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Abstract 

Background: Preclinical Alzheimer’s Disease (AD) can be defined by an abnormally high level of 

amyloid pathology (Aβ) in the brain. The need for earlier discovery of the disease increases, as the 

AD prevalence is rising globally. The Preclinical Alzheimer’s Cognitive Composite (PACC) is a 

compilation of neuropsychological tests specifically designed to detect the earliest symptoms of 

preclinical AD. Methods: The current study consists of a comprehensive systematic review, 

investigating PACC and its sensitivity across 20 studies. The review is based on the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Diagnostic Test 

Accuracy (DTA) protocol by Joanna Briggs Institute (JBI). The DTA protocol suggests comparing 

the index test (PACC) to a consistent reference test (Aβ-PET imaging). The sensitivity, accuracy and 

specificity were investigated across all reviewed studies. Results: Present findings add to profound 

evidence that even very low levels of Aβ-PET levels are associated with subtle cognitive changes as 

measured by PACC. And a higher level of Aβ leads to a faster rate of cognitive decline. Across 

different versions of PACC, it was found that especially the Mini Mental State Examination (MMSE) 

and Digit Symbol Substitution Test (DSST) subtests were highly sensitive towards early cognitive 

change due to preclinical AD. Additional subtests measuring language, like the Category Fluency Test 

(CAT), could potentially enhance the overall sensitivity of PACC. Furthermore, PACC can detect 

cognitive changes in both early and late stages of onset AD, and it can differentiate between 

preclinical AD, Mild Cognitive Impairment (MCI), and AD, which makes it a great and highly 

sensitive assessment tool both in clinical trials and clinical settings. Limitations: The limitations in 

this study include potential biases inherent in the selected studies, such as selection and attrition 

biases, which may affect the generalizability of the findings. Additionally, the reliance on specific 

subtests within PACC may not capture all aspects of cognitive decline, and the inclusion of additional 

subtests requires further validation. Conclusion: The included studies find that elevated Aβ levels 
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puts you at higher risk of developing cognitive decline and possibly AD. This also underlines the 

importance of Aβ as one of the first pathological biomarkers to appear on a trajectory to developing 

AD. However, further evidence is needed to fully verify the causal relationship between Aβ pathology 

and cognition, and to validate PACC for clinical settings. 

 

Keywords: Preclinical Alzheimer’s Disease, Amyloid-pathology (Aβ), Amyloid-PET, Preclinical 

Alzheimer’s Cognitive Composite (PACC), Cognitive Decline, Diagnostic Test Accuracy, Systematic 

Review 
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Glossary 

3MSE = Modified MMSE 

11C-PiB = Pittsburgh Compound B 

18F-FBP = 18F-Florbetapir 

18F-FDG = 18F-Fludeoxyglucose 

18F-FLUTE = 18F-Flutemetamol 

18F-FTP = 18F-Flortaucipir 

A4 = Anti-Amyloid Treatment of Asymptomatic 

Alzheimer’s Disease 

Aβ = Amyloid-beta 

Aβ+ = High amyloid level 

Aβ++ = Very high amyloid level 

Aβ- = No amyloid pathology 

ACh = Acetylcholine  

AD = Alzheimer’s Disease 

ADAS-Cog = Alzheimer Disease Assessment Scale-

Cognitive Subscale 

ADCS = Alzheimer’s Disease Cooperative Study 

ADCS-PI = ADCS-Prevention Instrument 

AIBL = Australian Imaging Biomarkers and Lifestyle 

study 

AUB = Aalborg University Library 

AVLT = Rey Auditory Verbal Learning Test 

AVLT-DR = AVLT-Delayed Recall 

AVLT-R = AVLT-Recognition 

BD = Block Design from WAIS-R 

BNT = Boston Naming Test 

BPSO = Behavioural Pattern Separation Task-Object 

version 

CAT = Category Fluency Test 

CBB = Cogstate Brief Battery 

CBF = Cerebral Blood Flow 

CDR = Clinical Dementia Rating Scale 

CFI = Cognitive Function Index 

CI = Cognitively impaired 

CL = Centiloids 

COWAT = Controlled Oral Word Association Test 

CFA = Confirmatory factor analysis 

CSF = Cerebral Spinal Fluid 

CVLT-II = California Verbal Learning Test-Second 

Edition 

DCTclock = Digital Clock-drawing Test 

DET = Detection Task 

DSC = Digit Symbol-Coding 

DSST = Digit Symbol Substitution Test 

DTA = Diagnostic Test Accuracy 

DVR = Distribution Volume Ratio 

D-KEFS = Delis-Kaplan Executive Function System 

DWR = Delayed Word Recall 

FAS = Also known as COWAT: Controlled Oral Word 

Association Test with the letters F+A+S 

FCSRT = Free and Cued Selective Reminding Test 

FCSRT-Free = Free and Cued Selective Reminding 

Test Free Recall 
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FDA = Food and Drug Administration 

FNAME = Face Name Associative Memory Exam 

GCC = Global Cognitive Composite 

Global-z = Global composite using z-scores 

HABS = Harvard Ageing Brain Study 

HR = Hazard ratio 

IDN = Identification Task 

IPACC = Latent PACC 

IRT = Item Response Theory 

J-ADNI = Japan-ADNI 

JBI = Joanna Briggs Institute 

LM-DR = Logical Memory Delayed Recall 

LM-II = Logical Memory II 

LM-IR = Logical Memory Immediate Recall 

LMM = Linear Mixed-effects Model and Logistic 

Mixed-effects Model 

M-Age = Mean age 

MCI = Mild Cognitive Impairment 

MCSA = The Mayo Clinic Study of Aging 

MMRM = Mixed method of Repeated Measures 

MMSE = Mini-Mental State Examination 

MLR = Maximin Likelihood estimation with Robust 

standard errors 

MoCA = Montreal Cognitive Assessment 

NA-ADNI = Northern American ADNI 

NIA-AA = National Institute on Aging-Alzheimer’s 

Association 

NSHD = National Survey of Health and Development 

NPV = Negative predictive value 

NYU = New York University Paragraph Recall 

OCL = One Card Learning Task 

ONB = One Back Task 

PACC = Preclinical Alzheimer’s Cognitive Composite 

PACC-R = PACC-Revised 

PC = Picture Completion from WMS 

PET = Positron Emission Topography 

PFDR = P-value of False Discovery Rate 

PPV = Positive predictive value 

ROC = Receiver Operating Characteristic analysis 

ROIs = Regions of Interest 

ROS = Reactive Oxygen Species 

SCD = Subjective Cognitive Decline 

SD = Standard deviation 

SUVR = Standard Uptake Value Ratio 

TMT = Trail-Making-Test 

VR-II = Visual Reproduction-II from WMS 

WAIS-R = Wechsler Adult Intelligence Scale-Revised 

WMHV = White Matter Hyperintensity Volume 

WMS = Wechler Memory Scale 

WRAP = Wisconsin Registry for Alzheimer’s 

Prevention 

ZAVEN = Z-scores of Attention, Verbal Fluency and 

Episodic Memory for Nondemented older adults 

zPACC = Standardized PACC with z-scores 

♀ = Percentage of female participants



P a g e  8 | 83 

 

1.0 Introduction 

As people are getting older globally, there has been an increase in age-related diseases (Winblad 

et al., 2016). One of the primary risk factors for developing Alzheimer’s Disease (AD) is old age, 

which explains the increase in the prevalence of the disease worldwide (Winblad et al., 2016). AD is 

the most common cause of dementia, and accounts for an estimated 60-80% of all dementia cases in 

the U.S. (Alzheimer's Association, 2024). Globally, the number of people with AD is estimated to be 

32 million as of 2023 (Gustavsson et al., 2023), and it has further been assessed that the worldwide 

cost of dementia exceeds more than a trillion US dollars every year. AD imposes not only an economic 

burden but also significant emotional and social costs on both the individual and their network of 

support, including family and friends. The toll of the disease extends beyond financial expenses and 

is impacting the well-being and quality of life for those affected by the disease (Alzheimer’s 

Association, 2024).  

The prevalence of AD seems to be higher in women than in men (Alzheimer’s Association, 2024). 

However, while women tend to live longer than men in general, and advancing age is a significant 

risk factor for AD development, it is not conclusively clear that the prevalence of AD is higher in 

women (Alzheimer’s Association, 2024). Factors such as genetic predisposition, hormonal 

influences, and healthcare-seeking behaviors may influence the prevalence of AD in both genders 

(Alzheimer ‘s Association, 2024). While AD primarily impacts the elderly population, it should not 

be regarded as a natural consequence of ageing or as an amplification of it (Irwin et al., 2018), rather, 

the disease is diagnosed clinically based on a variety of symptoms. These symptoms encompass 

cognitive impairments such as memory loss, challenges in learning, different executive functions, 

language difficulties, problems with complex attention, perceptual-motor impairments, and social 

cognition (Irwin et al., 2018; World Health Organization, 2019). Furthermore, the cognitive decline 

is progressive and relentless, as the disease is currently irreversible (Breedlove & Watson, 2013). 
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AD is recognized to start years, even decades, before the first symptoms of cognitive decline 

appear (Alzheimer’s Association, 2024). Amyloid pathology build-up and accumulation in the brain 

is considered to be the first of a sequence of pathologic events to appear prior to the first symptoms 

of cognitive decline (Donohue et al., 2014; Farrell et al., 2021; Jack et al., 2010; Jack et al., 2018; 

Mormino et al., 2017; Sperling et al., 2014). Subsequently, the abnormally high level of amyloid 

pathology in the brain sometimes initiates a cascade of biomarkers, where the amyloid accumulation 

triggers the development of neurofibrillary tangles (NFTs), which is made up of tau proteins within 

the neurons, causing them to deteriorate and eventually die (Breedlove & Watson, 2013; Jack et al., 

2010). These pathological changes in the brain consequently lead to neuronal death 

(neurodegeneration) resulting in the progression of cognitive decline (Breedlove & Watson, 2013).  

The preclinical stage of AD refers to the period before any signs of cognitive decline becomes 

apparent, usually determined by an elevated level of amyloid pathology but not yet measurable tau 

tangles, as tau tangles are directly related to the magnitude of cognitive impairment (Breedlove & 

Watson, 2013). There is a growing interest in preclinical AD in research (Alzheimer’s Association, 

2024.; Bransby et al., 2019; Buckley et al., 2017; Donohue et al., 2014; Farrell et al., 2021; Jack et 

al., 2010; Jack et al., 2018; Lim et al., 2016; Mormino et al., 2017; Sperling et al., 2014; Sperling et 

al., 2011; Winblad et al., 2016). The number of people with preclinical AD is estimated to be around 

315 million people worldwide (Gustavsson et al., 2023). Preclinical AD is a relatively new concept 

that refers to a condition that is characterized by the presence of AD biomarkers but an absence of 

specific clinical symptoms (Alzheimer’s Association, 2024). Discovering potential AD progression 

at the preclinical stage presents many benefits. The sooner the discovery of AD biomarkers can be 

made, the less damage they will do to the brain, as these impairments are permanent. AD biomarkers 

are usually confirmed by detecting amyloid-beta and tau as shown on positron emission topography 

(PET) scans, or by lumbar puncture showing the level of biomarkers in the cerebral spinal fluid (CSF) 
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(Alzheimer’s Association, 2024), as these methods are currently the gold standards for diagnosis. 

However, these are invasive and costly methods, and they are usually done at stages, where the disease 

has already progressed in the brain (Alzheimer’s Association, 2024). Besides these methods, early 

cognitive decline can be measured with a set of various neuropsychological tests. A test battery that 

is regularly used to determine cognition in preclinical AD is the Preclinical Alzheimer's Cognitive 

Composite (PACC) (Bransby, 2019; Donohue et al., 2014; Mormino et al., 2017). This battery 

contains a compilation of the most sensitive tests for early discovery of cognitive decline (Donohue 

et al., 2014). It has been designed to serve as the primary outcome measure for trials conducted at the 

asymptomatic phase of AD, and it can detect the earliest cognitive changes due to AD (Donohue et 

al., 2014). PACC can assess episodic memory, timed executive functions, and global cognition 

(Donohue et al., 2014).  

To this end, the aim of this review is to comprehensively evaluate the sensitivity, accuracy, and 

specificity of PACC in detecting the earliest signs of preclinical AD. This will be done in relation and 

comparison to the gold standard of amyloid-PET. Following the guidelines outlined by the Joanna 

Briggs Institute (JBI) for "Diagnostic Test Accuracy" (DTA) protocols, this investigation seeks to 

provide a thorough assessment of PACC, by systematically analyzing existing literature and 

synthesize the findings from relevant studies. This review aims to contribute valuable insights into 

the diagnostic utility and clinical applicability of the PACC test battery in identifying individuals at 

risk of developing AD. PACC may provide a more accessible and economically feasible option for 

early detection of AD, which aligns with the goal of optimizing healthcare resources and making 

diagnostic procedures more accessible and affordable. 
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1.1 Research question 

This leads to the research question: What is the diagnostic accuracy and sensitivity of the 

Preclinical Alzheimer’s Cognitive Composite (PACC) for detecting preclinical Alzheimer’s Disease, 

compared to amyloid-PET imaging amongst people with elevated amyloid pathology? 

1.2 Delimitation of the research object  

In framing this systematic investigation, several decisions were made to ensure a focused 

exploration of the diagnostic accuracy of PACC. Firstly, the scope of the review will encompass all 

versions of the PACC test battery. This decision allows for a comprehensive assessment of various 

iterations of the PACC, thereby providing a nuanced understanding of its diagnostic utility. 

Secondly, only studies featuring participants who have undergone assessments on two separate 

occasions will be included in the review, thus necessitating longitudinal studies. This deliberate focus 

enables an exploration of the PACC's ability to detect subtle cognitive changes associated with the 

development of amyloid pathology over time. In relation to this, this review will exclusively consider 

studies that utilize amyloid-PET imaging as the method for measuring amyloid pathology. This 

decision is based on PET imaging being a widely accepted gold standard for diagnosing AD, and this 

ensures consistency in the investigation. Consequently, even though amyloid detection via CSF is 

also a highly accurate measurement method, studies without additional amyloid-PET imaging will be 

excluded. 

Likewise, the review will concentrate its focus on amyloid pathology and will not discuss 

assessments of tau pathology. This decision stems from the aim of targeting the earliest signs of 

preclinical AD, which often manifest primarily through amyloid accumulation during initial stages of 

the disease progression. Also, this helps to maintain a common ground in the literature review, where 

amyloid pathology remains the standard focus for all studies.  
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Furthermore, the exclusion of other biological factors contributing to AD, such as genetic 

predispositions (e.g., ApoE genotype), environmental factors, neuroinflammation, and oxidative 

stress, was implemented to maintain a clear and unambiguous focus on amyloid pathology as the 

primary biomarker of interest. While these factors undoubtedly play significant roles in AD 

pathogenesis and progression, their inclusion in this review would introduce additional complexity 

and heterogeneity, potentially confounding the analysis of PACC's diagnostic accuracy in relation to 

amyloid pathology. Additionally, confounding diseases or comorbidities are also being excluded from 

the review, seeing as they might influence the results of PACC scores and even the progression of 

AD. The review is focused on preclinical AD, which means that other types of dementia (e.g. 

Parkinson’s Disease, frontotemporal dementia), psychiatric disorders (e.g. depression, 

schizophrenia), and significant medical comorbidities (cardiovascular diseases, diabetes) will be 

excluded. 

Lastly, a particular emphasis will be placed on investigating the sensitivity of PACC. 

Recognizing sensitivity is a crucial metric in diagnostic accuracy assessments, and this focus seeks 

to clarify PACC's capacity to reliably detect cognitive changes indicative of preclinical AD in 

individuals with elevated amyloid pathology. So, all articles that do not introduce a discussion or any 

data regarding the sensitivity of PACC in their studies will not be included in this review. 

 

2.0 Theory 

The theory section provides a comprehensive overview of AD, covering its progression, 

biological mechanisms, and diagnostic methods including PET scan and cognitive composites. It 

explores cognitive decline and neuropsychological assessments, leading to an account of PACC for 
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early detection. Statistical ways to investigate sensitivity in a composite will also be presented. Lastly, 

existing literature to highlight the novelty and motivation behind this review will be presented.  

2.1 Alzheimer’s Disease 

The International Classification of Diseases, 11th revision, (ICD-11), classifies AD under Mental, 

Behavioral or Neurodevelopmental Disorders, as a neurocognitive disorder (6D80), and is described 

as a disease with a slow but steady decline of cognitive functioning with impairment in domains such 

as memory, executive functions, attention, language, social cognition and judgement, psychomotor 

speed, visuoperceptual or visuospatial abilities (World Health Organization, 2019). The disease is 

currently ranked as the fifth leading cause of death worldwide (Ma et al., 2022). Late-onset AD 

typically manifests after the age of 65 and is the most common form of AD (Alzheimer’s Association, 

2024). Whereas, early-onset AD, also known as Early Onset Familial Alzheimer Disease (eFAD), is 

relatively rare (only 5% of all cases) (World Health Organization, 2019). EFAD has a strong genetic 

component, typically arising before the age of 65, due to inherited genetic mutations (World Health 

Organization, 2019). This review focuses only on late-onset AD, which allows for broader insights 

into the disease's etiology, risk factors, and potential interventions applicable to a larger portion of the 

population.  

