Summary

Classical planning is a problem within artificial intelligence with continuous improvement and is applicable
in areas such as scheduling and robotics [1], [2]. There is an ongoing demand for new and refined planning
algorithms. Classical planning problems are often described using the Planning Domain Definition
Language (PDDL) [3] and the goal is to find a sequence of actions that transition from an initial state to a
desired goal state. State-of-the-art planners such as FastForward, Fast Downward, and LAMA [4]-[6] can
solve many classical planning problems with high efficiency. However, the search space for solutions grows
exponentially when the complexity of a planning problem increases leading to increased computational
complexity. This issue remains a challenge and motivates research to come up with an approach to deal
with this problem.

One such approach addressing this challenge is partial grounding [7], which seeks to reduce the number
of actions for a planner to consider by identifying and eliminating actions unlikely to be useful before the
search for a solution begins. The GOFAI system [8], which won the learning track at the International
Planning Competition (IPC) 2023 [9], utilised partial grounding with the inductive logic programming
(ILP) tool Aleph [10] to learn rules that identify useful and useless actions. While Aleph has proven

effective, there is still room for improvement in its application within classical planning.

This paper proposes Beyond Exhaustive Search (BES) which is a successor to the author’s previous work
Yet Another Hypothesis Generator (YAPHG) [11]. BES is an approach to learning classification models
for PDDL domains that classify operators in a given PDDL task as good or bad. BES’ model consists
of decision tree classifiers which are build using the STreeD [12] framework which can create small and
optimal binary decision trees.

One of the main features of BES is that it leverages partial order causal link (POCL) [13] graphs. These
graphs are constructed from optimal plans, and provide contextual information for actions in these plans.
Using these graphs, BES searches for rules, that can generalise the use of different actions in a planning
domain. BES also integrates a relational database management system, to facilitate the evaluation of rules

on actions in given planning problems.

The performance of models constructed by BES was compared to models constructed by state-of-the-art
tool Aleph [10] and BES’ predecessor YAPHG [11]. Empirical results indicate that models built using BES
generally either outperform or perform comparably to those created by Aleph and YAPHG. Furthermore,
our approach can construct high-performing models in planning domains where both Aleph and YAPHG fail
to provide any model. While its effectiveness in a planning environment is yet to be tested, the promising
predictive capabilities suggest potential applications in guiding partial grounding and other planning-related
tasks.
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Abstract:

Classical planning is a core problem in artificial intelligence.
Planners, which are programs that solve classical planning
problems, often faces challenges due to the exponential growth
of the search space for solutions as the number of actions
and states increases. This paper introduces Beyond Exhaustive
Search (BES), an approach designed to address this issue by
learning classification models that can effectively classify ac-
tions in planning problems as either good or bad. BES utilises
an adapted Inductive Logic Programming (ILP) approach and
partial order causal link (POCL) graphs to derive additional
knowledge from solved planning problems, in order to learn
relevant rules. Utilising a relational database management
system (RDBMS) for rule evaluation, BES constructs its
classification models using the decision tree framework called
STreeD, known for creating small and optimal binary decision
trees. Empirical results show, that BES not only achieves
comparable results to the state-of-the-art ILP tool Aleph and
its predecessor YAPHG but also succeeds in scenarios where
both Aleph and YAPHG fail to produce models. Although the
practical integration of BES into planning systems remains to
be fully explored, the promising predictive capabilities suggest
potential applications in guiding partial grounding and other
planning-related tasks.

I. INTRODUCTION

Classical planning is a fundamental problem in artificial
intelligence with many applications, such as puzzle solving,
robotics, and scheduling [1], [2]. Despite advancement in
the field, new and improved planning algorithms are still
being developed and showcased in international planning
competitions emphasising the demand for advancement in
this area of research [9], [14]-[16].

Given an environmental model, classical planning aims to
find a series of actions that leads from an initial state to a
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desired goal state [1]. Often planning problems are described
using the Planning Domain Definition Language (PDDL)
[?]. Programs for solving classical planning problems such
as FastForward as proposed by Hoffmann et. al [5], Fast
Downward as introduced by Helmer [4], or LAMA by
Richard et. al. [6] are called planners. Most state-of-the-art
planners are very efficient at solving classical planning
problems however, as the number of actions and states
increases the search space of plans grows exponentially.
This growth can lead to high computational complexity and
can make it difficult and in some cases impossible for a
planner to find a plan within a reasonable time frame. This
challenge has led to much ongoing research in this area
with multiple approaches attempting to provide a solution
for this problem. One such method is introducing a heuristic
to guide the search for a plan in a planner as proposed by
Heusner et. al. [17]. Another approach is partial grounding as
proposed by Gnad et. al. [7]. This method aims to reduce the
number of actions for a planner to consider, by attempting to
identify and remove actions that are unlikely to be useful in a
given planning problem before beginning the search for a plan.

During the International Planning Competition (IPC) 2023
[9] the learning track was won by a system called GOFAI
[8]. GOFAI utilised partial grounding by leveraging the
inductive logic programming (ILP) tool Aleph to learn a
set of rules that could help identify potentially useful and
useless actions. Aleph is a state-of-the-art ILP tool providing
stability, efficiency, and customisability [10]. However,
while Aleph has proven effective in various domains there
remained much room for improvement to its application
within classical planning. In previous work, we proposed
a hypothesis learning ILP tool: Yet Another Hypothesis
Generator (YAPHG) [11] that given a planning domain
and training data, can construct a hypothesis and identify
useful actions for that domain. YAPHG was able to provide



hypotheses with results comparable to Aleph, but also had
many limitations. One such limitation was that YAPHG
generated its rule space in a nearly exhaustive manner. This
meant that YAPHG would often consider many rules, with
little to no relevance to the domain.

In this paper, we propose a successor to YAPHG called
Beyond Exhaustive Search (BES). BES leverages an
adaptation of Inductive Logic Programming (ILP) and a
relational database management system (RDBMS) in order
to learn a classification model, that can classify actions in a
planning problem as good or bad. BES utilises partial order
causal link (POCL) graphs to extract additional knowledge
from solved planning problems providing insights into when
and why an action is used in a plan. This knowledge is
used to guide a search in the rule space, in an attempt to
learn more relevant rules. The model constructed by BES
is a set of decision tree classifiers, which are learned using
the decision tree framework STreeD [12] which is able to
create small and optimal binary decision trees. Like YAPHG,
BES specifically targets classical planning problems without
relying on generic ILP tools that typically depend on logical
programming environments like Prolog [10], [18].

To assess the performance of BES, we compare models
constructed by BES to models constructed by YAPHG [11],
and Aleph [10] as used in GOFALI [8]. Empirical results show
that BES can generate models with results comparable to those
produced by Aleph [10] and YAPHG. Furthermore in many
cases where Aleph and YAPHG fail to produce a model within
a given time limit, BES is able to construct consistently well-
performing models.

