Inverse light estimation

Estimating the light of outdoor scenes through textures.

Project Report
Mikael Therkelsen

Aalborg University
Department of Architecture, Design, and Media Technology

Title:
Inverse light estimation

Theme:
Master thesis

Project Period:
Spring semester 2024

Participants:
Mikael Therkelsen

Supervisors:
Claus Madsen

Page Numbers: 39

Date of Completion:
May 28, 2024

Department of Architecture, Design, and Media
Technology

Aalborg University

https://www.create.aau.dk/

Abstract:

In this project, the focus was on estimating
the light settings of an outdoor scene, using
textures obtained through the Unity game
engine. The implemented system is meant
to work with augmented reality, by obtaining
information about the scene and estimating
the light of that scene. The estimated light
can then be used to shade an object that
has been inserted into the scene, to make
the object blend into the scene. To estimate
the light settings, a lighting model was found
and implemented using Python. The Python
program uses the textures obtained through
Unity, to estimate the light settings. The
Python program was connected to the Unity
project using sockets, and the estimated val-
ues were sent through the connection. The
system performed mediocre but still showed
promise. The estimated values were not ac-
curate when compared with the actual light-
ing values, but did follow as expected when
the lighting changed. The estimated value
did make the inserted object blend in, in cer-
tain lighting settings. To make a more stable
system, more work should be put into the

system.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement

with the author.

https://www.create.aau.dk/

Preface

Mikael Ngrlund Therkelsen
<mtherk19@Qstudent.aau.dk>

Aalborg University, May 28, 2024

mailto:student@student.aau.dk

Contents

1 Introduction

2 Background research

3 Lighting model

4 Render Implementation

5 Evaluation

5.1 Day cycle evaluation
5.1.1 Scene 1
5.1.2 Scene 2o
5.1.3 Scene 3
5.1.4 Brick scene
5.1.5 Overall method results

5.2 Light strength evaluation o o
5.2.1 Scene 1
5.2.2 Scene 2 ...
5.2.3 Scene 3 s
5.2.4 Overall method results

5.3 Sunlight Colour change
5.3.1 Scene 1l
5.3.2 Scene 2 ...
5.3.3 Scene 3
5.3.4 Overall method results

5.4 Hemisphere light Colour change,
5.4.1 Scene 1l
5.4.2 Scene 2
5.4.3 Scene 3 ...
5.4.4 Overall method results

5.5 System evaluation Lo

6 Discussion
7 Conclusion

Bibliography

14
15
15
17
19
21
23
24
24
25
26
27
27
27
28
29
30
31
31
32
33
34
34

35

37

38

1 Introduction

Augmented reality exists along the Reality-Virtuality spectrum, spanning from unaltered reality
to fully computer-generated virtual environments[1]. Between these extremes, we find mixed
realities like augmented reality, where digital objects are inserted into the real world, and
augmented virtuality, where real-world objects are inserted into the digital world. Achieving
convincing augmented reality requires seamlessly integrating virtual objects into the environment,

ensuring they align with both position and lighting.

Augmented reality (AR) is a rising platform, that is used in many fields to aid in understanding
topics or aid in performance[2]. And with AR APIs such as Unity’s ARFoundation, Google’s
ARCore, and Apple’s ARKit, it has never been easier to develop solid AR applications[3]. These
applications can serve multiple functions, such as integrating virtual objects into the real world
or modifying the appearance of already existing objects. But these APIs still fall a bit short
when lighting an augmented object[3]. And as Gao et. al. [2] discovered, misalignment of
lighting between the augmented object and the real world, could impact the perception of the
augmented object.

In a fully virtual environment, the shading of objects is a lot easier, due to the lighting conditions
being known. This is however not the case when rendering objects in augmented reality[4].
This can lead to differences in the lighting of the real-world scene and the augmented object.
Therefore the lighting must be estimated from the scene before shading any augmented objects,
for realistic augmented objects.

An example of lighting between the real world and an inserted object can be seen in Figure 1.1.
Here the left object is a real-world object, while the right is a 3D model of the left object. The
3D model has baked lighting, which results in misalignment of the lighting. This is of course
only one of the many current solutions for lighting in AR there are.

When researching light estimation of a real-world scene, neural networks have been a prominent
tool. Neural networks have been used for multiple purposes, such as complete inverse-rendering
of a real-world scene[5, 2], calculating Spherical Harmonic(SH) coefficients[6] or just estimating
the light direction[7].

There are also other methods for estimating the lighting of real-world scenes. One method could
be to use image processing to obtain a shadow color, and use that color to calculate the light
contribution from the hemisphere and the sun|8]. Another method could be to obtain specific
textures of the scene[9], and then calculate the light contribution using those textures. And
with the previously mentioned AR framework, obtaining the necessary textures to estimate the
lighting could potentially be possible.

This therefore leaves the following problem statement:

Page 1 of 39

CHAPTER 1. INTRODUCTION

Figure 1.1: An image taken using the Tkea home application. The right-side
object is an inserted 3D model of the left-side object. The right-side object has
baked-in lighting, which does not align with the lighting of the real-world
scene.

“How can the necessary textures of a real-world scene, be collected and used for
real-time lighting estimation.”

Page 2 of 39

2 Background research

With tools like Unity’s ARFoundation, Google’s ARCore, and Apple’s ARKit, many challenges
relating to augmented reality such as plane detection, object tracking, and object insertion
have been overcome. However, challenges regarding accurate estimation of light and shadows
for augmented objects still persist[4, 3]. These include issues like obtaining precise sunlight
direction data, leading to shadows appearing incorrectly, and accurately light colour contribution
estimation, affecting how light colours objects in the scene and the visibility of shadows.

Currently, a lot of work has been put into researching the use of neural networks, for predicting
the lighting conditions of a given scene. These neural networks have been used to both inverse
render an entire scene or part of it[5, 2| and to predict smaller components of the lighting.
These components could be light directions and placement[7], color of lights through spherical
harmonics[10, 6] or HDRI maps[11, 12, 13, 14]. These neural networks have, however, only
focused on lighting the augmented objects and not on the shadows produced by the objects,
which is also an important component when realism is the focus of augmented reality. An
unfortunate downside to the use of neural networks is gaining the data that will be used to train
the neural network. Not only do the data have to be of a certain quality, but there also have to
be enough data points for the neural network to be generalized[9]. Therefore, there could be
benefits to pursuing other routes.

For example Wei et. al. [8] used canny edge detection, to find the edges of shadows in the real
world. These edges were then translated into the 3D space of the virtual world, and used to
create a shadow volume. However, they did not calculate the direction vector of the sun, based
on the sun’s position in relation to the device, but by estimating the edges of the shadow caster.
With the shadow edges and edges of the shadow caster, a shadow volume was created and a

depth-test was performed to see if an object was in the real-life shadow.

But to translate the edges of the shadows from the real world’s 3D space into the virtual world’s
3D space, knowledge of the shadow’s position on three axes must be known. To get the shadow’s
position on all three axes, Wei et. al. [8] used RGBD images. With the ARCore framework[15],
it is now possible to get a depth map of the scene no matter if the device in use has a depth
sensor, as long as it has the necessary processing power. With the depth map, an approach like
the one presented by Wei et. al. [8] could potentially be implemented onto a mobile device.

Another method was also presented by Madsen et. al. [9], where the irradiance of the scene was
calculated. This was done through a radiance image of the scene and an albedo map of the scene,
along with the ambient light, shadows, and normals of the scene. Now with the information
about the scene, Equation 2.1 can be used to calculate the irradiance values of the scene, if
the light direction of the sun can be found. The equation system in Equation 2.1 estimates
the contributed light from the sunl,; and the contributed light from the hemispherel,, so the

Page 3 of 39

CHAPTER 2. BACKGROUND RESEARCH

values can be used when shading objects.