2.1.1 The progression of AD 

AD can be divided into stages according to its progression: Preclinical AD, Mild Cognitive 

Impairment (MCI), and dementia due to AD (Alzheimer’s Association, 2024), where the dementia 

stage can be further divided into mild, moderate, and severe dementia (World Health Organization, 

2019). These stages often follow the progression of biomarker build-up in the brain, and The National 

Institute on Ageing and Alzheimer’s Association (NIA-AA) proposed a classification system of the 

disease progression based on these biomarkers (Jack et al., 2018). They look at the disease as more 
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of a biological construct than a syndromal diagnosis, which takes pathological changes prior to 

cognitive symptoms into account (Jack et al., 2018). They divide the disease into a classification 

system of AD biomarkers: Amyloid, tau and neurodegeneration, or abbreviated, [AT(N)] (Jack et al., 

2018), where the disease progression is determined by the amount of biomarker pathology. 

Cognitively normal (CN) individuals without any biomarkers are referred to as A-T-(N)-. Individuals 

with preclinical AD have one or two elevated biomarkers but no neurodegeneration, which becomes 

A+T-(N)-. People with AD and signs of dementia would be referred to as A+T+(N)+ (Jack et al., 

2018). Here, the addition and subtraction symbols help determine the existence of biomarker 

pathology. This classification system helps distinguish the different diagnostic stages of the AD 

progression (Jack et al., 2018), and it was primarily developed to characterize research participants, 

and many studies use these classifications (Jack et al., 2018).  

This system aligns well with the hypothesis of the biomarker cascade previously proposed by 

Jack and colleagues (2010), who created a model of the proposed biomarker progression in AD. This 

hypothetical model shows how the dynamic biomarkers of AD appear as a pathological cascade (Jack 

et al., 2010), where amyloid-beta (Aβ) build-up and the accumulation of neurofibrillary tau tangles 

(NFTs) in the brain are considered to be the first of a sequence of pathologic events, followed by 

symptoms of cognitive decline (Jack et al., 2010). However, it is crucial to understand that an elevated 

Aβ level is not a guarantee for AD development (Ossenkoppele et al., 2015). While Aβ accumulation 

is a key pathological feature of AD, not all individuals with high Aβ levels go on to develop the 

disease (Ossenkoppele et al., 2015).  

The clinical disease stages include cognitively normal (CN), mild cognitive impairment (MCI) 

and dementia. And another, more commonly used, categorization method is the Clinical Dementia 

Rating scale (CDR), which is used both in research and in clinical settings to determine, how far 
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along participants are on the disease trajectory (0 = no signs of dementia, 1 = MCI, 2 = moderate 

dementia, 3 = severe dementia) (Berg, 1984). 

2.2 Biological background of AD 

Biomarkers are variables (physiological, biochemical, and anatomical variables) that can be 

measured in vivo and that can indicate specific features of disease-related pathological changes (Jack 

et al. 2010). In AD patients, the cerebral metabolism starts to decline, in contrast to healthy ageing, 

where the cerebral metabolism seems to be unaffected by age-related changes (Breedlove & Watson, 

2013). The biomarker cascade proposed by Jack and colleagues (2010) indicates that as the levels of 

Aβ increase, they aggregate into structures known as plaques, often referred to as amyloid plaques or 

senile plaques (Breedlove & Watson, 2013). The accumulation of amyloid plaques interferes with the 

synaptic communication neuron-to-neuron, whereas the NFTs contribute to the neurodegeneration 

from within (Alzheimer’s Association, 2024).  

Aβ plaques are made up of amyloid proteins, and these proteins (Aβ peptides) are considered to 

be the main components in AD development (Ma et al., 2022). Aβ peptides are formed because of 

the cleavage of the Amyloid Precursor Protein (APP) by β-secretase and γ-secretase enzymes (Ma et 

al., 2022). In normal circumstances, Aβ peptides are cleared from the brain efficiently. However, in 

certain conditions, such as in AD, there is an imbalance between the production and clearance of Aβ 

peptides, leading to their accumulation and subsequent formation of Aβ plaques (Ma et al., 2022). 

The Aβ accumulation, particularly the peptide Aβ42, leads to the aggregation of insoluble oligomers 

(Ma et al., 2022), which refers to small clumps of Aβ molecules that can no longer be dissolved. This 

accumulation disrupts normal neuronal function and is associated with neurodegenerative diseases 

like AD, impacting cell-to-cell signaling and synaptic health (Ma et al., 2022). 
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NFTs consist of abnormal whorls of neurofilaments, including a protein called tau (Breedlove & 

Watson, 2013). Tau is a protein crucial for maintaining the stability of neural cytoskeletons (Ma et 

al., 2022), referring to the network that helps transport information between neurons. However, in 

AD, tau proteins become hyperphosphorylated, which disrupts the structure of a cell from within, 

eventually causing them to fall apart (Ma et al., 2022). The hyperphosphorylation of tau proteins 

causes them to become detached from their so-called microtubules, which is the part of the 

cytoskeleton, where they instead stick to other tau molecules, eventually forming threads or tangles 

(NIH, 2024). It is suggested, the hyperphosphorylation of tau proteins is caused by the presence of 

Aβ, which further underlines the biomarker cascade hypothesis (Jack et al., 2010).   

In addition to amyloid and tau pathologies, AD progression involves other biological signs of 

decline. Cerebral blood flow (CBF) decrease is a pathological mechanism that similarly happens in 

the early stages of the disease (Ma et al., 2022). There are many consequences to less CBF, including 

cognitive impairment, neurological symptoms, and strokes (Ma et al., 2022). Another characterization 

of AD pathology is the significant decrease in acetylcholine (ACh) in the brain, because Aβ peptides 

reduces the synthesis of this neurotransmitter. ACh is a neurotransmitter whose primary function is 

to maintain consciousness, while it also plays a major role in learning and memory (Ma et al., 2022). 

Furthermore, the formation of Aβ plaques in the brain consist of aggregated Aβ as well as metal ions, 

which is a combination directly involved in reactive oxygen species (ROS) production, causing 

oxidative damage to cellular structures thus contributing to neurodegenerative processes (Ma et al., 

2022).   

2.2.1 How to measure biomarkers: PET 

AD was initially defined as a clinical-pathologic entity, which was only definitely and fully 

diagnosed at autopsy, and in life it was more of a possible or probable AD (Jack et al., 2018). Today, 
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the gold standard for diagnosing AD is possible in vivo patients, by positron emission topography 

(PET) imaging (Young et al., 2020). PET is an imaging technique used to observe metabolic processes 

in the body (Young et al., 2020). By injecting a small amount of radioactive material (tracer) into the 

body, a PET scan can measure important functions such as blood flow, oxygen use, and glucose 

metabolism, providing images and data that reflect how tissues and organs are functioning (Young et 

al., 2020). These technological advances have made it possible to detect the earliest pathological 

changes in the asymptomatic preclinical stage of AD, where abnormal biomarker levels are detected 

(Jack et al., 2018; Sperling et al., 2011). The injected tracer is made to mimic a certain protein, for 

instance a form of glucose (18F-FDG or Fluorodeoxyglucose), which then travels through the 

bloodstream and is absorbed by the body’s tissues (Young et al., 2020). 18F-FDG was first introduced 

as a tracer for diagnosing dementia in 1979, and it is useful to get an overview of the brain’s overall 

activity, as glucose is the brain’s main source of energy (Young et al., 2020). As a tracer is slightly 

radioactive, it emits positrons as it decays, and as positrons pass through matter (in the body), they 

experience the same interactions as electrons, including loss of energy through ionization and 

excitation of nearby atoms and molecules (Turkington, 2001). The collision between a positron and 

an electron is called an annihilation, and this is what causes gamma rays, which are then detected by 

the PET scanner (Turkington, 2001; Young et al., 2020). Different radionuclides exist, which refers 

to the radioactive component in the injected tracer, and the most used PET radionuclides are the 11C 

and 18F, because of their short half-life: 20,3 minutes and 110 minutes, respectively (Turkington, 

2001).  

However, FDG-PET has its limitations, and it is not specific for AD indicators. To detect AD-

related hallmarks more specifically, the use of Aβ-specific PET tracers, or ligands, has been developed 

(Young et al., 2020). Ligands are specific types of tracers that bind to particular proteins or receptors 

in the brain, for instance Aβ proteins or NFTs (Young et al., 2020). The first Aβ-PET tracer to be 
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introduced was the 11C-Pittsburgh compound B (PiB), which has a high affinity for Aβ, enabling it to 

bind to any existing Aβ in the brain (Breedlove & Watson, 2013).    

Besides 11C-PiB-PET, the 18F-FLUTE (Flutemetamol) and 18F-FBP (Florbetapir) are similarly 

PET ligands that target Aβ pathology (Young et al., 2020). These are tagged with radioactive isotopes 

that does not require a local cyclotron to produce the tracers, as the half-life time is a bit longer (Young 

et al., 2020). The binding between the tracers and existing Aβ pathology can be seen, as they light up 

on a screen showing the PET-images from the Aβ-PET scan. Standard Uptake Value Ratio (SUVR) 

is a quantitative measure used in PET imaging to evaluate the concentration of a tracer within a 

specific region of the brain relative to a reference region (Young et al., 2020), and this method of 

measurement is widely used both in clinics and in research. However, the SUVR is usually calculated 

for each patient, where the regions of interest (ROIs) are divided by a reference region assumed to be 

free of Aβ-pathology (Young et al., 2020), making this method very specific to a particular individual. 

This led to the development of a standardized quantitative Aβ imaging measurement using the 

centiloid (CL) scale (Young et al., 2020). To use the CL scale, imaging data from any Aβ-PET tracer 

are converted to the CL scale using established conversion factors, which makes it possible for 

researchers and clinicians to track the progression of Aβ accumulation more accurately in the brain, 

compare the effectiveness of anti-amyloid therapies, and improve the diagnostic consistency of AD 

(Young et al., 2020). Today, both measurements can be used in research, as either the mean-CL scale 

or the mean-SUVR (Young et al., 2020). Sometimes the Distribution Volume Ratio (DVR) is used 

instead of SUVR to get an even more accurate reflection of the binding potential of the tracer, but it 

usually requires a blood sample and is a more complex procedure overall (Young et al., 2020). 
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2.2.2 Brain areas affected by biomarkers 

Aβ-PET SUVR is a summary of uptake in the frontal, cingulate, temporal, and parietal regions 

relative to the cerebellum (Young et al., 2020), as the cerebellum is typically less affected by Aβ 

deposition in the early stages of AD. The initial stages of Aβ deposition occurs in the association 

cortices, particularly the frontal, parietal, temporal, and occipital lobes (Koychev et al., 2020). From 

the association cortices, Aβ spreads to the limbic regions, which includes the entorhinal cortex, 

hippocampus, and amygdala (Koychev et al., 2020), and these areas are strongly associated with the 

earliest symptoms of cognitive impairment. As AD progresses, areas in the frontal and temporal lobes 

begin to show significant Aβ accumulation. These areas are involved in higher cognitive functions 

and language processing (Koychev et al., 2020), which can lead to impaired judgement and memory 

loss. In advanced stages of AD, Aβ reaches the parietal lobe, impairing spatial awareness and 

navigation (Koychev et al., 2020). Lastly, in the later stages of AD, Aβ reaches the occipital lobe 

responsible for visual processing, which can cause visual disturbances and difficulties in object and 

facial recognition (Koychev et al., 2020).   

2.3 Cognitive decline in AD 

As the biomarkers accumulate in the brain, symptoms of cognitive decline progress. However, 

dementia is a general term used for various symptoms of memory loss, cognitive decline, trouble in 

communication, and many other related brain complications in performing routine tasks (Ahmad et 

al., 2023). The development of the biomarkers, Aβ and NFTs, causes a loss in the connection between 

neurons and results in breaking the transmission of messages between brain regions (Ahmad et al., 

2023). Every cluster of neurons has a specific task to perform, for instance thinking, remembering, 

vision, listening, language (Ahmad et al., 2023). Furthermore, AD is known to cause shrinkage of 

various brain regions especially associated with thinking, memory, planning, and decision making 
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(Ahmad et al., 2023). The progression and permanent impairments in the brain underscores the critical 

need for accurate and timely assessment of cognitive functions. Neuropsychological assessments play 

an important role in this regard, serving as tools for detecting and monitoring cognitive changes over 

time.  

2.3.1 The Preclinical Alzheimer’s Cognitive Composite (PACC) 

A study that has aimed for developing tests sensitive to the earliest AD-related changes is the 

study by Donohue and colleagues (2014), called the Alzheimer’s Disease Cooperative Study (ADCS). 

They suggest the cognitive composite, called the Preclinical Alzheimer’s Cognitive Composite (or 

originally ADCS-PACC) (Donohue et al., 2014). PACC is specifically designed to detect subtle 

cognitive changes in individuals at risk of developing AD, even before onset of dementia symptoms 

(Donohue et al., 2014). The composite comprises tests that assess episodic memory, execute function, 

and processing speed, which are known to be early indicators of cognitive decline in AD (Donohue 

et al., 2014). The composite was designed to be the primary outcome measure for the Anti-Amyloid 

Treatment in Asymptomatic Alzheimer’s Study (A4 Study), with a specific focus on detecting 

cognitive changes related to amyloid pathology (Donohue et al., 2014). As the A4 Study was still in 

early planning stages at the time, the ADCS gathered data from two existing cohorts to test the 

sensitivity of the ADCS-PACC first: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 

The Australian Imaging, Biomarkers, and Lifestyle Study of Ageing (AIBL) (Donohue et al., 2014). 

All participants were cognitively normal (CN) individuals with no cognitive symptoms, but with a 

slightly elevated Aβ pathology, determined by an SUVR of 1.5 and above as measured by an 11C-

PiB-PET scan (Donohue et al., 2014). They found that Aβ-positive participants showed a significant 

decline in PACC scores at both 18-, 24-, and 36-month follow-up measurements compared to Aβ-
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negative participants (Donohue et al., 2014). This indicated a sensitive relation between PACC scores 

and Aβ pathology. 

The composite is comprised of four tests: The Total Recall score from the Free and Cued 

Selective Reminding Test (FCSRT), the Delayed Recall score on the Logical Memory II subtest (LM-

DR II) from the Wechsler Memory Scale (WMS), the Digit Symbol Substitution Test (DSST) score 

from Wechsler Adult Intelligence Scale-Revised (WAIS-R), and the Mini Mental State Examination 

(MMSE) total score (Donohue et al., 2014).  

The FCSRT measures verbal episodic memory under conditions that control both attention and 

cognitive processing (Grober et al., 2008). FCSR starts with a study phase where subjects identify 

items pictured on a card by matching them to category cues (e.g., matching “grapes” to “fruit”) 

(Grober et al., 2008). After identifying all items, immediate recall of these items is tested (Grober et 

al., 2008). Items not recalled are re-searched until all 16 items are retrieved (Grober et al., 2008). This 

is followed by three recall trials, each involving free recall and then cued recall for any missed items 

(Grober et al., 2008). The combined score of free and cued recall in each trial is termed total recall 

(Grober et al., 2008).  

The LM-DR II from WMS measures episodic memory by assessing encoding, storage, and 

recall processes (Ahn et al., 2019). The LM-DR consists of three parts in total: LM I (immediate 

recall), LM II (delayed recall), and LM R (delayed recognition) (Ahn et al., 2019). In LM I, subjects 

immediately recall details of two short story passages, whereas in LM II, they recall the passages after 

a 20–30-minute delay (Ahn et al., 2019). Lastly, in LM R, subjects answer yes/no questions about the 

passages to see how much of the stories they recognize (Ahn et al., 2019). However, in ADCS-PACC 

only the delayed recall score from LM II is used when calculating the total PACC score (Donohue et 

al., 2014). 
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The DSST measures motor speed, attention, and visuoperceptual functions (Jaeger, 2018). The 

DSST is a paper-and-pencil cognitive test that requires subjects to match symbols to numbers based 

on a key provided at the top of the page (Jaeger, 2018). The subject then copies the corresponding 

symbol into spaces below a row of numbers (Jaeger, 2018). The test score is determined by the 

number of correct symbols matched within the allotted time, typically 90 to 120 seconds (Jaeger, 

2018). 

