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a ratio of power variations at different
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After introducing stochastic delay differen-
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lation study to investigate how the test per-
forms in a rough set-up. For standard Itô
semimartingales, the test performs largely
as expected, which is also the case when we
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is the rough fractional stochastic volatility
model introduced by Gatheral et al. in [14].
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1 Introduction

Volatility, a fundamental concept in financial mathematics, represents the degree of variation
in the price of a financial instrument over time. It plays a critical role in risk management,
derivative pricing, and portfolio optimization. Hence, the accurate modelling and forecasting
of volatility is of paramount importance.

In the world of derivatives pricing, one often models the log-prices of some given asset
St as a continuous semimartingale of the form

dSt “ µtdt` σtdBt, (1.1)

where µt is a suitable drift process, Bt is a one-dimensional standard Brownian motion,
and σt is the volatility process. In the Black & Scholes model, the volatility is simply
constant or a deterministic function of time. However, this is highly inconsistent with the
actual implied volatilities observed in the markets, which has subsequently led to further
development of models of the type in (1.1). As such, the classical stochastic volatility
models were introduced, where the volatility component σt itself is some stochastic process.
Furthermore, models that introduce jumps in the price process St have also found uses
within quantitative finance. Jumps are especially pronounced in high-frequency financial
data, which we elaborate on further in Chapter 2.

However, classical stochastic volatility models do not offer much flexibility in terms of
the regularity of the volatility process. In a pioneering paper by Gatheral, Jaisson, and
Rosenbaum [14], based on high-frequency data, they argue that volatility is characterized
by less regular paths than assumed in classical models. They show that the log-volatility is
well-characterized by a fractional Brownian motion of Hurst index H ă 1{2. In [10], using
a generalized method of moments approach, they estimate the Hurst index of the S&P 500
to be H “ 0.043. This gives very erratic paths of the volatility process, which contains
large spikes of volatility. Consequently, the paths of the price process behave more erratic
and will have almost jump-like behaviour due to the spikes in volatility.

In this Master’s thesis, we investigate whether tests developed to detect jumps in a
discretely observed process can differentiate between actual jumps and rough volatility. In
particular, we will investigate the test developed by Aït-Sahalia and Jacod in [1], which
uses power variations at different frequencies to detect jumps in the process, and see how it
fairs against processes driven by a rough volatility component.

1.1 Problem Statement

Based on the introduction above, the problem statement for the project can be stated as
follows:

How does the Aït-Sahalia and Jacod jump test perform when tested on price processes
driven by a rough volatility component, and it is able to distinguish between actual jumps
and rough volatility?
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2 High-Frequency Data Characteristics

In this chapter, we will investigate some of the properties that pertain to high-frequency
financial data, which distinguish it from more conventional time series data. The chapter is
based on [2, p. 57-77]

2.1 Mechanisms of Price Determination

The determination of the price of an asset traded in a financial market is the result of
the complex interplay of various factors such as the sentiment of market participants,
information dissemination, and macroeconomic fundamentals. Generally, markets are
either order-driven or quotes-driven with hybrid arrangements also possible. Typically,
order-driven markets function through a limit order book, whereas quotes-driven markets
function through a dealer.

In order-driven markets, such as many stock exchanges, prices are determined by the
matching of buy and sell orders submitted by market participants. A limit order specifies a
direction (buy or sell), a quantity, and a price at which the transaction should be executed.
From a seller’s perspective, the limit order price is the minimal price, one is willing to sell
the asset for, and conversely from the buyer’s perspective. The collection of all placed
limit orders is the limit order book, and when a new order arrives in the market, it is
compared to the existing orders in the book. If the order is compatible with one or more
orders in the book, then a transaction takes place. A buy order gets executed at the best
(lowest) available ask quote, and then walks the order book to obtain the specified quantity
and complete the order. The last price at which the order gets executed becomes the
quoted price of the asset. Each transaction is accompanied with a time stamp known as
the transaction time. These recorded transactions becomes the price series that we observe
in the market. The difference between the bid quotes and the ask quotes is known as the
bid-ask spread. The bid-ask spread is the de facto measure of market liquidity, since highly
liquid assets will have an abundance of price takers and thus also a narrow bid-ask spread.

Alternatively, quotes-driven markets function through a dealer, which lists the bid and
ask quotations available to investors.

2.2 Jumps and Asynchronicity

In most cases, both limit order markets and dealers markets operate continuously during
the opening hours with no activity during the closing hours. Consequently, large price
increments will be recorded from the previous close to the next opening due to the cumulative
effect of the information revealed overnight. Statistics based on the price increments would
then generate an additional jump every morning, which is contradictory to the usual notion
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of jumps arriving at random and unpredictable times. A statistical model of the asset
prices incorporating jumps would have to take this into consideration.

Another major distinction from standard time series data is that observations are not
equally spaced, since transactions can occur at any time during opening hours. Furthermore,
the trading volume of the asset varies throughout the trading day with some periods of
higher trading intensity and also more observations. Obtaining a series of equally spaced
prices therefore requires making some assumptions.

If more assets are traded, then the transactions might not occur simultaneously resulting
in asynchronous data. Additionally, transaction times are rounded to the nearest second,
whereas traders operate on a millisecond scale. Consequently, multiple observations may
occur simultaneously resulting in a loss of clear time-sequencing.

2.3 Microstructure Noise

A major characteristic of high-frequency financial data is the presence of microstructure
noise, i.e. the observations are contaminated with noise, which interacts with the sampling
frequency in complicated ways. We think of the log-prices of the assets as the prices
corresponding to a perfect market with no trading imperfections, market friction, or
informational asymmetries. The microstructure noise is then the discrepancy between this
efficient log-price and the actual observed prices. This noise is a result of the trading process
and can either be information or non-information related. The noise is caused by several
factors such as the presence of bid-ask spread and the corresponding bounces, discreteness
of prices, and informational asymmetries between traders.

If we let X denote the unobservable efficient log-price of a single asset, then we will
assume that we observe the price process Y given by

Yτi “ Xτi ` ετi , (2.1)

where τi :“ i∆n with ∆n :“ T {n is an equidistant time grid of our observation interval
r0, T s with T ą 0. In this simple set-up here, we assume that the noise terms ετi are i.i.d.
with Erετis “ 0 and Erε2τis “ ψ ą 0, and that the noise process is independent of X. Note
that this additive form of noise is far from the only way to specify the noise process.

Since our interest lie in the process X, we would like to mitigate the impact of the
microstructure noise before conducting any further analysis on our data. High-frequency
data are often available every second or every few seconds. It has been observed that
microstructure noise is linked to each transaction and not the time separating successive
transactions. Furthermore, the volatility of the efficient log-price process X and the market
microstructure noise ε tend to exhibit different behaviour at different frequencies. Log-
returns observed from transaction prices over a small time interval is mostly composed
of microstructure noise and is not very informative regarding the volatility of X, since
the volatility of the price process is proportional to the time interval separating successive
observations. At least this is true for the case, where the volatility of the price process is
driven by a Brownian motion.

Consequenly, very high-frequency data is mostly composed of market microstructure
noise, and thus the informational content decreases drastically. The simplest method to
mitigate this effect is simply to sample at lower frequency, so-called downsampling. In the
literature, the sampling frequency is usually measured in minutes with 5 and 15 minute
time interval often being employed. The disadvantage of downsampling is that potentially
large amounts of data get discarded.

4



2.3. MICROSTRUCTURE NOISE Group 1.204f

2.3.1 Data Example

As a preliminary data example, we consider the SPDR S&P 500 ETF Trust (SPY), which
is the oldest and most popular exchange traded fund tracking the S&P 500 index. [30]
For this subsection, we consider the intradaily data of January 4th 1999, which amounts
to 2036 transactions recorded between from 9:32:31 UTC to 16:16:27 UTC. Initially, we
disgard transactions recorded after 16:00:00 UTC, since these are transactions recorded
past opening hours, which means we get 2004 observations in total. The price series is
plotted in Figure 2.1.
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Figure 2.1: SPY ETF, January 4th 1999

The data exhibits many of the previously discussed characteristics for high-frequency
data. The data is asynchronous with periods of varying trading intensity as exhibited in
Figure 2.2. The times between observations span between 0 seconds to 137 seconds with
75% of the arrival times being less than or equal to 15 seconds. The blue curve is a kernel
density estimate computed from the data using a Gaussian kernel on a grid spanning from
t “ 0 to t “ 137. The orange curve is the exponential density function with rate parameter
equal to the maximum likelihood estimate

λ̂n “
n

řn
i“1 ti

(2.2)

computed from the times recorded between transactions t1, t2, . . . , tn. Clearly, the distribu-
tion of arrival times is heavily right-skewed. Furthermore, the kernel density estimate and
the exponential density seem to agree, which indicates that a Poisson point process might
be a good fit for modelling transaction times.

5



Group 1.204f CHAPTER 2. HIGH-FREQUENCY DATA CHARACTERISTICS

0.00

0.02

0.04

0.06

0 50 100
Time Between Observations (seconds)

D
en

si
ty

Figure 2.2: Times between Transactions, Kernel Density (blue), and Exponential Density
(orange).

One way to deal with asynchronicity and microstructure noise is sampling at lower
frequencies on an equidistant time grid. In order to create a series of equally spaced values
with inter-observation time ∆, some assumptions are neccesary. If no transaction is recorded
at time i∆, we take the last recorded price previous to i∆. In order for this to be efficient,
∆ must be at least slightly longer than the average time separating the actual transactions.
In Figure 2.3, the price series in Figure 2.1 is sampled with ∆ being 30 seconds, 1 minute,
and 5 minutes, respectively.
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Figure 2.3: Price Series Sampled at 30 Second, 1 Minute, and 5 Minute Frequencies.

However, it is important to note that we lose substantial amounts of data. Sampling at
30 seconds leaves us with 781 transactions, 1 minute sampling leaves 391 transactions, and
5 minute sampling leaves 79 observations. Sampling at 30 seconds preserves a lot of the
information contained in Figure 2.1 including various spikes, whereas 5 minute sampling
preserves the overall trend in the original price series.

Another distinct characteristic of high-frequency financial data is the non-normality
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of log-returns, which especially suggests a departure from the Brownian-only paradigm
prevalent in the financial mathematics literature.
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Figure 2.4: Marginal Densities for Log-Returns at Different Frequencies.

As evident in Figure 2.4, the log-returns strongly deviate from a normal distribution.
The fitted normal density f̂ „ N pµ̂, σ̂q with the sample mean and sample standard deviation
computed from the log-returns is plotted in Figure 2.4 along with the marginal density of
the log-returns. Furthermore, the marginal densities of log-returns at 30, 45, and 60 second
frequencies are also shown. The non-normality is clearly visible at all frequencies.
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3 Estimation of Integrated Volatility

In this section, we introduce the important concept of the quadratic variation of a semi-
martingale. We introduce the first model for log-prices and investigate how the realized
covariation estimator can be used to estimate the integrated volatility within this set-up.

3.1 Itô Semimartingales

This section is based on [2, p. 10-40]

Definition 3.1 (Semimartingale).
LetX “ pXtqtě0 be a stochastic process defined on the filtered probability space pΩ,F , pFtqtě0,Pq.
Then X is called a semimartingale if it admits the decomposition

Xt “ X0 `At `Mt, t ě 0, (3.1)

where A is a cádlág process with finite local variation, and M is a cádlág local martingale.
Additionally, it must hold that A0 “ M0 “ 0.

The process A has finite local variation, which means that the total variation of each
path t ÞÑ Atpωq is finite on each interval r0, T s for T ą 0. Furthermore, if X is continuous,
then so is A and M . The processes A and M are unique up to indistinguishability, i.e.
if Xt “ X0 ` Ãt ` M̃t for another pair pÃ, M̃q, then A and Ã as well as M and M̃ are
indistinguishable processes.

We recall that a local martingale M admits the unique decomposition

M “ M0 `M c
t `Md

t , (3.2)

where M c
0 “ Md

0 “ 0, M c is a continuous local martingale, and Md is a local martingale
orthogonal to all continuous local martingales, meaning that MN is a local martingale for
any continuous local martingale N . We say that Md is purely discontinuous although this
does not refer to the sample path behaviour of Md. Utilizing (3.2), we can rewrite the
decomposition of the semimartingale X as

Xt “ X0 `Xc
t `Mt `At, (3.3)

where A0 “ M0 “ 0, M is purely discontinuous local martingale, and Xc is a continuous
local martingale starting at 0. Note that in (3.3), the processes M and A are still not
unique, but Xc is unique and is called the continuous local martingale part of X.

Additionally, for a semimartingale X, we can associate its jump process defined as

∆Xt :“ Xt ´ lim
sÑt´

Xs, (3.4)

where by convention ∆X0 “ 0. The limit in (3.4) is taken from the left due to the
assumption of X being cádlág. Another pertinent property of semimartingales is that they
are the largest class of processes for which the quadratic variation exists.

9
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Definition 3.2 (Quadratic Variation).
Let P :“ t0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ tu be a partition of r0, ts, and let |P| :“ sup1ďiďn |ti ´

ti´1|. Then we define the quadratic variation of the d-dimensional semimartingale X as

xXyt “ P ´ lim
|P|Ñ0

n
ÿ

i“1

pXti ´Xti´1qpXti ´Xti´1qJ. (3.5)

For a one-dimensional semimartingale X, we may write its quadratic variation as

xXyt “ xXcyt `
ÿ

sďt

p∆Xsq2, (3.6)

where the sum above makes sense, since the set ts : ∆Xs ‰ 0u X r0, ts is countable. Hence,
the quadratic variation of X is equal to the quadratic variation of the continuous local
martingale Xc plus the sum of the squared jumps of X until time t.

For our puposes, we will consider a particular class of semimartingales.

