


Abstract

Automated planning is a complex issue and
multiple avenues are researched to help solve
planning problems. Composite actions like meta-
actions are one such method. These meta-actions
functions as shortcuts making planners skip steps
they would otherwise be deciding the next action.
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I. Intro

Automated planning is the topic of finding
sequences of actions that solve a given problem
in some specific domain. Domains describe what
type of problem is to be solved, which could be
everything from how the drone in a warehouse
moves around packages to how to mix drinks at
a bar. Problems describe a specific scenario in a
domain, both the initial state and the goal state.

Solving problems in automated planning can
quickly become very complex. As a very naive
example, something as simple as a problem
involving 10 boolean elements would have 2!0
states possible. Of course planners, the engines
used to solve planning problems, do not naively
explore every possible state. Using heuristics is
the way to give planners some direction on what
path to take towards the goal [1]. Using composite
actions like macro-action or meta-actions is
another way to help planners solve problems][2].
Whenever planners have performed an action they
have to consider the next step to perform, however
in a lot of domains, the same sequence of actions
shows up multiple times, if say a robot picks up
a package the most common next step for it to
perform might be to move the package somewhere
else. Composite actions are attempts to find these
reoccurring sequences of actions and give them
their own actions instead. This essentially makes
planners skip steps where it has to consider its
options. A problem with adding these composite
actions is that it increase branching factor, simply
said, more options for planners to consider slows
planners down. Therefore, care must be taken
when selecting composite actions to compliment
the base-actions of a domain, in order to not
negate the gain of using them in the first place.
In some cases, these composite actions might
even be able to fully replace the base-actions,
which creates the possibility of removing these
base-actions to lower the branching factor.

The paper “Can I Really Do That? Verification
of Meta-Operators via Stackelberg Planning” [3]
created a number of meta-actions for some
domains. Of those created they selected 2 meta-

actions in the end to add to each explored domain
and called them domain_best (for each domain
that is). The meta-actions were chosen depending
on the coverage (problems solved) and the time
to solve the problems. A drawback of this was
that the meta-actions were tested separately,
so any synergy between the two meta-actions
is unknown. In my previous work I took this
domain_best and attempted to remove all possible
base-actions that were made "redundant” by the
meta-actions. The number of domains tested were
few, but the results from that work showed that
across most of the domains, a very small gain in
search time was achieved, but in one domain the
performance was terrible. It was speculated that
removing all possible base-actions was too strict of
a method, and instead the best performing set of
actions were very likely in between the 2 extremes
(removing all possible or removing none).

This project is a continuation in this process.
First off more meta-actions are included in
the domains to be explored. This obviously
significantly increases branching factor, which
means that unlike the previous work which only
considered base-actions for removal, this time, the
meta-actions themselves are to be considered for
removal. The number of possible sets of actions
grows by 2" with n being the number of actions.
Therefore steps are taken to skip processing sets
of actions that can quickly be deemed unable to
solve problems.

The paper “On the Effective Configuration of
Planning Domain Models”[4] studies the effect,
the ordering of actions in domain files has on
planning results. To do this the paper is using an
ML tool named SMACI5]. SMAC is particularly
convenient for this, as it has numerous presets
for optimizing problems beyond just machine
learning problems. Similarly, this project will use
SMAC to find sets of actions that are promising to
have a better performance than the domain_best
set of actions. These sets are then sent to an
external cluster and tested to judge the merits of
these sets.



II. Background

To understand the work that has been done, first an
explanation of what planning is, and the concept
of what a Meta-action is, is required.

A. Classical planning

STRIPS (Stanford Research Institute Problem
Solver)[3] is a way of expressing automated
planning tasks, by specifying facts, actions, initial
state, and goal state. STRIPS assumes a closed
world ie the entire state is known at the start. A
planning task in STRIPS is a tuple IT = (F, O, I, G).
Where F is a set of facts, O is a set of operators,
I C F is the initial state set and G C F is the goal
set. Each action o0 € O has a precondition(pre(0)),
an add effect(add(0)) and a deletion effect(del(0)).
These 3 sets are all subsets of F. A state s is
a set of facts which describe the current state,
where the presence of said facts means for the
fact to be True. An operator o is only applicable
in state s if pre(o) C s. Whenever an operator o
is performed, the state is changed by removing
from s the set of del(0) and adding to s the set of
add(o). The solution to a planning task in STRIPS
is a sequence of actions that goes from the initial
state to a state s such that G C s.

To help explain an example in STRIPS, a simple
domain, gripper is presented. The gripper domain
models a world where there are balls that need
to be moved between rooms and there is 1 robot
arm with 2 grippers, each capable of carrying one
ball. The domain has 3 base-actions. Pick which
picks up a ball from a room and occupies one of
the grippers. Drop which places a ball in a room
and frees the relevant gripper. And Move which
moves the arm with all grippers from their present
room to another one. All rooms are connected
and there are no restraints in regard to moving
between rooms.