Pa)] [eecld) A8 ws(e) « () - [a)

P(i) | | 29 e(am) 2R os(q) x (7i(an) - U{@3)) | [k L, @.1)
k Ly

P(xy,) %ﬂ”) (@) pd(f”) w s(ay,) * (7i(a,) - 1{ai))

With the L, and L, scalar values, Equation 2.2 can be used when shading an augmented object[9,
16] and Equation 2.3 can be used when colouring the shadow cast by the augmented object[16].
Besides the L, and L, scalar values, the lighting before and after the augmented object is also
necessary when shading the shadow cast. The lower part of the fracture in Equation 2.3 is the
lighting before the augmented object is inserted and the upper part, is the lighting after the
augmented object is inserted. Equation 2.1, Equation 2.2, and Equation 2.3 will be further
explained in chapter 3

—

L,(Z) = pdﬁf) % (L, % Ambient, + Ly * Sun, * (7(Z) - [(Z))) (2.2)

le -Pz * Si—after (CZ ﬁ)

l MR AR (2.3)
Zl -Pz * Si—prev * (dz : n)

Lafter = Lbefore *

The challenge now becomes obtaining the different images necessary to do the calculation in
Equation 2.1.

Obtaining the shadow map and ambient light could now be possible with the new Google
geospatial API [15] because it can provide 3D models of buildings of a location. With these 3D
models, it is possible to obtain a shadow map of the current location, as long as the light source
in digital space is representative of the sun. So to get a representative light, a direct light source
can be used[17], as long as the direction of the light is correct.

This therefore leaves obtaining the albedo image, as the last hurdle. But because the 3D models
the Google geospatial API [15] provides also have textures, these could be used to obtain an
albedo map of the scene. However, as it can be seen in Figure 2.1, the textures collected are not
without lighting. It would therefore not be possible to calculate accurate lighting with these
textures, without processing the textures first, which is outside the scope of this project.

Page 4 of 39

CHAPTER 2. BACKGROUND RESEARCH

Figure 2.1: A screenshot of the textures obtained from the Google geospatial
APIL.

This project will therefore work with synthetic data, where scenes will be created in Unity to
represent an outdoor scene.

Page 5 of 39

3 Lighting model

Understanding the relation between skylight and sunlight is essential when emulating real-world
light [18]. This chapter explains how Equation 3.1 estimates outdoor lighting and how the
estimated value can be used in rendering augmented objects.

/f\

[\

Figure 3.1: A diagram of the lighting model. Here the blue spheres represent
points in a hemisphere and the yellow sphere represents the sun. The total
amount of light received by a point depends on the total amount of visible sky
and the angle between the surface normal and the sun’s direction[16].

Figure 3.1 is a visual representation of how light interacts with a given point. A point will
receive light from both the sun and the hemisphere if the angle between the light source and
the surface normal is less than 90 degrees and the light source is not blocked[16]. When looking
in Table 3.1, the textures of a 3D scene can be seen. Here the sun shadow texture shows the
points in the 3D scene where the sunlight is blocked by objects. The ambient light textures
show how much light a point receives from the hemisphere, by giving the pixels a value between
0 and 1. These two textures therefore represent the amount of light a given point in a 3D scene
receives from both the sun and the hemisphere.

Knowing where the light is hitting in a 3D scene is enough to shade an object, if the color of
the light is known[18]. This is where Equation 3.1 can be used. By providing the five textures
in Table 3.1, Equation 3.1 can be used to calculate L, and Ly, which is the light contributed by
the sun (L,) and the hemisphere (L,).

Equation 3.1 shows three matrices, a Nx1 matrix, a Nx2 matrix, and a 2x1 matrix. The Nx2
matrix uses the last four textures in Table 3.1, which are the albedo texture, sun shadow texture,

ambient texture, and the normal texture. Here the left column calculates the ambient light
pa(Tn)
™

with the corresponding ambient light texture (c(z,)) pixel value. The right column calculates

contribution, by taking the pixels in the albedo texture () and multiplies the pixel value,

Page 6 of 39

CHAPTER 3. LIGHTING MODEL

-1

<

|

Radiance Albedo Sun shadow Ambient light Normal

Table 3.1: Table of the necessary textures, when estimating the lighting,
using Equation 3.1

the light contribution of the sun, by taking the pixels in the albedo texture and multiplying
the pixel value, with the corresponding pixel value from the sun shadow texture (s(x})) and
the dot product between the light direction and the surface normal from the normal texture

(ri(21) - 1(#1)). This will result in the result being 0 if there is no sun at the given pixel, and
lowering the result if the angle between the sun and the normal goes towards 90 degrees.

The 2x1 matrix contains the irradiance value from the hemisphere and the sun. Multiplying
the Nx2 matrix together, with the 2x1 would result in a 3D scene with light based on the
irradiance values. Therefore, if the textures in last four textures in Table 3.1 are being used
in Equation 3.1, and the L, and Ly values are known, the result should look like the radiance
texture in Table 3.1.

p(?_) pa(ai) o c(—i) pd(;ﬁ) % s(*1) % (ﬁ(*1) .1l

P(i3) | _ | 22 sc(dy) PR s() x ((43) - 1) | [k Lo 3.1)
k * Ld .

P(z,) Pa(Tm) o c(xm) pd(;f;‘) x s(x) * (T(2) f)

However, because the irradiance values are unknown in AR, these must be estimated. This
can be done by taking the inverse of the Nx2 matrix, turning it into a 2xN matrix, and matrix
multiplying it with the Nx1 matrix containing the pixels from the radiance texture. This
will result in a 2x1 matrix containing the irradiance values, which can be used in rendering

augmented objects.

When shading an augmented object, Equation 3.2 can be used for each fragment. The resulting
colour of a given fragment L,(Z), is found by multiplying an ambient result and a diffuse result
with the albedo of the object and then adding the results together.

The ambient result is calculated by multiplying the ambient lighting with the estimated L, scalar
(L, * Ambient,). The diffuse result is calculated by multiplying the dot product of the light

—

direction and surface normal of the fragment, with the estimated Ly scalar (Ly * (7(Z) - [(Z))).

This is then multiplied by either 0 or 1 depending on if the fragment is in shadow or not

—

(Ly % (i(Z) - 1(Z)) % Suny).

Page 7 of 39

CHAPTER 3. LIGHTING MODEL

-l -1

< <

L ¢

After sun After ambient Before sun Before ambient

Table 3.2: Table of the texture containing the before and after lighting a
sphere has been inserted into a scene Equation 3.1

L,(Z) = pdff) % (L, % Ambient, + Ly * (i(Z) - [(Z)) * Suny) (3.2)
When shading the surface that will receive the shadows produced by the augmented object,
Equation 3.3 can be used. This equation uses the shadows after an object has been inserted
into the scene, and divides it with the shadows before an object was inserted. To see how
the shadows look before and after an object has been inserted into a 3D scene, see Table 3.2.
Dividing the two textures of shadows with each other will result in a texture only containing
the shadow produced by the augmented object.

)

-n

le -Pz * Si—afte'r * (J
*

l d (3.3)
Z] pz * Sifprev (dz

Lafter = Lbefore *

~—

However, only dividing the textures with each other would only result in a gray colour, and
not a shadow with a colour matching the other shadows in the scene. Therefore the textures
should be multiplied by the L, scalar that was estimated using Equation 3.1. But L, should
be divided by the number of direct light sources used in the hemisphere. This therefore means
that % = P,. Multiplying the colour of the surface(Lyc fore) With the shadow of the augmented

object will then result in the new colour of the surface(Lq fier)-

Page 8 of 39

4 Render Implementation

The implemented system is a multi-step system, where the first step is to gather the necessary
textures, the second step is to calculate the irradiance values using the gathered textures, and
the last step is where the augmented object is shaded with the derived irradiance values. For a
diagram of the process see Figure 4.1.

To speed up the implementation process, the Unity game engine was used. To control the
lighting in a scene, all ambient light provided by Unity was turned off. This means that the
only contributing light in the scene, are directional lights that are placed in the scene.

Get view as
texture

\J

3D objects with
no lighting

Get normals of
objects as
texture

Get shadowmap Calculate the Shade the
g - augmented
of sun light irradiance values .
object
.| Getambient light
"1 map as texture
3D objects with __ Get view as
lighting = texture

Figure 4.1: Diagram of the flow in the implemented system. Textures are
gathered and used to calculate the irradiance value. The derived values are
then used to shade an object

As Figure 4.2 shows, the scene is built twice. Once where there is no light, representing what
Google Geospatial API would give, let us call that digital view. And second, where there is
light, representing the camera view, let us call that camera view.

