
Accelerating Synthesis of Timed Game using
Async Parallelisation and GPU

Summary

Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Department of Computer Science, Aalborg University, Denmark

The concrete semantics of a Timed Automaton (TA) and its extensions such
as Timed Game Automaton (TGA) define an uncountable and infinite state
space. Model checking of such automata which involves a systematic exploration
of the state space thus utilising symbolic semantics, making it a task of solving
simple constraint systems over real valued clock variables, typically modelled as
Difference Bound Matrices (DBMs). We present methods of transforming and
operating on DBMs massively in parallel on Graphical Processing Unit (GPU)
enabled architectures, for the purpose of reducing verification time of model
families with larger symbolic state spaces. The content of this thesis is based on
our previous development of the prototype tool SMAcc for the purpose of GPU
enabled co-processing symbolic reachability analysis of networks of TAs, made
jointly with Marcus D. Jensen, Simas Juozapaitis and Andreas Windfeld.

We now extend the work of SMAcc with methods and techniques for the
controller synthesis problem for TGAs. This verification task consists of find-
ing discretely defined winning states through a forward exploration, and back-
propagating the reachable winning information to an initial state while avoiding
losing states based on the notion of uncontrollable transitions. This presents
unique challenges such as dynamic GPU memory allocation, as the process of
back-propagating winning information involves DBM subtractions where the size
of the result set cannot be known a priori.

We have re-implemented our previous work with new methods and tech-
niques, as well as the support for synthesis of TGA in theGDBM (GPUDBM)
library where we see improved performance on isolated DBM operations com-
pared to the work of SMAcc, and promising results in comparison with UDBM
(Uppaal’s DBM library). In the best case, we report a 68.2 times speedup com-
pared to UDBM, and a 10.32 times speedup compared to SMAcc. We extend
both Uppaal and Uppaal Tiga to allow for asynchronous co-processing with
integrated GDBM functionality, such that Uppaal (Tiga) only operates on the
discrete state space while GDBM operates on the continuous state space. Our
experimental evaluation of these extensions show promising results, both be-
ing within a single order of magnitude slower than Uppaal, which in the case
of reachability analysis is a huge improvement to SMAcc. We suggest points
for future work that may be worth investigating if these methods are to rival
Uppaal (Tiga).

Accelerating Synthesis of Timed Game using
Async Parallelisation and GPU

Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Department of Computer Science, Aalborg University, Denmark

Abstract. Manipulation of Difference Bound Matrices (DBMs) is es-
sential to the symbolic verification and synthesis of varying extensions
of Timed Automaton. We have previously shown the applicability of
Graphical Processing Units (GPUs) for computing such DBM operations
massively in parallel for symbolic reachability analysis. We now extend
this work to the controller synthesis problem for Timed Game Automa-
ton. Many non-trivial challenges arise from DBM operations involved in
this verification task, such as the non-convexity of subtract operations
that are part of back-propagating winning information. We discuss our
techniques and approaches for achieving a high degree of parallelism and
occupancy on a GPU enabled architecture. We have extended and re-
worked functionality from our prototype tool SMAcc to build GDBM
– a library for GPU computations of Difference Bound Matrices oper-
ations. We have additionally extended both Uppaal and Uppaal Tiga
to allow for integration of GDBM in a co-process of discrete and con-
tinuous exploration, respectively. Experimental results show benefits of
using GPUs for most DBM operations in isolation, having up to a 68.2
time speedup specifically for computing canonical forms, and a 10.32
times speedup in comparison to our previous work. This performance
increase on DBM operations translates well to both reachability analysis
and controller synthesis of timed games. We improve on our previous
work on reachability analysis with an up to 178.72 times speedup, while
additional work is needed on controller synthesis if it is to rival Uppaal
Tiga.