In an automated planning task using STRIPS in the
gripper domain, F would contain a fact like “balll-
is-in-roomA” O would contain an operator “drop-
balll-in-roomB” (to model the Drop action being
performed in roomB on balll) with the precondi-
tion set being “balll-in-hand”,”arm-in-roomB”. The
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add effect set being “balll-is-in-roomB”,"hand-free”.
The deletion set being "hand-free”,”balll-in-hand”. It
contains "balll-is-in-roomA” and G would be "ball-
is-in-roomB”. As can be inferred from this example,
it can be quite cumbersome to create big planning
tasks. If say in the gripper domain, a ball is directly
involved in 10 facts, each ball added to the plan
would necessitate 10 facts being added.

B. PDDL

PDDL was designed in 1998 to make the
International ~planning competition possible
[6]. PDDL is a language specification that builds
on STRIPS to become more expressive. While
in STRIPS facts had to have grounded facts for
each object in a plan, in PDDL the specification
of a planning task is separated into a lifted
Domain specification and a grounded problem
specification. A PDDL planning task is a tuple
IT = (Domain, Problem). Where Domain = (P, A)
and Problem = (C,I,G), so the full PDDL
planning tuple becomes IT = (P,A,C,I,G). P is
a set of predicates, A is a set of action-schemas,
C is a set of object constants, I is the initial state
and G is the goal state. Objects are typed and the
action-schemas and predicates are parameterised
by these types, allowing reuse like a regular
programming language. Actions-schemas are
similar to STRIPS operators in having pre,add,del
sets, but they also have a parameter list which
tells variable names and their types. The P and A
set are yet to be grounded, and this means that
the domain is independent of the problem (unlike
STRIPS). The domain specifies what type of
objects can exist in the domain, and what actions
exist to change the state, while the problem
specifies the actual objects in the current task, the
initial state and the goal state. Action-schemas
become grounded when they are tied to a specific
instance of an object. Similar to STRIPS a state
s in PDDL is a conjugation of predicates where
their existence in the set s indicates true. Like
STRIPS the solution to a PDDL task is a sequence
of actions from the initial state to a state s such
that G C s.
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Again a gripper example to explain. P would
contain a predicate (room?r) room being the type
and ?r being a placeholder for whatever element
it is eventually grounded with. A would have an
action-schema Drop with the preconditions
(ball?0bj)(room?room)(gripper?gripper)-
(carry?obj?gripper)(at — robby?room)

and the add effects set being
(at?0bj?room)(free?gripper) and finally the del
effects set (carry?obj?gripper). Unlike the STRIPS
example where the example of the Drop action
was very specific for what ball and what room,
here the Drop action is generic with the use of the
placeholders and can be performed with any ball,
room and gripper, provided the preconditions are
satisfied.

C. Meta-actions

Meta-actions [7] are as mentioned -earlier
composite actions. They are an extension of
macro-actions which very briefly explained, are
sequences of actions put together to one action
and the effects of a macro being the same effects
as performing its composite actions in sequence
one at a time. For an example, imagine in the
gripper domain a macro-action that would be
pick-move-drop, which have exactly the same
effect as performing pick,move,drop in sequence.
However, Macro-actions have a lot of side effects
and preconditions, like the aforementioned macro-
action having the side effect of the gripper-arm
being in a different room, and the precondition
of the gripper being free, and the arm already
being in the first room. The equivalent meta-action
would disregard the preconditions mentioned and
would try to leave the state of the planning-task
the same as when it started to act, except for
the effect of the ball now being in the desired
room. Creating a Meta-action based on an existing
Macro-action the first step is to remove parameters
that are absent from the effects of the macro. If
a parameter is removed, all predicates containing
it are removed from the precondition set as well.
Next, any parameter that is considered a side effect
of the macro action is removed from the effects
and precondition set. This creates meta-actions
with no side effects, and fewer preconditions,
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allowing them to be performed more freely than
a Macro-action. When a plan has been found
with meta-actions, a reconstruction phase has to
be performed. This reconstruction phase finds
a sequence of actions which when performed
achieves the same state as the meta-action did,
this way meta-actions essentially becomes a way
of partitioning the problem into smaller problems.
This reconstruction phase is not included in the
timings in this paper, and instead Meta-actions
will be treated as fully functioning actions.

An example of meta-actions being more versatile
than macro-actions. For argument’s sake, let’s
change the gripper domain, it instead of as usually
having only 2 connected rooms, it now has a series
of rooms, where the rooms have bidirectional
connections roomy <> roommy < r00M3... <+ rO0Mly,.
The pick-move-drop macro operation would
be unsuitable for this scenario, as moving a
ball from room; to rooms via this macro, the
planner would perform multiple redundant
pick and drop actions. Adding more macros to
match the distance of farthest distance of the
rooms is also unfeasible, as if there are n rooms,
then n-1 number of macros would need to be
added, significantly increasing the branching
factor. Using the meta-action pick-move-drop, the
planner could use this meta-action to immediately
place the ball in the desired room, only caring
about the method of how to achieve this later
when reconstructing the plan.