To obtain the five necessary textures, five cameras are being used, one for each texture obtained.
The render-texture of each camera is converted to a texture2D object, which allows the render-
textures to be saved and used for processing. Examples of textures obtained from the five

Page 9 of 39

CHAPTER 4. RENDER IMPLEMENTATION

cameras can be seen in Table 3.1. The diagram in Figure 4.2, shows which camera captures

which view.

Camera view

Radiance
Camera Real World
Digital view
Albedo
Shadow
; 3D world
Ambient model
Normal
Camera

Figure 4.2: Diagram showing what camera captures which view. The
radiance camera captures the real world, while the albedo, shadow, ambient,
and normal camera captures the digital view.

The radiance texture is simply a rendering of the camera view with synthetic lighting. For
synthetic lighting, a directional light is inserted to represent the sun, while multiple directional
lights are used to represent the hemisphere. With enough directional light in the hemisphere,
a smooth soft shadow can be created. An example can be seen in Figure 4.3. This method is
also used by Bertolini et. al, [16], where it was discovered that there were no significant drop in

FPS, before 20 directional lights were inserted into the scene.

Figure 4.3: Hemisphere lighting emulated in the Unity game engine. The

renderer utilises multiple directional light sources, all pointing towards the

center of the world space. This results in the light appearing equally bright
from all directions, just as the light from the hemisphere.

The albedo texture, like the radiance texture, is simply obtained by rendering the scene, but
without the synthetic lighting. This is done by rendering the digital view instead of the camera

Page 10 of 39

CHAPTER 4. RENDER IMPLEMENTATION

view. However, all objects in the digital view have a simple custom shader, which takes a texture
and applies it to a 3D model without adding light. This ensures that no light creates shadows
or alters the color of the texture.

The shadow texture is simply the sun’s shadow map when it casts light onto the digital view.
The shadow map is then transformed into the view space. To obtain the shadow map in view
space, a command buffer was written for the sunlight. The command buffer can be seen in Code
snippet 4.1. This command buffer takes the shadow map of the light and sets the shadow map
as a global texture. This texture can then be accessed in any shader script, by referring to the
texture name provided as the first argument in the SetGlobalTexture method.

light = GetComponent<Light> () ;
if (light)
{
cb = new CommandBuffer();
cb.name = "CopyShadowMap";

o U w N

cb.SetGlobalTexture ("_DirectionalShadowMask", new
— RenderTargetIdentifier (BuiltinRenderTextureType.CurrentActive));
7 light .AddCommandBuffer (UnityEngine.Rendering.LightEvent.AfterScreenspaceMask, cb);

Code-snippet 4.1: The code that writes to the command buffer to get the
shadow map of that light.

To obtain the ambient light texture, the shadow maps from the directional lights in the hemisphere
light are used. These shadow maps are also rendered using the digital view. The shadow maps
are obtained the same way, the shadow map of the sun is obtained. However, all lights used in
the hemisphere must have a command buffer written to it. These shadow maps are divided by
the amount of directional light used in the hemisphere and then layered on top of each other.
This results in a light shadow where only one shadow is hitting, and a darker shadow where
multiple shadows hit.

Lastly, the normal map uses the built-in Unity Normal-Depth-Texture. But because the Unity
textures only work with numbers between 0 and 1. This means when the normals are applied
directly to the texture all negative numbers, will be rounded to 0 and information is therefore
lost. To preserve the information, the normals must be encoded into a color and decoded when
used for the irradiance calculation.

To encode the normals, 1 is added to each normal and then divided by 2. This will result in -1
becoming 0, and 1 staying 1. When decoding the normals, 0.5 is subtracted from the normal
and multiplied by 2. This will result in 0 becoming -1, and 1 staying 1.

Each texture is saved, so they can be used to calculate the L, and Ly

After obtaining the textures, they can now be used to calculate L, and L, using Equation 3.1.
To calculate the L, and L, a Python script was created. The Unity project was then connected
through sockets to the Python script. The Python code, which calculates the irradiance values
can be seen in Code snippet 4.2. The Python script would create two lists, which would contain

Page 11 of 39

CHAPTER 4. RENDER IMPLEMENTATION

the pixels that would be used in the calculations. The first list contains the raw pixel value,
representing the left side of the equal sign in Equation 3.1. The second list contains two columns
of calculated value, representing the right side of the equal sign in Equation 3.1.

This process is done by loading the five necessary textures as NumPy arrays. All five images are
then looped over, by only looping over one image, but accessing corresponding pixels by array
indexing. Next, each pixel is divided by 255 to make the pixel value between 0 and 1. Before
adding a pixel to the list of pixels used for calculating the irradiance values, a pixel must pass a
goodness test. The goodness test in this project is a simple depth test to make sure the skybox

is not included in the calculation.

If the pixel passes the goodness test, the radiance pixel is added to the list of raw pixels, and the
4 other pixels are used for calculations. Firstly, the albedo pixel is multiplied by the ambient
pixels and the result is then added to the first column in the second list. Next, the dot product
of the normal pixel and the sunlight direction are calculated. The light direction is provided by
Unity, through the socket connection. The albedo pixel is then multiplied by the sun shadow
map pixel and the max value of 0 or the dot product. The result is then added to the second
column in the second list.

The two lists are then converted into a NumPy Nzl array and a Nx2. The two arrays are then
multiplied using the numpy.linalg.lstsq, which results in a 221 containing the L, and L, values.

1| albedo = cv.resize(cv.imread(folderName + "/albedoTex." + fileType), dsize)
2| radiance = cv.resize (cv.imread(folderName + "/radianceTex." + fileType), dsize)
3| normal = cv.resize(cv.imread (folderName + "/NormalTex." + fileType), dsize)
4| shadow = cv.resize(cv.imread(folderName + "/ShadowTex." + fileType), dsize)
5| ambient = cv.resize (cv.imread(folderName + "/AmbientOcclsionTex." + fileType), dsize)
6| for y in range (albedo.shape[0]):
7 for x in range (albedo.shape[1l]):
8 radianceValue = radiancely][x] / 255
9 albedoValue = albedol[y][x] / 255
10 normalVector = normally][x] / 255
11 ambientValue = ambient[y][x] / 255
12 shadowValue = shadowl[y][x] / 255
13
14 # "Goodness test"
15 if normalVector[0] > 0 and normalVector[l] > 0 and normalVector[2] > O:
16 ambientResult = albedoValue x ambientValue
17
18 diffuse = np.dot ((normalVector - 0.5) * 2.0,
< np.array ([float (receivedData_list[3]), float (receivedData_list([2]),
— float (receivedData_1list[1])]))
19 if shadowValue.all() != 1:
20 shadowValue = [0, 0, 0]
21 directResult = albedoValue x shadowValue x max (0, diffuse)
22
23 PixelRList.append([radianceValue[2]])
24 PixelGList.append([radianceValue[1l]])
25 PixelBList.append([radianceValue[0]])
26
27 ABRList.append([ambientResult[2], directResult[2]])
28 ABGList.append ([ambientResult[1], directResult[1]])
29 ABBList.append ([ambientResult[0], directResult[0]])
30
31| PixelRArray = np.asarray (PixelRList)

Page 12 of 39

CHAPTER 4. RENDER IMPLEMENTATION

32| ABRArray = np.asarray (ABRList)
33
34| PixelGArray = np.asarray (PixelGList)
35| ABGArray = np.asarray (ABGList)

36
37| PixelBArray = np.asarray (PixelBList)
38 | ABBArray = np.asarray (ABBList)

39
40| result = str(np.linalg.lstsqg(ABRArray, PixelRArray) [0][0]) \

41 + ":" + str(np.linalg.lstsq(ABGArray, PixelGArray) [0][0]) \
42 + + str(np.linalg.lstsq(ABBArray, PixelBArray) [0][0]) \
43 + ":" + str(np.linalg.lstsqg(ABRArray, PixelRArray) [0][1]) \
44 + ":" + str(np.linalg.lstsq(ABGArray, PixelGArray) [0][1]) \
45 + ":" + str(np.linalg.lstsqg(ABBArray, PixelBArray) [0][1]

Code-snippet 4.2: The implemented code which calculates the irradiance

values.

