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Summary

A meta action is an action not inherent to the original planning task, but rather
added to improve search times. As such, using meta actions entails three problems:
generating meta actions, deciding which to add to the task, and reconstruction of
a plan containing meta actions.

This project aims to improve how meta actions are generated, while utilising a
naive method for choosing, and prior work for reconstruction. The generation of
meta actions in prior work, and this project, is a two phase process. Where first,
a set of meta action candidates are generated, which then secondly, are checked
for validity. A meta action candidate is valid iff its exact effect can be reproduced
by a sequence of actions from the original planning task. The method of meta
action generation proposed is a combination of two novel techniques: one of meta
action candidate generation and one that converts invalid candidates to valid meta
actions.

The proposed method of meta action candidate generation finds a desired effect,
then tries to convert it into a meta action candidate that upholds mutex groups.
This process often leads to valid meta actions by itself, however, in the cases where
it does not the second proposed method is used. Which, given an invalid meta
action, restricts the states wherein the action can be used to those where it is
reproducible. In turn, leading to a set of valid meta actions.

This whole process leads to a set of meta actions that when added to the planning
task can greatly improve the search speed. In some planning task, it does so by
orders of magnitude.
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Abstract

Lots of classical planning research is based on attempting to
abstract problems to make the search process easier. This is
commonly done by means of macros[l, |4, |5], however these
carry is downside of being rigid and not very flexible. Hence,
the concept of meta actions come in, where the general goal of
a meta action is to achieve some effect, but without knowing
what sequence of primitive actions can actually do it. Meta
actions are very powerful, and the works of Pham and Tor-
ralba[19] showed that one can validate that a meta action can
be replaced by sequences of primitive actions. While it have
been shown how to validate meta actions, how to actually gen-
erate good meta actions is still an open problem. This is what
this paper tackles, by making mutex valid meta action candi-
dates and then adding preconditions based on state exploration.
It is shown that this process of generating meta actions can
find good valid meta actions and helps decrease search time in
benchmarked domains.

1 Introduction

Classical planning is a well explored field, focusing on solving
planning problems by executing sequences of actions. While
the concept is simple, the actual process of searching can be
very complex with larger planning problems and can explode
out of proportions in space and time|2] needed to find a solu-
tion. This is a core problem of the field of classical planning,
so much effort have gone into trying to reduce the complexity
as much as possible. One common way to reduce said com-
plexity, is by abstracting the planning task.

One of the earliest abstraction ideas have been to use so
called Macro Actions|7|. A Macro Action is simply a sequence
of actions combined into a single action. This can make so that
instead of having to consider each step possible after executing
an action, one can combine them to make ”jumps” in the
planning task. While these Macro Actions are quite simple,
the primary problem with them is finding ”good” sequences
of actions.

A lot of research over the years have gone into this prob-
lem of finding ”"good” macros, such as looking at common
action sequences in plans made by solving simpler versions of
a planning task|[3]. While adding macros to the planning task
adds to the complexity, it have been shown that with ”good”
macros it is still worth it in terms of improving search time
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since they can make radical jumps in the planning task]|1} |4
6.

One issue with these macros is that they rely on there ex-
isting common action sequences in a planning problem. Pic-
ture a planning problem about moving packages between lo-
cations, one package can be moved to its goal position in one
move, i.e. From -> To, while the other needs four moves From
-> Loc -> Loc -> Loc -> To. This means that there is no
common action sequence that can get a package from the start
to the goal.

This is where the concept of Meta Actions[19] come in.
These are essentially actions that aim to achieve a certain
property, e.g. from the example before we want the package
to be in the goal location. Such a meta action does not care
how to actually move the packages, but only says that you can
get the package to another location.

While this is a powerful idea, there are some large issues
with it. The first issue is making sure a meta action is valid,
i.e. it is always possible to execute this meta action and there
will be a sequence of primitive actions that can be executed
to get to the same state. This is not a trivial property to
uphold, however Pham and Torralba|l9] used the concept of
Stackelberg Planning to validate meta actions. A Stackelberg
Planning task is an adversarial one, where two agents ”com-
pete” against each other. The idea is then to make one of the
agents try and execute the meta action in all possible states,
while the other agent tries to "reconstruct” the state by exe-
cuting only primitive actions.

To test their validation method some meta actions was
needed, so they generated meta action candidates by means
of first finding a set of macros and then trying to reduce them
down by removing parameters. While this generated some
meta action candidates, a lot of them where mutex break-
ing[9] and such is invalid by default.

These issues funnels into the idea of Focused Meta Ac-
tions that this paper proposes. The general idea is to make
mutex upholding meta action candidates with few effects, and
then refine their preconditions to be more valid across mul-
tiple problems. The ultimate goal of this new meta action
generation method, is to improve the search time in classical
planning tasks as much as possible.

The main contribution of this paper can be summed up
as:

e A method of generating mutex valid meta action can-
didates.

e A method of refining candidates to become valid.
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2 Background

To illustrate concepts during the paper, a common example
will be used called Blocksworld|20|, where the goal is to stack
blocks in the correct order. A block can only be in a stack of
blocks, or on an infinitely large table. It is only possible to
pick up a block from the table, or the top of a stack, and only
one block can be held at a time. Given that a block is held, it
can be placed on the table or the top of a stack. This example
then has the actions pickup, put-down, stack, and unstack.
A detailed description of all the Blocksworld components can
be seen in appendix [[2]

2.1 STRIPS

STRIPS|8], originally a tool for solving planning problems, has
since evolved into formalism for planning problems. The orig-
inal STRIPS definition is rather simple, so for the purposes of
this paper an extended format is used that gives more flexibil-
ity in regards to negative preconditions. A STRIPS planning
task is a tuple Il = (F, O, I, G) where F is a finite set of fact-
literals, O is a finite set of operators, I € F' is the initial state,
and G < F' is the goal partial state.

A fact-literal f € F is a tuple f = (n,b) where n is the
name of the fact and b is a boolean that describes the state
of the fact. As an example a fact-literal fi = (ball b1, T) tells
that the fact ball b1 is true, while fi = (ball b1, L) would
mean it is false. A fact-literal cannot be true and false at
the same time. The set of true and false fact-literals define
the state space for a given planning task. For simplification,
all unmentioned fact-literals are false in the state space by
default.

The start and goal are partial states, where a partial
state is one where only a subset of F' needs to exist.

Operators can be seen as ways to move around the state
space F. Each operator has a set of fact-literals that needs
to exist for it to be applicable, i.e. it can be executed, as
well as a set of effects that modify the state. This will be
represented by two functions, one for the preconditions for
the operator, pre(o), and one for the effects of the operator
eff (0). As an example one can look at the precondition and
effect of the following operator o0;:

pre(o1) = {(factl, T), (fact2, L))
eff (01) = {(factl, 1), (fact2, T))

These sets tells that if in the current state space factl is
true and fact2 is false, then this operator can execute. Exe-
cuting an operator on the set of states will be defined as F[o1].
If it is executed, the effect set is applied to the state space,
i.e. factl is set to false while fact2 is set to true.

A solution to a STRIPS planning task can then be seen
as a sequence of applicable operators, executed in sequence
from the initial state I to the goal state G. This sequence of
operators will be referred to as a plan for the planning task.
A plan will always lie in the reachable state space, meaning
all the states that can be reached by executing some sequence
of actions.

