results in the smallest forces. For the measured forces from
the two setups, it can also be observed that the absolute values of the negative forces are
larger than the positive forces. It should also be noted that the measurements from setup
2 consistently result in a lower AP.

The relative deviations, §, between the results are calculated regarding the minimum
absolute value. The relative deviations are shown in Table B.7.
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Sea 5Fac,maac 6Fr,mzn (5Mmaw 6Mmzn 5AP (POS' Fib) 5AP (Neg Fl’)
state %] %] %] %] %] [%]
Setup 1 2.34 3.28 2.14 3.05 4.24 4.72
1 Setup 2 2.89 3.67 0.00 0.13 0.00 0.00
Morison eq. 0.00 0.00 0.00 0.00 2.14 3.56
Setup 1 4.65 9.66 9.23 14.06 4.01 7.16
2 Setup 2 0.55 6.67 0.00 4.74 0.00 0.29
Morison eq. 0.00 0.00 2.90 0.00 3.66 0.00
Setup 1 5.46 8.79 6.83 11.77 2.07 4.24
3 Setup 2 2.87 6.98 0.75 4.33 0.00 0.00
Morison eq. 0.00 0.00 0.00 0.00 0.80 2.67
Setup 1 3.01 10.49 3.57 17.30 2.97 4.81
4 Setup 2 0.60 7.38 0.00 6.71 0.00 0.98
Morison eq. 0.00 0.00 1.60 0.00 1.85 0.00
Setup 1 2.83 15.46 0.00 24.35 0.00 6.85
5 Setup 2 1.16 11.93 1.09 12.51 1.82 2.73
Morison eq. 0.00 0.00 1.75 0.00 3.31 0.00

Table B.7. Relative deviations between setups and the Morison equation calculated with reference
to the minimum absolute value.

From the relative deviations it can be seen that there is generally a good agreement between
the results. However, for Fj :n, and M,y there is a significant difference between the
measured values, particularly from setup 1, and the results from the Morison equation.
This difference seems to increase with increasing wave heights. It is possibly caused by a
return current in the wave flume which the Morison equation does not take into account.

B.4.4 Conclusion

After performing an examination to test the agreement between two force transducer setups
and analytical results from the Morison equation, it is found that the overall agreement
between results from the three methods is good. The best agreement is found when

comparing the values measured by the two setups.

By comparing the dynamic amplification of the two setups it is found that setup 1 results
in the most dynamic amplification. Therefore, the effect of using a dynamic amplification
filter affects the measurements from setup 1 more than setup 2, where little dynamic

amplification is experienced.

Based on tests of setup 2 with weights placed with different arms it is determined that the
accuracy of setup 2 is satisfactory after a correction of the measurement point of origin is
made.

Based on the above and the advantage of being able to measure forces and moments in
three directions when using setup 2, it is chosen to use setup 2 to determine the wave
forces on the floater, which is done in Chapter 5 on page 27.
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B.5 Experiment procedure

When the setup is done, including the wage gauges and the structure that is fixing the
6-axis force transducer, the procedure for each test can go through. The angles that are
tested are based on the different shapes. The cylinder is tested in 0°, £10°, £20° and
+40° which ensures that the extreme angles are covered.

The floater model, which is represented by a sphere is only tested in 0° since an angle
change of the sphere will not change the geometry towards the wave and only slightly
change the submerged volume which is assumed will only change the forces slightly and
will therefore not be investigated. The disc and the cone are tested in 0°, +20°, £30° and
4+40°. This is due to the geometry of the floater models being of odd shapes which is more
unpredictable and therefore more time is spent getting data for several angles.

The procedure for testing a floater model is first of all setting the floater model at the
correct angle. This is done by raising the structure out of the water to set the angle with
the least error possible. The angle is measured using a digital protractor. The digital
protractor in use can be seen in figure B.24 and B.25. The digital protractor is set to the
side of the disc in this example where it is then possible to measure the angle. The angle
should be 30° in the example in the figures. The measured angle is the opposite angle,
which means that the angle measured is 60°. The accuracy of the angle was within 0.1°

according to the digital protractor.

E "’::L__‘; A -

Figure B.2j. Setting up a -30° for the disc. Figure B.25. The final angle of the disc at
-30° shown with the digital protrator.

The structure with the floater model is then lowered to the correct height which depends
on the angle. An eigenfrequency test is then made on the floater model. The procedure
for this is described in the following section. Afterwards, the floater model is ready for

impacting waves, which the 6-axis force transducer measures.

