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Abstract:
Simulation and optimisation methods are
crucial in the development process for var-
ious industries, such as wind energy and
aerospace. Computationally efficient opti-
misation techniques are crucial to design
complex laminated composite structures
with the required functionalities, avoiding
prototyping, reducing costs, and minimis-
ing time to market.
This thesis uses gradient-based optimisa-
tion and the Discrete Material Optimisa-
tion (DMO) parameterisation to enhance
the structural integrity of laminated com-
posite structures. To improve the com-
putational efficiency, analytical sensitivi-
ties of a 4-node shell element with En-
hanced Assumed Strain (EAS) formulation
and Mixed Interpolation of Tensorial Com-
ponents (MITC) are implemented into the
MUltidisciplinary Synthesis Tool (MUST).
Analytical sensitivities for buckling load
factors are derived and implemented to ad-
dress buckling-induced failure. Benchmark
examples maximise the buckling load fac-
tors using the bound formulation and show
a significant reduction in computation time
compared to a 9-node isoparametric shell
formulation.
Given the absence of a universally accepted
failure criterion for laminated composites,
analytical sensitivity analyses are imple-
mented for the maximum stress, maximum
strain, and Tsai-Wu failure criteria. A
benchmark example minimises the aggre-
gate function for each of the failure criteria.





Resume

Følgende kandidatafhandling omhandler implementering af gradienter til beregningseffek-
tiv optimering af laminerede kompositstrukturer, som er modelleret med et stabiliseret
4-knuders skalelement.

Laminerede kompositter gør det muligt at designe strukturer til at have specifikke materi-
aleegenskaber i forskellige områder og retninger. Dette kan medføre konkurrencemæssige
fordele ved f.eks. at reducerer produktets masse, materialeforbrug eller øge produktets
styrke og stivhed. Derfor anvendes laminerede kompositter særligt indenfor fly-, rum-
og vindmølleindustrien, hvor masse, styrke og stivhed har stor indflydelse på produktets
konkurrencedygtighed på markedet.

I vindmølleindustrien øges længden af vindmøllevingerne, da rotorarealet har en betydelig
indflydelse på det elektriske udbytte fra en vindmølle. Dette vanskeliggør design-processen
yderligere, da simulereringstiden derved øges og det er derfor særligt attraktivt, at anvende
optimeringsmetoder til at designe vindmøllevinger.

Kapitel 2 introducerer elementformuleringen, da den er særligt vigtig for at kunne
udlede og implementere analytiske beregninger af gradienter. Der anvendes en række
koordinatsystemer til at formulerer elementstivhedsmatricen, der slutteligt transformeres
til det globale kartesiske koordinatsystem. Ligeledes defineres de rotationelle frihedsgrader
ud fra de respektive knudes director koordinatsystem og transformeres slutteligt til det
globale kartesiske koordinatsystem. Elementgeometrien degenereres fra et 8-knuders
kontinuumelemet til et 4-knuders skalelement, der mappes til et naturligt kurvelineæret
koordinatsystem. Efterfølgende beskrives flytningsfeltet ligeledes i det koordinatsystem.
Det er væsentligt at bemærke at en tensor i et kurvelineæret koordinatsystem kan
beskrives ved hjælp af de kovariante- og kontravariante komponenter. Derfor præsenteres
beregningerne for de kontravariante spændingskomponenter samt kovariante komponenter
af det kompatible-og uafhængige tøjningsfelt, som anvendes i elementformuleringen af det
stabiliserede 4-knuders skalelement.

Der anvendes i denne afhandling diskret materiale optimering, som er en densitetsbaseret
metode, der er særligt anvendeligt til optimering af vindmøllevinger. Denne metode
indfører en række lineær bi betingelser, som medfører at sekventiel lineær programmering
er særligt god til at løse denne type optimeringsproblemer.

For beregningseffektivt at sikre den strukturelle integritet ved hjælp af gradient baseret
optimering implementeres analytiske beregninger af gradienter for lineær bulningsanalyse,
maksimum tøjning-, maksimum spænding- og Tsai-Wu brudkriterierne. De strukturelle
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kriterier kan indføres i optimeringsproblemet som enten objektfunktion eller bi betingelser.

Det lineære bulningsproblem løses iterativt, og det vises under valideringsprocessen af
gradienterne, at den absolutte fejl mellem finite difference approksimationerne og de
analytiske gradienter kan reduceres drastisk ved at reducere konvergenstolerances. Bound
formuleringen anvendes til at maksimere bulningslastfaktorerne af 3 test eksempler. Det
demonstreres at beregningstiden reduceres betydeligt ved at anvende et stabiliseret 4-
knuders skalelement i stedet for et 9 knuders isoparametrisk skalelement. Yderligere
vises det at beregningstiden af gradienterne for lineær bulnings objekt funktion er meget
sammenlignelige med en tilsvarende model der anvender et stabiliseret 8-knuders solid-
skalelement.

Brudkriterierne anvender et statisk brudindeks, der konverteres til et globalt kriterie
med en P-norm aggregatfunktion. Det statisk brudindeks penaliseres ved hjælp af
vægtfunktioner for, at gøre det uattraktivt at have densiteter som ikke er 0 eller
1. Der anvendes ved maksimum spænding og Tsai-Wu brudkriterierne yderligere en
lineær vægtfunktion på spændingerne, hvor det også er muligt tilføje penalisering. Det
demonstreres at brudkriterierne kan anvendes til at optimere laminerede kompositter mod
statisk brud.

vi



Contents

Resume v

Preface ix

1 Introduction 1
1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Modelling of Fibre-Reinforced Laminated Composites 5
2.1 Equivalent Single Layer Theories . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Stabilised 4-Node Shell Element . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Discrete Material Optimisation of Laminated Composites 25
3.1 Stress Based Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Optimisation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Linear Buckling Optimisation 31
4.1 Design Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Benchmark Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Static Failure Optimisation 49
5.1 Strain and Stress Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Maximum Strain Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Benchmark Example: Spar Cap . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusion 59

7 Future work 61
7.1 Failure optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 63

A Covariant Green-Lagrange strain tensor 69

B Optimisation of Structural Instabilities 71

C Buckling DSA Studies 73

vii



R. K. Schøn Contents

C.1 DSA comparison of stabilised 4-node shell element and EAS stabilised 8-
node solid shell element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C.2 Non-rectangular element DSA comparison of stabilised 4-node shell element
and EAS stabilised 8-node solid shell element . . . . . . . . . . . . . . . . . 78

C.3 Non-rectangular element DSA decreased convergence subspace tolerance . . 83

D Maximum Stress Criterion 87

E Tsai-Wu Failure Criterion 91
E.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



Preface

This master’s thesis is the result of Rasmus Kaalund Schøn’s work during the 4th semester
at the MSc. programme Design of Mechanical Systems at the Faculty of Engineering and
Science, Aalborg University. The author would like to extend his gratitude to Professor
Erik Lund, AAU and industrial PostDoc Sebastian Malte Hermansen, Gurit, for their
valuable guidance during the preparation of this thesis.

Formalities

This thesis uses the Harvard method for referencing the literature. Section references are
indicated by (Last name, year), while in-text references are indicated by Last name (Year).
A bibliography at the end of this thesis lists all references used.

Figures, tables and equations are numbered according to their respective chapters, where
’Figure 1.3’ refers to the third figure in Chapter One.

Furthermore, a nomenclature consists of abbreviations, symbols, and mathematical
notations. To differentiate between the same symbol, then subscripts and superscripts
are used. A parenthesis is added to superscript(s) to distinguish between exponents and
superscript notation. For the best reading experience, printing the thesis in a double-sided
A4 format with colour is recommended.

Signature: 

ix





Nomenclature

Abbreviations

ANS Assumed Natural Strain

BLAS Basic Linear Algebra Subprograms

CLPT Classic Laminated Plate Theory

DMDTO Discrete Material and Direct Thickness Optimisation

DMO Discrete Material Optimisation

DMTO Discrete Material and Thickness Optimisation

DoF Degree of Freedom

DSS Direct Sparse Solver

EAS Enhanced Assumed Strain

ESL Equivalent Single Layer

etc. et cetera

FSDT First order Shear Deformation Theory

i.e. id est

LCOE Levelized Cost of Energy

MITC Mixed Interpolation of Tensorial Components

MMA Moving Methods of Asymptotes

MUST MUltidisciplinary Synthesis Tool

NCF Non-Crimp Fabric

RAMP Rational Approximation of Material Properties

SIMP Solid Isotropic Material and Penalisation

SLP Sequential Linear Programming

SNOPT Sparse Nonlinear OPTimizer

xi



R. K. Schøn Preface

SQP Sequential Quadratic Programming

TSDT Third order Shear Deformation Theory

w.r.t. With respect to

Notation

[ ] Matrix
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1 Introduction

Simulation and optimisation methods have become an increasingly important strategic
priority in several industries’ product development, aiming to obtain faster time to market,
reduced cost, zero prototyping, and improved performance.

Simulation-driven design and structural optimisation methods are crucial in developing
wind turbine blades due to the large and complex structure comprising fibre-reinforced
composite materials, core materials, varying thicknesses and curved surfaces. Fibre-
reinforced composites offer the opportunity to tailor mechanical properties to achieve
functionalities that cannot be obtained through traditional isotropic materials. Designing
such a complex structure based on engineering intuition alone is challenging, and
each design proposal must undergo computationally expensive simulations. Therefore,
optimisation techniques are crucial to synthesise wind turbine blades with the required
functionalities. Engineers can use simulation and optimisation to enhance aerodynamic
performance, structural integrity, overall efficiency and costs.

However, computational limitations restrict the exploration of the entire design space. The
challenge is observed in various industries, as highlighted in "Unveiling the next frontier of
engineering simulation", published by McKinsey & Company (Ragani et al., 2023), which
recognises efficiency as an important value driver for simulation tools.

The primary focus of this thesis is the specific challenges associated with the structural
optimisation of wind turbine blades. This is particularly important due to the significant
impact of wind turbine blade performance on the wind turbine’s levelized cost of energy
(LCOE). The wind turbine blades are responsible for converting kinetic energy into
electrical energy and represent the most costly component of the turbine (Mishnaevsky
et al., 2017). Structural optimisation of wind turbine blades may involve many design
variables. In this thesis, the decision is not to reduce the number of design variables to
make heuristic zero-order methods feasible. Therefore, this thesis is limited to gradient-
based optimisation methods.

1.1 Objective

The master’s thesis builds upon the 15 ECTS project by Schøn (2023). Here, analytical
Design Sensitivity Analyses (DSA) were demonstrated for stress-based Discrete Material
Optimisation (DMO) using a stabilised 4-node shell element on a simple plate model.

It has been demonstrated that this shell element is more computationally efficient than the
9-node isoparametric shell element. Therefore, efficient DSA for the 4-node shell element
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must be implemented into the MUltidisciplinary Synthesis Tool (MUST) to utilise the
increased computational efficiency for gradient-based optimisation. The finite element-
based research code is written in Fortran 90. It is a multi-physics and optimisation tool
that has been continuously developed at Aalborg University’s Department of Materials and
Production since 1999. It enables users to specify different parameterisations, elements,
boundary conditions, material models, and failure modes, among other choices to analyse
and optimise structures.

This master’s thesis aims to implement computationally efficient DSA and demonstrate
the usage for optimisation of laminated composite structures using the stabilised 4-
node shell element. By integrating efficient DSA for the stabilised 4-node shell element
into MUST, engineers and researchers can optimise the design of wind turbine blades
and other laminated composite structures more quickly, thereby reducing the time to
market. Alternatively, they can increase the model’s resolution, providing a level of
detail and insight into previously unattainable problems with a coarser mesh. This can
lead to advancements in synthesising wind turbine blades and other laminated composite
structures, addressing common computational limitations.

1.2 Problem statement

How can the stabilised 4-node shell element be used to perform structural optimisation
of laminated composite structures ?

Thesis outline

The structure of the thesis is outlined below:

• Chapter 2) Modelling of Fibre-Reinforced Laminated Composites
This chapter serves as a foundation for the thesis. It presents an overview of
various methods, highlighting their advantages and disadvantages. It also provides
a comprehensive review of the stabilised 4-node shell element to help readers
understand the important equations underlying the theory. This understanding is
essential for deriving analytical and computationally efficient DSA.

• Chapter 3) Discrete Material Optimisation of Laminated Composites
It introduces gradient-based optimisation methods and the DMO parameterisation.

• Chapter 4) Linear Buckling Optimisation
The linear buckling analysis is formulated, and analytical sensitivities are derived
and validated. Three benchmark examples are optimised, and the computational
performance is compared to a 9-node isoparametric shell element and a stabilised
8-node solid shell formulation.

• Chapter 5) Static Failure Optimisation
This chapter presents the derivation and validation of analytical sensitivities for
one static failure criterion, while two other criteria are derived and validated
in Appendix D and E. Additionally, a benchmark example demonstrates the
optimisation of a laminated composite structure for each failure criterion.

• Chapter 6) Conclusion
Presents the conclusions of the thesis and Chapter 7) identifies areas for further

2
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research on structural optimisation of laminated composite structures using the
stabilised 4-node shell element.
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2 Modelling of Fibre-Reinforced
Laminated Composites

The high stiffness- and strength-to-weight ratios of fibre-reinforced laminated composites
make them well-suited for various structural applications where light weight is an essential
value driver. Multiple laminae make these composites, each consisting of layers of fibres
embedded in a matrix material, as illustrated in Figure 2.1.

Fibre LaminateMatrix Lamina

Figure 2.1. Definitions using a macroscopic perspective of fibre-reinforced laminated composites.

When integrated into a laminate, the orthotropic lamina exhibits anisotropic behaviour
due to the coupling between various types of deformation, such as shear extension,
bending extension, and bend twist. Designers can tailor these coupling terms to obtain
the mechanical, thermal and acoustic properties on a macro scale by selecting fibre
orientation, lamina thickness, stacking sequence, fibre architecture, fibre and matrix
materials. However, accurately modelling the behaviour of these laminated composites
presents some challenges. Therefore, various methods have been proposed to analyse fibre-
reinforced laminated composite structures. (Jones, 1998)

The focus of the thesis lies in the optimisation of general laminated composite structures.
As a result, the focus is placed on the Equivalent Single Layer (ESL) theories.

2.1 Equivalent Single Layer Theories

Shell elements are widely utilised in modern engineering simulations to model fibre-reinforced
laminated composites, as they have proven to be an accurate and computationally efficient
formulation to capture the complex mechanical behaviour of these materials. Specifically,
mechanical behaviour exhibits characteristics similar to those described by ESL theories.
Therefore, it is essential to have a comprehensive understanding of the mechanical be-
haviour described by the ESL theories to understand the limitations of shell elements.

The deformation obtained in ESL theories shown in Figure 2.2 is based on plate theories,
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which include Kirchhoff-Love plate theory, Reissner-Mindlin plate theory, and third-order
plate theory. These theories exhibit several similarities to beam theories, as they are
generalisations of Euler-Bernoulli’s beam theory, Timoshenko beam theory, and third-order
beam theory.

In the following subsections, an introduction to each theory is provided but will be limited
to the linear version of the theory. (Lund, 2022)

Deformation of transverse normal

Undeformed

CLPT FSDT TSDT
Accuracy of the theories

Number of unknowns
and

Figure 2.2. Deformation of the transverse normal and transverse shear strain distribution in
different ESL-theories. The mid surface is marked with dashed lines

2.1.1 Classic Laminated Plate Theory

Classic Laminated Plate Theory (CLPT) is based on the Kirchhoff-Love plate theory,
which is derived from the assumption that the transverse normals on the mid surface of
the plate remain straight after deformation and are in-extensible. Due to the in-extensible
normals, there is no transverse normal strain, using the notation shown in Figure 2.2,
εzz = 0. Furthermore, transverse normals are assumed to remain perpendicular to the
midsurface after deformation. Therefore, there is no transverse shear strain γxz = γyz = 0,
and the deformation of the transverse normals is solely influenced by bending and in-plane
normal strain. It is important to note that the CLPT has a significant drawback. It
fails to satisfy laminate equilibrium because it cannot model transverse normal strain and
transverse shear strain. These strain components are crucial in predicting failure due to
delamination, as they produce interlaminar stresses to establish equilibrium. Interlaminar
stresses cause delamination. CLPT is rarely used in the finite element method since it
requires C1 continuity. (Lund, 2022)

2.1.2 First order Shear Deformation Theory

The natural modification to CLPT is the first-order Shear Deformation Theory (FSDT).
This theory is based on the Reissner-Mindlin plate theory and allows the rotation of
transverse normals. When the transverse normals undergo rotation, it leads to constant
transverse shear strain along the laminate thickness. Medwadowski (1958) extended
the work to orthotropic plates before Whitney (1969) and Whitney and Pagano (1970)
formulated the theory for laminated plates.

