
Master’s Thesis
Mathematical Engineering

Malware Detection utilizing
Reinforcement and Federated

Learning

Author:
Martin Møller Sørensen

Supervisors:
Shashi Raj Pandey
Christophe Biscio

June 3, 2024

Dept. of Mathematical Sciences
Skjernvej 4A, DK-9220 Aalborg Øst

http://math.aau.dk

Title:
Malware Detection utilizing Reinforcement
and Federated Learning

Project Period:
February 2024 - June 2024

Participant:
Martin Møller Sørensen

Supervisors:
Shashi Raj Pandey
Christophe Biscio

Pages: 32

Date of Completion:
June 3, 2024

Abstract:

In the rapidly evolving landscape of cy-
bersecurity, malware detection provides a
complex and dynamic challenge. This the-
sis explores innovative techniques in the
reinforcement learning and the federated
learning domain to enhance the robustness
and sophistication of malware detection sys-
tems. This thesis has developed a reinforce-
ment learning framework, which incorpo-
rates components of the Rainbow reinforce-
ment learning approach, there has demon-
strated superior results in Atari games and
similar potential advancements could be
achieved in the realm of malware detec-
tion. To quantifying the results of the pro-
posed reinforcement learning framework,
a baseline utilizing the conventional deep
Q-network was established. The purposed
framework was evaluated in a centralized
and decentralized environment.

The content of this project is freely available, but publication may only be pursued in agreement with the
author.

http://math.aau.dk

Preface

This thesis concludes my final semester of the Master program Mathematical Engineering
at the Department of Mathematical Sciences at Aalborg University. This thesis was written
in the time period between February 2024 and May 2024.

For the thesis, it is preferred that the target audience is sufficiently familiar with the
terminology inherent to the domain of machine learning and reinforcement learning. Ad-
ditionally, terminology specific to the domain of cybersecurity is employed for further
information.

The script related to this thesis was written in Python 3.11, and is accessible in the attached
folder, MAT-TEK10.

The author thanks Shashi Raj Pandey (Department of Electronic Systems) and Christophe
Biscio (Department of Mathematical Sciences) for the support and guidance throughout
the project’s writing process.

Aalborg Universitet, June 3, 2024.

Nomenclature

Acronyms

Description Acronym

action, next action and action space a, a′,A
state, next state and state space s, s′,S
reward and return r, G

value funtion and action-value function V, Q

discount factor and learning rate γ, α

Abbreviations

Description Abbreviation

Deep Q-Network DQN
Double Deep Q-Network DDQN
Federated Learning FL
Importance-sampling IS
Machine Learning ML
Mean Squared Error MSE
Neural Network NN
Prioritized Experience Replay PER
Reinforcement Learning RL
Denial of Service DoS
Intrusion Detection Systems IDS
Remote to Local R2L
User to Root U2R

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Purpose and Objective . 2
1.3 Outline . 2

2 Deep Q-Network 3
2.1 Prerequisites . 3
2.2 Deep Q-Network . 6
2.3 Double Q-learning . 7
2.4 Prioritized Experience Replay . 7
2.5 Dueling Networks . 8
2.6 Multi-step Learning . 9
2.7 Distributional RL . 9
2.8 Noisy Nets . 10
2.9 Rainbow . 11

3 Federated Learning 12
3.1 Prerequisites . 12
3.2 Cross FL . 12
3.3 Lifecycle Process . 13

4 Experiments 15
4.1 NSL-KDD Dataset . 15

4.1.1 Analysis . 16
4.2 Framework Description . 17

4.2.1 Environment . 17
4.2.2 Agent . 17

4.3 Implementation and Requirement . 18

5 Results 19
5.1 Baseline . 19
5.2 Rainbow Components on Centralized Framework 21
5.3 Zero-day Attacks in a Federated Framework 22
5.4 Comparative study . 25

6 Conclusion 26

Bibliography 27

Appendices 29

A Distribution of the dataset 30

B Specification 32

1 | Introduction

In the rapidly evolving landscape of cybersecurity, malware detection provides a complex
and dynamic challenge, which can be compared to a strategic game between two players,
similar to chess. One of the players represent the attacker, the cybercriminals, which is
both the creator and distributor of malicious actions. The other player corresponds to the
defender, cybersecurity analysts or detection systems, where the objective is safeguarding
the modern digital and interconnected landscape, as advancements in technology rapidly
advances. The game occurs in the digital world, dominated by creative thinking, where
both the attacker and the defender are regularly reinventing existing strategies to obtain
an advantage.

The game of malware detection is centralized around keywords such as identification and
mitigation of malicious actions. The attacker has an information asymmetry, which provides
the cybercriminals with an advantage, as they determine when and where to launch an
attack. Firstly, a reconnaissance of the target victim is performed, to identify vulnerabilities
that potentially can be exploited. Cybercriminals have designed malicious software with the
purpose of infiltrating and compromising victim networks or devices. This provides a signifi-
cant threat against not only the individuals, but also businesses and governments worldwide.

The defender fall short in options as it is infeasible to employ all existing malware detection
approaches, and further individual strategies results in various outcomes. This restricts
the defender in the decision of strategy, as overlaps in capabilities of approaches result in
a wasteful utilization of the available resources. The primary objective for the defender
is to develop sophisticated detection systems, that have the capacity to accurately and
consistently identify and mitigate malware threats before the attacker have the opportunity
to inflict any damage.

1.1 Motivation

With the tremendous influence of the digital world on our physical realm, the technological
advancement of the physical world progresses in the direction of industrial 4.0, which
introduces new levels of intelligence capabilities. The never-ending rapid growth of data is
a response to the technological advancement and interconnected landscape, introducing
an unprecedented challenge, the threats of cyberattacks being more critical and rapidly
advancing [14, p. 1]. Cyberattacks are quite expensive, and a successful data breach
could potentially result in a devastating impact to the entire nation, during the potential
consequences of unauthorized access or manipulation of data. The devastating impact of a
data breach of sensitive data, spans from financial losses to reputational damage, and can
be permanent. As organizations store vast amount of data, the requirement for robust and
sophisticated cybersecurity mitigation strategies becomes paramount.

The cybercriminals continually refine their techniques to circumvent detection approaches,
and continue to pose the threat of exploiting vulnerabilities in systems and networks. The
threat spans from ransomware attacks targeting critical infrastructure to sophisticated
phishing attempts to steal sensitive information. The cybercriminals launch approximately
2200 cyberattacks every day on a global scale [14, p. 1]. In fact, zero-day attacks remain a

1

CHAPTER 1. INTRODUCTION

significant challenge to the cybersecurity domain. This category of attacks includes novel
and unseen malware, where conventional cybersecurity approaches fall short. Reinforcement
Learning (RL) exhibits the capabilities to learn from previous experiences and adapt to
the complex and dynamic attack surface.

In cybersecurity, universally representative datasets of the real world are critically important
for developing reliable RL agents. The drawback of centralizing sensitive data, is to maintain
data privacy and confidentiality. Federated Learning (FL) mitigates these challenges,
and enables collaborative model training across decentralized environments, without the
requirement of data centralization. An advantage of utilizing a decentralization approach
is reducing the risk of data exposure and preventing the sharing of sensitive information.

1.2 Purpose and Objective
This thesis will contribute to the research field of malware detection by integrating the
Rainbow RL approach in combination with FL. The primary objective is to develop a
reinvent strategy for malware detection that prioritizes data privacy preservation.

The purpose of this thesis is to explore innovative techniques in both the RL and FL
frameworks, and their application to malware detection systems. It is anticipated that the
results achieved in this thesis will serve as a factor in the consideration of the integration
of this innovative thinking of the combination between enhanced RL approaches and FL
framework, into the current infrastructures. As threats and vulnerabilities can arise in any
technology, the research of innovative cybersecurity approaches is of paramount importance
to guarantee the security of our interconnected digital global network.