Definition 3.3 (Continuous Itô Semimartingale).
A d-dimensional semimartingaleX “ pXtqtě0 supported by pΩ,F , pFtqtě0,Pq is a continuous
Itô semimartingale, if it can be written as

Xt “ X0 `

ż t

0
bsds`

ż t

0
σsdBs, (3.7)

where X0 is F0-measurable, B is a q-dimensional standard Brownian motion, pbtqtě0

and pσtqtě0 are Rd-valued and Rdˆq-valued progressively measurable processes satisfying
şt
0∥bs∥ds ă 8 and

şt
0∥σ

2
s∥ds ă 8 for all t P r0,8q, respectively.

In the modelling of high-frequency financial data, a d-dimensional Itô semimartingale
X “ pXp1q, Xp2q, . . . , XpdqqJ defined on some compact interval IT :“ r0, T s for T ą 0 is
used as our model of the log-prices of some asset S, i.e. Xt “ logSt.1 In this setup, we will
be interested in the non-parametric estimation of the so-called integrated volatility of the
price process defined as

Ct :“

ż t

0
csds, cs :“ σsσ

J
s , t P IT , (3.8)

where c “ pctqtPIT is the spot volatility, and the integrated volatility Ct is a matrix comprised
of the aggregated volatility levels during the time interval It. Note however, that since the
volatility process σt is a latent variable, both ct and Ct are also unobservable and thus can
only be estimated trough the observed price series Xt. Henceforth, we assume that the
time-horizon T ą 0 is fixed. Furthermore, the following process, known as the integrated
quarticity, will be useful in the following sections

Cp4qt :“

ż t

0
c2sds, t P IT . (3.9)

1For the remainder of the project report, we simply refer to log-prices as prices and log-returns as
returns.
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3.2 Realized Covariation

This section is based on [5].
If we consider the intra-daily returns of some one-dimensional price process X computed

during the time interval It, i.e.

ri∆n
:“ Xi∆n ´Xpi´1q∆n

, i “ 1, . . . , n, (3.10)

where n is the number of time intervals used in the computation, and ∆n :“ t{n is the
spacing of the equidistant grid. Then we define the realized variance for X during It as

RV
pnq

t :“
n
ÿ

i“1

r2i∆n
. (3.11)

For a price process X given by a Itô semimartingale of the form (3.7), the realized variance
is a consistent estimator of the integrated volatility

RV
pnq

t
P

Ñ

ż t

0
σ2sds as n Ñ 8. (3.12)

Furthermore, we have the following central limit theorem (CLT) for the realized variance

?
n
RV

pnq

t ´
şt
0 σ

2
sds

b

2t
şt
0 σ

4
sds

d
Ñ N p0, 1q as n Ñ 8. (3.13)

The CLT (3.13) enables us to construct confidence bands for the integrated volatility.
The realized variance will be our first estimator of the integrated volatility CT . However,

even though the realized variance nomenclature is standard in econometric literature,
we will instead adopt the realized covariation nomenclature, since this is more accurate.
Futhermore, as an intial simplification, we assume that no microstructure noise is present,
and that X is sampled equidistantly at times i∆n for i “ 0, 1, . . . , tT {∆nu, where the mesh
∆n Ñ 0 as n Ñ 8. We now define the realized covariation pCp∆nqt by

pCp∆nqt :“

tt{∆nu
ÿ

i“1

p∆n
i Xq2, where ∆n

i X :“ Xi∆n ´Xpi´1q∆n
. (3.14)

If a semimartingale contains no jumps, then the quadratic variation equals the integrated
volatility. Since X is assumed to be a continuous Itô semimartingale, this is the case here,
and we have the following convergence

pCp∆nqt
P

Ñ xXyt as ∆n Ñ 0. (3.15)

3.2.1 Realized Covariation in the Presence of Noise

This section is based on [2, p. 209-218].
We will now relax the assumption of the observed price process containing no noise.

How to specify the actual form of the noise and circumvent its effects are topics that have
been studied extensively in the literature on microstructure noise. In the following, we will
investigate an additive white noise process, which is also the setting that has been studied
the most within the literature. We thus have

Y n
i “ Xi∆n ` εni , i “ 0, 1, . . . , tT {∆nu. (3.16)

11
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The superscript n for Y n
i indicates the sampling frequency. In this set-up, at each frequency

n, the process pεnt qtPIT is globally independent of X and has the form

εni “ αnξi∆n , (3.17)

where ξ “ pξtqtPIT is a white noise process. Furthermore, it is customary to assume that
the random variables ξt has moments of all orders with the moment structure

Erξts “ 0, Erξ2t s “ ψ, @t P IT , (3.18)

where ψ ą 0. The extension to a general d-dimensional white noise process is straightforward

Erξts “ 0, Erξtξ
J
t s “ Ψ, @t P IT , (3.19)

where Ψ is a dˆ d-dimensional positive definite matrix.
In regards to αn, two variants are possible. In the first, the law of εni does not depend

on n, and we set αn “ 1 for all frequencies n. Alternatively, the law of εni does depend on
n and shrinks as n increases. In this case, we have so-called shrinking noise, i.e.

αn Ñ 0 as ∆n Ñ 0. (3.20)

If we consider the realized covariation estimator in the presence of noise, the estimator
becomes

pCnoisyp∆nqt “

tt{∆nu
ÿ

i“1

p∆n
i Y q2. (3.21)

Expanding out (3.21), we obtain

pCnoisyp∆nqt “

tt{∆nu
ÿ

i“1

p∆n
i Xq2 ` 2αn

tt{∆nu
ÿ

i“1

∆n
i Xpξi∆n ´ ξpi´1q∆n

q

´ 2α2
n

tt{∆nu
ÿ

i“1

ξpi´1q∆n
ξi∆n ` α2

n

tt{∆nu
ÿ

i“1

`

pξi∆nq2 ` pξpi´1q∆n
q2
˘

.

(3.22)

The first term in (3.22) converges in probability to the quadratic variation xXyt as ∆n Ñ 0.
For the remaining terms, we use that ξ is a white noise process along with the Law of Large
Numbers to obtain

2αn

tt{∆nu
ÿ

i“1

∆n
i Xpξi∆n ´ ξpi´1q∆n

q
P

Ñ 0, (3.23)

2α2
n

tt{∆nu
ÿ

i“1

ξpi´1q∆n
ξi∆n

P
Ñ 0, (3.24)

∆n

tt{∆nu
ÿ

i“1

`

pξi∆nq2 ` pξpi´1q∆n
q2
˘ P

Ñ 2tErξ20s, (3.25)

as ∆n Ñ 0. The above holds unless ∆n{α2
n Ñ 8, i.e. α2

n must not converge to 0 faster
than ∆n. From the preceding, we infer the asymptotic behaviour of pCnoisyp∆nqT

∆n{α2
n Ñ 0 ñ

∆n

α2
n

pCnoisyp∆nqT
P

Ñ 2TErξ20s, (3.26)

∆n{α2
n Ñ θ ñ pCnoisyp∆nqT

P
Ñ xXyT `

2T

θ
Erξ20s, (3.27)

∆n{α2
n Ñ 8 ñ pCnoisyp∆nqT

P
Ñ xXyT , (3.28)

12
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where θ P p0,8q. Hence, in the case of (3.26), the realized covariation tends to 8 at rate
1{∆n, when the noise size is constant (αn “ 1), and at a slower rate when the noise shrinks
too slowly. If the noise shrinks sufficiently fast as in (3.28), then the realized covariation will
tend to the xXyT as in the case without noise. Finally, there is an intermediary situation
in (3.27), where the limit involves both xXyT and the noise.

As an example, we consider a geometric Brownian motion

St “ S0 exp

"ˆ

µ´
σ2

2

˙

t` σBt

*

, (3.29)

with S0 “ 100, µ “ σ “ 0.01, and Bt is a standard Brownian motion. We simulate the
process on r0, 1s to emulate one trading day, and then set Xt :“ logSt. As our noise process,
we simulate ξi

i.i.d.
„ N p0, 10´8q with constant noise size αi “ 1 for all i. We then apply the

estimator pCnoisyp∆nqt to Y n
i “ Xi∆n ` ξni , where i “ 0, 1, . . . , n with n “ t1{∆nu.

To illustrate the divergence of the realized covariation, we make a so-called signature
plot, where the horizontal axis is ∆n, and the vertical axis is the realized covariation
computed over the entire trading day.

0.0005

0.0010

0.0015

0.0020

0.00000 0.00025 0.00050 0.00075 0.00100
∆n

R
V

Figure 3.1: Realized Covariation as a Function of ∆n.

We see that the realized covariation indeed tends to 8 as ∆n Ñ 0 like a power law.
An important conclusion from the plot above is that as sampling becomes more frequent,
microstructure noise also becomes more predominant. This seems to contradict the model
of shrinking noise, which will consequently not be considered in the sequel.

3.2.2 Asymptotics in Case of Constant Volatility

In this subsection, we will consider how to derive the asymptotic behaviour of the realized
covariation estimator in the simple setting of a one-dimensional Itô semimartingale of the
form

Xt “ X0 `

ż t

0
σsdBs, t P IT . (3.30)

Furthermore, we will assume that no microstructure noise is present along with constant
volatility σt “ σ. Hence, the integrated volatility to be estimated amounts to CT “ Tc,
where c “ σ2. In this case, we are in a classical parametric setting with the parameter

13
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θ “ Tc. The initial value X0 does not influence the estimation of CT , and thus we assume
without loss of generality that X0 “ 0. Then at stage n, we observe tT {∆nu i.i.d. returns of
the form ∆n

i X „ N p0, c∆nq. The normality follows from the normality of the increments
of a Brownian motion.

As in standard parametric statistics, we have a family of probability measures Pθ indexed
by θ, which are defined on the space RN. At each stage n, the measures Pθ restricted to the
σ-algebra generated by the first tT {∆nu variables are equivalent to the Lebesgue measure
on RtT {∆nu. Consequently, the likelihood function exists, and the log-likelihood is given by

ℓnpθq “ ´
1

2

tT {∆nu
ÿ

i“1

ˆ

p∆n
i Xq2

c∆n
` logp2πc∆nq

˙

, (3.31)

where the MLE-estimate is given by

θ̂n “
T {∆n

tT {∆nu
pCp∆nqT . (3.32)

The MLE is essentially just the realized covariation, but with the factor T {∆n

tT {∆nu
ě 1, which

is an adjustment for the end point of the interval r0, T s, since T {∆n is not necessarily an
integer. In practice, T {∆n is most often an integer, and even when this isn’t the case, using
the unbiased MLE-estimator θ̂n does not substantially improve estimation except for very
small samples.

Employing pCp∆nqT instead of θ̂n, we get that the normalized estimation errors are
given by

1
?
∆n

´

pCp∆nqT ´ CT

¯

“
1

?
∆n

tT {∆nu
ÿ

i“1

˜

ˆ

∆n
i X?
∆n

˙2

´ c

¸

´
T ´ ∆ntT {∆nu

?
∆n

c. (3.33)

The last term in (3.33) is a border adjustment term, and it simply equals 0, when T {∆n

is an integer. Hence, we need to determine the distribution of the summands in (3.33) in
order to derive the asymptotics. Since ∆n

i X{
?
∆n „ N p0, cq, we have that

E

«

ˆ

∆n
i X?
∆n

˙2

´ c

ff

“ E

«

ˆ

∆n
i?
∆n

˙2
ff

´ c “ 0, (3.34)

Var

«

ˆ

∆n
i X?
∆n

˙2

´ c

ff

“ E

«

ˆ

∆n
i X?
∆n

˙4
ff

` c2 ´ 2c2. (3.35)

Whence, it only remains to compute the fourth moment of ∆n
i X{

?
∆n in order to derive

the variance. Since ∆n
i X{σ

?
∆n „ N p0, 1q, we have p∆n

i X{σ
?
∆nq2 „ χ2p1q, from which

we deduce that

Var

«

ˆ

∆n
i X

σ
?
∆n

˙2
ff

“ 2 “ E

«

ˆ

∆n
i X

σ
?
∆n

˙4
ff

´ E

«

ˆ

∆n
i X

σ
?
∆n

˙2
ff2

(3.36)

“ E

«

ˆ

∆n
i X

σ
?
∆n

˙4
ff

´ 1. (3.37)

Hence, we have

E

«

ˆ

∆n
i X

σ
?
∆n

˙4
ff

“
1

c2
E

«

ˆ

∆n
i X?
∆n

˙4
ff

“ 3. (3.38)

14
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Substituting into (3.35), we obtain that the variance is

Var

«

ˆ

∆n
i X?
∆n

˙2

´ c

ff

“ 2c2. (3.39)

By application of the central limit theorem to the centered i.i.d. summands in (3.33), we
obtain the convergence

1
?
∆n

´

pCp∆nqT ´ CT

¯

d
Ñ N p0, 2Cp4qT q. (3.40)

However, the variance of the asymptotic distribution depends on the unknown quarticity
Cp4qT . In order to construct confidence intervals for CT , we need to estimate 2Cp4qT ,
which can be done with

V n
T :“ 2T p pCp∆nqT q2 (3.41)

In this set-up with constant volatility, we have that

V n
T

P
Ñ 2Tc2 as ∆n Ñ 0, (3.42)

i.e. V n
T converges in probability to a constant. An application of Slutsky’s Theorem, see

Theorem A.2, now finally yields

pCp∆nqT ´ CT
a

∆nV n
T

d
Ñ N p0, 1q. (3.43)

Based on this, we can construct the following approximate p1 ´ αq-confidence interval for
CT

”

pCp∆nqT ´ Φα{2

a

∆nV n
T ,

pCp∆nqT ` Φ1´α{2

a

∆nV n
T

ı

, (3.44)

where Φα is the α-quantile of the standard normal distribution. This is of course in
agreement with the CLT in (3.13) as expected.
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4 Testing for Jumps

One important aspect of high-frequency financial data, which the modelling in the previous
chapter does not address, is the presence of jumps in the price series. In the previous
chapter, we assumed that the price series was a continuous Itô semimartingale, which
contains a drift component and a volatility component driven by a Brownian motion
and has no jumps. If we relax the assumption of continuity, we can model the price
series as a general Itô semimartingale, which can contain jumps. In particular, we will
study the Lévy-Itô decomposition of a general semimartingale and the Grigelionis form
of an Itô semimartingale. The Grigelionis form decomposes an Itô semimartingale as a
drift component and a volatility component driven by a Brownian motion plus two jump
components. The first jump component accounts for the small jumps of the process, while
the second component accounts for the big jumps of the process.