The FSDT provides a more accurate representation of the parabolic distribution, which

6
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is predicted for isotropic plates by the linear theory of elasticity and Third-order Shear
Deformation Theory (TSDT). In FSDT, the equilibrium equations are not satisfied at the
lamina interfaces due to the inaccurate shear strain distribution. This inaccurate shear
strain distribution further requires a correction factor called the shear correction factor
to ensure the shear strain energy is equivalent to what is obtained from the analytical
solution. The shear correction factor is difficult to determine accurately. Therefore,
the shear correction factor of an isotropic plate is often used as an approximation. The
transverse normals exhibit similarities to CLPT, which is assumed to remain straight after
deformation and inextensible. As a result, FSDT can not predict transverse normal strain.

Shell elements based on FSDT are widely used in the finite element method despite being
prone to in-plane and transverse shear locking. Several techniques have been developed to
address these locking issues, and section 2.2 will expand upon this topic. (Lund, 2022)

2.1.3 Third order Shear Deformation Theory

To obtain a more accurate theory, eliminate the need for a shear correction factor and
eliminate shear locking, higher-order deformation theories were developed by Levinson
(1980) and Murthy (1981). Later, Reddy (1984) made significant improvements to the
initial theories, resulting in a higher-order deformation theory for linear orthotropic plates
that accurately accounts for shear deformation. Additionally, Reddy (1986) refined the
theory for laminated plates, making it a valuable tool for analysing and designing laminated
composite structures. These advancements were obtained by representing the deformation
of the transverse normal as a cubic function through the thickness to obtain the parabolic
shear strain distribution.

The disadvantages of TSDT are the computational cost of extra unknowns and the
equilibrium. When different layers are used, the shear correction factor is still needed.
Similar to CLPT and FSDT, equilibrium at the laminae interface is not satisfied due to
the discontinuous stress distribution through the thickness. Despite the potential benefits
of achieving equilibrium at surfaces, more accurate shear stress distribution and mitigating
shear locking, the associated computational expense often outweighs these advantages.
(Lund, 2022)

2.2 Stabilised 4-Node Shell Element

This section presents the stabilised 4-node shell element derived and implemented into
MUST by Stagsted and Bertelsen (2023).

In the finite element method, the numerical model can be obtained by studying variations
denoted δ on an arbitrary mechanical system described by a functional to obtain the
equilibrium configuration of the system. In contrast to the method proposed by Reissner,
where variations on displacements ui, strains εij and stresses σij on the Reissner functional
are studied. The formulation is based on the Rayleigh-Ritz method, where these variations
are studied on the total elastic potential Π in Eq. (2.1). The variables T (n)

i represent the

7



R. K. Schøn 2. Modelling of Fibre-Reinforced Laminated Composites

traction forces, while Bi refers to the volume forces.

Π =

∫
V
σijεij dV −

∫
V
Biui dV −

∫
S1

T
(n)
i ui dS −

∫
V
uiρüi dV (2.1)

The objective of the current section is to obtain a discretised version of Eq. (2.1) because a
stationary point of an arbitrary mechanical system can be obtained by finding the solution
to δΠ = 0.(Dym and Shames, 2013) Particular attention is paid to addressing the challenges
associated with modelling fibre-reinforced laminated composites, and the formulation is
restricted to considering static problems. Therefore, the inertia forces

∫
V uiρüi dV = 0.

Frequently, the element formulation is carried out solely in Cartesian coordinate systems,
as can be exemplified by the isoparametric shell element where the geometry is
mapped to a natural coordinate system in Cartesian coordinates (ξ, η, ζ) as shown
inFigure 2.3. However, when formulating the four node-stabilised shell elements, Cartesian
and Curvilinear coordinates are utilised, requiring some particular attention. The
displacements, strain and stresses are formulated in natural coordinates expressed using
Curvilinear coordinate system (r, s, t) as illustrated in Figure 2.4. In (ξ, η, ζ) and (r, s, t)

systems, the geometry is mapped into a coordinate system where the geometry can obtain
values from −1 to 1.

Mapping of isoparametric shell

(-1,-1,-1)

(1,-1,-1)

(1,-1,1)

(-1,1,-1)

(-1,1,1)

(1,1,1)

Mapping of 4-node shell 

r

s

t

(1,1,0)

(1,-1,0)

(-1,1,0)

(-1,-1,0)

Figure 2.3. Natural coordinates (ξ, η, ζ)
when mapping isoparametric element types

Figure 2.4. Natural coordinates (r, s, t)
expressed in Curvilinear coordinates

According to the theory of elasticity, the constitutive properties are represented by a fourth-
order tensor, whereas the stresses and strains are second-order tensors. Using curvilinear
coordinates introduces certain complications due to a curvilinear coordinate system being
a non-orthogonal coordinate system. This is illustrated for a first-order tensor, also a
vector in Figure 2.5. Since the coordinate system is non-orthogonal, the perpendicular
and parallel components of {A} do not coincide. Therefore {A} can be expressed using
either covariant components A1 and A2, or contravariant components A1 and A2 as shown
in Eq. (2.2).

{A} = Aj{gj} = Aj{gj} (2.2)

Subscripts are used according to a well-established convention in tensor analysis,
where they indicate covariant representation, and superscripts indicate contravariant

8
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representation. Similar expressions as Eq. (2.2) can be obtained for second- and fourth-
order tensors as described in Nielsen (2018).

Figure 2.5. Contravariant and covariant
projections of an arbitrary first-order tensor
{A}

Figure 2.6. Covariant base vectors can be
established from an arbitrary position vector
{r}

The covariant and contravariant base vectors {gj} and {gj}, respectively, can be
established from the geometry of a shell, as illustrated in Figure 2.6. As proposed by
Vu-Quoc and Tan (2003), the covariant base vectors are obtained as the tangent vectors
of the shell in the r, s, t-system, from a position vector {r} as shown in Eq. (2.3).

{gj} =
∂{r}
∂xj

xj = r, s, t j = 1, 2, 3 (2.3)

The contravariant base vectors can then be obtained as the inverse of the covariant base
vectors.

2.2.1 Coordinate systems

Global system
3

Element system Material system r,s,t system
t

r

st

1 2

Interpolation

Figure 2.7. Overview of some coordinate systems used to formulate the stabilised 4-node shell
element. All coordinate systems in the illustration are Cartesian coordinates except the r, s, t-
system, which is Curvilinear. It should be noted that the covariant and contravariant coordinate
systems have not been included in the illustration

9
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The formulation of the stabilised 4-node element requires specific quantities to be defined
in one or more coordinate systems in Figure 2.7. To differentiate between the various
coordinate systems and the locations where the displacements, strain and stress are defined,
the following notations are used:

• Global coordinate system {e1}, {e2}, {e3} or x, y, z, notation G or capital letter
• Element coordinate system {d1}, {d2}, {d3}, notation d or lower case letters
• Material coordinate system 1, 2, 3, notation 12

• Covariant coordinate system {g1}, {g2}, {g3}, notation Cov or subscripts
• Contravariant coordinate system {g1}, {g2}, {g3}, notation Con or superscripts
• Natural coordinate system r, s, t

• Director coordinate system of node a in the element coordinate system {V1}a, {V2}a, {V3}a
• Director coordinate system of node a in the global coordinate system {V(G)

1}a, {V(G)
2}a, {V(G)

3}a

The notations introduced are used in the report as either subscripts or superscripts to
indicate where the quantities are defined.

Global coordinate system

To facilitate a streamlined modelling process, the geometry of the structure and boundary
conditions are defined in the global coordinate system. This is preferred as defining the
problem in global coordinates is more intuitive. As a result, it is crucial to accurately map
the geometry and boundary conditions onto the natural coordinate system as elaborated
in subsection 2.2.2. It is in the global coordinate system that the solution to the global
equilibrium equation is obtained.

Material coordinate system

Fibres

Figure 2.8. In-plane transformation from the material coordinate system (12-system)

Often, the material properties of a laminae are expressed using a coordinate system along
the fibres. Thus, an in-plane rotation introduces an orthotropic material into the problem
as illustrated in Figure 2.8.

Element coordinate system

An element coordinate system is utilised to express the stiffness matrix before it is
transformed into global coordinates. In this system, the orthotropic materials can

10
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be formulated and transformed to the natural coordinates, r, s, t, via the covariant or
contravariant projection. As the transformation from the material coordinate system to
the element coordinate system involves an in-plane rotation, the third base vector of
the element coordinate system ({d3}) is derived from the Covariant coordinate system.
This choice is made because it ensures that the material and element coordinate systems
are perpendicular to the surface. This alignment is desirable because the constitutive
properties of the laminae will be more precise when the material coordinate system aligns
with the principal directions of the orthotropic material.

2.2.2 Mapping to natural coordinates

8-Node element 4-Node elementDegeneration

Figure 2.9. 8-node continuum element degenerated into a 4-shell element represented in the
Curvilinear r, s, t coordinate system

The geometry and displacement of the 4-node element are formulated as proposed by
Ahmad et al. (1970) using a degenerated 8-node element. Here, the geometry has a 2-
dimensional surface description where the dimensions out of the surface plane can be
calculated using a unit vector called node director {V(a)

3 } in each node a as shown in
Figure 2.9.

Interpolation of the geometry

The nodes of the 4-node shell are introduced into the middle of the 8-node continuum
element as shown in Figure 2.9 and Eq. (2.4).

{xa} =
{x(a)

top}+ {x(a)
bottom}

2
, a = 1, · · · , 4 (2.4)

{x} indicates the nodal position expressed in global coordinates. To represent the geometry
out of the surface plane, it is necessary to introduce the node director {V(a)

3 } at each node
a. The node director can be obtained using Eq. (2.5), where ha is the thickness of the
element at node a as shown in Figure 2.9.

{V(a)
3 } =

{x(a)
top} − {x(a)

bottom}
ha

, a = 1, · · · , 4 (2.5)
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The eight nodes of the continuum element can be mapped to the natural coordinates as
shown in Eq. (2.6).

Na(r, s, t) =
1

8
(1± r) (1± s) (1± t) , a = 1, · · · , 4 (2.6)

The 3-dimensional shape functions in Eq. (2.6), can be reformulated into through-the-
thickness shape functions, N (a)

t (t) in Eq. (2.7) and in-plane shape functions N (a)
2D (r, s) in

Eq. (2.8).

N
(a)
t (t) =

1

2
(1± t) , a =1, · · · , 4 (2.7)

N
(a)
2D (r, s) =

1

4
(1± r) (1± s) , a =1, · · · , 4 (2.8)

The geometry in the r, s, t-system can be calculated using Eq. (2.9)

{xrst} = [N] {xa} =
4∑

a=1

1

2
(1 + t)N

(a)
2D{x(a)

top}+
4∑

a=1

1

2
(1− t)N

(a)
2D{x(a)

bottom} (2.9)

Reformulating Eq. (2.9) using factorisation of N (a)
2D results in Eq. (2.10).

{xrst} =

4∑
a=1

N
(a)
2D

(
1

2
{x(a)

top}+
1

2
{x(a)

bottom}
)
+

4∑
a=1

t

2
N

(a)
2D

(
{x(a)

top} − {x(a)
bottom}

)
(2.10)

It can be observed that the initial parenthesis in Eq. (2.10) is equal to the nodal values
in Eq. (2.4) and Figure 2.9. The product of ha and the node director from Eq. (2.5) can
be identified in the second parenthesis Eq. (2.10). Hence, the reformulation of Eq. (2.10)
enables the interpolation of the geometry by a surface description in Eq. (2.11).(Lund,
2022)

{xrst} =
4∑

a=1

N
(a)
2D{xa}+

4∑
a=1

t

2
N

(a)
2Dha{V

(a)
3 } (2.11)

Interpolation of the displacements

Following Eq. (2.1), it is necessary to derive an expression for the displacements {u} in
the r, s, t-coordinate system. This can be achieved by utilising the nodal position before
deformation {X} and the nodal position after deformation {x} as shown in Eq. (2.12).

{u} = {x} − {X} (2.12)

There is no significant difference in the geometry interpolation, whether performed
in the initial or deformed configuration. Eq. (2.11) is used with the initial or
deformed configuration values. By substitution of Eq. (2.11) in the initial and deformed
configuration, the displacements can be calculated as shown in Eq. (2.13).

{urst} =

4∑
a=1

N
(a)
2D{ua}+

4∑
a=1

t

2
N

(a)
2Dha

(
{v(a)

3 } − {V(a)
3 }

)
(2.13)

Here, {ua} is the nodal mid-surface displacement vector and {v(a)
3 } − {V(a)

3 } in the
parenthesis in Eq. (2.13) {v(a)

3 } − {V(a)
3 } is the change in the node director coordinates
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systems. {v(a)
3 } and {V(a)

3 } are, respectively, the node director before deformation and
at the initial configuration. The deformed configuration can be obtained by subjecting
the node director coordinate system to in-plane rotations around {V(a)

2 } and {V(a)
1 }, as

illustrated in Figure 2.10. This results in the displacement of the node director over an
arc length.

Before deformation:

After deformation:

Figure 2.10. Deformation by in-plane rotations around {V(a)
2 } and {V(a)

1 }

An approximation to the arc length can be achieved by assuming small rotations, which
lead to the following two statements:

• The arc length produced by rotation of {V(a)
3 } can be approximated by the

displacement vector in the {V(a)
1 } and {V(a)

2 } directions. This is illustrated with
red in Figure 2.10

• The displacement vector in the {V(a)
1 } and {V(a)

2 } directions can be approximated
using sin (β){V(a)

1 } ≈ β{V(a)
1 }

This approximation works well for small rotations and can be substituted into Eq. (2.13)
to obtain the displacements using Eq. (2.14).

{urst} =
4∑

a=1

N
(a)
2D{ua}+

4∑
a=1

t

2
N

(a)
2Dha

(
β{V(a)

1 } − α{V(a)
2 }

)
= [N] {d} (2.14)

Eq. (2.14) reveal one of the disadvantage of the 4-shell element since {d} = {x, y, z, α, β}T

and therefor only has 5 DOF. The DoF that does not exist for the 4-shell element is called
the drilling DoF. This disadvantage is because moments cannot be applied around the
drilling DoF. Therefore, commercial software and the stabilised element by Stagsted and
Bertelsen (2023) uses artificial penalty stiffness to address this issue.

To calculate the displacement in Eq. (2.14) it is necessary to establish {V(a)
1 } and {V(a)

2 }.
These node directors can be calculated using Eq. (2.15) and (2.16).

{V(a)
1 } =

{ê2} × {V(a)
3 }

|{ê2} × {V(a)
3 }|

(2.15)

Here {ê2} is the second Cartesian basis vector and the orientation of {V(a)
1 } is scaled with

the magnitude to ensure {V(a)
1 } is a unit vector. As both {V(a)

1 } and {V(a)
3 } are unit
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vectors, the cross product is used to calculate {V(a)
2 }. Lund (2022)

{V(a)
2 } = {V(a)

3 } × {V(a)
1 } (2.16)

2.2.3 Displacement-Strain Equations

Choosing appropriate definitions of strain and stress is crucial to ensure work consistency,
as it makes the strain energy in Eq. (2.1) independent of the definitions (Lund and
Lindgaard, 2022). In linear problems, the linear strain tensor with the Cauchy stress
tensor is work consistent. However, laminated composites are susceptible to failure caused
by buckling, which is inherently a geometrical non-linear problem. Therefore, the Green-
Lagrange strain tensor is used, which is often formulated in global coordinates. To calculate
the Green-Lagrange strain tensor using the covariant components Appendix A derives
Eq. (2.17) using the approach by Vu-Quoc and Tan (2003).

Eij =
1

2

{Gi}
∂{urst}
rj

+
∂{urst}
ri

{Gj}︸ ︷︷ ︸
Linear term

+
∂{urst}
ri

∂{urst}
rj︸ ︷︷ ︸

Nonlinear term

 (2.17)

The notation used in the previous sections has been adapted to denote {Gi} and {Gj}
as the covariant base vectors before deformation. The expression for the Green-Lagrange
strain tensor in Eq. (2.17) can be represented in FE-form by using Eq. (2.18), where [B]

is the strain displacement matrix. [B] consists of a linear component [B0] and a nonlinear
strain displacement matrix [BL].

{εCov} = [B] {d} =
(
[B0] + [BL({d})]

)
{d} (2.18)

The displacement vector is calculated using Eq. (2.14) and, since only the shape functions
depend on the natural coordinates ri = r, s, t, the partial derivatives in Eq. (2.17) can be
expressed as shown in Eq. (2.19).