II. BACKGROUND

In this section, we present foundational definitions, notation,
and terminology for classical planning, logic programming,
and inductive logic programming (ILP). Many of these defi-
nitions are defined as in YAPHG [11].

A. Classical Planning

In classical planning, the objective is to transition a system
from an initial state to a desired goal state by applying a
sequence of actions. For every action the preconditions and
effects of an action are known and the application of an
action is deterministic [19].

Representing a classical planning task is facilitated through
the use of the planning domain definition language (PDDL)
which since its introduction in 1998 [14] has emerged as the
standard language for expressing planning problems [20].
We use the blocks world domain as an ongoing example. In
blocksworld, the goal is to arrange a fixed number of blocks,
which are either placed on a table or on top of each other.
In PDDL, planning tasks are represented with objects in the
world such as blocks in blocksworld, predicates that define
the relation between the objects (e.g., whether a block is on

the table or stacked on top of another block), actions that
modify the world state (e.g., moving a block), an initial state
defining the initial world state, and a goal state that defines the
desired world state [11], [20]. For simplicity in our ongoing
example, we slightly modify the blocksworld domain. We
remove the arm-empty predicate and assume that there is
always an empty arm prepared to pick up a block in the world.

Definition 1 (Lifted PDDL task) Let II; be a lifted
PDDL task defined as a tuple (P, A,X,I,G) such that P
is a set of predicates with a arity > 0, A constitutes a set
of action schemas, > denotes the non-empty set of objects
and I and G is the initial and goal state respectively. I and
G consists of predicates from P instantiated with objects
in ¥ [21]. A set of parameters is denoted as X; and a
single parameter is denoted as x; where ¢ is an integer that
allows for distinction. An action schema a(X) consists of
preconditions, add list and delete list, and is represented as
a tuple (pre(a),del(a),add(a)) where X is a parameter
mapping in a. Let pre(a) represent a set of predicates to
verify as preconditions, del(a) denote the set of predicates to
remove, and add(a) indicate the predicates to include. For all
predicates p(X;) belonging to the union of pre(a), del(a),
and add(a), X, is a subset of X [21].

An action schema example of the modified blocksworld
domain is: pickup(?z) where

pre = {clear(?z), on-table(?z)}

del = {clear(?x),on-table(?z)} and

add = {holding(?x)}

A lifted PDDL task is a representation that combines both a
PDDL domain and a PDDL problem.

Definition 2 (PDDL domain) A PDDL domain D is
defined as a tuple (P, A) such that P is a set of predicates
and A is a set of action schemas. Both P and A are consistent
across all instances within the domain [22].

In our modified blocksworld domain, the PDDL domain
includes four action schemas and three predicates.
The action schemas are: pickup(?ob), putdown(?ob),
stack(?ob, Tunderob), and unstack(?ob, 7underob) The
predicates are: clear(?x), on-table(?z), and on(?z, ?y). Here
the question marks ? denotes a parameter.

Definition 3 (PDDL problem instance) a PDDL problem
instance II is a triple (X,I,G), where: ¥ denotes the set
of objects, I is the initial state and G is the goal state. A
problem instance delineates the specific problem scenario and
varies across different instances [21].

In the modified blocksworld domain a PDDL problem
instance could consist of the following: The set of
objects ¥ = {bl,02}, an initial state: I = {clear(b2),
on-table(b2), clear(bl), on-table(bl)}, and a goal state:



G = {clear(b1), on(b1,b2), on-table(b2)}.

Definition 4 (Grounded PDDL task) A grounded PDDL
task Il is defined as a tuple (F, O, I, G) where F represents
a set of facts, O represents a set of operators, I C F' and G

C F represents the initial state and the goal state respectively
[21].

The set of facts F' is constructed from the predicates P
of the lifted task representation 1I; and the parameters are
substituted with objects from the set of objects > from Il
[11], [21]. Similarly, the set of operators O is constructed
from the set of action schemas A of the lifted PDDL task
representation II;. An operator o can be applied in a state s
C F only if the preconditions of o are satisfied in s resulting
in a new state s’ = (s \ del(0)) U add(o) [21].

The action schema for pickup(?z) from the example given
earlier can be grounded with the object bl such that we get
the operator:

pickup(bl) =

pre = {clear(bl), on-table(bl)},

del = {clear(b1), on-table(b1)},

add = {holding(b1)}

Definition 5 (PDDL plan) A succession of operators
constitutes a PDDL plan ®. We say that s = s’ denotes
the transition from s to s’ by operator o. A succession of
operators is denoted as o, if the operators in 0 can be applied
to s continuously such that s 2 s". A sequence 6 such that
I3 5", where G C s” is a plan for a task II.

Applications that aim to solve PDDL problem instances are
referred to as planners [7].

B. Logic Programming

Logic programming is a paradigm for programming and
knowledge representation that originates from first-order logic.
Our definitions are formulated according to the principles
of logic programming as outlined by Lloyd in 1984 [23].
We can define first-order logic theories using a first-order
language constructed from a first-order alphabet.

Definition 6 (Alphabet) An alphabet is defined as a tuple

(V,C,F,P) where V is a set of variables, C is a set of
constants, F' is a set of function symbols and P is a set of
predicate symbols.
Function symbols and predicate symbols all have an arity
larger than 0, and for any given alphabet, only C' and F' may
be empty. We can define a first order language given by an
alphabet.

Definition 7 (Term) A term in a first order language is
either a variable v € V, a constant ¢ € C' or an n-ary function
symbol f € F on the form f(t,...,t,) where t1,...,t, are

terms.

Definition 8 (Formula) A formula is a logical expression
that determines a truth value. A formula can be inductively
defined as:

e An n-ary predicate symbol p € P on the form
p(t1,...,tn), where ty,...,t, are terms, is a formula.
Formulas on this form are also called atoms.

¢ Any two formulas in-fixed with logic symbol A, V, — or
< are also formulas.

o If F'is a formula then the negation —F' is also a formula.

o If F is a formula and z is a variable then then (Va F')
and (Jz F) are also formulas.

Some examples of formulas are: Vx p(z,y), ~(Vz p(z,y))
and p(z,y) — q(x) where p,q € P are predicate symbols
and z,y € V are variables.

When a variable is prefixed by V or 3 we say that that
variable is bound in the scope of the following formula. All
unbound variables in a formula are free. For example in YV F'
where F' = p(z,y), = is bound in the scope of F and y is free.

Definition 9 (Literal) A literal is an atom or the negation
of an atom. A negated atom is called a negative literal and
an atom is called a positive literal.

In first order logic we can define clauses that are propositional
formulas:

Definition 10(Clause) A clause is a formula on the form:

Vxl...Vxn (l1 V..V lm)

where (4, ..., l,, are literals and z, ..., x,, are variables.

For convenience a clause can be written in causal form, also

called implicative form:
A17 ceey An — Bl, ceny B,

Where Ay, ..., A, and By, ..., B, are literals.

This notaition is equivalent to:

which is equivalent to

Vacl...a:k (A1 V..V An vV _|B1 V..V _‘Bm)
Which is the standard form of a clause.