Firstly, we present some preliminary definitions from measure theory, which are based
on [12, p. 77-79].

Definition 4.1 (Random Measure).
Let pΩ,F ,Pq be a probability space and pS,X q a measurable space. A random measure is
a mapping ζ : Ω ˆ X Ñ r0,8s such that

1. For ω P Ω, ζpω, ¨q is a measure on pS,X q.

2. For B P X , ζp¨, Bq is F-measurable.

According to Definition 4.1, a random measure is a random variable, which takes its
values in the set of measures on pS,X q. Before introducing the important concept of a
Poisson random measure, we recall that for E Ă Rd, a Radon measure µ on pE,X q is a
measure for which µpBq ă 8 for every compact set B P X .

Definition 4.2 (Poisson Random Measure).
Let pΩ,F ,Pq be a probability space, E Ă Rd, and let µ be a Radon measure on pE,X q. A
random measure ζ : ΩˆX Ñ N is called a Poisson random measure with intensity measure
µ if

1. For almost all ω P Ω, ζpω, ¨q is an integer-valued Radon measure on pE,X q.

2. For any measurable set A Ă E, ζp¨, Aq “ ζpAq „ PoipµpAqq.

3. ζpA1q, . . . , ζpAnq are independent for disjoint A1, . . . , An P X .

4.1 Lévy-Itô Decomposition of a Semimartingale

This section is based on [19, p. 29-32].
We recall the decomposition in (3.3) of a general d-dimensional semimartingale X

supported by pΩ,F , pFtqtě0,Pq into a sum of an adapted finite variation process A, a purely
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discontinuous local martingale M , and a unique continuous local martingale Xc. We now
associate to X the following process

X 1
t “ Xt ´X0 ´ Jt, where Jt :“

ÿ

sďt

∆Xs1t∥∆Xs∥ą1u. (4.1)

The sum defining Jt is finite for almost all ω and t, and the process J is clearly adapted,
cádlág and of finite variation. Consequently, J is a semimartingale, and so is X 1. Further-
more, the size of the jumps of X 1 satisfy ∥∆X 1∥ ď 1 by construction. In particular, this
implies that there is a unique decomposition (up to null sets) of X 1 such that the process
A in (3.3) is predictable and of finite variation. We may write this decomposition as

X 1
t “ X0 `Bt `Xc

t `Mt, (4.2)

where B0 “ M0 “ 0, B is predictable and of finite variation, M is a purely discontinuous
local martingale, and Xc is the same process as in (3.3). This gives us the following unique
decomposition of X

Xt “ X0 `Bt `Xc
t `Mt `

ÿ

sďt

∆Xs1t∥∆Xs∥ą1u. (4.3)

We now introduce the following set for a cádlág Rd-valued process Y

DpY q :“ tpω, tq P Ω ˆ r0,8q : ∆Ytpωq ‰ 0u. (4.4)

For each ω P Ω, the set DpY q of jump times of Y is at most countable due to Y being
cádlág, although typically it may be a dense subset of r0,8q. Using this notation, we now
associate with X the following jump measure µ given by

µpω; dt, dxq “
ÿ

pω,sqPDpXq

δtps,∆Xspωqqupdt, dxq, (4.5)

where δtpt,xqu is the Dirac measure concentrated in pt, xq P r0,8q ˆ Rd. Thus, for each ω,
µpω; ¨q is an integer-valued measure satisfying µ

`

ω; t0u ˆ Rd
˘

“ µpω; r0,8q ˆ t0uq “ 0 and
such that µpω; ttu ˆ Rdq “ 1 if pω, tq P DpXq and 0 otherwise.

For any Borel set A Ă Rd, we can then define the following process

p1A ‹ µpωqqt :“ µpω; p0, ts ˆAq “
ÿ

sďt

1Ap∆Xsq. (4.6)

The process 1A ‹ µ is non-decreasing and adapted, although it may assume the value 8

at some time t ą 0 or even at all times t ą 0. However, if the set A has positive distance
to 0 in the sense that dp0, Aq “ inft∥a∥ : a P Au ą 0, then the process 1A ‹ µ is cádlág,
N-valued, and with jumps of size 1 and hence also locally integrable. Consequently, it
admits a predictable compensator, denoted by 1A ‹ ν, which is a predictable, increasing,
locally integrable process that starts at 0.

Additionally, the mapping A ÞÑ p1A ‹ µqt is σ-additive, and accordingly the mapping
A ÞÑ p1A ‹ νqt is almost surely σ-additive. The preceding discussion allows us to conclude
that there exists a positive random measure νpω; dt, dxq on r0,8q ˆ Rd such that

p1A ‹ νpωqqt “ νpω; p0, ts ˆAq, @A P BpRdq. (4.7)

The measure ν is called the predictable compensator of µ.
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We may extend this notion to more general integrands than just indicator functions. If
κ : Ω ˆ r0,8q ˆ Rd Ñ R is a measurable function, we write

pκ ‹ µqt “

ż

r0,tsˆRd

κpω, s, xqµpω; ds, dxq, (4.8)

pκ ‹ νqt “

ż

r0,tsˆRd

κpω, s, xqµpω; ds, dxq. (4.9)

In particular, the first integral (4.8) amounts to

pκ ‹ µqt “
ÿ

sďt

κps,∆Xsq, (4.10)

where we have suppressed the ω-dependency.
The following remarks are pertinent.

1. We can now define the so-called characteristics of a semimartingale X, which consist
of a triplet pB,C, νq, where

(a) B “
`

Bi
˘d

i“1
is the predictable process of finite variation in (4.3).

(b) C “
`

Cij
˘d

i,j“1
, where Cij “ xXi,c, Xj,cy is the quadratic variation of the i-th

and j-th component of the continuous local martingale Xc.

(c) ν is the compensator of the jump measure µ associated to X.

2. For any fixed ω, the integrals (4.8) and (4.9) are Lebesgue integrals with respect to the
positive measures µ and ν. The measure µ´ ν is a signed measure, and furthermore
it is a martingale measure in the sense that if the Borel set A Ă Rd has positive
distance to 0, then 1A ‹ pµ´ νq is a local martingale. Consequently, we have a notion
of a stochastic integral with respect to µ´ ν.

3. We say a function κ on Ω ˆ r0,8q ˆ Rd is predictable, if it is rP-measurable, where
rP :“ P b BpRdq with P being the predictable σ-algebra on Ω ˆ r0,8q. If κ is such a
predictable function, which furthermore satisfies

`

pκ2 ^ |κ|q ‹ ν
˘

t
ă 8, @t ą 0, (4.11)

then we can define a new process, which we denote by

pκ ‹ pµ´ νqqt :“

ż t

0

ż

Rd

κpω, s, xq pµ´ νqpds, dxq. (4.12)

We call (4.12) the stochastic integral of κ with respect to µ´ ν.

4. Finally, having established this notion of stochastic integration with respect to µ´ ν,
we can present the final decomposition of a general semimartingale X

X “ X0 `B `Xc ` px1∥x∥ď1q ‹ pµ´ νq ` px1∥x∥ą1q ‹ µ. (4.13)

This is called the Lévy-Itô decomposition of the semimartingale.
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4.2 Grigelionis Form of an Itô Semimartingale

This section is based on [19, p. 35-38]
In Defintion 3.3, we defined a continuous Itô semimartingale as a continuous semimartin-

gale taking the form (3.7). Having introduced the characteristics of a general semimartingale,
we can now define a general Itô semimartingale, which need not be continuous.

Definition 4.3 (Itô Semimartingale).
A d-dimensional semimartingale X is an Itô semimartingale, if its characteristics pB,C, νq

are absolutely continuous with respect to the Lebesgue measure in the sense that

Bt “

ż t

0
bs ds, Ct “

ż t

0
cs ds, νpdt, dxq “ dt Ftpdxq, (4.14)

where b “ pbtqtě0 is a Rd-valued process, c “ pctqtě0 is a process with values in the set of
dˆ d symmetric non-negative matrices, and Ft “ Ftpdxq is a measure on Rd for every pair
pω, tq.

We will now present the Grigelionis form of an Itô semimartingale. The original result
is due to Grigelionis in [15], but the version presented below is from [17].

Theorem 4.4 (Grigelionis Form).
Let X be a d-dimensional Itô semimartingale supported by pΩ,F , pFtqtě0,Pq with charac-
teristics pB,C, νq as in (4.14). Furthermore, d1 is an integer with d1 ě d, E is an arbitrary
Polish space with a finite or σ-finite measure λ, which has no atoms. Then one can construct
a very good filtered extension prΩ, rF , p rFtqtě0, rPq, which supports a d1-dimensional Brownian
motion W and a Poisson random measure µ on r0,8q ˆE with intensity measure λ such
that

Xt “ X0 `

ż t

0
bs ds`

ż t

0
σs dWs ` pκ1∥κ∥ď1q ‹ pµ´ νqt ` pκ1∥κ∥ą1q ‹ µt, (4.15)

where νpdt, dxq “ dtb λpdxq is the compensator of µ, σt is an Rd ˆ Rd1-valued process on
pΩ,F , pFtqtě0,Pq, which is predictable, and κ is a predictable function on Ω ˆ r0,8q ˆ E.

We refer to Section A.3 in Appendix A for details on Polish spaces and filtered extensions.
Note that it is always possible to take E “ R equipped with the Lebesgue measure λ.
However, there is a lot of flexibility in choosing the extension, the space E, the function κ,
and the dimension d1.

4.3 Ratio Test for Presence of Jumps

The rest of this chapter is based on [1].
In order to test for the presence of jumps, we will use the test proposed in [1], which

utilizes a ratio of power variations as the test statistic. The only structural assumption
is that the observed process X is an Itô semimartingale. Hence, we may write Xt in the
Grigelionis form (4.15)

Xt “ X0 `

ż t

0
bs ds`

ż t

0
σs dWs `

ż t

0

ż

E
κpω, s, xq1t∥κ∥ď1upµ´ νqpω; ds, dxq

`

ż t

0

ż

E
κpω, s, xq1t∥κ∥ą1uνpω; ds, dxq,

(4.16)
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where the components in (4.16) are as in Theorem 4.4. Furthermore, the test assumes that
σt is also an Itô semimartingale, which consequently admits the form

σt “ σ0 `

ż t

0

rb ds`

ż t

0
rσs dWs `

ż t

0
rσ1 dW 1

s `

ż t

0

ż

E
rκpω, s, xq1t∥rκ∥ď1upµ´ νqpω; ds, dxq

`

ż t

0

ż

E
rκpω, s, xq1t∥rκ∥ą1uνpω; ds, dxq,

(4.17)

where W 1 is a Brownian motion independent of pW,µq. Furthermore, there are some
additional technical assumptions on the drift components, volatility components and the
functions κ and rκ, which we will not list here, but can be found in [1].

4.3.1 The Statistical Problem

We assume that we discretely observe a path Xpωq on some interval r0, ts with the observa-
tions i∆n for i “ 0, 1, . . . , n, where we only take into account the observation times less
than or equal to t. Furthermore, the testing procedure is asymptotic in the sense that we
specify the power of the test as n Ñ 8 and ∆n Ñ 0.

We make the following comments.

1. The problem is non-parametric, i.e. we do not specify the forms of the coefficients b,
σ or κ.

2. The problem is asymptotic, and hence it only makes sense for high-frequency data.

3. In the unrealistic case with n “ 8, where we observe a complete path Xpωq on r0, ts,
we can of course determine whether there are jumps present or not. However, when
the measure λ is finite there is a positive probability that the path Xpωq has no jumps
on r0, ts even though the model allows for jumps.

4. In the realistic case n ă 8, we cannot do better than the case when n “ 8. Thus,
we can only infer something about the jumps that occur in our observed sample. We
cannot infer anything about the jumps that the model may allow, but didn’t occur
on the interval r0, ts.

5. The test statistic is scale-invariant. If X is multiplied by an arbitrary constant, then
the test statistic is unaffected. Furthermore, the limiting behaviour of the test statistic
is independent of the dynamics of the process.

Consequently, the statistical problem consists of deciding which of the following comple-
mentary sets our path Xpωq belongs to based on the observations Xi∆n

Ωj
t :“ tω : s ÞÑ Xspωq is discontinuous on r0, tsu, (4.18)

Ωc
t :“ tω : s ÞÑ Xspωq is continuous on r0, tsu. (4.19)

If we decide that the observed path belongs to Ωj
t , then we also implicitly decide that model

has jumps. However, if we instead decide on Ωc
t , it does not mean that model is continuous,

even on the interval r0, ts. Naturally, in both cases, we cannot say anything about what
happens after time t.
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4.3.2 The Test Statistic

Before we introduce the test statistic, we introduce the following two processes that both
measure some kind of the variability of X

Appqt :“

ż t

0
|σs|p ds, Bppqt :“

ÿ

sďt

|∆Xs|p, p P p0,8q. (4.20)

Note that xXy “ Ap2q `Bp2q. We have that Ωj
t “ tBppqt ą 0u for any p ą 0, and hence

the testing problem essentially consists of determining whether Bppqt ą 0 for our observed
path and for any p. Hence, we define the following natural estimator for Bppqt

pBpp,∆nqt :“

tt{∆nu
ÿ

i“1

|∆n
i X|p. (4.21)

For r P p0,8q, we let mr denote the rth absolute moment of a standard normal variable U ,
i.e.

mr “ Er|U |rs “ π´1{22r{2Γ

ˆ

r ` 1

2

˙

, (4.22)

where Γp¨q denotes the Gamma function. We then have the following convergences in
probability as n Ñ 8

$

’

’

&

’

’

%

pBpp,∆nqt
P

Ñ Bppqt, p ą 2,

pBpp,∆nqt
P

Ñ xXyt, p “ 2,
∆

1´p{2
n
mp

pBpp,∆nqt
P

Ñ Appqt, p ă 2.