1 Introduction

The aim of the controller synthesis problem is to construct a strategy for guiding
a governed system towards some desired state. For timed systems, the problem
can be formulated through Timed Game Automata – an extension of Timed Au-
tomata with the notion of controllable and uncontrollable transitions [35]. The
concrete-semantics of Timed Automata based models define an uncountable and
infinite state space, making them ill-equipped for the purpose of any sort of anal-
ysis where the systematic exploration of the state space is required. Tools such
as Uppaal Tiga [9] typically employ symbolic semantics that finitely partitions
the state space into convex zones – constraint systems over clock values and
their differences – following the work of Alur & Dill [1] and their region based
technique. Difference Bound Matrices (DBMs) offer a canonical representation

2 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

of the constraint system, where entries in the matrix represent bounds on given
clock variables [22]. Symbolic state representations have the obvious benefit of
making state space exploration feasible for timed systems. Still, the infamous
state space explosion problem plagues all branches of the field of model checking
where, in the case of timed automata based models, the number of states grows
exponentially in the number of system clocks, and model components [11]. His-
torically, research within the field has been primarily concerned with reducing
the affect of this problem in terms of both reducing the memory requirement
and the runtime, e.g. [30,13,25,31,12].

In our previous work [3], we established the potential of performing DBM
operations massively in parallel using GPUs. GPUs have also been used in other
branches of formal verification such as LTL Model Checking, e.g. [4,6] where
the state space generation is being performed on the GPU. Closer to our con-
tribution is the work by Wijs & Osama [37], where they perform LTL Model
Checking by using the GPU for both the state space generation and exploration.
Statistical model checking of Stochastic timed automata has also previously been
achieved on a GPU [2]. Still, to the best of our knowledge, this work is the first
to incorporate GPU for synthesis of timed games. Many similarities can be found
in the extensive research of multi-core based model checking of both timed and
untimed systems, e.g. [16,5]. GPU based architectures still present unique and
non-trivial challenges, in particular for the case of timed games which appear to
have seen no previous efforts to be parallelised.

The contribution of this thesis is twofold: we have reworked and extended our
previously established GDBM library to support the operations present in syn-
thesis of timed game automata and, extended the state-of-the-art model check-
ing tools Uppaal and Uppaal Tiga for asynchronous GPU enabled reachability
analysis and synthesis of timed games, respectively. The remaining of this thesis
is structured as follows: in Section 2 we introduce the theoretical background of
this thesis such as the semantics of timed (game) automata and DBMs, Section 3
introduces the CUDA framework and related algorithmic notations of parallel
concepts, Section 4 details our methods and techniques for implementing DBM
operations for GPU architectures, Section 5 describes the symbolic reachability
integration with Uppaal, Section 6 details the Timed Games integration with
Uppaal Tiga, Section 7 details the conducted experimental evaluation, and Sec-
tion 8 concludes on the results and details further possible improvements.

2 Preliminaries

We introduce the theory of timed automata, symbolic reachability analysis, and
difference bound matrices as a prerequisite for the theory for synthesis of timed
games.

2.1 Timed Automata

The theory of timed automata is based on the work of Alur & Dill [1]. A timed
automaton is a finite state automaton extended with a finite set of real-valued

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 3

clocks. In a timed automaton, locations are labelled with an invariant, and tran-
sitions are labelled with a guard, both of which are conditions on clocks. In
addition, transitions are labelled with a clock update, denoting a subset of clocks
to be assigned a new value. A timed automaton begins execution with all clocks
set to zero, and clocks increase uniformly with time while an automaton resides
within a location, which it can do so long as the invariant of the node is satisfied.
A transition occurs instantaneously, and all clocks in the clock update set will
be assigned their new value.

Clocks. Let X be a finite set of clocks. A clock valuation is then a function
u ∶X → R≥0 (denoted RX

≥0).
Constraints. The set B(X) is the set of conjunctive formulas of atomic con-

straints on the form x ∼ m or x − y ∼ n, where x, y ∈ X, ∼∈ {<,≤,=,≥,>}, and
m,n ∈ N. The elements of B(X) are referred to as clock constraints, and are
ranged over by g.

For r ⊆ X, u[r] denotes the valuation assigning 0 for any x ∈ r. By u + δ
for δ ∈ R≥0 we denote the valuation s.t. for all x ∈ X, (u + δ)(x) = u(x) + δ. For
g ∈ B(X) and u ∈ R≥0, u ⊧ g denotes that u satisfies g, and JgK denotes the set
of valuations {u ∈ RX

≥0 ∣ u ⊧ g}. A zone D is a subset of RX
≥0 s.t. JgK =D for some

g ∈ B(X).