A traditional STRIPS planning task is grounded. This
means that the entire state space of fact-literals is already fully

defined. However, this is not very useful when making new
planning tasks, since making sure that everything is grounded
correctly can be quite difficult, especially if done by hand. Not
only that, but transferring operators from one planning task
to another is not that straight forward, since another planning
task might be structured with different fact-literals. Therefore
a more intermediate format is needed, being called a lifted [18]
one.

Lifted STRIPS can be seen as an extension to the grounded
representation, defined as I, = (Pr,Or, Ar,I,GL) where
Pr is a finite set of predicate-literals, Or, is a finite set of ob-
jects, Ay is a finite set of actions, I, is the initial state, and
G, is the goal partial state.

Every predicate-literal p € P is a tuple p = (n,V,,b)
where n is a predicate name and V, = (pv1, ..., pv; ) is an arbi-
trary number of parameter variables and b is a boolean telling
if the predicate is true or false.. ¢ is the arity associated with
the predicate p, i.e. how many parameters it has. A predicate
p can be instantiated by substituting each parameter in p with
an object from Oy, creating a fact-literal[12]. As an example,
take the predicate-literal holding:

(holding, (?x), T)

Grounding this with the mapping of = — block, gives the
fact-literal:

(holding(block), T)

An action a € Ap is a tuple a = (V,) where V, =
{avi,...,av;) is a set of parameters for the action where i is
the arity associated with a. An action also has the same func-
tions as those for operators, being pre(a) and eff (a). The
two methods returns predicate-literals instead of fact-literals,
where each of the parameters in the predicates correspond to
a parameter in the action. Grounding of an action a is also
based on substituting each parameter in a with an object from
Or, where, additionally, each predicate in pre(a) and eff (a) is
grounded to fact-literals. This effectively grounds an action
to an operator|12]. As an example, take the putdown action:

Aputdown = (putdown, (?ob))
pre(aputdown) = {(holding, {(?ob), T))
eﬁ(aputdown) = <

(clear,{?ob), T),

(arm-empty, O, T),
(on-table, (?ob), T),
(holding, {?0b), 1)>

Grounding this action with the action parameter mapped
as pv1 — block, yields the operator oz:
pre(o2) = {(holding(block), T))
eff (02) =<
clear(block), T),
arm-empty, T),
on-table(block), T),
holding(block), 1))

~ o~~~
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As mentioned earlier, one fact-literal can only be true or
false, it cannot be both at the same time. So by executing o2
its implied that the (pred(ball), T) is removed from the state
space and the (pred(ball), L) is added to the state space. Just
as with the operators, executing a action a on the state space
Py is defined as Pr[a].

Within planning papers, it is common to use a format
called PDDL[17]. This is a format the represents lifted STRIPS
definition with the major difference being that the planning
task is split into a domain and problem part. The Domain
contains the structural information of the planning task I,
i.e. Pr, and A; sets. The Problem on the other hand, contains
the more dynamic elements Oy, I;, and Gr. This makes it so
one can have the same domain but many different problems
that can vary in difficulty or purpose.

2.2 Meta Actions

A Macro Action is, conceptually, a shortcut in the state space.
It was first proposed by Fikes, Hart, and Nilsson|7] upon which
it has been expanded since[4H6]. Each macro action is the re-
sult of combining a sequence of primitive actions into a sin-
gle equivalent action. There is, however, an issue inherent in
macro actions: they are inflexible.

An alternative approach that provides more flexibility is
the Meta Action[19]. A meta action expresses a desired effect
but leaves achieving it ambiguous. An example could be the
effect 7 I want this ball to be in that room”, what actions to
take to achieve this is unspecified.

To generate meta actions one approach, proposed by Pham
and Torralba[19)], first finds a macro action which is then con-
verted to a meta action. This conversion is through a reduc-
tion of the precondition and effect of the action. Which, by
definition, is limited to the macro actions it can find, as the
method relies on those to generate meta actions. An example
of this can be seen in example [T}

Example 1

An example of a macro from blocksworld that could be useful
is one that unstacks a block from another and puts it on the
table, i.e. combine the unstack and putdown actions:

Gmacro = (macro,{?ob, Tunderob))
pre(amacro) =
(on, (?0b, Tunderoby, T),
(clear,(?0b), T),
(arm-empty, O, T))
eff (amacro) = (
holding, {?oby, 1),
clear,(?underob), T),
on, {?ob, Tunderoby, L),
clear,(?0by, T),
on-table,{?ob), T),
arm-empty, , T))

P N .

The method would then try and see what preconditions can
reasonably be removed to make the macro less restrictive.
One option would be to use the Ceyy removal method and re-
move the 70b parameter, yielding the meta action candidate:

Gmacro = (macro,{?underob))
pre(@macro) = ((arm-empty, ), T))
eﬁ(amacro) = <

(clear, (tunderob), T),

(arm-empty, O, T))

That is a candidate that practically says that any block can
become clear no matter how many blocks are on top of it.

Reconstruction is the process of finding an actual plan
from the execution of a meta action. Since meta actions can
have any number of sequences of actions that can replace
them, this can be a pretty expensive process. Pham and Tor-
ralba used a planner to reconstruct the execution of a meta
action. While this works, it is also very expensive to execute,
however other methods exist. The work done by this papers
authors in a previous semester project was about this exact
issue. There, the process of reconstruction was improved by
saving a macro-cache of possible replacement sequences that
was found during the verification of meta actions|[15]. This
significantly improved the reconstruction time necessary and
made the reconstruction in general pretty practical.

2.3 Stackelberg Planning

Stackelberg Planning|22] is an extension to lifted STRIPS
that is based on adversarial planning. The basic idea is to
have two disjoint sets of actions one for a follower and one
for a leader, giving us the tuple

I, = (Ps, AL, Ar,,Os, Is,Gs). The idea is to first let the
leader execute a sequence of actions, thereafter the follower
will then attempt to reach the goal with the shortest possible
cost.
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The purpose of a Stackelberg planning is then for the
leader to exhaust the search space to determine the followers
response from every possible state. Each of the sequences of
actions the leader takes is referred to as leader plans and the
set of follower response action sequences are follower plans.
The goal for the leader is to take the smallest amount of steps,
to make to follower take the maximum amount of steps. This
means, unlike a normal planning task, that the Stackelberg
planning task does not have a single plan as a result, but
rather a set of plans. This set is called the Pareto Frontier|22]
that represents the set of leader costs versus best follower cost.

One utility of this Stackelberg planning task, is that it
can be used to verify if a meta action is valid or invalid. This
is work that have been done by Pham and Torralba|l9] where
they used the concept of Stackelberg planning to validate meta
actions. The general idea of their method was to take a plan-
ning task and a meta action, split the actions in two to repre-
sent leader actions and follower actions. Both the leader and
follower starts with the same actions with the difference be-
ing that the leader actions’ predicate-literals get prefixed with
a ”leader” name, so that only the leader can modify leader
predicate-literals. The same is done for the follower, where
it can only modify follower predicate-literals. The leader will
start off with executing some sequence of actions where the
final action is the meta action to be verified. The follower
then has to start from the state just before the meta action
was executed and try to see if it can find a plan with the prim-
itive actions that can replace the executed meta action. The
general flow can be seen in figure [1| below:

L1—>...—>Li~>@—>e

Figure 1: General process of the Stackelberg verification. The
L circles represents leader actions, the F' circles follower ac-
tions, M the meta action the leader can execute and the G is
an equivalent state.