(4.23)

Furthermore, if the process X is continuous, then ∆
1´p{2
n
mp

pBpp,∆nqt
P

Ñ Appqt for any p ą 0.

We see that for p ą 2, pBpp,∆nqt converges to Bppqt, which is strictly positive if X has
jumps, and the limit is independent of the sequence ∆n. Moreover, when X is continuous,
pBpp,∆nqt converges to Appqt. The limiting process Appqt is independent of ∆n, but the
normalizing constant ∆

1´p{2
n {mp does depend on ∆n. This leads us to compare pB on two

different ∆n-scales, where we pick an integer k ě 2, and then consider the ratio

pSpp, k,∆nqt :“
pBpp, k∆nqt

pBpp,∆nqt
. (4.24)

Considering the limits in (4.23), we readily obtain the following result.

Theorem 4.5.
Let t ą 0, k ě 2, and p ą 2. Then the random variables pSpp, k,∆nqt converge in probability
to the variable Spp, kqt given by

Spp, kqt :“

#

1, on the set Ωj
t ,

kp{2´1, on the set Ωc
t .

(4.25)

On the set Ωc
t , the convergence holds for p ď 2 as well.

Theorem 4.5 is not sufficient to construct a test, since we need a central limit theorem
for our statistic pS. As an auxiliary quantity, we introduce the following

Dppqt :“
ÿ

sďt

|∆Xs|ppσ2s´ ` σ2sq, (4.26)

where p ą 0 and σs´ :“ limuÑs´ σu.
We now have the following central limit theorem for the power variations.
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Theorem 4.6 (CLT for Power Variations).
Let p ą 3. Then for any t ą 0, we have for the pair of random variables that

∆´1{2
n

`

pBpp,∆nqt ´Bppqt, pBpp, k∆nqt ´Bppqt
˘ Ls

Ñ
`

Zppqt, Zppqt ` Z 1pp, kqt
˘

, (4.27)

as n Ñ 8, and where Zppqt and Z 1pp, kqt are defined on an extension prΩ, rF , p rFtqtě0, rPq of
the original probability space pΩ,F , pFtqtě0,Pq, and which conditionally on F have mean
zero with Z 1pp, kqt having the conditional variance

rErZ 1pp, kq2t | Fs “
k ´ 1

2
p2Dp2p´ 2qt. (4.28)

Moreover, if the processes X and σ have no common jumps, then Z 1 is F-conditionally
Gaussian.

If we in addition assume that X is continuous and let p ě 2, then we have that

∆´1{2
n

`

∆1´p{2
n

pBpp,∆nqt ´mpAppqt, ∆
1´p{2
n

pBpp, k∆nqt ´ kp{2´1mpAppqt
˘

(4.29)

converges stably in law to the bidimensional variable pY ppqt, Y
1pp, kqtq defined on an

extension prΩ, rF , p rFtqtě0, rPq of the original probability space pΩ,F , pFtqtě0,Pq, and which
conditionally on F is a centered Gaussian random variable with the covariance structure

rErY ppq2t | Fs “ pm2p ´m2
pqAp2pqt,

rErY 1pp, kq2t | Fs “ kp´1pm2p ´m2
pqAp2pqt,

rErY ppqtY
1pp, kqt | Fs “ pmk,p ´ kp{2m2

pqAp2pqt,

where
mk,p “ Er|U |p|U `

?
k ´ 1V |ps, (4.30)

for independent U, V „ N p0, 1q.

In order for Theorem 4.6 to be useful, we need consistent estimator for Appqt and Dppqt.
We need to estimate Dppqt, when there are jumps in the process, and Appqt, when X is
continuous. In order to estimate Appqt, we use a truncated realized pth variation. That is,
for any C ą 0 and ϖ P p0, 1{2q, we have from [18] that if either p “ 2, or p ą 2 and X is
continuous, then

pApp,∆nqt :“
∆

1´p{2
n

mp

tt{∆nu
ÿ

i“1

|∆n
i X|p1t|∆n

i X|ďC∆ϖ
n u

P
Ñ Appqt, (4.31)

as ∆n Ñ 0.
Alternatively, one may use the realized multipower variations of [8]. For any r P p0,8q

and an integer q ě 1, we have from [7] that if X is continuous

rApr, q,∆nqt :“
∆

1´qr{2
n

mq
r

tt{∆n´q`1u
ÿ

i“1

q
ź

j“1

|∆n
i`j´1X|r

P
Ñ Apqrqt. (4.32)

Estimating Dppqt is more difficult, since we have to evaluate σ2s and also evaluate σ2s´ if
s is a jump time. One possible way is to pick a sequence of integers kn such that

kn Ñ 8 and kn∆n Ñ 0 (4.33)
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as n Ñ 8. We then let In,tpiq :“ tj P Nztiu : 1 ď j ď tt{∆nu, |i ´ j| ď knu be a local
window of length 2kn∆n around i∆n, and define the estimator

pDpp,∆nqt :“
1

kn∆n

tt{∆nu
ÿ

i“1

|∆n
i X|p

ÿ

jPIn,tpiq

p∆n
jXq21t|∆n

j X|ďC∆ϖ
n u, (4.34)

where C ą 0 and ϖ P p0, 1{2q.
Theorem 4 in [1] establishes the consistency of the estimator pApp,∆nqt for p ě 2, t ą 0,

C ą 0, and ϖ P p12 ´ 1
p ,

1
2q. For pDpp,∆nqt consistency is established for p ą 2, t ě 0, C ą 0,

and ϖ P p0, 1{2q.
We now have the following central limit theorem for our test statistic pS.

Theorem 4.7 (CLT for Test Statistic).
Let p ą 3 and t ą 0 and set

pV j
n,t “ ∆n

pk ´ 1qp2 pDp2p´ 2,∆nqt

2 pBpp,∆nq2t

. (4.35)

Then the variables ppV j
n,tq

´1{2ppSpp, k,∆nqt ´ 1q converge stably in law, in restriction to the
set Ωj

t , to a variable, which conditionally on F is centered with variance 1, and which is
N p0, 1q if X and σ have no common jumps.

If we in addition assume that X is continuous, then for p ě 2 and t ą 0, we have that
the variables ppV c

n,tq
´1{2ppSpp, k,∆nqt ´ kp{2´1q converge stably in law to a variable, which is

N p0, 1q conditional on F , where pV c
n,t is given by

pV c
n,t “ ∆n

Mpp, kq pAp2p,∆nqt

pApp,∆nq2t

, (4.36)

with
Mpp, kq “

1

m2
p

´

kp´2p1 ` kqm2p ` kp´2pk ´ 1qm2
p ´ 2kp{2´1mk,p

¯

. (4.37)

4.3.3 Construction of the Test

We can now construct a test with the null hypothesis that no jumps occur during r0, ts

H0 : s ÞÑ Xspωq is continuous on r0, ts. (4.38)

We choose an integer k ě 2 and p ą 3 and associate the critical region, which takes the
form

Cc
n,t “

!

pSpp, k,∆nqt ă ccn,t

)

, (4.39)

where ccn,t, n P N, is some sequence, which may be ccn,t “ cct for all n P N, or it may
possibly be a random sequence. In order to construct an asymptotic test on level α P p0, 1q,
i.e. PpCc

n,tq “ αc
n,tpb, σ, κq, we should take the supremum of all triples pb, σ, κq of possible

coefficients in the null hypothesis pκ ” 0q of lim supn α
c
n,tpb, σ, κq. Note that we write

α “ αc
n,tpb, σ, κq in order to stress the dependence on n, t, ccn,t, b, σ, and κ. As mentioned

previously, there is no way to statistically distinguish the null hypothesis from the case,
where model has jumps but none occurred in r0, ts. Therefore, we condition on the set Ωc

t

and define our asymptotic test level as

α “ sup
b,σ,κ

lim sup
nÑ8

PpCc
n,t | Ωc

tq, (4.40)
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with the convention that Pp¨ | Ωc
tq “ 0 if PpΩc

tq “ 0. Furthermore, the power function of
the test is given by

βcn,tpb, σ, κq “ PpCc
n,t | Ωj

t q. (4.41)

The power function is thus the probability that we correctly reject the null hypothesis of
no jumps conditional on the set Ωj

t .
We conclude this chapter with the following proposition, which summarizes the test.

Proposition 4.8.
Let t ą 0 and choose a real p ą 3 and an integer k ě 2. We then set

ccn,t “ kp{2´1 ´ Φα

b

pV c
n,t, (4.42)

where pV c
n,t is given by (4.36) with ϖ P p12 ´ 1

p ,
1
2q, C ą 0, and Φα is the α-quantile of a

standard normal random variable for α P p0, 1q. The asymptotic test level (4.40) of the
critical region defined by (4.39) for testing the null hypothesis H0 is then equal to α.

Furthermore, the power function satisfies that βcn,tpb, σ, κq Ñ 1 as ∆n Ñ 0 for all
coefficient triplets pb, σ, κq such that PpΩj

t q ą 0.
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5 Stochastic Delay Differential Equations

In this chapter, we investigate so-called stochastic delay differential equations with additive
noise, where the linear fractional stable motion constitutes the noise term. Hence, we firstly
have a short introduction to stable distributions, which is followed by a section on the linear
fractional stable motion and how to simulate it.

5.1 Stable Distributions

This section is based on [24, p. 1-13] and [28, p. 1-21].

Definition 5.1 (Characteristic Function).
Let X : pΩ,F ,Pq Ñ pRd,BpRdqq be a random variable with distribution µXpAq “ PpX P Aq,
A P F . Then the characteristic function φX : Rd Ñ C of X is given by

φXpuq “ Ereiu
JXs “

ż

Rd

eiu
JxµXpdxq. (5.1)

If we have a continuous random variable X, which admits an expressible density function
f , then the characteristic function may be written as

φXpuq “

ż

Rd

eiu
Jxfpxqdx. (5.2)

Note that the characteristic function of a random variable is proportional to the Fourier
transform of its density function.

Definition 5.2 (Stable Random Variable).
A non-degenerate random variable X is said to be stable, if for all n ě 2 there exists
constants cn ą 0 and dn P R such that

X1 ` ¨ ¨ ¨ `Xn
L
“ cnX ` dn, (5.3)

where X1, . . . , Xn are i.i.d. copies of X. X is said to be strictly stable if dn “ 0 for all n.

We have the following Theorem.

Theorem 5.3.
For any stable random variable X, there exists a unique α P p0, 2s such that (5.3) holds
with cn “ n1{α.

The proof of Theorem 5.3 is omitted. The number α is called the index of stability or
characteristic exponent.
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While Definition 5.2 is intuitively clear, it doesn’t give a concrete way of parameterizing
stable distributions. An equivalent definition is that a random variable X is stable, if its
characteristic function φX can be written as

φXpuq “

#

exp
␣

´γα|u|α
`

1 ´ iβsgnpuq tanpπα2 q
˘

` iδu
(

, α ‰ 1,

exp
␣

´γ|u|
`

1 ` iβsgnpuq 2
π log |u|

˘

` iδu
(

, α “ 1,
(5.4)

where sgnp¨q denotes the sign function. The parameters α P p0, 2s and β P r´1, 1s are shape
parameters, and γ ą 0 and δ P R are scale and location parameters, respectively. We
write X „ Spα, β, γ, δq, if X follows such a stable distribution. Note that (5.4) is only one
possible parameterization with the disadvantage of being discontinuous in the α-parameter,
since tanpπα{2q Ñ 8 for α Ñ 1´ and tanpπα{2q Ñ ´8 for α Ñ 1`.

In the case of β “ 0, the characteristic function just becomes a streched exponential
function

φXpuq “ expt´γα|u|α ` iδuu. (5.5)

Furthermore, the distribution of X is symmetric around δ when β “ 0. Additionally, if δ “ 0,
then the characteristic function is real φXpuq “ φXpuq and symmetric φXpuq “ φXp´uq.
As is well-known from Fourier theory, X is then symmetric around 0 with an even density
function.

All stable distributions are absolutely continuous distributions with a density function
that is C8, see Theorem 1.1 in [24] for instance. However, only three stable distributions
have a density that is expressible in closed-form, namely the normal, Cauchy, and Lévy
distributions. When α “ 2 and β “ 0, Sp2, 0, γ, δq is simply a normal random variable with
mean µ “ δ and variance σ2 “ 2γ2. If α “ 1 and β “ 0, we have Sp1, 0, γ, δq „ Cauchypγ, δq

with scale and location parameters pγ, δq P p0,8q ˆ R. Finally, if α “ 1{2 and β “ 1,
we have that Sp1{2, 1, γ, δq „ Lévypγ, δq is a Lévy distribution with scale and location
parameters pγ, δq P p0,8q ˆR and support on pδ,8q. The densities of the standard normal,
Cauchy, and Lévy distributions are shown in Figure 5.1.

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

Cauchy

Lévy

Normal

Figure 5.1: Densities for Standard Normal, Cauchyp0, 1q, and Lévyp0, 1q Distributions.