Definition 1 (Timed Automaton (TA)). A timed automaton is a tuple
(L, l0,A,X,E, I) where:

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– A is a set of actions,
– X is a set of clocks,
– E ⊆ L ×B(X) ×A × 2X ×L is the set of edges,
– I ∶ L→ B(X) assigns invariants to locations

When (l, g, a, r, l′) ∈ E, we write l
g,a,rÐÐÐ→ l′

The semantics of a TA is defined as a transition system TS, with states of
the form (l, u), where l is a location in the TA and u is a clock valuation, i.e.
the set of states Q = L×RX

≥0. Based on this there are two types of transitions Ð→:

for a ∈ A, (l, u) aÐ→ (l′, u′) if l g,a,rÐÐÐ→ l′ ∈ E s.t. u ⊧ g, u′ = u[r] and u′ ⊧ I(l′)

for δ ≥ 0, (l, u) δÐ→ (l, u′) if u′ = u + δ and u,u′ ∈ JI(l)K
(1)

A network of timed automata (NTA) is a parallel composition of timed au-
tomata such that NTA = TA1 ∣ ⋯ ∣ TAn . Given a NTA there is a vector of
locations l̄ with an entry for each TA in the network and l̄[i] giving the location
of the i’th TA. The location vector refers to the discrete part of the state space.
The invariant I(l̄) is the conjunction of the invariants of each location in l̄. When

a transition is possible in the i’th network we write li
g,a,rÐÐÐ→ l′i.

4 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

A B

c l o ck x ;
c l o ck y ;

Fig. 1: Network of two timed automata A and B with the locations l1, l2, l3 and
l4, and the clocks x and y

Example. An example of an NTA can be seen in Figure 1. A trace of the

network could be as follows: ([l1,l3], (x = y = 0)) 10Ð→ ([l1,l3], (x = y = 10)) τÐ→
([l2,l3], (x = 10, y = 0)) 5Ð→ ([l2,l3], (x = 15, y = 5)) τÐ→ ([l2,l4], (x = 15, y =
5)). This trace shows the general behaviour of the system, but the amount of
delay transitions and the delay value within them can differ in other traces.

The state space of TAs is infinite and uncountable. The analysis of TAs are
thus based on the exploration of a finite Simulation Graph with nodes being
Symbolic States on the form (l,D) where l ∈ L and D is a zone in RX

≥0. The
symbolic state transition Ð→ can be defined as:

(l,D) aÐ→ (l′,D′) if l g,a,rÐÐÐ→ l′ ∈ E and D′ = ((D ∩ JgK)[r])↗ (2)

For S ⊆ Q and an action a ∈ A, Posta(S) = {(l′, u′) ∣ ∃(l, u) ∈ S, (l, u)
aÐ→

(l′, u′)} defines the a-successor, while Preda(S) = {(l, u) ∣ ∃(l′, u′) ∈ S, (l, u)
aÐ→

(l′, u′)} defines the a-predecessor. The timed successor and predecessor of a
symbolic state is respectively defined as S↗ = {(l, u+δ) ∣ (l, u) ∈ S ∩ JI(l)K, (l, u+
δ) ∈ JI(l)K, δ ∈ R≥0} and S↙ = {(l, u − δ) ∣ (l, u) ∈ S, δ ∈ R≥0}.

Example. The symbolic execution of Figure 1 is as follows: ([l1,l3], (x ≥
0, y ≥ 0, x = y)) τÐ→ ([l2,l3], (x ≥ 10, y ≥ 0, x − y ≥ 10)) τÐ→ ([l2,l4], (x > 10, y ≥
0, x − y ≥ 10, y < 10)).

A run of a TA denotes a sequence of symbolic transitions in the labelled TS.
Runs((l, u), T) denotes the set of runs that begin in symbolic state (l, u) of the
timed automaton T. We use Runs(T) as a shorthand for Runs((l0,0), T), where
0 indicates {x↦ 0 ∣ ∀x ∈X}. For a finite run ρ, last(ρ) denotes the last state of
the run.