The goal of the entire planning problem is then for the fol-
lower to get to a state where all the follower predicate-literals
are equivalent to the leader predicate-literals. If a sequence of
follower actions can be executed that leads to an equivalence
between the leader and follower states for all possible paths
the leader can take, the meta action is considered valid. If
there at any point was a single path where the follower could
not find a sequence of actions that made the states equivalent,
the meta action is considered invalid.

This process of verifying meta actions with Stackelberg
planning has its limits. One major issue is that even though
it is possible to verify that a meta action is valid in a set of
problems, it is not possible to guarantee it will work in all
possible problems.

2.4 Binary Decision Diagrams

As mentioned in the introduction, planning problems can ex-
plode out of proportions in space and time[2]. While reducing
the complexity of the search process in an entire field in of
itself, the area of reducing the space complexity in practice is
something that can be managed.

This comes into play when one considers how to store
a state during search of a planning task. A naive way of
storing states during search would be to save an array of all
possible facts that can be true or false. This, however, will get
very large in bigger problems and becomes unreasonable. For
that, another method of storing states is desired, one of those
is that of Reduced Order Binary Decision Diagrams
(ROBDD)|16].

A ROBDD can store any boolean expression in its struc-
ture, where the idea is to start in the root node, and follow
either a true or false path down to the bottom of the tree.
The path that is taken, can then represent an assignment of
variables. An example of this can be seen in figure [2| that
shows the possible assignments of two variables X; and Xa:

X4

X2 X2

Figure 2: ROBDD graph for two variables, X1 and X2, where
the dotted lines represent the “true” path and the other the
“false” path. This tree in effect corresponds to the boolean
expression X1 < Xa

Instead of saving exactly what facts are true for every
state, one can save this assignment as a ROBDD instead. The
general idea is to make a ROBDD where each layer correspond
to some fact in the state space. This then means that instead
of saving each assignment of facts in every state, one can tra-
verse through the ROBDD in any way possible that leads to
the true node to get a state instead.

This is more compact than simply storing the state as an
array, however it does also come with a caveat, being that if
variable ordering. Variable ordering is the order of which
the variables are put in the ROBDD tree. In the example
before, X; comes before X5, so the order is rather trivial.
But when it comes to large planning problems finding a good
variable ordering can be very difficult[16] and sometimes the
resulting ROBDD can explode in size still. However, for most
cases storing a state as a ROBDD does reduce the size of a
7state”.
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Figure 3: Owverall flow of how these Focused Meta Actions are generated. Each of the dotted boxes are sections, while the

boxes inside are what is done in said section.

3 Focused Meta Actions

The general issue this paper will tackle, is that of generating
good meta actions. There is no clear way of defining what
a "good” meta action is, however some assumptions can be
made. This paper will base a good meta actions on the findings
from Allen et al.[1]|, where they found that a macro action with
the fewest possible effects tended to reduce the search time the
most. Hence, this paper will attempt to make meta actions
that have the fewest possible effects, to have the greatest
impact on reducing search time.

It is also clear that for a meta action to be good, it has to
be valid in the same way Pham and Torralba|l9| found. This
is important since an invalid meta action that could reduce
search time does not generate valid plans that can be used for
anything.

Definition 1 (Valid Meta Action). A meta action candidate
m is a valid meta action for a planning task

11, (Pr,OL,AL,IL,GL) if and only if all the reachable
states s in I, where pre(m) S Fr there exist an action se-
quence A = {ai,...,a;y where m ¢ A such that Fr[m]
Frla1]...[a:;]. A state where m can be replaced by a normal
action sequence is referred to as a wvalid state, while one that
cannot be replaced by a normal action sequence is an invalid
state.

The final requirement for a good meta action is that it
should be useful, meaning that it should help reduce the over-
all search time for a planning task. This is clear since if adding
a meta action to a planning task increases the search time, it
only makes everything worse. However, two different sets of
planning tasks are used for generating the meta actions and
actually using them. Where the set used for generating them is
significantly easier, and the difficulty of a planning task scales
non-linearly, the margin of improvement might be less than
noise. As such, a different metric is used which is independent
of noise, namely plan length.

Definition 2 (Meta Action Usefulness). A meta action m is

considered useful for a planning task 1y, = (Pr,Or, AL, IL,GL)
if adding the meta action to the planning task A, = m U Ar

the resulting plan is shorter than without the meta action.

Definition 3 (Focused Meta Action). A good Focused Meta
Action upholds all the following properties:
1. must have the fewest possible effects,

2. must be valid and

8. must be useful.

These three properties are what this paper will focus on
and is what the following sections will be structured by. To
make the connection between the different sections clear, one
can use figure[3|as a sort of index, to understand what sections
are connected.

The process starts with creating meta action candidates,
which are then made to uphold mutex groups. The resulting
meta action candidates are then further pruned based on use-
fulness. The resulting candidates are then refined into meta
actions by adding precondition literals. Finally, the meta ac-
tions are pruned based on usefulness again.

4 Candidate Effect Generation

The first property that must be considered from definition [3]is
the creation of meta action candidates with the fewest possible
effects. The simplest way to generate these kinds of effects for
a lifted planning task I, (Pr,Or,Ar,IL,GL), is to take
all the predicates in P;, and turn each of them into a single
effect.

As an example, take the predicate (clear,(?x), T), which
results in the meta action candidate:

a2 = (meta-clear, (?x))
pre(az) =
eff (a2) = {(clear,(?x), T))

A similar one can also be made, that sets the predicate to be
1 instead of T.

4.1 Mutex Legal Candidates

While such a simple candidate certainly upholds the first prop-
erty of definition [3] it does not necessarily uphold the second
property. One large issue to why this meta action is not valid,
is because it does not uphold mutex groups|10].

A mutex group is a set of facts where at any time one of
the facts must be true, but no more than one. As an example,
consider the set of fact-literals for the predicate (clear,{(?z), T)
and (on,(?y,?z), T) for a single block. The clear predicate
says that there is nothing on top of the block 7z, while the on
predicate says that block 7y is on top of block ?x. It is pretty
clear that for any block ?x, it either has to have nothing on top
of it, or another block on top of it, both cannot be true at the
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same time. This is a mutex group for this block, that can be
illustrated as a set with the mapping x — blockl,y — block2:

{(clear(blockl), T), (on(block2, blockl), T))

While this is for blockl and block2, it also works the other
way around, where block2 must either be free or have blockl
on top:

{(clear(block2), T), (on(blockl, block2), T)»

These mutex groups are grounded, however one can turn them
into a lifted variant. This however requires that it is always
true that for a given 7z and 7y, this group upholds. This can
be a tricky thing to determine, however several tools already
exists that can find such lifted mutex groups|9, 12].

The lifted mutex groups have some extra complexity, in
that they also need to describe which parameters are unique
in the group and which are not. Where a unique parameter
is one which will be instantiated by the same object across
rules. Using the example of blocks from before, one can make
a lifted representation as follows:

{(clear,{?z), T), (on, Ty, 7z, T))

Here, the unique parameter will be 7x, since the same param-
eter is used in both the clear and on predicate-literal, while
the 7y is free since it is only used in one of the literals. The
unique parameters are known as "fixed”[9] parameters, while
the free parameters are known as ”counted”[9] parameters.
Each of the items in the lifted mutex group will be referred to
as a "rule”.