The MMSE is a global cognition test, with a total of 30 untimed questions and therefore the 

possibility to score 30/30 correctly (Folstein et al., 1975). It provides a useful quantified measure of 

the current cognitive state (Folstein et al., 1975). The MMSE is composed of two parts: The first 

section focuses solely on vocal responses, assessing orientation, memory, and attention, with a 

maximum score of 21 (Folstein et al., 1975). The second section evaluates the ability to name objects, 

follow verbal and written instructions, write a sentence spontaneously, and copy a complex polygon 

akin to a Bender-Gestalt Figure (a geometrical figure), with a maximum score of 9 (Folstein et al., 

1975). Additionally, this test should not take longer than 10 minutes to complete (Folstein et al., 

1975), which can help reduce fatigue and lower stress in elderly, potentially demented, participants. 

2.4 Reliability, validity, and sensitivity 

The PACC composite score is determined from its components using an established normalization 

method (Donohue et al., 2014). Each of the 4 component scores is divided by the baseline sample 

standard deviation of that component, to form standardized z-scores, as a z-score is a standardized 

raw score (Ivanouw, 2006).  

Many types of errors can occur, and will occur, when conducting research. But it is important to 

be aware of this, and how they can affect the overall reliability, validity, and sensitivity of a test 

(Ivanouw, 2006). This is why it is important to include an error score, where some are positive 

(overestimations), and some are negative (underestimations) (Ivanouw, 2006). Reliability is the 
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variance in true scores divided by the variance in observed scores, where high reliability refers to a 

low variance between the two, and a low reliability refers to a big variance between the two (Ivanouw, 

2006). Some errors include random response errors (where participants for instance randomly choose 

“a” instead of “b”), specific errors (when they misinterpret the question), and transient errors (when 

their response depends on their mood that day) (Ivanouw, 2006), and both the participant and the 

clinician can make these errors. Additionally, the clinician can make idiosyncratic errors, where they 

let their own judgements affect the interpretation of the responses (Ivanouw, 2006). Reliability can 

be investigated in various ways and corrected accordingly in different statistical ways (Ivanouw, 

2006). But it can also be achieved by comparing the scores of interests with a gold standard, which 

might even speak more to the tests’ accuracy than its reliability (Ivanouw, 2006).  

 Validity concerns whether a particular examination method provides relevant information about 

the characteristics it is designed to measure (Ivanouw, 2006). It is important to investigate and 

consider, whether the test measures more or less than the concept, it is intended to measure (Ivanouw, 

2006). When validating and evaluating tests for use in a test battery, one should remember to 

investigate the extent to which the tests overlap, and the extent to which they can complement each 

other in the process (Ivanouw, 2006). It should be assessed whether the tests in fact support or 

contradict each other (Ivanouw, 2006). The sensitivity determines, how good the test is at correctly 

identifying patients who have the disease in question (hence, avoiding false negative results), whereas 

the specificity determines, how good the test is at excluding patients who do not have the disease in 

question (avoiding false positive results) (Ivanouw, 2006). However, it can be difficult to determine 

both the sensitivity and specificity, and therefore it can also be valuable to look at the overall 

predictive value (Ivanouw, 2006).  
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 Lastly, avoiding Type II and Type II errors is crucial in research. Type I errors happen when 

the expected effect is found significant, when there is no effect, while Type II errors occur when the 

expected effect is not found significant, when in reality it is (Šimundić, 2013). 

2.4.1 Bias in research  

Another important principle within research is to be transparent about potential biases that can 

and will occur. All scientific papers need to clarify any concerns they might have, when it comes to 

the quality of work submitted for publication (Šimundić, 2013). All reviews aim to avoid bias (Booth 

et al. 2022). The more systematic they are, the less likely it is for bias to appear (Booth et al. 2022). 

Working systematically by following validated guidelines can help with this (Booth et al. 2022).  

Bias can occur both intentionally and unintentionally, and they can contribute to misleading 

results (Šimundić, 2013). Selection bias can occur, when the participants included in a study are not 

representative of the general population, leading to skewed results that cannot be accurately 

generalized (Šimundić, 2013). Volunteer bias occurs when individuals who choose to participate in 

a study might differ from those who do not, potentially affecting the study’s outcomes (Šimundić, 

2013). Confirmation bias refers to the tendency to seek, interpret, and remember information that 

confirms preexisting beliefs while ignoring contradicting evidence (Peters, 2022). Attrition bias 

occurs when participants drop out of a study and does not complete the follow-up assessments, which 

can affect the study’s results (Babic et al., 2019). Recall bias, a form of retrospective bias, occurs 

when participants' recollections of past experiences are inaccurate or incomplete, potentially leading 

to faulty conclusions (Ingram, 2023).  

2.4.2 How to measure test sensitivity 

 There are many ways to measure test sensitivity. It can be challenging to summarize the results 

from studies of different quality, maybe because different methods have been used, or the sample 
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sizes are different, and then they consequently get different effect sizes (Ivanouw, 2006). In this way, 

variation in effect sizes is considered to reflect the different influencing variables within each study 

(Ivanouw, 2006). However, there are alternative ways to measure the effect and sensitivity of a study 

(Ivanouw, 2006), for instance, beta-coefficients, likelihood-ratios, hazard ratios (HRs), Receiver 

Operating Characteristics (ROC) analysis, odds-ratios, predictive values, logistic mixed-effects 

models, linear mixed-effects models, and confirmatory factor analysis (CFA) (Field, 2017). 

The beta-coefficient (β-coefficient) is a measurement method that is valuable in detecting the 

strength of a study, as well as its direction (Field, 2017). The β-coefficient is the average amount that 

the dependent value increases, when one independent variable increases one standard deviation, 

(Field, 2017), and is therefore used primarily when comparing variables. A positive β-coefficient 

indicates that if X increases, Y similarly increases (Field, 2017), whereas if the β-coefficient is 

negative, it means that if X increases, Y decreases. This can be useful in detecting strength and 

direction of possible correlations (Field, 2017).  

The hazard ratio (HR) is the probability of a particular event occurring in a group compared to a 

control group over time (Spruance et al., 2004). An HR above 1 suggests an increased risk of disease, 

where an HZ below 1 suggests a smaller risk (Spruance et al., 2004). 

The likelihood ratio is based on the maximum-likelihood theory, which is the idea of finding the 

best model to explain your data (Field, 2017). The likelihood-ratio can help evaluate two aspects: The 

potential effectiveness of a specific diagnostic test, and the probability that a patient has a particular 

disorder or condition (Field, 2017). A higher positive likelihood-ratio indicates that a positive test 

result is much more likely to be measured in people with the condition compared to those without it 

(Field, 2017). A higher ratio means the test is better at confirming the presence of a condition (Field, 

2017). A slightly similar measurement method is the odds-ratio, which can help compare the odds of 
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outcome between groups (Field, 2017). The odds-ratio measures effect size by quantifying the 

relationship between variables (Field, 2017), where a higher ratio indicates a stronger association 

between exposure and outcome, and a lower ratio indicates a weaker association. 

The ROC analysis is used to evaluate the performance of diagnostic tests (Metz, 1978). It plots 

the true positive rate (sensitivity) against the false positive rate (1 minus specificity) at various 

threshold settings (Metz, 1978). This method creates a curve based on the specificity and sensitivity 

scores from the test, where the area under the curve (AUC) can determine how accurate the test is 

(Metz, 1978). A higher AUC-score indicates that the test has better accuracy in distinguishing between 

those with and without the condition (Metz, 1978).  

A predictive value measures how well a test predicts the presence or absence of a condition (Field, 

2017). The positive predictive value (PPV) indicates the probability that subjects with a positive test 

truly have the condition, whereas the negative predictive value (NPV) indicates the probability that 

subjects with a negative test truly do not have the condition (Field, 2017).  

Logistic mixed-effects models and linear mixed-effects models (both LMM) are methods used to 

understand data where we collect multiple measurements from the same subjects (Bartlett, 2020). The 

logistic model helps us analyse outcomes, while considering individual differences, and the linear 

model looks at continuous outcomes (like test scores) in the same way (Bartlett, 2020). Additionally, 

the mixed method of repeated measures (MMRM) can help determine how things change over time 

within the same people, using both fixed effects (overall trends) and random effects (individual 

differences) (Bartlett, 2020).  

Lastly, CFA can help check how well a test item (for instance a subtest) match the skills they are 

supposed to measure (cognitive domains). If the CFA results show strong connections and good 
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overall fit, it means the subtests are doing a good job measuring what they are supposed to measure 

(Field, 2017). 

2.5 Motivation behind this review 

The motivation for undertaking a systematic review on the early detection of AD is 

multifaceted, rooted in the escalating need to identify and manage this condition as early as possible. 

As the global population ages, the prevalence of AD is rising, making the early detection of the disease 

more critical than ever. This section outlines the key motivations driving this research, synthesizing 

various factors that underscore its importance. 

Firstly, the necessity for detecting AD has never been more pressing. With an increasing number 

of individuals reaching old age, the incidence of AD continues to climb (Alzheimer’s Association, 

2024). Early detection is crucial to prevent permanent brain damage and to take advantage of 

emerging medical treatments designed to slow disease progression. Advances in medicine, such as 

new drugs, underscore the importance of diagnosing AD at the earliest possible stage (Grant, 2023). 

However, the early cognitive decline associated with AD is often difficult to differentiate from normal 

aging, making it challenging to identify and diagnose. Moreover, cognitive changes are sometimes 

stigmatized, and only 40% of individuals who experience memory problems consult a doctor 

(Alzheimer & Association, 2024). This highlights a significant gap in early diagnosis and 

intervention. Additionally, cognitive changes can sometimes be attributed to other treatable 

conditions, such as tumours or haemorrhages, which need timely medical attention (Mayo Clinic 

Staff, 2024). An early diagnosis would also allow patients and their families to plan for the future, 

make their homes safer, and manage expectations effectively (Mayo Clinic Staff, 2024), and to 

facilitate informed decision-making and help maintain the patient’s independence, health, and safety. 

Furthermore, early-stage diagnosis enables the prescription of drugs that can slow cognitive decline, 

such as acetylcholinesterase inhibitors, which are vital for maintaining communication between brain 
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cells (National Health Service, 2023). Most notably, the recent approval by the Food and Drug 

Administration (FDA) of lecanemab, a treatment for AD, marks a significant advancement (Grant, 

2023). Lecanemab has been shown to moderately slow the progression of cognitive and functional 

decline in the early stages of the disease, reducing cognitive decline by 27% after 18 months 

compared to a placebo (Grant, 2023). This drug also demonstrated reductions in both Clinical 

Dementia Rating (CDR) and amyloid proteins, emphasizing the importance of early detection and 

intervention (Grant, 2023).  

Another breakthrough in the early detection of AD was recently achieved by Ashton and 

colleagues, in January 2024. They developed a blood test capable of detecting p-tau217, a specific 

form of the tau protein that is an important AD biomarker (Ashton et al., 2024). This approach shows 

promising abilities to provide quick and accurate diagnoses much earlier in the disease progression, 

ultimately enabling timely interventions and significantly improving patient outcomes (Ashton et al., 

2024). 

Despite these advancements, there is still a pressing need for more sensitive tests for preclinical 

AD to be implemented in clinical settings (Jack et al., 2018). Current neuropsychological tests, such 

as the MMSE and the Montreal Cognitive Assessment (MoCA), are commonly used to evaluate 

cognitive domains (Folstein et al., 1975). However, these tests have limitations. For example, the 

MMSE has shown poor test-retest reliability, ceiling effects, and low sensitivity to impairment in 

cognitively normal older adults (Bransby et al., 2019). The MMSE is also criticized for its 

insensitivity to detect MCI and early stages of AD, particularly in detecting subtle cognitive deficits 

in executive function and visuospatial skills (Jia et al., 2021). Mitchell conducted a meta-analysis on 

the accuracy of MMSE in relation to detecting dementia and MCI (2009). He investigated 39 studies 

and found, the MMSE is best for confirming dementia in specialist settings and for ruling out 

dementia in non-specialist settings (Mitchell, 2009). In settings at memory clinics, MMSE had a 
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pooled sensitivity of 79.8%, a specificity score of 81.3%, and a PPV of 86.3%, which overall indicates 

the test is a reliable tool in these settings (Mitchell, 2009). In non-clinical community settings, the 

MMSE had a pooled sensitivity of 85.1%, and a specificity score of 85.5%, and while these scores 

are high, the PPV value was only 34.5%, which suggests that the MMSE is less reliable for correctly 

confirming dementia, leading to more false positives (Mitchell, 2009). This indicates that while the 

MMSE can effectively rule out dementia in these settings, it may not be as useful for confirming a 

diagnosis without additional testing (Mitchell, 2009). This was also the case in primary care, where 

similar issues with sensitivity was measured (Mitchell, 2009).  

The MoCA, although more sensitive than the MMSE for detecting MCI, also has its limitations. 

Its sensitivity can vary depending on the population and specific cognitive domains assessed, and it 

may be too challenging for individuals with more severe cognitive impairment (Jia et al., 2021). As 

Jia and colleagues (2021) conducted a cross-sectional analysis of 4923 adults aged >55 years, they 

found that the MMSE and the MoCA both were able to identify MCI with varying degrees of 

prevalence. The MMSE had a prevalence rate of 28.6% for MCI, while the MoCA identified a higher 

rate of 36.2% (Jia et al., 2021). The study also noted that the MoCA had better sensitivity for detecting 

MCI, with less ceiling effect and greater detection of cognitive heterogeneity compared to the MMSE 

(Jia et al., 2021). This indicates that the MoCA is a more effective tool for screening cognitive 

impairment in this population (Jia et al., 2021). 

Recent research suggests using composite cognitive measures to gain more nuanced and 

sensitive results, which is specifically designed to detect Aβ-related cognitive decline (Hassenstab et 

al., 2021). Composites are considered more sensitive and specific for early detection of AD compared 

to MMSE and MoCA (Hassenstab et al., 2021). Hassenstab and colleagues (2021) conducted a study 

comparing the efficacy of short-form cognitive assessments, like MoCA, with comprehensive long-

form cognitive batteries in predicting AD progression and their sensitivity to AD neuroimaging 
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biomarkers (Hassenstab et al., 2021). In a sensitivity analysis, they found that both MoCA and a 

Global Cognitive Composite (GCC) show modest sensitivity (AUC = 0.64 for MoCA, and AUC = 

0.66 for GCC) (Hassenstab et al., 2021). These results underscore the limitations of current tests and 

a pressing need to more sensitive and specific tools (Hassenstab et al., 2021).  

PACC is one such promising tool specifically designed to detect the earliest signs of cognitive 

decline due to AD (Donohue et al., 2014). However, there is an overall lack of studies investigating 

the sensitivity and accuracy of PACC on its own. The need for accessible and reliable tests in clinical 

settings is evident. Investigating the sensitivity, accuracy, and specificity of PACC could determine 

its feasibility as a standalone measurement tool in clinical practice. Although PACC may not stand 

on its own in all diagnostic settings, exploring its potential for implementation into clinical practice 

is essential. An investigation of its sensitivity independently from other measurements can be useful, 

as this has not been thoroughly examined previously.  

In summary, the motivations for conducting a systematic review on the early detection of 

preclinical AD are driven by the urgent need to improve diagnosis methods to utilize new treatments 

and enhance patient outcomes. This review aims to synthesize existing research to gather relevant 

information on PACC in relation to early disease detection, which in the end can contribute to the 

ongoing efforts to combat this prevalent disease.  

3.0 Methodology 

This systematic review is based on an interest in finding the existing connections between the 

understandings of Aβ pathology in the brain and the progression of cognitive decline in preclinical 

AD patients. The following section will account for the theory of science and the methodological 

considerations that establish the foundation for this review. This section will outline how the review 

follows the 'Diagnostic Test Accuracy' (DTA) protocol and the Preferred Reporting Items for 
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Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews, as established 

by the Joanna Briggs Institute (JBI). Additionally, the criteria for study eligibility will be outlined, 

followed by a presentation of the search strategy, including the search strings used in various 

databases. An overview of the study selection process will also be provided, giving a clear picture of 

how studies were chosen for inclusion in this systematic review. 

3.1 Theory of science 

In all science, it is important to emphasize that truth is never something one can achieve 

complete certainty about (Vengsgaard, 2015). Rather, it is a goal one can approach through critical 

examination and falsification of hypotheses (Vengsgaard, 2015). This review is grounded in critical 

rationalism, as the approach of investigating and revising existing hypotheses is done by critically 

and systematically evaluating and synthesizing the strongest findings (Vengsgaard, 2015). However, 

in all research it is important to be transparent about the fact, that one can never be entirely objective, 

as humans naturally are influenced by their assumptions, background, and beliefs (Andersen & Kock, 

2015). Especially when a project is based on an underlying interest and potentially prior experience 

with the subject. It is therefore important to be aware of one's own role in the decisions that may be 

made during the entire writing process (Anderson & Kock, 2015).  