It is clear from Figure 5.1 that the Cauchy and Lévy distributions have heavier tails
than the normal distribution. In the Gaussian case X „ N pµ, σ2q, it is well-known that
the tail probabilities decay exponentially

lim
xÑ8

eλxPpX ą xq “ 0 as x Ñ 8, (5.6)

for all λ ą 0. For general stable random variables, we have the following proposition, which
is presented without proof.
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Proposition 5.4.
Let X „ Spα, β, γ, δq with α P p0, 2q. Then

lim
xÑ8

xαPpX ą xq “ kα
1 ` β

2
γα, (5.7)

lim
xÑ8

xαPpX ă ´xq “ kα
1 ´ β

2
γα, (5.8)

where

kα “

ˆ
ż 8

0
t´α sinptqdt

˙´1

“

#

1´α
Γp2´αq cospπα{2q

, α ‰ 1,

2{π, α “ 1.
(5.9)

The fact that the tail probabilities decay like a power law means that forX „ Spα, β, γ, δq

with α ă 2, we have VarrXs “ 8. Consequently, the central limit theorem does not apply
in this case. Since Er|X|ps “

ş8

0 Pp|X|p ą xqdx for a general random variable X, we can
use Proposition 5.4 to deduce the following result.

Theorem 5.5.
Let X „ Spα, β, γ, δq be a stable random variable. Then

Er|X|ps ă 8 ô

$

’

&

’

%

p P p´1,8q, α “ 2,

p P p´8, αq, α P p0, 1q, |β| “ 1, and 0 R supppXq˝,

p P p´1, αq, otherwise,

(5.10)

where supppXq˝ denotes the interior of the support of X.

The important case Spα, 0, γ, 0q is often called a symmetric α-stable Lévy random
variable in the literature, and is often abbreviated as a SαS random variable. Note that
in this case, the Lévy prefix does not indicate that the random variable follows a Lévy
distribution. SαS random variables will become the building blocks of the important class
of stochastic processes called linear fractional stable motions. These will be introduced in
the subsequent section.

5.2 Linear Fractional Stable Motions

Since the pioneering work by Mandelbrot and van Ness [22], the fractional Brownian motion
(fBM) has become one of the most prominent Gaussian processes. For a filtered probability
space pΩ,F , pFtqtPR,Pq and H P p0, 1q, a fBM of Hurst index H is a continuous centered
Gaussian process BH “ pBH

t qtPR such that B0 “ 0 almost surely and with covariance
function

ErBH
t B

H
s s “

1

2

`

|t|2H ` |s|2H ´ |t´ s|2H
˘

, t, s P R. (5.11)

The fBM is almost surely pH ´ εq-Hölder continuous on compact intervals for all ε ą 0.
Consequently, the Hurst index H controls the regularity of the process with H “ 1{2
corresponding to a standard Brownian motion as evident by (5.11). Furthermore, the fBM
is self-similar and has stationary increments. It is also not a semimartingale unless H “ 1{2,
i.e. the case of a standard Brownian motion. For more details on the fractional Brownian
motion, we refer to [25].

The paths of a fBM with H P p0, 1{2q are referred to as being "rough", while paths of a
fBM with H P p1{2, 1q are called non-rough. Examples of rough and non-rough paths are
seen in Figure 5.2, which shows simulated fBM paths with 10, 000 points each. It is clear
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that the fBM becomes less rough and more well-behaved as H increases. For details on
how to simulate paths of a fBM, we refer to [13].

−1
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1

2

0.00 0.25 0.50 0.75 1.00
t

B
tH

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
t

B
tH

Figure 5.2: Paths of fBMs of Hurst Indices 0.25 (left) and 0.75 (right).

The Mandelbrot-Van Ness representation expresses a fBM in terms of stochastic integrals
with respect to a two-sided Brownian motion W

BH
t “ CH

"
ż t

´8

pt´ sqH´1{2dWs ´

ż 0

´8

p´sqH´1{2dWs

*

, (5.12)

where CH :“
b

2HΓp3{2´Hq

ΓpH`1{2qΓp2´2Hq
. [22]

If we omit the Gaussianity assumption, the class of self-similar processes with stationary
increments and a representation alike (5.12) becomes much larger. One such example is
the linear fractional stable motion (LFSM).

Definition 5.6 (Linear Fractional Stable Motion).
A linear fractional stable motion Z “ pZtqtPR on the filtered probability space pΩ,F , pFtqtPR,Pq

is a process defined by

Zt “

ż

R

!

pt´ sq
H´1{α
` ´ p´sq

H´1{α
`

)

dLs, t P R, (5.13)

where xp` :“ maxtxp, 0u, H P p0, 1q, and L “ pLtqtPR is a symmetric α-stable Lévy motion
with α P p0, 2s and scale parameter γ ą 0.

That L “ pLtqtPR is a symmetric α-stable Lévy motion means that L has stationary
and independent increments (whence Lévy) with distribution Lt ´Ls „ Spα, 0, |t´ s|1{α, 0q

for t ą s.
In the case α “ 2, we have that Z is a fractional Brownian motion with Hurst index

H, and consequently its paths are pH ´ εq-Hölder continuous for all ε ą 0. For α ă 2 and
H ą 1{α, we have that the paths of Z are pH ´ 1{α ´ εq-Hölder continuous for all ε ą 0.
Otherwise, Z is measurable with unbounded paths on every compact interval. Furthermore,
even when H ą 1{α and α ă 2, the Hölder exponent of Z cannot exceed 1{2. This is due
to the fact that in this situation, we neccesarily have that H ă 1{2 and α ą 1. In this case,
we refer to Z as being "rough", and hence use the same nomenclature as for fBMs.

In the Gaussian case, i.e. α “ 2, we can formulate the Hölder continuity explicitly as
follows; For every T ą 0 and λ P p0, Hq, there exists a positive random variable Cλ,T , which
depends on λ and T , such that

|Zt ´ Zs| ď Cλ,T |t´ s|λ, @t, s P r0, T s. (5.14)
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Moreover, Cλ,T has finite moments of all orders, see Theorem 1 in [4]. When α ă 2 and
H ą 1{α, we can apply the Garsia-Rodemich-Rumsey inequality to choose 1 ă 1

H´λ ă p ă α
such that

|Zt ´ Zs| ď Cλ,T |t´ s|λ, @t, s P r0, T s, (5.15)

where the positive random variable Cλ,T is given by

Cλ,T “ K

ˆ
ż T

0

ż T

0

|Zu ´ Zv|

|u´ v|ζp`1
dudv

˙1{p

, (5.16)

in which ζ “ λ` 1{p with ζ P p1{p,Hq, and K is a non-random positive constant, which
depends on T, p, and ζ. If we let q ă α and take some p ď q, then by applying Minkowski’s
integral inequality and the self-similarity of X, we obtain that

Er|Cλ,T |qs ď K

ˆ
ż T

0

ż T

0
|u´ v|ppH´ζq´1dudv

˙q{p

ă 8. (5.17)

Consequently, Cλ,T has moments of order q ă α.

5.2.1 Simulation of a Linear Fractional Stable Motion

This section is based on [31] and [20].
Suppose we wish to simulate the path of a LFSM Z on the interval r0, T s for some

T ą 0. We will adopt the notation rZt0 ,
rZt1 , . . . ,

rZtN for a simulated path of Z at the points
0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T .

However, note that due to the self-similarity of Z, it is sufficient to simulate pZ̃0, Z̃1, . . . , Z̃N q,
since we have that

p rZt0 ,
rZt1 , . . . ,

rZtN q
L
“ pT {NqHp rZ0, rZ1, . . . , rZN q, (5.18)

Furthermore, the simulation procedure we will present is approximate in a sense that will be
made precise later. In the Gaussian case α “ 2, exact simulation techniques for fBMs such
as Cholesky decomposition or the circulant embedding method can be applied instead, see
[13]. We use the circulant embedding method for fBMs, since this is computationally much
faster with a complexity of OpN logNq, whereas performing a Cholesky decomposition of
the covariance matrix has a complexity of OpN3q. We refer to [20] for a comparison of the
two methods.

Firstly, we note that we can normalize a LFSM in the sense that

Zt “ C´1
H,α

ż

R

!

pt´ sq
H´1{α
` ´ p´sq

H´1{α
`

)

dLs, t P R, (5.19)

where CH,α is a normalizing constant depending on H and α such that ∥Z1∥α “ 1, which
is given by

CH,α :“

ˆ
ż

R
|p1 ´ sq

H´1{α
` ´ p´sq

H´1{α
` |αds

˙1{α

. (5.20)

Let Vk :“ Zk ´ Zk´1, k P Z, be the first-order increments of Z. Then by (5.19), we have
that

Vk “ C´1
H,α

ż

R
gpk ´ sqdLs “ ´C´1

H,α

ż

R
gpsqdLk´s, (5.21)

where gpsq :“ psq
H´1{α
` ´ ps ´ 1q

H´1{α
` . The stationary sequence pVkqkPZ is called linear

fractional stable noise.
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The idea behind the simulation scheme is to use Riemann-sums to approximate the
stochastic integral in (5.21) to obtain an approximate simulation of the noise V , and then
take cumulative sums to obtain an approximate simulation of Z.

Firstly, we introduce the parameters m,M P N and set

V m,M
k :“ C´1

H,αpm,Mq

mM
ÿ

j“1

´

pj{mq
H´1{α
` ´ pj{m´ 1q

H´1{α
`

¯

X
pmq

mk´j , (5.22)

where Xpmq

j , j P Z, are independent random variables with the same SαS distribution
Spα, 0,m´1{α, 0q. The normalization constant CH,αpm,Mq is such that ∥V m,M

1 ∥α “ 1 and
is given by

CH,αpm,Mq :“ m´1

˜

mM
ÿ

j“1

∣∣∣pj{mqH´1{α ´ pj{m´ 1q
H´1{α
`

∣∣∣α¸1{α

. (5.23)

The parameters m and M control the precision of the integral computation, where m
controls the mesh size, and M is a truncation parameter that determines the kernel function
cut-off. We now consider the moving average process W “ pWnqnPN defined by

Wn :“
mM
ÿ

j“1

aH,m
j X

p1q

n´j , (5.24)

where Xp1q

j
i.i.d.
„ Spα, 0, 1, 0q, j P Z, are i.i.d. standard SαS random variables, and the

sequence paH,m
j qjPN is given by

aH,m
j :“ C´1

H,αpm,Mq

´

pj{mqH´1{α ´ pj{m´ 1q
H´1{α
`

¯

m´1{α, j P N. (5.25)

Since
␣

X
pmq

j , j P Z
( d

“
␣

m´1{αX
p1q

j , j P Z
(

, we combine this in conjunction with (5.22)
and (5.25) to deduce

!

V m,M
k , k “ 1, . . . , N

)

L
“ tWmk, k “ 1, . . . , Nu, (5.26)

where N is the number of generated points from the LFSM. Hence, our focus will be on
computing the moving average Wn for n “ 1, . . . ,mN . For large values of m and M , the
moving average approximates Vk well in the sense that

pWm,W2m, . . . ,WNmq
L

ÝÝÝÑ
mÑ8, MÑ8

pV1, V2, . . . , VN q. (5.27)

In order to compute the moving average, we define the following two mpM `Nq-periodic
sequences by

rX
p1q

j :“ X
p1q

j , j “ 1, . . . ,mpM `Nq, (5.28)

raH,m
j :“

#

aH,m
j , j “ 1, . . . ,mM,

0, j “ mM ` 1, . . . ,mpM `Nq,
(5.29)

where the two sequences are extended to Z by simply repeating the patterns in (5.28) and
(5.29). By (5.24), we now have

␣

Wn

(mN

n“1

L
“

$

&

%

mpM`Nq
ÿ

j“1

raH,m
j

rX
p1q

n´j

,

.

-

mN

n“1

. (5.30)
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Finally, the discrete convolution of the sequences praH,m
j qjPZ and p rX

p1q

j qjPZ is computed
using the circular convolution theorem. This states that the convolution of two sequences
can be computed as the inverse discrete Fourier transform of the product of the discrete
Fourier transforms of the two sequences. The computation of the Fourier transforms is
done efficiently using the Fast Fourier transform (FFT). After computing the convolution,
we may take cumulative sums to obtain the desired sample p rZ1, rZ2, . . . , rZN q and rescale if
necessary.

In Figure 5.3, we have simulated 2 LFSM paths Zt along with their driving Lévy motions
Lt on the unit interval with parameters N “ 211 ´ 600, m “ 256, and M “ 600. The
top row shows the rough case H ă 1{α with H “ 0.2 and α “ 1.4, while the bottom row
displays the case H ą 1{α with H “ 0.8 and α “ 1.4. In the rough case, the paths of Zt

are unbounded on every compact interval, and we see in the top row of Figure 5.3 how Zt

explodes at the jump times of Lt.

−40

−20

0

20

0.00 0.25 0.50 0.75 1.00
t

Z
t

−15000

−10000

−5000

0

0.00 0.25 0.50 0.75 1.00
t

L t

−0.5

0.0

0.5

0.00 0.25 0.50 0.75 1.00
t

Z
t

−5000

0

5000

10000

0.00 0.25 0.50 0.75 1.00
t

L t

Figure 5.3: Simulated LFSM Paths Zt and Their Driving Lévy Motions Lt both in Rough
Case H ă 1{α (Top Row) and Non-Rough Case H ą 1{α (Bottom Row).

5.3 Stochastic Delay Differential Equations

This section is based on [29] and [21].
Stochastic differential equations (SDEs) play a vital role in stochastic calculus and

financial mathematics. Recall that a general one-dimensional SDE takes the following form

Xt “ X0 `

ż t

0
bps,Xsq ds`

m
ÿ

j“1

ż t

0
σpjqps,Xsq dBpjq

s , t ě 0, (5.31)

where b : r0,8q ˆR Ñ R and σpjq : r0,8q ˆR Ñ R for j “ 1, . . . ,m are Borelian functions,
and B is a m-dimensional standard Brownian motion. A solution to (5.31) is a triplet of the
form ppΩ,F , pFtqtě0,Pq, B,Xq consisting of a filtered probability space satisfying the usual
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conditions, a Rm-valued Brownian motion B adapted to pFtqtě0, and the pFtqtě0-adapted
continuous solution process X. In fact, we have that the solution process X “ pXtqtě0 is
Markovian with respect to the filtration pFtqtě0.