Definition 4 (Lifted Mutex Group). A lifted mutezx group g
is a set of predicate-literals, referred to as rules, r € g where
at any point in the reachable state space s only a single rule
in g must be upheld for one instantiation of fized parameters
and all instantiations of counted parameters.

Definition 5 (Mutex Mentioned). A given predicate-literal p
is mentioned in a mutex group g if the name of the predicate-
literal is the same as some of the rules in the muter group,
denoted as p(¥) € g

Since it is known that these mutex groups must always be
upheld, one can make the following assumption about meta
action candidates:

Definition 6 (Mutex Upholding Candidate). A meta action
candidate m. is upholding a set of mutex groups G if for any
given reachable state s where m. is applicable, execution m.
giving the state s’ is still upholding the groups in G.

Using these definitions and knowledge of mutex groups,
one can make the following theorem regarding meta action
candidate mutex validity:

Theorem 1 (Mutex Validity). A meta action candidate m.
is always invalid if it is not mutex upholding.

Proof. Assume the opposite, that a candidate m. is valid if it
is not mutex upholding for a set of mutex groups G. Then, for
a given state s where m. is applicable, executing the candidate
to get the state s’ will result in a state that does not uphold the
set of mutex groups G. However, we know that G cannot be
violated so s’ must be an invalid state, hence m. is invalid. O

This theorem can be applied to the candidate generation,
where the goal is to modify a candidate’s preconditions and
effects so it becomes mutex upholding. While so far, groups
with only two rules have been considered, one can easily have
a mutex group with three or more rules in them. In the case
where there are multiple rules to consider, one has to permute
all possible combinations of effects that can be added. An
example of this can be seen in example [2]

Example 2

As an example,
blocksworld:

take the following mutex group from

{(clear,{?V0), T), (holding,{?V0), T), (on,{?7C1,7V0), T))

Logically, it means that a given block has to either have no
other blocks on top of it, being held in the arm or be below
some other block. If there was then a meta action candi-
date that has a single effect, being (clear,(?x), T). For the
candidate to uphold the mutex group, either holding or on
for this block has to be set to false. Here the ”counted” and
”fized” variables come in to play. A ”fixed” variable is one
that is the same as its source rule, e.g. in this example x
will be put in the place of the TV 0 in the mutex group. The
”counted” wvariables is one that has to be a unique one, so
in this case a new one would be added. If this candidate is
then to uphold the mutex group, two unique versions can be
made:

az = (sample, 7z, 7C1))
) = {(on,{?7C1, 72y, T))

) =<

(on, {7C1,7z), 1),

(clear,(?x), T))

pre(a

eff (a

3
3

as = (sample, (7))

) = {(holding,{?x), T))
) =<
(holding, (?x)y, 1),
(clear,{?z), T))

pre(a

eff (a

4
4

While adding effects and preconditions is simple for a sin-
gle mutex group, it gets more complex when one have to con-
sider multiple mutex groups. This is because one need to
also consider what the same predicate-literal can be mentioned
across several groups, which can influence what groups should
be upheld for subsequent added effects.

Definition 7 (Cross Mentioned Groups). For any predicate-
literal p, the set of cross mentioned groups is the subset of
mutex groups G where {g € G | p(%) € g}

As an example of this issue, consider the following small
example of a set of mutex groups, where the A, B,C,D, FE
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represents some unique predicate-literals:

g1 =<A7B>
g2 =<CaB7D>
g3 ={C,B,E)

Say that one wants the uphold the following meta action
candidate, where the it is desired to set the predicate A to be
true:

— (sample, ()
pre(a) O
eff (a) = (A, T))

It can be seen that the B predicate is mentioned in g1,
and for it to be true, it is necessary to set B to be false. This
is a rather simple modification, resulting in the modified meta
action candidate:

a = (sample, {))
pre(a) = (B, T))
eff (a) = (A, T), (B, 1))

Now B is interesting, since its cross mentioned groups are
equal to all the groups. This means that it is important to
make sure that added effects from g2 and g3 does not try to
also uphold those same groups.

It can clearly be seen that new effects need to know what
groups its parent will uphold, when considering the example
before, but where g5 is in focus. If one chooses to set the C
to be initially true and then false, resulting in the following
action:

a = (sample, )
pre(a) = (B, T),(C, 1))
eff (a) = (A, T), (B, 1), (C, T))

If the effect (C,T) does not track that its parent effect
(B, 1) will later uphold the group g3 since it is cross mentioned
in it, one can end up with a candidate that looks like the
following:

a = (sample, )
pre(a) = (B, T), (C, 1), (E, T))
eff (a) = (A, T), (B, 1), (C, T), (B, 1))

However this candidate is not mutex valid, since the pre-
condition breaks gs. Hence, one need to keep track of what
groups an effect is already upholding based on what groups the
parent effect upholds and will uphold later.

For this, an auxiliary function is made, IsUpholding :
e — (G, that operates as a map from some given effect e to
the set of mutex groups G. < G. This is so to keep track
of the set of mutex groups that some given effect is already
upholding. This function will be treated as a sort of global
mutable utility function, where the mapping from e to some
mutex groups can be updated.

As mentioned, finding these lifted mutex groups in the
first place is an entire field in of itself, so for the purposes of

this paper CPDDL[9] is used to find the groups. The method
of making a meta action candidate uphold a set of lifted mutex
groups can now be described, starting with algorithm

Algorithm 1 Uphold(c, g, G)

Input: Let ¢ = (P, E) be a candidate’s preconditions P
and effects £
Input: Let g be the target lifted mutex group
Input: Let G be the set of all lifted mutex groups
Output: A set of candidates that upholds g.
1: R—g
2: for ee E do

3: if g ¢ IsUpholding(e) A e(Z) € g then

4: IsUpholding(e) — IsUpholding(e) U g
5: for pe g do

6: R «— R u Mutate(c,e,p,G)

7 end for

8: end if

9: end for

10: if R = @ then
11: R—Ruc
12: end if

13: return R

This algorithm takes a meta action candidate and a single
mutex group. It then goes through each effect in the candi-
date, where if the effect is mentioned in the mutex group each
group rule is mutated into a new candidate by the Mutate
method. If a given candidate has no effect mentioned in the
mutex group, the candidate is simply added as the only item in
the return set, meaning the Uphold method will always return
at least one candidate.

The method of mutating a candidate ¢ with a rule p is
to insert a true version of p into the preconditions of ¢ and
putting a false version of p into the effects. The process of
this can be seen in algorithm
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Algorithm 2 Mutate(c, e, p, G)

Input: Let ¢ = (P, F) be a candidate’s preconditions P
and effects £

Input: Let e be the source predicate-literal

Input: Let p be the target predicate-literal rule

Input: Let G be the set of all lifted mutex groups

Output: A mutated version of ¢

1: Let e.py be a copy of p as a predicate

2: for Predicate argument a in p do

3: if a is fixed then

4: Replace argument at index a in ey, with ar-
gument at index a in e

5: else

6 Replace argument at index a in e, with a
new unique argument.

7 end if

8: end for

9: IsUpholding(ecpy) < {g € G | e(Z) € g}

10: if e is true then

11: return (P U (ecpy, T), E U (ecpy, L))
12: else

13: return (P U (ecpy, L), E U (ecpy, T))
14: end if

One important step here is that a newly added effect, will
set its IsUpholding(ecpy) set to be that of the cross mentioned
groups for the source predicate e. A final post-processing step
this does, is to add any new predicate-literal parameters to
the candidate meta actions parameters.