∂{urst}
rj

=
∂ [N]

rj
{d} (2.19)

Substitution of Eq. (2.19) into Eq. (2.17) yields Eq. (2.20), which can be factorised to
obtain the covariant Green-Lagrange strain tensor on FE-form in Eq. (2.21)

{εCov} =
1

2

(
{Gi}

∂ [N]

rj
{d}+ ∂ [N]

ri
{d}{Gj}+

∂ [N]

ri
{d}∂ [N]

rj
{d}

)
(2.20)

=

1

2

(
{Gi}

∂ [N]

rj
+
∂ [N]

ri
{Gj}

)
︸ ︷︷ ︸

=[B0]

+
1

2

∂ [N]

ri
{d}∂ [N]

rj︸ ︷︷ ︸
=[BL({d})]

 {d} (2.21)

If a linear analysis is performed, the covariant linear strain definition on FE-form can be
obtained by eliminating [BL({d})] from Eq. (2.21). (Stagsted and Bertelsen, 2023)
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2.2.4 Strain-Stress Equations

In continuum mechanics, the Cauchy stress tensor is defined as the force and unit area
ratio in the deformed configuration. This differs from the 2nd Piola-Kirchhoff stress tensor,
defined as the force ratio from the undeformed configuration acting on an undeformed unit
area. (Lund and Lindgaard, 2022) According to Vu-Quoc and Tan (2003), when using the
Green-Lagrange strain tensor, it is necessary to use the contravariant 2nd Piola-Kirchhoff
stress tensor to ensure work consistency. The contravariant 2nd Piola-Kirchhoff stress
tensor is expressed as shown in Vu-Quoc and Tan (2003) and Eq. (2.22)

[S] = Sij{Gi}{Gj}T (2.22)

The contravariant stress tensor Sij can be expressed using Eq. (2.23) and the covariant
Green-Lagrange strain tensor defined in subsection 2.2.3.

Sij = CijklEkl (2.23)

The constitutive properties in the contravariant coordinate system Cijkl is the last
expression that must be determined to calculate the contravariant 2nd Piola-Kirchhoff
stress tensor. (Stagsted and Bertelsen, 2023)

The constitutive properties of a lamina are defined in the material coordinate system, and
it is essential to consider this aspect when expressing Cijkl. A plane stress assumption is
introduced through the constitutive properties in the material system, shown in Eq. (2.24),
which has no constitutive properties in the transverse normal direction. The assumption
contradicts the FSDT assumption that considers plane strain. Despite this, combining the
plane stress and plane strain assumption is commonly used for FSDT-based shell elements.
It has been extensively used for a wide range of problems with thin composite structures.

[C]12 =



E1
1−ν12ν21

ν21E1
1−ν12ν21 0 0 0 0

ν21E1
1−ν12ν21

E2
1−ν12ν21 0 0 0 0

0 0 0 0 0 0

0 0 0 G12 0 0

0 0 0 0 k1G23 0

0 0 0 0 0 k2G13


(2.24)

The shear correction factors are in this work set to the value of an isotropic plate, hence
k1 = 5/6 and k2 = 5/6.

The transformation of the constitutive properties can be performed step-wise, where the
in-plane transformation matrix [Tθ] in Eq. (2.25) is used to transform the constitutive
properties to the element system as shown in Eq. (2.26).

[Tθ] =



a2 b2 0 ab 0 0

b2 a2 0 −ab 0 0

0 0 1 0 0 0

−2ab 2ab 0 a2 − b2 0 0

0 0 0 0 a −b
0 0 0 0 b a


where: a = cos(θ) and b = sin(θ) (2.25)
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[Cd] = [Tθ]
T [C12] [Tθ] (2.26)

From the element system, a transformation to the contravariant components can be
obtained using the inner product of each element basis vectors {dj} and the contravariant
base vectors {Gi} as shown in Eq. (2.27).

tij ={dj} · {Gi}, i = 1, 2, 3 j = 1, 2, 3 (2.27)

The tij-values from Eq. (2.27) are inserted into Eq. (2.28) to obtain
[
TCon

]
.

[Tcon] =



t211 t212 t213 t11t12 t11t13 t12t13
t221 t222 t223 t21t22 t21t23 t22t23
t231 t232 t233 t31t32 t31t33 t32t33

2t11t21 2t12t22 2t13t23 t11t22 + t12t21 t11t23 + t13t21 t12t23 + t13t22
2t21t31 2t22t32 2t23t33 t21t32 + t22t31 t21t33 + t23t31 t22t33 + t23t32
2t11t31 2t12t32 2t13t33 t11t32 + t12t31 t11t33 + t13t31 t12t33 + t13t32


(2.28)

Cijkl is therefore on FE-form calculated using Eq. (2.29)

[Ccon] =
[
TCon

]T (
[Tθ]

T [C12] [Tθ]
) [

TCon
]

(2.29)

An FE formulation of the 4-node shell element without stabilisation can be derived from
the previous equations. However, the shell element will display both transverse and in-
plane shear locking and, therefore, to mitigate this issue, Enhanced assumed Strain (EAS)
and Mixed Interpolation of Tensorial Component (MITC) stabilisation can be applied.
(Lund, 2022)

2.2.5 Mixed Interpolation of Tensorial Component

Incorrect deformation Correct deformation

Figure 2.11. The 4-node shell element without stabilisation suffers from transverse shear locking
due to incorrect deformation when subjected to bending moments

The transverse shear locking issue occurs as illustrated in Figure 2.11 due to inaccurate
deformations from the overly stiff element behaviour when subjected to bending moments.
Transverse shear locking is a well-studied phenomenon. Therefore, several attractive
solutions have been proposed to address this issue.

In explicit dynamics and non-linear problems, reduced integration is often used for
computational efficiency, although it can result in zero-energy modes. A popular solution
is to apply hourglass control, where artificial stiffness is added to avoid zero-energy modes.
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The MITC-method by Dvorkin and Bathe (1984) is a part of another class of stabilisation
methods called Assumed Natural Strain (ANS)-methods or B̄-methods since these methods
re-interpolate the original strain-displacement matrix. Dvorkin and Bathe (1984) realised
that the most accurate covariant transverse shear strains in the linear element can be
calculated in the re-interpolation points (also called tying points) A,B,C,D in Figure 2.12.

C

A

DB

Node 2 Node 1

Node 4Node 3

Figure 2.12. The transverse shear strain distribution at each tying point

The covariant transverse shear strains evaluated in the tying points in Figure 2.12 are used
to obtain the correct covariant shear strain distribution by a re-interpolation as shown in
Eq. (2.30) and (2.31).

γrt =
1

2
(1 + s) γ

(A)
rt +

1

2
(1− s) γ

(C)
rt = N

(A)
rt γ

(A)
rt +N

(C)
rt γ

(C)
rt (2.30)

γst =
1

2
(1 + r) γ

(D)
st +

1

2
(1− r) γ

(B)
st = N

(D)
st γ

(D)
st +N

(B)
st γ

(st)
13 (2.31)

The re-interpolations in Eq. (2.30) and (2.31) are expressed on FE-form as shown in
Eq. (2.32) and (2.33).

{B(MITC)
rt }T =N

(A)
rt {B(A)

rt }T +N
(C)
rt {B(C)

rt }T (2.32)

{B(MITC)
st }T =N

(D)
st {B(D)

st }T +N
(B)
st {B(B)

st }T (2.33)

Eq. (2.32) and (2.33) are inserted in the fourth and fifth row in the strain displacement
matrix from subsection 2.2.3 as these rows represent the covariant transverse shear strain.
(Stagsted and Bertelsen, 2023)

It is important to acknowledge that alternative approaches to address transverse shear
locking can achieve comparable results for problems involving flat and undistorted plates
but may differ when considering curved shell elements.(Lund, 2022)

17



R. K. Schøn 2. Modelling of Fibre-Reinforced Laminated Composites

2.2.6 Enhanced Assumed Strain-formulation

Incorrect deformation Correct deformation

Figure 2.13. The 4-node shell element without stabilisation suffers from in-plane shear locking
due to parasitic shear strain

In-plane shear locking occurs due to parasitic inplane shear strains when subjected to pure
bending as shown in Figure 2.13. Stabilisation methods to mitigate in-plane shear locking
have been thoroughly investigated and developed. Similar to transverse shear locking,
reduced integration eliminates in-plane shear locking. However, reduced integration
faces the same challenges addressed in subsection 2.2.5. A popular method for solid
elements is the incompatible modes method. It allows the displacement field to violate
the compatibility equations from elasticity theory by adding incompatible modes and uses
modified integration to pass the patch test. Later, EAS formulations were proposed to
address the in-plane shear locking problem while avoiding mixed integration.(Lund, 2022)
Simo and Rifai (1990) introduced an enhanced strain field {εEAS} in the variational
formulation. The strain field obtained in subsection 2.2.3 is in this subsection referred
to as the compatible strain field {εComp} and an independent strain field {ε̃Ind} is added
to obtain an enhanced strain field {εEAS} as shown in Eq. (2.34).

{εEAS} = {εComp}+ {ε̃Ind} (2.34)

The independent strain field is defined in Eq. (2.35) and enhances the compatible strain
field by including additional linear terms to the in-plane shear strain and in-plane normal
strains.

{εInd} = {M}{α} where {M} =



r 0 0 0

0 s 0 0

0 0 0 0

0 0 r s

0 0 0 0

0 0 0 0


(2.35)

The independent strain field in Eq. (2.35) introduces four internal DoFs {α} for each
element in the model. However, the static condensation makes it computationally
attractive by removing the internal DoFs from the global equilibrium equation. Therefore,
MITC is a computationally efficient method for eliminating in-plane shear locking. (Lund,
2022)

The original formulation of the independent strain field by Simo and Rifai (1990) in
Eq. (2.35) is derived from a local coordinate system in the middle of the element. However,
the element coordinate system does not necessarily have to be located in the middle of the
4-node shell element. Furthermore, the independent strain field must be transformed to the
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covariant coordinate system to remain consistent with the formulation in subsection 2.2.3.
Therefore, a Cartesian coordinate system is established in the middle of the element to
obtain a transformation matrix [TM] using the inner product of the Cartesian base vectors
in the middle of the element and the covariant base vectors and Eq. (2.27) and (2.28).
The transformation of the independent strain field to the covariant coordinate system is
achieved using Eq. (2.36).

{ε̃Ind} = [TM] {εInd} = {M̃}{α} = [TM] {M}{α} (2.36)

The global equilibrium equation used to model fibre-reinforced laminated composites
can be derived from the displacement interpolation in section 2.2.2, stress definition in
subsection 2.2.4 and the strain representation obtained in subsection 2.2.3, 2.2.5 and 2.2.6.

Several requirements are emphasised by Simo and Rifai (1990) to ensure a unique solution
and pass the patch test to ensure convergence:

• To avoid a singular system, it is necessary for the strain fields specified Eq. (2.34) to
be linearly independent.

• The independent strain field is not a physical strain. Therefore, to prevent the
independent strain field from contributing to the strain energy, it is essential to
ensure orthogonality of the strain fields in Eq. (2.34)

• If the strain fields in Eq. (2.34) are orthogonal, the stress field must be at least
piece-wise constant to satisfy the patch test.

The thesis does not aim to derive the global equilibrium equation, but Stagsted and
Bertelsen (2023) serves as great literature for more information on the derivation.

2.2.7 Global Equilibrium Equation

The global equilibrium equation [K] {D} = {F} is formulated from the equilibrium
equation on the element level. This equation for the geometric non-linear 4-node shell
element with EAS and MITC is formulated by Stagsted and Bertelsen (2023) using
Eq. (2.37). [

[kuu]e [kuα]e
[kαu]e [kαα]e

][
∆{d}e
∆{α}e

]
= −

[
{fint}e − {fext}e

{fEAS}e

]
(2.37)

Since it is the non-linear formulation, ∆ indicates the increment from applying iterative
methods, such as the arc length method, Newton-Raphson method or Broyden-Fletcher-
Goldfarb-Shanno method, to solve the non-linear equations.

The force vector on the right-hand side in Eq. (2.37) consists a force vector related to
the internal DoF {fEAS}e in Eq. (2.38), external force vector {fext}e in Eq. (2.39), and
internal {fint}e force vector in Eq. (2.40).

{fEAS}e =
∫
V

[
M̃
]T

{σ} dV (2.38)

{fext}e =
∫
V
[N]T {B} dV +

∫
V
[N]T {T} dS (2.39)

{fint}e =
∫
V
[B]T {σ} dV (2.40)
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The element stiffness matrix is defined by the matrices in Eq. (2.41), (2.42), (2.43) and
(2.44) (Stagsted and Bertelsen, 2023).

[kuu]e =

∫
V

(
[B]T [Ccon] [B] +

d [B]T

d{d}
{σ}

)
dV (2.41)

[kuα]e =

∫
V
[B]T [Ccon] ˜[M] dV (2.42)

[kαu]e = [kαu]
T
e =

∫
V

˜[M]
T
[Ccon] [B] dV (2.43)

[kαα]e =

∫
V

˜[M]
T
[Ccon] ˜[M] dV (2.44)

Static condensation eliminates the internal DoF from the global equilibrium equation and
increases computational efficiency. Therefore ∆{α}e is isolated in Eq. (2.37) as shown in
Eq. (2.45)

−{fEAS}e = [kαu]e∆{d}e + [kαα]e∆{α}e ⇓
∆{α}e = [kαα]

−1
e (−{fEAS}e − [kαu]e∆{d}e)

(2.45)

Eq. (2.45) is substituted into the upper part of Eq. (2.37) to obtain Eq. (2.46).

[kuu]e∆{d}e − [kuα]e [kαα]
−1
e ({fEAS}e + [kαu]e∆{d}e) =− ({fint}e − {fext}e) (2.46)

Eq. (2.46) can be rearranged to obtain the same expression as Klinkel and Wagner (1997),
Klinkel et al. (1999), Vu-Quoc and Tan (2003) and Stagsted and Bertelsen (2023) in
Eq. (2.47), here {r}e is the element residual vector and [kT]e is the element tangent
stiffness matrix.(
[kuu]e − [kαu]

T
e [kαα]

−1
e [kαu]e

)
︸ ︷︷ ︸

[kT]e

∆{d}e =−
(
{fint}e − [kαu]

T
e [kαα]

−1
e {fEAS}e − {fext}e︸ ︷︷ ︸

{r}e

)
(2.47)

The internal DoF {α}e is eliminated from the equilibrium equation, which is
computationally attractive.

2.2.8 Volume integration

To evaluate the volume integral in the natural coordinate system, the Jacobian determinant
|J | is utilised to transform the integration variables from global coordinates to natural
coordinates, as demonstrated in Eq. (2.48), (2.49) and (2.50).

[kuu]e =

∫ 1

1

∫ 1

1

∫ 1

1

(
[B]T [Ccon] [B] +

d [B]T

d{d}
{σ}

)
|J |︸ ︷︷ ︸

[ϕ1(r,s,t)]

drdsdt (2.48)

[kαu]e = [kαu]
T
e =

∫ 1

1

∫ 1

1

∫ 1

1

˜[M]
T
[Ccon] [B]︸ ︷︷ ︸

[ϕ2(r,s,t)]

drdsdt (2.49)

[kαα]e =

∫ 1

1

∫ 1

1

∫ 1

1

˜[M]
T
[Ccon] ˜[M]

1

|J |︸ ︷︷ ︸
[ϕ3(r,s,t)]

drdsdt (2.50)
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The integration through the laminate thickness can be addressed using various approaches.
One of the most efficient methods for the computation is explicit thickness integration.
This is because the relationship between the number of laminae and the time taken for
the stiffness matrix to be assembled remains nearly constant, as demonstrated by Hvejsel
and Hansen (2007) for a 9-node isoparametric shell element. However, the accuracy of
the integration decreases as the curvature increases. Therefore, this method is often
used for flat or nearly flat shells. Layer-wise numerical thickness integration is often
preferred for shells with higher curvature as it provides a more accurate solution and
models the stiffness coupling effects. However, it has a computational cost, especially
when the laminate has many layers.(Lund, 2022) Given the complex geometry of wind
turbine blades, characterised by multiple curved surfaces with high curvature, the layer-
wise numerical thickness integration method is carried out to obtain more accurate results.

Gauss point

Layer

t

Layer

Figure 2.14. Gauss points through the thickness and thickness scaling of each layer using a local
layer coordinate tl

The natural coordinates range from −1 to −1. Therefore, to obtain the contribution of
each layer’s thickness in the natural coordinate system, the thickness of each layer must be
scaled. This scaling is achieved by calculating the thickness t through a layer coordinate
tl using Eq. (2.51).

t =
1

hLam

2

Nlayer∑
i=1

hi − hl(1− tl)

− 1 (2.51)

Here, the total laminate thickness hLam scales the thickness contribution of each lamina
and Nlayer is the number of layers in the laminate. Another issue that must be addressed
is the integration variable, which must be formulated using the layer coordinate tl to
utilise Eq. (2.51). From Figure 2.14, an infinitesimal change in the thickness direction is
expressed, and dtl can be isolated as shown in Eq. (2.52).

dt

dtl
=

hl
hLam

⇒ dt =
hl

hLam
dtl (2.52)

Eq. (2.52) is substituted into Eq. (2.48), (2.49) and (2.50) to change the integration variable
in the thickness direction. To calculate the volume integral using Gauss integration, a
2× 2× 2-Gauss quadrature is used to calculate each block in the element stiffness matrix
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[k]block,ze as shown in Eq. (2.53) and (2.54)

[k]block,ze =

Nlayer∑
l=1

2∑
i=1

2∑
m=1

2∑
k=1

wiwmwk [ϕz(r, s, t)]limk
hl

hLam
, z = 1, 2, 3 (2.53)

r, s, tl =± 1√
3
, wiwmwk = 1 (2.54)

The element rotational DoFs, denoted by (αa, βa, µa), a = 1, .., 4 is defined in the node
director coordinate systems. To account for this, when transforming the global equilibrium
equation, a transformation matrix [TdG]e is required to transform these DoFs from the
director systems to the global system. This transformation follows the approach described
by Stagsted and Bertelsen (2023), where the rotations in the director system can be
transformed into rotations in the global system using Eq. (2.55). This approach is also
often referred to as a basis change.αaβa

µa


Global

= [{V1a}, {V2a}, ]︸ ︷︷ ︸
[Vbase]a

[
αa
βa

]
Director

= [Vbase]a

[
αa
βa

]
(2.55)

Eq. (2.55) is valid because the director base vectors {V1a} and {V2a} are defined in the
global coordinate system. The contribution from {V3a} is excluded in the director basis
matrix [Vbase]a since there is no drilling DoF in the element system.