B.6 Eigenfrequency

As the eigenfrequencies for the two different force transducers are investigated, the
eigenfrequencies for the different floater models are investigated. The system includes a
floater model, the 6-axis force transducer, and the structure the force transducer is clamped
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onto. The eigenfrequencies for the systems with different floater models are presented in
this section. The eigenfrequencies are determined by subjecting the floater model end
to an impulse load and measuring the force decay over time. The eigenfrequencies are
determined by WaveLab version 3.884. There is performed 5 measurements for each
structure in order to have an accurate sample of measurements. The eigenfrequencies
for the floater models are determined in the angles the floater models are subjected to, but
due to a low difference of the eigenfrequency with the angle, the eigenfrequencies are only
shown for 0°. An example of an eigenfrequency test is shown in Figure B.26. The impulse
load is subjected by using a string and then releasing it.

Figure B.26. Eigenfrequency test of the cone in -20°.

The eigenfrequencies for the floater models are shown in Table B.8. The table shows the
five measurements, the average, the standard deviation, and the variance. As it can be
seen the variance is low which ensures that the eigenfrequency of the system is regular.

Model Cylindrical [Hz] Spherical [Hz] Conical [Hz] Disc-shaped [Hz]

1 6.10 10.09 6.07 11.67

2 6.10 9.96 6.07 11.21

3 6.10 10.02 6.09 10.97

4 6.10 10.03 6.05 11.66

) 6.10 9.91 6.09 11.64

Average 6.10 10.00 6.07 11.43
Standard deviation 0.002 0.069 0.016 0.322
Variance 2.30-107° 4.75:1073 2.69-10~* 0.104

Table B.8. Eigenfrequencies measurements of the floater models at 0°.
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B.7 Added mass coefficients

The added mass coefficients calculated by Method 1 with the fitted coefficient for the
disc-shaped, conical, and spherical floater models are shown in Figure B.9, B.10, and B.11.

Sea state | -40

-30

-20

Angle [°]
0

20

30

40

1

U= W N

0.20
0.41
0.03
0.17
0.00

0.00
0.09
0.00
0.15
0.09

0.00
0.10
0.03
0.25
0.19

0.49
0.53
0.49
0.48
0.32

0.51
0.05
0.40
0.08
0.00

0.75
0.15
0.31
0.00
0.00

1.44
0.62
0.70
0.00
0.00

Table B.9. Added mass coefficients for the disc-shaped floater model.

Table B.10. Added mass coefficients for the conical floater model.

Table B.11. Added mass coefficients for the spherical floater model.

Sea state

-30

-20

Angle [°]
0

20

30

1

Ot = W N

0.37
0.77
0.56
0.74
0.54

0.39
0.65
0.59
0.68
0.49

0.87
0.82
0.80
0.75
0.47

1.02
0.69
0.79
0.48
0.17

1.30
0.78
0.94
0.50
0.13

Sea state

Angle [°]
0

1

QU = W N

0.89
0.78
0.80
0.65
0.36
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Motions of floater models

In this chapter, the additional experiments, calibrations and inputs to numerical models
for the motions of the floaters are described.

C.1 Calibration of Qualisys Track Manager

For the QTM to be able to track the markers accurately the cameras have to be calibrated
properly. The calibration must be done before doing the first test of the day. The type
of calibration method used is an active calibration called the wand calibration method.
[Qualisys, 2020]

The calibration used an L-shaped reference structure and a 300 mm carbon wand from the
Qualisys carbon fiber wand kit. The L-shaped reference structure is an L-frame with four
reflective markers on top positioned in a known accurate position. The 300 mm carbon
wand is a wand with two reflective markers positioned with exactly 300.9 mm between
them.

Using the L-shaped reference structure gen-
erates a coordinate system that QTM can
track. The L-shaped reference structure
must be aligned with the expected coordi-
nate system of the setup. To make sure the
L-shaped reference structure was placed
in the same location every time a stand
was created to align the L-shaped refer-
ence structure with the hinge for the floater
model. The stand can be seen in Figure
C.1. The stand has a small slit that the L-
shaped reference structure fits on to align it
the same way each time. The L-shaped ref-
erence structure has two small levels that
are checked before each calibration to en-
sure the L-shaped reference structure is
level. The base of the stand is aligned with
the hinge of the floater model by placing it

next to the steel plate of the hinge.