The objective of this project is to develop a RL-based framework for malware detection, with
the purpose of exploring its potential within this domain. The Rainbow RL approach has
demonstrated superior results in Atari games [6, p. 2], and similar potential advancements
can be achieved in the realm of malware detection. The primary focus is to compare
componentes of this advanced algorithm with the widely utilized conventional Deep Q-
Network (DQN) algorithm. The DQN RL approach will serve as a central baseline, while
the components of the Rainbow RL approach will be examined both in a centralized and
decentralized context. This study will apply the well-established dataset NSL-KDD, which
contains various types of attacks divided into distinct classes. This dataset will provide a
reference point for evaluating the performance of the proposed RL-based framework for
malware detection.

1.3 Outline
The Rainbow RL approach will probably be a novel concept for the reader, therefore
Chapter 2 will present an overview of the variety of enhancements related to the DQN RL
algorithm, which will contribute to the Rainbow RL framework. Chapter 3 will outline
FL, where a comparison between centralized and decentralized approaches is presented. In
Chapter 4, details about the system setup, including various configurations, is described
and an overview of the dataset that has been utilized in this study will be presented.
Chapter 5 examines the results for various scenarios, reflecting the effectiveness of the
proposed RL-based framework. Finally, Chapter 6 will conclude the thesis, and discuss the
possibility for potential enhancements

2

2 | Deep Q-Network

This chapter will attempt to provide an overview and introduce the terms relating to
the field of DQN RL, and to discuss the aspects of enhancements that collaborate to the
Rainbow RL framework. This chapter is primarily based on [13, pp. 3-7, 10-12] and [6,
pp. 1-4].

2.1 Prerequisites

RL is a subfield of Machine Learning (ML), where the purpose is to enable an agent to
acquire information through interacting with an environment. Initially, the agent lacks
explicit knowledge about the decisions, but through trial and error, the agent discovers
which decisions lead to the most desired outcomes. Below, some major aspects associated
with RL are outlined.

• Agent: The agent is the system decision-maker that interacts with the environment
by performing a variety of actions, making observations, and achieving rewards or
penalties in return. In practical terms, the agent is the software that attempts to
solve a virtual representation of a real world challenge.

• Environment: The environment is the external system with which the agent
interacts. The communication between the environment and the agent is limited to
the following terms, observations, actions, and rewards. The environment can be
either a physical system or a virtual world.

• Observations: Observations are the information that is perceived from the en-
vironment. The agent will receive an observation/state, which is representing the
agent vision that captures a snapshot of the current configuration of the environment,
required for the decision-making.

• Actions: Actions are the agent’s abilities to interact and alter the environment. The
set of actions corresponds to all the feasible decisions that the agent can perform in
a particular state. An action can either be continuous or discrete.

• Rewards: Rewards are numerical values that are periodically provided by the
environment as feedback to the agent. A reward is a number that can be positive or
negative and large or small. The objective of the agent at time-step t is to maximize
the expected accumulative reward, defined as:

G =
∞∑

t=0
γtrt+1 (2.1)

where γ represent the discount factor, which determines the magnitude of future
accumulative rewards. A reward is local, as it represents the immediate advantage
or cost associated with the execution of a specific action, and is independent of the
cumulative accomplishments the agent have achieved.

• Transitions: Transitions are terms that expresses the characteristics of a system
from one state to another state. One transition, also referred to as a cycle or step,
comprises four elements (s, a, r, s′), where s represent the current state, a corresponds
to the executed action, r reflects the reward and s′ denotes the next state.

3

CHAPTER 2. DEEP Q-NETWORK

• Policy: A policy, denoted π, is the strategy that the agent deploys to determine which
actions to execute in various states, as it maps a particular state to a corresponding
action. The optimal policy π∗ is the strategy that maximizes the expected reward.

• Value function: The value function, denoted V (s), is a function that represents
the expected cumulative reward that the agent can receive for a certain state s:

V (s) = E[Gt|St = s] (2.2)

• Action-value function: The action-value function, denoted Q(s, a), is similar to
the value function. It is a function that quantifies the expected return that the agent
can achieve by performing a certain action a in a particular state s:

Q(s, a) = E[Gt|St = s, At = a] (2.3)

• Bellman’s equation: Bellman’s equation encapsulates the core principles of RL,
enlightening why the agent behaves as it does and how it anticipates future rewards:

Q(s, a) = E[r + γQ(s′, a′)] (2.4)

Robot Mouse

To clarify the relationship between the terms introduced above, a relatively simple example
can be utilized. For simplicity, the following example examines a robot mouse that navigates
in a 4x4 grid maze.

Example 2.1: Robot Mouse
Consider a robot mouse that is restricted to navigating in a grid maze, where a certain
number of cells contain pieces of cheese, and others provide an electric shock, which is
illustrated in Figure 2.1.

Figure 2.1: The robot mouse navigating in a maze. [9, p. 3]

4

CHAPTER 2. DEEP Q-NETWORK

In this example, the agent is the robot mouse and the environment is the maze containing
cheese and electricity. The robot mouse is interacting with the environment by navigating
around in the maze, by selecting one of the available actions from the action space
{up, down, left, right}. At each moment, the robot mouse observes the state of the
maze to determine which action to perform. Consider the state illustrated on the figure,
the robot mouse is limited to the actions up or down. The objective of the robot
mouse is to maximize the collected return, where obtaining cheese provides a positive
reward, conversely receiving an electric shock incurs a negative reward. Depending on the
determined reward function, the robot mouse might even consider accepting an electric
shock if it results in a greater overall return.

This example highlights the critical requirement to initially explore the environment, before
exploiting the accumulated knowledge. Additionally, it indicates why hard-coding the entire
knowledge related to the environment and the optimal sequence of actions is insufficient.
This approach is time-consuming and proves impractical when minor adjustments occur
in the maze’s shape, size, wall configurations, or item placements. As mentioned in
Section 1.1, RL exhibits the ability to learn from previous experiences and adapt to
complex and dynamic environments.

Q-Learning

To solve the robot mouse problem, Q-learning presents a possible solution because it is a
model-free approach, in which prior knowledge of the environment is not required. The
agent obtains knowledge by exploring the environment. Q-learning is a foundational algo-
rithm in RL and serves as the basis for more advanced techniques that will be discussed later.

The Q-learning algorithm is a value iteration update of the Bellman equation, following
the form:

Q(s, a)← Q(s, a) + α(r + γ max
a

Q(s′, a)) (2.5)

where α corresponds to the learning rate. The function redefines the action-value function
for each time step. To store the information about the environment, the agent generates
a searchable database, denoted as a Q-table. Initially, the Q-table is initialized with an
arbitrary starting value, such as zero. The Q-table consists of state-action values, with rows
representing the various states the agent could encounter, and the columns corresponding
to the desired action space.

Utilizing chess notation, the maze’s X-axis is labeled with letters from A to D, and the
Y-axis with numbers from 1 to 4. The initial location of robot mouse is C2, within the
maze spanning from A1 to D4. To clarify, consider the Q-table provided in Table 2.1, where
a full table would contain 16 rows and four columns; for simplicity, only the important
rows are provided. The robot mouse starts in state C2, and decides to navigate up, it
encounters an electrical shock, resulting in a penalty of −1. In contrast, if the robot mouse
is in state C1 and decides to navigate left, it receives a positive reward of +1. In the table,
an − indicates an infeasible action, while a 0 represents a neutral action.

5

CHAPTER 2. DEEP Q-NETWORK

State/Action Up Down Left Right

C1 0 − 1 0
C2 −1 0 − −

Table 2.1: Q-table for the robot mouse example.