Finally we have the concept of horn clauses which are clauses
in implicative form with only one positive literal:

Definition 11 (Horn clause) A horn clause is a clause on
the form:
A+ Bl, cey Bn
Here A is called the head and contains exactly one positive
literal and By, ..., B, is called the body and consists of only
literals.



C. Inductive Logic Programming

Inductive Logic Programming (ILP) is a type of machine
learning that employs symbolic logic, using first-order logic
to represent both data and learning tasks. The goal in ILP is
to create a set of horn clauses that can logically deduce all
positive instances in a learning dataset while excluding any
negative instances [24], [25]. This method aids in extracting
general patterns from data, allowing for the discovery of
complex relationships within intricate datasets.

The concept of an ILP input is defined as follows:

Definition 12 (ILP Input) An ILP input is denoted as a
tuple (E*, E~, B,4) Where E™ represents a finite set of
positive examples and E~ represents a finite set of negative
examples, both sets are expressed as literals. B signifies some
background knowledge in the form of logical clauses, and H
denotes the hypothesis space which comprises the powerset
of the set, encompassing all conceivable horn clauses.

Definition 13 (ILP solution) The solution of an ILP
problem is a hypothesis H € H Where H is a set of horn
clauses. A hypothesis H is considered a correct solution,
when it satisfies the requirements:

Completeness: BU H = E+
Consistency: BU H ¥ E~

The symbol F denotes logical entailment. Completeness
ensures that the conjunction of the clauses in the hypothesis
entails all possible examples given the background knowledge,
and consistency ensures that the hypothesis does not entail
the negative examples given the background knowledge.

III. LEARNING TASK

The learning task considered in this paper, is the task of
learning a model that can classify operators in a classical
planning problem as either good or bad. This classification
can then be used to reduce the amount of operators, a planner
has to consider when searching for a solution, for example,
by guiding a partial grounding [7].

This learning task closely relates to a standard ILP learning
task. In a standard ILP approach, the system is provided with
training data in the form of positive and negative examples
as well as background knowledge. For our learning task the
training data consists of what we call problem examples:

Definition 14 (Problem example) A problem example ¢
is a tuple (IIg,0", 07, ®) where Il = (F,0,1,G) is a
grounded PDDL task, O" denotes the set of operators for
Il labeled good, O~ denotes the set of operators for Ilg
labeled bad and @ is a valid PDDL plan for Ilg.

These problem examples are constructed from solved
PDDL tasks. Here the PDDL plan ¢ is an optimal plan
provided by a planner, The sets of operators Ot and O~
for Il = (F,0,I,G) are labeled training instances, and are
defined such that Ot U O~ = O.

We can define the learning task targeted by this paper:

Definition 15 (Learning task) A learning task solved by
the BES system is a tuple I' = (D, &) where D = (P, A) is
a PDDL domain, and £ is a set of problem examples within
the domain D.

The solution to such a learning task, would be a model that
given a PDDL task Il and an operator o can classify o as
either good or bad.

IV. BEYOND EXHAUSTIVE SEARCH

The goal of BES is to provide a solution for the learning
task defined in section III. The goal is to construct a model,
that can classify operators in a classical planning problem as
good or bad.

To achieve a model that can perform this classification, BES
takes advantage of an inductive logic programming (ILP)
approach. To apply an ILP approach within classical planning,
we have to introduce a few modifications to the standard
definition of ILP. For convenience we define a form of horn
clauses applicable in a classical planning domain as a rule:

Definition 16 (Rule) A rule » for a PDDL domain
D = (P, A) is a tuple (head,body) where head is an action
schema a € A instantiated with a set of variables and the
body is a tuple (P;,Pg) where Py is a set of atoms to be
fulfilled in the initial state, based on predicates from P that
are instantiated with variables and P is similarly a set of
atoms to be fulfilled in the goal state, based on predicates
from P that are instantiated with variables.

An example of a rule for the modified blocksworld domain
could be: unstack(xy,xs):-init:on(x1, x2), goal : on(x1,x3)
which reads: If on(xi,z2) is in the initial state, and
on(x1,x3) is in the goal state for some assignment of x1, xo
and z3 then unstack(z1,x2) is useful in reaching the goal
state.

Any variable that occurs more than once in a rule is considered
a bound variable and all other variables are considered free.
In the example above, z; and x5 are bound and x3 is free.

The variables of an atom in the body of a rule can be
replaced with objects from a given PDDL task. The resulting
atom 1is referred to as a grounded atom. Each grounded atom
corresponds to a fact in the given PDDL task.



For a classical planning domain, the rule space is the set
containing all possible rules for that domain. Since the body
of a rule can contain any number of atoms, and thus any
number of variables, the rule space is infinite.

To evaluate a rule on an operator within a PDDL task, the
variables in the head and corresponding variables in the
body, are replaced with values matching the parameters of
the operator. If there then is an assignment of the remaining
unassigned variables, such that the resulting grounded atoms
in the body appear as facts in the initial and/or goal state of
the problem, the rule evaluates to true. If no such assignment
exists the rule evaluates to false. How this evaluation is done
in BES is described in section VIII

We can consider the operator unstack (b, by) for a PDDL task
Il = (F,0,1,G) such that unstack(by,by) € O and by and
bo are objects. To evaluate the rule from the earlier example
on this operator, the variables x; and 2, which appear in the
head would be replaced by the values b; and by along with
any corresponding variables in the body. The resulting rule
would be: unstack(by, bg):-init:on(by, ba), goal : on(by, x3).
If there then is an assignment of x5 such that on(by,bs) € I
and on(by,z3) € G then the rule would evaluate to true.

Given a learning task, the goal of BES is to construct a
model, that can classify operators in a given PDDL task as
good or bad. Rather than using a disjunction of rules like
most standard ILP algorithms, the model constructed by
BES is a set of decision tree classifiers. This ensures, that
the model can depict both disjunctions and conjunctions as
well as the negation of rules. Each decision tree can classify
operators based on a single action. We define a BES decision
tree as:

Definition 17 (BES Decision tree) A BES decision tree 7
is binary a decision tree where each node is a rule, and each
leaf is a classification good or bad.

Given a grounded PDDL task IIg = (F,0,I,G), a BES
decision tree 7 can be used to classify an an operator o € O.
This is done by evaluating the rule in each node of 7 on o.
If a rule evaluates to true o is evaluated on the rule in the
left child, and if the rule is evaluated to false, o is evaluated
on the rule in the right child. Once a leaf node is reached, 7
returns a classification for o corresponding to the value in the
leaf.