III. Problem

The problem when adding more actions to
domains is that the branching factor of the
planners increases. Simply said, the planners have
to consider more options when more options
are available. While in most cases the gain of
having good meta-actions are still overall a net
positive, it is still something to consider. To solve
this problem, then, the hope is that by removing
actions that meta-actions makes redundant, that
runtime could further be increased.

Working-sets is coined to describe sets that
have a reduced number of actions compared to

Page 3 of



the original domain’s actions, but that can still
solve the same problems. The removed actions
must be "safe" to remove from the domain.

Definition 1. Let D be a domain, A be D’s actions and
S be a set of actions. We say that S is safe to remove as

long as any problem solvable in D(.A) is still solvable
in D(A\S)

The goal of this project is to find these working-
sets which has the best performance. The work
continues of my previous project. That project had
very strict method to find these "better"” performing
working-set. It assumed that a smaller number of
actions is always superior, it removed all possible
base-actions while still being able to solve prob-
lems previously solvable. The results showed that
generally a very small gain would be achieved
in most of the tested domains, but in some the
results would show terrible performance compar-
atively to the original versions. In order to broaden
the search for these patterns, some changes were
made. In the previous project, at most 2 meta-
action per domain was explored. They were chosen
because they had been deemed the best by the
creators of the meta-actions Github. The meta-
actions were sourced from[7]. In this project all
the defined meta-actions from the GitHub are in-
cluded (initially). In the previous project it was also
assumed that those meta-actions had to be used,
and were thus never removed when exploring for
working-sets, but with the increased number of
meta-actions these actions has to be considered for
removal as well.
This brings us to defining the input and overall
output of the problem The input of the problem is

e A Domain D

o A set of actions A belonging to D. This set of

actions contains both all the base actions and
all the meta-actions

o A set containing only the meta-actions M

o Multiple problems P belonging to D
The output by the end is a working-set that
optimizes the coverage and totaltime when
solving a testing set of instances.

To find this working-set the work is divided
into 2 steps. First, the frontier of what working-
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sets are possible is found by looking for minimal
working-sets, sets that still solves problems, but
have removed as many actions as possible. In
the second step, working-sets are selected based
on different metrics. Here, the previously found
frontier is used in order to skip considering
working-sets that lies beyond minimal-sets.

IV. Finding minimal working-sets

The minimal working-sets are found by exploring
possible sets on a single problem, and later these
possible working-sets are tested on a number of
known solvable problems. If a single problem fails,
the possible set is thrown out. If it passes all the
problems, then it is assumed to be a working-set.
As long as the set of problems is representative of
the infinite class of problems in the related domain,
then this check is considered good enough.
Working-sets also have two important properties,
that the algorithm [1|is making use of when explor-
ing and confirming working-sets

Proposition 1. Let S be a set of actions and D be a
domain. If S can safely be removed from D, then any
subset [ C S can safely be removed too.

Proof. Proving by contradiction let’s assume that
S is safe to remove but there is a subset [ C S
that isn’t safe to remove. This is not possible, as
whatever solution that was used with & removed
can be used on any subsets as well. O

Proposition 2. If S cannot be safely removed from D
then any superset Z O S can not safely be removed
either.

Proof. Proving by contradiction lets assume that S
can not be safely removed but there is a superset
Z O § that can. If that is the case then & would
be safe to remove too as whatever solution for Z
could be used for S as well, which is a contradic-
tion. O

To help visualize these properties, a description of
a search tree when exploring for working-sets is in

ordedd]
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Figure 1: Figure showing when searching for a working-set in
a domain with 4 actions A,B,C,D. The blank square represents
removing zero actions while the bottom ABCD represents
removing all actions

Confirming ABD(working-set technically being C)
to be a working-set would confirm any subsets
higher in the tree by proposition 1. Likewise
confirming BC to not be a working-set would
also mean that any following superset is not
a working-set by proposition 2. The minimal
working-sets in [I| are AC,ABD,CD. These are
the working-sets that form the frontier of what
working-sets are possible, as any working-set later
being explored in step 2, has to be a subset of at
least one of these sets.

The exploration algorithm was also used in
the previous work but with the desire to include
more domains and include more meta-actions
when exploring working-sets, on top of meta-
actions themselves being candidates to remove, it
was necessary to optimize the previous project’s
exploration and confirmation of working-sets.

The propositions regarding working-sets let the
algorithm skip using the planner sometimes,
which is a significantly expensive operation.
Algorithm |1| takes as input a Domain, a single
problem, and all the meta-actions in the domain.
Removed_sets is a set of sets that contains the
actions you would remove to form a working-set.
Queue is simply a queue that will contain the sets
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1

Algorithm 1: finding_working_sets

Data: A domain D containing a set of actions
A(both base and meta are included) , a
single problem from P, a set containing
only D’s meta-actions M.