As mentioned above, the agent acquires knowledge by interacting with the environment
and receiving feedback, in the form of rewards or penalties. The objective is to continually
enhance the agent’s performance, utilizing the Q-table. As the agent discovers which
decisions lead to the most favorable outcomes, the Q-table progressively becomes more
reliable, enabling the agent to determine more precise decisions. One of the limitations
related to Q-learning is the requirements of a Q-table. In a complex environment with a
high-dimensional state space, the Q-table quickly becomes impractically large.

2.2 Deep Q-Network
The DQN approach address several limitations of conventional Q-learning. It was in-
troduced by DeepMind in 2015 [10, p. 1], this approach was a significant innovation in
the RL field. It was reaching performance levels that surpassed human capabilities in
various Atari 2600 games. The Atari 2600, a home video game console from the late 1970s,
contains a variety of old games, that serve as benchmarks for evaluating the performance
of RL algorithms. This breakthrough, by employing NN in combination with already
existing RL techniques, was the first phase of enhanced capabilities that have contributed
to improvements in conventional Q-learning.

The DQN addresses the limitations encountered in the conventional Q-learning approach,
when interacting with complex and high-dimensional state-action spaces. One of the major
innovations was the incorporation of Q-networks that facilitates the end-to-end learning
ability, by approximating the Q-function. The Q-function maps a state to the corresponding
Q-values for all feasible actions:

Qθ : S ∈ Rm 7→ A ∈ Rn =⇒ s 7→ a (2.6)

This advantage enables the agent to evaluate the expected future rewards of various actions.
Depending on the decision-making technique, the agent would select the action containing
the highest Q value. The epsilon-greedy strategy is to balance the trade-off between
exploration and exploitation.

Two identically feedforward NN are implemented, an online network (Q(θ)) and a target
network (Q(θ̄)), where θ and θ̄ are the parameters of the networks respectively. The online
network is updated frequently during the learning process, while the target network served
as a reference point for updating the parameters. Regularly, the target network will be
synchronized with the online network.

Another major innovation was the integration of replay memory (D), which was primarily
associated with deep learning, but also served as a crucial element in stabilizing the DQN
training process. The replay memory serves the purpose of storing the experienced transi-
tions (s, a, r, s′) experienced by the agent during interactions with the environment. The
experienced transitions are presumed to have a correlation, so to eliminate this correlation

6

CHAPTER 2. DEEP Q-NETWORK

during training, a uniform batch of random transitions is drawn from the replay memory
((s, a, r, s′) ∼ U(D)).

The loss function for the DQN algorithm is computed in terms of the Mean Squared Error
(MSE) between the predicted Q-value and the target Q-value:

L(θ) = (r + γ max
a′∈A

Q(s′, a′; θ̄)−Q(s, a; θ))2 (2.7)

The objective is to minimize the loss, and consequently strengthen the DQN agent’s
decision-making capabilities.

2.3 Double Q-learning

The Double Q-learning (DDQN), introduced in 2016 [10, p. 2095], addresses one of the
challenges associated with the DQN approach, the overestimation bias in the Q-values,
leading to a decline in the performance. The DDQN approach takes advantage of two
distinct networks, a target network and an online network, to decompose the action selection
and evaluation process. The loss function for DDQN is defined as:

L(θ) = (r + γQ(s′, arg max
a′∈A

Q(s′, a′ : θ); θ̄)−Q(s, a; θ))2 (2.8)

In contrast to the DQN approach, where the action with the maximum Q-value was selected,
DDQN instead deploys the action corresponding to the maximum Q-value in the current
state, and evaluates it by applying the target network. This small change, and still crucial
extension, has provided the ability to reducing the overestimation, resulting in an enhanced
performance.

2.4 Prioritized Experience Replay

The Prioritized Experience Replay (PER), introduced in 2016 [12, pp. 3-5], was an extension
to the already existing replay memory. Instead of uniformly and randomly sampling
transitions from the replay memory, the PER approach was to draw the important samples
more frequently during the training process. The priority of each sample is calculated on the
basis of the TD error (δ). However, a limitation arises from the limited number of samples
that update the priorities. A stochastic prioritization is implemented to balance between
the greedy prioritization and uniform random sampling, by normalizing the priorities
relative to the remaining priorities in the buffer. The probability of sampling transition i
is defined as:

P (i) = pα
i∑

k pα
k

(2.9)

where pi = |δi| + ε, 0 < ε ≪ 1 is the priority of transition i, utilizing the proportional
prioritization. The parameter α determines the level of prioritization, the smaller the value
assigned to α the more importance to prioritize.

The drawback is that this introduces a bias towards recent transitions. To reduce this
annealing bias, importance-sampling (IS) weights are utilized.

wi = (1
N × P (i))β (2.10)

7

CHAPTER 2. DEEP Q-NETWORK

where β controls the amount of IS correction over time, reaching β = 1 at the end of
learning. The transitions have been extended to include the variable (wi), which is the
priority weight associated with the transition.

2.5 Dueling Networks

The Dueling networks, introduced in 2016 [15, pp. 4-5], was a reshaping of the existing
NN architecture. The Q-network, was decomposed into two elements, the value function
(V (s; β) : X 7→ R) and the advantage function (A(s, a; α) : X 7→ Rn), where β and α are
the parameters of the networks respectively.

Figure 2.2: The traditional Q-network (top) and the dueling Q-network (bottom). [15, p. 1]

The value function represents the reward obtained from state s, while the advantage
function indicate how advantageous selecting an action is relative to the others. The
combination of the two functions is defined as:

Q(s, a; θ) = V (s; β) + A(s, a; α) (2.11)

where θ := α ∪ β. Approximating the two functions separately introduces an identifiable
problem. Assuming a predefined Q-value, the individual functions cannot be uniquely
determined. To address this issue of identifiability, the highest Q-value is forced to
correspond to the value V (s; β), implying that the advantage function is equal to zero, and
the remaining will be negative:

Q(s, a; θ) = V (s, β) + (A(s, a; α)−max
a′∈A

A(s, a; α)) (2.12)

The unique recovery is guaranteed, and furthermore this approach can be redefined by
replacing the maximum operator with the average:

Q(s, a; θ) = V (s, β) + (A(s, a; α)− 1
|A|

∑
a′

A(s, a; α)) (2.13)

8

CHAPTER 2. DEEP Q-NETWORK

In other words, this guarantees that on average the advantage is equal to zero. Consequently,
when this is conditional, the agent learns to offset around zero to estimate the advantage
for each action.

2.6 Multi-step Learning

The multi-step learning [5, pp. 2-3], in context to DQN, is an extension of the traditional
Q-learning approach, where the agent accumulates experience over multiple steps. In a
one-step DQN, the agent only considers the immediate reward in addition to the discounted
expected reward:

Q(s, a; θ) = r + γ max
a′∈A

Q(s′, a′; θ̄) (2.14)

The multistep enhancement in DQN enables the agent to incorporate knowledge of future
rewards into the learning process, leading to a potential improvement in performance. The
multistep DQN for n-step is defined as:

Q(s, a; θ) = R
(n)
t + γ(n)maxa′∈AQ(St+n, a′; θ̄), R

(n)
t :=

n−1∑
k=0

γkrt+k+1 (2.15)

In multistep learning, an appropriate value for n is important.

2.7 Distributional RL

The distributional RL, introduced in 2017 [1, pp. 8-9], is presumed to be the most
complicated expansion of DQN enhancements. It approximates the distribution of the
Q-value, instead of representing the mean with a single numerical value. The Distributional
RL approach is based on the distributional Bellman equation:

Z(s, a) D= R(s, a) + γZ(s′, a′), (2.16)

which is almost identical to the traditional Bellman equation, except that Z(s, a) and
R(s, a) are now the probability distributions and not a single number.