As an example of this, we can consider the following
grounded PDDL task in our modified blocksworld domain:
Il = (F,0,1,G) where

I = {on(bl, b2), on-table(b2), clear(bl)} and

G = {on-table(bl), on-table(b2), clear(bl), clear(b2)}. A
simple example of what a small BES decision tree 7 could
look like is shown on Figure 1.

unstack(xq, z2) :- init:on(zq, x2), init:clear(xq)

A

unstack(zq, zs) :- goal:on-table(x1) class:bad

N

class: good class: bad

Fig. 1: Example of what a simple BES decision tree could
look like

If 7 were given the operator unstack(bl,b2) € O then
the rule in the root node would evaluate to true, since
on(b1,b2) € I and clear(bl) € I. o would then be evaluated
on the left child of the root which would again evaluate to
true since on-table(bl) € G, and the classification given by
7 would be good. The operator unstack(b2,bl) on the other
hand, would be classified as bad by 7, since the root node
would evaluate to false.

Given this definition of a BES decision tree, we can now
define the final model constructed by BES:

Definition 18 (BES Model) A BES Model for a PDDL
domain D = (P, A) is a mapping M : A — T where A is
the set of actions in D and 7 is the space of possible BES
models in D.

BES learns a BES decision tree for each action in a domain,
and the resulting model M then maps each action to the
corresponding model. When classifying an operator o on M
the action a that o is based on is used to identify the correct
decision tree 7. We denote this as Ma] = 7. Once 7 is
found, it is used to classify o. For simplicity, we denote the
classification of an operator o as M/(o).

When searching for relevant rules, BES utilises partial order
causal link (POCL) graphs to extract additional knowledge
from PDDL plans. POCL grahs and how these are exploited
by BES is explained in detail in section V and section VI.

The BES system is described on algorithm 1 and can be sepa-
rated into 3 main parts: Partial order causal link (POCL) graph
construction, POCL rule generation, and model construction.
As seen in lines 3-5 on algorithm 1 BES first converts the
PDDL plan for each problem example into a POCL graph.
The process of converting the provided PDDL plans to POCL
graphs is described in depth in section V.

These constructed POCL graphs are then used to create a set
of potentially useful rules for each action in the domain, as
shown in line 7. The rule generation is described in section VI.

Finally, as shown in line 8 BES constructs the decision tree
classifier for the action, using the created input. The creation of
the input and the construction of the final model, is described
in more detail in section VII.



Algorithm 1: BES algorithm

Input : A BES learning task I' = (D, &), where
D= (P A)
Output: A BES model M
1 graphs < @; //Set of POCL graphs
M < A — T //Maps an action to a BES decision tree.
Initially all actions maps to nothing
for ¢ € £ do
‘ graphs < graphs U generate_pocl_graph(e);
end
for a € A do
rules < generate_rules(a, graphs);
M]a] < construct_optimal_tree(a, rules, £);
end
10 return M;

(5]
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V. POCL GRAPH GENERATION

As mentioned in section IV BES utilises partial order causal
link (POCL) graphs to extract additional knowledge from a
given PDDL plan.

POCL planning is a planning method that follows the
principle of least commitment [26] by only maintaining a
partial order in the operators in a solution. We define POCL
planning based on the definitions by Bercher [13]. A POCL
solution to a PDDL task is represented as a POCL Graph.

Definition 19 (POCL graph) A POCL graph for a
grounded PDDL task Il is a tuple Ppocr = (PS,CL).
PS is a finite set of POCL plan steps. Each plan step
ps € PS is a tuple ps = (i,0) where o is an operator
and ¢ is a unique identifier for the plan step which
enables distinction between plan steps with identical
operators. We denote (pre(ps), del(ps), add(ps)) such that
pre(ps) = pre(o),del(ps) = del(o) and add(ps) = add(o).
CL € PSxF x PS is a set of causal links where F' € Il is
the set of facts for the PDDL Task. Each causal link ¢/ € CL
is a tuple ¢l = (ps, f,ps’) where ps and ps’ are plan steps in
PS and f is a fact connecting them such that f € add(ps)
and f € pre(ps’). ps is called the producer of f and ps’ is
called the consumer

To incorporate the initial and goal state in a PDDL task
Iz = (F,0,1,G), every POCL graph for a PDDL task
introduces plan steps init and goal such that add(init) = I
and pre(goal) = G. The init plan step precedes all other
steps in the plan, and the goal plan step succeeds all other
steps. pre(init) = del(init) = add(goal) = del(goal) = 0.

The notion of causal links have in many instances been used
for explainability [27]. In POCL graphs, the causal links
provide a context for each plan step chosen for a solution. BES
aims to utilise these causal links, in an attempt to discover
the connection between facts in the initial and goal state of
a given PDDL task, and the choice of operators in the solution.

For every problem example ¢ = (IIg,0%,0~,®) in the
provided learning task BES generates a corresponding POCL
graph based on ®. The conversion of a PDDL plan to a
POCL graph is described by algorithm 2.

Algorithm 2: POCL algorithm
Input :

A problem example £ = (IIg, O, 0™, ®) where
HG = (F707]7G)
Output: A POCL graph Ppocr = (PS,CL)
1 init < create_plan_step_init(I); // Plan step for initial
state [
2 goal « create_plan_step_goal(G); // Plan step for goal
state G
3 PS « {init, goal}; // Set of plan steps for Ppocr
4 CL « @; // Set of causal links for Procr,
current_facts <— @; // Set of currently present facts in the
POCL graph Ppoc . with corresponding producing plan
step
for fact € I do
| current_facts < current_facts U {(init, fact)};
end
for o € ¢ do
10 ps + (unique_id(), 0);
11 PS + PS Ups;

wm
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12 for (ps', fact) € current_facts do

13 if fact € pre(ps) then

14 | CL<«+ CLU{(ps', fact,ps)};

15 end

16 if fact € del(ps) then

17 current_facts
current_facts \ {(ps’, fact)};

18 end

19 end

20 for fact € add(ps) do

21 | current_facts < current_facts U (ps, fact);
22 end

23 end

2 for (ps, fact) € current_facts do

25 if fact € pre(goal) then

26 | CL + CLU{(ps, fact,goal)};

27 end

28 end

29 return (PS,CL);

When constructing a POCL graph for a plan in a problem
example, BES first creates plan steps for the initial and goal
state of the problem example, and adds these to the POCL
graph. BES then adds all facts present in the initial state to
the set of currently present facts as seen in lines 6-8. This
set, keeps a reference to each fact currently present in the
graph, paired with the producing plan step.

Next BES iterates over each operator in the provided valid
plan for the problem example. For each operator o BES
assigns a unique identifier and creates a plan step ps which
is added to the graph. For every fact f € pre(ps), a tuple



(ps’, f) is found in the set of current facts' where ps’ is the
producer of f. A causal link (ps’, f, ps) is added to the graph
and if f € del(ps) then f is removed from the set of current
facts.

Additionally, for every fact f' € add(ps), (ps, f') is added
to the set of current facts. This iteration over each operator
in the plan is described on lines 9-23.

Once all operators in the provided plan have been processed
each fact in the goal state is found in the set of current facts
and a causal link between their producing plan step and the
goal plan step is added using the fact as seen on lines 24-28.
Finally, the resulting POCL graph is returned on line 29.