After estimating L, and Ly they can be used in an object shader using Equation 3.2 and a shadow
receiver shader using Equation 3.3, which is explained in chapter 3. The implemented object
shader uses two passes. A forward base pass for handling the light from the sun, which is the
Ly (7(Z) - 1(Z)) * Sun, part of Equation 3.2, and a forward add pass for handling all additional
lights in the scene, which is the L; x Ambient, part of Equation 3.2, and this correspond to the

ambient light in the scene.

The shadow receiver is a bit trickier when implemented. Here both shadows before and after the
augmented object is inserted are necessary. This therefore means, that by using the textures
from when gaining the ambient textures, the shadows before the augmented object is inserted
are obtained. To gain the shadows after the augmented object is inserted, the built-in shadow
attenuation function was not used. Instead, new shadow maps from the hemisphere lights
are created. This is due to when using the forward add pass, the shader loops through each
additional light in the scene, and the order is unknown. This therefore means when using the
built-in shadow attenuation function it returns a shadow map, but matching it to one of the
already obtained shadow maps from the hemisphere, can be very difficult. It is therefore easier
to create the new shadow maps and use those instead. With the shadow both before and after
inserting an object, Equation 3.3 can now be used. Each shadow map and corresponding shadow
map is multiplied by the % and then divided with each other.

Page 13 of 39

5 Evaluation

To evaluate the system four tests were performed. First, a test was performed with four different
scenes, where the hemisphere light stayed the same, but the sunlight’s position and colour
changed over the course of the scene. This is to simulate a day cycle, with a sunrise and sunset.

In the second test, three out of the four scenes from the previous test were reused. In this test,
the strength of the sunlight was changed, while the ambient light remained the same throughout
the test

In the third test, the same three scenes were used. Here the hemisphere light stayed the same,
and the colour of the sunlight changed. The sunlight in this test remained stationary.

The fourth test, the same three scenes was used. Here the hemisphere light changed while the
sun light stayed the same throughout the test.

For an example image of the render, Figure 5.1 can be seen.

Figure 5.1: The unity scene where the sphere and the shadow are rendered
using the implemented diffuse shader and shadow receiver.

Page 14 of 39

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

5.1 Day cycle evaluation

This section covers the first evaluation, where the day cycles were used. Images of each scene
and the estimated values will be covered. Hemisphere light stays the same bluish colour(RGB
186, 226, 255) throughout the day cycle, while the sunlight goes from a red colour(RGB 183, 27,
27) to a more light white-yellow colour(RGB 255, 244, 214). For an image of the colours in use,
see Figure 5.2.

The hemisphere contains 9 directional lights, where the strength of each light equals % where [
equals the amount of light. The sunlight is a directional light with a strength of 1.

Figure 5.2: The colours used when lighting the scene. The blue colour is
used for the hemisphere lights, while the red and white-yellow colours are used
for the sunlight.

In this evaluation, due to the light of the hemisphere staying the same and only the sunlight
changing, only the estimated Ly value should change over time, no matter the scene in use.
The estimated L, value should change due to the light colour change, and the estimated value
should therefore reflect the change. The changes to Ly should be reflected by having the red
channel estimated higher, when the light is red, and as the light turns more white-yellow the
estimated Ld channels should get closer to each other.

For the full video of the day cycles, please refer to the provided videos or the following link https:
//drive.google.com/drive/folders/1S13JGIUI4WZ7trNPyBjyVsT795FmgQcm?usp=

sharing.

5.1.1 Scene 1

In the first scene, a simple wall with a hole was put in the scene. The sphere and the shadow cast
by it were shaded using the estimated L, and Ly values. The scene can be seen in Figure 5.3. A
graph of the estimated L, values can be seen in Figure 5.4 and a graph of the estimated Lg4

values can be seen in Figure 5.5.

Page 15 of 39

https://drive.google.com/drive/folders/1Sl3JGIUI4WZ7trNPyBjyVsT795FmqQcm?usp=sharing
https://drive.google.com/drive/folders/1Sl3JGIUI4WZ7trNPyBjyVsT795FmqQcm?usp=sharing
https://drive.google.com/drive/folders/1Sl3JGIUI4WZ7trNPyBjyVsT795FmqQcm?usp=sharing

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

Figure 5.3: The first scene the implementation was tested on.

1.0
— LaR
— LaG
— LaB
0.8
0.6
__-----—_—
0.4 4
0.2
0.0 T T T T T T T T
0 50 100 150 200 250 300 350
Frame

Figure 5.4: The estimated ambient lighting value over 400 frames, when
scenel was used.

Page 16 of 39

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

1.0
— LdR
— LdG
— LdB
0.8
0.6
0.4 4
0.2
0-0 T T T T T T T T
0 50 100 150 200 250 300 350

Frame

Figure 5.5: The estimated light from the sun over 400 frames, when scenel
was used.

As it can be seen in Figure 5.4, the L, value remains relatively stable throughout the day cycle,
where the difference between the maximum and minimum L, values are 0.0457172, 0.039789,
and 0.02541. It can also be seen, that the hemisphere is estimated to have more blue, than red
and green. This is also expected due to the colour of the hemisphere being a blue light source.

As for the Ly values, they also act as expected. In Figure 5.5 the estimated values shows, that
the sunlight starts out being a more reddish color, and as the day cycle goes on, the light has
less of a red tint.

The maximum, minimum, and the difference between the maximum and minimum for both the
L, and the L, values for scene 1 can be seen in Table 5.1

La R La G La B Ld R Ld G Ld B
Max 0.502336 0.535783 0.606686 1.004243 0.775147 0.726304
Min 0.457172 0.495994 0.581276 0.841424 0.641238 0.641714
difference 0.045164 0,039789 0.02541 0,162819 0,133909 0,08459

Table 5.1: Table containing the maximum, minimum L, and L, values and
the difference between the maximum and minimum for scene 1.

5.1.2 Scene 2

The second scene is also a simple scene where a statue is inserted. Again the sphere and the
shadow cast by it were shaded using the estimated L, and L, values. The scene can be seen in

Page 17 of 39

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

Figure 5.6. A graph of the estimated L, values can be seen in Figure 5.7 and a graph of the
estimated L, values can be seen in Figure 5.8.

Figure 5.6: The first scene the implementation was tested on.

1.0
— LaR
— LaG
— LaB
0.8 4
0.6
0.4 4
0.2 4
0.0 T T T T T T T T T
0 50 100 150 200 250 300 350 400

Frame

Figure 5.7: The estimated ambient lighting value over 400 frames, when
scene2 was used.

Page 18 of 39

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

1.0
— LdR
— LdG
— LdB

0.8

0.6

0.4 4

0.2

0-0 T T T T T T T T T

0 50 100 150 200 250 300 350 400

Frame

Figure 5.8: The estimated light from the sun over 400 frames, when scene2
was used.

When looking at Figure 5.7, the L still acts somewhat as expected. The L, value is estimated
to contain more red in the beginning, and as the light turns more white-yellow the amount of
red falls and gets closer to the green and blue. However, as it can be seen the estimated blue
and green colours also falls, but later stabilised towards the end of the day cycle.

The fall in L; matches the rise in the L,. When looking at Figure 5.8, it can be seen that the
values rise about the 100 frame, which is where the L, values start to fall. It can also be seen
that the L, value is estimated to contain more red at the end of the cycle, which should not

be the case. The exact maximum, minimum, and the difference between them, can be seen in
Table 5.2

Skrive lidt om hvorfor dette kan veere tilfeeldet, nar jeg har snakket /hgrt lidt fra claus

La R La G La B Ld R Ld G Ld B
Max 0.943305 0.884905 0.915652 0.999304 0.700152 0.724198
Min 0.699046 0.751017 0.778627 0.427935 0.384828 0.402957
difference 0.244259 0.133888 0.137025 0.571369 0.315324 0.321241

Table 5.2: Table containing the maximum, minimum L, and L, values and
the difference between the maximum and minimum for scene 2.

5.1.3 Scene 3

The third scene is also a simple scene where a wall with a small roof is added to the scene. The
sphere is now placed a bit under the roof, so the roof will lower the amount of light from the

Page 19 of 39

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

hemisphere hitting the sphere. The roof will also cast a shadow on the sphere, toward the end
of the day cycle. The sphere and the shadow cast are again shaded using the estimated L, and
Lg. The scene can be seen in Figure 5.9. A graph of the estimated L, values can be seen in
Figure 5.10 and a graph of the estimated L4 values can be seen in Figure 5.11.