So far, only a single mutex group is upheld from this, so a
further algorithm is needed to express how to make sure a set
of mutex groups is upheld. This algorithm can be seen below
in algorithm

Algorithm 3 UpholdAll(c, G)

Input: Let ¢ = (P, E) be a candidate’s preconditions P
and effects £
Input: Let G be a set of lifted mutex group
Output: A set of candidates that upholds all g € G.
: R—<{c)
while |R| changes do
for g € G do
R, —©
for r € R do
R, < R,, v Uphold(r,g,G)
end for
R— R,
end for
end while
11: return R

—
e

This goes through each of the mutex groups and generates
a new set of mutated candidates that is then passed on to the

next mutex group check. This is continued until all the effects
of all the candidates are upholding mutex groups where they
are mentioned in, resulting in the set R not changing.

Proposition 1. All candidates returned by UpholdAll up-
holds all the lifted mutex groups in G.

This entire process makes sure that the effects of a candi-
date upholds all the lifted mutex groups that was found from
CPDDL. It is clear that a candidate given to the UpholdAll
method will always output mutex upholding candidates, since
each mutex group is iterated through against all the candi-
dates given by each mutex group check step. A candidate will
then either be unmodified, or several variations will be given,
where each of them upholds each mutex group.

5 Meta Candidate Refinement

Through the prior section a set of meta action candidates is
generated. However, a meta action candidate is not the final
product. A meta action candidate is by definition not yet
determined to be valid. As such, one method of converting a
set of meta action candidates to a set of meta actions, is by
filtering them based on validity, leaving only those which are
valid.

Yet, the invalid candidates are not without use. The def-
inition of a invalidity is the lack of reproducability in an ap-
plicable state, as defined in definition[I] As such, if one where
to make an invalid meta candidate inapplicable in the states
wherein it is not reproducible it would become valid. This pro-
cess of turning an invalid meta action candidate into a meta
action is called Refinement.

More concretely the refinement of a meta action candi-
date ¢ is a mapping to a possibly empty set of meta actions
M. Through this mapping, only additions are made to the
precondition of ¢, where additions resulting in meta actions
are added to M. As such, any meta action in M has the same
effect as ¢ and has the precondition of ¢ as a subset of its
precondition.

pre(c) < pre(m) A eff (c) = eff (m)

where: ¢ = is a meta action candidate
m = is a meta action

Yme M

The refinement of a meta action candidate c is seen in
equation [1| where a set of possible refinements are generated
for each planning task in P. Each refinement is a meta action
candidate, and as such tested for validity in all of P.

{m|me U Refinements(Il,c) A IsValid(P,m)} (1)

Ile P

P =is a set of planning tasks
¢ =is a meta action candidate
II = is a planning task

m = is a meta action

where:

A meta action candidate’s precondition is a set of precon-
dition literals, as such the possible refinements is a set of sets
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of precondition literals. Namely it is the cartesian product of
predicates, their parameters, and the actions parameters. As
an example, say that a task has the singular predicate on with
two parameters x and y, then an action with two parameters
pl and p2 has 4 possible precondition literals: on pl pl,on pl
p2, on p2 pl, and on p2 p2.

Let II = (P, 0, A, I, G) be a planning task, p € P be some
predicate, and ¢ be a meta action candidate derived from II.
Then the set of literals are calculated as described in equation
[l where the product operator of the sequence is the Cartesian
product.

l(p> C) =

[1

pcEparams(c)

pe X params(p) ©)
where: p = is a predicate
c = is a meta action candidate

The set of precondition literals is then the union of those
for each predicate, as seen in equation [3} Of note, is that the
possible precondition literals is a super set of the precondition
literals in the original meta action candidate.

o =Uwo

peP

3)

where: P = is a set of predicates
¢ = is a meta action candidate

Let II = (P, 0, A, I, G) be planning task, and ¢ be a meta
action candidate. Then let L(P,¢) = (l1,l2) be the set of
literals available. Thus a generating refinements become akin
to building a tree. Where the root node is the precondition of
some meta action candidate ¢, and each possible refinement
is a node, connected through branches by the addition of a
precondition literal [ € L.

pre(c

/\

Yuly pre(c) U ly

pre(c) uly uly  pre(c)uly uly

pre(c

Figure 4

The number of nodes in such a tree given a set of literals
L is the size of the power set of L, or 241 To reduce this, a
number of methods exist.

Proposition 2. Let a be some action where pre(a) =
Applying a on a state s results in the same state s.

eff (a).

An action as outlined in proposition [2]is redundant by the
fact that it can be omitted from any plan without changing
the applicability of the plan, nor the resulting state.

Proposition 3. Let a be some action and (p, T) € pre(a) be
some precondition literal, then if (p, L) € pre(a) the action is
always inapplicable.

A state by definition cannot contain both a fact and its
negation. As such, an action requiring such is never applicable.

Proposition 4. The addition of a precondition literal to an
action’s precondition can never increase the number of states
wherein it is applicable.

An action is inapplicable in a state iff there exists no in-
stantiation of said action that is applicable in said state. The
addition of a precondition literal to the actions precondition,
does not change the fact the state still requires the prior pre-
condition literals.

Proposition 5. Let Il = (P,0, A, I,G) be a lifted STRIPS
planning task and a1 € A some action in it. If a1 is applicable
in no state, then any action az € A where pre(ai) S pre(asz)
is also applicable in no state.

By proposition @ the set of states where in a2 is not ap-
plicable contains the set of states wherein a; is not applicable.
And since the set of states where a; is not applicable is all
states, b2 is then also not applicable in all states.

In figure [4] the node pre(a) u l1 denotes the addition of
some predicate literal I; to the precondition of a. This addition
changes the states wherein a is applicable, and by proposition
[)it reduces the applicability. As such, a child node always has
the same applicability or lower than its parent. Which also
means that any node applicable in zero valid states can be
pruned, as by proposition[5] As an example say that adding
[1 to the precondition of a leads it to be applicable in no valid
state, the tree then changes to what can be seen in figure
below:

pre(a)

pre(a) vl

Figure 5

However, not all nodes in the tree is a refinement candi-
date. Namely, any refinement applicable in an invalid state
is not a valid refinement. It is only those refinements that
are applicable in at least one valid state, and applicable in no
invalid state.

The generation of the tree can be seen in algorithm
which is a recursive algorithm. Its root can be seen in equation
[@ Let II be a planning task, and ¢ a meta action candidate.
Then let SSr be the reachable state space of II, V € SSg the
set of states where c is valid by instantiation, I < SSg the set
of states c is invalid by instantiation, and L the set of possible
precondition literals.
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Refinements(Il, c) =
Refine(I1, V(I1, SSr(I1), ¢), I(I1, SSr(I), ¢), L(IL, ¢), pre(c))
(4)

where: II = is a planning task

¢ = is a meta action candidate

Each instance of the refine algorithm [4] serves as a node
in the tree. Where line 2 finds the set of valid state instantia-
tion pairs applicable for the refinement candidate. In the case
where this set is empty, the candidate and all of its descen-
dents are ignored by returning the empty set in line 4. Then
in line 6 the set of applicable invalid state instantiation pairs
is found, and in the case of it being the empty set it is added
to the set of final refinements in line 8. Then line 10 iterates
over all the children of the node, which is those literals not
already in L.