Given a TA and a property ϕ, the on-the-fly symbolic reachability algorithm,
as seen in Algorithm 1, can be used to check whether the TA satisfies ϕ. The
algorithm utilises a combined passed and waiting list PW for storing both the
states that have been explored and are waiting to be explored [19]. This structure
is used such that a state can be checked against both the waiting- and passed
list at the same time.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 5

Algorithm 1 Abstract, symbolic reachability algorithm

1: W ← {(l0,D↗0)}
2: PW [l0] ← {D↗0 }
3: while W ≠ ∅ do
4: (l,D) ← pop(W)
5: if (l,D) ⊢ ϕ then return true

6: for all {(l′,D′) ∣ (l,D) → (l′,D′)} do
7: if ∀Y ′ ∈ PW [l′] ∶D′ /⊆ Y ′ then
8: PW [l′] ← PW [l′] ∪ {D′}
9: W ←W ∪ (l′,D′)
10: return false

2.2 Difference Bound Matrix

The zones used for exploration in timed automata are represented as Difference
Bound Matrices (DBMs) as presented in [22]. A DBM is a matrix D that de-
scribes the set of constraints: ∀x,y x − y ≤ Dx,y where x and y range over X0

i.e. describing all valid clock valuations based on a set of constraints. X0 is a
set of clocks X0 = X ∪ x0 where x0 is a reference clock that will always map
to the value zero. This is done for a uniform treatment of clock constraint as
xi − xj ∼ m, i.e. xi ∼ m is written as xi − x0 ∼ m, for ∼= {<,≤},m ∈ Z. All clock
constraints in B(X) can be written as a conjunction of constraints in this form,
e.g. xi −xj > 7 is equivalent to xj −xi < −7. Under the assumption that all clock
constraints in B(X) include the implicit constraints on clocks x0 − xi ≤ 0 and
xi − x0 < ∞, a clock constraint can be viewed as a set of upper bounds on the
difference between pairs of clocks, which can be represented as a DBM with the
dimensions ∣X0∣ × ∣X0∣. We will henceforth write n as a shorthand for ∣X0∣. Each
entry in the DBM is specified as a bound i.e. a value and the relation between
the clocks e.g. given the constraint xj − xi < −7 the bound (−7,<) would be in
the row specifying xj and the column specifying xi.

Basic DBM Operations Bengtsson [11] and Behrmann et al. [8] describe DBM
operations and transformations. These all assume that DBMs are in their canon-
ical form – closed under entailment – i.e. all constraints of the DBM are as tight
as possible. This is straightforwardly computed in O(n3) time by an all-pairs
shortest path algorithm, e.g. Floyd-Warshall [23]. Operations that transform a
DBM are illustrated in Figure 2 and are listed in the following:

Empty checks whether a DBM represents the empty set i.e. having no valid
clock valuations. Checking whether a DBM D is empty i.e. JDK = ∅ is computed
as ∃x,y(Dx,y +Dy,x < (0,≤) in O(n2) time.

Inclusion checks whether two DBMs have a subset equal relation between
them. This is also referred to as one DBM being subsumed by another if they
are a subset or equal. Given two DBMs D and D′ checking whether D ⊆ D′ is
computed as ∀x,y(Dx,y ≤D′x,y), with x and y ranging over X0. The operation is

computed in O(n2) time.

6 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

future(D)D past(D) restrict(D, x <= 2)

free(D, x)

x x x x

x x x x

yyyy

y y y y

assign(D, x := 2) copy(D, x := y) extra(D, [kx =1, ky = 1])

Fig. 2: Different operations applied to the same DBM D. The dashed lines indi-
cate the original DBM and the solid lines indicate the DBM after applying an
operation.

Intersection finds the intersection between two DBMs. Given two DBMs D
and D′ then the intersecting DBM D′′ = D ∧ D′ is computed as ∀x,y(D′′x,y =
min(Dx,y,D

′
x,y)) where x and y range over X0. The operation is computed in

O(n3) time.

Future expands a DBM to include the clock valuations reachable with a delay.
Given a DBM D then ∀x(Dx,0 ←∞), with x ranging over X0. The operation is
computed in O(n) time.

Past expands a DBM to include the clock valuations that can reach this
DBM with a delay. Given a DBM D then past is computed as ∀x(D0,x ← 0),
with x ranging over X0, extra care is needed to keep D on canonical form. The
operation is computed in O(n2) time.

Restrict adds a new constraint to the set of constraints for a given DBM.
Given a DBM D and a constraint x− y ∼m then Dx,y =min((m,∼),Dx,y), with
x, y ∈ X0, extra care is needed to keep D on canonical form. The operation is
computed in O(n2) time.