3.2 Study type - A systematic review 

A systematic review aims to explore the claims regarding the effectiveness of interventions 

(Petticrew & Roberts, 2008). A review can help map out areas of uncertainty by comprehensively 

identifying, appraising, and synthesizing all the relevant research on a specific topic (Petticrew & 

Roberts, 2008). The demand for evidence-based clinical practice is steadily increasing due to ongoing 

advancements that expand the array of technologies, medications, and treatments accessible to 

patients (Aromataris & Pearson, 2014). And a systematic review is precisely based on all accessible 
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evidence and its data to uncover any patterns, trends, insights across multiple studies (Aromataris & 

Pearson, 2014). However, it is worth emphasizing that the execution and quality of a systematic 

review largely depend on the quality of the included studies, thus a systematic review is never better 

than the studies it includes (Moher et al., 2009). A systematic review is the synthesis of the best 

available evidence aimed at answering a specific question (Perestelo-Pérez, 2013). During a 

systematic review, scientific research strategies and guidelines are applied to minimize any existing 

bias (Perestelo-Pérez, 2013).   

3.2.1 Diagnostic test accuracy 

The international evidence-based healthcare research organization, JBI, has created a Manual 

for Evidence Synthesis (Aromataris & Munn, 2020), that is designed to provide guidelines for 

systematic reviews. In this review, the primary emphasis is on evaluating the sensitivity and accuracy 

of PACC. Hence, it follows the guidelines outlined in Chapter 9 of the JBI Manual, titled 'Diagnostic 

Test Accuracy,' and this will be the basis of this review (Aromataris & Munn, 2020; Campbell et al., 

2020). As the JBI website has since been updated, thus changing some of the chapters (including 

Chapter 9), this chapter will be added as an attachment with permission from JBI (See Attachment 

1). 

Primary studies that investigate the accuracy of diagnostic tests are referred to as diagnostic test 

accuracy (DTA) studies, and this review will specifically focus on systematically reviewing studies 

that take test accuracy into account (Campbell et al., 2020). DTA studies compare a diagnostic test of 

interest (referred to as the ‘index test’) to an established diagnostic test (referred to as the ‘reference 

test’), which should be the best test available for accurately identifying the presence or absence of the 

condition of interest (Campbell et al., 2020). In this review, the index test refers to PACC, whereas 

the reference test refers to amyloid-PET imaging, as it is the current gold standard. A systematic 
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review of diagnostic test accuracy synthesizes all available evidence to estimate the accuracy of the 

test in question (Campbell et al., 2020). This can be done in multiple ways. Measures such as 

sensitivity, specificity, but also predictive values, odds-ratios, likelihood ratios, and ROC analyses are 

all measurements of accuracy (Campbell et al., 2020).  

3.2.2 PRISMA 

 This study additionally follows the PRISMA guidelines, which are designed to help reviewers 

maintain a transparent approach when conducting a systematic review (Page et al., 2021). Following 

a validated checklist also allows for readers of the review to assess the strengths and weaknesses of 

the investigation (Liberati et al., 2009). The guidelines ensures both quality and consistency 

throughout the reviewing process, while also allowing other researchers to achieve the same results 

if they were to apply the same search strategy at the same time (Moher et al., 2009; Page et al., 2021). 

The PRISMA guidelines, which are based on the PRISMA Statement from 2009 (Page et al., 2021) 

consist of a 27-items checklist and a four-phase flow diagram. The checklist provides reviewers with 

a replicable review strategy, which can enhance the reliability of the review (Page et al., 2021). 

Additionally, the flow diagram provides an overview of the review process, indicating the number of 

studies excluded and included at various stages of the search (Page et al., 2021). The PRISMA 2020 

statement is primarily intended for systematic reviews that assess the effects of health interventions, 

and the items on the PRISMA checklist are therefore designed to report and evaluate these effects 

(Page et al., 2021). This review will utilize this checklist as its foundation. However, while the 

PRISMA checklist provides a comprehensive framework for reporting systematic reviews, not all 

items may be applicable in this review. For instance, specifying effect measures, risk ratios and mean 

scores for each study might be a challenge, since not all studies provide these data in a standardized 

format or may report them in varying ways. Additionally, due to time constraints and the current scope 
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of the review, a review protocol for this systematic review will not be conducted. For the same 

reasons, registration of this review prior to its commencement has also not been done. (See the full 

PRISMA checklist in Attachment 2). 

3.3 Study characteristics  

To formulate a relevant and precise research question, researchers often utilize the PICOS 

approach, which encompasses five key components represented by the acronym: Patient/Population, 

Intervention, Comparison, Outcome, and Study design (Leonardo, 2018; Liberati et al., 2009). A well-

structured investigation should incorporate details about all five components (Leonardo, 2018), in 

both the title and the research question. However, according to Campbell and colleagues (2020), when 

conducting a systematic review of diagnostic test accuracy, there are additional things to consider. 

Firstly, the title must explicitly include the phrase “a systematic review protocol” (Campbell et al., 

2020). And the title must additionally include each of the elements of the PIRD acronym: Population, 

Index test, Reference test, and Diagnosis of interest (Campbell et al., 2020), which concludes the title: 

“Exploring the accuracy of the Preclinical Alzheimer’s Cognitive Composite (PACC) relative to 

amyloid pathology for the diagnosis of Alzheimer’s Disease: A systematic review protocol”.  

3.3.1 Table 1: PICOS 

A PICOS chart has been made for this review and can be seen below in Table 1:  

Participants Participants / patients with elevated amyloid pathology  

Cognitively normal (CN) individuals  

Participants in any preclinical AD stage 

Intervention Amyloid-PET has been used to determine amyloid pathology 

PACC has been used to determine cognitive decline 
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Comparison Participants with elevated amyloid pathology and a CN control group 

Outcome The outcome revolves around detecting any cognitive changes in participants 

with elevated amyloid pathology, contrary to CN individuals. Outcome must 

include both a change of amyloid build-up as well as a change in PACC score 

in the follow-up study 

Study design Study types with n > 10 participants 

Longitudinal studies with 2 or more measurements of PACC scores 

Data on sensitivity and/or accuracy of PACC 

Table 1: PICOS 

 

3.4 Study eligibility 

Studies meeting specific criteria will be included in the review. The criteria are based on the 

PICOS and PIRD approaches, as well as the research question and the intervention of interest. Studies 

published between 2014 and 2024 are included, as PACC was not constructed until 2014 (Donohue 

et al., 2014).  

The focus on participants along the AD continuum, including cognitively normal adults with 

abnormal Aβ-levels, is of interest in this review due to the current investigation of trying to better 

understand the earliest stages of the disease and identifying individuals who may be at risk of 

developing Alzheimer's-related cognitive decline. Accordingly, this review does not focus on animal 

studies, abnormal Aβ pathology resulting from other known causes, or individuals already diagnosed 

with AD. Furthermore, studies where participants’ cognitive status relied on self-administered 

assessments, such as questionnaires or their own subjective cognitive decline (SCD), instead of Aβ-

PET imaging, were not included in this review. Exclusions also apply to participants undergoing 

cognitive training, dietary restrictions, or specific physical training programs, as well as those 
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involved in placebo-drug trials. This last decision is based on the potential manipulation of results at 

post-intervention, which may not reflect the natural progression of the disease, hence potentially 

influencing the PACC scores.  

The utilization of PACC to measure cognition is necessary to conduct a diagnostic test accuracy 

systematic review on the intervention method. Additionally, studies included must contain available 

data on the sensitivity and/or accuracy of PACC.  

The focus on Aβ-PET imaging stems from its status as the current gold standard for AD diagnosis. 

Consequently, articles that do not specify the type of imaging used are excluded from consideration. 

Also, Aβ pathology determined by other means, such as CSF or plasma analysis, does not align with 

the focus of this review. Lastly, included studies must be peer-reviewed, as this improves the validity 

of the review. 

3.4.1 Table 2: Inclusion and exclusion criteria 

Inclusion 

criteria 

• Publications between 2014-2024 

• Amyloid-PET to determine amyloid pathology 

• PACC test battery to determine cognition 

• Patients along the AD continuum (abnormal amyloid pathology) 

• Peer-reviewed publications 

• Longitudinal study designs  

• Data on PACC sensitivity/accuracy 

Exclusion 

criteria 

• Patients with major comorbid diseases 

• Duplicate publications 

• No full text available 

• Other languages than English, Danish, Swedish and Norwegian 

• Studies with n < 10 participants 

• Reviews, books, conference abstracts, theses, posters, manuscripts 

Table 2: Eligibility criteria 
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3.5 The search  

A systematic search was conducted across three academic databases, namely PsycInfo, 

PubMed, and Embase on March 20th, 2024. The search strategy covered the terms “Alzheimer’s 

Disease” or “amyloid”, and “Preclinical Alzheimer’s Cognitive Composite”, and was not limited to 

title, abstract, and keywords. The search was instead made in “any field” or for the terms to appear 

anywhere in the full text as well as in the index terms for each database, encompassing APA index 

terms, MeSH, and Emtree. Furthermore, the search was focused on studies published between 2014 

and 2024 to gather all relevant information since the introduction of PACC.  

The search was divided into two parts, where one part focused on all articles containing either 

“amyloid” or “Alzheimer’s Disease” and the corresponding index terms for these, whereas the other 

part focused on all articles containing “Preclinical Alzheimer’s Cognitive Composite” or “PACC” as 

this is the focus of the review. Boolean operators such as “AND”, “OR”, and “*” were used to 

organize the search (see an example in Figure 1). The search was done in collaboration with librarians 

at Aalborg University Library (AUB) to ensure the quality of the search. (See the whole search in 

Attachment 3).  
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3.5.1 Figure 1: Example of a search in PubMed 

 

Figure 1: Example from a search in PubMed 

3.6 Study selection and screening process 

The selection process utilized the online tool, Rayyan, which supports users in conducting 

systematic reviews (Ouzzani et al. 2016). The initial search resulted in a total of 392 articles from all 

three databases before screening. Firstly, duplicates were manually excluded, as Rayyan had 

automatically identified 230 possible duplicates. This resulted in the exclusion of 127 articles. 

Afterwards, the remaining 265 references were screened based only on abstract and title according to 

the eligibility criteria. This screening resulted in 171 articles. A second screening included a more 
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thorough look into the methodology section of each article to investigate, whether they provided any 

information and data regarding the sensitivity and specificity of PACC, as this was the focal point of 

this review. This screening resulted in 30 articles. This was done by searching systematically for the 

keywords: “Sensitivity”, “specificity”, “accuracy”, “ROC / receiver operating characteristic / curve”, 

“value”, “odds-ratio”, “likelihood ratio”, “validity”, “variance”, “effect size”, “predictive value”, and 

“AUC“. Additionally, to determine whether PACC was a focal point in any sensitivity analyses or 

discussions that might not include these keywords, all sentences regarding “PACC” were investigated 

as well. This led to exclusions of articles that did not include any discussions or analyses of PACC, 

but instead had used PACC exclusively as a measurement tool in their analyses. Many articles were 

further excluded in this screening due to being abstracts, podium presentations, manuscripts, or 

unpublished preprints. The last screening included a full-text reading of the 30 articles, which led to 

20 included articles in this review. The articles met all inclusion criteria, as well as contained data on 

PACC sensitivity and accuracy. The entire search process is illustrated in the flow diagram below (see 

Figure 2). All steps of this screening follow the principles of PRISMA. 

 

4.0 Results  

This section will present the findings from a systematic review of 20 studies meeting the 

inclusion criteria. The process of the study selection is detailed in a flow diagram (see Figure 2), 

followed by a quality assessment of the included studies. A comprehensive table summarizes the key 

characteristics and findings of each study. Finally, the results are presented, where the main findings 

across the studies will be highlighted.  
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4.1 Figure 2: Flow diagram of the selection process 

 

 
 
 
 
 
                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: PRISMA Flow diagram (Page et al. 2021) 
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4.2 Quality assessment 

The JBI Critical Appraisal Tool for Diagnostic Test Accuracy Studies is a validated instrument 

developed by JBI, and it is specifically designed to assess the methodological quality of diagnostic 

test accuracy studies and to identify potential sources of bias in study design, conduct, and analysis 

(Whiting et al., 2011). The assessment tool is also known as QUADAS-2, which stands for Quality 

Assessment of Diagnostic Accuracy Studies (Whiting et al., 2011). The tool is focused on evaluating 

the reliability and validity of DTA studies, which helps to ensure high-quality evidence regarding 

clinical decisions in healthcare. It consists of 10 structured questions covering key aspects such as 

patient selection, index test interpretation, reference standard, blinding, and data analysis methods 

(see Table 3). (See full QUADAS-2 in Attachment 4). 

4.2.1 Table 3: QUADAS-2 - Questions 

Question 

number 

Question 

1 Was a consecutive or random sample of patients enrolled? 

2 Was a case control design avoided? 

3 Did the study avoid inappropriate exclusions? 

4 Were the index test results interpreted without knowledge of the results of the reference standard? 

5 If a threshold was used, was it pre-specified? 

6 Is the reference standard likely to correctly classify the target condition? 

7 Were the reference standard results interpreted without knowledge of the results of the index test? 

8 Was there an appropriate interval between index test and reference standard? 

9 Did all patients receive the same reference standard? 

10 Were all patients included in the analysis? 

Table 3: QUADAS-2 – Questions (Whiting et al. 2011. 

The QUADAS-2 assessment tool was used to evaluate the quality of each included study in this 

review, where the answer to each question could be either “yes”, “no”, “unclear”, or “not applicable” 
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(Whiting et al., 2011). The results of the quality assessment for each included article are presented in 

Table 6, and it includes 20 articles as previously presented in the flow diagram. This detailed review 

of the quality of the included studies provides insights into the strengths and weaknesses of each study 

and its contribution to the overall evidence base. As QUADAS-2 does not introduce a numerical 

scoring total, the total estimate is based on the total amount of times the answer, “Yes” is the answer, 

whereas “No” and “U” (unclear) both equals a score of 0. A numerical value of quality assessment 

can help to make a quick and clear quality check for each included article. (See Table 4). 

4.2.2 Table 4: QUADAS-2 - Results 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total 

S1 Yes Yes Yes No Yes Yes Yes U No Yes 7/10 

S2 Yes Yes No No Yes Yes Yes Yes Yes No 7/10 

S3 Yes Yes Yes No Yes Yes U No Yes Yes 7/10 

S4 Yes Yes No No Yes Yes Yes Yes Yes No 7/10 

S5 Yes Yes Yes No Yes Yes Yes U No U 6/10 

S6 Yes Yes Yes No Yes Yes Yes Yes Yes Yes 9/10 

S7 Yes Yes Yes No Yes Yes U Yes Yes Yes 8/10 

S8 Yes Yes U No Yes Yes Yes Yes Yes U 7/10 

S9 Yes Yes Yes No Yes Yes Yes U Yes Yes 8/10 

S10 Yes Yes U No Yes Yes Yes Yes Yes Yes 8/10 

S11 Yes Yes Yes No Yes Yes Yes U No Yes 7/10 

S12 Yes Yes Yes No Yes Yes Yes Yes No Yes 8/10 

S13 Yes Yes U No Yes Yes Yes U No U 5/10 

S14 Yes Yes Yes No Yes Yes Yes Yes Yes Yes 9/10 

S15 Yes Yes Yes  No Yes Yes Yes Yes No Yes 8/10 

S16 Yes Yes No No Yes Yes Yes U No No 5/10 

S17 Yes Yes No No  Yes Yes Yes U Yes Yes 7/10 
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S18 Yes Yes Yes No No Yes Yes U No Yes 6/10 

S19 Yes Yes Yes No No Yes Yes U U Yes 6/10 

S20 Yes Yes Yes No Yes Yes Yes U Yes Yes 8/10 

Abbreviations: Q = Question, S = Study, U = Unclear 

Table 4: QUADAS-2 – Results 

 

4.3 The table of the reviewed articles 

The following table provides a detailed summary of the 20 articles included in this systematic 

review (see Table 5), each of which evaluates the diagnostic accuracy and sensitivity of the PACC 

for detecting preclinical AD, compared to Aβ-PET imaging among individuals with elevated Aβ 

pathology. These articles were selected based on the thorough quality assessment (QUADAS-2), as 

shown above, ensuring that only high-quality studies were included. The table includes key 

information for each study, such as the author(s), study type (longitudinal studies and their follow-up 

periods), sample size (including gender and age distribution), reference test information (PET-

imaging type and the threshold used), index test information (PACC version and its included 

subtests), baseline data required in the study, sensitivity analysis method(s) used, their main results, 

and a brief overview of their limitations. Additionally, the quality score from QUADAS-2 has been 

added to summarize the quality of each study. This comprehensive overview allows for a systematic 

comparison of the studies, highlighting crucial aspects and differences that inform the discussion of 

the diagnostic utility of PACC in preclinical AD detection. 
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Author, 

year, 

country 

Study type Sample Aβ-PET 

(Reference) 

PACC version 

(Index) 

Baseline 

data 

Sensitivity 

analysis 

method 

Results Limitations 

1 (Bransby 

et al., 

2019) 

 

Australia 

Longitudinal 

study 

 

18-months 

follow-up 

 

36-months 

follow-up 

AIBL 

dataset 

Age = 60+  

 

n = 66 CN 

(total) 

 

n = 34 Aβ+ 

♀ = 52.9% 

n = 32 Aβ++ 

♀ = 40.6% 

11C-PiB-PET / 
18F-FBP-PET /  
18FLUTE-PET 

 

SUVR cutoff 

= 1.4. 