Since the plans provided in the given problem examples
are required to be valid, the POCL graphs constructed
by BES are also guaranteed to be valid. A valid plan is
guaranteed to be applicable in sequence, given the PDDL
task, meaning that each fact must be present when applying
an action ensuring that each causal link can be created.
Additionally, a valid plan guarantees that the goal state
is fulfilled after applying each action in the plan, meaning
that a causal link can be created for every fact in the goal state.

As an example we can consider the problem example
e = Ilg,0%",0,®) for the blocksworld domain
where IIg = (F,0,I,G) is a grounded PDDL task,
I = {on_table(bl), on(b2,bl), clear(b2), on_table(b3),
on(b4,b3), clear(b4)} is the initial state for the PDDL task

= {on_table(b2), clear(bl), clear(b3), on(b3,b4)} is
the goal state for the PDDL task and ¢ = unstack(b2,bl) —
putdown(b2) — unstack(b4,b3) — putdown(b4) —
pickup(b3) — stack(b3,b4) is the sequence of operators
making up an optimal PDDL plan for the PDDL task.
Following the graph construction described above, the
resulting graph is depicted on Figure 2.

VI. POCL RULE GENERATION

To generate rules, BES uses the POCL graphs described in
section V. BES aims to utilise the causal links in the POCL
graphs, to discover which facts in the initial and goal state
might be relevant for the inclusion of a given action in the plan.

For convenience we define the notion: f ~» ps where f is a
fact in some causal link and ps is a plan step. This denotes
that f is connected to ps by some sequence of causal links.
Similarly, ps ~» f defines that ps is connected to f through
some sequence of causal links.

Given a POCL graph Ppocr, = (PS,CL) and an action a,
BES will then for each plan step ps € PS, that is constructed

l(ps’ , f) is guaranteed to be present in the set of current facts, since we
know that the provided plan is valid and thus the preconditions for every action
must either be present in the initial state or be produced by a preceding action

from an operator based on a, generate rules by following
three steps:

The first step is to find all facts from the initial and goal
state, that are connected to the plan step in the graph. BES
first finds the set of connected facts from the initial state:
Finit = {f|f ~ ps, (init, f,ps’) € CL} where init € PS is
the plan step for the initial state. Similarly, a set of facts for
the goal state is created:

Fyoar = {flps ~ f,(ps’, f,goal) € CL} where goal is the
plan step in Ppocy for the goal state.

In the example on Figure 2 the sets Fj,;; and F,,; achieved
from using the plan step putdown(b2) would be:

Finit = on(b2,b1), clear(b2)

Fyoar = on_table(b2)

The second step is to generate a set of rules based
on the operator in ps and the facts from Fj,;; and Fyoq:
R = {(o, (Pr1, Pg))|Pr € P(Finit), Pa € P(Fyoa1, PTUPg #
@, (i,0) = ps)} where P(S) denotes the powerset of S. For
every possible combination of facts in the initial or goal state,
that might be relevant for the plan step ps, R will contain a
rule with a body containing the combination.

The third step is to construct the final set of rules R’ by
replacing the parameters in the head and body of each rule
with variables x1, xo, ..., x,, Where n is the total number of
unique objects in the parameters of the rule.

Continuing from the example, the resulting set of rules R
would be:

{putdown(b2):-init : on(b2,b1),
putdown (b2):-init : clear(b2),
putdown(b2):-goal : on_table(h2),
putdown(b2):-init : on(b2,bl),init : clear(b2),
putdown(b2):-init : on(b2,bl), goal : on_table(b2),
putdown(b2):-init : clear(b2), goal : on_table(b2),
putdown (b2):-init : on(b2,b1),init : clear(b2),
goal : on_table(b2)}

After replacing objects with variables the resulting set of
rules R’ would be:
{putdown(xy):-init : on(x1,x2),

putdown(xy):-init : clear(xy),

putdown(xy):-goal : on_table(xy),

putdown(xy):-init : on(x1,x2),init : clear(x),

putdown(xy):-init : on(xy, x2), goal : on_table(xy),

putdown(xy):-init : clear(xy), goal : on_table(x1),

putdown(xy):-init : on(x1, x2),init : clear(xy),
goal : on_table(x1)}

These three steps are repeated across all plan steps of the
given action, in all graphs created by BES. By default, the
resulting rules returned by BES’ rule generation is the union
of all rule sets R’ generated across all plan steps for the given
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Fig. 2: The POCL graph illustrates the result of converting the plan unstack(b2,b1l) — putdown(b2) — unstack(b4,b3) —
putdown(b4) — pickup(b3) — stack(b3,b4) from the problem example given in section V to a POCL graph.

action in all constructed POCL graphs. BES also introduces
an optional hyper-parameter w € N. When w is set, the rule
generation will only return the w most frequently occurring
rules across all rule sets R'.

VII. MODEL CONSTRUCTION

As mentioned in section IV the model constructed by BES
is a set of decision trees. To construct these trees, BES
utilises a decision tree framework named STreeD. STreeD is
able to optimise for non-linear metrics such as F}-score and
generates optimal decision trees, providing high predictive
capability in small trees [12].

Given a set of binary features F and a set of labels IC
used to describe training instances, the input data D for
the STreeD framework consists of training instances (z, k)
where z € {0,1}/71 is a feature vector, which denotes the
satisfaction of each feature in the instance. k € K is a label
describing the value of the instance. Using D, F, K and
integers M AXy and M AXy, STreeD constructs an optimal
decision tree Tsrreen = (B, L, b,1) with a max depth M AX,
and a maximum number of feature nodes M AX; where B is
the set of branching internal nodes, L is the set of leaf nodes
b : B — F is an assignment of features to the branching
nodes, [ : £ — K is an assignment of leaf nodes to labels.

To use STreeD, BES uses the set of constructed rules as
described in section VI as the feature set F. The set of labels
K = {1,0} where 1 represents that an operator is good, and
0 represents that an operator is bad. Each training instance
(z,k) € D describes an operator in a problem example
e = (TIlg,0",0~,®), where x € {1,0}/"] describes the
evaluation of each rule » € F on o and k € K is a label
describing if an operator is good (1) or bad (0).

Given an action a, a set of rules F for a and a set of problem
examples £, BES can construct an input for STreeD. For
each problem example ¢ € &, where ¢ = (Ilg,0",0™,®)
BES creates sets O and O, such that O} contains all
operators o € O that are based on a and O, contains all
operators o € O~ that are based on a. BES then constructs
D = {(z,1)|z = {eval(r,o,¢)|r € F},0 € O} } and

D_ ={(z,0)|x = {eval(r,0,¢)|r € F},0€ O, }

Where eval(r, 0, €) is the evaluation of a rule r on an operator
o in the problem example . Using these BES constructs the
set D. = DX UD_

Once this has been done for every problem example ¢ € &,
BES constructs the input for STreeD:

D= D.
ee&
Using this input, BES uses STreeD to construct a BES
decision tree 7, for the action a.
This process is then performed for all actions a € A for the
domain D = (P, A) in the learning task to construct a BES
model M such that M[a] = 7,.