Assign updates the DBM by assigning a clock within the DBM to a specific
value. Given a DBM D, a clock x and a value v then Dx,0 = (v,≤), D0,x = (−v,≤)
and ∀i(Dx,i ← (v,≤) +D0,i and Di,x ← Di,0 + (−v,≤)), with i ranging over X0.
The operation is computed in O(n) time.

Copy copies the bounds for one clock in the DBM to another. Given a DBM
D and two clocks x and y then ∀i(Dx,i ←Dy,i∧Di,x ←Di,y), with i ranging over
X0/x. Additionally, Dx,y,Dy,x = 0. The operation is computed in O(n) time.

Extrapolation is used to obtain a finite-zone graph using the maximal con-
stant each clock is compared to in the model. The maximal constants can be
found through static-analysis of the TA beforehand. Given a DBM D where

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 7

Dx,y = (cx,y,∼x,y) and a set of maximal constants M then,

∀x,y (c′x,y,∼′x,y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ if cx,y >M(x)
(−M(y),<) if − cx,y >M(y)
(cx,y,∼x,y) otherwise

(3)

where x and y range over X0. This operation is computed in O(n2) time, how-
ever, the canonical form of the DBM is broken afterwards. This can be expanded
with a courser interpretation using diagonal extrapolation:

∀x,y (c′x,y,∼′x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if cx,y >M(x)
∞ if − c0,x >M(x)
∞ if − c0,y >M(y), i ≠ 0
(−M(y),<) if − cx,y >M(y), i = 0
(cx,y,∼x,y) otherwise

(4)

LU Extrapolation works like extrapolation but uses both the maximum upper
and lower constants for each clock giving a coarser interpretation. Given a DBM
D where Dx,y = (cx,y,∼x,y), a set of Upper constants U and a set of Lower
constants L then,

∀x,y (c′x,y,∼′x,y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ if cx,y > L(x)
(−U(y),<) if − cx,y > U(y)
(cx,y,∼x,y) otherwise

(5)

where x and y range over X0. As with maximum extrapolation a coarser inter-
pretation can be gained using diagonal LU extrapolation:

∀x,y (c′x,y,∼′x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if cx,y > L(x)
∞ if − c0,x > L(x)
∞ if − c0,y > U(y), i ≠ 0
(−U(y),<) if − cx,y > U(y), i = 0
(cx,y,∼x,y) otherwise

(6)

Local Extrapolation uses the constants (either maximum or LU) for a given lo-
cation instead of the global maximum. This approach is described by Behrmann
et al. in [7]. The model might have an update with the maximum constant com-
ing after the update, this would result in a location using a constant that is
not relevant for that location. Instead the constants are backwards propagated
through the model. A constant is not propagated over an edge if there is an up-
date for the corresponding clock. The semantics are given just as extrapolation
and LU extrapolation but with local sets of constants for each location.

The pseudo code for all the DBM operations can be found in Appendix A.

8 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Subtract Given two DBMs D and E we may want to find valuations satisfying
D ∧¬E, denoted by D −E as subtracting E from D. This operation results in a
non-convex set and can therefore not be represented by a single DBM, instead
requiring a set of DBMs. The result S =D −E is defined as:

S = D ∧ ¬(⋀
1≤i,j≤n

eij) = ⋁
1≤i,j≤n

(D ∧ ¬eij), (7)

which is a union of D, each being restricted by a negated constraint of E, respec-
tively. The straight forward computation of subtract following this definition is
O(n4) time, and the size of the result set is bounded by n2 − n.

Different orderings of the constraints in E when computing the subtraction
can have varying effect on the size of S. A heuristic function for ordering the
constraints eij is given in [20] as ∣eij ∣ − ∣dij ∣, sorting on the smallest values first.
The heuristic value should be recomputed after constraining, as the DBM will
change as a result of the operation.

Furthermore, it is suggested in [20] to use the minimal set of constraints of E
obtained from shortest-path reduction, denoted Em, to compute the subtraction,
as the two are semantically equivalent s.t. D −E = D −Em. For the purpose of
self-containment, we summarise the O(n3) method for computing the minimal
set of constraints from [30,11] in the following section.