To restrict the base change to only the rotational DoFs, the equation for the basis of a
single node a in Eq. (2.55) is expanded by implementing a 3 × 3 identity matrix, which
is denoted by [I3]. The transformation matrix defined in Eq. (2.56) can be established to
transform the rotational DoFs.

[TdG]e =



[I3] [0] [0] [0] [0] [0] [0] [0]

[0] [Vbase]1 [0] [0] [0] [0] [0] [0]

[0] [0] [I3] [0] [0] [0] [0] [0]

[0] [0] [0] [Vbase]2 [0] [0] [0] [0]

[0] [0] [0] [0] [I3] [0] [0] [0]

[0] [0] [0] [0] [0] [Vbase]3 [0] [0]

[0] [0] [0] [0] [0] [0] [I3] [0]

[0] [0] [0] [0] [0] [0] [0] [Vbase]4


24×20

(2.56)

This transformation from rotational DoFs described in the element system obtains the
global equilibrium equation in Eq. (2.57).

Ne∑
e=1

[L]Te

(
[TdG]Te [kT]e [TdG]e

)
[L]e︸ ︷︷ ︸

[KT]

∆{D} = −
Ne∑
e=1

[L]Te ([TdG]e {r}e)︸ ︷︷ ︸
{R}

(2.57)

Here [KT] and [R] are the global tangent stiffness matrix and global residual vector. The
inclusion of the sparse bookkeeping matrix [L]e in Eq. (4.19) can be regarded more as a
mathematical statement than an implementation detail.
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2.2.9 Linear 4-node Shell element with EAS and MITC

This subsection explains the differences between the geometrical linear and geometrical
non-linear formulations.

A geometrical linear formulation can be achieved by utilising the linear strain tensor and
Cauchy’s stress tensor in the derivation. As a result, the strain-displacement matrix [B]

only consists of the linear strain-displacement matrix [B0]. Additionally, the element
equilibrium equation only incorporates the external force vector. Therefore, the linear
version of Eq. (2.47) is expressed for the geometrical linear formulation as shown in
Eq. (2.58). (

[kuu]e − [kαu]
T
e [kαα]

−1
e [kαu]e

)
︸ ︷︷ ︸

[k0]e

{d}e ={fext}e (2.58)

The linear strain displacement matrix [B0] is used in Eq. (2.49) and (2.50) to calculate
[kαu]e and [kαα]e, while [kuu]e is calculated using Eq. (2.59).

[kuu]e =

∫ 1

1

∫ 1

1

∫ 1

1
[B0]

T [Ccon] [B0] |J | drdsdt (2.59)

Since there is no EAS force vector {fEAS}e in Eq. (2.58), then {α}e is calculated using
Eq. (2.60). A linear analysis can be performed using these changes in formulation.

{α}e = − [kαα]
−1
e [kαu]e {d}e (2.60)

A comprehensive knowledge of both formulations of laminated fibre-reinforced composites
is crucial to ensure accurate and reliable design using the 4-node EAS and MITC shell
element. These composites are often prone to buckling, a significant concern that needs to
be addressed during the design process. In this regard, buckling analysis and optimisation
are essential aspects to be considered. Therefore, the following chapter will cover these
topics to help designers develop more efficient and effective designs for laminated fibre-
reinforced composites.
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3 Discrete Material Optimisation of
Laminated Composites

This chapter introduces the parameterisation used for gradient-based optimisation methods
of fibre-reinforced laminated composites in this thesis while highlighting the challenges and
advantages.

It is widely recognised that selecting the most effective optimisation approach to any given
structural problem is a complex task that heavily relies on the specific circumstances of
the structural problem. Therefore, no universally applicable strategy can be used across
all structural optimisation problems. Instead, a nuanced understanding of the unique
characteristics of each problem is essential to identifying the most appropriate approach.
Traditionally, optimisation problems of laminated composites are tailored to consider the
stacking sequence, lamina angles and lamina thickness while minimising or maximising
performance features such as the weight of the structure, buckling behaviour, failure load,
deflection, stiffness and fundamental frequency.(Nikbakt et al., 2018)

An important aspect of structural optimisation is manufacturing the optimised design,
which can only be achieved through careful consideration of the manufacturing methods
in the particular industry. One particularly useful parameterisation in optimising wind
turbine blades is the DMO parameterisation proposed by Stegmann and Lund (2005).
However, this method is not only limited to wind turbine blades but is preferable for
structures where the laminated composite is manufactured using Non-Crimp Fabrics
(NCFs), and the lamina angles are limited to discrete values. The different materials in
the laminated composite structure are efficiently introduced to the optimisation problem
through a multi-material interpolation to calculate the constitutive properties of each
element denoted e and layer l as shown in Eq. (3.1).

A density-based approach can represent the presence or absence of a candidate material.
The presence or absence of the candidate material can be expressed as a binary value of
either 1 or 0. However, formulating the optimisation problem as an integer programming
problem can be computationally expensive for problems involving many design variables.
To address this issue, the variable xelc is represented as a continuous variable ranging from
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0 to 1, as shown in Eq. (3.3), instead of a binary representation.

[C]el =

Nc∑
c=1

wc(xelc) [C]c (3.1)

Nc∑
c=1

xelc = 1 ∀(e, l, c) (3.2)

xelc ∈ [0; 1] ∀(e, l, c) (3.3)

To drive the multi-material interpolation to a single candidate material, a weight function
wc(xelc) is used to penalise intermediate candidate materials.

Two of the most widely used weight functions are the Solid Isotropic Material and
Penalisation (SIMP) proposed by Bendsøe (1989) and Rational Approximation of Material
Properties (RAMP) introduced by Stolpe and Svanberg (2001). Later Hvejsel and Lund
(2011) introduced the multi-material formulation of SIMP and RAMP, which extended
the traditional DMO-parameterisation to optimise for discrete candidate materials and
topology simultaneously. This is achieved by including a void material in the multi-material
interpolation. It is further important to realise that the penalisation of the traditional
RAMP and SIMP differs from that of the multi-material formulations. Hvejsel and Lund
(2011) introduced Eq. (3.4) to calculate an equivalent multi-material RAMP penalisation
p̃ for a number of candidate materials Nc, where p is the traditional SIMP penalisation.

p̃ =

(
1
Nc

)−p
−Nc

Nc − 1
(3.4)

The main advantage of RAMP over traditional SIMP interpolation is that the gradient
is non-zero for xelc = 0, as shown in Figure 3.1. Alternatively, the SINH-interpolation
penalise the constitutive properties and the volume constraint as proposed by Bruns (2005)
for topology optimisation.
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Figure 3.1. Interpolations often used in structural optimisation. Here, all penalisations are set
to 3

Selecting appropriate penalisation is crucial for achieving a discrete design and a strong
optimum. High penalisation can make the optimisation problem more non-convex,
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(Labanda and Stolpe, 2015), thereby increasing the risk of obtaining a local optimum.
Petersson and Sigmund (1998) suggested that gradually increasing the penalisation,
known as a continuation, leads to better-optimised designs. The continuation strategy
is widely used, but new research in structural optimisation focuses on the relation between
computational performance and penalisation strategies. Labanda and Stolpe (2015)
proposed an automatic continuation strategy, where the penalisation is included as a design
variable in the optimisation problem.

In structural optimisation, manufacturing methods are often considered to realise
optimised designs and to study their effects on the design. The NCFs used for
wind turbine blades have a specific minimum width and length. To address this
manufacturing constraint in the DMO parameterisation, the blade geometry can be divided
into subdomains called patches. This is very efficient since it reduces the number of
design variables and introduces no additional constraints. To introduce patches the
parameterisation in Eq. (3.1), (3.2) and (3.3) is reformulated as shown in Eq. (3.5), (3.6)
and (3.7)

[C]el =

Nc∑
c=1

wc(xplc) [C]c (3.5)

Nc∑
c=1

xplc = 1 ∀(p, l, c) (3.6)

xplc ∈ [0; 1] ∀(p, l, c) (3.7)

In this thesis, the DMO parameterisation is used for the optimisation problem. It is less
computationally demanding and particularly useful for optimising wind turbine blades.

3.1 Stress Based Optimisation

Predicting failure in composites is challenging due to the absence of a universally accepted
criterion for failure.(Jones, 1998) In the wind turbine industry, the Puck Failure criterion
is widely used. However, using the adaption of the Puck failure criterion is limited in
optimisation since a part of the failure criterion involves solving an extremum problem
to determine the fracture plane (Puck and Schürmann, 2002; Jakobsen, 2022). Lund
(2018) used the maximum strain criterion and maximum stress criterion and a 9-node
isoparametric shell element to optimise laminated composite structures. Initial work by
Schøn (2023) was conducted to include the maximum strain criterion, maximum stress
criterion, and the inverse scaling of Tsai-Wu failure criterion by Groenwold and Haftka
(2006) using DMO and the stabilised 4-node shell element.

The Tsai-Wu failure criterion is a generalisation of the Von Mises failure criterion for
orthotropic materials. It captures the coupling between dilation and distortion in such
materials, which the Von Mises failure criterion fails to account for. Another advantage
of the Tsai-Wu failure criterion is its ability to consider the interaction between stress
components. This differentiates it from other criteria, such as the maximum strain and
maximum stress criteria. However, the Tsai-Wu failure criterion has been criticised since
Hart-Smith (1990) called the failure envelope a "meaningless curve drawn by unrelated
data points".
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Aggregate functions are commonly used to convert the local failure criterion into a global
criterion that can be represented as a single function. This can be achieved using,
for example, the P-norm aggregate function or the Kreisselmeier-Steinhauser function.
However, using the aggregate functions, there is an error between the largest failure value
and the aggregated function, which can be minimised by increasing the penalisation, but
this increases the non-linearity of the problem. When minimising the p-norm, its accuracy
becomes less important compared to when it is employed as a constraint. The adaptive
constraint scaling method proposed by Le et al. (2010) addresses this issue and introduces
numerical damping into the problem.

In gradient-based topology optimisation with stress constraints, singular optima becomes
an issue. This was first observed by Sved and Ginos (1968) for truss structures, where
the global optimum could not be attained through gradient optimisation by reducing the
cross-section. The issue was later explained by Kirsch (1989, 1990), where conventional
gradient-based methods fail to reach the optimal solution due to degenerated subspace of
the feasible domain.

The qp-relaxation by Bruggi (2008) is shown as x0.5plc in Figure 3.2 can address this issue.
This approach reformulates the problem and makes it more favourable for a candidate
material to be either present or not present since its intermediate values have a higher
weighting in the failure criteria and do not contribute to stiffness. Lund (2018) utilised
RAMP with negative penalisation on the failure index and linear interpolation on the
stress field to ensure intermediate densities were unfavourable.
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Figure 3.2. Weight functions used in structural optimisation for failure criterion.

These methods can introduce a failure criterion in the optimisation problem, thereby
preventing failure of the optimised laminated composites due to static loading. However,
other phenomena must be considered to ensure the structural integrity of the optimised
design. Laminated composites can be used to design thin-walled structures to obtain low
mass. As a result, buckling often becomes a crucial factor in the design of laminated
composites. As outlined in Appendix B, several approaches have different limitations to
optimise laminated composite structures and avoid structural instabilities.
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3.2 Optimisation Method

Appropriate selection of an optimisation method is essential to ensure computational
efficiency and a strong minimum. Structural gradient-based optimisation methods such as
the Moving Methods of Asymptotes (MMA), Sequential Quadratic Programming (SQP)
and Sequential Linear Programming (SLP) have been used to solve various problems.
MMA by Svanberg (1987) has been proven to be a powerful approach for addressing non-
linear problems and optimisation problems involving many design variables. However,
equality constraints can not be introduced directly, and the method becomes inefficient for
problems with many constraints (Hua et al., 2022). SLP is computationally attractive for
DMO since the parameterisation introduce several linear constraints, as shown in Eq. (3.6).
Therefore, this thesis will rely on previous experience with DMO and use the SLP from
IBM ILOG CPLEX and Sparse Nonlinear OPTimizer (SNOPT). SLP solves a linearised
version of the original nonlinear problem sequentially. Appropriate selection of move limits
is crucial for successful optimisation using SLP since the linearisation must approximate
the original problem adequately. Sørensen et al. (2014) introduce an adaptive move limit
strategy for selecting move limits based on oscillations of the object function.

Feasibility of the linearised problems can be ensured by reformulating the original objective
function κ(n) using the merit function ψn0 as shown in Eq. (3.8).

ψ
(n)
0 = κ(n) + a

K∑
k=1

(
cy

(n)
k +

1

2

(
y
(n)
k

)2)
(3.8)

Here, n is the iteration number, and K is the total number of non-linear inequality
constraints denoted g

(n)
k . To ensure a well-scaled problem between the objective function

and constraints, a must be appropriately selected by letting a = κ(1). The positive
penalisation factor c prevents the positive slack variables y(n)k > 0 from attaining large
values by making them numerically unattractive.

To include the slack variables in the constraints, the reformulated inequality constraints
denoted g(n)ψ,k are introduced in Eq. (3.9).

g
(n)
ψ,k = g

(n)
k − y

(n)
k ≤ gmax, k = 1, 2 · · · ,K (3.9)

This strategy can be applied to optimise a structural objective function denoted κn, but
gradient information of the objective function and constraint in Eq. (3.8) and (3.9) must
be provided. (Sørensen et al., 2014)
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4 Linear Buckling Optimisation

This chapter implements linear buckling optimisation using an EAS and MITC stabilised
4-node shell element since it is less computationally expensive than the non-linear buckling
analysis. A linear buckling problem can be formulated from the incremental equilibrium
equation in Eq. (2.47) and (2.57), where the tangent stiffness matrix can be reformulated
to a linear stiffness matrix [K0] and stress stiffening matrix [Kσ] as shown in.

([K0] + [Kσ])∆{D} = {R} (4.1)

For the element tangent stiffness matrix in Eq (2.47) the only term that depends on the
stress vector is [kuu]e, which can be observed from Eq. (2.48), (2.49) and (2.50). Therefore
only [kuu]e must be addressed to reformulate the element tangent stiffness matrix to the
linear element stiffness matrix in Eq (4.2) and the element stress stiffening matrix Eq (4.3),
where [kT]e = [k0]e + [kσ]e.

[k0]e =

∫ 1

1

∫ 1

1

∫ 1

1
[B0]

T [Ccon] [B0] |J | drdsdt− [kαu]
T
e [kαα]

−1
e [kαu]e (4.2)

[kσ]e =

∫ 1

1

∫ 1

1

∫ 1

1

d [B]T

d{d}
{σ}|J | drdsdt (4.3)

The linear buckling problem assumes small displacements. Thus, the linear strain
displacement matrix is used, while the volume integral is evaluated using the same methods
from subsection 2.2.8, i.e. thickness scaling and full integration.

To formulate the buckling problem, only in-plane forces are considered as λ{F0}, here
{F0} is a reference load and λ load multiplier also called the buckling load factor. The
stress stiffening matrix depends on the membrane forces expressed through the constant λ.
Therefore, the incremental equilibrium equation of the post-buckled denoted 0 and buckled
structure can be expressed using Eq. (4.4) and (4.5). Here, {Φ} denotes the displacement
from the post buckled to the buckled configuration.

([K0] + λ [Kσ])∆{D} = λ{F0} (4.4)

([K0] + λ [Kσ]) (∆{D}+ {Φ}) = λ{F0} (4.5)

Eq. (4.4) is subtracted from Eq. (4.5) to obtain the eigenvalue problem in Eq. (4.6). (Cook
et al., 2001; Lund and Lindgaard, 2022)(
[K0] + λj [Kσ]

)
{Φj} = {0}, j = 1, 2, · · · , NEV , NEV ≤ NDoF {Φj} ≠ {0}

(4.6)
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It implies the buckling load λj and the corresponding mode shape {Φj} are arranged
in ascending order based on the magnitude of the buckling load. Thus, λ1 represents
the lowest buckling load. NDoF is the total number of DOF in the model, and NEV is
the desired number of buckling loads to include in the optimisation problem. Due to
computational limitations, it is not feasible to introduce all the buckling loads that can
be calculated in the model. In this work, NEV is set to 10 to balance the computational
efficiency.