 

1.4-1.9 = Aβ+ 

>1.9= Aβ++ 

 

1. ADCS-PACC 

(MMSE, CVLT-II, 

LM II, DSST) 

 

2. ADCS-PACC 

(without MMSE) 

 

3. ZAVEN 

(CVLT-II, LM-II, 

DSC, D-KFES 

verbal fluency) 

CDR = 0.  Effect 

sizes 

measured 

Aβ+ showed slower rate of cognitive 

decline than Aβ++.  

Exclusion of MMSE did not improve 

sensitivity. 

Higher Aβ = worse cognitive 

performances. 

Variation in Aβ is connected to rate of 

decline. 

 

ADCS-PACC (d = 0.85). 

ADCS-PACC no MMSE (d = 0.62) 

ZAVEN (d = 0.72) 

Small sample size.  

Aβ accumulation is 

more dynamic than 

allowed for in this 

study design. 

 

Quality score = 7/10 

2 (Buckley 

et al., 

2017) 

 

USA 

Longitudinal 

study 

 

3-year 

follow-up 

HABS 

dataset 

n = 237 CN 

Age = 63-90 

♀ = 60%. 

 

11C-PiB-PET 

 

DVR cutoff = 

>1.2.  

PACC: 

1. LM-DR (WMS) 

2. MMSE 

3. DSST (WAIS) 

4. FCSRT (free + 

cued) 

CDR = 0 

MMSE = 

>25  

Maximum 

likelihood 

estimation 

 

Between 

network 

connectivit

y, Aβ, and 

PACC. 

Aβ is linked to brain network 

connectivity (default, salience, control 

networks). 

 

Lower PACC z-score = higher PiB-DVR 

(Aβ) 

 

A quadratic model presented that higher 

Aβ could predict poorer PACC scores 

over time (acceleration in decline in the 

third year of follow-up). 

There is a potential 

for attrition bias, as 

some participants did 

not complete all 

follow-up 

assessments.  

 

Quality score = 7/10 

3 (Demnitz

-King et 

al., 2023) 

 

France 

Longitudinal 

study 

 

Every week 

for 18-

months 

Age-Well 

dataset 

n = 135 

Age = 69.3 

(SD = 3.8) 

♀ = 61% 

 

18F-FBP-PET 

 

SUVR = 1.3 

(SD = 0.2) 

PACC5 

(LM-DR from 

WMS, CVLT-II, 

WAIS Coding, 

category fluency 

CDR = 0.  LMM 

analysis 

with 

interaction 

No significant interaction between 

PACC5-scores between groups 

(meditation training + no intervention) 

 

PACC5 vs. Aβ = PFDR = 0.2. 

Episodic memory vs. Aβ = PFDR = 0.2. 

Executive function vs. Aβ = PFDR = 

0.44.  

Attention vs. Aβ = PFDR = 0.8.  

It is not possible to 

determine any 

potential lasting 

effects of either 

intervention since 

cognition was 

assessed immediately 

after the interventions 

ended. 

 

Quality score = 7/10 

4 (Donohue 

et al., 

2017a) 

Longitudinal 

study 

 

ADNI 

dataset 

n = 445 CN 

11C-PiB-PET / 
18F-FBP-PET 

 

ADNI-PACC: 

(ADAS-Cog, 

DWR, LM-DR, 

CDR = 0.  Logistic 

Mixed-

Effects 

Participants with elevated amyloid had 

significantly worse PACC-scores at 4-

year follow-up (mean difference, 1.51 

Data lost due to loss 

of follow-up for 

many participants. 
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USA, 

Canada 

6-months 

follow-up 

 

1-year 

follow-up 

 

Every year 

follow-up 

(total). 

Age = 

M=74. 

♀ = 52% 

 

Normal Aβ, 

n = 243. 

Elevated Aβ, 

n = 202. 

(SUVR = 

>1.1)  

SUVR = 1.10. MMSE, TMT) Model 

 

Likelihood 

ratio test 

points; 95% CI, [0.94-2.08], p < .001).  

 

Worse scores on MMSE:  

Mean difference, 0.56 points; 95% CI, 

0.32-0.80; P < .001),  

 

No significant difference for LM-DR: 

(mean difference, 0.73 story units; 95% 

CI, −0.02 to 1.48; P = .056). 

 

Quality score = 7/10 

5 (Donohue 

et al., 

2017b) 

 

USA, 

Canada, 

Japan, 

Australia 

Longitudinal 

study 

 

6-, 12-, 18-, 

24-, and 36-

month 

follow-up. 

4 datasets: 

NA-ADNI 

(n = 97) 

 

J-ADNI 

(n = 58) 

 

AIBL 

(n = 164)  

 

ADCS-PI 

(n = 918) 

18F-FBP-PET  

 

SUVR = 1.11. 

1. NA-ADNI: 

(MMSE, ADAS-

Cog, LM, DSST). 

2. J-ADNI:  

(Same as NA-

ADNI). 

3. AIBL: 

(MMSE, CVLT, 

LM, DSST).  

4. ADCS-PI: 

(3MSE, FCRST, 

NYU, DSST). 

 

  

CDR = 0.  MMRM 

 

Cross-

validation 

MMSE and DSST have good face 

validity. Sensitivity was not increased by 

down-weighting or removing these. 

 

Results from cross-validation was 

limited due to small sample sizes. 

 

Minimum detectable effect sizes (d):  

Without optimization = 51% 

Logistic regression weights = 60% 

Minimized d weights = 58% 

 

The original PACC had the highest 

sensitivity. 

Small sample sizes, 

except for ADCS-PI. 

 

Age and gender 

distribution is not 

mentioned in the 

paper.  

 

 

Quality score = 6/10 

6 (Farrell et 

al., 2021) 

 

USA 

Longitudinal 

study 

 

HABS: 4.21 

years 

follow-up. 

AIBL: 18-

months 

follow-up.  

ADNI: 2.97 

year-follow-

up.  

HABS 

(n = 342), 

M-Age = 

71.7 (8.0) 

♀ = 60%. 

AIBL 

(n = 157), 

M-Age = 

72.5 (6.72) 

♀ = 55%. 

ADNI 

(n = 356) 

M-Age = 

74.6 (6.5) 

♀ = 56%. 

11C-PiB-PET / 
18F-FBP-PET 

 

15-18.5 CL 

across all three 

samples. 

PACC5 

 

(MMSE, LM, 

DSST / TMT, 

FCSRT / CVLT / 

ADAS-Cog).  

CDR = 0 LMM Optimal Aβ-PET cutoff determined to be 

15-18.5 Centiloid).  

 

Below this Aβ-PET threshold, cognitive 

decline was not significantly associated 

with Aβ-PET tracer retention.  While 

above the threshold, cognitive decline 

tracked with Aβ-PET retention.  

Individual Aβ 

variations may affect 

these findings.  

Variations between 

datasets. 

 

Quality score = 9/10 
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7 (Farrell et 

al., 2022) 

 

USA 

Longitudinal 

study 

 

Follow-up at 

Year 3 

Year 5 

Year 8 

HABS 

dataset 

n = 112 CN 

 

M-Age = 

72.0 (SD=6)  

♀ = 60% 

 

11C-PiB-PET / 
18F-FTP-PET 

 

CL threshold 

= CL40 

PACC5  

 

(FCSRT total, 

LM-DR from 

WMS, DSST, 

category fluency, 

MMSE) 

CDR = 0 

MMSE = 

>27 

CL40 

PACC = 

0.16 (0.59) 

Linear 

mixed-

effects 

 

PiB-slopes 

Participants with high Aβ already at 

baseline (>CL40), showed most 

cognitive decline in PACC5.  

Steeper PiB slopes overall (higher Aβ 

level) were associated with declining 

processing speed (as measured by 

DSST), executive function, and memory. 

 

DSST is highly sensitive to processing 

speed and memory 

 

Tau became a strong driver of decline. 

DSST and its 

sensitivity towards 

multiple domains 

(memory, processing 

speed, executive 

function) make it less 

specific to pre-AD.  

 

Quality score = 8/10. 

8 (Hampto

n et al., 

2022) 

 

USA 

Australia 

Canada 

 

 

Data from 

longitudinal 

studies: 

Exploratory. 

 

HABS + 

ADNI = 

yearly 

follow-up. 

 

AIBL = 18 

months 

follow-up.  

ADNI: 

(n = 509) 

M-Age = 

74.2 (5.8) 

♀ = 52% 

 

HABS: 

(n = 345) 

M-Age = 

71.5 (7.9)  

♀ = 60% 

 

AIBL: 

(n = 1176) 

M-Age = 

70.7 (6.7) 

♀ = 58% 

 

A4: 

(n = 4492) 

M-Age = 

71.3 (4.7) 

♀ = 59%. 

 

11C-PiB-PET / 
18F-FBP-PET 
 

Cutoffs for 

high Aβ:  

 

ADNI = >1.11 

SUVR 

 

AIBL = >1.40 

SUVR 

 

HABS = 

>1.185 DVR 

IPACC: Proposed 

harmonized 

version.  

 

zPACC: 

standardized 

version (Sum of all 

PACC-versions): 

 

ADNI: MMSE, 

LM, TMT, 

Category fluency, 

ADAS-Cog.  

HABS: MMSE, 

LM, DSST, 

Category fluency, 

FCSRT. 

AIBL: MMSE, 

LM, DSST, 

Category fluency, 

CVLT-II. 

A4: MMSE, LM, 

DSST, FCSRT.  

 

CDR = 0 

MMSE = 

24-30/25-

30/26-30.  

 

zPACC 

median 

scores:  

ADNI=-0.08 

HABS=0.11 

AIBL=0.07 

A4=0.04 

 

 
 

IRT 

CFA 

MLR 

LMM 

HR 

 

Validation 

analyses  

lPACC scores slightly outperformed 

zPACC in predicting AD-progression. 

Bigger effect size for IPACC compared 

to zPACC. 

 

IPACC more flexible across multiple 

studies and their cohort-specific 

differences. 

 

LMM: 

lPACC: t(df:6,978) = −10.43. 

zPACC: t(df:6,978) = −9.89. 

 

HR: 

lPACC: HR(95% CI) = 0.491 (0.386–

0.626). 

zPACC: HR(95% CI) = 0.424 (0.330–

0.546). 

 

Not a longitudinal 

study, but an 

exploration of 

longitudinal studies. 

 

No longitudinal data 

in A4. 

 

Quality score = 7/10. 

9 (Insel et 

al., 2020) 

 

USA 

Longitudinal 

study 

 

Data from 

A4 study. 

n = 4432 CN 

Age = 65-85 

18F-FBP-PET 

(SUVR = 1.1) 
 

PACC 

 

(MMSE, FCSRT, 

LM-DR from 

MMSE = 

25-30.  

CDR = 0.  

 

LMM Decrease in PACC scores was associated 

with increasing Aβ. 

Old age indicated a steeper cognitive 

decline in Aβ+ patients (p = 0.02).  

Investigating 

subthreshold Aβ 

levels makes it 

difficult to compare 
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M-Age = 

71.3. 

♀ = 59,4% 

 

 

WMS, DSST)  Females performed better in PACC at the 

equivalent level of Aβ as males, but 

cognitive decline showed a parallel 

pattern in both sexes in increasing Aβ. 

Aβ accumulation was linked to cognitive 

decline even at subthreshold levels 

(SUVR).  

Som subtests (FCSRT and LM-DR) 

showed greater sensitivity towards early 

cognitive decline.  

to other studies using 

the defined threshold. 

 

There is a main focus 

on baseline (cross-

sectional) and not on 

follow-up scores.  

 

Quality score = 8/10. 

10 (Insel et 

al., 2021) 

 

USA 

 

Longitudinal 

study 

 

M-time 

between 

follow-ups = 

2.2 years 

(SD = 0.8). 

Data from 

ADNI. 

 

n = 127 

CN, Aβ- 

M-Age = 

70.1 (5.8) 

♀ = 59.8%. 

n = 100  

CN, Aβ+ 

M-Age = 

72.9 (6.6) 

♀ = 58%. 

n = 70  

MCI, Aβ+ 

M-Age = 

72.0 (6.9) 

♀ = 41.4%. 

n = 38 

AD, Aβ+ 

M-Age = 

74.5 (7.2) 

♀ = 47.4%. 

18F-FBP-PET 

(SUVR = 1.1) 

 

 

PACC: 

(MMSE, LM-DR 

from WMS, 

ADAS-Cog, TMT) 

CDR = 0.  

 

LMM The study demonstrates PACC 

performance declines before Aβ 

positivity (in cohort CN, Aβ-). 

 

MMSE showed a 0.2 SD drop six years 

before Aβ+. PACC decreased four years 

before.  

 

PACC outperformed several other 

predictors (such as CSF, tau-PET, 

general cognition tests), when it came to 

predicting cognitive outcome and 

decline.  

  

PACC is more accurate than individual 

biomarker or cognition measures alone. 

 

Cross-sectional 

evaluation of Aβ 

status, not looking at 

the longitudinal data 

for the initial 

analysis.  

 

There are differences 

in disease trajectories 

among the cohorts 

(CN, MCI, AD).  

 

Quality score = 8/10. 

11 (Jutten et 

al., 2022)  

 

USA 

Longitudinal 

study 

 

3-month 

follow-up.  

Data from 

HABS. 

n = 114 CN.  

Age = 77.6 

(±5.0) 

♀ = 61%. 

 

11C-PiB-PET 

/ 18F-FBP-PET 
 

DVR: 1.21 ± 

0.23. 

PACC5: 

(MMSE, LM-DR 

from WMS, DSST, 

FCSRT, category 

fluency task).  

 

Computerized C3: 

MMSE 29 ± 

1.2. 

 

CDR = 0.  

 

LMM 

ROC 

BPSO showed strong predictive value 

(AUC = 0.90).  

FNAME also have a good predictive 

value (AUC = 0.80).  

PACC5 have a moderate predictive value 

compared to subtests within C3 (AUC = 

0.75).    

Sensitivity and 

specificity 

assessments for 

PACC5 are not 

provided in this 

paper. 
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(FNAME, BPSO, 

CBB: Including 

DET, IDN, OCL, 

and ONB). 

Quality score = 7/10. 

12 (Lim et 

al., 2016)  

 

Australia  

Longitudinal 

study.  

 

18-, 36-, 54-

, and 72-

month 

follow-up.  

AIBL 

dataset. 

n = 423 CN. 

 

n = 326 Aβ- 

M-Age = 

68.27 (5.95) 

♀ = 54.9%. 

 

n = 33 Aβ+ 

M-Age =  

73.06 (7.13) 

♀ = 66.7%. 
 
n = 64 Aβ++ 

M-Age = 

73.19 (7.41) 

♀ = 46.9%. 

11C-PiB-PET  

SUVR for: 

Aβ- = <1.5 

Aβ+ = 1.5-1.9  

Aβ++ = >1.9  

 
18F-FBP-PET 

Aβ- = <1.10  

Aβ+ = 1.10-

1.29 

Aβ++ = > 1.29  

  
18FLUTE-PET 

Aβ- = <0.61 

Aβ+ = 0.61-

0.82 

Aβ++ = > 0.82 

 

ADCS-PACC  

(CVLT-II, LM-DR, 

DSST, MMSE). 

 

ADCS-PACC  

(no MMSE) 

(CVLT-II, LM-DR, 

DSST). 

 

EM composite 

(CVLT-II, LM-DR, 

Rey Complex 

Figure). 

 

ZAVEN 

(DSST, FAS, 

CVLT-II, LM-DR). 

MMSE = 

28-30.  

 

CDR = 0.  

Effect size 

LMM 

Test-retest 

reliability 

Aβ+ and Aβ++ CN participants showed 

faster cognitive decline than Aβ- across 

all composites.  

 

Sensitivity of composites, 

(Aβ+ vs. Aβ++):  

ZAVEN (d = 1.07). 

ADCS-PACC no MMSE (d = 1.01). 

EM composite (d = 0.64).  

ADCS-PACC (d = 0.64). 

 

(Aβ+ vs. Aβ-): 

EM composite (d = 0.53) 

ZAVEN (d = 0.50). 