The STreeD framework supports optimisation for both accu-
racy and F-score. Additionally, modifications have been made
for BES such that STreeD can optimise for a custom Fj score.

VIII. RULE EVALUATION

The evaluation of rules in BES leverages a relational database
management system (RDBMS). To facilitate this BES
represents its learning task in a relational database. This
section describes this representation and the rule evaluation
using relational algebra as described by Codd [28] as well
as extended relational algebra [29]. The symbol < denotes a
natural join operation, >, denotes a join operation with join



conditions ¢ and o denotes a selection.

To represent a learning task I' = (D, ) where D = (P, A).
For each predicate p € P BES constructs relations 77 (p) and
Te(p). Both Ty(p) and T (p) have attributes aq, g, .., oy
where n is the arity of p and «; represents the ¢’th parameter
of p. Additionally, both relations have the attribute # which
is an identifier used to distinguish between problem examples.
Using these relations the initial and goal states in the PDDL
tasks of each problem example can be represented. For each
problem example ¢ € £ where ¢ = (Ilg,0",0~,®) and
g = (F,0,1,G) each fact f € I can be represented
by a tuple in T;(p) where p is the predicate that f
is based on. The tuple representing f is on the form
(f(1), f(2),..., f(n),id(s)) where f(i) denotes the i’th
parameter of f and id(¢) denotes a unique identifier for e.
Similarly, each fact f € G can be represented by a tuple in
Te(p) where p is the predicate that f is based on. The tuple
representing f is on the form (f(1), f(2), ..., f(n),id(g)).

As an example we can consider a learning task
for our modified blocksworld domain containing
two problem examples: ey = (Ilgo,Of, 0y, ®o) and

&1 = (HGl,Of,O;,@l) where HGO = (F0,00710,G0),
HGl = (Fl,Ol,Il,Gl) id(Eo) =0 and id(El) =1.
If we had: Iy ={on(bl,b2),0on_table(b2)}  and
I; = {on(b3,b5), on(bl, b2), on_table(b2), on_table(b5)}

then the relations shown on Figure 3 are created.

T (on) Ty (on_table)
o o # i #
b1 b2 0 b2 0
b1 b2 1 b2 1
b3 b5 1 b5 1
Fig. 3: Relations T7(on) and T7(on_table) for the given

example

For the goal states we could have

Go = {on(b2,b1), on_table(b2)} and

G1 = {on(b5,b4), on(b2,b1), on_table(b4), on_table(bl)}.
This would result in the relations shown on Figure 4.

Te(on) Te(on_table)
ap as  # Qi #
b2 bl 0 b2 0
b5 b4 1 b4 1
b2 b1 1 bl 1

Fig. 4: Relations Tg(on) and Tg(on_table) for the given
example

Using this representation, BES can evaluate a rule
r = (head, body) where body = (Pr, Pg) on an operator o
in a given problem example €.

For convenience we define a mapping pos such that for an
atom p in the body of a rule, pos(p, z;) gives the placement
of variable z; in p, for example in the atom p = on(z1, z3),
pos(p,x1) = 1 since x; is in the first position. The mapping
pos is also applicable to the action in the head of a rule.

To evaluate 7 on o in ¢ (denoted eval(r, 0, €))
BES constructs and executes the query:

T(Tv 075) = 0¢p,; (T51(p1)) Xy - e, —1 O, (Tsn (pn))

Where p1, p2, ..., p,, are the atoms in the body of r, s; = G if
p; € Pg and s; = I if p; € Pr. C; is a set of join conditions
between p;+; and every atom pj, pe, ..., p;. For every variable
x present in p; 41 and for each atom p € {p1,pa,...,p;} if ©
is present in p then a condition is constructed:

pivs = (T(P)-Cpos(p,e) = T(Pi+1)-Qpos(pis1,2))
C; is then the union of all such constructed conditions.

@; is a selection criteria for each relation Ty, (p;) such
that for each variable x that is present in the head of
r if x is present in p; then ¢; contains the condition
Qpos(p;,z) = 0(pos(head,x)), where o(j) denotes the
7’th parameter of o. Additionally ¢ contains a condition:
# = id(e) which ensures that only tuples from the relevant
problem example is considered.

If |T'(r,0,¢€)| > 0 then the rule r evaluates to true.

IX. EXPERIMENTS

To evaluate how well BES performs, we investigate BES’
ability to learn a model given a learning task for a given
domain, and the model’s ability to correctly classify operators
in PDDL tasks within that domain. To achieve this we
benchmark the results of BES and compare them to the
state-of-the-art ILP tool Aleph [10] as used by the winners
of the international planning competition (IPC) learning track
2023 GOFAI [8]. Additionally, we benchmark against the
YAPHG tool [11], which is the predecessor to BES.

The implementation of BES used to generate the experi-
mental results for this paper, was implemented in Python.
BES relies on SQLite for rule evaluation [30] as described
in section VIII and STreeD [12] for model construction as
described in section VII. The source code for the BES sys-
tem can be found here: https://github.com/p10-Al-planning/
BeyondExhaustiveSearch

A. Experimental Setup

All experiments reported in this paper were conducted on a
machine with an Intel i5-13400 4.6 GHZ Processor with 32
GB DDR4 RAM running at 3000 MHz.

Each experiment presented in this section, consists of training
a model on a set of training data, and then evaluating the
performance of the model on a set of testing data.


https://github.com/p10-AI-planning/BeyondExhaustiveSearch
https://github.com/p10-AI-planning/BeyondExhaustiveSearch

Experiments were conducted on data from the IPC learning
track 2023. For each domain used, around 40 problem
examples were used as training data, and around 15 problem
examples were used for testing data. Additionally, experiments
were conducted on the autoscale-dataset [31]. For experiments
conducted on this dataset, the training data consists of 140
problem examples for the training data and 60 problem
examples for the testing data.

To assess the performance of each tool, domains of varying
complexity were used. BES, YAPGH, and Aleph were evalu-
ated on the blocksworld, rover and satellite domains from the
IPC learning track 2024 dataset. Additionally, BES and Aleph
were evaluated on the blocksworld, floortile, gripper, rover,
satellite and zenotravel domains from the autoscale-dataset. A
small description of each domain can be seen below [31]:

Blocksworld: A robot arm must pick up and place
blocks on a table. The blocksworld domain consists of
5 predicates with 0 to 2 parameters, and 4 actions with
1 to 2 parameters.

Floortile: A grid-like floor with different types of tiles a
robot must colour the tiles with two colours. The floortile
domain consists of 10 predicates with 1 to 2 parameters
and 6 actions with 3 to 4 parameters.

Gripper: In gripper, a robot with two grippers must trans-
port balls between rooms. The gripper domain consists of
7 predicates with 1 to 2 parameters and 3 actions with 2
to 3 parameters.