Figure 5.9: The first scene the implementation was tested on.

1.0
—.-—-—-"""'————-__
0.8 - S
0.6 1 //
0.4 1
0.2
— LaR
— LaG
— LaB
0.0 T T T T T
0 100 200 300 400

Frame

Figure 5.10: The estimated ambient lighting value over 400 frames, when
scened was used.

Page 20 of 39

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

1.0
— LdR
— LdG
—— LdB

0.8

%67 \—”/

0.4

0.2 A

0.0 T T T T T

0 100 200 300 400

Frame

Figure 5.11: The estimated light from the sun over 400 frames, when scene3
was used.

When looking at Figure 5.10 and Figure 5.11 it can be seen the estimated values are back
to acting more as expected. The hemisphere is estimated to contain most blue and less red
throughout the whole day cycle. It can also be seen that the sunlight is estimated to contain
more red in the beginning of the day cycle and less red at the end of the cycle. There is however
still a small fall for the green and blue colour at around the 100 frame mark. It can also be seen
that there is still a small rise in the red colour in the estimated L, value. But the estimated
green and blue colour remain stable throughout the day cycle. For the maximum, minimum
and the difference between them, see Table 5.3.

La R La G La B Ld R Ld G Ld B
Max 0.693179 0.801701 0.905399 1.331048 0.788903 0.658013
Min 0.531184 0.738352 0.859704 0.745862 0.537469 0.465685
difference 0.290222 0.063349 0.045695 0.585186 0.251334 0.192328

Table 5.3: Table containing the maximum, minimum L, and L, values and
the difference between the maximum and minimum for scene 3.

5.1.4 Brick scene

The fourth scene is another simple scene, where a 3D model of some brick has been placed in
the middle of the scene. Again the sphere and the shadow cast by it were shaded using the
estimated L, and L, values. The scene can be seen in Figure 5.12. A graph of the estimated
L, values can be seen in Figure 5.13 and a graph of the estimated L; values can be seen in
Figure 5.14.

Page 21 of 39

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

Figure 5.12: The first scene the implementation was tested on.

1.0 —_——
0.8
0.6
0.4
0.2
— LaR
— 1aG
— LaB
0.0 T T T T T T T T
0 50 100 150 200 250 300 350
Frame

Figure 5.13: The estimated ambient lighting value over 400 frames, when the
brick scene was used.

Page 22 of 39

CHAPTER 5. EVALUATION 5.1. DAY CYCLE EVALUATION

1.0
— LdR
— LdG
— LdB

0.8

0.6

0.4 4

0.2

0.0 T T T T T T T T

0 50 100 150 200 250 300 350
Frame

Figure 5.14: The estimated light from the sun over 400 frames, when the
brick was used.

La R La G La B Ld R Ld G Ld B
Max 1.033038 1.016158 1.028082 1.129385 0.843282 0.849750
Min 0.711607 0.772404 0.798172 0.322417 0.227578 0.267017
difference 0.321431 0.243754 0.22991 0.806968 0.615704 0.582733

Table 5.4: Table containing the maximum, minimum L, and L, values and
the difference between the maximum and minimum for the brick scene.

Again the estimated values are not as expected. The estimated Ly values start as expected,
with the light estimated to contain more red than green and blue. But all three colours fall
when hitting the 50-frame mark. It is also at the 50-frame mark, the L, values start to rise and
is also estimated to contain more red than both green and blue.

5.1.5 Overall method results

When looking overall at the result of this test, it can be seen that the system is able to estimate
some scenes as expected. In Scene 1 and Scene 3, the Hemisphere lighting was estimated to
contain more blue than both red and green throughout the day cycle. It should, however, be
noted that the values of the hemisphere light, were estimated to be higher in Scene 3 when
compared to Scene 1. This should not be the case due to the light settings in the two scenes
are the same. However, when looking at the estimated L, values in Scene 2 and Scene 4, the
values are estimated at approximately the same height. The L, values of Scene 2 and Scene 4

rise during the day cycle, which is unexpected.

Page 23 of 39

CHAPTER 5. EVALUATION 5.2. LIGHT STRENGTH EVALUATION

In Scene 1 and Scene 3, the sunlight was estimated to contain more red in the beginning and
end with less red, which was expected. This is also the case when looking at Scene 2 and Scene
4, but the green and blue colour also drops, which is unexpected. This drop in green and blue
happens at the same time the L, value increases.

5.2 Light strength evaluation

In this section, the second evaluation will be covered. This evaluation focuses on the light
strength of the sun and how the strength impacts the rendering. Three of the previous four
scenes are used in this test as well. The L, value will start at (0.3, 0,35, 0.4) and remain the
same throughout the test. The L, value starts at (1, 0.85, 0.8) and will fall four times in intervals
of 0.2 and therefore ends at (0.4, 0.25, 0.2). Images and the estimated values are provided in
each subsection. In this test, it is expected that only the L, value will fall and the L, value will
remain steady throughout the test.

5.2.1 Scene 1

Scene 1 of this test, is the simple scene with a wall with a hole. The sphere and the shadow
cast by the sphere were shaded using the estimated L, and L,;. Images of the scene and the
estimated L, and L4 values, with the different sunlight strengths, can be seen in Table 5.5. The
estimated L, and L, values can also be seen in Table 5.6

(0.32, 0.26, 0.15) (0.27, 0.21, 0.11)
(0.64, 0.66, 0.74) (0.62, 0.64, 0.71)

Lq (0.22, 0.16, 0.08) (0.19, 0.13, 0.052)

La (0.6, 0.61, 0.69) La (0.57, 0.58, 0.65)

Table 5.5: Table containing images of scene 1, as the light strength fall.

Page 24 of 39

CHAPTER 5. EVALUATION 5.2. LIGHT STRENGTH EVALUATION

Light setting 1 Light setting 2 Light settings 3 ~ Light settings 4
Real Ld (1, 0.85, 0.8) (0.8, 0.65, 0.6) (0.6, 0.45, 0.4) (0.4, 0.25, 0.2)
Real La (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4)
Estimated Ld (0.32, 0.26, 0.15) (0.27, 0.21, 0.11) (0.22, 0.16, 0.08) (0.19, 0.13, 0.052)
Estimated La (0.64, 0.66, 0.74) (0.62, 0.64, 0.71) (0.6, 0.61, 0.69) (0.57, 0.58, 0.65)

Table 5.6: Table containing the real L, and Ly values and the estimated L,
and L, values for scene 1

5.2.2 Scene 2
Scene 2 are the scene where the statue is inserted. The images of the scene with different light
strength can be seen in Table 5.7, and the estimated and real L, and Ly can be seen in Table 5.8

(0.59, 0.44, 0.39) (0.52, 0.38, 0.33)
(0.70, 0.70, 0.71) (0.69, 0.69, 0.70)
L, (0.44, 0.31, 0.26) (0.37, 0.25, 0.20)

L, (0.68, 0.67, 0.68) La (0.66, 0.66, 0.67)

Table 5.7: Table containing images of scene 2, as the light strength fall.

Page 25 of 39

CHAPTER 5. EVALUATION 5.2. LIGHT STRENGTH EVALUATION

Light setting 1 Light setting 2 Light settings 3 ~ Light settings 4
Real Ld (1, 0.85, 0.8) (0.8, 0.65, 0.6) (0.6, 0.45, 0.4) (0.4, 0.25, 0.2)
Real La (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4)
Estimated Ld (0.59, 0.44, 0.39) (0.52, 0.38, 0.33) (0.44, 0.31, 0.26) (0.37, 0.25, 0.20)
Estimated La (0.70, 0.70, 0.71) (0.69, 0.69, 0.70) (0.68, 0.67, 0.68) (0.66, 0.66, 0.67)

Table 5.8: Table containing the real L, and Ly values and the estimated L,
and L, values for scene 2

5.2.3 Scene 3
The last scene is the scene with a wall with a roof on, that covers the inserted sphere. Images of
the scene can be seen in Table 5.9 and the the estimated and real L, and L, values can be seen

in Table 5.10.

(0.60, 0.59, 0.67) (0.54, 0.52, 0.58)
(0.50, 0.50, 0.49) (0.49, 0.49, 0.49)
Ly (0.47, 0.45, 0.50) (0.41, 0.39, 0.42)

Lo (0.48, 0.48, 0.49) La (0.47, 0.47, 0.49)

Table 5.9: Table containing images of scene 3, as the light strength fall.