The calibration wand shown in Figure C.2 . .
Figure C.1. Stand for placing L-shaped

is used to calibrate the volume in which
reference structure

QTM accurately measure the 3D position
of the markers, by inputting the exact
distance between the two markers in QTM. For an accurate calibration, the wand must be
moved in the entire volume expected to be used for measurements. Therefore the wand
is moved in the volume of the cylinder’s expected motions. The calibration was done for
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40 seconds to ensure coverage of the entire volume.

Figure C.2. Qualisys 300 mm Calibration wand

C.2 Activation of other degrees of freedom

During the experiments on moving floaters the rotation should ideally only be in in one
direction (1-DoF-system). Therefore it is examined whether other DoF are activated during
the experiment.

In Figure C.3 the roll and yaw directions are shown for the cylindrical floater model in sea
state 1 as an example.

—Roll
ok —Yaw
1,

> .
-1
2k
| | | | 1 L
23 23.5 24 24.5 25 25.5

Time [s]

Figure C.3. Plot showing the rotations in the roll and yaw direction for the cylinder in sea state
1 test 1.

As it can be seen in the figure the movements in the other DoF are minimal. This is also
examined for the other floater models and sea states and it is concluded that the influence
of other DoF is negligible and therefore, it can be considered as a 1-DoF system.
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C.3 Experimental determination of mass moment of inertia

In this section the experiment performed to determine the mass moment of inertia of the
floaters is described.

The mass moment of inertia describes the resistance of an object against angular
acceleration around a rotational axis. Therefore, it is necessary to know the mass moment

of inertia to describe the motions of the floaters.

To determine the mass moment of inertia of a floater it is suspended at the end of a piece
of string to act like a physical pendulum. To allow for easier measurement of the period of
oscillation a long string is used. A picture from the experiment is shown in Figure C.5 and
a sketch of the experimental setup is shown in Figure C.4 where CM indicates the center
of mass.

=l

CM o

Figure C.4. Sketch of the pendulum experi- Figure C.5. Picture from the pendulum
ment. experiment.

The pendulum is held at an angle and then released to oscillate freely. The oscillation of
the pendulum is recorded with a camera filming at 240 frames per second.

After the experiment the recorded videos are analysed frame-by-frame to determine the
period of the pendulum. The period is determined as the average of several oscillations.

The theoretical period of a physical pendulum is given by Equation (C.1).

(C.1)

Where:
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Period [s]
Mass moment of inertia [m - kg

T

I ]
m | Mass of floater model |kg]

9

l

Gravitational acceleration [m/s?|
Distance from centre of mass to point of rotation |[m]

Therefore, the mass moment of inertia can be determined by solving for I in Equation
(C.2). The mass moment of inertia is given by Equation (C.2).

T? - m-g-1

I =
472

(C.2)

The measured average period can then be used to determine /. However, the mass moment
of inertia determined from the experiment is around the point of rotation used in the
experiment and not around the hinge, which is the actual point of rotation for the floater.
Therefore, the parallel-axis theorem is used to correct the mass moment of inertia and
determine the moment of inertia around the hinge. The parallel-axis theorem can be used
to find the mass moment of inertia around any axis parallel to the first axis if the distance
between the axes, d, is known. The parallel-axis theorem is shown in Equation (C.3).

[Wolfson, 2016|
I=1Icy+m-d? (C.3)

Where:

Icn | Mass moment of inertia around centre of mass [m - kg?|
d Distance between axes [m)]

In Table C.1 the results for the mass moment of inertia around the hinge for the different

floater models are shown.

Floater model I around hinge [kg - m?|

Cylindrical 4.05-1071
Disc-shaped 3.35-1071
Conical 3.90-1071
Spherical 3.34-1071

Table C.1. Mass moment of inertia around the hinge for the floater models.
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C.4 Experimental determination of hydrodynamic damping

In this section the method used to determine the damping coefficients using decay tests is
described. Experimental damping coefficients are used in the third numerical model NM3.

The hydrodynamic damping coefficient is determined with the method of extinction
coefficients as described by Himeno [1981]|. The method is described using the cylindrical
floater model. Afterwards the results for the other floater models are shown. The damping

coefficient is determined using data from the decay tests performed on the floater models.

This is done by fitting a third order polynomial to the measured values of the decrease
in amplitude per half cycle, Af,. The mean amplitude is given as 6, = w and the
decrease in amplitude per half cycle is given as A6, = 0,1 — 0,,. A half cycle is from
trough to peak or vice versa as illustrated in Figure C.6.