Result: A set of potential Removed_sets

Removed_sets = {M};

2 failed_sets = &;

»

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

Queue = PriorityQueue();
for Action in A do
| Queue.push({ Action})
end
while Queue NOT empty do
RA = Queue.pop();
if dset € Removed_sets such that RA C set
then
add_successors_to_queue(RA, Queue);
continue
else if Jset € failed_sets such that RA O set
then
| continue
plan = check_if_sovable(D(A \ RA);
if plan is not False then
NA = Analyse_plan(plan, A);
Removed_sets.add(NA);
add_successors_to_queue(NA, Queue);
Removed_sets.add(RA);
add_successors_to_queue(RA, Queue);
else
| failed_sets.add(RA);

end
return Remouved_sets

to explore. Each individual action is added as a set
to the queue, to be explored. After the preliminary
steps, Queue is popped to RA (Removed actions)
on line 8 and the element is explored. On line 9
it is checked to see if property 1 applies. If that
is the case, its successors (sets with an added
action) are added to the queue to be explored,
and the set itself is skipped. Otherwise on line
12 RA is checked to see if property 2 applies, if
that is the case then it is simply skipped. Line
14 the modified problem is finally sent to the
planner if the previous checks failed. The RA are
removed from the domain and the task is run on
the problem. If it succeeds, then (A \ RA) is added
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to Removed_sets, and its successors are added to
the queue to be explored.

The plan is also analysed to see what actions
weren’t used. Clearly this unused set must also be
safe to remove and therefore a removed-set, this
addition lets algorithm [I| get sets that potentially
are very far into the search tree allowing it to
later skip a considerable amount of sets by the
check of property 1 on line 9. The set is therefore
also added to Removed_sets and its successors are
added to the Queue. If the planner returns false,
then RA is added to failed_sets. This analysis of
the plan is the most significant change compared
to the previous works version.

The algorithm is ensured to terminate as when
adding more elements to the queue inside the
add_successors_to_queue function there is a set
containing all sets that have already been added
to the queue, ensuring that no set is added twice.
The search space grows exponentially with the
number of starting actions 2". It is finite but can be
excessively large. Since the runtime is dependent
on Queue whose size ultimately depends on the
searchspace this mean that the worst case runtime
is O(2")

The algorithm is ensured to only return
working-sets (technically the inverse of the
working-sets) for whatever problem was input.

Proof. Proving by contradiction let’s assume that
Removed_sets contains a set that doesn’t form a
working-set after being removed from A. This is
not possible as the only place sets are added to the
Removed_sets is specifically when that set has been
tried on line 14 or when the set was concluded to
not being used on line 16. O

The algorithm is also ensured to implicitly return
all possible working sets.

Proof. 1. From proposition 1 a working-set’s sub-
sets are all also a working-set.

2. Proving by contradiction let’s assume that there
is an actual working-set W that exist that is not
found by the algorithm. This would mean that W
exists beyond the frontier of working-sets found.
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This is not possible, as proposition 1 and 2 ex-
plains. Either the path to W is possible by propo-
sition 1 and W would have been found along with
any intermediary working-sets. Or it is impossible
by proposition 2. O

After algorithm [I| returns, the found working-sets
are tried on the rest of problems in P. The version
used in the previous project would test every single
working-set. However, there was no need for this
as proposition 1 says, when confirming a superset
it would also confirm all its possible subsets. This
project’s version instead only tests the distinct
supersets. The found working-sets are filtered so
that only supersets remains. These supersets are
then all tested on 1 problem at a time. If any set
fails, it is removed and instead added to failed_sets.
When a problem has been tried on all sets, if not
a single 1 failed then go to the next problem, if
any of them failed instead then algorithm (I} is
essentially run again, except the failed_sets kept, the
sets that succeeded are used as Removed_sets and
the problem used is the one that was just tried.

V. Selecting Working-sets

After the frontier of working-sets has been found,
individual working-sets are selected. They are se-
lected based on a number of metrics to later be
sent to a cluster for testing. The metrics and their
reason for inclusion are as follows.

o Totaltime: The total time it takes for a planner
to find a solution. As totaltime is one of the
2 metrics that is valued in the end, it makes
sense to include it when picking working-sets.

 Searchtime: The time strictly spend searching
for a solution after any preliminary steps. If
this metric proves to find the best performing
working-set, then it suggests that the search-
ing time was the biggest bottleneck in its
planning speed.

« Planlength: The number of actions performed
to reach the goal state of a problem. A well
performing working-set here suggests the best
performing working-set solves plans in fewer
actions than other sets of actions. This is one
of the qualities using composite actions is
supposed to contribute to.
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o Generated states: The number of states gener-
ated in the frontier when the planner is explor-
ing. A working-set being best from this metric
would mean, that the planner is likely over-
whelmed by the number of potential states it
creates, when using other sets of actions.

o Expanded states: The number of states the
planner has explored from the frontier. This
one being best could possibly mean that using
other sets of actions than this one results in the
heuristics getting sabotaged, as the planner
has to explore more states.

e Individual components: Converting the
found plan to a partial order plan, and then
counting the number of Independent Graphs
that could be constructed from the partial
order.

o Makespan: The length of the largest individ-
ual component. This one together with in-
dividual components would mean that the
domain is particularly suited for partial order
planning.