In the Distributional RL, a predefined support vector covers the entire Q-space, which
generally ranges [Vmin, Vmax] ∈ R. The support vector is partitioned into Natoms sub-
intervals, with each atom zi defined as:

zi = Vmin + i∆z where ∆z = Vmax − Vmin

Natoms − 1 , (2.17)

The probability associated with each atom is defined as:

Zθ(s, a) = zi w.p. pi(s, a) = eθi(s,a)∑
j eθj(s,a) (2.18)

Employing a discrete distribution presents the challenges, that the Bellman update and the
parameterization generally have disjoint supports. To address this challenge, the sample
Bellman update τ̂Zθ is projected onto the support Zθ. Consider a sample transition,
(s, a, r, s′), the Bellman update for each atom zj is expressed as:

τ̂ zj = r + γzj (2.19)

9

CHAPTER 2. DEEP Q-NETWORK

The ith component of the projected update is defined as:

(Φτ̂Zθ(s, a))i =
N−1∑
j=0

[
1−
|[τ̂ zj]vmax

Vmin
− zi|

∆z

]1

0
pj(s′, π(s′)) (2.20)

where [·]ba confines its argument within the range [a, b].

Figure 2.3: A distributional Bellman operator with a deterministic reward function: (a)
Next state distribution under policy π, (b) Discounting shrinks the distribution towards 0,

(c) The reward shifts it, and (d) Projection step. [1, p. 2]

The sample loss for the distributional RL algorithm is computed in terms of the Kull-
back–Leibler divergence:

DKL(Φτ̂Zθ(s, a)||Zθ(s, a)) (2.21)

2.8 Noisy Nets

The noisy nets, introduced in 2018 [4, pp. 8-9], is an enhancement primarily associated with
NN, by introducing uncertainty into the NN parameters. For a fully connected layer with a
p-dimensional input, the q-dimensional output is typically defined as a linear combination
of input and weight:

y = wx + b (2.22)

where x ∈ Rp represents the input of the layer, b ∈ Rp corresponds to the bias, and
w ∈ Rq×p denotes the weight.

Including a small amount of noise to the network parameters, noisy nets encourage
exploration in the action space, without requiring additional exploration strategies, such
as the epsilon-greedy strategy. For the noisy nets, the traditional output of a perceptron is
modified:

y = (µw + σw ⊙ εw)x + (µb + σb ⊙ εb) (2.23)

where µw, σw ∈ Rq×p and µb, σb ∈ Rq are learnable parameters and ⊙ denote the element-
wise product. εw ∈ Rq×p and εb ∈ Rq corresponds to the noise, generated according to
two different techniques, independent Gaussian noise or factorized Gaussian noise. The
independent Gaussian noise will probably be inefficient, as it requires each weight to have
an independent noise. In contrast, the factorized Gaussian noise is more efficient, requiring

10

CHAPTER 2. DEEP Q-NETWORK

only two random variables εi and εj , to generate noise for each weight:

εw
i,j = f(εi)f(εj) (2.24)
εb

j = f(εi) (2.25)

where f(x) = sgn(x)
√
|x|. The enhancement of noisy nets enables the agent to discover

different and potentially more efficient strategies to interact with the environment. During
the training process, the agent learns to ignore noisy terms when exploration is no longer
beneficial.

2.9 Rainbow

The Rainbow, introduced in 2018 [6, pp. 1-3], is an advanced variant of the traditional
DQN, as it incorporates a variety of enhancements and innovations of techniques that have
previously been introduced, to improve the performance and robustness of RL algorithms. In
summary, the Rainbow architecture comprises the seven major extensions, each containing
their respective beneficial aspects.

• DQN: The DQN is the foundational algorithm in the architecture.

• DDQN: The DDQN reduces the overestimation of Q-values, by decoupling the
action selection and evaluation networks.

• PER: The PER improves the sample efficiency by prioritizing significant transitions
in the replay memory.

• Dueling networks: The dueling networks decomposing the Q-function into a value
function and an advantage function for enhanced policy evaluation.

• Multi-step learning: The multi-step learning enhances the learning efficiency by
bootstrapping over multiple time steps.

• Distributional RL: The distributional RL represents the distribution of expected
returns, rather than a single scalar value.

• Noisy nets: The noisy nets incorporate a noisy stream into the network parameters
to improve exploration and robustness.

11

3 | Federated Learning

In the recent present, the FL approach has been receiving an increased interest in general.
The primary objective of this chapter is to outline the essential concepts related to FL,
including the fundamental principles, the lifecycle of an FL model, and the typical training
process. This chapter is primarily based on [8, pp. 4-9].

3.1 Prerequisites

FL is an ML approach that enables multiple decentralized systems to establish a global
model, without exchanging information between them. In contrast to traditional ML
techniques, where raw information is transmitted to a centralized system for training, FL
facilitates the ability to train models locally. Only model updates are shared with a server,
where aggregation is performed to refine the global model. The FL approach emphasizes
the training of the collaborative model while maintaining the privacy and security concerns
of the data, as mentioned in Section 1.1. In the following, some significant components
associated with FL are presented.

• Clients: The clients are either devices or nodes that consist of a local dataset, and
are participating in the training process by computing model updates according to
their respective local datasets. Common examples of clients are cell phones and IoT
devices.

• Aggregation server: The aggregation sever is the central part of FL that is
responsible for gathering the model updates received from the clients. The updates
are subsequently aggregated to refine the global model. The Aggregation server is
restricted to only receive and processes the model updates gathered from the clients.

• Global model: The global model is the shared model that all the clients are
attempting to refine. Initially, it is initialized with predefined parameter, and receives
periodic updates during the training process. A significant advantage of this approach
is the ability to integrate insights from multiple datasets.

3.2 Cross FL

Data privacy preservation has been a longstanding challenge for over five decades. In 2016,
a groundbreaking solution, FL, addressed this challenge. Throughout the last decade, FL
has actively been implemented into a wide variety of applications that span a range of
scales. The FL framework can be divided into two fundamental classes, Cross-silo and
Cross-device:

• Cross-silo: The Cross-silo FL paradigm is primarily associated to collaborative
learning distributed across multiple organizations. The organizations generally have
concerns about data privacy and security, preventing them from sharing raw data
between the clients and the server. The total amount of client is typically limited, yet
they possess substantial computational capabilities. Ensuring reliability is a crucial
aspect, as these clients need to be consistently available to refine the global model.

12

CHAPTER 3. FEDERATED LEARNING

• Cross-device: The Cross-device FL framework is primarily centered on collaborative
learning distributed among a variety of devices belonging to a single organization.
In a cross-device FL system, the number of clients is usually enormous, with the
drawback of communication ability being limited. The network of clients is notably
prone to unreliability. Through the training process, a considerable fraction of the
clients is anticipated to encounter challenges, due to unexpected factors ranging from
battery failure to network disruptions.

From the above explanations, it is observed that both the cross-silo and the cross-device
FL framework enable collaborative model training across a decentralized environment,
while addressing privacy and security concerns. In Table 3.1 a comparison between a
traditional centralized ML and the two FL frameworks is presented with various selected
characteristics.

Centralized Cross-silo Cross-device

Client’s type: Compute nodes in
a single cluster.

Different organiza-
tions.

Mobile or IoT de-
vices.

Amount of clients: 1 to 1000. 2 to 100. There are no re-
strictions.

Client availability: All clients. The majority of
all clients.

A fraction of
clients.

Data type: Centralized. Siloed data, and
decentralized.

Decentralized.

Addressability: Each client is as-
signed an identity
or name.

Each client re-
ceives an identity
or name.

Client lacks the
ability to be in-
dexed.

Reliability: Relatively few
encounters chal-
lenges.

Relatively low er-
ror rate.

Highly unreliable,
anticipated to
encounter chal-
lenges.

Bottleneck: Computation. Computation or
communication.