Algorithm 4 Refine(II, valid, invalid, literals, L)
Input:
Input:
Input:

IT is a lifted planning task
valid is a set of instantiation and state set pairs
inwvalid is a set of instantiation and state set pairs
Input: literals is a set of precondition literals
Input: L is a set of precondition literals
Output: A set of precondition literals
valid < Reduce(Il, L, valid)
if valid = ¢ then
return ¢
end if
Lo~
invalid «— Reduce(Il, L, invalid)
if invalid = ¢ then
L, L,ulL
end if
for [ € literals\L do
L, < L,u Refine(I1, valid, invalid, literals, L Ul)
: end for
: return L,

e

The algorithm [] serves as the base algorithm, however,
it is also quite naive in scope. Namely, it can visit the same
node multiple times. An example can be seen in figure EL
which contains both pre(c) u li U l2 and pre(c) uls U l1. As
the precondition is a set, these are equivalent. As such, it
would be prudent to check whether a node has already been
visited.

The reduce algorithm [5] referenced in the tree generation
algorithm @ restricts a set of states to those that match the
given literals. As such, the resulting set of states is always a
subset of the states given as input. This set is built by the
union of those states applicable for each instantiation of the
literals.

Algorithm 5 Reduce(II, I, literals, comb)

Input: II is a lifted planning task
Input: L is a set of precondition literals
Input: [ is a set of arg list and state set pairs
Output: A set of states

1: SS — &

2: for (args, states) € I do

3: SS; <« states

4: for literal € L do

5: partial_state — Map(literal, args)
6: SSr «— SS; n partial_state

7: end for

8: SS « (args,SS U SSy)

9: end for
10: return SS

Line 2 iterates the instantiation and state pairs in I. For
each pair of args and states, states are those applicable to
args. As an example, say that Reduce is called for valid states,
then states would be those states wherein the given instan-
tiation args is valid. Then the lines 3 to 7 finds the subset
of states which contains the facts created by instantiating the
precondition literals in L with args. The resulting states are
then added to the final states in line 8.

6 Usefulness Pruning

The final property of definition [3| is that of usefulness. The
idea of this is to only generate meta actions that will actually
help with the final search time. This is done in two sepa-
rate steps, one between the effect generation and precondition
refinement, and one after the precondition refinement. The
reason these steps are needed, is that its technically possible
to generate an effect or refine a precondition to make a candi-
date valid, however the resulting valid meta action is simply
not useful in any way.

A common example of a useless, yet valid, meta action
is one where a simple candidate gets refined up to the point
where it is directly the same as a primitive action, but with
some additional restricting preconditions. While the meta ac-
tion is technically valid, it will clearly not do anything better
than the primitive action it is similar too.

Both the usefulness pruning methods employed are based
on the same principle, that being reduction in plan lengths.
This works by taking a set of planning tasks, adding a meta
action candidate to the task and then solving the task. If the
plan contained the meta action and it reduces the overall plan
length, it is regarded as being useful.

This is what the first usefulness pruning step does, how-
ever the second one is a bit more strict. Here, only the two
meta actions that resulted in the shortest plans are picked,
meaning the final usefulness check will at max return 2 meta
actions. If, after refinement, the meta actions that are left are
no longer used or ends up with longer plans, they are discarded
at this step too.
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These usefulness checks are mainly there to make the en-
tire process of finding focused meta actions more practical,
since a lot of time can be wasted in attempting to refine meta
actions that has effects that is completely undesireable for the
actual planning task.

7 Experimental Setup

The Focused Meta Actions will be evaluated by means of a
couple of experiments. However, some setup is needed to be-
gin with. For this, a set of benchmarks have been used, one
for validating meta action candidates and one to test the meta
actions on. These will be referred as ”learning” and ”testing”
for simplicity. The learning benchmark set is made by Tor-
ralba|23| and the testing benchmark is the official Autoscale
benchmark set[20]. Some of the domains in the testing set
is missing in the training set, however there are still 16 do-
mains in total to train and test on. These domains are bar-
man, blocksworld, childsnack, depots, driverlog, floortile, grid,
gripper, hiking, logistics, miconic, parking, rovers, satellite,
scanalyzer and woodworking.

It should be noted, that this implementation of Focused
Meta Actions does not support numerical expressions in

PDDL|11], so they have all been removed from the bench-
mark set. This is simply to limit the scope of what PDDL
requirements that needed to be implemented.

The Autoscale Learning benchmark set generates a very
large quantity of training problems, sometimes in the range
of thousands, however only a few need to be selected for the
purposes of this paper. To select problems, the operator count
is used, since it can represent the difficulty of a problem. Diffi-
culty is important here, since too large training problems will
make the Stackelberg Verification time out too easily. The
Autoscale Learning benchmark set contains log files for the
reported operator count for each problem. For the training
problems, five where selected that all had an operator count
below the 10th percentile of the maximum operator count for
all the problems in the domain. For usefulness check, another
five problems where selected each being withing the 10th to
the 50th percentile, since some slightly more difficult problems
are needecﬂ

The testing set all consists of 30 problems for each of the
domains.

The training was run on a cluster with AMD Opteron
6376 processors and with 4GB memory limit. The testing was
run on the same cluster computer, but following normal IPC
limits[14] of a 30 minute time limit and also 4GB memory
limit. For the testing, the solver Fast Downward|13| was used
with the LAMA-First[21] configuration.

The entire training process, i.e. generation, validation and
refinement, is all done fully automaticallyﬂ

!Benchmarks can be found at https://github.com/
kris701/FocusedMetaActionsData

“Implementation can be found at https://github.com/
jamadaha/P10

8 Results

The first results to consider, is that of generating and refin-
ing meta actions to begin with. As mentioned, the training
part is run on all 16 domains, each with 5 problems to train
on. All the domains found different numbers of meta action
candidates, as can be seen in table

Domain G C Cpre Mvalid Mpost
Barman 9 15 8 15 2
Blocksworld 3] 19 11 41 2
Childsnack 1 15 3 0 0
Depots 6 || 91 60 4 2
Driverlog 4 6 6 23 4
Floortile 3 7 4 1 1
Grid 4 6 5 48 2
Gripper 3 4 3 48 2
Hiking 5 6 6 9 2
Logistics 1 2 2 67 2
Miconic 1 5 2 2 2
Parking 3 6 3 1 0
Rovers 4 21 7 357 2
Satellite 1 9 3 1 1
Scanalyzer 2 3 1 1 1
Woodworking 7 11 0 0 0

Table 1: Usefulness pruning information. G is the amount
of mutex groups for each domain. C is the initial candidate
meta actions. Cpre is the candidates after the pre-usefulness
check. Myqaiia is the valid refined meta actions. Mpost is the
valid meta actions after the post-usefulness check.

As can be seen, it is possible to find focused meta actions
in most of the domains. The time it takes to find all these
valid meta actions, depends a lot on how many there is to
check through and how difficult the training problems are.
During training, some timeouts was given for different parts,
such as timeouts for the pre-usefulness checks, timeouts for
the state space search, etc.