ADCS-PACC no MMSE (d = 0.43). 

ADCS-PACC (d = 0.26).  

 

High test-retest reliability for all 

composites: 

EM composite: r = 0.93, p < 0.001  

ADCS-PACC: r = 0.92, p < 0.001 

ADCS-PACC no MMSE: r = 0.94, p < 

0.001 

ZAVEN: r = 0.96, p < 0.001 

Relatively small 

sample size in Aβ 

positivity conditions.  

Comparisons 

between different 

composites assumes 

equal weighting of 

each test. This may 

not be accurate.   

 

Different SUVRs. 

 

Quality score = 8/10. 

13 (Lu et al., 

2019) 

 

United 

Kingdom 

Longitudinal 

study. 

 

 

NSHD 

dataset 

 

n = 502 CN 

in total. 

 

n = 74 Aβ+ 

M-Age = 

70.6 (0.66) 

♀ = 46%. 

 

n = 332 Aβ- 

18F-FBP-PET 
 

SUVR 

>0.6104. 

 

 

PACC: 

 

(MMSE, LM from 

WMS, DSST, 

FNAME).  

CDR = 0.  

 

Standardiz

ed β- 

coefficient 

 

(95% CI) 

 

Females generally performed better than 

males on PACC subtests. 

 

Association between Aβ positivity and 

cognition show significant declines in 

PACC scores for Aβ-positive 

individuals, 

(β = -0.17, CI [-0.32, -0.02], p = <0.05). 

Higher WMHV is associated with 

poorer PACC performance (β = -0.10, 

95% CI [-0.20, -0.01], p = <0.05).  

MMSE: β = -0.24, CI [-0.46, -0.02], 

A part (n = 57) of 

participants had 

missing biomarker 

data. 

 

Relatively small 

effect size (β-value).  

Relatively small 

sample size with 

many Aβ-negative. 

 

Quality score = 5/10. 
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M-Age = 

70.6 (0.70) 

♀ = 51%. 

 

p<0.05. 

DSST: β = -035, CI [-0.51, -0.19], 

p<0.01. 

LM-IR: β = -0.31, 95% CI [-0.56, -

0.06], p<0.05. 

LM-DL: β = -0.20, 95% CI [-0.44, 0.05], 

not statistically significant. 

14 (Mormin

o et al., 

2017) 

  

USA 

Longitudinal 

study 

 

Annual 

follow-ups. 

Focus on 

year 3 and 5. 

HABS 

dataset. 

n = 277 CN 

in total. 

 

n = 206, Aβ- 

M-Age = 

72.9 (±6.0) 

♀ = 59%. 

 

n = 71, Aβ+ 

M-Age = 

75.2 (±5.7) 

♀ = 61%. 

 

 

11C-PiB-PET  

SUVR = 1.20. 

 
 

1. PACC 

(MMSE, LM-DR 

from WMS, DSC 

from WAIS-R, 

FCSRT-Free). 

 

2. PACC no MMSE 

 

3. PACC no 

FCSRT-Free 

 

4. PACC no LM 

 

5. PACC no DSC 

CDR = 0.  

MMSE > 25. 

LMM 

MMRM 

HR 

Effect size 

Greater risk of progression to CDR 0.5 in 

Aβ+ compared with Aβ- (hazard ratio = 

1.84, p = 0.021).  

 

PACC: High sensitivity. 

3-year follow-up = Large effect. 

5-year follow-up = Large effect. 

PACC no MMSE: Early sensitivity. 

3-year follow-up = Large effect. 

5-year follow-up = Large effect.  

PACC no FCSRT: Lower sensitivity. 

3-year follow-up = Decreased effect. 

5-year follow-up = Decreased effect. 

PACC no LM: Variable sensitivity.  

3-year follow-up = Small effect 

5-year follow-up = Large effect.  

PACC no DSC: Not consistent 

3-year follow-up = Variable 

5-year follow-up = Variable 

Highly educated 

dataset. 

 

Moderate and varying 

sample sizes.  

 

Quality score = 9/10. 

15 (Papp et 

al., 2017)  

 

USA 

Longitudinal 

study 

 

Annual 

follow-ups.  

Up to 5 

years.  

HABS 

dataset. 

 

n = 279 CN 

in total 

 

n = 70 Aβ+ 

M-Age = 

74.99 ± 5.74 

♀ = 61%. 

 

n = 209 Aβ- 

M-Age = 

72.88 ± 6.02 

11C-PiB-PET+ 
18F-FDG-PET 

 

SUVR = 1.20. 

PACC5 

(MMSE, LM-DR, 

DSC, FCSRT, + 

Category fluency 

test / CAT) 

CDR = 0.  

MMSE = 

normal 

performance 

Effect size: 

(coefficien

t (β)) 

LMM 

Removing CAT from the PACC resulted 

in a 20% reduction in effect size of Aβ-

related cognitive decline at 3-year follow 

up, and a 12% reduction at 5-year 

follow-up. CAT-component makes 

PACC more sensitive. 

 

PACC with CAT = large effect size, high 

sensitivity: 

(β = -0.09, SE = 0.02, p < 0.001). 

 

PACC without CAT = 12% reduction, 

reduced sensitivity: 

(β = -0.08, SE = 0.03, p < 0.01).  

Sample is highly 

educated and 

predominantly 

Caucasian (82%).  

 

The focus on 

semantic memory 

(CAT) as addition 

improved sensitivity. 

But what about other 

cognitive domains? 

 

Potential practice 

effects using same 
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♀ = 59%’. 

 

 

PACC without FCSRT = 21% reduction 

in effect size, lower sensitivity: 

(β = -0.06, SE = 0.02, p < 0.001). 

tests annually.  

 

Quality score = 8/10. 

16 (Rentz et 

al., 2021)  

 

USA 

Longitudinal 

study 

 

Annual 

follow-ups. 

 

Focus on 

18-month 

and 36-

month 

follow-up.  

HABS 

dataset. 

n = 264 CN 

in total.  

 

n = 103 Aβ- 

M-Age = 

77.89 ± 6,42 

♀ = 65.0%. 

 

n = 40 Aβ+ 

M-Age = 

79.61 ± 5.67 

♀ = 50.0%. 

 

Additionally, 

MCI+AD:  

n = 36 CI. 

M-Age = 

77.09 ± 8.13. 

♀ = 54.3%. 

11C-PiB-PET+ 
18F-FTP-PET 

(n = 143 CN) 

 

Cutoff = 1.185 

 

 

 

 

PACC 

(MMSE, LM, DR, 

DSST, FCSRT) 

 

DCTclock as 

potential addition. 

 

CDR = 0.  Effect size 

ROC 

Correlation 

Diagnostic discriminability: 

PACC had greater discriminative ability 

between CN and MCI (AUC = 0.95). 

Effect size, Cohens’ d = 2.42. 

DCTclock showed good discrimination 

between CN and MCI (AUC = 0.86).  

Effect size, Cohen’s d = 1.55.  

 

Amyloid status discrimination: 

DCTclock had better discrimination 

between Aβ+ and Aβ- (AUC = 0.72, d = 

0.76), compared to PACC (AUC = 0.63, 

d = 0.30).  

 

Correlation with amyloid 

DCTclock correlation with amyloid = 

r = -0.241, p < 0.01. 

PACC correlation with amyloid =  

r = -0.100, p = 0.295. 

Only a small subset 

of the total number of 

participants 

underwent PET-

imaging (143 out of 

264). But they were 

still part of the 

analyses. 

 

Digital versus 

traditional test 

methods may be 

difficult to compare.   
 
Quality score = 5/10. 

17 (Ruthirak

uhan et 

al., 2024) 

 

USA 

Canada 

Australia 

Japan 

Longitudinal 

study. 

 

A4 Study 

dataset. 

n = 5.061 

CN. Age = 

65-85.   

 

n = 3.115 

Aβ-, M-Age 

= 71.0 (4.5). 

♀ = 59%. 

n = 1.309 

Aβ+, M-Age 

= 72.1 (4.9) 

 ♀ = 59%. 

18F-FBP-PET 

 

SUVR 

threshold of > 

1.15. 

(Defined Aβ+) 

PACC: 

(MMSE, LM-DR, 

FCSRT, DSST)  

 

CFI 

CDR = 0.  

MMSE = 25 

or higher. 

CFA 

 

PACC and CFI both showed good 

measurement invariance.  

 

PACC was effective in differentiating 

between individuals with and without 

amyloid plaques (Aβ+ vs. Aβ-) (d = 

0.39, p < 0.001). 

 

CFI was equally as effective in 

differentiating between Aβ+ and Aβ- 

participants (d = 0.39, p < 0.001).  

Too small sample 

sizes were excluded 

(excluding eg. 

American Indian, 

Alaskan native, 

Hawaiian) limiting 

the inclusivity.  

 

Analysis is based on 

baseline screening 

data, and longitudinal 

cognitive changes 

were not assessed.  

 

Quality score = 7/10. 
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18 (Sato et 

al., 2021)  

 

USA 

Canada 

Japan 

Australia 

Longitudinal 

study.  

 

A4 dataset,  

n = 3233 CN 

M-Age = 

70.2  

♀ = 59.5%. 

 

ADNI 

dataset,  

n = 86 CN 

M-Age = 

75.6  

♀ = 44.2%. 

 

J-ADNI 

dataset, 

n = 50 CN 

M-Age = 

67.4  

♀ = 44.0%. 

18F-FBP-PET 

 

M-SUVR in 

A4-study: 1.15 

 

SUVR in 

ADNI study: 

1.11-1.22 

 

SUVR in J-

ADNI study > 

1.15 

 

 
 

PACC:  

(MMSE, LM-DR, 

DSST, FCSRT) 

 

ADNI-PACC: 

(MMSE, LM-DR, 

DSST, ADAS-Cog) 

CDR = 0.  

MMSE = 

27-30.  

 

ROC 

 

(Optimizat

ion 

procedure 

before and 

after new 

SUVR-

thresholds)  

Models without considering APOE 

showed a higher expected maximum 

AUC improvement compared to models 

with APOE. 

 

ADNI cohort:  

With APOE: Mean AUC improvement = 

0.033 (AUC improved from 0.724 to 

0.774). 

Without APOE: Mean AUC 

improvement = 0.075 (AUC improved 

from 0.61 to 0.69). 

 

J-ADNI cohort:  

With APOE: Mean AUC improvement = 

0.009 (AUC from 0.65 remained at 

0.65).  

Without APOE: Mean AUC 

improvement = 0.019 (AUC improved 

from 0.61 to 0.64). 

Smaller sample size 

in J-ADNI compared 

to ADNI. Datasets 

also have different 

amyloid positivity 

criteria. 

 

The study used 

baseline data only, 

not assessing the 

longitudinal changes. 

 

Quality score = 6/10. 

19 (Sperling 

et al., 

2014) 

 

USA 

Canada 

Australia 

Japan 

 

Longitudinal 

study.  

A4 study.  

n = 4486 CN 

in total 

 

n = 3160 

Aβ-, M-Age 

= 70.95 

(4.53) 

♀ = 60%. 

 

n = 1323 

Aβ+, M-Age 

= 72.10 

(4.89) 

♀ = 59%. 

18F-FBP-PET 
 

M-SUVR = 

1.33 (0.18) for 

Aβ+.   

PACC:  

(MMSE, DSST, 

LM-DR, FCSRT) 

 

+CFI 

CDR = 0.  

MMSE = 

25-30.  

 

Effect size PACC overall: 

d= -0.18, 95% CI [-0.21, -0.15], p<.001 

MMSE:  

d = -0.05, 95% CI [-0.08, -0.02], p<.01 

FCSRT-Free:  

d = -0.14, 95% CI [-0.17, -0.11], p<.001 

LM-DR:  

d = -0.10, 95% CI [-0.13, -0.07], p<.001 

DSST: 

d = -0.13, 95% CI [-0.16, -0.10], p<.001 

 

 

Threshold variability 

across different 

populations.  

 

This study bases the 

analysis on baseline 

data and not 

longitudinal data.  

 

Quality-score = 6/10.  

20 (Stricker 

et al., 

2023) 

 

USA 

Longitudinal 

study.  

 

Every 15-

month 

MCSA study 

n = 614 CN 

 

n = 428 Aβ- 

M-Age = 

11C-PiB-PET+ 

 

SUVR > 1.48 

(CL = 22).  

Mayo-PACC: 

(AVLT, TMT, 

animal fluency).  

 

PACC-R: 

CDR = 0.  

 

Slope 

differences 

(effect 

sizes) 

 

All composites showed sensitivity to 

Aβ+-related longitudinal cognitive 

decline, with Aβ+ individuals showing 

greater decline over time than Aβ-.  

 

Significant practice 

effects found in 

ADCS-PACC. 

 

There was a higher 
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Table 5: Overview of the reviewed articles 

 

Abbreviations:  

AIBL = Australian Imaging Biomarkers and Lifestyle study, CN = Cognitively normal, SD = Standard deviation, Aβ = Amyloid-beta, 11C-PiB = Pittsburgh Compound 

B, 18F-FBP = 18F-Florbetapir, 18F-FLUTE = 18F-Flutemetamol, SUVR = Standard Uptake Value Ratio, Aβ+ = High amyloid level, Aβ++ = Very high amyloid level, 

M-Age = Mean age, ADCS = Alzheimer’s Disease Cooperative Study, PACC = Preclinical Alzheimer Cognitive Composite, ZAVEN = Z-scores of Attention, Verbal 

Fluency and Episodic Memory for Nondemented older adults, MMSE = Mini-Mental State Examination, , ♀ = Percentage of female participants, PET = Positron 

Emission Topography, FCSRT = Free and Cued Selective Reminding Test, DSST = Digit Symbol Substitution Test, WAIS-R = Wechsler Adult Intelligence Scale-

Revised, WMS = Wechler Memory Scale, LM-DR = Logical Memory Delayed Recall, CVLT-II = California Verbal Learning Test-Second Edition, LM-II = Logical 

Memory II, LM-DR = Logical Memory Delayed Recall, DSC = Digit Symbol-Coding, D-KEFS = Delis-Kaplan Executive Function System, HABS = Harvard Ageing 

Brain Study, CDR = Clinical Dementia Rating Scale, DVR = Distribution Volume Ratio, LMM = Linear Mixed effects Model, PFDR = P-value of False Discovery 

Rate, ADNI = Alzheimer’s Disease Neuroimaging Initiative, ADAS-Cog = Alzheimer Disease Assessment Scale-Cognitive Subscale, DWR = Delayed Word Recall, 

TMT = Trail-Making-Test, NA-ADNI = Northern American ADNI, J-ADNI = Japan-ADNI, ADCS-PI = ADCS-Prevention Instrument, 3MSE = Modified MMSE, 

NYU = New York University Paragraph Recall, MMRM = Mixed method of Repeated Measures, WRAP = Wisconsin Registry for Alzheimer’s Prevention, IRT = Item 

Response Theory, CFA = Confirmatory factor analysis, MLR = Maximin Likelihood estimation with Robust standard errors, A4 = Anti-Amyloid Treatment of 

Asymptomatic Alzheimer’s Disease, IPACC = Latent PACC, zPACC = Standardized PACC with z-scores, HR = Hazard ratio, Aβ- = No Amyloid-beta, MCI = Mild 

Cognitive Impairment, AD = Alzheimer’s Disease, ROC = Receiver Operating Characteristic analysis, FNAME = Face Name Associative Memory Exam, BPSO = 

Behavioral Pattern Separation Task-Object version, CBB = Cogstate Brief Battery, DET = Detection Task, IDN = Identification Task, OCL = One Card Learning Task, 

ONB = One Back Task, FAS = Also known as COWAT: Controlled Oral Word Association Test with the letters F+A+S, NSHD = National Survey of Health and 

Development, WMHV = White Matter Hyperintensity Volume, LM-IR = Logical Memory Immediate Recall, MMRM = Mixed Model of Repeated Measures, FCSRT-

Free = Free and Cued Selective Reminding Test Free Recall, 18F-FDG = 18F-Fludeoxyglucose, DCTclock = Digital Clock-drawing Test, 18F-FTP = 18F-Flortaucipir,  CI 

= Cognitively impaired, CFI = Cognitive Function Index, MCSA = The Mayo Clinic Study of Aging, PACC-R = PACC-Revised, Global-z = ??, AVLT = Rey Auditory 

Verbal Learning Test, AVLT-DR = AVLT-Delayed Recall, AVLT-R = AVLT-Recognition, BNT = Boston Naming Test, VR-II = Visual Reproduction-II from WMS, PC 

= Picture Completion from WMS, BD = Block Design from WAIS.

follow-up.  

 

M-follow-up 

of 7 years.  

72.47 (4.81) 

♀ = 45.6%. 

 

n = 186 Aβ+ 

M-Age = 

73.79 (5.03)  

♀ = 45.2%. 