4.1 Design Sensitivity Analysis

The sensitivities of λj are needed because the buckling load λj is incorporated into the
problem as a constraint or as part of the objective function. DSA of linear buckling and
vibration problems has been conducted multiple times. Therefore, the approach described
in the current section aligns with the approach described in Lund (2009) and Sørensen
et al. (2014)

Buckling and vibration optimisation problems present challenges in situations where
multiple eigenvalues obtain the exact same value. This is often encountered in problems
with a large design space and symmetry (Seyranian et al., 1994). It results in non-
differentiable eigenvalues but can be addressed as shown by Lund (1994) and Seyranian
et al. (1994). In this thesis, only distinct eigenvalues are considered to reduce the
complexity of the DSA.

The full derivative of the buckling load factor with respect to (w.r.t) a design variable xplc
is calculated using direct differentiation of Eq. (4.6) as shown in Eq. (4.7).

d [K0]

dxplc
{Φj}+ ([K0] + λj [Kσ])

d{Φj}
dxplc

+
dλj
dxplc

[Kσ] {Φj}+ λj
d [Kσ]

dxplc
{Φj} = {0} (4.7)

The full derivative w.r.t a variable x is denoted with d
dx , where partial derivatives are

denoted ∂
∂x .

Eq. (4.7) is premultiplied with {Φj}T as shown in Eq. (4.8) to utilise the orthogonality
properties of eigenvectors. It is chosen to scale the eigenvector so {Φi}T [Kσ] {Φj} = −δij ,
which is known as [Kσ]-orthonormalisation. Since δij is Kronecker’s delta and j = i then
the [Kσ]-orthonormalisation can be written as {Φj}T [Kσ] {Φj} = −1.

{Φj}T
d [K0]

dxplc
{Φj}+ {Φj}T ([K0] + λj [Kσ])︸ ︷︷ ︸(

[K0]+λj [Kσ ]
)
{Φj}={0}

d{Φj}
dxplc

+
dλj
dxplc

{Φj}T [Kσ] {Φj}︸ ︷︷ ︸
−1

+λj{Φj}T
d [Kσ]

dxplc
{Φj} = {0}

(4.8)

d{Φj}
dxplc

is eliminated from Eq. (4.8) and dλj
dxplc

is isolated to obtain Eq. (4.9)

dλj
dxplc

= {Φj}T
(
d [K0]

dxplc
+ λj

d [Kσ]

dxplc

)
{Φj} (4.9)

The stiffness matrix is only a function of the design variables
[
K
(
{x}

)]
, therefore d[K0]

dxplc
is

the same as the partial derivative ∂[K0]
∂xplc

.
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d[Kσ ]
dxplc

is often calculated using a finite difference approximation since it is an implicit
function of the displacements

[
Kσ

(
{D}({x}), {x}

)]
and it makes it more complicated

to determine the analytical expression. Finite difference approximation is computationally
expensive because it requires perturbation on each design variable. Direct differentiation
of [Kσ] yields Eq. (4.10).

d [Kσ]

dxplc
=
∂ [Kσ]

∂xplc
+
∂ [Kσ]

∂{D}
d{D}
dxplc

(4.10)

Similarly, applying direct differentiation of {Φj}T d[Kσ ]
dxplc

{Φj}, leads to Eq. (4.11).

{Φj}T
d [Kσ]

dxplc
{Φj} = {Φj}T

(
∂ [Kσ]

∂xplc
+
∂ [Kσ]

∂{D}
d{D}
dxplc

)
{Φj} (4.11)

d{D}
dxplc

is computationally expensive for problems with many design variables but can be
eliminated from the total derivative. This is achieved by solving an additional system of
linear algebraic equations (adjoint equation) for each eigenvalue.

The derivative of the state variable can be calculated by direct differentiation of the linear
global equilibrium equation [K0] {D} = {Fext} as shown in Eq. (4.12).

d [K0]

dxplc
{D}+ [K0]

d{D}
dxplc

=
d{Fext}
dxplc

⇒ d{D}
dxplc

= [K0]
−1

(
d{Fext}
dxplc

− d [K0]

dxplc
{D}

)
(4.12)

It is assumed the forces are independent of the design variables, thus d{Fext}
dxplc

= {0}. This
applies to problems without volume forces and situations where the forces are applied on
a fixed boundary, preventing material removal. Consequently Eq. (4.11) can be written as
shown in Eq. (4.13), where d[K0]

dxplc
in Eq. (4.12) is equal to the partial derivative.

{Φj}T
d [Kσ]

dxplc
{Φj} = {Φj}T

(
∂ [Kσ]

∂xplc
− ∂ [Kσ]

∂{D}
[K0]

−1 ∂ [K0]

∂xplc
{D}

)
{Φj} (4.13)

Calculating the inverse of [K0] is computationally expensive, therefore an adjoint vector
{Λ} is introduced in Eq. (4.14)

{Λ}T = {Φj}T [K0]
−1 ∂ [Kσ]

∂{D}
{Φj} (4.14)

This is an advantage since it is more computationally expensive to invert the matrix than
determine the solution to the linear system of equations in Eq. (4.15), where [K0] = [K0]

T

due to symmetry of the linear global stiffness matrix.

{Λ}T [K0] = {Φj}T
∂ [Kσ]

∂{D}
{Φj}, Symmetry: ⇒ [K0] {Λ} =

(
{Φj}T

∂ [Kσ]

∂{D}
{Φj}

)T
(4.15)

Inserting the adjoint vector into Eq. (4.13) yields Eq. (4.16).

{Φj}T
d [Kσ]

dxplc
{Φj} = {Φj}T

∂ [Kσ]

∂xplc
{Φj} − {Λ}T ∂ [K0]

∂xplc
{D} (4.16)
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The computationally expensive derivative d{D}
dxplc

is thereby eliminated from the total
derivative by solving Eq. (4.15) and inserting {Λ}T into (4.17)

dλj
dxplc

= {Φj}T
∂ [K0]

∂xplc
{Φj}+ λj

(
{Φj}T

∂ [Kσ]

∂xplc
{Φj} − {Λ}T ∂ [K0]

∂xplc
{D}

)
(4.17)

This approach is very computationally efficient as ∂[K0]
∂xplc

and ∂[Kσ ]
∂xplc

are computationally
inexpensive to calculate and the factorised [K0] can be reused from the analysis.

4.1.1 Partial derivative of the stress stiffening matrix w.r.t {D}

To determine the adjoint vector in Eq. (4.15), it is necessary to calculate the partial
derivative of the stress stiffening matrix w.r.t {D} and the product with the eigenvector
{Φj}. This calculation can be evaluated on the element level as shown in Eq. (4.18).

(
{Φj}T

∂ [Kσ]

∂{D}
{Φj}

)T
=

(
Ne∑
e=1

[L]e

[
T(dG)

]
e
{Φj}Te

∂ [kσ]e
∂{d}e

{Φj}e

)T
(4.18)

To calculate ∂[kσ ]e
∂{d}e it is important to realise d[B]Tlimk

d{d}e in Eq. (4.3) is independent of {d}.
Therefore, it is only necessary to calculate the partial derivative of the stress vector in each
Gauss point and layer {σ}limk as shown in Eq. (4.19)

{Φj}Te
∂ [kσ]e
∂{d}e

{Φj}e =
Nlayer∑
l=1

2∑
i=1

2∑
m=1

2∑
k=1

wiwmwk{Φj}Te

(
d [B]Tlimk
d{d}e

∂{σ}limk
∂{d}e

)

|J |limk
hl

hLam
{Φj}e, Where: wi = wm = wk = 1

(4.19)

It is important to recognise in chapter 2 that the stress vector can be calculated using
Eq. (4.20) since it consists of

[
CCon

]
limk

and the sum of the compatible strain and
independent strain field shown in Eq. (2.34), while the internal DoF is removed using
static condensation in Eq. (2.60).

{σ}limk =
[
CCon

]
limk

(
[B0]limk {d}e −

[
M̄
]
limk

[kαα]
−1
e [kαu]e {d}e

))
(4.20)

Partial differentiation of Eq. (4.20) result in Eq. (4.21)

∂{σ}limk
∂{d}e

=
[
CCon

]
limk

(
[B0]limk −

[
M̄
]
limk

[kαα]
−1
e [kαu]e

))
(4.21)

The [kαα]
−1
e [kαu]e term can be calculated efficiently by determining [x] in [kαα]e [x] =

[kαu]e. The equation can be solved efficiently using Cholesky decomposition with highly
optimised Basic Linear Algebra Subprograms (BLAS-routines).

The
[
CCon

]
limk

is calculated using the same approach as shown in Eq. (2.29) for an
orthotropic material, but must include the DMO parameterisation. The constitutive
properties of the candidate material are defined in material coordinates, where [C12]c
is transformed to the element system using an in-plane transformation matrix [Tθ]c in
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Eq. (2.25). Subsequently, the constitutive properties are transformed to the contravariant
components at each Gauss point using [Tcon]limk as shown in Eq. (4.22).

[
CCon

]
limk

= [Tcon]
T
limk

Nc∑
c=1

(
[Tθ]

T
c wc(xplc) [C12]c [Tθ]c

)
[Tcon]limk (4.22)

(
{Φj}T ∂[Kσ ]

∂{D} {Φj}
)T

is calculated in the same loop since this will lead to DoF × NEV

matrix, where NEV indicates the number of eigenvectors and buckling loads considered
in the optimisation problem. This is mathematically permissible since ∂[kσ ]e

∂dDoF
can be

determined using Eq. (4.23), here dDoF represents a single DoF in {d}e.

∂ [kσ]e
∂dDoF

=
[
T(dG)

]
e

Nlayer∑
l=1

2∑
i=1

2∑
m=1

2∑
k=1

wiwmwk

((
d [B]T

d{d}

)
limk

[CCon]limk

(
[B0]limk

{IDoF}e −
[
M̄
]
limk

[kαα]
−1
e [kαu]e {IDoF}e

))
|J |limk

hl
h

(4.23)

Consequently, {IDoF}e is a vector with zero values in all its components except for the
one that corresponds to dDoF in ∂{d}e

∂dDoF
. This process can be effectively performed in

MUST through loops over each DoF, equivalent to extracting the components related to
the specific degree of freedom. Hence, there is no requirement to store and carry out
multiplication with a NDoF × NDoF × NDoF -array, which requires a significant memory
allocation compared to a 2-dimensional array.

4.1.2 Partial derivative of the linear stiffness matrix w.r.t xplc

The derivative of the global linear stiffness matrix w.r.t the design variables in Eq. (4.24)
must be calculated to obtain the total derivative.

∂ [K0]

∂xplc
=

Ne∑
e=1

[L]e

[
T(dG)

]T
e

∂ [k0]e
∂xplc

[
T(dG)

]
e

(4.24)

The partial derivative of the linear element stiffness matrix w.r.t xplc can be calculated
by partial differentiation of the element stiffness in Eq. (2.58) as shown in Eq. (4.25).
(Stagsted and Bertelsen, 2023)

∂ [k0]e
∂xplc

=
∂ [kuu]e
∂xplc

− ∂ [kαu]
T

∂xplc
[kαα]

−1
e [kαu]e + [kαu]

T [kαα]
−1
e

∂ [kαα]e
∂xplc

[kαα]
−1
e

[kαu]e − [kαu]
T [kαα]

−1
e

∂ [kαu]e
∂xplc

(4.25)

The DMO parameterisation uses the weight function wc
(
xplc

)
in Eq. (3.5), to parameterise

the constitutive properties for each candidate material. This means that only the
constitutive properties are dependent on xplc and the partial differentiation of Eq. (2.42),
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(2.43), (2.44) and (2.59) yields Eq. (4.26), (4.27), (4.28), and (4.29).

∂ [kαα]

∂xplc
=

Nlayer∑
l=1

2∑
i=1

2∑
m=1

2∑
k=1

wiwmwk ˜[M]
T

limk

∂ [Ccon]limk
∂xplc

˜[M]limk
1

|J |limk
hl

hLam
(4.26)

∂ [kuu]

∂xplc
=

Nlayer∑
l=1

2∑
i=1

2∑
m=1

2∑
k=1

wiwmwk [B0]
T
limk

∂ [Ccon]limk
∂xplc

[B0]limk |J |
hl

hLam
(4.27)

∂ [kαu]

∂xplc
=

Nlayer∑
l=1

2∑
i=1

2∑
m=1

2∑
k=1

wiwmwk ˜[M]
T

limk

∂ [Ccon]limk
∂xplc

[B0]limk
hl

hLam
(4.28)

∂ [kαu]
T

∂xplc
=

Nlayer∑
l=1

2∑
i=1

2∑
m=1

2∑
k=1

wiwmwk [B0]
T
limk

∂ [Ccon]limk
∂xplc

˜[M]limk
hl

hLam
(4.29)

∂[CCon]
limk

∂xplc
is calculated by the partial derivative of Eq. (4.22) using Eq. (4.30).

∂
[
CCon

]
limk

∂xplc
= [Tcon]

T
limk

Nc∑
c=1

(
[Tθ]

T
c

∂wc
(
xplc

)
∂xplc

[C12]c [Tθ]c

)
[Tcon]limk (4.30)

The thesis uses RAMP by Stolpe and Svanberg (2001). Accordingly, the derivative is
calculated using Eq. (4.31).

∂wc
(
xplc

)
∂xplc

=
1 + q

(1 + q(1− xplc))2
(4.31)

4.1.3 Partial derivative of Stress stiffening matrix
∂[Kσ ]
∂xplc

can be calculated on element level as shown in Eq. (4.32).

∂ [Kσ]

∂xplc
=

Ne∑
e=1

[L]e

[
T(dG)

]T
e

∂ [kσ]e
∂xplc

[
T(dG)

]
e

(4.32)

The stress vector is the only part of the element stress stiffening matrix in Eq (4.3) which
depends explicitly on the design variables. Therefore ∂[kσ ]e

∂xplc
is calculated using Eq. (4.33).

∂ [kσ]e
∂xplc

=

Nlayer∑
l=1

2∑
i=1

2∑
m=1

2∑
k=1

wiwmwk

(
d [B]T

d{d}e

)
limk

∂{σ}limk
∂xplc

|J |limk
hl

hLam
(4.33)

In Eq. (4.20) it is only the constitutive properties that depends explicitly on xplc, thus
∂{σ}limk

∂xplc
is calculated as shown in Eq. (4.34), where

∂[CCon]
limk

∂xplc
is calculated using

Eq. (4.30).

∂{σ}limk
∂xplc

=
∂
[
CCon

]
limk

∂xplc

(
[B0]limk {d}e −

[
M̄
]
limk

[kαα]
−1
e [kαu]e {d}e

))
(4.34)

4.2 Benchmark Examples

Validating the sensitivities is a step-wise process in which complexity is added to each
step. Therefore, this section utilises three benchmark examples to validate the analytical
DSA and compare the implementation to a 9-node isoparametric shell formulation and an
8-node solid shell formulation with EAS and ANS stabilisation.
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4.2.1 Single layered cantilever beam

The first benchmark example is shown in Figure 4.1. The benchmark example is utilised
since it only consists of a single layer with no curvature to reduce the complexity, and it is
possible to benchmark the implementation against a 9-node isoparametric shell formulation
and an 8-node solid shell formulation with EAS and ANS stabilisation.

Fixed end

Patch
Patch

Distributed load

Patch

Thickness:

Figure 4.1. Cantilever beam modelled using 20 stabilised 4-node shell elements and 500N/m
pressure load at the end.

The bound formulation by Bendsøe and Olhoff (1985); Olhoff (1989) shown in Eq. (4.35a)
is particularly useful to maximise the buckling load factors. Maximisation of the bound
variable β avoids certain buckling load factors increasing while decreasing other buckling
load factors.

Maximise
{x},β

β (4.35a)

Subjected to λj ≥ β, j = 1, · · · , 10 (4.35b)
Nc∑
c=1

xplc = 1 ∀(p, l, c) (4.35c)

xplc ∈ [0; 1] ∀(p, l, c) (4.35d)

The material properties of glass/epoxy in Table 4.1 are used to formulate 12 candidate
materials with lamina angle of 0,±15,±30,±45,±60,±75, 90. The penalisation factor
in RAMP is based on a continuation approach, where the penalty factors gradually
increase each 2nd iteration with +5 from 1, 1, 6, 6, 11, 11, · · · , 151, 151, 156, 156. The highest
penalisation is calculated using Eq. (3.4), where the single phase SIMP penalisation is set
to 3, which results in a multi-material RAMP penalisation of 156 (Hvejsel and Lund, 2011).
Different penalisation for [k0]e and [kσ]e can be applied, however the same penalisations
for [k0]e and [kσ]e is used in this thesis. In this work xplc is initialised by 1

Nc
∀(p, l, c) and

the merit function penalisation factor c is set to 100.
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Table 4.1. Material data used for the benchmark examples

Constant Unit Glass/epoxy
E1 [MPa] 3.8 · 104
E2 [MPa] 9.0 · 103
E3 [MPa] 9.0 · 103
ν12 [−] 0.3
ν13 [−] 0.3
ν23 [−] 0.3
G12 [MPa] 3.6 · 103
G23 [MPa] 3.6 · 103
G13 [MPa] 3.5 · 103
ρ [kg/m3] 1870.0

The analytical sensitivities are validated using the absolute error between the approximated
sensitivities using forward difference and the analytical sensitivities. The absolute error
decreases linearly as expected until it becomes numerically unstable, as shown in Figure 4.2.
(Martins and Ning, 2021) However, the absolute error increases at different perturbation
sizes. The same is observed for a 9-node isoparametric shell element formulation and a
stabilised solid shell element formulation. Further, the error is larger than expected but
can be explained by the approach used to solve the linear buckling problem. Here, the
subspace iteration method initially proposed by Bathe and Wilson (1973) for frequency
problems is utilised. This method is a computationally efficient and robust approach to
solve large eigenvalue problems (Bathe, 2013). Appendix C study the influence of the
subspace convergence tolerance on the sensitivities. It is observed the absolute error when
the convergence tolerance is decreased can be drastically reduced for smaller perturbation
sizes.
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Figure 4.2. Absolute error between the finite difference approximation and the analytical
expression for dλ1

dxplc
in the single-layered cantilever beam benchmark example

To measure the convergence, it is convenient to use the candidate non-discreteness Mcnd

in Eq. (4.36), introduced by Sørensen et al. (2014). Here Vel is the volume of the layer l in
element e. The candidate non-discreteness Mcnd = 0% if all the design variables are either
0 or 1 and Mcnd = 100% when all the design variables are equal to 1

Nc
.