20 -

0, —Measurement
+ Peaks
+ Troughs

Half cycle

1
e e e e il e

-30 \ \ I I 1 I I I |
0 1 2 3 4 5] 6 7 8 9

Time [s]

Figure C.6. Decay time series with half cycle shown.

A0, can be expressed as a third order polynomial which depends on the extinction
coefficients a, b and ¢, as shown in Equation (C.4).

Ag=a 0, +b-0:+c-0; (C.4)

The extinction coefficients are found using a cubic fit which is forced through the origin.
This cubic fit is shown along with measured A, in Figure C.7. The measured values are

from five decay tests performed on the floater model.
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14 -
o Measurements
—Cubic fit

Ay=a-0,+b-0>+c-03

107 4 — 0.346,b = —0.032, ¢ = 0.002
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Figure C.7. Cubic fit to determine extinction coefficients and resulting fit for ¢y, ..

After finding the extinction coefficients a linear equivalent damping coefficient, ¢, ¢, can

be determined from Equation (C.5).

T Che _ : .02
oy =a+b-0,+c-0; (C.5)

The linear equivalent damping coefficient is shown in Figure C.8.
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Figure C.8. Cubic fit for linear equivalent damping, cj, ., determined from extinction coefficients.

The damping coefficient, ¢y, is then determined from cp ¢ as ¢p, = cpe - (I +mp).
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The linear equivalent damping coeflficient for the other floater geometries are determined

using the same method as described for the cylindrical floater model. The results for the

three

other floaters are shown in the following sections.

C.4.1 Disc-shaped floater model

In Figure C.9 the cubic fit for the disc-shaped floater model is shown along with measured

values of A4,

45

40

35

30

o Measurements
- —Cubic fit
Ay=a-0,+b-0?+c- 6
" a=0.170,b = —0.027,c = 0.003
o_an | | 1 |
0 5 10 15 20 25

0a[°]

Figure C.9. Cubic fit to determine extinction coefficients and resulting fit for ¢y, ..

The linear equivalent damping coeflicient for the disc-shaped floater model is shown in
Figure C.10.

5,
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w
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c/l,.c[
N
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Figure C.10. Cubic fit for linear equivalent damping, cp., determined from extinction
coefficients.
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C.4.2 Conical floater model

In Figure C.11 the cubic fit for the conical floater model is shown along with measured

values of Ad,

25
o Measurements
—Cubic fit
20+
15+
il Aby=a-0,+b-0%+c- 0

=10 4 —0.127,6 = —0.009, ¢ = 0.001

5
0 o
o
=5 | L |
0 5 10 15 20 25
0a[°]

Figure C.11. Cubic fit to determine extinction coefficients and resulting fit for ¢y, ..

The linear equivalent damping coefficient for the conical floater model is shown in Figure

C.12.
2.5~
o Measurements
—Cubic fit

2

1 1.5
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0.5

0 L | |
0 5 10 15 20 25
0a[°]

Figure C.12. Cubic fit for linear equivalent damping, cp., determined from extinction

coefficients.
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C.4.3 Spherical floater model

In Figure C.13 the cubic fit for the spherical floater model is shown along with measured
values of Ad,
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o Measurements
—Cubic fit
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Figure C.13. Cubic fit to determine extinction coefficients and resulting fit for ¢y, ..

The linear equivalent damping coeflicient for the spherical floater model is shown in Figure

C.14.
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Figure C.14. Cubic fit for linear equivalent damping, cj., determined from extinction
coeflicients.
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C.5 NEMOH inputs to numerical models

The numerical models NM2 and NMS3 both use results from the BEM-code NEMOH.
These results are presented in the following sections.

C.5.1 Convergence study on cylindrical floater model

As an initial step in the NEMOH calculations, a convergence study is performed on the
cylindrical floater model at an angle of § = 0°. This is done in order to determine the
number of panels in the mesh that is necessary to achieve a sufficient level of accuracy.
The convergency is obtained by investigating for an estimated needed amount of panels
and almost twice as many. It is estimated that the needed amount of panels was 743.
The following figures show the outputs from NEMOH for both calculations with different
amounts of panels. In Figure C.15, a comparison between the added mass coefficients for

the two calculations is shown.
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Figure C.15. Convergency study for the added mass coefficient, C4.

As can be seen, the added mass coeflicients are approximately the same for both
calculations, which means that convergence is obtained for the added mass coefficient.