For each metric listed, the working-set found
that performed best is selected. In most metrics
a lower number is desired, except for individual
components where a high number is desired
instead. Despite knowing the frontier of possible
working-sets, the number of possible sets is still a
too high in most domains to explore all of them.
Instead an ML tool called SMAC|5] is used to
select these working-sets. From the documentation
of SMAC it describes it as "SMAC is a tool for
algorithm configuration to optimize the parameters
of arbitrary algorithms, including hyperparameter
optimization of Machine Learning algorithms. The
main core consists of Bayesian Optimization in
combination with an aggressive racing mechanism
to efficiently decide which of two configurations
performs better.” [8]. SMAC offers multiple facades
which are presets to ease the use ML without
the user needing to know all the complexities of
Machine learning. As the issue being explored
in this project is not a really a machine learning
problem, the AlgorithmConfigurationFacade(AC)
is chosen, which is more of a generalised way
of hyperparameter optimization for algorithms.
RandomFacade is also chosen to see if choice of
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facade is important

The SMAC tool will do numerous trials, each trial
a working-set being explored. A Configuration de-
fines for the SMAC tool which actions to include or
exclude in the working-set being explored during
a single trial. The facades choses which configu-
ration to use during each trial. The working-set
created from the configuration is first checked to
see if it lies beyond the frontier previously defined.
If that is the case, it is immediately discarded.
Otherwise the working-set is tried on 3 problems
which was also used in the Finding working-setd[V]
section. The average of every metric is saved as
a container in a list for later, but the metric that
is used by SMAC for optimization is strictly the
average total time. When SMAC is done running,
the list of containers are searched to find the best
performing working-sets in each metric, where-
after a PDDL domain file is created for each picked
working-set. Any metrics that share a working-set
as best performing are combined. It might seem
counterproductive to let SMAC optimize towards
best total time, while still being interested in other
features as well. This is fine as the ultimate goal
of this project is to achieve better performance in
time. The metrics are still considered as the in-
creased difficulty of the test problems, might reveal
that going strictly for total-time on easier problems
is not suited for the domains, and focusing on
some other metric is more important.

VI. Experiments

A. finding working_sets runtime exper-
iment

Setup: The tests in this subsection was performed
on a Windows OS laptop, with an i5-1035G1
1.00GHz CPU and with 8 gigs of ram.

Popping elements in Algorithm [I| can be done
with either Breadth-first or Depth-first. To find out
which method to use along with a comparison to
the previous work’s method a runtime test is done
across the domains. Important to note here, this
test is strictly the running of finding_working_sets
once, without the following confirmation of
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Domains Number of Actions | Meta-actions | New - Depth | New - Breadth | Old - Depth | Old - Breadth
barman-sat11-strips | 28 17 time time time time

depots 11 6 104,07 10,25 446,26 714,34

grid 8 3 21,84 5,35 28,75 35,04

gripper 4 1 2,86 2,28 2,56 2,85
logistics00 8 2 19,40 2,95 35,21 44,98

miconic 10 6 19,85 5,00 158,32 302,24

rovers 21 12 time time time time

satellite 12 7 83,91 11,90 1053,26 2024,04
zenotravel 9 4 26,73 5,37 97,82 161,68

Table I: Tabel showing the number of actions and how many of those actions are meta actions. New is the algorithm while Old
is the one used in the previous work. The numbers are in seconds. Time means the time limit was reached. Bold numbers show

best performing configuration in domain.

working-sets. The domains were given 2 hours to
complete the task of finding the frontier, i.e. the
minimal working-sets.

As can be seen in table [I| the new version using
Breadth-first search is strictly better than all the
other options in the domains that finish at least.
This is likely due to the addition of the plan
analysis that adds the unused sets of actions.
Before the quickest way to confirm big sets of
actions that allowed to skip solving problems was
by going depth first, furthermore the following
set to get confirmed then, is likely similar to
the last one, not giving a lot of new options
to skip. Going breadth-first instead, a lot of
differing working-sets deep in the search tree are
found, quickly allowing the skipping of solving
numerous smaller working-sets.

Barman with its 28 and rovers with its 21
number of actions did not finish in any of the
attempts. The number of possible sets is simply
too large. Barman is therefore tested with an
increasing number of meta-actions added to both
see the significance of the number of actions
across the algorithm configurations, but also to
see how many actions should be removed to let
Algorithm(T| finish in a reasonable amount of time.

The classic barman domain contains 12 base
actions, so the first domain to be run is named
barman13 signifying the inclusion of the 12 base-
action and a single meta-actions. The following
domain, named barmanl4 means the same actions
as barmanl3 plus 1 new action and so on. Each
attempt at a domain is give one hour and the
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planner is give max 3 mins per run.

Again, the new version going breath first performs
best, but it still hits the time limit fairly quickly
when increasing the number of initial actions. With
this, barman 21 is selected as the set to continue
with, as though while it wasn't tested, it is still
assumed to be finishing in a reasonable amount of
time.

Rovers is also tested to find a smaller domain and
to see if Breadth first, being better, holds in more
than one complex domain. This time the old algo-
rithm is skipped as the improvements of the new
algorithm has already been shown multiple times.
It is given 2 hours to complete. Again breadth
first performs best. and rovers18 was chosen to be
carried forward.