Shortest-Path Reduction A DBM D can be represented as a weighted, di-
rected graph with vertices corresponding to clocks in X0, and an edge from x to
y with weight m given that x−y ≤m is a constraint of D [11]. The shortest-path
reduction entails removing redundant edges. An edge (x, y) is redundant when-
ever there is an alternative path from x to y whose accumulated weight is less
than or equal to the weight of the edge itself. This is straight forward given the
closure of the DBM, as only paths with a length of 2 needs to be considered, i.e.
an edge (x, y) is redundant if there is a vertex z(≠ x, y) s.t. (x, y) ≥ (x, z)+(z, y)
[30].

Although redundant, removal of these edges is dependant on the existence
of zero-cycles in the graph. For zero-cycle free graphs, the redundant edges can
simply be removed without affecting the solution set. Otherwise, the reduction is
based on a partitioning of the vertices according to zero-cycles. Two vertices are
part of the same equivalence class whenever there is a zero-cycle that contains
them both. This is a simple check given the canonical form of the DBM, as
there is zero-cycle between vertices x and y, denoted x ≡ y, precisely when
(x, y) = −(y, x) [30]. Obtaining the shortest-path reduction is thus a two-step
process: finding a single shortest path between equivalence classes, and removing
edges within equivalence classes until only the edges forming a single zero-cycle
is left. This assumes some ordering on the vertices.

Shortest-path reduction of a canonical DBM with zero cycles is illustrated in
Figure 3. This example DBM contains a zero-cycle between, and thus equivalence
class of, {x0, x1}. The vertex x0 is the elected leader meaning it is the only vertex
from its equivalence class to have edges to the remaining graph.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 9

x0

x1 x3

x2

-3 3 14

6

-4

1

2

5

-2 -1

3

x0

x1 x3

x2

-3 3

6

-4

5

-2

Fig. 3: Graph representation of a canonical DBM, and its shortest-path reduc-
tion. All bounds are implicitly non-strict.

Federations The set of clock constraints B(X) is closed under conjunction
but not disjunction, as the union of two convex sets is not guaranteed to be
convex itself. A finite union of zones, called a federation, needs to be treated
slightly differently to DBMs due to this non guarantee of convexity. Firstly, it
must always be the case that no DBM is subsumed by another DBM if they
are part of the same federation, i.e. for the federation F , ∀(D,D′) ∈ F (D ≠
D′) ∶ D /⊆ D′,D′ /⊆ D. Many of the previously described DBM operations
are trivially extended to federations as simply the union of performing these
operations on all DBMs in the federation, e.g. the intersection of federations
F ∩ F ′ is ⋃

D∈F
⋃

D′∈F ′
D ∩ D′. Furthermore, the termination of both reachability

analysis of timed automata and timed games are determined by testing if a
newly found zone is subsumed by a federation.

y

x

Fig. 4: The grey zone is subsumed by the entire federation (union of purple and
red zones) but not by any zone individually

10 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

A DBM may only be superseded by the aggregated federation and none of
its contained DBMs in isolation, as in the example of the grey zone in Figure 4
against the federation consisting of the purple and red zones. This can be de-
tected by subtracting the DBM from the federation and checking for emptiness,
i.e. for a federation F = D1 ∪ ... ∪Dn and a zone D, we check for subsumption
D ⊆ F as D − F = ∅. The subtract operation is computationally heavy, but will
guarantee the detection of subsumption. Alternatively, one may check for an ap-
proximate subsumption D ⊆ F , simply by checking sequentially on each zone in
the federation, i.e. ∃Dk ∈ F s.t. D ⊆ Dk. This does not guarantee the detection
of subsumption, and unnecessary symbolic states may be explored as a result,
but the operation is much faster.

Merging Some unions of zones are convex, such as the zones of Figure 4, and
it would be beneficial to describe these as just a single DBM to reduce memory
requirements and the number of operations. Given a federation F of n DBMs, we
can attempt to merge this federation by computing the convex hull CF of F , and
check if CF −F = ∅. If this holds, then the convex hull is equal to the federation,
and we can thus replace F by CF [17,18]. The difficulty lies in finding a subset
of DBMs to attempt to merge. There are (n

k
) ways to attempt to merge k DBMs

together, and trying this for all values of k gives a total of 2n combinations.
Because every attempt relies on the already expensive subtract operation, this
becomes unfeasible. To make this more practical (but obviously less beneficial),
one may limit themselves to check only pairs of DBMs A and B. Furthermore,
it is beneficial to be able to cheaply discard pairs with low likelihood to be
mergeable. [17] suggests (in part) the following heuristic:

∃i, j.aij = bij ∧ aji = bji
∀i, j.¬(−a+ij ≥ b+ji ∨ −a+ji ≥ b+ij)

(8)

where a+ij denotes the non-strict constraint ij in A, e.g. (xi−xj < 5)+ = (xi−xj ≤
5)+ = (xi − xj ≤ 5). If this holds for a pair of DBMs, we attempt to merge them
through the convex hull check.