Rover: The goal of rover is to perform several gathering
tasks collecting soil and rock samples, taking pictures
of objectives, and communicating the result to a lander.
The rover domain consists of 23 predicates with 1 to 3
parameters and 9 actions with 2 to 6 parameters.
Satellite: Multiple satellites equipped with different in-
struments must observe and acquire images based on their
instruments. The satellite domain consists of 8 predicates
with 1 to 2 parameters, and 5 actions with 2 to 4
parameters.

Zenotravel: In zenotravel, people are transported around
in planes. The zenotravel domain consists of 4 predicates
with 2 parameters each, and 5 actions, with 3 to 6
parameters.

The Aleph configuration used in our experiments is the
configuration employed by GOFAI which follows the default
settings outlined in the Aleph manual [10]>. Aleph was set
with a 30-minute limit to search the rule space for each
action schema.

In our experiments BES is run with STreeD optimised for
Fy score as well as optimised for a Fj3 score with § = 2
meaning that recall is 2 times as important as precision. This

2Note, that the results of Aleph presented in this section, are based on
the configuration used by GOFAI [8]. Other configurations of Aleph, might
produce different results.

10

will encourage BES to prioritise classifying good operators
as good. The BES system is configured to have a tree depth
of 3 and a max of 7 nodes, since this configuration provided
the best results in testing. The rule generation step of BES
was given a 60-second time limit.

Every experiment using the YAPHG system employs the
default configuration as described in the YAPHG paper [11]
with a rule generation time of 30 minutes.

B. Performance metrics

To access the performance of each system and configuration,
we evaluate them based on the following metrics as defined
by Manning et. al. [32].

Precision = 757575 .1r.1dlcates how many f)perators that
are assessed to be positive are actually positive.

Recall = = P:I—E«“ ~ Specifies how many actual positive

values have been predicted positive.

__ 2.Precision-Recall : .
Fy-Score = oo R eeall Recall 18 the harmonic mean of recall

and precision.

C. Results

For the blocksworld, rover and satellite domain, experiments
were run using the IPC learning track 2023 dataset to train
and evaluate BES, Aleph and YAPHG. Here BES was only
run with optimisation for Fj-score. The results of these
experiments are reported in terms of precision, recall, and
F'i-score for all models as well as time for BES and YAPHG.
For Aleph the runtime is unknown, but the time limit
guarantees that it never exceeds 30 minutes. The Training
and Testing columns report the number of good and bad
operators as Pos/Neg respectively for both the training and
testing dataset shown on Table I.

For the blocksworld domain we see that Aleph produced the
best results when comparing precision with a score of one
across all actions. This suggests that the Aleph configuration
used in GOFAI favours precision. Aleph did however fall
behind both BES and YAPGH when comparing against recall
and F-score. Overall the performance for recall and F-score
favored BES but YAPGH marginally outperforms BES in
regards to F}-score for stack and Recall and F}-Score for
unstack.

When looking at more complex domains such as rover and
satellite, Aleph was completely unable to construct a model
for the satellite domain within the 30 minute time limit, and the
model constructed for the rover domain was unable to classify
operators for most actions. Similarly, the models created by
YAPHG are unable to classify operators for most actions
in both domains. BES is able to construct well-performing
models for both domains, and was able to classify operators
for every actions except switch_off for which there was no
training or testing data.