B. Cluster test results

To test the results of using the working-sets found
from section [V} they are compared against the
original domains without any meta-actions along,
with the domain_best mentioned in section [[7].
The chosen domains to experiment with are
gripper, grid, barman, logistics, zenotravel,
miconic, satellite, and depots (rovers was
unfortunately skipped due to an error occurring
when confirming its minimal working-sets).

The SMAC tool was given 5 hours and, 20000 max
number of trials, to find working-sets for each
domain. Table [lI| shows the found working-sets
number of actions. They are named depending
on the facade that was used to find them and the
metric that selected them. Sometimes the metrics
when using a facade will produce duplicates, these

Page 8 of
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Figure 2: Figure showing the growing runtime of adding actions to barman. The numbers on the Y axis represents seconds. The

number, after barman, means the number of actions.

Rovers Runtime Comparison
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Figure 3: Figure showing the growing runtime of adding actions to Rovers. The numbers on the Y axis represents seconds. The

number after rovers, means the number of actions.

are simply combined, and named appropriately
(duplicates when comparing between facades still
exist). These working-sets are the final sets that
are sent to a cluster to evaluate their performance.

Evaluation Metrics: The metrics the results
are measured on are coverage: The number of
solved problems, and totaltime: the time it takes
to search of a solution and any preprocessing.

Setup: The tests are performed on DEIS-MCC
Naples cluster [9]. The planning engine used is
the Fast downward planner[10] and for the search

cs-24-sv-10-04

heuristics the state of the art lama-first[1] is used.
The problems used are 30 "agile" problems created
from “Auto- matic instance generation for classical
planning,” [11]. The tasks were given a time limit
of 10 minutes and 4 gigabytes of ram.

Results: Table shows the coverage of all
the working-sets, Domain_best, and Original.
Across all the domains at least one working-set
performed better or at least as good as either
Domain_best or Original. Particularly Grid and
Zenotravel achieved found a working-set with
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Barman Depots Grid Gripper Logistics Miconic Satellite Zenotravel
Domain_best (2)14 | Domain_best (2)7 | Domain_best (1)6 | Domain_best (1)4 | Domain_best (2)8 | Domain_best (2)6 | Domain_best (2)7 | Domain_best (2)7
Original (0)12 | Original (0)5 | Original (0)5 | Original (0)3 | Original (0)6 | Original (0)4 | Original (0)5 | Original (0)5
AC:c (9)21 | AC:c 4)6 | AC:c (3)8 | AC:gs-ms (0)3 | AC:ex (2)5 | AC:c (3)4 | ACc (7)12 | AC:c 3)5
AC:ex (4)12 | AC:ex 4)7 | AC:gs (1)5 | AC:tt-st-pl-ex-c (14 | AC:gs (2)4 | AC:pl-ms (6)10 | AC:ex (4)8 | ACiex )7
AC:gs (4)13 | AC:gs (3)4 | AC:pl-ex-ms (34 AC:pl-ms-c (2)8 | AC:st-ex-gs 3)3 | AC:pl-ms (2)7 | AC:gs (2)2
AC:ms (4)13 | AC:ms (4)6 | AC:st 3)6 AC:st (2)5 | AC:tt (1)3 | AC:st (3)6 | AC:ms 4)6
AC:pl (6)16 | AC:pl (4)5 | AC:tt (24 AC:tt 2)2 AC:tt-gs (24 | AC:pl (49
AC:st (3)11 | AC:st (4)5 AC:st (2)4
AC:tt (2)10 | AC:tt (3)5 AC:tt (1)4
RA:c (9)21 | RA:«c (3)6 | RA:c (3)8 | RA:gs (0)3 | RA:ex-gs (2)4 | RA:c (2)3 | RA«c (7)12 | RA«c 3)5
RA:ex (6)15 | RA:ex (4)7 | RA:gs (1)5 | RA:st-pl-ex-ms-c  (1)4 | RA:pl-ms-c (2)8 | RA:ex-gs (2)3 | RAwex (3)6 | RAex )7
RA:pl-gs (8)18 | RA:gs (2)4 | RA:st-pl-ex-ms  (3)4 | RA:tt (1)2 | RA:st (2)6 | RA:pl-ms (6)10 | RA:gs (24 | RA:gs (2)4
RA:st-ms (7)16 | RA:ms (3)6 | RA:tt 2)4 RA:tt (2)6 | RA:tt-st (2)3 | RA:pl-ms (3)8 | RA:ms 3)6
RA:tt (6)14 | RA:pl (3)4 RA:tt-st (3)5 | RA:pl (4)9
RA:tt-st (2)2 RA:st 2)2
RA:tt (15

Table II: Table showing the number of actions in the working-sets. The number tells the total amount of action with the number inside
the parenthesis telling how many of those are meta-actions. AC means the set was explored by using AlgorithmConfigurationFacade
and RA means the RandomFacade was used. The Metric shorthands are as follows. tt = totaltime, st = searchtime, ¢ = individual
components,ex = expanded states, gs = generated states, ms = makespan, pl = planlength.