An overview of the timeouts given can be seen in the list
below:

e Pre-usefulness check: 5m

e State Space Exploration: 10m

e Meta Action Candidate Validation: 5m
e Candidate Refinement: 60m

e Post-usefulness check: 5m

A lot of the time, these time limits are reached as the re-
finement process gets to the more difficult problems. It should
also be noted, that for the testing problems all the meta ac-
tions was verified to be correct, this however does not mean
that they are correct in the testing problems which will be
discussed later.

Now that the meta actions have been made, the real ques-
tion from this is if these meta actions are helpful in regards
to search time. For this, a scatter plot of the directly stated
search time from Fast Downward can be seen in figure

In the figure, it can be seen that the meta actions added to
the domain helps the search time in almost all of the domains.
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Figure 6: Results for comparing the Focused Meta Actions against LAMA.

One large exception is the Grid domain, a larger reason for
this is that grid is a domain that can really stress test the Fast
Downward translator. More details on specifically this domain
will be discussed in section [J] However, other domains such
as Scanalyzer, Hiking and Miconic seem to benefit a lot from
these added meta actions.

While it would seem that the meta actions found help the
search a lot, if one however looks at the total coverage of the
training domains, they do not seem better, as can be seen in
table 2}

Domain LAMA-+F(top 2) | LAMA
Barman 20 24
Blocksworld 30 27
Childsnack 9 9
Depots 5 17
Driverlog 30 30
Floortile 2 2
Grid 7 18
Gripper 30 30
Hiking 30 19
Logistics 11 14
Miconic 30 30
Parking 22 22
Rovers 30 30
Satellite 18 18
Scanalyzer 19 19
Woodworking 10 10
Total 303 319

Table 2: Coverage of how many problems each method was
able to solve within the time limit. Fach domain has 30 prob-
lems in total. Do note, this is without reconstruction but purely
based on being able to find a plan.

From this table, it is clear that it is a bit hit and miss
with the domains. A few domains benefit from the meta ac-
tions, such as Hiking and Blocksworld, however quite a few
also suffers a lot from the added meta actions, such as Depots
and Grid.

Much of this can be contributed to the fact that the higher
problems in the Autoscale Benchmark set, is simply very dif-
ficult, and even LAMA struggles with getting full coverage. It
should also be noted, that on a lot of the difficult problems
ends up running out of memory during translation.

While figure [6a] is directly the stated search time of Fast
Downward, it is also interesting to take reconstruction into
account. The reconstruction method used is that of this au-
thors previous work, MARMA [15], that is able to reconstruct
meta actions by macros learned through the initial validation
of the meta actions. Another thing this MARMA tool is able
to do, is detect if a meta action is invalid in a plan. This is
done by first checking if there is a macro that can replace the
execution of a meta action, if not then a regular planner is
used to reconstruct. If that planner cannot reconstruct the
meta action either, it is regarded as an invalid meta action.
One can then make a new scatter plot with the total time for
the entire planning process, as can be seen in figure @

It is quite clear, that the total time of using these meta
actions are not great. However, one have to consider the fact
that most of the time is spent on reconstruction and not the
search. This indicates that the meta actions themselves are
helping quite a lot in general, but the reconstruction technique
is not good enough to help the total planning time.

One domain stands out in the total time results, being the
Logistics domain, where every single problem was unsolved
for the Focused Meta Actions. The reason for this is that the
MARMA macro generation process used for reconstruction,
generated way too many macros. The MARMA tool simply
runs out of time, not in regards to search, but in regards to
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Figure 7: Results for comparing the Focused Meta Actions against the previous work of Pham and Torralba, denoted as PTT.

looking through all the macros to find one that fits the usage
of the meta action.

One other aspect that the MARMA tool can do, is to
detect if the usage of a meta action is invalid. The MARMA
tool showed that the Focused Meta Actions generated invalid
meta actions in two domains, being Grid and Rovers. These
two domains will not be removed in the following results, since
the MARMA tool can technically fix the use of an invalid meta
action, by reverting back to solving without that meta action.

It is also interesting to look at the differences in plan
lengths between using meta action and not. This compari-
son can be seen in figure

One can see that adding meta actions, seem to result in
a longer plans. This is to be expected, since configurations
such as lama-first have no way of knowing the actual heuristic
value of executing a meta action. So a meta action that seems
to be cheap to execute, could result in many actions having
to be executed to reconstruct it.

8.1 Comparison to Previous Work

While the results looks promising in of itself, it is still impor-
tant to compare against previous work. For this, the Focused
Meta Actions that was found will be compared against the
previous work of Pham and Torralba.

As mentioned earlier, they made meta actions by reduc-
ing preconditions and effects of macros, creating a meta ac-
tion that could potentially be less restrictive than the original
macro. In the following figures, this previous work meta ac-
tions will be referred to as "LAMA+PTT(top 2)”, since it is
the LAMA-first[21] configuration of Fast Downward|13], and
they referred their meta actions as "PTT” in their paper. Do
note, this is also the "top 2” meta actions stated in their pa-
per, not top 2 in the sense of plan lengths, as it is with the
post usefulness check for the Focused Meta Actions.

A total of 10 of the 16 domains are compatible with the re-
sults found in their work. From these 10 domains, both Pham
and Torralba and this paper found meta actions in all the do-
mains, however just as the Focused Meta Actions the previous
work also has invalid meta actions in Grid and Rovers. Just
as before, those two domains stay.

To compare the two methods, one can start with looking
at the search time in figure [Ta] This represents the stated
search time from Fast Downward.

It can be seen that for the most part, these two methods
are quite comparable. One large exception is that of Child-
snack, where the PTT meta actions manages to find a really
good meta action that helps the search time a lot. While the
Grid results for the PTT meta actions also look a lot better,
one have to consider the fact that they are invalid meta ac-
tions. On the other hand, the Focused Meta Actions seem to
have helped the Driverlog domain more than the PTT meta
actions could.

Just as when comparing to LAMA, one can also compare
the Focused Meta Actions with the PTT meta actions in re-
gards to total time as can be seen in figure |7_5|-

It can also be seen that the Depots and Barman domains
are better with the PTT meta action in total time. One spec-
ulation that can be made is that the PTT meta actions are
easier to reconstruct than the Focused Meta Actions, since the
PTT ones are made out of macros to begin with.

While earlier plan lengths versus LAMA was looked at, it
is also interesting to see the differences in plan lengths between
the Focused Meta Actions and those of the meta actions from
Pham and Torralba. This can be seen in figure

From the figure, it can be seen that, for the problems that
both meta actions could help solve, the plan lengths are pretty
much identical. This is not too surprising, since in a some of
the domains, the Focused Meta Actions actually manages to
find the exact same meta actions as the PTT ones. One exam-
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ple is the Miconic domain, where both methods find a meta
action that directly just sets the predicate served to be true
for some passenger. However, for most of the domains very
different meta actions are found between the two methods.

It is interesting to look at a few examples of the differences
between the Focused Meta Actions and the PTT meta actions.
One of the domains where the PTT meta actions does well and
there was found no Focused meta action, is the Childsnack
domain.

The reason why the PTT meta actions are good here, is
that they have a meta action that sets a child to be served and
its tray to be empty. This action makes a lot of sense, since
for a child to be served the tray they have been served from
must also be emptied. However, CPDDL does not report this
as a mutex group, instead it only reports that a tray can only
be at one place at a time. This limits the amount of effects
that the Focused Meta Actions can make, hence why no valid
ones are found.