However, we would like to be able to adjust the regularity of the solution process as well
as introduce memory, or long-range dependence, into the solution process. In this section,
we will introduce so-called Stochastic Delay Differential Equations (SDDEs), which can be
seen as the generalization of classical SDEs to a non-Markovian framework. In particular,
we will study SDDEs with additive noise, where the linear fractional stable motion will
play the role as our noise process.

Definition 5.7 (Stochastic Delay Differential Equation).
Let pΩ,F , pFtqtě0,Pq be a filtered probability space supporting a LFSM Z “ pZtqtě0 with
stability index α P p0, 2s. A stochastic delay differential equation with additive noise then
takes the following form

Xt “ ψp0q `

ż t

0

ż

r0,τ s

bpXs´rq ηpdrqds` Zt, t ě 0,

Xt “ ψptq, ´τ ď t ă 0,

(5.32)

where τ ą 0, η : Bpr0, τ sq Ñ R is a finite, signed measure on r0, τ s, b : R Ñ R is measurable,
and ψ : r´τ, 0s Ñ R is a deterministic and continuous function that vanishes outside r´τ, 0s.

For standard SDEs, we have existence and uniqueness, if the drift and diffusion compo-
nents satisfy a global Lipschitz-condition in the spatial variable. For SDDEs of the form
(5.32), we have the following result.

Theorem 5.8 (Existence and Uniqueness).
Assume that b : R Ñ R is Lipschitz-continuous and of linear growth, i.e.

DC ą 0 : |bpxq| ď Cp1 ` |x|q. (5.33)

Then the following holds

1. If α “ 2 or α ă 2 and H ą 1{α, then (5.32) admits a solution X with continuous
paths satisfying

Er|Xt|
ps ă 8, @t ą 0, (5.34)

where p ă α if α ă 2, and if α “ 2, then X has moments of all orders. Such a solution
is unique, up to indistinguishability, within the class of continuous processes.

2. If 1 ă α ă 2 and H ă 1{α, then for each T ą 0 there exists a measurable process Xt,
t P r´τ, T s, satisfying (5.32) and which additionally satisfies

E
„
ż T

0

ż

r0,τ s

|Xs´r|p |η|pdrqds
ȷ

ă 8, (5.35)

for T ą 0 and p P r1, αq, and where |η| is the total variation measure associated to η.
Furthermore, we have

sup
´τďtďT

Er|Xt|
ps ă 8, (5.36)

and that the solution is unique, up to indistinguishability, within the class of measur-
able processes satisfying (5.35).

We now make the following remarks.
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1. The solution process X inherits the path properties of Z. In particular, if α “ 2 and
Z is a fBM, then X has pH ´ εq-Hölder continuous paths for all ε ą 0 on r0,8q. If
α ă 2 and H ą 1{α, then X has pH ´ 1{α´ εq-Hölder continuous paths for all ε ą 0
on r0,8q.

2. If α P p1, 2q, H ą 1{α, and b is of linear growth, then by combining a localization
argument along with Grönwall’s inequality and the self-similarity property of Z, one
can show that for all p P r1, αq and every T ą 0, we have

E
”

sup
0ďtďT

|Xt|
p
ı

ď K1E
”

sup
0ďtďT

|Zt|
p
ı

eK2T p´1
“ K1e

K2T p´1
T pH , (5.37)

for some positive constants K1 and K2. In the case of fBM α “ 2, the bound (5.37)
still holds due to Theorem 1.1 in [26].

3. If the assumptions of Theorem 5.8 hold, then (5.37) above along with (5.14) and
(5.16) give us the Hölder-condition

|Xt ´Xs| ď Cλ|t´ s|λ, @t, s P r0, T s, (5.38)

where T ą 0. If α “ 2 and 0 ă λ ă H, then the positive random variable Cλ has
finite moments of all orders p. If α ă 2, H ą 1{α, and 0 ă λ ă H ´ 1{α, then the
positive random variable Cλ has finite moments of order p ă α.

5.3.1 Euler-Maruyama Scheme for SDDEs

As for SDEs, finding the solution of a given SDDE is generally a non-trivial task. Conse-
quently, we may turn to numerical simulations of the solution process, and in particular, we
will study the Euler-Maruyama scheme associated to (5.32). For this section, we will always
assume that α P p1, 2s, and that the assumptions of Theorem 5.8 are satisfied. Hence, a
unique solution to (5.32) is guaranteed, which we denote by X. Additionally, we set

T psq :“ ts{∆τ,nu∆τ,n, s ě 0, ∆τ,n :“ τ{n, (5.39)

for some n P N. We will adopt the notation Xn
t for a simulation at time t, and we define

the Euler-Maruyama scheme associated to (5.32) as

Xn
t :“

$

’

&

’

%

ψp0q `

ż t

0

ż

r0,τ s

b
´

Xn
T psq´T prq

¯

ηpdrqds` Zt, t ě 0,

ψptq, ´τ ď t ă 0.

(5.40)

If we let 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ T be a partition of the interval r0, T s for some T ą 0,
then for t P pti´1, tis, i “ 1, 2, . . . , n, we may observe that

Xn
t “ Xn

ti´1
` pt´ ti´1q

˜

bpXn
ti´1´τ qηptτuq `

n
ÿ

j“1

bpXn
ti´1´tj´1

qηprtj´1, tjqq

¸

` Zt ´ Zti´1 .

(5.41)
This implies that Xn is jointly measurable, and if the noise process Z is λ-Hölder continuous,
then so is Xn. Furthermore, an application of Grönwall’s inequality along with Theorem
5.8 gives us the following bound on the error

E
”

sup
tďT

|Xt ´Xn
t |p

ı

ď C∆pH
T,n, (5.42)
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for p ě 1 if α “ 2 and for p ă α if α ă 2, and C is some constant independent of n.
In order to implement the scheme in (5.41), we may pick an equidistant partition of

r0, T s, i.e. ti “ i∆T,n for i “ 0, 1, . . . , n and ∆T,n :“ T {n. This simply corresponds to
always picking the right endpoint of pti´1, tis in (5.41). Furthermore, we may decompose
the sum in (5.41) and obtain the following scheme

Xn
ti “Xn

ti´1
` ∆T,nbpX

n
ti´1´τ qηptτuq ` ∆T,n

i
ÿ

j“1

bpXn
ti´1´tj´1

qηprtj´1, tjqq

` ∆T,n

n
ÿ

j“i`1

bpψpti´1 ´ tj´1qqηprtj´1, tjqq ` Zti ´ Zti´1 , i “ 1, 2, . . . , n.

(5.43)

Furthermore, we need to make some choices for b, η, and ψ. For the function b, we make a
linear choice b : x ÞÑ ax for some a P R, which is certainly Lipschitz and of linear growth.
For the measure η, we may pick

ηpdrq “ ´λδt0updrq ` θδtτupdrq, λ, θ P R, (5.44)

where δtxu is the Dirac measure concentrated in the point x. Using this measure, the scheme
(5.43) amounts to

Xn
ti “ Xn

ti´1
` ∆T,n

´

bpXn
ti´1´τ qθ ´ bpψp0qqλ

¯

` Zti ´ Zti´1 , i “ 1, 2, . . . , n. (5.45)

Hence, this choice of measure puts all its weight at the endpoints 0 and τ .
Alternatively, we could pick a measure η, which is absolutely continuous with respect

to the Lebesgue measure with the density

ηpdrq “ e´λrrθdr, (5.46)

where λ P R and θ ą ´1 are parameters. Using this measure, we obtain the scheme

Xn
ti “Xn

ti´1
` ∆T,n

i
ÿ

j“1

b
´

Xn
ti´1´tj´1

¯

ż

rtj´1,tjs

e´λrrθ dr

` ∆T,n

n
ÿ

j“i`1

bpψpti´1 ´ tj´1qq

ż

rtj´1,tjs

e´λrrθ dr ` Zti ´ Zti´1 ,

(5.47)

for i “ 1, 2, . . . , n. By choosing n sufficiently large, we can make |tj ´ tj´1| ă δ for any
δ ą 0, and hence we may use the following Riemann-approximation for simulation

ż

rtj´1,tjs

e´λrrθ dr « ptj ´ tj´1qe´λtj tθj , j “ 1, 2, . . . , n. (5.48)

For the initial function ψ, we want some continuous function on the interval r´τ, 0s satisfying
the initial condition ψp0q “ ψ0. Initially, we may pick a truncated Gaussian function of the
form

ψptq :“ ψ0e
´t2{2β2

1r´τ,0sptq, β ą 0. (5.49)

Note, however, that while (5.49) is continuous on r´τ, 0s and satisfies ψp0q “ ψ0, we don’t
have ψp´τq “ 0.

If we want to ensure ψp´τq “ 0 and ψp0q “ ψ0, we may use various interpolation
techniques to obtain the function ψ. If we use a cubic Hermite spline on the interval r´τ, 0s

with the specified initial conditions, we get

pψ ˝ uqptq :“ τ
`

uptq3 ´ 2uptq2 ` uptq
˘

mτ ` ψ0

`

´2uptq3 ` 3uptq2
˘

` τ
`

uptq3 ´ uptq2
˘

m0,
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where mτ and m0 are the desired slopes ψ1p´τq “ mτ and ψ1p0q “ m0, and uptq :“ t`τ
τ is

an affine function mapping r´τ, 0s bijectively to r0, 1s. If we pick mτ “ m0 “ 0, we get a
cubic spline of the simple form

ψptq “ ψ0

#

´2

ˆ

t` τ

τ

˙3

` 3

ˆ

t` τ

τ

˙2
+

. (5.50)

Finally, we may simply pick the first-degree linear interpolant through the points p´τ, 0q

and p0, ψ0q, i.e.

ψptq “
ψ0

τ
t` ψ0. (5.51)

Example 5.9.
We now consider a SDDE of the following Ornstein-Uhlenbeck type

dXt “ Xt´τdt` γdBH
t , t ą 0, (5.52)

Xt “ ψptq, t P r´τ, 0s, (5.53)

where γ P R, BH “ pBH
t qtě0 is a fBM of Hurst index H P p0, 1q, and ψ is a continuous

function on r´τ, 0s. In this case, we have η “ δtτu and bpxq “ x, which is certainly Lipschitz-
continuous and of linear growth, and hence we have a unique (up to indistinguishability)
and continuous solution process X.

If we set ϕ1ptq :“ ψptq, then for t P r0, τ s we have that t ´ τ P r´τ, 0s, and the SDDE
(5.52) becomes the SDE

dXt “ ϕ1pt´ τqdt` γdBH
t (5.54)

Rewriting (5.54) in its integral form, we get that

Xt “ ϕ1p0q `

ż t

0
ϕ1ps´ τq ds`

ż t

0
γ dBH

s

“ ϕ1p0q `

ż t

0
ϕ1ps´ τq ds` γBH

t

“: ϕ2ptq.

For t P rτ, 2τ s, we have t´ τ P r0, τ s and thus on this interval, the SDDE becomes

dXt “ ϕ2pt´ τqdt` γdBH
t .

We may again rewrite this in its integral form

Xt “ ϕ2pτq `

ż t

τ
ϕ2pu´ τq du`

ż t

τ
γ dBH

u

“ ϕ2pτq `

ż t

τ

„

ϕ1p0q `

ż u´τ

0
ϕ1ps´ τq ds` γBH

u´τ

ȷ

du`

ż t

τ
γ dBH

u

“ ϕ2pτq ` ϕ1p0qpt´ τq `

ż τ

t

ż u´τ

0
ϕ1ps´ τq dsdu`

ż t

τ
γBH

u´τ du` γpBH
t ´BH

τ q

“: ϕ3ptq.

We can repeat this procedure iteratively on the intervals rpi´ 1qτ, iτ s for i “ 3, 4, . . . , and
construct the solution recursively.
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We see that the solution ϕnptq for t P rpn´2qτ, pn´1qτ s satisfies the recurrence relation

ϕnptq “

$

’

&

’

%

ϕn´1ppn´ 2qτq `

ż t

pn´2qτ
ϕn´1ps´ τq ds` γ

´

BH
t ´BH

pn´2qτ

¯

, n ě 2,

ϕ1ptq, n “ 1.

(5.55)

If we take τ “ 1, γ “ 1, and ψ to be the cubic spline in (5.50) with ψ0 “ 1, we may simulate
the solution process X on r0, 1s. In Figure 5.4, we have a solution process driven by a rough
fBM with H “ 0.25. The exact solution X is computed according to (5.55) with the Euler
approximations Xn

t superimposed in red for various step sizes ∆T,n.
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Figure 5.4: Euler Approximations for Various Step Sizes ∆T,n with H “ 0.25.

It is seen that already for n ě 100, the true solution is approximated well by the Euler
scheme. In Figure 5.5, the solution process X is driven by a fBM with H “ 0.75, and
we see that the Euler approximations Xn

t converge to the true solution faster than in the
rough case. In particular, we see that already for n “ 100, the exact solution and the Euler
approximation start to become visually indistinguishable. For n “ 1000, the Euler scheme
is identically superimposed on the exact solution. The fact that the convergence is faster
for the non-rough case than the rough case is proven in [29], which we refer to for details.
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6 Simulation Study

In this chapter, we will conduct a simulation study in order to asses the power of the jump
test introduced in Chapter 4. Firstly, we will asses the power of the test when applied to a
number of standard Itô semimartingale processes both with and without jumps. Secondly,
we will examine what happens when we apply the test to processes, which contain a rough
volatility component, and thus are not semimartingales. In this way, we will examine
whether the test is able to distinguish between rough volatility in the price process or actual
jumps in the price process.