Barman Depots Grid Gripper Logistics Miconic Satellite Zenotravel
Domain_best 30 | Domain_best 16 | Domain_best 20 | Domain_best 30 | Domain_best 17 | Domain_best 30 | Domain_best 16 | Domain_best 9
Original 24 | Original 13 | Original 18 | Original 30 | Original 14 | Original 30 | Original 18 | Original 15
AC:c 30 | AC:c 5 | ACc 7 | AC:gs-ms 30 | ACex 17 | AC:c 30 | ACic 10 | ACic 5
AC:ex 19 | AC:ex 16 | AC:gs 15 | AC:tt-st-pl-ex-c 30 | AC:gs 18 | AC:pl-ms 30 | ACex 18 | AC:ex 11
AC:gs 30 | AC:gs 19 | AC:pl-ex-ms 7 AC:pl-ms-c 17 | AC:st-ex-gs 30 | AC:pl-ms 18 | AC:gs 11
AC:ms 19 | AC:ms 8 | AC:st 7 AC:st 18 | AC:tt 30 | AC:st 18 | AC:ms 8
AC:pl 30 | AC:pl 16 | AC:tt 30 AC:tt 18 AC:tt-gs 19 | AC:pl 4
AC:st 19 | AC:st 19 AC:st 13
AC:tt 19 | AC:tt 19 AC:tt 19
RA:c 30 | RA:«c 14 | RA:«c 7 | RA:gs 30 | RAex-gs 18 | RA:«c 30 | RA«c 10 | RA:«c 5
RA:ex 19 | RA:ex 16 | RA:gs 15 | RA:st-pl-ex-ms-c 30 | RA:pl-ms-c 17 | RA:ex-gs 30 | RAex 16 | RA:ex 11
RA:pl-gs 19 | RA:gs 19 | RAsst-plex-ms 7 | RA:tt 30 | RA:st 17 | RA:pl-ms 30 | RA:gs 19 | RA:gs 12
RA:st-ms 19 | RAms 5 | RA:tt 30 RA:tt 17 | RA:tt-st 30 | RA:pl-ms 16 | RAmms 10
RA:tt 19 | RA:pl 5 RA:tt-st 18 | RA:pl 4
RA:tt-st 19 RA:st 11
RA:tt 30

Table III: Table showing the coverage of the selected working-sets being tried on 30 problems. Bold numbers highlights the best
performing set for each domain. AC means the set was explored by using AlgorithmConfigurationFacade and RA means the
RandomFacade was used. The Metric shorthands are as follows. tt = totaltime, st = searchtime, ¢ = individual components,ex =
expanded states, gs = generated states, ms = makespan, pl = planlength.

great improvement in coverage. Looking deeper
into the actual working-sets Grid AC:tt and RA:tt
turned out to be duplicates and in Logistics AC:gs
and RA:ex-gs aswell.

The plots show the time it takes for the working-
sets and Domain_best/Original to complete each
problem. To reduce clutter, only Domain_best,
Original, and working-sets that performed better
or in otherwise interesting ways, were given their
own legend, while the rest of the working-sets
are grouped together in blue dots. The duplicate
working-sets in Grid and Logistics are both plotted
but shares the same shape and colour. The dotted
line is drawn at the time of the longest solved
problem, any problem that didn’t get solved is
drawn beyond this line.

cs-24-sv-10-04

Barman [ is a domain where Domain_best
has max coverage, and of the working-sets found
with max coverage, none of them performed
significantly better. Of the domains explored,
it is the one with the most amount of actions,
resulting in a huge number of options to create
potential working-sets. SMAC should likely have
been give more time to search for working-sets.
Also 7 meta-actions were removed before barman
was explored so it is a possibility that very
useful meta-actions were cut. Barman is also the
only Domain where the metric totaltime was not
performing well. Another point to bring up is
that in all the working-sets that didn’t manage to
get max coverage, it is consistent which problems
weren’t solved, problem 20-30. This despite the
problems looking to be relatively easier than the
previous problem if we look at working-sets that
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actually solved them. Looking closer into those
runs reveals that all the failures in barman is due
to timeout instead of being proven unsolvable, so
it is hard to say if the failure is due to the problems
used during exploration not being representative
enough of the infinite class of problems, or due
to simply missing some action which makes the
affected working-sets very inefficient while still
being a safe working-set.

Depots [5| saw an improvement in coverage from
5 working-sets. Curiously, all of them perform
about the same, even RA:tt-st with only 2 actions.
In Grid [6 the totaltime metric resulted in the
same working-set being found. It performed
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well against Domain_best, managing to complete
all the tasks. Generatedstates also resulted in
duplicates. It was the second best but below even
original in performance. The rest of the metrics
did terribly in this domain.

In Logistics [7] the working-sets resulted in a
single extra problem being solved, and all the
highlighted working-sets had the same relative
performance.

Miconic (8| had the same coverage across the
board. The horizontal lines of timings are due
to the smallest decimal being a hundredth of a
second. The performance of all the working-sets
were either better or close to as good as the
Domain_best.