Page 26 of 39

CHAPTER 5. EVALUATION 5.3. SUNLIGHT COLOUR CHANGE

Light setting 1 Light setting 2 Light settings 3 ~ Light settings 4
Real Ld (1, 0.85, 0.8) (0.8, 0.65, 0.6) (0.6, 0.45, 0.4) (0.4, 0.25, 0.2)
Real La (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4)
Estimated Ld (0.60, 0.59, 0.67) (0.54, 0.52, 0.58) (0.47, 0.45, 0.50) (0.41, 0.39, 0.42)
Estimated La (0.50, 0.50, 0.49) (0.49, 0.49, 0.49) (0.48, 0.48, 0.49) (0.47, 0.47, 0.49)

Table 5.10: Table containing the real L, and Ly values and the estimated L,
and L, values for scene 3

5.2.4 Overall method results

When looking over the results of the tests, the estimated values do act somewhat as expected.
The estimated L, remains almost steady throughout all three tests, which is expected because
the hemisphere light did not change. The estimated Ly fell throughout all three tests, which is
also expected. But when comparing the estimated L, and L, values with the real L, and L,
they are a lot different. In scene 1 and 2 the L, value was estimated to be the strongest light
contributor, while the Ly value is the actual strongest light contributor in the scene. The L,
is also estimated to be a lot stronger than what the real L, value is. And the L, value is also
estimated to being lower than what the real L, is. However to determine whether the estimated
L, and L4 values is fitting to the scene, the images in Table 5.5, Table 5.7, and Table 5.9 should
be taken into consideration. When looking at scene 1 and 3, the sphere seems to blend in quite
well. However, looking at scene 2 the sphere seems to look bright when compared to the rest of
the scene.

5.3 Sunlight Colour change

In this section, the third test will be covered. This test focuses on the impact of sunlight colour
change. For this three scenes were used and during each scene, the sunlight would change colour
3 times. This means that L, and Ly will be estimated 4 time. The position of the sunlight will
remain the same and the L, will also remain the same at (0.3, 0.35, 0.4). In this test, it is
expected that only the Ly value is changing over time, due to the sunlight changing and not the
hemisphere. This therefore also means, that the estimated L, should remain steady throughout
the tests.

5.3.1 Scene 1

The first scene is the wall with holes in it. Images of the scene can be seen in Table 5.11 and
the estimated L, and L, and the real L, and L, values can be seen in Table 5.12.

Page 27 of 39

CHAPTER 5. EVALUATION 5.3. SUNLIGHT COLOUR CHANGE

Lq 0.32,0.26, 0.15 L4 0.27,0.29, 0.12
L, 0.64, 0.66, 0.74 L, 0.62, 0.68, 0.71

Ly 0.23, 0.27, 0.09 L, 0.23, 0.23, 0.13
L, 0.6, 0.67, 0.69 L, 0.6, 0.65, 0.71

Table 5.11: Table containing images of scene 1, as the sun light colour
changes.

Light setting 1 Light setting 2 Light settings 3 Light settings 4
Real Ld (1, 0.85, 0.8) (0.8, 1, 0.6) (0.6, 0.8, 0.45) (0.85, 0.5, 1)
Real La (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4)
Estimated Ld (0.32, 0.26, 0.15) (0.27, 0.29, 0.12) (0.23, 0.27, 0.09) (0.23, 0.23, 0.13)
Estimated La (0.64, 0.66, 0.74) (0.62, 0.68, 0.71) (0.6, 0.67, 0.69) (0.6, 0.65, 0.71)

Table 5.12: Table containing the real L, and L, values and the estimated L,
and L, values for scene 1

5.3.2 Scene 2
The second scene is a simple plane with a statue on it. Images of the scene can be seen in
Table 5.13 and the estimated L, and Ly and the real L, and L, values can be seen in Table 5.14

Page 28 of 39

CHAPTER 5. EVALUATION 5.3. SUNLIGHT COLOUR CHANGE

L, 0.56, 0.42, 0.35 Lq 0.49, 0.47, 0.29
L, 0.52, 0.56, 0.62 L, 0.50, 0.57, 0.61

L;0.42,0.44, 0.24 L4 0.43, 0.39, 0.29
L, 0.49, 0.57, 0.59 L, 0.49, 0.56, 0.61

Table 5.13: Table containing images of scene 2, as the sun light colour
changes.

Light setting 1 Light setting 2 Light settings 3 Light settings 4
Real Ld (1, 0.85, 0.8) (0.8, 1, 0.6) (0.6, 0.8, 0.45) (0.85, 0.5, 1)
Real La (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4)
Estimated Ld (0.56, 0.42, 0.35) (0.49, 0.47, 0.29) (0.42, 0.44, 0.24) (0.43, 0.39, 0.29)
Estimated La (0.52, 0.56, 0.62) (0.50, 0.57, 0.61) (0.49, 0.57, 0.59) (0.49, 0.56, 0.61)

Table 5.14: Table containing the real L, and L, values and the estimated L,
and L, values for scene 2

5.3.3 Scene 3

The last scene is a simple plane, with a wall with a roof on it. This roof can cast a shadow on
the sphere. Images of the scene can be seen in Table 5.15 and the estimated L, and L, and the
real L, and L, values can be seen in Table 5.16

Page 29 of 39

CHAPTER 5. EVALUATION 5.3. SUNLIGHT COLOUR CHANGE

Ly 0.6, 0.59, 0.67 Ly 0.54, 0.63, 0.58
L, 0.5, 0.5, 0.49 L, 0.49, 0.51, 0.49

Ly 0.48, 0.61, 0.51 Ly 0.49, 0.56, 0.59
L, 0.48, 0.5, 0.49 L, 0.48, 0.5, 0.5

Table 5.15: Table containing images of scene 3, as the sun light colour
changes.

Light setting 1 Light setting 2 Light settings 3 Light settings 4
Real Ld (1, 0.85, 0.8) (0.8, 1, 0.6) (0.6, 0.8, 0.45) (0.85, 0.5, 1)
Real La (0.3, 0.35,0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4) (0.3, 0.35, 0.4)
Estimated Ld (0.6, 0.59, 0.67) (0.54, 0.63, 0.58) (0.48, 0.61, 0.51) (0.49, 0.56, 0.59)
Estimated La (0.5, 0.5, 0.49) (0.49, 0.51, 0.49) (0.48, 0.5, 0.49) (0.48, 0.5, 0.5)

Table 5.16: Table containing the real L, and L, values and the estimated L,
and L, values for scene 3

5.3.4 Overall method results

When testing for sunlight colour change, the system performed mediocre. In the first three
images in Table 5.11, Table 5.13, and Table 5.15 the sphere blends fairly well into the scene,
but in the fourth image the sphere no longer fits into the scene. The light is estimated to be too
green for the scene. When looking at the raw estimated values, the values are again wrongly
estimated. The L, and L, values are estimated to be almost equal in contributing light to the
scene, which is not the case. However, the estimated L, value did remain somewhat steady
throughout all three tests.

Page 30 of 39

CHAPTER 5. EVALUATION 5.4. HEMISPHERE LIGHT COLOUR CHANGE

5.4 Hemisphere light Colour change

In this test, the system was tested on scenes where the L, value changed and the L, stayed
the same throughout the test at (1, 0.85, 0.8). The L, starts at (0.3, 0.35, 0.4) and changes 3
times. Images of the scenes along with tables of the estimated and real L, and Ly can be seen
in the corresponding subsections. therefore in this test, it is expected the Ly value stays the
same throughout the test, and only the L, changes.

5.4.1 Scene 1

The first scene is a simple plane with a wall on it, and the wall contains holes. Images of the
scene can be seen in Table 5.17 and the estimated L, and L4 and the real L, and L, values can
be seen in Table 5.18.

Ly 0.32,0.26, 0.15 L4 0.39,0.24, 0.10
L, 0.64, 0.66, 0.74 L, 0.72, 0.64, 0.71

h

Ly 0.37,0.28, 0.10 Ly 0.39, 0.3, 0.14
L, 0.69, 0.68, 0.71 L, 0.72,0.71, 0.74

Table 5.17: Table containing images of scene 1, as the hemisphere light
colour changes.