Mcnd =

∑Ne
e=1

∑Nlayer

l=1 VelΠ
Nc
c=1

(
1−xplc
1− 1

Nc

)2

∑Ne
e=1

∑Nlayer

l=1 Vel
· 100% (4.36)

Figure 4.3 shows the convergence of mcnd and β for the stabilised 4-node shell element,
9-node isoparametric shell and the stabilised solid shell formulation have the same
convergence behaviour and results in a fully converged solution, where all xplc are either
1 or 0. The optimised results in all patches are 0◦, meaning all fibres are aligned with the
load direction.
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Figure 4.3. Convergence of the cantilever beam

The time to calculate the analytical sensitivities and assemble the stiffness matrix in
Figure 4.4 demonstrates that the stabilised 4-node shell element is less computationally
expensive than the 9-node isoparametric shell element. Further, it shows similar
computational performance to the 8-node solid shell formulation with EAS and ANS
stabilisation. The differences in the back substitution times are limited compared to those
observed for the sensitivity calculations and assembly time. In this example a Direct Sparse
Solver (DSS) is utilised and back substitution is performed when the global equilibrium
equation and the adjoint problem is solved.
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Figure 4.4. Time comparison of the time to perform sensitivity analysis assemble the stiffness
matrix and DSS solver back substitutions using the different elements. In the DSS back substitution
(GE) denotes the global equilibrium equation and (AP) adjoint problem.

4.2.2 Single Curved shell

A single curved shell structure with four layers illustrated in Figure 4.5 is used to validate
the sensitivities and compare the performance of the stabilised 4-node element and the
9-node isoparametric shell element. This benchmark example is selected since it adds
complexity with more layers and has a large radius of curvature, as illustrated in Figure 4.5b
to ensure the transformations are carried out correctly. Furthermore, the computational
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time to perform the finite difference approximations is feasible as the model consists of
only 10× 10 elements. In this example, the penalisation for wc(xplc) is increased with 1 in
each iteration 1, 2, 3, · · · , 156.

Patch Patch Patch Thickness:

Distributed loadFixed end

(a) The dimensions and the 10× 10 domain is divided into 10 patches

(b) The curved shell from yz plane (c) The curved shell from xy plane

Figure 4.5. The curved shell has 4 layers created by elevating the midpoint 0.05m along the
width. In the fixed end, translations and rotations are fixed

The analytical sensitivities are validated using the absolute error between the approximated
sensitivities using forward difference and the analytical sensitivities in Figure 4.6. The
absolute error curves show similar behaviour as addressed in subsection 4.2.1.
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Figure 4.6. Absolute error between the finite difference approximation and the analytical
expression for dλ1

dxplc
in the single curved shell structure

Figure 4.7 shows the stabilised 4-node shell element sensitivity calculation time and
assembly time of the stiffness matrix is more than three times faster than the 9-node
isoparametric shell element. The difference in the back substitution times is increased
compared to the differences observed in the cantilever beam benchmark example.
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Figure 4.7. Time comparison of the time to perform sensitivity analysis assemble the stiffness
matrix and DSS solver back substitutions using the different elements. In the DSS back substitution
(GE) denotes the global equilibrium equation and (AP) adjoint problem.

The stabilised 4-node shell element and the 9-node isoparametric shell element show the
exact same convergence of the objective function and mcnd as shown in Figure 4.8. The
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same applies to the results obtained from the convergence of the normalised buckling load
factors. Therefore, 4.9 only shows the normalised buckling load factors using the stabilised
4-node shell element. Here, all the buckling load factors are maximised, with the first
buckling load factor showing a greater increase than the others.
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Figure 4.8. Convergence of the single
curved shell model

Figure 4.9. Convergence of each nor-
malised buckling load factor. The buckling
load factors are normalised with the values
in the first iteration.

The optimised results in Figure 4.10 show unexpectedly different layups in the area close
to the load introduction. This was further investigated by applying different merit function
penalisation and continuation strategies to the stiffness penalisation. They converged to
different solutions, which demonstrates the non-convexity of the problem.
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Figure 4.10. The optimised design and the layer angle in degrees
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4.2.3 Spar cap

A simplified spar cap model in Figure 4.11 is used as a benchmark example. It is selected
to test the computational performance when the stabilised 4-node shell element and the
9-node isoparametric shell element are used on a larger problem than the previous two
benchmark examples. Additionally, the load and geometry create a symmetry plane in
the xz-plane, and it is expected that the optimised design will yield a similar symmetric
solution. The optimisation problem is formulated by dividing the elements into 6 equal-
sized patches along the width. An isotropic core material is introduced with the material
properties shown in Table 4.2. Increasing the number of design variables per patch
also increases the stiffness penalisation to 182 by using Eq. (3.4). In this example, the
penalisation is increased with 1 in each iteration 1, 2, 3, · · · , 182.

Egde BC:

Egde BC:

Egde BC:

Egde BC:

Figure 4.11. Simplified spar cap model inspired by Kühlmeier (2006); Lund (2009), with a radius
of curvature on 0.987m. This model consists of 4 1mm glass/epoxy layers (illustrated as the red
layer) and a 100mm isotropic foam core (illustrated as the blue layer). The model consists of 24
elements in width and 200 elements in the length direction with a 1 · 105N/m2 pressure load.

Table 4.2. Material data used in the benchmark example

Constant Unit Divinycell H130 (isotropic foam)
E1 [MPa] 180
ν12 [−] 0.29
G12 [MPa] 7
ρ [kg/m3] 1100

The computational performance in Figure 4.12 shows that the calculation time of the 9-
node isoparametric shell element’s sensitivities and the assembly time is nearly four times
larger than the stabilised shell element, while back substitution times are four and five
times larger.
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Figure 4.12. Time comparison of the time to perform sensitivity analysis assemble the stiffness
matrix and DSS solver back substitutions using the different elements. The DSS back substitution
(GE) denotes the global equilibrium equation and (AP) adjoint problem.

The convergence of the objective function in Figure 4.13 exhibits a desirable behaviour
where β increases and mcnd decreases without oscillations. The result is completely
discrete, so all design variables are either 1 or 0. The convergence of the normalised
buckling load factors,β and mcnd are nearly the same. Therefore, Figure 4.14 only shows
the buckling load factors for the stabilised 4-node shell element.
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Figure 4.13. Convergence of the spar cap
benchmark example.

Figure 4.14. Convergence of each nor-
malised buckling load factor. The buckling
load factors are normalised with the values
in the first iteration.

The optimised design is shown in Figure 4.15 and the corresponding buckling modes in
Figure 4.17. As expected, the optimised design exhibits symmetry around the symmetry
line in Figure 4.16.

The buckling load factors are numerically close to each other as seen in Figure 4.14. It can
be observed that the buckling loads close to each other indicate similar buckling modes as
shown in Figure 4.17. This is particularly evident for λ3 ⇌ λ4, λ5 ⇌ λ6, and λ8 ⇌ λ9.
Here, ⇌ indicates that the buckling modes before and after the symbol show similar
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behaviour and the buckling load factors are close. The optimised design is not suitable
for real-world applications because the various fibre angles do not contribute to a tolerant
design against static failure or global stiffness. This is especially noticeable in the fourth
layer, where the 90◦-layer does not contribute to the overall stiffness or strength against
static failure.

In the benchmark examples, the buckling load factors are maximised with a fast
convergence rate to a fully discrete solution.

Figure 4.15. The optimised design with the layer angle in degrees.

Layer 1 Layer 2 Layer 4 Layer 5

Symmetry

Figure 4.16. A subset of the geometry to show the optimised layer angle in the xy-plane.

46



4.2. Benchmark Examples Aalborg University
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Figure 4.17. The buckling modes for the optimised design, in descending order. {Φ1} is in the
top and {Φ10} in the bottom.
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5 Static Failure Optimisation

This chapter derives and validates the sensitivities for the maximum strain, maximum
stress, and Tsai-Wu failure criteria. Schøn (2023) derived the sensitivities for the EAS and
MITC stabilised 4-node shell element and tested the implementation on flat shells and
SIMP. This chapter extends the work to be used using RAMP and includes an additional
weight function to the stress field. A benchmark example demonstrates its application.

5.1 Strain and Stress Post-Processing

The most accurate covariant strains are evaluated at the super convergent Gauss Points.
The EAS formulation causes the element to behave similarly to a 9-node isoparametric shell
element. Consequently, the most accurate covariant strains are calculated in the 2× 2× 2

Gauss points, as they are considered the super convergent Gauss Points of a non-distorted
9-node isoparametric shell element. To accurately capture the linear variation of covariant
normal strains caused by bending moment, it is necessary to perform post-processing of
the strains at the top (m = 2) and bottom (m = 1) of each lamina as shown in Figure 5.1
for a single layer.

Gauss point

gp ave

elm

Figure 5.1. Post processing of the covariant strains from the Gauss points of each element e,
layer l and top or bottom value m

The covariant strain in each Gauss point is transformed to the element system using
[Tcon]

(gp)
el as shown in Eq. (5.1).

[Tcon]
(gp)
el {εcov}(gp)elm = {εd}(gp)elm (5.1)

The average strain vector at tl = ± 1√
3

denoted {εd}(gp,ave)elm is calculated using the strain
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vector in the Gauss points {εd}(gp)elm and Eq. (5.2).

{εd}(gp,ave)elm =
1

4

4∑
gp=1

{εd}(gp)elm (5.2)

The strain vector in the bottom and top of a layer in the laminate can be calculated by
extrapolation of {εd}(gp,ave)elm as shown in Eqs. (5.3) and (5.4).

{εd}el1 =
1

2
(1−

√
3){εd}(gp,ave)el1 +

1

2
(1 +

√
3){εd}(gp,ave)el2 (5.3)

{εd}el2 =
1

2
(1 +

√
3){εd}(gp,ave)el1 +

1

2
(1−

√
3){εd}(gp,ave)el2 (5.4)

The post-processed strain vector {εd}elm and the constitutive properties in the element
coordinate system are used to calculate the post-processed stress vector {σd}elm in
Appendix D and E.

5.2 Maximum Strain Criterion

To apply the maximum strain criterion, it is necessary to transform {εd}elm to the material
coordinate system as shown in Eq. (5.5).

[Tθ]c {εd}elm = {ε12}elmc (5.5)

Here [Tθ]c is defined in Eq. (2.25), where θ is determined by the corresponding candidate
material.

The strains in the material coordinate system {ε12}elmc are used to calculate the failure
index FI(p) using the maximum strain criterion as shown in Eqs. (5.6), (5.7) and (5.8),
where failure occur when FI(p) = 1.

−e1c ≥ ε1 ≥ e1t ⇒ ε1
e1x

= FI(p1) (5.6)

−e2c ≥ ε2 ≥ e2t ⇒ ε2
e2x

= FI(p2) (5.7)

|ε12|
e12

= FI(p12),
|ε13|
e13

= FI(p13),
|ε23|
e23

= FI(p23) (5.8)

Here e1c and e1t are the failure strain in compression and tension in the material 1-direction.
Similarly, e2c and e2t are the failure strain in compression and tension in the material
2-direction, while e12, e23 and e13 are shear failure strain values. Index x denote the
corresponding failure strain value determined by the sign of components {ε12}elmc.

For each candidate material, a failure index FIelmc is calculated as the maximum value of
the potential failure index FIelmc = max

(
FI

(p1)
elmc, F I

(p2)
elmc, F I

(p12)
elmc , F I

(p13)
elmc , F I

(p23)
elmc

)
.

The failure criterion is introduced into the optimisation problem using the same approach
as Lund (2018). A weight function, denoted as wFI(xplc) penalise intermediate xplc to
calculate an effective failure index FI(eff)elm as shown in Eq. (5.9).

FI
(eff)
elm =

Nc∑
c=1

wFI(xplc)FIelmc (5.9)
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The P-norm aggregate function in Eq. (5.10) converts the failure criterion to a single
function as described in section 3.1.

fpn =

 Ne∑
e=1

Nlayer∑
l=1

2∑
m=1

(
FI

(eff)
elm

)P 1
P

(5.10)

The aggregate function converges to the maximum value of FI(eff)elm as P approaches
infinity. However, a higher penalisation factor makes the problem increasingly non-linear,
which can cause numerical problems. Eq. (5.10) can be introduced as the objective function
or a constraint.

5.2.1 Design Sensitivity Analysis

The adjoint method is preferable since the failure criterion is described as a single
function with more design variables. Here, an additional equation is used to eliminate
the computationally expensive d{D}

dxplc
.

This is achieved by establishing the augmented Lagrange function in Eq. (5.11).

f̃pn
(
{D}({x}), {x}

)
= fpn

(
{D}({x}), {x}

)
− {Λ}T

(
[K0] {D} − {Fext}

)
(5.11)

The Lagrange multiplier vector {Λ} can be freely chosen as the extra term has no
contribution.

The chain rule is applied to determine the derivative of the augmented Lagrange function
as shown in Eq. (5.12).

df̃pn
dxplc

=
∂fpn
∂{D}

d{D}
dxplc

+
∂fpn
∂xplc

− {Λ}T
(

∂

∂{D}

(
[K0] {D} − {Fext}

)d{D}
dxplc

+
∂

∂xplc

(
[K0] {D}

− {Fext}
))

− d{Λ}T

dxplc
([K0] {D} − {Fext})︸ ︷︷ ︸

=0

(5.12)

In this thesis, the forces are assumed to be independent of the design variables. Therefore
Eq. (5.12) reduces to Eq. (5.13).

df̃pn
dxplc

=
∂fpn
∂{D}

d{D}
dxplc

+
∂fpn
∂xplc

− {Λ}T
(
[K0]

∂{D}
∂{D}

d{D}
dxplc

+
∂ [K0]

∂xplc
{D}

)
(5.13)

Eq. (5.13) is re-expressed in Eq. (5.14) using factorisation of d{D}
dxplc

.

df̃pn
dxplc

=

(
∂fpn
∂{D}

− {Λ}T [K0]

)
d{D}
dxplc

+
∂fpn
∂xplc

− {Λ}T ∂ [K0]

∂xplc
{D} (5.14)

The computationally expensive d{D}
dxplc

is eliminated if the Lagrange multiplier vector is a

solution to ∂fpn
∂{D} − {Λ}T [K0] = {0}, which is rewritten to obtain Eq. (5.15).

[K0] {Λ} =
( ∂fpn
∂{D}

)T
(5.15)
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The Lagrange multiplier vector is then inserted to obtain the total derivative df̃pn
dxplc

in
Eq. (5.16).

df̃pn
dxplc

=
∂fpn
∂xplc

− {Λ}T ∂ [K0]

∂xplc
{D} (5.16)

Adjoint equation
∂fpn
∂{D} can be expressed by applying the chain rule to Eq. (5.10) as shown in Eq. (5.17).(
∂fpn
∂{D}

)T
=

Ne∑
e=1

Nlayer∑
l=1

2∑
m=1

[L]e︸︷︷︸
NDoF×24

(
[TdG]e︸ ︷︷ ︸
24×20

(
∂fpn

∂FI
(eff)
elm︸ ︷︷ ︸

1×1

∂FI
(eff)
elm

∂FIelmc︸ ︷︷ ︸
1×1

∂FIelmc
∂{ε12}elmc︸ ︷︷ ︸

1×6

∂{ε12}elmc
∂{εd}elmc︸ ︷︷ ︸

6×6

∂{εd}elmc
∂{d}e︸ ︷︷ ︸
6×20

)T)

(5.17)

The first partial derivative in Eq. (5.17) is calculated by the partial derivative of the P-norm
aggregate function in Eq. (5.10) as shown in Eq. (5.18).

∂fpn

∂FI
(eff)
elm

=
(
FI

(eff)
elm

)P−1

 Ne∑
e=1

Nlayer∑
l=1

2∑
m=1

(
FI

(eff)
elm

)P 1
P
−1

(5.18)

FI
(eff)
elm in Eq. (5.9) is differentiated to obtain Eq. (5.19).