6.1 Choosing Parameters

We simulate the processes at different frequencies with an observation length of t “ 1
trading day. Hence, we simulate the processes on the unit interval r0, 1s in order to emulate
1 trading day of 6.5 hours. The highest frequency is ∆n “ 1 second, which gives 23400
points in total, and the lowest frequency is ∆n “ 30 seconds, which totals 780 points for a
trading day. We simulate 1000 paths of the process for each frequency and choice of k, and
all the price paths have a starting value of S0 “ 100. Please note that we use St throughout
this chapter to denote log-prices of our model.

In accordance with [1], we set p “ 4 in all our test. Hence, we have from (4.25) that
asymptotically pSp4, k,∆nqt Ñ k on Ωc

t . Furthermore, it is wise to choose k not too large,
since the asymptotic variance increases with k. Additionally, for large values of k, we
discard a lot of data, which leads to a decrease in the effective sample size used to compute
the numerator pBpp, k∆nqt. As in [1], we let k P t2, 3, 4u in our tests.

Finally, we have to choose the parameters C and ϖ used to compute pApp,∆nqt in (4.31).
Based on simulations, [1] argues that picking ϖ “ 0.47 and letting C be between 3 and 5
times the average value of σ lead to good finite sample properties of the involved estimators.
For a general financial time series, the spot volatility σ is a latent variable, which we cannot
observe, but since we are simulating the processes, we will simply take C to be 4 times the
average value of our simulated volatility component.

6.2 Itô Semimartingale Processes

The first model for prices is a standard geometric Brownian motion as previously studied
in Section 3.2.1, i.e. we simulate the prices as

dSt “ µdt` σdBt, (6.1)

where B is a standard Brownian motion. For our simulations, we use µ “ σ “ 0.1 as our
drift and diffusion coefficients, respectively. When conducting a test on level α P p0, 1q,
choosing the significance level α entails a probability of making mistakes, when choosing to
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accept or reject the null hypothesis H0 of no jumps. The significance level is the probability
of making a so-called Type 1 error, which means falsely rejecting the null hypothesis.

Mean Value of pSp4, k,∆nq Rejection Rate in Simulations

∆n n k Asymptotic Simulations 10% 5%

1 sec 23 400 2 2 1.997 0.097 0.050
1 sec 23 400 3 3 3.000 0.094 0.044
1 sec 23 400 4 4 4.006 0.099 0.043

5 sec 4680 2 2 2.001 0.097 0.051
5 sec 4680 3 3 2.995 0.108 0.060
5 sec 4680 4 4 4.014 0.113 0.051

10 sec 2340 2 2 2.007 0.095 0.047
15 sec 1560 2 2 1.999 0.111 0.049
30 sec 780 2 2 2.001 0.101 0.053

Table 6.1: Geometric Brownian Motion with µ “ σ “ 0.1.

In Table 6.1, we see that we make a Type 1 error as frequent as we expected. When
testing on a 10% significance level, we reject the null hypothesis about 10% of the time, and
equivalently our rejection rate is close to 5% for a significance level of 5%. The rejection
rate at α “ 0.1 is slightly higher for ∆n “ 5 seconds with k “ 4 as well as ∆n “ 15 seconds,
which is expected, since the test is asymptotic. The mean values of the pSp4, k,∆nq statistics
are also extremely close to the asymptotic values of k.

The next process is the following stochastic volatility model as suggested in [11]

dSt “ adt` ρσtdBt `
a

1 ´ ρ2σtdWt, (6.2)

where B and W are two independent Brownian motions and ρ P r´1, 1s. The logarithm of
the spot volatility is modelled as an Ornstein-Uhlenbeck process, i.e. we have the following

σt “ exppβ0 ` β1Xtq, (6.3)
dXt “ θXtdt` dBt, (6.4)

where β0, β1 P R and θ ă 0. The Ornstein-Uhlenbeck process Xt is simulated on the
equidistant grid 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ T using the exact discretization

Xtj`1 “ eθ∆nXtj `

b

´p2θq´1p1 ´ e2θ∆nqξj`1, ξj`1 „ N p0, 1q, (6.5)

where ∆n “ T {n. The initial value of the Ornstein-Uhlenbeck process is drawn ran-
domly from its stationary Gaussian distribution N

`

0, p´2θq´1
˘

. Hence, we get that X is
automatically stationary. The parameter values we will use for our simulation study are

pa, β0, β1, θ, ρq “ p0.03,´5{16, 1{8,´1{40,´0.3q. (6.6)

With this choice of β0, β1, and θ, normalization of the volatility σt is ensured in the sense
that

E
„
ż 1

0
σ2s ds

ȷ

“ 1. (6.7)
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In Table 6.2, we report the testing results for simulations of the model (6.2) with the
parameters (6.6).

Mean Value of pSp4, k,∆nq Rejection Rate in Simulations

∆n n k Asymptotic Simulations 10% 5%

1 sec 23 400 2 2 1.999 0.099 0.048
1 sec 23 400 3 3 3.002 0.098 0.056
1 sec 23 400 4 4 3.992 0.086 0.040

5 sec 4680 2 2 2.004 0.098 0.051
5 sec 4680 3 3 3.003 0.095 0.050
5 sec 4680 4 4 3.992 0.102 0.047

10 sec 2340 2 2 1.997 0.111 0.053
15 sec 1560 2 2 1.998 0.104 0.046
30 sec 780 2 2 2.011 0.111 0.056

Table 6.2: Stochastic Volatility Model in (6.2) with Parameters (6.6).

Once again the test performs as expected with a rejection rate close to α in our
simulations. Furthermore, we see that the rejection rates increase as ∆n increases as was
anticipated due to asymptotic specification of the test. However, the test generally performs
very well and achieves a rejection rate close to α even with a mesh size of ∆n “ 30 seconds.
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Figure 6.1: Distribution of Non-Standardized (Top Row) and Standardized (Bottom Row)
Test Statistics for ∆n “ 1 second and k P t2, 3u.

43



Group 1.204f CHAPTER 6. SIMULATION STUDY

In Figure 6.1, the distribution of the non-standardized test statistics pSp4, k,∆nqt from
the tests performed in Table 6.2 at the ∆n “ 1 second frequency for k P t2, 3u are displayed
in top row, and the standardized statistics in the bottom row. The non-standardized
statistics are clearly centered around k as supported by the reported mean values in Table
6.2. From Theorem 4.7, we have that ppV c

n,tq
´1{2ppSpp, k,∆nqt ´ kp{2´1q „ N p0, 1q, which is

also supported by the bottom row, where the Gaussianity of the standardized statistics
clearly holds for both k. The standard normal density function is superimposed in red.

We now add jumps to the model in (6.2). Hence, we now consider the following model

St “ S0 ` at` ρ

ż t

0
σs dBs `

a

1 ´ ρ2
ż t

0
σs dWs `

ż t

0
ZNs dNs, (6.8)

where Nt is a Poisson process with intensity λ ą 0 and Z1, Z2, . . . , ZNt are i.i.d. random
variables distributed as some common random variable Z. Hence, we now add a compound
Poisson process to the stochastic volatility model, and we choose the jump distribution
Z „ N p0, 1q. In Figure 6.2, 3 paths of the process (6.8) with 23400 points each are displayed
along with the accompanying compound Poisson processes and the volatility processes. The
parameters are still (6.6) and the jump intensity is λ “ 1, thus averaging 1 jump per day.
However, we discard simulated paths that contain no jumps, and hence the actual number
of jumps will be slightly higher than 1.
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Figure 6.2: Simulated Paths of (6.8) with Parameters (6.6) and λ “ 1.

In Table 6.3, we conduct the same testing methodology for the model (6.8) with jump
intensities λ P t1, 3, 6u in order to asses the power of the test. Since the power function βcn,t
is conditional on the set Ωj

t , we discard paths containing no jumps, and hence the actual
intensities will be slightly higher than the reported λ.
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λ “ 1 Mean Value of pSp4, k,∆nq Rejection Rate in Simulations

∆n n k Asymptotic Simulations 10% 5%

1 sec 23 400 2 1 1.038 0.988 0.987
1 sec 23 400 3 1 1.090 0.983 0.983
1 sec 23 400 4 1 1.176 0.975 0.969

5 sec 4680 2 1 1.085 0.950 0.946
5 sec 4680 3 1 1.167 0.955 0.945
5 sec 4680 4 1 1.200 0.965 0.962

10 sec 2340 2 1 1.091 0.953 0.942
15 sec 1560 2 1 1.115 0.925 0.915
30 sec 780 2 1 1.122 0.893 0.879

λ “ 3 Mean Value of pSp4, k,∆nq Rejection Rate in Simulations

∆n n k Asymptotic Simulations 10% 5%

1 sec 23 400 2 1 1.052 0.974 0.973
1 sec 23 400 3 1 1.110 0.974 0.972
1 sec 23 400 4 1 1.142 0.980 0.977

5 sec 4680 2 1 1.083 0.962 0.960
5 sec 4680 3 1 1.173 0.954 0.948
5 sec 4680 4 1 1.225 0.965 0.959

10 sec 2340 2 1 1.110 0.928 0.920
15 sec 1560 2 1 1.111 0.931 0.921
30 sec 780 2 1 1.126 0.892 0.877

λ “ 6 Mean Value of pSp4, k,∆nq Rejection Rate in Simulations

∆n n k Asymptotic Simulations 10% 5%

1 sec 23 400 2 1 1.057 0.974 0.974
1 sec 23 400 3 1 1.100 0.982 0.978
1 sec 23 400 4 1 1.155 0.972 0.970

5 sec 4680 2 1 1.082 0.948 0.945
5 sec 4680 3 1 1.166 0.956 0.954
5 sec 4680 4 1 1.283 0.948 0.945

10 sec 2340 2 1 1.097 0.936 0.923
15 sec 1560 2 1 1.101 0.925 0.915
30 sec 780 2 1 1.131 0.892 0.873

Table 6.3: Stochastic Volatility Model with Jumps in (6.8) with Parameters (6.6) and
Jump Frequencies λ P t1, 3, 6u.

From Theorem 4.5, we have that the random variables pSpp, k,∆nqt converge asymp-
totically to 1 on the set Ωj

t , and the mean values of the simulations are all close to 1 for
all frequencies ∆n, k, and jump intensities λ. However, we seem to get the best results
with k “ 2. Furthermore, the power of the test, i.e. the probability that the test correctly
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rejects the null hypothesis of no jumps conditional on Ωj
t , is seen to be very good. At the

high frequencies the test correctly rejects the null hypothesis for almost all paths. This
is in accordance with Proposition 4.8, which states that the power function βcn,t Ñ 1 as
∆n Ñ 0. Expectedly, the power of the test gets progressively worse as the frequency gets
lower, albeit it still performs relatively well and correctly rejects the null hypothesis in
about 90% of the paths at α “ 0.1 at the 30 second frequency. Finally, we see that the
power of the test seems unaffected by the jump frequency λ, since the rejection rate does
not change significantly from λ “ 1 to λ “ 6.

6.3 Non-Semimartingales

In order to investigate whether the jump test can distinguish between rough volatility and
jumps, we now replace the volatility process σ from the previous section with a "rough"
process. In the previous section, we had σt “ exppβ0 ` β1Xtq, where Xt was an Ornstein-
Uhlenbeck process. We now use the same stochastic volatility model in (6.2), but instead we
use σt “ exppXtq, where the log-volatility process Xt is modelled as the Ornstein-Uhlenbeck
type SDDE from Example 5.9 with delay τ “ 1 and γ “ 1, i.e.

dXt “ Xt´1dt` dBH
t , t P p0, 1s, (6.9)

Xt “ ψptq, t P r´1, 0s. (6.10)

Furthermore, we choose ψ to be the cubic spline in (5.50) with ψp0q “ logp0.1q. In [10],
Bolko et al. use a generalized method of moments approach to estimate the parameters in
the rough fractional stochastic volatility (RFSV) model introduced by Gatheral et al. in
[14] for the various stock indices in the Oxford-Man Institute’s realized library. For the
S&P 500 index, [10] obtain that H “ 0.043, which we consequently use as the Hurst index
for the fBM in (6.9).
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Figure 6.3: Stochastic Volatility Paths at 1, 5, and 30 Second Frequencies (Top) with
Rough Volatility Processes (Bottom) given by (6.9).
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In Figure 6.3, we have plotted 3 price paths of this model at different frequencies ∆n

along with their corresponding volatility processes. The volatility processes are extremely
rough, and they share many of the qualitative features of observed financial volatility series.
For example, they have persistent periods of high volatility that alternate with low volatility
periods, i.e. they reproduce the stylized fact of volatility clustering. Consequently, the price
paths are also more irregular with more erratic and jump-like behaviour.
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Table 6.4: Stochastic Volatility with Rough Volatility Component with H “ 0.043.

In Table 6.4, we report the test results for the rough set-up, where we have also added a
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column with the sample variance of the pSp4, k,∆nq variables. At the 1 second frequency, we
get very similar rejection rates to the rates in Table 6.3, since we reject the null hypothesis
for almost all the paths. However, the pSp4, k,∆nq variables do not approach 1 as they
did in the case with jumps. As previously, their mean value increase with k, but here the
increases are much bigger. The sample variances also increase with k, which is expected.

At the lower frequencies, the test becomes more indecisive, and the rejection rates drop
significantly. At ∆n “ 30 seconds, it rejects about half of the paths, and the mean value of
the non-standardized pS statistics seems to be about halfway between 1 and 2.
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Figure 6.4: Histograms and QQ-Plots for the Standardized Test Statistics with k “ 2 at
Different Frequencies.

Figure 6.4 displays the distribution of the standardized test statistics in the rough case.
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The vertical lines on the histograms are the standard normal quantiles Φ0.975 “ 1.96 and
Φ0.025 “ ´1.96, which determine the critical region when α “ 0.05. For ∆n “ 1, almost
all the test statistics fall within the critical region, and as ∆n increases, less and less fall
within the critical region. Although the distributions of the test statistics generally look
Gaussian, as evident by the QQ-plots, they have fatter right-sided tails.