9 Discussion

This section will go into some further details on some of the
meta actions and refinements found for the different domains.
A few interesting domains are selected, either because they
work well with the Focused Meta Actions method or because
they work badly.

9.1 Blocksworld

Blocksworld is one of the domains that create an interesting
refinement for a meta action. The meta action in question is
one that is constructed from upholding mutex groups pertain-
ing to the on predicate. One of the mutex valid candidates for
this, is the following;:

a = (meta_on-3,{?z, 7y))
pre(a) =
(clear, (?y), T),
(on-table, (?z), T))
eff (a) =<
(on, 7z, 7y, T),
(clear,{?y), 1),
(on-table,{?z), 1))

This is in principle a meta action that says that if block 7x
is on the table and there is nothing on block 7y, then block
?x can be put on top of block 7y. This meta action is not
valid in of itself, since the precondition does not say that the
block 7y cannot be on block 7x, however a refinement is found
that changes the entire function of this meta action. This
refinement can be seen below, with the additions marked in

bold:

a = (meta_on_3,{?z, 7y))

pre(a) =
clear, (?y), T),
on-table, (?x), T),
on-table, (?y), T),
clear,(?z), 1))
eff (a) = <

(on, (?x, 7y, T),

(clear,{?y), 1),

(on-table,{?z), 1))

(
(
(
(

These two added preconditions make so that both blocks have
to be on the table, however there can be any amount of blocks
on top of block ?x. The interesting part of this is that it es-
sentially makes so that one can move an entire stack of blocks
in a single action in the manner that can be seen in figure

b
bj

by
b4 ?x
?X ?y ?y

Figure 8: What the refined meta action does. The block ?x

has i amount of other blocks on top of it.

Normally, one would have to entirely unstack all the blocks
on top of 7x before moving it, meaning a large amount of ac-
tions needed. This refinement can sometimes help the search
time a lot, but it very much depends on the configuration of
the blocks in the initial state.

9.2 Grid

While the meta action for blocksworld is an example of a good
successful meta action refinement, it is not necessarily the case
for all domains. One such domain that does not work well is
the Grid domain. This is a domain about moving ”shapes”
around in a grid to unlock further locations in the grid to get
more shapes and so on.

A focused meta action that gets made for this domain is
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the following:

a = (meta_at-robot_0, (?z, 7y))

pre(a) = ¢
(at-robot, (?z), T),
(open, (?y), T))

eff (a) =<
(at-robot, (?y), T),
(at-robot, (?x), 1))

This is essentially a meta action that says one can ”teleport”
to any open grid cell in the problem. While this sounds like
it could be rather useful, instead of having to jump from grid
cell to grid cell one by one, it is in fact very bad.

This can also be seen in the result section, where grid is
the domain that the focused meta actions perform the worst
in. This is because of the amount of operators that gets made
from this meta action. With the normal move action, one can
only move from one grid cell to the adjacent one. However
with this meta action, one can move from any grid cell to any
other grid cell. This results in a huge amount of operators
that can be made from this, an example of which can be seen
in figure [9]

—>
[ ) C3 Cq 65— C3
| |
\/ \/ > 8
Cy Cs Co (o1} Co
\ 2 |
¢7 Cg Cg c7 Cg C9

Figure 9: A small grid example. Assume you start in ci.
With the normal move action, its possible to move to ca and
ca resulting in 2 operators. However with the teleport meta
action, it is now possible to move anywhere on the grid field,
resulting in 8 operators instead.

In most of the grid problems, adding this meta action sim-
ply makes the Fast Downward translator run out of memory,
since there are so many operators to create. An example is the
largest grid problem, that contains 40 different grid clusters
with 140 cells each, giving a total of 5600 grid cells.

10 Conclusion and Future Works

It have been shown that the Focused Meta Actions can sig-
nificantly improve the search time for most planning domains
with a few exceptions. However, while the search time was
great, the time it took to reconstruct the execution of the meta
actions where not so good, resulting in higher total time.
When comparing to the previous work of Pham and Tor-
ralba, it was also shown that the Focused Meta Actions was
sometimes better than their meta actions and sometimes not.
That said, the Focused Meta Actions method does show
promise, in being a fully automated method of generating and

validating meta actions that can work in most domains. How-
ever, there are several points that could be improved. One
such point is that of the usefulness checks.

The usefulness checks heavily relies on there being large
differences in plan lengths between using meta actions and
not using meta actions. However, in a lot of the domains,
the plans for the usefulness problems was very short, and a
lot of over filtering happened as a result. One could imagine
that doing usefulness checks based on search time could be
better, however it requires a very well balanced benchmark
dataset to work with. Things such as making sure that all
the usefulness problems are solvable within a relatively short
amount of time can be quite difficult, especially when using
Autoscale benchmarks.

Another problem is that of the training problems. It was
shown that in Grid and Rowvers there where invalid meta ac-
tions. This is the result of the training problems not being
representative enough of the domain, e.g. the Grid meta ac-
tions fails if there are two independent grids which usually
only occurs in larger problems. Some automated method of
finding representable problems of a domain could be useful to
solve this issue.

To sum this paper up, a new novel method of generating,
validating and refining meta actions have been made, that
shows promise in regards to reducing search time. It was also
shown that this method can be used on a large set of domains,
and because of its automated nature, can easily be adapted to
new domains.
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12 Blocksworld Domain

The blocksworld domain contains 5 predicate-literals Pr:
e (clear,(?z)): Says that there are no other block on top of block x
(on-table, (?x)): Says that the block x is on the table (i.e. its on the bottom)

(arm-empty, (}): Says if the arm is empty or not
(holding, (?x)): Says what block the arm is holding

(on,{?z, 7y)): Says that the block x is on top of y

As well as the four actions Ar:

Aputdown = (putdown, (?ob))
pre(aputdown) = {(holding, {?ob), T))»
eff (aputdown) = ¢
clear, (?oby, T),
arm-empty, ), T),
on-table, (?ob), T),
holding, (?0b), L))

Gpickup = (pickup, (?ob))
pre(apickup) = ¢
(clear,{?oby, T)
(on-table, (?0b), T),
(arm-empty, O, T))
eff (apickup) =
(holding, (?ob), T),
(clear,{?ob), 1),
(on-table, (?0by, 1),
(arm-empty, (), 1))

(
(
(
(

astack = (stack,(?ob, Tunderob))
pre(astack) = <
(clear, (?underob), T),
(holding, {?ob), T))
€ﬁ(astack) = <

Gunstack = (unstack, (?ob, Tunderob))
pre(aunstask) = <
(on, (?0b, Tunderoby, T),
(clear, (?0b), T),
(arm-empty, (O, T))

(arm-empty, O3, T), eff (@unstacr) =
(clear, (?0b), T), (holding, (?ob), T),
(on, {?0b, Tunderoby, T), (clear, (?underoby, T),
(clear, (?underob)y, 1), (on, {?0b, Tunderoby, L),
(holding, {?0b), 1)> (clear, (?0by, 1),
(arm-empty, (), 1))

The initial state and goals for the domain is some configuration where blocks are stacked on top of each other, where the

goal is to shift the blocks around to get a goal configuration.

Appendix A
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