Communication,
such as Wi-Fi.

Table 3.1: Overview of a centralized ML compared with the two FL frameworks. [8, p. 6]

3.3 Lifecycle Process
The FL lifecycle process, illustrated in Figure 3.1, is commonly initialized when a model
engineer identifies a specific challenge, and attempts to develop a novel strategy applicable
to this real-world application. To achieve optimality, the model engineer can proceed by
developing prototype model architectures and fine-tuning learning hyperparameters within
an FL simulated environment that utilizes a virtual dataset as a basis. Next, the FL
training process, where an aggregation server administers the process, and the following
steps are performed iteratively until a predetermined stopping criterion is satisfied.

• Client selection: The client selection is the initial process, where the portion of
clients that satisfy the necessary criteria is selected to participate in the training
round.

13

CHAPTER 3. FEDERATED LEARNING

• Computation: The computation phase is where the selected clients receive the
global model from the server. Subsequently, each client individually computes an
adjustment for the global model.

• Aggregation: The aggregation server aggregates all the updates that are submitted
from the clients, and refines the global model.

Figure 3.1: The lifecycle of an FL-trained model and the various actors in a federated
learning system. [8, p. 7]

Several strategies have been developed for the aggregation process [11, p. 10]. One of
the simplest and most well-established techniques is the average aggregation (FedAvg).
Utilizing this strategy, the aggregation server basically summarizes and averages the
received updates. Suppose that there are N clients, each providing an individual update
wi, the aggregated update w is computed as:

w = 1
N
∗

N∑
i=1

wi (3.1)

After a predefined criterion is achieved, the federated model is analyzed and evaluated.
This analysis involves the assessment of statistical metrics computed utilizing a standard
centralized dataset. In addition, a federated evaluation technique can be employed, where
the global model is evaluated on decentralized datasets. In the case that the developed
global model is not satisfied, the FL training process is repeated and a new global model is
developed.

Once a sequence of analyses and evaluations has been conducted, and an acceptable global
model has been established, the standard model launching process begins. The application of
the accepted model generally operates independently of the process developed. Additionally,
it is essential to consider the compatibility of the model’s quality, as the simulated
environment will probably be distinct from the real-world application environment.

14

4 | Experiments

The subject of this chapter is to briefly describe the dateset utilized for training and
evaluating the proposed RL framework. Additionally, the chapter will present the framework
description there will be considered for this thesis, covering multiple application scenarios.
The final section outlines the specification and requirement for the implementation.

4.1 NSL-KDD Dataset

This section is primarily based on [2, pp. 3-4] and [16, pp. 6-8].

In Section 1.1 there was highlighted several crucial reasons why cybersecurity is a paramount
aspect in the today’s interconnected digital world. For this objective, a relative representa-
tive dataset is essential. There exist a limited amount of datasets serving as a benchmark
for network Intrusion Detection Systems (IDS) [16, p. 7]. For the thesis, it was determined
to utilize the NSL-KDD dataset, serving as a reference point for evaluating the proposed
RL framework.

The 2009 NSL-KDD dataset is an enhancement of the well-established KDD Cup99 dataset,
which is the primary and most frequently employed dataset for network IDS. The KDD
Cup99 dataset comprises approximately 4.900.000 records in the training set and another
3.000.000 records in the testing set, both characterized by 41 features, which will not be
discussed further [2, pp. 10-11]. One limitation of the KDD-Cup99 dataset is that there is
redundant and duplication of records, actually a proportion of 75− 78 % of the records are
duplicates, which contributes to an imbalance between the amount of normal traffic and
the total number of attacks.

To address this challenge, the NSL-KDD dataset has been refined by eliminating unneces-
sary and duplicate records in both the training and test datasets, resulting in a remarkably
reduced complexity of the dataset. Additionally, this refinement provides several benefits;
for instance, the learns performance is not biased towards more frequent records, and the
reduced dataset size eliminates the requirement to take a chunk and thereby introduce
randomly. Consequently, this ensures more reliable and reproducible results across various
research studies.

There are several limitations to consider, especially With a dataset in a sensible area like
cybersecurity. As mentioned in Section 1.1, threats are rapidly evolving, and cybercrime is
highly profitable, both financially and reputationally. This means that it is impossible to
continually maintain the novel attacks and that the datasets can quickly become outdated.
For example, this data set was established in 1999, which means that it is already twenty-
five years old. Another notable limitation of the dataset is that it does not reflect a
universally representative dataset of the real world, as it only includes 40 distinct attack
types. However, in reality, the magnitude of potentially threats is never-ending, as novel
attacks rapidly are developed.

15

CHAPTER 4. EXPERIMENTS

4.1.1 Analysis

The dataset is freely available from kaggle.com [18], and the folder contains the file
index.html, which provides a description of the NSL-KDD dataset. For the thesis, it was
determined to utilize the following two files: KDDTrain+.txt and KDDTest+.txt. To clarify,
the KDDTrain+.txt represents the full NSL-KDD training set and KDDTest+.txt reflects
the complete NSL-KDD testing set; both files include attack-type labels and difficulty level.

The NSL-KDD dataset contains normal and four attack records, named Denial of Service
(DoS), Probe, Remote to Local (R2L) and User to Root (U2R).

• DoS: The DoS attacks are intended to overwhelm the service with a flood of
illegitimate requests, causing significant interruptions. This results in the service being
either slow or practically inaccessible to innocent users. A frequently encountered
example is the HTTP flood.

• Probe: The probe attacks s where network scanning is utilized to capture awareness,
with the intention to discover potentially vulnerabilities that can be exploited in
subsequent attacks. Some typical functions are port scanning and network sniffing.

• R2L: The R2L Attacks is where an attacker obtains unauthorized access to a local
system, from a remote machine. This results in access to sensitive information, data
breaches, or even compromising data. Common examples are password spoofing and
phishing attempts.

• U2R: The U2R attacks are where an attacker has a limited access, but subsequently
exploits vulnerabilities to obtain root or administrator permissions. Rootkits are a
common instance of this kind of behavior.

This dataset comprises a total of 40 distinct attack types, with 23 being employed for
training, and 38 for evaluation. The distribution of the datasets employed in the centralized
approach is provided in Table A.1 and Table A.2. An analysis of these tables reveals
that certain attack types are not included in the training set and, conversely, two attacks
types, spy and warezclient, are omitted from the test set. Additionally, the datasets
KDDTrain+.txt and KDDTest+.txt were mentioned above as sourced from the provided
folder. While the datasets, Train80 and Test20 were created by the author with the
purpose of validating the performance of the trained agent and analyzing the impact of
zero-day attacks. For this objective, the original KDDTrain+ was partitioned into 80 %
for training and 20 % for testing, ensuring that both the sets consist of identical attack types.

To train and evaluate the agent’s performance, a minimal preprocessing was performed. The
NSL-KDD dataset contained three symbolic features; protocol_type, service and flag,
which have been removed from the data [16, p. 6]. Additionally, a min-max normalization
technique has been employed to normalize all feature values within the range [0, 1].

16

CHAPTER 4. EXPERIMENTS

4.2 Framework Description

In today’s interconnected digitized world, the total amount of data traffic transmitted
through networks and severs can be significantly, causing it of paramount importance to
safeguard the entire network and its components from malicious activity. The purpose of
the thesis is to develop a framework for malware detection that prioritizes data privacy
preservation. The remaining of this section will present details related to the proposed
framework.

4.2.1 Environment

The thesis will examine two distinct environments; centralized and decentralize, each
reflecting various real world applications. In the centralized scenario, a potential framework
could reflect a single device, such as a laptop, where the malicious detection agent is located.
As all data are stored and analyzed on the single device, enhancing privacy and data
security by preventing the transmission of sensitive data across a network. Alternatively,
if the environment operates as a big data warehouse, which is a centralized database
that retrieves and analyzes massive amounts of data from a variety of sources. In this
particular scenario, data privacy and security concerns become critical. This centralized
infrastructure is vulnerable to attacks, and the retrieve sensitive data is shared with the
big data warehouse, increasing the risk of data breaches.