Finally, we may now turn to the RFSV model from [14], where the log-volatility is
modelled as a fractional Ornstein-Uhlenbeck process

dSt “ µtdt` σtdWt, (6.11)
σt “ exppXtq, (6.12)

dXt “ ´κpXt ´mqdt` νdBH
t , X0 “ x0, (6.13)

where µt is a suitable drift term, Wt is a standard Brownian motion, m P R, κ, ν ą 0, and
BH is a fBM of Hurst index H P p0, 1{2q. As for the standard Ornstein-Uhlenbeck process,
there is an explicit form of the solution of (6.13), which is given by

Xt “ m` e´κt

ˆ

x0 ´m` ν

ż t

0
eκs dBH

s

˙

. (6.14)

Furthermore, the variance of Xt is given by

VarrXts “
ν2

2κ2H
Γp1 ` 2Hq. (6.15)

In [10], instead of estimating m directly, they instead estimate the auxiliary quantity

ξ “ exp

ˆ

m`
1

2
VarrXts

˙

. (6.16)

They obtain the following estimates for the parameters in the fractional Ornstein-Uhlenbeck
process calculated for the S&P 500.

κ ν ξ H

0.001 1.610 0.019 0.043

Table 6.5: GMM Estimated Parameters in (6.13) for S&P 500.

Using the parameters in 6.5, we simulate the RFSV model with the price process being
a driftless Itô process of the type

dSt “ σtdWt, (6.17)

where we assume W KK BH .
In Figure 6.5, 3 realizations of the RFSV model with the parameters in Table 6.5 and

X0 “ logp0.1q are depicted. The fractional Ornstein-Uhlenbeck process Xt, the volatility
process σt “ exppXtq, and the price process are all displayed at different frequencies.
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Figure 6.5: Simulated Paths in RFSV Model with Parameters in Table 6.5.

The small Hurst index H “ 0.043 results in very rough paths of Xt with corresponding
large spikes in the volatility process σt. The price process St is also more irregular than the
previous model in Figure 6.3. The volatility processes share many of the qualitative features
of the previous rough model, although the volatility spikes are considerably bigger. Hence,
the price paths are also more erratic with big fluctuations that could easily be mistaken for
jumps.

Consequently, the rejection rates summarized in Table 6.6 are close to 1. It is only
for the lower frequencies that the rejection rates start to decline, although we still reject
close to 90% of the paths at ∆n “ 15 seconds for α “ 0.1. At the lowest frequency of
∆n “ 30 seconds, the test becomes more indecisive, but we still reject far more paths than
we did for the continuous non-rough processes in Table 6.1 or Table 6.2, where the rejection
rates were close to α. The pSp4, k,∆nq statistics also seem to be behave more like there
are jumps present. Their mean values are closer to 1 for all values of k than they were in
Table 6.4, and their mean values do not increase as significantly when k increases. The
sample variances increase with k as expected. However, the sample variances are bigger at
the ∆n “ 1 frequency than they were in Table 6.4, but at the lower frequencies the sample
variances are approximately the same for the 2 models.
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Table 6.6: RFSV Model with Parameters in Table 6.5.
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7 Conclusion

This Master’s thesis investigates how jump tests perform, when they are tested against
non-semimartingale price processes containing a rough volatility component. In particular,
it investigates the jump test introduced by Aït-Sahalia and Jacod, which utilizes a ratio of
power variations at different frequencies as its test statistic.

The jump test is asymptotic and hence only makes sense for high-frequency data.
Consequently, the thesis contains a short digression into the characteristics of high-frequency
financial data, and some of the pitfalls when dealing with this type of data. In the subsequent
chapter, we introduce the integrated volatility, and how it can be estimated consistently
using the realized covariation estimator. The realized covariation is a particular example of
the so-called power variations, which are used to define our test statistic in the subsequent
chapter.

The jump test by Aït-Sahalia and Jacod is then introduced, which uses a ratio of power
variations to determine whether jumps are present in the observed path. The test statistic
converges to 1, if jumps are present, and to another deterministic value if the path is
continuous. We derive estimators for the asymptotic variance of the statistic, and we obtain
that the standardized statistic follows a standard normal distribution. Furthermore, we
have that the power function of the test converges to 1 as ∆n Ñ 0.

After introducing stochastic delay differential equations, we conduct a simulation study
to investigate, how the test handles rough volatility. We initiate the analysis by considering
the geometric Brownian motion and a stochastic volatility model. When tested on these
two standard Itô semimartingale processes, the test performs largely as expected. The
ratio of power variations pSp4, k,∆nq converges as expected to k, and the rejection rates
are approximately equal to the significance level α even at the lower frequencies. The
distributions of pSp4, k,∆nq are shown to be Gaussian, and the standardized statistics are
shown to be standard normal. We then add a compound Poisson process to the stochastic
volatility model in order to test for jumps. Conditional on the set Ωj

t , the test statistics
pSp4, k∆nq converge to 1, and in our simulations they do indeed converge to 1. Furthermore,
we have that the power function βcn,t Ñ 1 as ∆n Ñ 0, which is also the case for our
simulations, where the rejection rates are very close to 1 for ∆n “ 1 second. Additionally,
the rejection rates seem to be invariant to the jump intensity λ.

If we instead take the log-volatility to be a stochastic delay differential equation with a
rough fractional Brownian motion as noise term, the test seems to become more indecisive.
At the high frequency of ∆n “ 1 second, the rejection rates are very close to 1 as in the
jump case. However, at the low frequency ∆n “ 30 seconds, we have rejection rates of
56.5% and 44% at the significance levels α “ 0.1 and α “ 0.05, respectively. Whence the
test is largely indecisive about whether jumps are present or not in the process at the 30
second frequency.

For this model, the statistics pSp4, k,∆nq neither approach 1 nor k. However, they still
seem to converge to a deterministic value for the different k, e.g. pSp4, 2,∆nq « 1.4 for all of
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the different frequencies considered. Additionally, their distribution is still close to Gaussian,
albeit with fatter right-sided tails. This indicates that the Gaussianity of the statistics still
holds in the rough case, and that the ratio of power variations pS still converges to some
deterministic value, which in the presence of rough volatility is neither 1 nor k.

Finally, we conduct an analysis of the RFSV model introduced in [14], and we use the
parameters estimated for the S&P 500 in [10]. For this model, the price paths are more
erratic, and the test largely behaves as in the jump case. The rejection rates are close 1
for the frequencies ∆n “ 1 and ∆n “ 5. Consequently, we conclude that the test is clearly
unable to distinguish rough volatility from actual jumps, since all the rough price paths
contain no jumps. This holds for both rough models, since the test breaks down in both
cases.

For the RFSV model, the pS statistics still converge to a fixed value, which in this case
is closer to 1 than the previous rough model. Hence, many of the distributional properties
of the test seems to be intact in the rough setting, although the pS statistics converge to a
new deterministic value, which depends on the k value used to compute it.

We leave further investigation of this question for future research.
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A Miscellaneous Definitions and Results

In this appendix, we state various definitions and technical results that are used throughout
the project report, but stated here to ease the exposition.

A.1 Mixed Normal Distribution

Definition A.1 (Mixed Normal Distribution).
Let X,M,Z be real-valued random variables defined on some probability space pΩ,F ,Pq,
and let V be a non-negative random variable defined on the same probability space.
Furthermore, let Z „ N p0, 1q, and let M,V be independent of Z. We say X follows a
mixed normal distribution with parameters M and V , written X „ MNpM,V q, if

X “ M ` V 1{2Z. (A.1)

A.2 Slutsky’s Theorem

Theorem A.2 (Slutsky’s Theorem).
Let pYnqnPN and pZnqnPN be sequences of random variables defined on some probability
space pΩ,F ,Pq, and assume that Yn

L
Ñ Y and Zn

L
Ñ c as n Ñ 8, where c P R is a constant.

Then, as n Ñ 8, we have the following

1. Yn ` Zn
L
Ñ Y ` c,

2. ZnYn
L
Ñ cY ,

3. Yn{Zn
L
Ñ Y {c for c ‰ 0.

A.3 Stable Convergence in Law

This section is based on [2] and [16].
Before introducing the notion of stable convergence in law, we firstly define what a

Polish space is, and then what is understood by convergence in law.

Definition A.3 (Completely Metrizable Space, Polish Space).
Let pE, T q be a topological space. Then pE, T q is said to be completely metrizable if
there exists a metric d : E2 Ñ r0,8q, which induces the topology T , and such that pE, dq

is a complete metric space. Furthermore, pE, T q is said to be Polish, if it is completely
metrizable and separable. Correspondingly, pE, dq is called a Polish metric space.
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Definition A.4 (Convergence in Law).
Let pΩ,F ,Pq be a probability space, pE, dq a Polish metric space with Borel σ-algebra E , and
let ppΩn,Fn,PnqqnPN be a sequence of probability spaces. Then the sequence Zn : Ωn Ñ E
of random variables is said to converge in law, if there exists a probability measure µ on
pE, Eq such that

ż

Ωn

fpZnpωqq dPnpωq Ñ

ż

E
fpxq dµpxq as n Ñ 8, (A.2)

for every continuous and bounded function f on E.

Usually, one realizes the limit in (A.2) as a random variable Z with law µ. Specifically,
we can take X : E Ñ E as being the identity map Zpxq “ x on the probability space
pE, E , µq. Then (A.2) reads as

EnrfpZnqs Ñ ErfpZqs as n Ñ 8, (A.3)

for every continuous and bounded f on E, and we write Zn
L
Ñ Z.

Furthermore, if each Zn, n P N, is real-valued and absolutely continuous with distribution
function Fn, then Zn

L
Ñ Z implies the pointwise convergence of the distribution functions

pFnqnPN
Fnpxq Ñ F pxq as n Ñ 8, (A.4)

where F is the distribution function of Z, and x is a point of continuity for F .
For our purposes, convergence in law alone will not suffice, and we need a stronger

form of convergence for random variables. Firstly, we need to define what is meant by an
extension of our probability space.

Suppose we have a filtered probability space pΩ,F , pFtqtě0,Pq, and let pΩ1,F 1q be
another measurable space. Furthermore, let Q be a transition probability from pΩ,Fq

to pΩ1,F 1q, i.e. Qpω, ¨q is a probability measure on pΩ1,F 1q for ω P Ω, and Qp¨, F 1q is a
measurable function on pΩ,Fq for F 1 P F 1. We can then construct an extension in the
following manner

rΩ :“ Ω ˆ Ω1,

rF :“ F b F 1,

rP :“ PpdωqQpω,dω1q,

where the last definition should be understood in terms of integrals, i.e. for rF “ F ˆ F 1 P

F b F 1, we have
ż

rF
gpω, ω1q drPpω, ω1q “

ż

F

ż

F 1

gpω, ω1q dQpω, ω1qdPpωq, (A.5)

for some rF-measurable function g. Additionally, we may need to extend the filtration
pFtqtě0. In order to this, we identify a set A Ă Ω with the set A ˆ Ω1 Ă rΩ, and thus we
can identify a σ-algebra Ft Ă F with rFt :“ Ft ˆ tH,Ω1u Ă rF for t P r0,8q. The filtered
space prΩ, rF , p rFtqtě0, rPq is then called a filtered extension of pΩ,F , pFtqtě0,Pq.

A filtered extension is called very good if the mapping

ω ÞÑ

ż

Ω1

1Apω, ω1q dQpω, ω1q (A.6)

is Ft-measurable for all ω and A P rFt for every t P r0,8q. In particular, a very good filtered
extension preserves the semimartingale property in the sense that any semimartingale on
pΩ,F , pFtqtě0,Pq is also a semimartingale on prΩ, rF , p rFtqtě0, rPq.
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Definition A.5 (Stable Convergence in Law).
Let pΩ,F ,Pq be a probability space, pE, dq a Polish metric space with Borel σ-algebra E ,
and let pXnqnPN be a sequence E-valued random variables. Then we say pXnqnPN converges
stably in law, if there exists a probability measure µ on pΩ ˆ E,F b Eq such that

ErY fpXnqs “

ż

ΩˆE
Y pωqfpxqdµpω, xq (A.7)

for every bounded random variable Y and for every continuous and bounded function f on
E.

Definition A.5 is an abstract definition, and similarly to Definition A.4, we may realize
the limit as a random variable. Firstly, we may extend pΩ,F ,Pq in the following manner

rΩ :“ Ω ˆ E,

rF :“ F b E .

We may endow prΩ, rFq with the probability measure µ from Definition A.5. Furthermore,
we may automatically extend any random variable Zn on Ω to a random variable on rΩ,
with the same symbol, by setting Znpω, xq “ Znpωq. Letting Z be an E-valued random
variable defined on this extension, (A.7) is equivalent to saying

ErY fpZnqs Ñ rErY fpZqs as n Ñ 8, (A.8)

for every bounded random variable Y and every continuous and bounded function f on
E. We then say that Zn converges stably in law to Z, and we write Zn

Ls
Ñ Z. Stable

convergence obviously implies convergence in law, but it also implies much more than that.
We have the following proposition from [27].

Proposition A.6.
Let Zn, Vn, Z, Y, V be Rd-valued, F -measurable random variables and let g : Rd Ñ R be a
C1 function.

1. If Zn
Ls
Ñ Z and Vn

P
Ñ V , then pZn, Vnq

Ls
Ñ pZ, V q.

2. Let d “ 1 and Zn
Ls
Ñ Z „ MNp0, V 2q with V being F-measurable. Assume that

Vn
P

Ñ V and Vn, V ą 0. Then Zn{Vn
L
Ñ N p0, 1q.

3. Let
?
npZn ´ Zq

Ls
Ñ Y . Then

?
npgpZnq ´ gpZqq

Ls
Ñ ∇gpZqY .
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