The damping coeflicients for surge, heave, and pitch are converged as well with 743 panels

which is shown in Figure C.16.
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Figure C.16. Convergency study for the damping coefficient, ¢;,.

As it can be seen in the figure the normalised surge force and corresponding phase are
converged. The phase slightly deviates for small wave frequencies and the normalised
force slightly deviates for higher wave frequencies, which can be seen in Figure C.17. The
deviations are assumed to be negligible.
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Figure C.17. Convergency study for surge.

The convergency study for the normalised heave and corresponding phase are shown
in Figure C.18. As shown the heave deviates for smaller wave frequencies for the two
calculations.
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Figure C.18. Convergency study for heave.

The normalised pitch and corresponding phase are converged for the calculation with 743
panels which is shown in Figure C.19.
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Figure C.19. Convergency study for pitch.

Overall it is determined that 743 panels are enough to achieve convergence for the
cylindrical floater model at an angle of 0°. Therefore, it is ensured that the meshes
for the different angles and other floater models have the same or a finer mesh than the
one for the cylindrical floater model at 0°.
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C.5.2 Cylindrical floater model

In this section, the NEMOH results for the cylindrical floater model are shown.

In Table C.2 the number of panels used in the meshes for the cylindrical floater is shown.

Angular position 6 [°] -40 -30 -20 -15 -10 -5 0 S 10 15 20 30 40

No. of panels || 908 895 836 902 801 856 743 855 801 902 838 896 908

Table C.2. No. of panels in the meshes used for the NEMOH calculations for the cylindrical
floater model.

In the following sections the NEMOH results for added mass, damping, and wave excitation
moment for the cylindrical floater model are shown.

Added mass

In Figure C.20, the normalised added mass for the cylindrical floater model is shown.
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Figure C.20. Normalised added mass at 6 from -40° to 40° for the cylindrical floater.
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C. Motions of floater models

Damping

In Figure C.21 the damping coefficients for the cylindrical floater model for the different
angular positions are shown.
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Figure C.21. Damping coefficients at 6 from -40° to 40° for the cylindrical floater.

Wave excitation forces

In Figure C.22 the normalised moment is shown for the different angular positions.
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Figure C.22. Normalised wave excitation moment at 6 from -40° to 40° for the cylindrical floater.
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C.5.3 Disc-shaped floater model

In this section the NEMOH results for the disc-shaped floater model are shown.

In Table C.3 the number of panels used in the meshes for the disc-shaped floater are shown.

Angular position 6 [°] -40 -30 -20 -10 0 10 20 30 40
No. of panels [-| 1564 1495 1181 1016 953 1016 1181 1495 1564

Table C.3. No. of panels in the meshes used for the NEMOH calculations for the disc-shaped
floater model.

In the following sections the NEMOH results for added mass, damping and wave excitation
moment for the disc-shaped floater model are shown.

Added mass

In Figure C.23 the normalised added mass for the disc-shaped floater model is shown.
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Figure C.23. Normalised added mass at 6 from -40° to 40° for the disc-shaped floater.
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C. Motions of floater models

Damping

In Figure C.24 the damping coefficients for the disc-shaped floater model for the different
angular positions are shown.
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Figure C.24. Damping coefficients at 6 from -40° to 40° for the disc-shaped floater model.

Wave excitation forces

In Figure C.25 the normalised moment is shown for the different angular positions.
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Figure C.25. Normalised wave excitation moment at 6 from -40° to 40° for the disc-shaped
floater model.
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C.5.4 Conical floater model

In this section the NEMOH results for the conical floater model are shown.

In Table C.4 the number of panels used in the meshes for the conical floater are shown.

Angular position 6 [°] 40 -30 -20 -10 O 10 20 30 40
No. of panels [-] 1464 1329 1338 973 855 973 1338 1331 1464

Table C.4. No. of panels in the meshes used for the NEMOH calculations for the conical floater
model.

In the following sections the NEMOH results for added mass, damping and wave excitation
moment for the conical floater model are shown.

Added mass

In Figure C.26 the normalised added mass for the conical floater model is shown.

1.1

‘—e—N ormalised my,

1.05+

0.85

0.8 1 | | | | | | J
-40 -30 -20 -10 0 10 20 30 40

0[]

Figure C.26. Normalised added mass at 6 from -40° to 40° for the conical floater.
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Damping

In Figure C.27 the damping coefficients for the conical floater model for the different
angular positions are shown.
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Figure C.27. Damping coefficients at 6 from -40° to 40° for the conical floater model.