In the decentralized scenario, the framework could be a relatively small and private network
consisting of five independently connected devices, where each individual device might
potentially encounter distinct types of malicious activity. This exemplifies the FL cross-silo
approach, which simulates an environment that reflects the heterogeneous complexities
of a modern network architecture. In other words, this framework includes multiply
devices, each encompassing an independent dataset to ensure data privacy concerns. The
decentralized environment employs an FL framework to refine a global model.

The state space for both scenarios encompasses all feasible stats of the environments,
including all available records for each malware class. In the centralized environment, the
state space is a large, singular dataset. Consequently, in the decentralized environment,
the state space represents the union of the states from all devices. An advantage is the
ability to represent the wide variety of malicious activity encounters within a network,
with each individual device contributing to the overall state space.

4.2.2 Agent

For the thesis, it was attempted to implement the entire Rainbow RL architecture, never-
theless, because of limitations in time and resources, it was not successfully implemented.
Consequently, the proposed RL framework incorporates only the following key elements
of the full Rainbow approach: DDQN, dueling networks, and noisy nets. Notable is the
implementation of the noisy nets, which features factorized Gaussian noise.

To obtain a reliable comparison to the proposed RL framework, a baseline is established
utilizing a conventional DQN, which is presented in Figure 4.1. The proposed RL framework
operates similarly to the conventional DQN, with the notable difference by incorporated
the previously mentioned enhancements into the DNN.

17

CHAPTER 4. EXPERIMENTS

Figure 4.1: The fundamental components in a DQN. [17, p. 3]

The action space represents all feasible actions the agent can decide to perform, never-
theless, this thesis considers two distinct strategies; binary and multiclass classification.
The binary classification is a simplified classification, where the objective is distinguishing
between being attacked or not being attacked. This reflects the crucial question that must
be considered in any particular system before an appropriate mitigation strategy is deployed.

The multiclass classification reflects a more realistic representation of the real world, as
the awareness that an entity has been subjected to an attack provides a limited actionable
amount of knowledge. To attempt to mitigate the attack, the mitigation strategy required
sufficient knowledge related to the particular type of attack. Each type of attack aims
to achieve distinct objectives, involving various techniques and strategies, and there are
countered in distinct various approaches. For the thesis, the action space for the multiclass
classification scenario is the five-label presented in Section 4.1.1.

4.3 Implementation and Requirement
The script related to this thesis was written in Python 3.11, and has successfully im-
plemented the following components of the Rainbow RL architecture: DDQN, dueling
networks and noisy nets. To execute the script, it is required to have minimum Python
3.10, as the script utilizes some particular features. The implementation of the Rainbow
RL architecture combined with FL was influenced by [3] and [7].

The specifications there have been determined to utilize for the implementation is presented
in Table B.1. Additionally, the implementation, training, and evaluation of the proposed
RL framework was conducted on a laptop containing an Intel Core i5 CPU.

18

5 | Results

The purpose of this chapter is to present the results obtained from evaluating the agents’
performance in a variety of scenarios associated with multiple applications. For the results,
a tabular representation will be provided, where each individual case will be examined three
independent times to obtain a more reasonable interpretation of the results. For the seed
2024, an associated illustration in the form of a confusion matrix will be presented. Remark:
all the results are presented as a conclusive test, conducted after 1000 episodes were iterated
either 100 times for centralized or 50 iterations for the decentralized framework. The
results will generally be presented without an additional explanation.

5.1 Baseline
This section establishes a baseline encompassing the scenarios of multiclass classification
for the application of a centralized framework. More specifically, the scenarios there will be
considered is whether the testing dataset includes zero-day attacks (Zero-day attacks), or
not (Common Attacks). The baseline will serve as a reference point for the enhancements
discussed later in this chapter.

Common Attacks

Seed Normal DoS Probe R2L U2R Weighted Avg

1806 0.9422 0.999 0.9906 0.9397 1.0 0.9674
1999 0.9471 0.9979 0.9931 0.9648 0.5455 0.9699
2024 0.944 0.9992 0.9897 0.9598 0.7273 0.9684

Average 0.9444 0.9987 0.9911 0.9548 0.7576 0.9686

Table 5.1: Baseline, where the testing set do not include novel attacks.

Normal Dos Probe R2L U2R

Predicted Attack

Normal

Dos

Probe

R2L

U2R

Ac
tu

al
 A

tta
ck

12715
94.40%

228
1.69%

213
1.58%

211
1.57%

102
0.76%

1
0.01%

9178
99.92%

3
0.03%

2
0.02%

1
0.01%

10
0.43%

6
0.26%

2308
98.97%

1
0.04%

7
0.30%

6
3.02%

0
0.00%

1
0.50%

191
95.98%

1
0.50%

1
9.09%

0
0.00%

1
9.09%

1
9.09%

8
72.73%

0

2000

4000

6000

8000

10000

12000

Figure 5.1: Confusion matrix constructed from the baseline, utilizing seed 2024.

19

CHAPTER 5. RESULTS

Zero-day Attacks

Seed Normal DoS Probe R2L U2R Weighted Avg

1806 0.8925 0.829 0.7716 0.0962 0.15 0.7547
1999 0.8854 0.8525 0.7749 0.0741 0.12 0.7567
2024 0.8823 0.8534 0.7464 0.0817 0.135 0.7537

Average 0.8867 0.845 0.7643 0.084 0.135 0.755

Table 5.2: Baseline, where the testing set includes zero-day attacks.

Normal Dos Probe R2L U2R

Predicted Attack

Normal

Dos

Probe

R2L

U2R

Ac
tu

al
 A

tta
ck

8568
88.23%

589
6.07%

434
4.47%

79
0.81%

41
0.42%

786
10.54%

6365
85.34%

267
3.58%

39
0.52%

1
0.01%

225
9.29%

217
8.96%

1807
74.64%

168
6.94%

4
0.17%

1704
61.87%

288
10.46%

479
17.39%

225
8.17%

58
2.11%

17
8.50%

7
3.50%

144
72.00%

5
2.50%

27
13.50% 1000

2000

3000

4000

5000

6000

7000

8000

Figure 5.2: Confusion matrix constructed from baseline for zero-day attacks, utilizing seed
2024.

Seed Precision Recall F1-score

1806 0.7275 0.7547 0.7254
1999 0.724 0.7567 0.7254
2024 0.7257 0.7537 0.7217

Average 0.7257 0.755 0.7242

Table 5.3: Performance metrics computed from baseline, including zero-day attacks.

For the baseline, two tables and two confusion matrices are provided. The results for
the common attacks are provided in Table 5.1, where horizontally the table present the
detection rate, also referred to as recall, obtained from the three independent seeds 1806,
1999 and 2024. In general, the performance of the agent is stable, as the variation across
the three seeds is minimum. The only notable result is the U2R, as it results in three
different values.

20

CHAPTER 5. RESULTS

The results for the zero-day scenario are presented in Table 5.2, where similar patterns are
observed across all three seeds. Normal and Dos contribute to the highest detection rates,
followed by Probe. Unfortunately, there is a significant reduction in detection rates for
R2L and U2R attacks, both being reduced below 15 %. In Table 5.3, the three metrics;
precision, recall and F1-score is presented, where the lowest is approximately 72 %.

5.2 Rainbow Components on Centralized Framework

This section presents the results of incorporating the Rainbow components into a centralized
environment. The results follow similar to the baseline.