(AVLT, AVLT-

DR, AVLT-R, 

DSST, Category 

fluency).   

 

ADCS-PACC: 

(AVLT-DR, LM-II, 

DSST, MMSE).   

 

Global-z: 

(AVLT-DR, LM-II, 

DSST, TMT, 

Category fluency, 

BNT, WR-II, PC, 

BD).  

Test-retest 

reliability 

 

LMM 

Standardized slope differences in rate of 

decline between Aβ+ and Aβ+-: 

Mayo-PACC: d = -0.132 (95% CI: -0.18 

to -0.084, p < 0.05).  

PACC-R: d = -0.134 (95% CI: -0.179 to 

-0.089, p < 0.05). 

ADCS-PACC: d = -0.154 (95% CI: -

0.201 to -0.106, p < 0.05). 

Global-z: d = -0.133 (95% CI: -0.176 to -

0.09, p < 0.05).  

 

All tests had high test-retest reliability (> 

0.80). 

proportion of APOE 

carriers in Aβ+ 

group.  

Potential for 

overfitting. 

 

Quality-score = 8/10.  
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4.4 Main findings in reviewed articles  

 The systematic review synthesized findings from 20 longitudinal studies that evaluated the 

diagnostic accuracy and sensitivity of PACC compared to Aβ-PET imaging for detecting preclinical 

AD among individuals with elevated Aβ pathology. As dictated by the inclusion criteria, all studies 

had a longitudinal design with follow-up periods ranging from 3 months to 7 years. The studies 

focused on cognitively normal (CN) individuals, with varying sample sizes and Aβ-statuses. Despite 

differences in how they investigated Aβ pathology related to PACC scores, all studies examined the 

relationship between the two. Aβ-PET imaging was used in all studies, as required by the inclusion 

criteria, though the types of PET imaging and thresholds for Aβ-positivity varied. The variability in 

the use of Aβ-PET imaging tracers included, 11C-PiB-PET, 18F-FBP-PET, and 18F-FLUTE-PET, as 

well as varying thresholds and cutoff-values in SUVRs, DVRs and CLs for defining Aβ-positivity. 

PET tracers and SUVR thresholds used to determine Aβ positivity varied both across and within 

studies with multiple datasets. These variations will be discussed in the context of their limitations. 

Across all studies, a version of PACC was used as a measurement tool, demonstrating varying degrees 

of sensitivity.  

 The included studies also seem to agree to old age being a main factor for developing cognitive 

decline, and this can be seen in all samples recruiting participants above the age of sixty, with a mean 

age across all studies at 76,93 years. Gender differentiation also showed that females performed better 

on PACC when at the same level of Aβ pathology as males. However, as Aβ levels increased, both 

sexes exhibited similar rates of cognitive decline (9, 13).  

4.4.1 PET imaging and PACC 

  As the inclusion criteria stated, Aβ-PET imaging and PACC measurements were required to be 

part of the included studies and their results. This was also true for all 20 studies. Across the studies, 
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different versions of PACC were used, with some including or excluding specific subtests such as 

MMSE, LM-DR, and DSST. Similarly, different tracers and thresholds were used in Aβ-PET imaging 

in determining Aβ positivity. Despite the variations, all studies did at some point compare the scores 

from PACC (index test) with the level of amyloid (reference test). These results consistently 

demonstrated that amyloid accumulation led to cognitive decline. In some studies, (1, 7, and 12), it 

was even underlined that a higher Aβ level (Aβ++) showed a faster rate of cognitive decline compared 

to individuals with only slightly elevated Aβ pathology (Aβ+).  

4.4.2 Sensitivity of PACC 

Across the reviewed studies, PACC demonstrated varying degrees of sensitivity and specificity 

in detecting cognitive decline associated with elevated Aβ levels. However, the sensitivity of PACC 

was generally high, and higher Aβ levels were demonstrated to affect cognitive decline throughout 

all reviewed articles. One study (10) even claimed, PACC could potentially detect performance 

decline four years before any measurable Aβ pathology. Studies (1, 5, and 15) demonstrated that the 

inclusion or exclusion of certain subtests affected the sensitivity of PACC. For instance, the original 

PACC generally showed higher sensitivity compared to modified versions that excluded MMSE or 

DSST (5, 12). However, sensitivity increased with the addition of the subtest, CAT (15). Other studies 

(9, 19) found certain subtests to individually show more sensitivity, such as the FCSRT and LM-DR.  

PACC demonstrated effectiveness in predicting changes in cognitive function over time related 

to Aβ in many studies (2, 3, 8, and 15), and PACC’s validity was supported by showing significant 

associations between baseline PACC scores and baseline connectivity in brain networks. PACC was 

found to be a valuable tool for early detection of cognitive decline, showing comparable performance 

to Aβ-PET imaging (2, 6, 7, 14, and 16). High sensitivity was shown for PACC at 3-year and 5-year 
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follow-ups (14). Furthermore, it was found that PACC had great discriminative ability between CN 

individuals and individuals with MCI (16).  

4.4.3 Statistical methods 

Throughout the reviewed studies, different statistical methods were employed to determine the 

sensitivity and accuracy of PACC. Including logistic mixed-effects models, linear mixed-effects 

models (LMM), and ROC analyses. Studies (4, 11, 17, and 18) showed how different statistical 

methods influenced the sensitivity reports. The studies using LMM (3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 

and 20) showed that elevated Aβ was associated consistently with worse PACC scores across all 

variations of the composite. There was also found a moderate predictive value for PACC in the ROC 

analyses done by a few studies (11, 16). Furthermore, CFA showed that PACC was great for 

differentiating between participants with and without Aβ pathology (17), the effect size was higher 

for PACC with the addition of CAT (15), and β-coefficients showed significant associations between 

Aβ positivity and decline in PACC scores (13).  

 

5.0 Discussion 

This discussion will firstly synthesize the results and evidence from the reviewed articles, 

comparing the findings from the 20 studies. It will address considerations and limitations related to 

the results, methodology, and quality assessment. The research in this review focuses on evaluating 

the diagnostic accuracy and sensitivity of PACC in detecting preclinical AD, compared to Aβ-PET 

imaging, among individuals with elevated Aβ pathology. This discussion will explore how these 

findings compliment and contradict each other, as well as how their differences in methodology can 

cause certain limitations. The table discussion has been divided into themes to maintain a clear 
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overview of the discussion flow. The methodology of this review will similarly be discussed, detailing 

the screening process, the impact of the inclusion and exclusion criteria, and the challenges 

encountered during the synthesis. A summary of the main strengths and weaknesses in the use of 

PACC and Aβ-PET imaging will be presented, and a discussion of the potential directions for future 

research will conclude this review. 

5.1 Theme 1: Methodological considerations 

Sample sizes and demographics (age, gender, education level, and ethnicity) varied significantly 

across studies. Smaller sample sizes (studies, 1, 3, 5, 7, 12, 18), can reduce statistical power and 

increase the risk of type II errors. Demographic differences can affect the generalizability of findings 

and introduce biases. For instance, highly educated samples might exhibit less cognitive decline, 

underestimating the sensitivity of PACC in more diverse populations. This can lead to educational 

bias. It can be difficult to determine, whether this has affected the results of any studies. But it should 

be considered that studies (2, 6, 7, 8, 11, 14, 15, 16) all investigated the HABS (Harvard Aging Brain 

Study) dataset, which has a high percentage of highly educated individuals, as mentioned in study 14 

and 15. Many studies also investigated multiple datasets in a single study, but within each dataset 

there might be varying requirements and methodologies. By using different tools or protocols to 

measure the same variables, the results in the data might instead be due to measurement differences 

rather than true differences in the phenomena being studied. These results should be interpreted with 

caution. 

Follow-up durations between studies also varied, which refers the frequencies of assessments and 

measurements. This could have an impact on the results from each study. Shorter follow-up periods 

may miss long-term changes in cognitive decline, while longer intervals between assessments might 

overlook subtle changes. Furthermore, it may be challenging to compare the results from studies with 

significantly different follow-up periods.  
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Another important notion is that studies varied in their use of a specific reference Aβ-PET imaging 

protocol. This variability in the use of Aβ-PET imaging tracers, as well as varying thresholds and 

cutoff-values for defining Aβ positivity, might lead to inconsistencies in identifying individuals as Aβ 

positive or negative, making direct comparisons between studies more difficult. For example, a study 

with a higher SUVR cutoff might classify fewer individuals as Aβ positive, potentially 

underestimating the sensitivity of PACC (for instance, 1, 8, 12, 20). The use of different PET tracers 

(11C-PiB, 18F-FBP-PET, 18F-FLUTE-PET) across studies, and sometimes within the same study, can 

lead to inconsistent sensitivity and specificity results. This might also affect the follow-up scores, 

seeing as the initial reference scores have different requirements for cut-off thresholds and therefore 

different baseline scores. These variations all highlight the need for standardization in Aβ-PET 

imaging protocols.  

Despite variations in methodologies and cohort characteristics, several key themes and findings 

emerge across the studies. Many studies (2, 4, 7, 9, 10, 12, 13, 20) found that a higher level of Aβ is 

associated with more significant cognitive decline, as measured by PACC scores. This association 

was consistently observed regardless of differences in cohort sizes and follow-up periods, 

underscoring the robustness of this relationship across diverse study designs. These findings highlight 

the critical role of Aβ in cognitive decline.  

5.1.1 The quality of reviewed articles 

 QUADAS-2 was used to assess the quality of the studies included in this review. All studies 

had enrolled a consecutive sample of patients, as the criteria was an age above 60+ as well as 

cognitively normal individuals scoring 0 on the CDR scale. All studies similarly avoided a case 

control design, where patients with a condition (AD), are compared to those without the condition. 

This approach helps to avoid retrospective bias, such as selection bias and recall bias.  
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Most studies (12 studies: 1, 3, 5, 6, 7, 9, 11, 12, 14, 15, 18, 19, 20) avoided inappropriate 

exclusions. A few studies (3 studies: 8, 10, 13) did not specify this, which was characterized as 

unknown. And lastly, a few studies (4 studies: 2, 4, 16, 17) made seemingly inappropriate exclusions. 

These four studies excluded data based on participants not completing all follow-up assessments (2, 

4), as well as data not being based on the same reference test (16), and lastly because of a few sample 

sizes being too small (17). Excluding data due to missing follow-up information can be considered 

an inappropriate exclusion because it introduces attrition bias. This type of exclusion can skew the 

study results if the participants who are lost to follow-up differ systematically from those who remain. 

In this case, if individuals with more severe cognitive decline are more likely to miss follow-up 

assessments, the study may underestimate the true extent of cognitive decline associated with 

preclinical AD as a condition. Also, the exclusion of some data due to different reference tests can 

affect the results in a way, where valuable information could be lost. Lastly, excluding data and 

samples because they are too small can be considered inappropriate, because it limits the inclusivity 

and diversity of the study. For instance, this study (17) misses out on representing American Indian, 

Alaskan Native, and Hawaiian populations in their study, which might overlook important nuances.  

No studies interpreted the index test (PACC) without the knowledge of the reference test (PET), 

which explains why all studies scored a “no” on this question. As the knowledge of Aβ pathology was 

the basis of undergoing a neuropsychological investigation, it was impossible to avoid this. 

Knowledge of the reference test while interpreting the index test results can introduce confirmation 

bias, where researchers might consciously or unconsciously interpret the PACC results in a way that 

is consistent with the PET results. However, it is unknown if there was used blinding in the analysis, 

where different researchers dealt with different aspects of the study, without knowledge of the parts 

of the study that might affect their interpretation of the results. The lack of blinding can lead to lack 



P a g e  59 | 83 

 

of objectivity, idiosyncratic errors, the overestimation of PACC accuracy, and compromised data 

integrity. 

In relation to whether a threshold was used and if it was pre-specified, most studies could 

answer “yes”, except for two studies (18, 19). One study investigates SUVR thresholds, so they 

measured many different thresholds (18). Another study had varying thresholds across multiple 

participant groups (19). This variability can make it difficult to compare the results with other studies’ 

results. 

All studies could rely on the reference standard being likely to correctly classify the target 

condition, as all studies had their participants undergo Aβ-PET imaging prior to being part of the 

studies as a requirement. Similarly, most studies (except 3, 7) could interpret the reference standard 

results without knowledge of the results of the index test, as the PACC assessment was done 

afterwards. Two studies (3, 7) never clarified this nor the time interval between the reference test 

(PET) and the index test (PACC). Additionally, many studies (1, 3, 5, 9, 11, 13, 16, 17, 18, 19, 20) 

never clarified what the interval between the reference and the index test was, making it difficult to 

determine, whether it was an appropriate time interval.  

The participants in half of the studies received the exact same reference standard (2, 3, 4, 6, 7, 

8, 9, 10, 14, 17, 20). The rest still used Aβ-PET imaging but with varying tracers. Lastly, most studies 

included all participants in the analysis, except for those studies that made inappropriate exclusions.  

5.2 Theme 2: PACC versions and subtests 

Another challenge in comparing the result from the reviewed articles is the use of varying 

versions of PACC and its subtests. Some studies looked at the sensitivity of PACC as a combined 

composite score (1, 2, 3, 6, 8, 11, 12, 16, 17, 18, 20), where other studies looked at PACC scores both 

as total scores as well as scores for the individual subtests (4, 5, 7, 9, 10, 13, 14, 15, 19). In the studies 
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looking at the overall composite score, most agree that the original PACC with all its subtests (MMSE, 

DSST, LM-DR, and FCSRT) is superior when compared to alternative composites (ADCS-PACC no 

MMSE, zPACC, DCTclock). Except for two studies (12, 20), suggesting the overall PACC composite 

might be less sensitive compared to composites, such as ZAVEN, EM composite, PACC-R, and 

Global-z. However, in the studies looking at both the overall PACC score as well as the sensitivity of 

the subtests, it was found that especially the subtests, MMSE and DSST, are sensitive tests within 

PACC (4, 5, 7, 10, 13, 14, 19), as well as FCSRT and LM-DR (9, 10, 13, 14, 19). One study (15) even 

found the addition of the subtest CAT made PACC even more sensitive. While the inclusion of CAT 

enhanced sensitivity (15), the exclusion of MMSE or DSST reduced sensitivity (5, 12). This 

variability underscores the importance of consistent PACC versions in research and clinical practice.  

While the four subtests within PACC offers a balanced assessment across various cognitive 

domains, including memory, executive function, and visuospatial skills, CAT offers insights into 

verbal fluency as well as executive function in relation to language, which is not a primary focus in 

the original PACC composite. The inclusion of CAT enhances PACC by providing a more robust 

assessment of language function.  

5.3 Theme 3: Sensitivity of PACC 

The reviewed studies employed various statistical methods to analyse PACC’s sensitivity and 

accuracy: Logistic mixed-effects model (4), linear mixed-effects models (LMM) (3, 6, 7, 8, 9, 10, 11, 

12, 14, 15, 20), MMRM (5, 14), ROC analysis (11, 16, 18), effect size (1, 12, 14, 15, 16, 19, 20), CFA 

(8, 17), β-coefficient (13, 15), and HR (8, 14). 

These methods influenced the findings, with logistic mixed-effects and linear mixed-effect 

models consistently showing that elevated Aβ was associated with worse PACC scores and cognitive 

decline. This consistency underscores the reliability of the statistical method as well as its 
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effectiveness. The ROC analyses were helpful in highlighting the discriminatory power of certain 

subtests, such as FCSRT and LM-DR. It was found that PACC5 had a moderate predictive value 

compared to a computerized composite (11), and that PACC showed greater discriminative ability 

between CN and MCI individuals (16). When measuring sensitivity by using effect sizes, larger effect 

sizes were found in studies, where MMSE and DSST were included (14, 19, 20). Additionally, adding 

CAT increased the effect size of PACC by 20% at the 3-year follow-up (15). However, two studies 

(12, 16) found the effect size to be bigger for alternative composites (ZAVEN, EM composite, and 

DCTclock). In the ZAVEN composite, FAS and CVLT-II is included, and in the EM composite, Rey 

Complex Figure is included (12). FAS measures verbal fluency and executive functions, which might 

help detect subtle changes in language. CVLT-II measures verbal learning and memory, providing 

more details into aspects of memory function. Rey Complex Figure measures visuospatial skills, 

memory, attention, and executive functioning. While the original PACC composite is already robust 

in assessing memory (LM-DR and FCSRT), general cognitive function (MMSE), and attention and 

executive function (DSST), some alternative subtests might be missing. ZAVEN's inclusion of FAS 

and CVLT-II adds depth to the evaluation of verbal fluency (language) and detailed memory 

processes, potentially making it more sensitive to early cognitive changes in preclinical AD. This 

increased sensitivity might explain the larger effect sizes observed in ZAVEN compared to the 

original PACC. The measurements of verbal memory in CVLT-II and visuospatial skills in Rey 

Complex Figure might also contribute to a broader understanding of early cognitive decline. 