∂FI
(eff)
elm

∂FIelmc
=

Nc∑
c=1

wFI(xplc) (5.19)

The maximum strain criterion can predict mixed failure modes. These load scenarios are
rare, so assuming the failure mode is fixed is convenient. This leads to the expression
∂FIelmc

∂{ε12}elmc
in Eq. (5.20) being a scalar that corresponds to the failure mode. Hence,

the dimensions in Eq. (5.17) can be regarded as a mathematical statement rather than
implementation details.

∂FIelmc
∂{ε12}elmc

=

⌊
1

e1x
,
1

e2x
, 0,

1

e12
,
1

e13
,
1

e23

⌋
(5.20)

Partial differentiation of Eq. (5.5) yields Eq. (5.21).
∂{ε12}elmc
∂{εd}elmc

= [Tθ]elmc (5.21)

To calculate ∂{ε12}elmc

∂{εd}elmc
it is convenient to introduce the extrapolation matrices [E](±) in

Eq. (5.22).

[E](±) =



1
2(1±

√
3) 0 0 0 0 0

0 1
2(1±

√
3) 0 0 0 0

0 0 1
2(1±

√
3) 0 0 0

0 0 0 1
2(1±

√
3) 0 0

0 0 0 0 1
2(1±

√
3) 0

0 0 0 0 0 1
2(1±

√
3)


(5.22)
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For m = 1 and m = 2 then ∂{εd}elmc

∂{d}e is calculated using Eqs. (5.23) and (5.24).

∂{εd}el1c
∂{d}e

= [E](−)

1

4

4∑
gp=1

[Tcon]
(gp)
el

(
[B]

(gp)
e1m −

[
M̄
](gp)
e1m

[Kαα]
−1
e [Kαu]e

)

+ [E](+)

1

4

4∑
gp=1

[Tcon]
(gp)
el

(
[B]

(gp)
e2m −

[
M̄
](gp)
e2m

[Kαα]
−1
e [Kαu]e

) (5.23)

∂{εd}el2c
∂{d}e

= [E](+)

1

4

4∑
gp=1

[Tcon]
(gp)
el

(
[B]

(gp)
e1m −

[
M̄
](gp)
e1m

[Kαα]
−1
e [Kαu]e

)

+ [E](−)

1

4

4∑
gp=1

[Tcon]
(gp)
el

(
[B]

(gp)
e2m −

[
M̄
](gp)
e2m

[Kαα]
−1
e [Kαu]e

) (5.24)

These equations are used to calculate
(
∂fpn
∂{D}

)T
and determine the Lagrange multiplier

vector.

Partial derivative of the aggregated failure criterion

To calculate the total derivative ∂fpn
∂xplc

is the only expression that needs to be calculated

since the ∂[K0]
∂xplc

is determined in subsection 4.1.2. ∂fpn
∂xplc

is calculated using the chain rule
as shown in Eq. (5.25).

∂fpn
∂xplc

=

Ne∑
e=1

Nlayer∑
l=1

2∑
m=1

∂fpn

∂FI
(eff)
elm

∂FI
(eff)
elm

∂wFI(xplc)

∂wFI(xplc)

∂xplc
(5.25)

The first partial derivative in Eq. (5.25) is calculated in Eq. (5.18). ∂FI
(eff)
elm

∂wFI(xplc)
results in

the element failure index as shown in Eq. (5.26).

∂FI
(eff)
elm

∂wFI(xplc)
= FIelm (5.26)

This thesis uses RAMP with negative penalisation as a weight function for FIelm.
The calculation of ∂wFI(xplc)

∂xplc
is performed using Eq. (4.31). This approach enables

the calculation of the sensitivities of the maximum strain criterion using the provided
equations.

5.2.2 Single Curved shell

The example of the single curved shell from subsection 4.2.2 and failure strength data in
Table 5.1 is used to validate the analytical sensitivities. The absolute error between the
analytical DSA df̃pn

dxplc
and the finite difference approximation is illustrated in Figure 5.2.

The error decreases as expected until it becomes numerically unstable (Martins and Ning,
2021). Noticeably, the error is smaller than in the chapter 4.
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Figure 5.2. Absolute error between the finite difference approximation and the analytical
sensitivities in the single-curved shell benchmark example.

Table 5.1. Ultimate failure strength material data .

Constant Unit Glass/epoxy Divinycell H130
Xt [MPa] 930.0 3.7
Xc [MPa] 570.0 3.6
Yt [MPa] 33.0 3.7
Yc [MPa] 110.0 3.6
S12 [MPa] 70.0 2.4
S13 [MPa] 70.0 2.4
S23 [MPa] 41.5 2.4
e1t [-] 2.4·10−2 3.2·10−2

e1c [-] 1.5·10−2 2.0·10−2

e2t [-] 0.4·10−2 3.2·10−2

e2c [-] 1.2·10−2 2.0·10−2

e12 [-] 1.9·10−2 4.4·10−2

e13 [-] 1.9·10−2 4.4·10−2

e23 [-] 1.2·10−2 4.4·10−2

5.3 Benchmark Example: Spar Cap

The simplified spar cap model in subsection 4.2.3 compares the buckling-optimised design
with a failure-optimised design that includes a buckling constraint. This is achieved by
minimising the failure index while ensuring that the buckling load factors are larger than
five, as shown in Eqs. (5.27a), (5.27b), (5.27c) and (5.27d). The maximum stress criterion
and the Tsai-Wu failure criterion derived in Appendix D and E are used to compare the
influence of the failure criterion on the spar cap. It can be observed from Table 5.1
divinycell H130 is not entirely isotropic in the failure strength since the material has
differences in tension and compression. However, it is still referred to as an isotropic
material in this work.
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5.3. Benchmark Example: Spar Cap Aalborg University

Minimise
{x}

fpn({x}) (5.27a)

Subjected to λj ≥ 5, j = 1, · · · , 10 (5.27b)
Nc∑
c=1

xplc = 1 ∀(e, l, c) (5.27c)

xplc ∈ [0; 1] ∀(e, l, c) (5.27d)

This benchmark example uses the following continuation strategy on the stiffness
penalisation 1, 4, 7, · · · , 178, 182. Here, it increases each 3rd iteration or if the convergence
tolerance on the objective function is satisfied. The convergence tolerance is set to
0.1·10−5. The stress penalisation is set to 0 throughout the entire optimisation problem. A
continuation strategy is used to penalise the failure index. In this strategy, the penalisation
factor of the failure index decreases by −0.01 each 3rd iteration, following the sequence
0,−0.01,−0.02, · · · ,−0.8.

The optimised laminate is shown in 5.3. None of the optimisation problems obtain the
same result, but some general tendencies can be observed. At the edges, the maximum
strain and Tsai-Wu failure criterion, the fibres are aligned along the load direction, while
the top layers in the centre are more transverse to the load direction. The results for
the maximum stress criterion are not entirely symmetric around the same symmetry line
drawn in Figure 4.16. It is expected this is due to a local minima.
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Figure 5.3. The optimised design with the layer angle in degrees.
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R. K. Schøn 5. Static Failure Optimisation

The convergence curves in Figure 5.4 show a relatively discrete solution, here mcnd =

0.082% and there are only small oscillations on mcnd. This indicates good convergence
behaviour, as stress-based optimisation is recognised for its susceptibility to oscillatory
convergence. This is demonstrated by the convergence of the P-norm and the buckling
load factor constraint. Here are the amplitudes on the P-norm oscillations significant. The
constraint is infeasible for the initial 31 iterations but becomes feasible for the remainder.
In the first iteration, a global convergence filter was initialised. This filter is commonly
used to enhance global convergence by adaptively expanding and reducing the move limits
while rejecting unsatisfactory solutions to the linearised problem. (Hermansen and Lund,
2023a)
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Figure 5.4. Iteration data using the stabilised 4 node shell element

The failure indices for the optimised designs in Figure 5.5 reveal consistently low values
across most of the structure except the load introduction and corners. This presents a
challenge in stress-constrained optimisation, where singularities at load introductions and
corners can make it difficult to achieve feasible stress constraints.
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5.3. Benchmark Example: Spar Cap Aalborg University
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Figure 5.5. Failure index of the optimised design.
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6 Conclusion

In conclusion, this thesis has highlighted the limitations of various theories for modelling
laminated composites, with a particular focus on ESL-based theories. General laminated
composite structures are efficiently modelled using a 4-node shell element with EAS and
MITC stabilisation to address in-plane and transverse shear locking. The efficiency of the
element formulation makes it computationally attractive to use for the optimisation of
laminated composite structures.

The thesis uses the DMO parameterisation, which introduces many linear constraints,
making SLP the preferred method. In the design of laminated composites, it is essential to
consider buckling to ensure structural integrity. To efficiently address this in optimisation,
analytical DSA for linear buckling load factors has been implemented and validated using
forward difference approximation. The Bound formulation is utilised to maximise the
buckling load factors of three benchmark examples. It is demonstrated that improved
computational performance can be achieved using the stabilised 4-node shell element
compared to a 9-node shell element while performing similarly to an 8-node solid shell
formulation with EAS and ANS stabilisation.

This thesis implements and validates the DSA for the Tsai-Wu failure criterion, maximum
strain, and maximum stress criterion. This allows designers and researchers to gain insight
into how the choice of failure criterion impacts the design.

The failure criteria are introduced by calculating a failure index and utilising the P-norm
aggregate function to express the criteria as a global. To make intermediate densities,
unfavourable weight functions are introduced to penalise the stress field and failure index.
A benchmark example demonstrates how the choice of failure criterion can significantly
impact the design. In this case, three distinct solutions were obtained when minimising the
P-norm subjected to a buckling load factor constraint. The results were not fully discrete,
and large oscillations were observed in both the P-norm and the buckling constraint.
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7 Future work

The optimisation of large structures, such as wind turbine blades, presents a significant
challenge due to the trade-off between complexity and the time required to obtain
the optimised design. This thesis demonstrates the computational efficiency of the
stabilised 4-node shell element in optimisation failure and buckling optimisation.
Therefore, the computational advantage is expected to be obtained for other criteria and
parameterisations.

7.1 Failure optimisation

This thesis demonstrates efficient DSA for optimisation against failure predicted by the
maximum strain, maximum stress and Tsai-Wu failure criterion. These criteria are widely
used but come with the drawbacks described in section 3.1. Introducing the Puck failure
criterion is particularly interesting for optimising wind turbine blades, as this criterion is
commonly used in the industry.

Wind turbine blades are often exposed to various loading conditions, which can result in
structural damage, leading to reduced stiffness and strength. As described in the review
article by Passipoularidis and Brøndsted (2010), various approaches can be utilised to
model fatigue in composite structures. Hermansen and Lund (2023b) introduced high-
cycle fatigue as both a constraint and an objective. Predicting fatigue in laminated
composite structures with accuracy poses a significant challenge. Furthermore, validating
these predictions is costly due to the time required for fatigue experiments. This area of
research is particularly complex and interesting to address in optimisation.

7.2 Buckling

Another perspective on fatigue is the stiffness degradation and its effect on compliance,
buckling, and free vibration. Several phenomenological-based models exist where a damage
type is related to a decrease in some elastic properties.

It could be interesting to use these models to predict the stiffness reduction after a given
load spectrum and add buckling or free vibration constraints using the initial stiffness and
damaged stiffness. This can theoretically lead to a more damage-tolerant design compared
to only using the initial stiffness. This approach requires an additional buckling analysis to
be solved, which increases the computational expenses. Further, literature on the accuracy
of the stiffness reduction models for complex structures such as wind turbine blades is
sparse. Therefore, it raises questions about the worth of the effort.
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The linearised buckling analysis assumes a mathematically perfect structure, as described
in Appendix B. Therefore, the non-linear buckling problem will increase the accuracy
of the buckling analysis and reduce the safety factor of the buckling load factor.
Analytical DSA of the non-linear buckling problem can significantly contribute to making
it computationally attractive for optimising large laminated composite structures.

The non-linear buckling analysis also allows for considering geometrical and material
imperfections, as described in Appendix B.

7.3 Parameterisation

Optimisation with the stabilised 4-node shell element can be extended to include the lamina
thickness as a design variable using the Discrete Material and Thickness optimisation
(DMTO) by Sørensen et al. (2014). The DMTO scales the constitutive properties with
the additional thickness design variable. Initially, this caused challenges with intermediate
laminae artificially increasing the moment of inertia. This issue and the requirements
for thickness variation due to manufacturing are effectively addressed by introducing
additional constraints as explained in Sørensen et al. (2014). Instead of scaling the
constitutive properties Sjølund et al. (2018) proposed the DMTO parameterisation where
the thickness-variable is scaled directly, therefore later referred to as Discrete Material and
Direct Thickness Optimisation (DMDTO). Analytical DSA of the thickness variable using
DMDTO is particularly interesting to implement for the EAS and MITC stabilised 4-node
shell element since selecting the appropriate layer thickness is crucial for designing wind
turbine blades. Therefore, implementing analytical DSA of the thickness variable for the
stabilised 4-node shell element will be a substantial step towards computationally efficient
optimisation of wind turbine blades.
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A Covariant Green-Lagrange strain
tensor

This chapter derives the Green-Lagrange strain tensor in covariant components from Vu-
Quoc and Tan (2003) and Stagsted and Bertelsen (2023). This chapter is written in
matrix-vector notation to conform to the FE-form but concerns tensors. Therefore it is
still referred to as tensors.

The derivation is initiated from the general definition of the Green-Lagrange strain tensor
[E] in Eq. (A.1).

[E] =
1

2

(
[F]T [F]− [I]

)
(A.1)

Here [I] is the identity tensor, and [F] is the deformation gradient.

The position of the deformed configuration denoted {X} and undeformed configuration
{x} is used to define the deformation gradient [F] = ∂{x}

∂{X} . To formulate the deformation
gradient using Curvilinear coordinates, then the covariant base in Eq. (2.3) of the
undeformed configuration and contravariant base in the deformed configuration as shown
in Eq. (A.2).

[F] =
∂{x}
∂{X}

= {gi}{Gj}T (A.2)

The identity tensor in Curvilinear coordinates can be expressed in various forms, where it
is convenient to use the form in Eq. (A.3).

[I] = Gij{Gi}{Gj}T (A.3)

Eq. (A.2) and (A.3) are inserted to Eq. (A.1) and to obtain Eq. (A.4)(Vu-Quoc and Tan,
2003), where Eij is the covariant components of the strain tensor.

[E] =
1

2

(
({Gi}{gj}T )({gi}{Gj}T )−Gij{Gi}{Gj}T

)
=

1

2
(gij −Gij)︸ ︷︷ ︸

=Eij

{Gi}{Gj}T (A.4)

{gi} can be expressed using the initial configuration and the displacements {gi} = ∂{x}
∂ri

=

{Gi}+ ∂{u}
∂ri

and gij = {gi} · {gj}. This is substituted into the expression for Eij to obtain
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the Covariant Green-Lagrange strain tensor in Eq. (A.5).

Eij =
1

2

((
{Gi}+

∂{u}
∂ri

)(
{Gj}+

∂{u}
∂rj

)
−Gij

)

=
1

2

{Gi}
∂{u}
rj

+
∂{u}
ri

{Gj}︸ ︷︷ ︸
Linear term

+
∂{u}
ri

∂{u}
rj︸ ︷︷ ︸

Nonlinear term

 (A.5)
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B Optimisation of Structural
Instabilities

Structures can obtain several equilibrium configurations, but not all are stable. Therefore,
it is essential to account for buckling to prevent failure and structural instability. The study
of buckling has a long history in engineering. It can be traced back to the publication by
Euler (1744), where the buckling load for a column was calculated. Therefore, this type of
problem is often called Euler buckling. Advanced methods have been developed to predict
and optimise buckling behaviour in structural mechanics. (Goodno. and Gere, 2016)

The excellent stiffness and strength-to-weight ratios allow designers to design thin-walled
structures to obtain low mass. As a result, buckling often becomes a crucial factor in
the design of laminated composites. Buckling can take various forms, such as bifurcation
buckling. This buckling occurs when some part of the structure converts the membrane
strain energy into bending strain energy without applying additional load. This results
in large bending deformation to dissipate the membrane strain energy. It can also occur
without bifurcation, known as a limit point, where an increase in load leads to "snap-
through" buckling, and the structure adopts a new equilibrium configuration.