Common Attack

Seed Normal DoS Probe R2L U2R Weighted Avg

1806 0.9559 0.9989 0.9931 0.9548 0.7273 0.9749
1999 0.9533 0.9985 0.9919 0.9548 0.5455 0.9732
2024 0.9537 0.9989 0.9927 0.9397 0.5455 0.9735

Average 0.9543 0.9988 0.9926 0.9498 0.6061 0.9739

Table 5.4: Results obtained from the Rainbow components, without including novel attacks.

Zero-day Attack

Seed Normal DoS Probe R2L U2R Weighted Avg

1806 0.909 0.8057 0.684 0.1554 0.065 0.7511
1999 0.8983 0.7974 0.589 0.1267 0.135 0.7307
2024 0.8981 0.8469 0.8534 0.0868 0.085 0.77

Average 0.9018 0.8167 0.7088 0.123 0.095 0.7506

Table 5.5: Results obtained from the Rainbow components, including zero-day attacks.

21

CHAPTER 5. RESULTS

Normal Dos Probe R2L U2R

Predicted Attack

Normal

Dos

Probe

R2L

U2R

Ac
tu

al
 A

tta
ck

8721
89.81%

531
5.47%

370
3.81%

50
0.51%

39
0.40%

385
5.16%

6316
84.69%

347
4.65%

399
5.35%

11
0.15%

184
7.60%

161
6.65%

2066
85.34%

10
0.41%

0
0.00%

2045
74.26%

87
3.16%

333
12.09%

239
8.68%

50
1.82%

37
18.50%

4
2.00%

129
64.50%

13
6.50%

17
8.50%

0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 5.3: Confusion matrix constructed from the Rainbow components, including
zero-day attacks and utilizing seed 2024.

Seed Precision Recall F1-score

1806 0.7295 0.7511 0.7277
1999 0.7322 0.7307 0.7027
2024 0.7354 0.77 0.7396

Average 0.7324 0.7506 0.7233

Table 5.6: Performance metrics computed from the Rainbow components, including
zero-day attacks.

The results, obtained for the centralized framework utilizing the Rainbow components,
look with the first glance similar to the baseline. For the common attacks, there is a not
significant improvement, which could have be caused by randomness.

5.3 Zero-day Attacks in a Federated Framework

This section outlines the results of deploying the Rainbow components into a FL framework,
while still encountering zero-day attacks. Two distinct data distribution are considered:
IID and non-IID. In the IID scenario, the data is divided equally between the clients in the
FL framework. Consequently, in the non-IID scenario, one of the five devices encounters
all state randomly, while the remaining four devices are constantly subject to malicious
behavior.

22

CHAPTER 5. RESULTS

IID

Seed Normal DoS Probe R2L U2R Weighted Avg

1806 0.8965 0.9102 0.7158 0.0897 0.095 0.7759
1999 0.8962 0.8155 0.8765 0.069 0.185 0.76
2024 0.8994 0.8116 0.6386 0.0828 0.135 0.7358

Average 0.8974 0.8458 0.7436 0.0805 0.1383 0.7572

Table 5.7: Results obtained from an IID FL framework, utilizing the Rainbow components.

Normal Dos Probe R2L U2R

Predicted Attack

Normal

Dos

Probe

R2L

U2R

Ac
tu

al
 A

tta
ck

8734
89.94%

597
6.15%

296
3.05%

47
0.48%

37
0.38%

859
11.52%

6053
81.16%

526
7.05%

3
0.04%

17
0.23%

479
19.79%

369
15.24%

1546
63.86%

3
0.12%

24
0.99%

1902
69.06%

303
11.00%

256
9.30%

228
8.28%

65
2.36%

41
20.50%

14
7.00%

107
53.50%

11
5.50%

27
13.50% 1000

2000

3000

4000

5000

6000

7000

8000

Figure 5.4: Confusion matrix constructed from the IID FL framework, including zero-day
attacks and utilizing seed 2024.

Seed Precision Recall F1-score

1806 0.7631 0.7759 0.7406
1999 0.779 0.76 0.7273
2024 0.7437 0.7358 0.7011

Average 0.7619 0.7572 0.723

Table 5.8: Performance metrics obtained from the IID FL framework.

23

CHAPTER 5. RESULTS

Non-IID

Seed Normal DoS Probe R2L U2R Weighted Avg

1806 0.8743 0.8773 0.7299 0.0926 0.19 0.7582
1999 0.8756 0.847 0.7402 0.1195 0.115 0.7525
2024 0.8636 0.8923 0.6948 0.1064 0.155 0.7562

Average 0.8712 0.8722 0.7216 0.1062 0.153 0.7556

Table 5.9: Results obtained from non-IID FL framework, utilizing the Rainbow components.

Normal Dos Probe R2L U2R

Predicted Attack

Normal

Dos

Probe

R2L

U2R

Ac
tu

al
 A

tta
ck

8386
86.36%

667
6.87%

500
5.15%

107
1.10%

51
0.53%

476
6.38%

6655
89.23%

296
3.97%

27
0.36%

4
0.05%

513
21.19%

199
8.22%

1682
69.48%

27
1.12%

0
0.00%

1724
62.60%

270
9.80%

385
13.98%

293
10.64%

82
2.98%

20
10.00%

10
5.00%

131
65.50%

8
4.00%

31
15.50%

0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 5.5: Confusion matrix constructed from the non-IID FL framework, including
zero-day attacks and utilizing seed 2024.

Seed Precision Recall F1-score

1806 0.7435 0.7582 0.7325
1999 0.7299 0.7525 0.7311
2024 0.7465 0.7562 0.7259

Average 0.74 0.7556 0.7298

Table 5.10: Performance metrics obtained from the non-IID FL framework.

The results for the IID scenario are provided in Table 5.7, presenting the best individual
evaluation and the highest average result for the thesis. The R2L and U2R attacks are
preventing from further enhancement, because of the low detection rate. In Figure 5.4 the
distribution of the predicted attack is displayed, where it is indicated that 69 % of the R2L
attack is predicted as normal.

In the non-IID scenario, where only one of the clients encounters the normal state, the
global model successfully manages to captures it, with only a slight decrease in detection
rate. The patterns remain consistent, as Normal and DoS achieve the highest detection

24

CHAPTER 5. RESULTS

rates, followed by Probe, while R2L and U2R attacks have the lowest detection rates, with
a maximum individual detection rate of 20 %.

5.4 Comparative study
To quantifying the results of the proposed RL frameworks, it will be compared with
well-established classification models. In [16, p. 13], the authors have developed a table for
comparison of detection rates of a variety of classification models, there have frequently been
employed in the literature for IDS. In Table 5.11 a subset of the classification models are
provided for the KDDTest+ dataset, inclusive the author’s proposed model, SAVAER-DNN.

Classification Normal DoS Probe R2L U2R Weighted Avg

K-Nearest Neighbor 0.9275 0.8225 0.594 0.1467 0.03 0.666
Support Vector Machine 0.9282 0.7485 0.6171 0.0 0.0 0.5673
Random Forest 0.9332 0.7580 0.5894 0.1082 0.01 0.6051
DNN 0.9529 0.8315 0.6278 0.0766 0.05 0.7082

SAVAER-DNN 0.953 0.851 0.7447 0.5359 0.445 84.86
This thesis 0.8974 0.8458 0.7436 0.0805 0.1383 0.7572

Table 5.11: Comparative analysis of dectection rates of a variety of classification methods
on the NSL-KDD dataset. [16, p. 13]

From the Table 5.11, it is observed that the author’s proposed model is superior, exhibiting
the highest detection rates for each malware class. Additionally, this thesis falls only slightly
behind in two classes: DoS and Probe. Lastly, as mentioned in this thesis, the detection
rates for R2L and U2R remain challenging. The table indicates that other well-established
classification models also fall short in detecting these classes.