The CFA was used to validate the constructs behind zPACC and IPACC (8), which indicated that 

the factor structure of PACC was consistent and accurately representing the underlying cognitive 

abilities. Another study similarly confirmed the robustness of PACC in different populations (17). β-

coefficient analyses show that DSST, LM-IR, and MMSE are highly sensitive to cognitive decline, 

making them valuable for early detection (13). HRs provide insights into the risk of cognitive decline. 
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And it was found that IPACC and zPACC had higher HRs, indicating that these composites, including 

subtests like MMSE and DSST, were all sensitive in predicting cognitive decline (8, 14). 

Despite the diversity in statistical methodology, the subtests (MMSE, DSST, FCSRT, LM-DR) 

remained consistently sensitive across all studies and across all statistical analyses. This underlines 

their robustness and reliability.   

5.4 Methodology discussion for this review 

This section will delve into the methodological choices and limitations encountered throughout 

this systematic review. The eligibility criteria and the rationale behind including and excluding certain 

studies will be discussed, as well as the potential biases and errors inherent in the search strategy and 

data collection. Additionally, the use of the QUADAS-2 tool for quality assessment will be evaluated, 

highlighting its strengths and weaknesses. 

5.4.1 Eligibility criteria 

The inclusion and exclusion criteria were designed to ensure the relevance and quality of the 

studies reviewed. However, these stringent criteria may have led to the exclusion of potentially 

valuable studies. For instance, studies that did not explicitly measure sensitivity or specificity of 

PACC but provided relevant data on cognitive decline might have been excluded. In the screening 

phase, several studies were excluded due to lacking data or discussions on PACC sensitivity. 

Sensitivity in a study was determined by a search for certain keywords: “Sensitivity”, “specificity”, 

“accuracy”, “ROC / receiver operating characteristic / curve”, “value”, “odds-ratio”, “likelihood 

ratio”, “validity”, “variance”, “effect size”, “predictive value”, and “AUC“. As well as a search for 

“PACC”, to check if any mentions of PACC was related to a discussion of its accuracy. However, this 

led to exclusions of studies that might have investigated PACC accuracy in different ways. For 

instance, many excluded studies used PACC as something they could compare their results of another 
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intervention to, to determine any effect of their intervention in question. Here, PACC becomes the 

measurement tool in an investigation. So, while these studies use PACC to measure cognitive decline 

in a longitudinal study design, their primary aim is not to validate PACC itself, but to use it as a tool 

to understand the impact of different risk factors. In general, there was a great lack of sensitivity 

analyses across the studies. Many studies only briefly discussed the accuracy of PACC, which might 

lead to bias in the data analysis. The data from included studies on PACC sensitivity is already very 

varying, making it challenging to compare the results. However, if every article that used PACC as a 

measurement method had been included as well, it could have potentially overwhelmed the scope and 

focus of this paper. Priorities are important in systematic reviews, where one must include studies 

that are directly relevant to the research question, which helps gain clear and useful answers in the 

end.  

The decision to exclude studies that did not clarify the reference test was based on a 

methodological approach designed to ensure the consistency and reliability of the findings. This 

choice aimed to include only studies that provided clear and precise details on the use of Aβ-PET 

imaging, which is crucial for accurately determining Aβ pathology in participants. Although this 

approach might lead to the exclusion of potentially valuable studies and introduce selection bias, it 

was necessary to maintain a consistent foundation for comparison. Despite the availability of 

alternative methods to measure Aβ pathology, such as CSF or plasma samples, focusing on Aβ-PET 

imaging ensured a more comparable baseline for pathology measurements. This focus also adhered 

to the DTA protocol for the reference test requirements. The exclusion of studies investigating tau 

pathology followed similar reasoning, aiming to maintain methodological consistency and reliability 

in the review. 

Originally, multiple studies conducting research on the same datasets were meant to be excluded. 

However, during the full-text screening, it was found that these studies contributed to a better 
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understanding of the research question in different ways. Despite using the same datasets or groups 

of participants, each study provided unique insights and addressed different aspects of the diagnostic 

accuracy and sensitivity of PACC. This allowed for a comprehensive analysis of the dataset, where 

various perspectives were presented. This also underlines the consistency and reliability of the 

findings, as different studies arrived at similar conclusions. However, including multiple studies using 

the same datasets can also lead to redundancy, where similar findings are repeated, thus ending up 

overemphasizing certain results. Multiple analyses of the same dataset might confirm the same 

hypotheses, leading to confirmation bias. Besides this, several biases can occur when using datasets. 

Firstly, the fact that participants were volunteers might introduce volunteer bias, as those who choose 

to participate could have different characteristics from those who do not. Secondly, the datasets 

included limited variation in ethnicity, which can restrict the diversity represented in these studies, 

potentially impacting the generalizability of the findings. Additionally, the studies often included 

highly educated individuals, which may not reflect the broader population, leading to educational 

bias. Lastly, the heterogeneity among the datasets, stemming from variations in study design, 

population characteristics, measurement techniques, and interventions, can subsequently pose 

limitations as it complicates the ability to draw consistent and definitive conclusions from the results. 

The exclusion due to participants being of the “wrong population” were based on participants 

with co-existing illnesses (for instance, vascular disease, heart problems, familial AD, diagnosis of 

AD, brain atrophy or individuals receiving some kind of medication). These criteria may limit the 

inclusivity and generalizability of the findings, potentially excluding important data that could offer 

a more nuanced understanding of PACC’s diagnostic accuracy across different populations and their 

backgrounds. However, some of these conditions can independently affect cognitive function, making 

it difficult to isolate the effects of Aβ pathology in cognitive decline measurements. Also, even though 

atrophy is a known consequence of AD, it typically manifests in the later stages of the disease and 
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does not align with the focus on preclinical AD in this review. Furthermore, participants in placebo-

drug trials were excluded from this study, even though the placebo groups are essentially composed 

of CN individuals. However, these groups may still experience placebo effects or other influences 

related to the trial protocols, which can confound the study results. The aim of the review is to 

understand the natural progression of cognitive decline related to amyloid pathology, and including 

participants from placebo-drug trials could affect the natural course of the disease. 

5.4.2 Errors within the search strategy and data collection 

Errors can arise both within the reviewed articles and in the review process itself. Random 

errors, such as data entry mistakes or variability in measurement techniques, can affect the accuracy 

of study results. Specific errors, such as misinterpretation of results or selective reporting, can 

introduce bias. It is crucial to be transparent about these uncertainties to introduce reliability. In this 

case, as there is only one reviewer, the potential errors are even more likely. All studies were screening 

and read by a single reviewer, which might lead to idiosyncratic errors as well as selection bias. A 

single reviewer may consciously or unconsciously select studies that confirm their pre-existing beliefs 

or hypotheses, thus skewing the results of the review. Additionally, a single person’s interpretation is 

inherently narrower than a collective one. The lack of blinding across the different aspect of the 

review similarly introduces bias in both the selection of studies and the interpretation.  

The systematic search strategy and standardized data extraction ensured consistency across the 

studies. Following approved guidelines such as the PRISMA guidelines and the DTA protocol from 

JBI, a systematic and reliable search helps to enhance the quality of the review. However, the lack of 

a review protocol and prior registration due to time constraints is a methodological limitation. Some 

parts of the PRISMA guidelines were not followed, including reporting effect measures, risk ratios, 

and mean differences for each study outcome, as many studies did not provide this information and 
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the overall time frame did not allow for these steps. This could affect the transparency and 

reproducibility of the review, potentially limiting the completeness of the reported findings. 

Furthermore, the DTA protocol and the PRISMA guidelines for the abstract provided conflicting 

information, with the main difference being whether to use an abstract for a systematic review or an 

abstract for a DTA review protocol. A combination was chosen.  

Collaborating with librarians at Aalborg University Library additionally helped enhance the 

quality of the search. While the search strategy was comprehensive, covering multiple databases and 

using broad search terms, it was limited to studies accessible through the three chosen databases: 

PubMed, Embase, and PsycInfo. This could have excluded relevant studies published in other 

databases. 

5.4.3 Assessing QUADAS-2 

The QUADAS-2 tool was used to assess the quality of included studies, as this tool is 

recommended by JBI when conducting DTA reviews. However, there are some limitations to this 

assessment tool. Firstly, the tool did not have a numerical score value to determine the overall quality 

score of each study. This was done manually to better compare the results of the quality scores, which 

resulted in the weighting of “no” and “unknown” as equally 0, and “yes” as 1. This might be an 

oversimplification of the quality assessment. The lack of numerical scoring in QUADAS-2 and the 

manual scoring of quality done by a single reviewer, might introduce subjectivity and potential bias 

in evaluating the study quality.  

 Additionally, the questions regarding the quality assessment might have some limitations. The 

question regarding whether a consecutive or random sample of patients was enrolled ensures 

systematic sampling but does not address volunteer bias or the representativeness of the sample. 

Although avoiding a case-control design helps reduce retrospective bias, this question does not 
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eliminate the potential for selection bias in other study designs. The question about avoiding 

inappropriate exclusions is crucial, yet it may miss other exclusions based on factors that the reviewer 

does not deem to be “inappropriate”. The question on whether the index test results were interpreted 

without knowledge of the reference standard ensures objectivity but overlooks potential biases from 

the test administrators themselves. Ensuring thresholds are pre-specified is important for consistency, 

yet this question does not assess the difference in thresholds used across different studies. The 

question assuming the reference standard correctly classifies the target condition might not account 

for the varying accuracy of the reference standard, which can affect study outcomes. Ensuring that 

reference standard results were interpreted without knowledge of the index test results promotes 

objectivity, but in a DTA review, this question is less relevant because the reference test is typically 

conducted prior to the index test. The question about whether there was an appropriate interval 

between the index test and reference standard, does not define what an “appropriate interval” is, and 

this question also neglects the impact of differing disease progression rates among participants. While 

the question about all patients receiving the same reference standard promotes consistency, it does 

not account for the possibility that different researchers might interpret the reference standard 

differently depending on their training, and the question also does not consider the variations within 

the same reference standard (18F-FBP-PET / 11C-PiB-PET /18F-FLUTE-PET). Lastly, including all 

patients in the analysis does not state, whether this was before or after any inappropriate exclusions, 

which might lead to biased or incomplete results.  

5.5 PACC compared to Aβ-PET imaging 

In this study, the diagnostic accuracy and sensitivity of PACC was evaluated relative to Aβ 

pathology as measured by Aβ-PET imaging for the early detection of AD. Both PACC and Aβ-PET 

imaging serve as crucial tools in identifying preclinical stages of AD, yet they offer distinct 

advantages and face specific limitations. 
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PACC, a composite of four neuropsychological tests, has demonstrated high sensitivity in 

detecting early cognitive changes linked to elevated Aβ pathology. The composite includes the 

subtests, MMSE, DSST, FCSRT, and LM-DR, with the MMSE and DSST being particularly sensitive 

in identifying subtle cognitive decline before significant symptoms manifest. PACC also has an ability 

to detect early cognitive decline across different stages of AD, from preclinical to MCI and finally 

AD. This underscores its potential utility in both clinical trials and routine clinical settings. 

Additionally, PACC is a non-invasive and cost-effective tool, making it accessible for widespread 

use. However, its effectiveness could be further enhanced by incorporating a language-focused 

subtest, such as the FAS or CAT test, to provide a more comprehensive evaluation of cognitive 

decline. Lastly, PACC presents results that clearly demonstrate which cognitive functions are 

declining. 

In contrast, Aβ-PET imaging directly measures Aβ plaques in the brain, which are among the 

earliest biomarkers of AD. This specific imaging technique involves injecting radioactive tracers that 

bind to Aβ deposits, allowing for the visualization and quantification of Aβ pathology. Aβ-PET is 

considered the gold standard for detecting Aβ pathology due to its high specificity and ability to 

provide detailed images of Aβ distribution in the brain. However, while Aβ-PET can identify the 

locations of Aβ plaques, it is less sensitive in determining which cognitive functions might be 

affected. Aβ-PET imaging is also an invasive and costly procedure, which may limit its accessibility 

and widespread use. Furthermore, Aβ-PET imaging requires specialized equipment and expertise, 

which may not be available in all clinical settings. Just as importantly, an elevated Aβ level is not a 

guarantee for AD development. It is just a likely outcome. 

When comparing PACC to Aβ-PET, several strengths and weaknesses emerge for each method. 

PACC excels in its non-invasive nature, ease of administration, and cost-effectiveness, making it 

suitable for regular monitoring and early detection in various settings. Its sensitivity in identifying 
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early cognitive changes makes it a valuable tool for detecting preclinical AD. However, PACC relies 

on cognitive testing, which can be influenced by factors such as education, language proficiency, and 

other individual differences, potentially affecting its accuracy. On the other hand, Aβ-PET offers 

direct measurement, and direct confirmation, of any existing Aβ pathology. This provides a clear and 

objective indication of Aβ deposition in the brain. This specificity makes it a powerful diagnostic tool 

for confirming the presence of Aβ plaques. 

In conclusion, both PACC and Aβ-PET imaging play critical roles in detecting preclinical AD, 

each with unique advantages and challenges. Perhaps a conjoined approach, utilizing both tools, could 

offer the most comprehensive assessment of preclinical AD, combining the strengths of each method 

to enhance early detection and management of the disease. Together, these tools offer complementary 

insights, enhancing our ability to detect and manage AD at its earliest stages. Both are highly sensitive 

measurement methods for preclinical AD detection.  

5.6 Further research 

Further exploration of PACC’s potential in clinical settings is essential. Future research should 

address the challenges of implementing PACC in primary care, where specialized training for test 

administrators and streamlined scoring methods are needed to make PACC more accessible in general 

practice. New research is already being conducted on the blood-based biomarker 'p-tau217' and the 

drug lecanemab, which slows down the progression of AD. Integrating PACC with these emerging 

diagnostic methods and early drug interventions could significantly slow disease progression and 

reduce the costs associated with expensive PET imaging. This combination would facilitate easier 

and earlier diagnosis of preclinical AD, making it more accessible to broader populations.  
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6.0 Conclusion 

This systematic review aimed to evaluate the diagnostic accuracy and sensitivity of the 

Preclinical Alzheimer’s Cognitive Composite (PACC) relative to amyloid pathology (Aβ) as 

determined by amyloid-PET imaging for the early detection of Alzheimer’s Disease (AD). The 

increasing prevalence of AD and the critical need for early detection were primary motivators for this 

review. Additionally, groundbreaking research on the AD-slowing drug, lecanemab, and emerging 

methods for measuring Aβ in blood, further highlights the timeliness and relevance of this study.  

Twenty studies were included in this systematic review, adhering to the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the Diagnostic Test 

Accuracy (DTA) protocol by the Joanna Briggs Institute. The findings indicate that PACC is a highly 

sensitive tool for detecting early cognitive changes associated with elevated Aβ pathology. 

Specifically, the Mini Mental State Examination (MMSE) and Digit Symbol Substitution Test (DSST) 

subtests demonstrated high sensitivity in identifying cognitive decline in both the early and late stages 

of preclinical AD. Studies consistently showed that even low levels of Aβ pathology detected via Aβ-

PET imaging are linked with subtle cognitive decline measurable by PACC. This correlation 

underlines Aβ as one of the first pathological biomarkers appearing in the disease trajectory towards 

AD. PACC's ability to differentiate between preclinical AD, Mild Cognitive Impairment (MCI), and 

AD suggests its broad utility across different stages of cognitive decline. This makes it a valuable tool 

in both clinical trials and clinical settings. The review supports the implementation of PACC as a non-

invasive, cost-effective tool for early detection of AD. Given its high sensitivity, PACC can be a 

valuable addition to clinical practice for identifying individuals at risk of cognitive decline before 

significant symptoms manifest. This early detection is crucial for timely intervention, potentially 

slowing the progression of the disease and improving patient outcomes. 
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Despite different versions of PACC demonstrating varying degrees of sensitivity and 

specificity, higher levels of Aβ were consistently associated with cognitive decline across all studies 

in the review. This consistent relationship between elevated Aβ levels and cognitive decline highlights 

the diagnostic robustness of PACC. However, the inclusion of a language subtest, such as the 

Controlled Oral Word Association Test (FAS) or Category Fluency Test (CAT), might enhance 

PACC’s overall sensitivity. This is supported by findings showing that the inclusion of CAT enhanced 

PACC and that a larger effect size was found for the ZAVEN composite compared to PACC, 

indicating that language measurements might be lacking in the original PACC composite. 

Overall, this review underscores the importance of early detection in AD and highlights the 

potential of PACC as a sensitive and accurate tool for identifying early cognitive changes. By 

advancing our diagnostic capabilities, PACC can play a central role in the early identification and 

management of AD, ultimately improving patient outcomes and contributing to the optimization of 

healthcare resources. 
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