Buckling problems are often addressed in optimisation through linearised buckling despite
being non-conservative and unable to predict limit points. Linear buckling analysis
assumes a perfect structure without imperfections, disregarding the membrane and bending
coupling. Therefore, high safety factors should be used in linear buckling analysis. On the
other hand, non-linear buckling analysis provides more accurate buckling behaviour and
information about the post-buckling regime, but it comes at a higher computational cost.
(Cook et al., 2001)

The ability of structures to withstand buckling loads is significantly affected by
imperfections such as geometric, material, and load variations. There are several ways to
consider the effects of geometric imperfections in the analysis. These include incorporating
initial geometric flaws, introducing variations in material properties, and considering
observed imperfections in the physical structure. However, if the physical structure is
not available, other approaches, such as utilising the lowest mode shape of buckling as a
geometric imperfection, can be used. These approaches involve introducing imperfections
that lead to the lowest buckling load of the structure, known as the "worst" shape
imperfection. However, using the lowest buckling mode shape as a geometric imperfection
may not always accurately predict the "worst" imperfection. (Lindgaard, 2020) As a result,
Lindgaard et al. (2010) and Henrichsen et al. (2015) developed a two-step optimisation
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process known as recurrence optimisation. It involves minimising the buckling load to
determine the buckling mode shape and calculate the "worst" shape imperfection by adding
multiple mode shapes. Afterwards, the buckling load is maximised for the imperfect
structure to achieve a more reliable design. To achieve a design that is resistant to
buckling load, both linear and non-linear compliance minimisation techniques can be
utilised as they enhance the overall stiffness of the structure. Lindgaard and Lund
(2011) proposed an optimisation method using an element non-linearity factor to improve
resistance to buckling load for problems without stability points. The formulation was
tested against several other formulations, including linear buckling, nonlinear buckling,
linear compliance, nonlinear compliance, and first principal strain. The findings showed
that the most favourable formulation depends on the buckling behaviour. Nonlinear
buckling was superior for buckling with instability points, while the element non-linearity
factor formulation was preferred when stability points were absent.

In certain situations, loads exceeding the buckling load may enhance a structure’s
performance. As a result, a new field has emerged known as post-buckling optimisation,
which involves employing methods to achieve stable post-buckled structures. According
to the Lagrange-Dirichlet theorem, for a structure to be stable, the eigenvalues of the
tangent stiffness matrix must be positive. Therefore, as shown by Lindgaard (2013),
optimisation for stable post-buckled configurations can be obtained by ensuring that the
eigenvalues are positive. Henrichsen et al. (2016) and Henrichsen (2015) introduced an
alternative method using Koiter’s asymptotic analysis, involving calculating Koiter factors.
The method draws from Koiter’s asymptotic analysis, where a positive b-Koiter factor
indicates a stable configuration and a negative a-Koiter factor means asymmetric buckling
behaviour. Several objective functions were developed, such as maximising the b-Koiter
factor and minimising the absolute value of the a-Koiter factor. One key benefit of the
proposed method is that it reduces the computationally expensive post-buckling problem
to a series of linear buckling problems. The accuracy of the post-buckling behaviour can
be enhanced by including an additional linear term, but choosing an appropriate number
of linear terms is challenging.

These methods have different characteristics regarding conservativeness, objective and
computational efficiency, but they serve as valuable methods to prevent failure of laminated
composites due to structural instabilities.
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C Buckling DSA Studies

C.1 DSA comparison of stabilised 4-node shell element and
EAS stabilised 8-node solid shell element

The following graphs show the absolute error between the forward difference approximation
and the analytical sensitivities for the stabilised 4-node shell element and EAS stabilised
8-node solid shell element at different perturbations ∆xplc.

The results show nearly exact same behaviour using when 10−1 ≤ ∆xplc ≤ 10−4. The
results using perturbations from 10−5 ≤ ∆xplc ≤ 10−10 shows very different behaviour.
The absolute error for the stabilised 4-node shell element is generally lower, and the
highest values tend to cluster around certain design variables at higher buckling loads.
This clustering is not observed for the 8-node solid shell element, but the absolute error is
larger, and the largest values are observed at the highest buckling load.
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Figure C.1. Stabilised 4-node shell ele-
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Figure C.2. EAS stabilised 8-node solid
shell element
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Figure C.4. EAS stabilised 8-node solid
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Figure C.8. EAS stabilised 8-node solid
shell element
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Figure C.10. EAS stabilised 8-node solid
shell element
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Figure C.11. Stabilised 4-node shell
element

Figure C.12. EAS stabilised 8-node solid
shell element
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Figure C.13. Stabilised 4-node shell
element

Figure C.14. EAS stabilised 8-node solid
shell element
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Figure C.15. Stabilised 4-node shell
element

Figure C.16. EAS stabilised 8-node solid
shell element
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Figure C.17. Stabilised 4-node shell
element

Figure C.18. EAS stabilised 8-node solid
shell element
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Figure C.19. Stabilised 4-node shell
element

Figure C.20. EAS stabilised 8-node solid
shell element

C.2 Non-rectangular element DSA comparison of stabilised
4-node shell element and EAS stabilised 8-node solid
shell element

The non-rectangular element model is used to investigate the impact of the EAS
contribution on the results.

Similar to the results for the model with rectangular elements, nearly the same behaviour
when 10−1 ≤ ∆xplc ≤ 10−4. However, when the perturbation is 10−4, the absolute error
increases at higher eigenvalues for some of the first design variables when the stabilised
4-node shell element is used. In this region, the error remains large compared to the
other sensitivities when 10−4 ≤ ∆xplc ≤ 10−7 followed by an increasing absolute error and
clustering around certain dλi

dxplc
.

Fixed end
Distributed load

Figure C.21. Cantilever beam modelled with Non-rectangular. Dimensions are the same as the
single-layered cantilever beam in Figure 4.1
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Figure C.22. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.23. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element

0
10

5

10

|E
rr
or
|

15

6

5

"xplc:0.01

DV No

020406080100120

0
10

5

10

|E
rr
or
|

15

6

5

"xplc:0.01

DV No

020406080100120

Figure C.24. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.25. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element
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Figure C.26. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.27. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element
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Figure C.28. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.29. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element
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Figure C.30. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.31. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element
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Figure C.32. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.33. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element
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Figure C.34. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.35. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element
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Figure C.36. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.37. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element
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Figure C.38. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.39. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element
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Figure C.40. Cantilever beam with non-
rectangular stabilised 4-node shell element

Figure C.41. Cantilever beam with non-
rectangular EAS stabilised 8-node solid shell
element

C.3 Non-rectangular element DSA decreased convergence
subspace tolerance

The following numerical study investigates the influence of the convergence subspace
tolerance on the results from section C.1 and C.2. The previous studies are performed
using a convergence subspace tolerance on 10−8, while it is set to 10−13 for this study.

From 10−1 ≤ ∆xplc ≤ 10−4, the results are nearly identical, but at lower perturbations, the
absolute error is drastically reduced, and the previous clustering is eliminated. However,
for the design variables corresponding to the patch with the fixed boundary, there is still
a "plateau" where the error remains constant when the perturbation decreases.
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Figure C.42. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance

Figure C.43. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance
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Figure C.44. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance

Figure C.45. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance
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Figure C.46. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance

Figure C.47. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance

0
10

0.1

0.2

|E
rr
or
|

0.3

0.4

6

5

"xplc:1e-07

DV No

020406080100120

0
10

0.1

0.2

|E
rr
or
|

0.3

0.4

6

5

"xplc:1e-08

DV No

020406080100120

Figure C.48. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance

Figure C.49. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance
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Figure C.50. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance

Figure C.51. Cantilever beam with non-
rectangular stabilised 4-node shell element
with decreased convergence tolerance

86



D Maximum Stress Criterion

The DSA of the maximum stress criterion contains some of the same main equations
derived in section 5.2 for the maximum strain criterion. Thus, this chapter only highlights
the main distinctions between the two criteria.

The candidate failure index is calculated by a transformation of the post-processed
stress vector {σd}elmc which is calculated using the post-process strain vector and the
constitutive properties in the element coordinate system as shown in Eq. (D.1).

{σd}elm = [Cd]el {εd}elm = [Tθ]
T
elm [C12]elm [Tθ]elm {εd}elm (D.1)

Here, the transformation of the stress vector to the material coordinate system is performed
using Eq. (D.2).

[Tθ]
−T {σd}elm = {σ12}elm (D.2)

The maximum stress criterion was derived for the stabilised 4-node shell element in Schøn
(2023) using only a weight function on the failure index. This thesis extends the criterion
to include an additional weight function on the stress field wσ(xplc), to obtain the same
penalisation for RAMP as presented in Lund (2018). Therefore an effective stress vector
{σ12}(eff)elm is introduced in Eq. (D.3).

wσ(xplc){σ12}elm = {σ12}(eff)elm (D.3)

This thesis uses RAMP without any penalisation for wσ(xplc), corresponding to the linear
weighting shown in Figure 3.2. The failure index is calculated using the ultimate failure
stress values and aggregated using the P-norm aggregate function.

The sensitivities are calculated using the adjoint method. Therefore, only
(
∂fpn
∂{D}

)T
and

∂fpn
∂xplc

need to be calculated using slightly modified expressions.(
∂fpn
∂{D}

)T
is calculated using the chain rule in Eq. (D.4).

(
∂fpn
∂{D}

)T
=

Ne∑
e=1

Nlayer∑
l=1

2∑
m=1

[L]e

(
[TdG]e

(
∂fpn

∂FI
(eff)
elm

∂FI
(eff)
elm

∂FIelmc

∂FIelmc

∂{σ12}(eff)elmc

∂{σ12}(eff)elmc

∂{σ12}elmc

∂{σ12}elmc
∂{σd}elmc

∂{σd}elmc
∂{εd}elmc

∂{εd}elmc
∂{d}e

)T)
(D.4)
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The approach is analogous to the maximum strain criterion carried out under the
assumption of a fixed failure mode. Consequently, the calculation of ∂FIelmc

∂{σ12}(eff)elmc

is

performed using Eq. (D.5).

∂FIelmc

∂{σ12}(eff)elmc

=

⌊
1

Xx
,
1

Yx
, 0,

1

S12
,

1

S13
,

1

S23

⌋
(D.5)

∂{σ12}(eff)elmc
∂{σ12}elmc

is calculated by differentiation of Eq. (D.3) as shown in Eq. (D.6).

∂{σ12}(eff)elmc

∂{σ12}elmc
= wσ(xplc) (D.6)

The partial derivative of Eq. (D.2) w.r.t {σd}elmc is calculated using Eq. (D.7).

∂{σ12}elmc
∂{σd}elmc

= [Tθ]
−T
elmc (D.7)

Differentiation of Eq. (D.1) yields Eq. (D.8)

∂{σd}elmc
∂{εd}elmc

= [Tθ]
T
elmc [C12]elmc [Tθ]elmc (D.8)

These expressions solve the adjoint problem to obtain {Λ}.

Since there are two interpolation functions, ∂fpn
∂xplc

becomes slightly more complicated.

FI
(eff)
elm is a function of wFI(xplc) and wσ(xplc), thus the chain rule yields Eq. (D.10).

∂fpn
∂xplc

=

Ne∑
e=1

Nlayer∑
l=1

2∑
m=1

∂fpn

∂FI
(eff)
elm

(
∂FI

(eff)
elm

∂wFI(xplc)

∂wFI(xplc)

∂xplc
+
∂FI

(eff)
elm

∂FIelmc
(D.9)

∂FIelmc

∂{σ12}(eff)elmc

∂{σ12}(eff)elmc

∂wσ(xplc)

∂wσ(xplc)

∂xplc

)
(D.10)

The only new term in Eq. (D.10) is ∂{σ12}(eff)elmc
∂wσ(xplc)

, which is calculated by differentiation of
Eq. (D.3) as shown in Eq. (D.11)

∂{σ12}(eff)elmc

∂wσ(xplc)
= {σ12}elmc (D.11)

The analytical sensitivities are validated using the single curved shell model and compared
against finite difference approximations at various perturbation sizes, as shown in
Figure D.1.
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Figure D.1. Absolute error between the finite difference approximation and the analytical
sensitivities in the single-curved shell benchmark example.
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E Tsai-Wu Failure Criterion

The DSA of the Tsai-Wu failure criterion contains some of the same main equations derived
in section 5.2 and D. Thus, this chapter only highlights the main distinctions between these
criteria.

The Tsai-Wu failure criterion and the von Mises failure criterion are both quadratic criteria.
Unlike the von Mises failure criterion, the Tsai-Wu failure criterion considers the coupled
nature of distortion and dilatation. This makes it particularly suitable for predicting
the failure of orthotropic materials.(Jones, 1998) The failure criterion is reformulated by
(Groenwold and Haftka, 2006) to be proportional to the load for practical usage. A second-
order polynomial equation in Eq. (E.1) is obtained from the reformulation of the Tsai Wu
failure criterion.

γ2(F11σ
2
1 + F22σ

2
2 + 2F12σ1σ2 + F66σ

2
6) + γ(F1σ1 + F2σ2)− 1 = 0 (E.1)

Here the same notation as presented in Jones (1998) is used for representation of the

stress vector {σ12} =
⌊
σ1, σ2, 0, σ66, 0, 0

⌋T
. Similar to the maximum stress criterion in

Appendix D a wσ(xplc) is utilised to penalise the stress field. The stress vector used to

calculate Eq. (E.1) is therefore {σ12}(eff) = wσ(xplc)
⌊
σ1, σ2, 0, σ66, 0, 0

⌋T
. Further, the

Tsai-Wu strength values are calculated using the ultimate failure stress in the principal
material directions and the following equations:

F1 =
1

Xt
− 1

Xc
, F2 =

1

Yt
− 1

Yc
, F11 =

1

XtXc

F22 =
1

YtYc
, F12 ≈ −1

2

√
F11F22, F66 =

1

S2

An analytic solution to a second-order polynomial equation can be obtained using
Eqs. (E.2), (E.3), (E.4) and (E.5).

γ =
−b±

√
d

2a
(E.2)

a =F11σ
2
1 + F22σ

2
2 + 2F12σ1σ2 + F66σ

2
6 (E.3)

b =F1σ1 + F2σ2 (E.4)

d =b2 + 4a (E.5)

The smallest positive root serves as a safety factor against failure, and the failure index is
calculated as the reciprocal of this safety factor, as demonstrated in Eq. (E.6).

FI =
1

γ
(E.6)
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The failure index in Eq. (E.6) is interpolated using wFi(xplc) and aggregated using the
same methods presented in chapter 5.

E.1 Sensitivity Analysis(
∂fpn
∂{D}

)T
for the Tsai-Wu failure criterion is calculated using the chain rule as shown in

Eq. (E.7).

(
∂fpn
∂{D}

)T
=

Ne∑
e=1

Nlayer∑
l=1

2∑
m=1

[L]e

(
[TdG]e

(
∂fpn

∂FI
(eff)
elm

∂FI
(eff)
elm

∂FIelmc

∂FIelmc

∂{σ12}(eff)elmc

∂{σ12}(eff)elmc

∂{σ12}elmc

∂{σ12}elmc
∂{σd}elmc

∂{σd}elmc
∂{εd}elmc

∂{εd}elmc
∂{d}e

)T)
(E.7)

Eqs. (5.18), (5.19), (D.7), (D.8), (5.23) and(5.24) are utilised to compute ∂fpn

∂FI
(eff)
elm

, ∂FI
(eff)
elm

∂FIelmc

∂{σ12}elmc

∂{σd}elmc
, ∂{σd}elmc

∂{εd}elmc
and ∂{εd}elmc

∂{d}e . The distinction between Eq. (E.7) and the equation for
the maximum stress criterion in Eq. (D.4) lies in the terms related to the failure indices,
which is calculated using the chain rule in Eq. (E.8).

∂FIelmc

∂{σ12}(eff)elmc

=
∂FIelmc
∂γelmc

(
∂γelmc
∂aelmc

∂aelmc

∂{σ12}(eff)elmc

+
∂γelmc
∂belmc

∂belmc

∂{σ12}(eff)elmc

+
∂γelmc
∂delmc

(
∂delmc
∂aelmc

∂aelmc

∂{σ12}(eff)elmc

+
∂delmc
∂belmc

∂belmc

∂{σ12}(eff)elmc

))
(E.8)

In Eq. (E.8), the partial derivatives w.r.t the safety factor against failure are implemented
using Eqs. (E.9) and (E.10).

∂γelmc
∂delmc

=± 1

4aelmc
√
delmc

(E.9)

∂γelmc
∂aelmc

=
belmc ±

√
delmc

2a2elmc
(E.10)

The symbol ± in this context should correspond to the sign in Eq. (E.2) that yields the
smallest positive root. (Gadegaard and Thuesen, 2022; Schøn, 2023; Troelsgaard et al.,
2023)
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∂FIelmc
∂γelmc

= = −γ−2
elmc (E.11)

∂γelmc
∂belmc

=
−1

2aelmc
(E.12)

∂delmc
∂belmc

=2belmc (E.13)

∂delmc
∂aelmc

=4 (E.14)

∂belmc
∂{σ12}(eff)

=

⌊
F1,elmc, F2,elmc, 0, 0, 0, 0

⌋
(E.15)

∂aelmc

∂{σ12}(eff)elmc

=

⌊
2F11,elmcσ1,elmc + 2F12,elmcσ2,elmc, 2F22,elmcσ2,elmc + 2F12,elmcσ1,elmc, 0,

2F66,elmcσ6,elmc, 0, 0

⌋
(E.16)

Eq. (D.10) is used to calculate ∂fpn
∂xplc

, where the failure index calculated from Tsai-Wu
failure criterion is used. The analytical sensitivities are validated using the single curved
shell model and compared against finite difference approximations at various perturbation
sizes, as shown in Figure E.1.
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Figure E.1. Absolute error between the finite difference approximation and the analytical
sensitivities in the single-curved shell benchmark example.
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