25

6 | Conclusion

In the rapidly evolving landscape of cybersecurity, malware detection provides a complex
and dynamic challenge. This thesis explores innovative techniques in the reinforcement
learning and the federated learning domain to enhance the robustness and sophistication
of malware detection systems. The reinforcement learning framework, with its ability to
learn from previous experiences and adapt to evolving attack surfaces and the federated
learning framework, facilitates collaborative model training across decentralized environ-
ments while maintaining data privacy and confidentiality, offer potentially enhancements
in the cybersecurity domain.

This thesis has developed a reinforcement learning framework, which incorporates compo-
nents of the Rainbow reinforcement learning approach, there has demonstrated superior
results in Atari games and similar potential advancements could be achieved in the realm
of malware detection. To quantifying the results of the proposed reinforcement learning
framework, a baseline utilizing the conventional deep Q-network was established. The
purposed framework was evaluated in a centralized and decentralized environment. For the
thesis it was determined to utilize the well-established dataset NSL-KDD, which comprises
a total of 40 distinct attack types, with 23 being employed for training, and 38 for evaluation.

The results obtained remain consistent, as Normal and DoS achieve the highest detection
rates of 85− 90 %, followed by Probe 75 %, while R2L and U2R attacks have the lowest
detection rates, with a maximum individual detection rate of 20 %. From the results
it was clear that zero-day attacks remain a significant challenge to the cybersecurity
domain, as this type of attacks includes novel and unseen malware, where conventional
cybersecurity approaches fall short. The results obtained without novel attacks included,
provided detection rates for Normal, DoS, Probe and R2L with above 95 %, while U2R has
a detection rate of 60 %.

26

Bibliography

[1] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on
reinforcement learning. pages 449–458, 2017.

[2] Sarika Choudhary and Nishtha Kesswani. Analysis of kdd-cup’99, nsl-kdd and unsw-
nb15 datasets using deep learning in iot. Procedia Computer Science, 167, 2020.

[3] Curt-Park. rainbow-is-all-you-need. URL https://github.com/Curt-Park/
rainbow-is-all-you-need. Accessed: 03-06-2024.

[4] Shuai Han, Wenbo Zhou, Jing Liu, and Shuai Lü. Nrowan-dqn: A stable noisy network
with noise reduction and online weight adjustment for exploration. arXiv preprint
arXiv:2006.10980, 2020.

[5] J Fernando Hernandez-Garcia and Richard S Sutton. Understanding multi-step
deep reinforcement learning: A systematic study of the dqn target. arXiv preprint
arXiv:1901.07510, 2019.

[6] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. 32(1), 2018.

[7] jan kreischer. Fedrl-for-iot-security. URL https://github.com/jan-kreischer/
FedRL-for-IoT-Security. Accessed: 03-06-2024.

[8] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. Foundations
and trends® in machine learning, 14(1–2), 2021.

[9] Maxim Lapan. Deep Reinforcement Learning Hands-On. Packt, 2020.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540), 2015.

[11] Mohammad Moshawrab, Mehdi Adda, Abdenour Bouzouane, Hussein Ibrahim, and Ali
Raad. Reviewing federated learning aggregation algorithms; strategies, contributions,
limitations and future perspectives. Electronics, 12(10), 2023.

[12] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

[13] Ashish Kumar Shakya, Gopinatha Pillai, and Sohom Chakrabarty. Reinforcement
learning algorithms: A brief survey. Expert Systems with Applications, 2023.

[14] Ajeet Kumar Sharma, Rakesh Kr Galav, and Bhisham Sharma. A comprehensive
survey of various cyber attacks. 2023.

[15] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. Dueling network architectures for deep reinforcement learning. 2016.

27

https://github.com/Curt-Park/rainbow-is-all-you-need
https://github.com/Curt-Park/rainbow-is-all-you-need
https://github.com/jan-kreischer/FedRL-for-IoT-Security
https://github.com/jan-kreischer/FedRL-for-IoT-Security

BIBLIOGRAPHY

[16] Yanqing Yang, Kangfeng Zheng, Bin Wu, Yixian Yang, and Xiujuan Wang. Network
intrusion detection based on supervised adversarial variational auto-encoder with
regularization. IEEE access, 8:42169–42184, 2020.

[17] Junkai Yi and Xiaoyan Liu. Deep reinforcement learning for intelligent penetration
testing path design. Applied Sciences, 13(16), 2023.

[18] M. HASSAN ZAIB. Nsl-kdd. URL https://www.kaggle.com/datasets/hassan06/
nslkdd. Accessed: 03-06-2024.

28

https://www.kaggle.com/datasets/hassan06/nslkdd
https://www.kaggle.com/datasets/hassan06/nslkdd

Appendices

29

A | Distribution of the dataset

Class Attack Validation Evaluating
Train80 Test20 KDDTrain+ KDDTest+

Normal normal 53.874 13.469 67.343 9711

DoS back 765 191 956 359
land 14 4 18 7
neptune 32.971 8.243 41.214 4657
pod 161 40 201 41
smurf 2.117 529 2.646 665
teardrop 714 178 892 12
apache2 − − − 737
mailbomb − − − 293
processtable − − − 685
udpstorm − − − 2

Subtotal 36.742 9.185 45.927 7.458

Probe ipsweep 2.879 720 3.599 141
nmap 1.194 299 1.493 73
portsweep 2.345 586 2.931 157
satan 2.906 727 3.633 735
mscan − − − 996
saint − − − 319

Subtotal 9.324 2.332 11.656 2.421

Table A.1: The class distribution of the NSL-KDD dataset. [16, p. 8]

30

APPENDIX A. DISTRIBUTION OF THE DATASET

Class Attack Validation Evaluating
Train80 Test20 KDDTrain+ KDDTest+

R2L ftp_write 6 2 8 3
guess_passwd 42 11 53 1.231
imap 9 2 11 1
multihop 6 1 7 18
phf 3 1 4 2
spy 2 0 2 −
warezclient 712 178 890 −
warezmaster 16 4 20 944
named − − − 17
sendmail − − − 14
snmpgetattack − − − 178
snmpguess − − − 331
worm − − − 2
xlock − − − 9
xsnoop − − − 4

Subtotal 796 199 995 2.754

U2R buffer_overflow 24 6 30 20
loadmodule 7 2 9 2
perl 2 1 3 2
rootkit 8 2 10 13
httptunnel − − − 133
ps − − − 15
sqlattack − − − 2
xterm − − − 13

Subtotal 41 11 52 200

Total 100.777 25.196 125.973 22.544

Table A.2: Continuation of Table A.1.

31

B | Specification

Specifications

Seeds 1806, 1999, 2024
DQN architecture (38, 64, 32, 5)
Activation function ReLU

Loss function MSE

Optimizer Adam

Learning rate α 0.001
Batch size 32
Explore factor ε 1
ε_decay 0.995
ε_ min 0.01
Discount factor γ 0.01
Reward function (1,−1)
Episodes 1000
Training sessions 100 or 50

Table B.1: Specifications for the implementation.

32

	Title page
	Contents
	Introduction
	Motivation
	Purpose and Objective
	Outline

	Deep Q-Network
	Prerequisites
	Deep Q-Network
	Double Q-learning
	Prioritized Experience Replay
	Dueling Networks
	Multi-step Learning
	Distributional RL
	Noisy Nets
	Rainbow

	Federated Learning
	Prerequisites
	Cross FL
	Lifecycle Process

	Experiments
	NSL-KDD Dataset
	Analysis

	Framework Description
	Environment
	Agent

	Implementation and Requirement

	Results
	Baseline
	Rainbow Components on Centralized Framework
	Zero-day Attacks in a Federated Framework
	Comparative study

	Conclusion
	Bibliography
	Appendices
	Distribution of the dataset
	Specification