Page 31 of 39

CHAPTER 5. EVALUATION 5.4. HEMISPHERE LIGHT COLOUR CHANGE

Light setting 1 Light setting 2 Light settings 3 ~ Light settings 4
Real Ld (1, 0.85, 0.8) (1, 0.85, 0.8) (1, 0.85, 0.8) (1, 0.85, 0.8)
Real La (0.3, 0.35, 0.4) (0.3, 0.3, 0.3) (0.3, 0.5, 0.35) (0.5, 0.5, 0.5)
Estimated Ld (0.32, 0.26, 0.15) (0.39, 0.24, 0.10) (0.37, 0.28, 0.10) (0.39, 0.3, 0.14)
Estimated La (0.64, 0.66, 0.74) (0.72, 0.64, 0.715) (0.69, 0.68, 0.71) (0.72, 0.71, 0.74)

Table 5.18: Table containing the real L, and Ly values and the estimated L,
and L, values for scene 1

5.4.2 Scene 2
The second scene is a simple plane with a statue on it. Images of the scene can be seen in
Table 5.19 and the estimated L, and L, and the real L, and L, values can be seen in Table 5.20.

L, 0.56, 0.42, 0.35 Ly 0.59, 0.41, 0.32
L, 0.52, 0.56, 0.62 L, 0.60, 0.54, 0.58
Lg 0.58, 0.43, 0.33 Lq 0.59, 0.44, 0.34
L, 0.57, 0.59, 0.58 L, 0.60, 0.62, 0.62

Table 5.19: Table containing images of scene 2, as the hemisphere light
colour changes.

Page 32 of 39

CHAPTER 5. EVALUATION 5.4. HEMISPHERE LIGHT COLOUR CHANGE

Light setting 1 Light setting 2 Light settings 3 ~ Light settings 4
Real Ld (1, 0.85, 0.8) (1, 0.85, 0.8) (1, 0.85, 0.8) (1, 0.85, 0.8)
Real La (0.3, 0.35, 0.4) (0.3, 0.3, 0.3) (0.3, 0.5, 0.35) (0.5, 0.5, 0.5)
Estimated Ld (0.56, 0.42, 0.35) (0.59, 0.41, 0.32) (0.58, 0.43, 0.33) (0.59, 0.44, 0.34)
Estimated La (0.52, 0.56, 0.62) (0.60, 0.54, 0.58) (0.57, 0.59, 0.58) (0.60, 0.62, 0.62)

Table 5.20: Table containing the real L, and Ly values and the estimated L,
and L, values for scene 2

5.4.3 Scene 3

The last scene is a plane with a wall and roof, that can cast shadow onto the sphere. Images of
the scene can be seen in Table 5.21 and the estimated L, and Ly and the real L, and L, values
can be seen in Table 5.22.

Lq 0.6, 0.59, 0.67 Lq 0.67, 0.57, 0.65
L, 0.5, 0.5, 0.49 L, 0.59, 0.48, 0.44
L, 0.64, 0.6, 0.65 Ly 0.67, 0.62, 0.66
L, 0.56, 0.53, 0.45 L, 0.59, 0.56, 0.48

Table 5.21: Table containing images of scene 3, as the hemisphere light
colour changes.

Page 33 of 39

CHAPTER 5. EVALUATION 5.5. SYSTEM EVALUATION

Light setting 1 Light setting 2 Light settings 3 Light settings 4
Real Ld (1, 0.85, 0.8) (1, 0.85, 0.8) (1, 0.85, 0.8) (1, 0.85, 0.8)
Real La (0.3, 0.35,0.4) (0.3, 0.3, 0.3) (0.3, 0.5, 0.35) (0.5, 0.5, 0.5)
Estimated Ld (0.6, 0.59, 0.67) (0.67, 0.57, 0.65) (0.64, 0.6, 0.65) (0.67, 0.62, 0.66)
Estimated La (0.5, 0.5, 0.49) (0.59, 0.48, 0.44) (0.56, 0.53, 0.45) (0.59, 0.56, 0.48)

Table 5.22: Table containing the real L, and Ly values and the estimated L,
and L, values for scene 3

5.4.4 Overall method results
During the test, the system managed to make the sphere blend into the scene, with the lighting

in images 1, 2, and 4 in Table 5.17, Table 5.19, and Table 5.21. However, in the third image in
Table 5.17, Table 5.19, and Table 5.21 the sphere seems to gain more of a yellow tint, instead of
a green is tint. When comparing the estimated L, and L, values with the real L, and L, values,
the estimated values are again wrong. But when looking at the estimated Lg4, it remained steady
in all three tests, and the estimated L, changes through the tests.

5.5 System evaluation
When running the system, some issues came up regarding the performance. Firstly the system

showed to have high memory usage, which led to system crashes if the system ran for too long.
This is due to the textures taking up memory, and if these textures are not properly handled,
they can end up taking up a lot of memory and even crash the system. The system also ran
with a low FPS of about 4-5, if every frame is saved as textures. However, if the texture was
only saved every 1 second the FPS would remain at about 27-45 FPS. This is of cause to be
expected, due to processing power can now be used at rendering, instead of saving the textures.

Page 34 of 39

6 Discussion

The system was implemented in two parts. One part was developed in Unity, which collected
textures and rendered the graphics. And the second part was developed in Python, which
calculated the lighting, using the provided textures. This led to having data being sent back
and forth using either a socket connection, API calls, or other types of connection. This could
introduce a delay between the lighting updates, depending on how strong the connection is and
the amount of data sent. However, it could be argued that because the weather conditions do
not change from one extreme to another extreme in an instance, the delay could be okay as
long the delay is not too big.

When testing the system, there was a frame freeze, when textures were saved so the Python
script could use the textures, which is not optimal. Therefore, other methods for the Python
script to obtain the textures should be developed.

One method could be to send the textures through the socket connection, instead of saved in a
directory and Python obtained them from the directory. This would result in the step of saving
textures being unnecessary and the frame freeze would disappear.

Another method could be to implement the lighting calculation in the unity project. This
would result in a direct connection between the script collecting textures and the one doing the
lighting calculation. This way it is not necessary to save the textures. It would also result in
connecting to the Python program unnecessarily and therefore the delay that could be created
by the connection would disappear.

The method used to obtain the necessary textures, resulted in high memory usage. This could
be due to improper handling of textures and improper clean-up of already used, and therefore
not necessary textures. This led to crashes of the system if it ran for too long. Therefore it is
necessary to further develop the way textures are obtained in Unity before this method can be

functional on a mobile device.

Besides the high memory usage, the FPS was also low if every frame was used for light estimation.
However, when only every 1 second the textures were updated, the frame rate raised again.
This is due to processing power can be used for rendering instead of collecting the textures.
This, therefore, means it needs to be discussed if collecting every single frame is necessary, or if
updating the light once a second is enough. It is also possible to use Unity coroutines when
collecting the textures. Using coroutines will not allow for usage of every single frame, but it
will allow for highest amount of frames to be used, without the collecting impacting the FPS.
This is due to coroutines allow code to run across multiple frames, instead of blocking a frame
until the code have executed. But as stated before, the weather do not change from one instance

to another, so only updating the textures every 1 second could potentially be enough.

Page 35 of 39

CHAPTER 6. DISCUSSION

Besides the high memory usage and low FPS, the socket connection potentially also gave issues.
Sometimes the inserted object would not receive the updated irradiance value, and therefore
looked the same, even when the light had changed. But when taking the values from the Python
program, and giving them to Unity manually, the inserted object blended into the scene better.
An example can be seen in Table 6.1.

-«
h

Table 6.1: Table containing a image, where the render on the left have
received irradiance values through the socket connection, while the right
render was manually given to the render.

To create the ambient lighting, 9 directional lights were used. This was due to the limitation of
obtaining texture of the shadow maps if more than 9 directional lights were used. This resulted
in very prominent edges which do not look very pleasant when used as ambient light. Therefore,
if this method is used for hemisphere lighting, more directional lights should be used. This
would make the shadow appear smoother and therefore have less prominent edges. However,
this method would lower the performance of the program, due to the additional shadow map
rendering. Bertolini el. at. [16] saw a significant decrease in frame per second when using 20
directional lights or above. Therefore, it should be considered if performance is more important
than the accuracy of the shadows.