Wave excitation forces

In Figure C.28 the normalised moment is shown for the different angular positions.
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Figure C.28. Normalised wave excitation moment at 6 from -40° to 40° for the conical floater
model.
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C.5.5 Spherical floater model

In this section the NEMOH results for the spherical floater model are shown.

In Table C.5 the number of panels used in the meshes for the spherical floater are shown.

Angular position 6 [°]  -20  -10 0 10 20
No. of panels |- 1550 1395 1218 1392 1546

Table C.5. No. of panels in the meshes used for the NEMOH calculations for the spherical floater
model.

In the following sections the NEMOH results for added mass, damping and wave excitation
moment for the spherical floater model are shown.

Added mass

In Figure C.29 the normalised added mass for the spherical floater model is shown.
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Figure C.29. Normalised added mass at 6 from -20° to 20° for the spherical floater.
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Damping

In Figure C.30 the damping coefficients for the spherical floater model for the different
angular positions are shown.
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Figure C.30. Damping coefficients at 6 from -20° to 20° for the spherical floater model.

Wave excitation forces

In Figure C.31 the normalised moment is shown for the different angular positions.
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Figure C.31. Normalised wave excitation moment at  from -20° to 20° for the spherical floater
model.
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C.6 Results for wave excitation tests

In the following section, the results for the wave excitation tests on all floater models are
shown.

C.6.1 Cylindrical floater model
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Figure C.32. Comparison of results from numerical models and measured results for sea state 1.
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Figure C.33. Comparison of results from numerical models and measured results for sea state 2.
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Figure C.34. Comparison of results from numerical models and measured results for sea state 3.
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Figure C.35. Comparison of results from numerical models and measured results for sea state 4.
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Figure C.36. Comparison of results from numerical models and measured results for sea state 5.
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C.6.2 Disc-shaped floater model
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Figure C.37. Comparison of results from numerical models and measured results for the disc-

shaped floater in sea state 1.
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Figure C.38. Comparison of results from numerical models and measured results for the disc-

shaped floater in sea state 2.
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Figure C.39. Comparison of results from numerical models and measured results for the disc-
shaped floater in sea state 3.

30 -10.06
0.04

0.02

(@)
7 [m]

-0.02

N -0.04

-30 | | | | 1 | L | -0.06
18 18.5 19 19.5 20 20.5 21 21.5

Time [s]

——Mean of measurements ---NMI (Cp = 1.0) -—--NM3 (Cp = 1.0, my, - 0.55) - --n (SFT)
——95% CI on sample mean — NM2 (Cp = 1.0) —n measured

Figure C.40. Comparison of results from numerical models and measured results for the disc-
shaped floater in sea state 4.
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Figure C.41. Comparison of results from numerical models and measured results for the disc-
shaped floater in sea state 5.
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Aalborg University

C.6.3 Conical floater model
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Figure C.42. Comparison of results from numerical models and measured results for the conical

floater in sea state 1.
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Figure C.43. Comparison of results from numerical models and measured results for the conical

floater in sea state 2.
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Figure C.44. Comparison of results from numerical models and measured results for the conical

floater in sea state 3.

30 - 0.06
20 - 0.04
10 - , 7\ \\ A \\ 0.02
E O _\\ /I \\ / // \\ O é‘
> \\ 7 \\ / \\ I~
-101 [ - -0.02
20t/ / \// " \.| -0.04
-30 I I I I 1 I L I -0.06
18 18.5 19 19.5 20 20.5 21 21.5
Time [s]

——Mean of measurements ---NM1 (Cp = 0.8)
—95% CI on sample mean — NM2 (Cp = 0.8)

NMs (Cp = 0.8) ---n (SFT)
—n measured

Figure C.45. Comparison of results from numerical models and measured results for the conical

floater in sea state 4.
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Figure C.46. Comparison of results from numerical models and measured results for the conical
floater in sea state 5.
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C.6.4 Spherical floater model
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Figure C.47. Comparison of results from numerical models and measured results for the spherical
floater in sea state 1.
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Figure C.48. Comparison of results from numerical models and measured results for the spherical
floater in sea state 2.
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Figure C.49. Comparison of results from numerical models and measured results for the spherical
floater in sea state 3.
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Figure C.50. Comparison of results from numerical models and measured results for the spherical
floater in sea state 4.
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Figure C.51. Comparison of results from numerical models and measured results for the spherical
floater in sea state 5.

148