In Satellite [ the best performing test set was
Original not Domain_best. Random:gs and
random ac:tt-gs managed to solve one more
problem than original, and achieved better speed
as well on a number of the problems

Of all the domains explored Zenotravel was
the one with the most success. A working-set was
found that solved all of the problems. Interestingly
it was the random facade that found this set, not
ac facade.

Gripper (11| is not very interesting as due to the
low amount of options, given its initial number
action, the best working-set found was just the
same as Domain_best.

Broadly speaking about the metrics value, in
most of the domains, totaltime usually resulted
in the best performance. Followed by generated-
states. Components and makespan looks to
be irrelevant in most domains and in a lot of
instances components will produce the set of
actions containing all the base- and meta-actions.
However, the tests are likely biased against them.
The way these two metric are counted is essentially
by converting an already made sequential-plan to
a partial-order-plan, which likely puts these two
at a disadvantage.

Looking at the graphs, in general the working-sets
form a curve with the time for solution found to
be increasing with the difficulty of the problems.
But most of them will suddenly stop and jump
to "not solved". This gave a suspicion that most
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Domain Memout | Timeout
Barman Working sets 0 88
Barman Original 0 6
Barman Domain_Best 0 0
Depots Working sets 210 0
Depots Original 7 10
Depots Domain_best 14 0
Grid Working-sets 125 20
Grid Original 5 7
Grid Domain_best 5 5
Logistics Working-sets 113 0
Logistics Original 0 16
Logistics Domain_best 13 0
Satellite Working-sets 138 0
Satellite Original 14 0
Satellite Domain_best 12 0
Zenotravel Working-sets | 266 0
Zenotravel Original 21 0
Zenotravel Domain_Best | 15 0

Table IV: Table showing the reason for the failure of finding
plans. The working-sets were grouped together for readability.

of these problems were not being solved due
to hitting the memory limit. To confirm this
suspicion, the failed reasons were aggregated.

As can be seen in table the primary reason
for the failure was due to memory limits. Only
working-sets in Grid had a mix of memout and
timeout, otherwise the working-sets failed due to
strictly memout, except in Barmans case which
failed strictly due to timeout. This points to that in
some of the domains, the gain in coverage, from
removing actions and using meta-action is more
due to reducing the memory usage rather than it
providing a faster solver. Logistics is an interesting
counterpoint to this being a general statement
however. In logistics the original domain failures
were due to timeout not memout. Even the AC:tt
working-set with only 2 actions, failed due to
memout rather than time. This would mean here
that the inclusion of meta-actions in Logistics is a
significant drain on memory.

Finally, in regard to the facades chosen for
SMAC, random facade was chosen to see how
much the choice of facade mattered, and the
results show that usually AC would have the
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working-sets with the best result, except for in
Zenotravel were random found a working-set
vastly supirior to any AC found. Given more time
maybe AC would have found this working-set
aswell, or maybe AC had simply discarded trying
it as an option due to similar configurations
performing poorly.

VII. Conclusion

In general, the tests show that using totaltime
and generatedstate is more relevant than the other
metrics. There was a decrease in total searchtime
when removing actions across most domains, but
the biggest reason for an increase to coverage
during the experiments was because of less mem-
ory being used. Of course, there is a very impor-
tant point that has been ignored for most of the
thesis. The reconstruction of meta-actions. While
including the reconstruction phase of meta-actions
would increase the searchtime, and make the re-
sults look less good at timing, the coverage very
likely wouldn’t change very much at all, as most
working-set failures are due to memorylimits not
timelimits. In the end the results do show that
removing actions made redundant by meta-actions
is a viable way to improve both coverage and
solving speed across a number of domains.

VIII. Future Work

Exploring more domains especially more complex
domains, would always be relevant, to see how
consistent the results of better coverage and speed
is.

Another point is that as the failures show that
memory was the limiting factor, using more mem-
ory is of course always an option to see how the
runtime grows with speed, but more importantly,
metrics that indicates memory usage should have
been included when choosing working-sets, like
forexample translator-operators, which tells the
amount of operators the planner created during
translation. Most memory failures happened dur-
ing the translation.

Some or most of the code of algorithm [I| could
be rewritten to ¢ or c++ rather than use python.
As looking at the stats of for example, running
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algorithm [I| with barman24 it resulted in 89000
iterations of the main for loop. 5500 of those being
sent to the planner, while the rest of those iteration
were spent with simple set-operations but on a
slow laptop. Perhaps it is not unfeasible to find
the frontier of barman28 using c++ and a better
processor.

Finally rather than using an ML tool like SMAC
as a blackbox, with limited knowledge of how it
optimizes. It would likely be suitable to go deeper
into how it actually explores for working-sets, and
tweak it as necessary. For example in barman21
with its 22! number of possible working sets, most
of the explored working-sets were discarded due
to being beyond the frontier. Last point to the
selections of workings-sets, is the noise that exists
when solving plans. Running the same problem
on the same domain twice, usually result in close
but not the exact same time. This is a problem
when the selection between working-sets comes
down to less than a second in some domains.
Using the average of 3 problems was already a
way to mitigate this problem, but a more in depth
approach is likely required.
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