When comparing this method with the method presented by both Bertolini et. al. [16] and
Wei et. al. [8], this project differs by using both the camera view and a digital view to gain
information about the light, instead of only using the camera view. When only working with
the camera view, it results in only the augmented object will add shadows to the shadow maps.
But when working with both the digital view and camera view, the models in the digital view
will also add to shadow maps. This will lead to two shadow maps having to be rendered for each
directional light in the hemisphere. One shadow map without the inserted object, and another
with the inserted object. This leads to this method only being able to use half the number of
directional lights as Bertolini et. al. can, for the same amount of processing power.

Page 36 of 39

7 Conclusion

In this project, a system to estimate the light contribution was implemented. The system was
developed using the Unity game engine for computer graphics rendering and Python to calculate
the lighting of a scene.

Solutions for estimating light were researched, to establish already light estimation solutions.
Here both the area of neural network and none AI solutions were researched, to find the
weaknesses and strengths of each area. The implemented system used the Unity game engine
to create scenes and obtain textures of those scenes, while the Python program received the
textures and estimated the lighting, based on the lighting model presented in chapter 3.

When evaluating it was discovered that when obtaining every frame for light estimation resulted
in a low frame rate. But when only collecting texture once a second, the frame rate raised back
up. Also due to improper texture handling and clean op, the system had a high memory usage
which caused system crashes if the system ran for too long.

Besides the high memory usage, the socket connection implemented to connect the Python
program to the Unity project also gave issues. When sending the estimated lighting values
through the socket connection resulted in a different result, than when the values were given
manually to the Unity program. This could indicate a bug i present in the system.

Overall the implemented system performed mediocre, where with some light settings, the object
shaded using the estimated lighting blended in. While with other light settings the object did
not blend in. Therefore, the system should be further developed, before it can be put into use

Page 37 of 39

Bibliography

1]

Richard Skarbez et al. “Revisiting Milgram and Kishino’s Reality-Virtuality Continuum”.
In: Frontiers in Virtual Reality 2 (2021). 18SN: 2673-4192. DOT:
10.3389/frvir.2021.647997. URL:
https://www.frontiersin.org/articles/10.3389/frvir.2021.647997.
DUAN GAO et al. “Deep Inverse Rendering for High-Resolution SVBRDF Estimation
from an Arbitrary Number of Images”. In: ACM Trans. Graph. 38.4 (July 2019). 1SSN:
0730-0301. por: 10.1145/3306346.3323042. URL:
https://doi.org/10.1145/3306346.3323042.

Claus Brgndgaard Madsen. “Challenges of Visually Realistic Augmented Reality”.
English. In: Proceedings: GRAPP 2020 - 15th International Conference on Computer
Graphics Theory and Applications. Ed. by Kadi Bouatouch et al. Vol. 1. Position paper;
GRAPP 2020 - 15th International Conference on Computer Graphics Theory and
Applications, GRAPP 2020 ; Conference date: 27-02-2020 Through 29-02-2020. Institute
for Systems, Technologies of Information, Control, and Communication, Feb. 2020,

pp. 376-383. DOI: 10.5220/0009171303760383.

Miika Aittala. “Inverse lighting and photorealistic rendering for augmented reality”. In:
The Visual Computer 26.6 (June 2010), pp. 669-678. 1sSN: 1432-2315. DOT:
10.1007/s00371-010-0501~"7. URL:
https://doi.org/10.1007/s00371-010-0501-7.

Ye Yu et al. InverseRenderNet: Learning single image inverse rendering. 2018. arXiv:
1811.12328 [cs.CV].

Dachuan Cheng et al. “Learning Scene I[llumination by Pairwise Photos from Rear and
Front Mobile Cameras”. In: Computer Graphics Forum 37.7 (2018), pp. 213-221. DOI:
https://doi.org/10.1111/cgf.13561. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13561. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13561.

Peter Kan et al. “DeepLight: light source estimation for augmented reality using deep
learning”. In: The Visual Computer 35.6 (June 2019), pp. 873-883. 1SSN: 1432-2315. DOI:
10.1007/s00371-019-01666—-x. URL:
https://doi.org/10.1007/s00371-019-01666—-x.

Housheng Wei et al. “Simulating Shadow Interactions for Outdoor Augmented Reality
With RGBD Data”. In: IEEE Access 7 (2019), pp. 75292-75304. DOL:
10.1109/ACCESS.2019.2920950.

Claus B. Madsen et al. “Estimation of Dynamic Light Changes in Outdoor Scenes
Without the Use of Calibration Objects”. English. In: Proceedings: International

Conference on Pattern Recognition, Hong Kong. International Conference on Pattern

Page 38 of 39

https://doi.org/10.3389/frvir.2021.647997
https://www.frontiersin.org/articles/10.3389/frvir.2021.647997
https://doi.org/10.1145/3306346.3323042
https://doi.org/10.1145/3306346.3323042
https://doi.org/10.5220/0009171303760383
https://doi.org/10.1007/s00371-010-0501-7
https://doi.org/10.1007/s00371-010-0501-7
https://arxiv.org/abs/1811.12328
https://doi.org/https://doi.org/10.1111/cgf.13561
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13561
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13561
https://doi.org/10.1007/s00371-019-01666-x
https://doi.org/10.1007/s00371-019-01666-x
https://doi.org/10.1109/ACCESS.2019.2920950

BIBLIOGRAPHY BIBLIOGRAPHY

[10]

[11]
[12]
[13]

[14]

Recognition ; Conference date: 21-08-2006 Through 24-08-2006. United States: IEEE
Computer Society Press, 2006. 1SBN: 0769525210.

Yu-ke Sun et al. “Learning [llumination from a Limited Field-of-View Image”. In: 2020
IEEFE International Conference on Multimedia FExpo Workshops (ICMEW). 2020,

pp.- 1-6. por: 10.1109/ICMEW46912.2020.9105957.

Marc-André Gardner et al. Learning to Predict Indoor Illumination from a Single Image.
2017. arXiv: 1704.00090 [cs.CV].

Mathieu Garon et al. “Fast Spatially-Varying Indoor Lighting Estimation”. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2019.
Yongjie Zhu et al. Spatially-Varying Outdoor Lighting Estimation from Intrinsics. 2021.
arXiv: 2104.04160 [cs.CV].

Chloe LeGendre et al. “DeepLight: Learning Illumination for Unconstrained Mobile
Mixed Reality”. In: 2019 IEEE/CVFE Conference on Computer Vision and Pattern
Recognition (CVPR). 2019, pp. 5911-5921. por: 10.1109/CVPR.2019.00607.

URL: https://developers.google.com/ar/develop.

Fulvio Bertolini et al. “Outdoor [llumination Estimation for Mobile Augmented Reality:
Real-time Analysis of Shadow and Lit Surfaces to Measure the Daylight Illumination”. In:
Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications. Vol. 1. 15th International Conference on
Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology
Publications, 2020-2-27, pp. 227-234. 1SBN: 978-989-758-402-2.

Unity. Types of light. 2022. URL:
https://docs.unity3d.com/Manual/Lighting.html (visited on 10/19/2023).
John M Snyder. “Area light sources for real-time graphics”. In: Microsoft Research,
Redmond, WA, USA, Tech. Rep. MSR-TR-96-11 (1996).

Page 39 of 39

https://doi.org/10.1109/ICMEW46912.2020.9105957
https://arxiv.org/abs/1704.00090
https://arxiv.org/abs/2104.04160
https://doi.org/10.1109/CVPR.2019.00607
https://developers.google.com/ar/develop
https://docs.unity3d.com/Manual/Lighting.html

	Frontpage
	Title page
	Introduction
	Background research
	Lighting model
	Render Implementation
	Evaluation
	Day cycle evaluation
	Scene 1
	Scene 2
	Scene 3
	Brick scene
	Overall method results

	Light strength evaluation
	Scene 1
	Scene 2
	Scene 3
	Overall method results

	Sunlight Colour change
	Scene 1
	Scene 2
	Scene 3
	Overall method results

	Hemisphere light Colour change
	Scene 1
	Scene 2
	Scene 3
	Overall method results

	System evaluation

	Discussion
	Conclusion
	Bibliography