TABLE I: IPC Data

Training Testing BES F1-Score Aleph YAPHG
Action Pos / Neg Pos / Neg  Time (s) Precision Recall FI-Score Precision Recall FI-Score Time (s) Precision Recall FI-Score
BLOCKSWORLD
stack 51072969 263 /1072 144.023 0.812 0.411 0.545 1 0.392 0.563 1800 0.990 0.395 0.565
unstack 512/2967 262/1073  81.383 0.765 0.385 0.513 1 0.389 0.560 1800 0.990 0.393 0.563
pickup 1957170 88 /37 67.649 0.863 0.932 0.896 1 0.727 0.842 1800 0.910 0.693 0.787
putdown 197 7 168 87738 72.398 0.85 0.977 0.909 1 0.724 0.840 1800 0.905 0.655 0.760
ROVER
sample_rock 167 /229 34763 70.208 0.64 0.941 0.762 1 0.235 0.381 1800 1 0.206 0.341
sample_soil 148 / 249 291776 69.75 0.622 0.966 0.757 N/A N/A N/A 1800 N/A N/A N/A
calibrate 3307/ 335 76/ 88 112.668 0.541 0.868 0.667 0.923 0.316 0.471 1800 0.774 0.316 0.449
communicate_image_data 889 / 5139 219/ 1118  72.038 0.426 0.982 0.594 N/A N/A N/A 1800 N/A N/A N/A
take_image 1321 /7629 288 /1955  92.476 0.479 0.972 0.642 N/A N/A N/A 1800 N/A N/A N/A
communicate_rock_data 308 /1113 68 /271 62.303 0.496 0.838 0.623 1 0.074 0.137 1800 N/A N/A N/A
communicate_soil_data 282 /1230 52/ 356 62.602 0.35 0.692 0.465 0.857 0.115 0.203 1800 N/A N/A N/A
drop 84 / 64 16 /23 73.649 0.611 0.688 0.647 N/A N/A N/A 1800 N/A N/A N/A
navigate 559 /2301 121 /7 591 70.833 0.333 0.636 0.437 N/A N/A N/A 1800 N/A N/A N/A
SATELLITE
switch_on 88 /165 527138 1.641 0.274 1 0.43 N/A N/A N/A 1800 N/A N/A N/A
switch_off 0/0 0/0 N/A N/A N/A N/A N/A N/A N/A 1800 N/A N/A N/A
take_image 278 /1205 237/ 1911 1.591 0.655 0.641 0.648 N/A N/A N/A 1800 N/A N/A N/A
calibrate 88 /165 527138 2.543 0.408 0.942 0.57 N/A N/A N/A 1800 0.667 0.087 0.154
turn_to 472 /4017 463 / 4968 3.701 0.325 0.378 0.349 N/A N/A N/A 1800 N/A N/A N/A
TABLE II: Auto-scale data F;-Score & F5-Score
Training Testing BES Fj,-Score BES F}-Score Aleph
Action Pos / Neg Pos / Neg Time (s) Precision Recall FI1-Score Time (s) Precision Recall Fl1-Score Precision Recall F1-Score
BLOCKSWORLD
stack 2479 /13737 1088 / 6059  150.342 0.352 0.805 0.49 121.381 0.768 0.471 0.583 1.0 0.291 0.451
unstack 2251/ 13965 973 /1 6174 156.288 0.371 0.819 0.511 123.717 0.889 0.512 0.65 1 0.23 0.374
pickup 744 1720 3237316 48.243 0.73 0.997 0.843 40.77 0.788 0.957 0.864 0.996 0.842 0.912
putdown 710 / 754 320/ 319 48.633 0.726 0.984 0.836 38.201 0.804 0.934 0.864 1 0.434 0.605
FLOORTILE
paint-up 4338 / 6230 1850 / 2598 87.203 0.853 0.994 0.918 81.115 0.887 0.966 0.925 1 0.06 0.11
change-color 615 /745 252/ 308 61.506 0.90 1 0.947 60.067 0.9 1 0.947 1 0.85 0.92
up 2544 / 2740 1177 7 1047 69.215 0.711 0.976 0.822 65.198 0.741 0.946 0.831 N/A N/A N/A
down 3395/ 1889 1474 1 750 86.138 0.827 0.99 0.901 76.629 0.885 0.954 0.918 N/A N/A N/A
right 1265/ 617 1264 / 618 70.011 0.834 0.989 0.905 65.766 0.865 0.967 0.913 N/A N/A N/A
left 2935/ 1569 1265/ 617 71.169 0.831 0.99 0.903 66.747 0.867 0.957 0.91 N/A N/A N/A
GRIPPER
drop 5852 /5852 2506 / 2506 64.608 1 1 1 61.9 1 1 1 1 1 1
pick 5852 /5852 2506 / 2506 64.318 1 1 1 61.791 1 1 1 1 1 1
move 280 / 280 120/ 120 61.505 1 1 1 60.079 1 1 1 1 1 1
ROVER
sample_rock 243 / 408 1227204 62.44 0.72 0.967 0.825 60.777 0.72 0.959 0.827 N/A N/A N/A
sample_soil 236 / 460 117 / 160 62.356 0.721 0.949 0.819 60.749 0.721 0.949 0.819 N/A N/A N/A
calibrate 456 / 866 230/ 353 63.803 0.516 0.9 0.656 61.778 0.756 0.783 0.769 N/A N/A N/A
communicate_image_data 583 /6193 241 /2415 66.014 0.358 0.963 0.522 62.952 0.454 0.797 0.578 N/A N/A N/A
take_image 701 / 5624 328 /2200 71.367 0.486 1 0.654 66.886 0.63 0.845 0.721 N/A N/A N/A
drop 86 /274 49 /101 62.791 0.549 0.796 0.65 60.88 0.535 0.776 0.633 N/A N/A N/A
communicate_rock_data 448 / 2030 222/1085 62.907 0.374 0.928 0.533 61.02 0.672 0.829 0.742 N/A N/A N/A
communicate_soil_data 421 / 2305 176 / 901 62.587 0.441 0.909 0.594 60.859 0.535 0.835 0.652 N/A N/A N/A
navigate 666 / 3200 294 /1334 63.759 0.296 0.922 0.448 61.617 0.5 0.639 0.561 N/A N/A N/A
SATELLITE
switch_on 349 / 694 157 1 267 11.562 0.37 1 0.54 9.678 0.37 1 0.54 N/A N/A N/A
switch_off 54 /989 16 / 408 1.591 0.038 1 0.073 0.194 0.038 1 0.073 N/A N/A N/A
take_image 1845 /26924 862 / 10649 13.177 0.483 1 0.651 7.49 0.483 1 0.651 N/A N/A N/A
calibrate 494 / 1088 2271/ 415 34.552 0.354 1 0.522 29.741 0.354 1 0.522 N/A N/A N/A
turn_to 11019 /92562 4795 /37373  1132.521 0.313 0.747 0.442 761.372 0.325 0.73 0.449 N/A N/A N/A
ZENOTRAVEL
refuel 4530/ 11556 1531 / 4409 23.082 0.361 0.953 0.524 17.118 0.429 0.837 0.568 N/A N/A N/A
debark 1625 / 15176 571 /5986 10.211 0.467 1 0.636 5.789 0.467 1 0.636 N/A N/A N/A
board 1623 / 15178 571/ 5986 8.635 0.467 1 0.636 4.722 0.467 1 0.636 N/A N/A N/A
fly 11542 /76028 3532 /27668  326.612 0.184 0.86 0.303 223.783 0.234 0.601 0.337 N/A N/A N/A
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In cases where Aleph is able to deliver a result, it again
outperforms BES in precision, however BES heavily
outperforms Aleph in both recall and F3-score.

Experiments were also conducted using the autoscale-dataset
[31] in order to assess and compare the performance of
both BES and Aleph given more training data. Here BES
was trained using both the optimisation for F}-score as
well as Fs-score. The Fh-score optimisation will favour
recall and was included since this is favourable if the
model were to be used for a partial grounding, since a high
recall, decreases the chance of classifying a good operator
as bad. The results of these experiments are shown on Table II.

For the blocksworld domain we see, that like with the
experiments conducted on the IPC data, Aleph outperforms
both configurations of BES in terms of precision, however
it is generally outperformed on both recall and F}-score by
both BES configurations.

For the gripper domain, we see that both BES configurations
as well as Aleph were able to construct models, that could
perfectly classify all operators in the testing data. This
indicates, that the usefulness of operators in the gripper
domain is easily generalisable.

Like with the IPC data, we see that Aleph struggles to
construct viable models within the given time limit for more
complex domains. In Floortile we see that Aleph was only
able to provide a classification model for two of six actions.
For both rover, satellite and zenotravel Aleph was unable to
provide a model within 30 minutes.

When comparing the results of the two BES configurations,
we see that BES with an optimisation for Fs-score achieves a
higher recall but a slightly lower I -score than BES with an
optimisation for Fj-score. This matches expectations, since
F5-score favours recall over precision.

Overall we see, that BES generally outperforms Aleph in
terms of recall and F}-score but with fairly comparable results
but Aleph outperforms BES in terms of precision however
we also see that Aleph struggles to generate models within
30 minutes for most domains included in these experiments.

These results show, that BES is able to provide consistently
well-performing models for every domain, however, these
results might not necessarily translate to good performance
for a planner using these models to guide a partial grounding.
A more accurate depiction of the performance of BES would
be to run a planner on a number of difficult PDDL tasks
using a partial grounding guided by the models constructed
by BES. This would allow us to compare the effectiveness of
a planner using a partial grounding guided by BES compared
to one guided by other tools like for example Aleph.
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X. CONCLUSION

In this paper, we proposed an approach to learning
classification models for PDDL domains, that can classify
operators in a given PDDL task as either good or bad. Our
approach applies an adaptation of a standard ILP approach
and leverages partial order causal link (POCL) graphs to
extract additional knowledge from optimal PDDL plans in
order to generate relevant rules. Additionally a relational
database management system (RDBMS) is utilised to perform
evaluation of rules. The classification models are constructed
using STreeD, a framework that can create small and optimal
binary decision trees.

Empirical results show, that models constructed using our
approach generally outperform but have comparable results
to models created by the state-of-the-art tool Aleph and our
approach’s predecessor YAPHG. Additionally, our approach
is shown to be able to construct high-performing models for
planning domains where both Aleph and YAPHG are unable
to provide a model. The effectiveness of our approach in a
planning environment remains to be tested, and the benefit
of implementing our approach in a planner is therefore un-
certain, however, the promising predictive capabilities suggest
potential applications in guiding partial grounding and other
planning-related tasks.
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