2.3 Timed Game Automata

For the purpose of synthesis of timed games, timed automata can be extended
to include the notion of controllable and uncontrollable actions [33].

Definition 2 (Timed Game Automaton (TGA)). A timed Game Automa-
ton (TGA) is a timed automaton with its actions A partitioned s.t. Ac and Au

define controllable and uncontrollable actions respectively.

Given a TGA G and a set of states W ⊆ Q, the controller synthesis problem
for reachability games entails finding a strategy f s.t. applying f to G guarantees
W. The problem is similar for safety games in that it entails finding a strategy

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 11

f which avoids W in G. For a reachability game (G,W), a given finite or infi-
nite run ρ ∈ Runs(G) is winning if it reaches a state in W. Similarly, a safety
game is losing whenever it reaches a state in W. The set of winning runs given
(l, u) in G is denoted as WinRuns((l, u),G). For the purpose of conciseness, we
shall henceforth only detail semantics regarding reachability games, as a safety
game can be transformed into a reachability game by swapping controllable and
uncontrollable actions as well as goal states. A strategy is then a function that
gives information during the game s.t. the controller knows what actions should
be taken in order to win the game.

Definition 3 (Strategy). Given a TGA G, a strategy f for G is a partial
function mapping from Runs(G) to Ac∪{λ} s.t. for any finite run ρ, if f(ρ) ∈ Ac

then last(ρ) f(ρ)ÐÐ→ (l′, u′) for some (l′, u′).

The behaviour of a TGA G restricted under a strategy f is defined by the
notion of outcome [21].

Definition 4 (Outcome). Given a TGA G and a strategy f for G, the out-
come Outcome(q, f) of f from symbolic state q is the subset of Runs(q,G) de-
fined by:

– q ∈ Outcome(q, f),
– if ρ ∈ Outcome(q, f) then ρ′ = ρ eÐ→ q′ ∈ Outcome(q, f) if ρ′ ∈ Runs(q,G) and

one of the following holds:

1. e ∈ Au,
2. e ∈ Ac and e = f(ρ),
3. e ∈ R≥0 and ∀0 ≤ e′ < e,∃q′′ ∈ Q s.t. last(ρ) e′Ð→ q′′ ∧ f(ρ e′Ð→ q′′) = λ

– for an infinite run ρ, ρ ∈ Outcome(q, f) if all the finite prefixes of ρ are in
Outcome(q, f).

Example. A potential strategy for the Timed Game Automata in Figure 5
could be as follows:

– The controller attempts to take the delay transition l1
δ=1ÐÐ→ l1 followed by

l1 → l2.
– The environment may force l1 → l3 in between. In that case

1. l3 → l4

2. l4
δ=1ÐÐ→ l4 (delay until x = 1)

3. l4 → l2

4. l2
δ=1ÐÐ→ l2 (delay until x ≥ 2)

5. l2 → goal

– otherwise,

1. l2
δ=1ÐÐ→ l2 (delay until x ≥ 2)

2. l2 → goal

12 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Fig. 5: Timed game automata with locations l1, l2, l3, l4, l5 and goal, and
the clock x

We assume that some controllable action must be taken in order to win the
game, and that uncontrollable actions can only ruin the game, i.e. uncontrollable
actions can not be forced to happen. As a result, a state with only uncontrollable
actions will always be losing, even in the case that the game could be recovered,
where the uncontrollable action is enforced as a consequence of some location
invariant breaking.

A maximal run ρ is either an infinite run (disregarding infinite number of

0 delays) or a finite run ρ where either last(ρ) ∈ W or if ρ
aÐ→ then a ∈ Au,

i.e. only uncontrollable actions are permissible from last(ρ). Thus, a strategy
f is winning from symbolic state q if all maximal runs in Outcome(q, f) are in
WinRuns(q,G), and the state q is winning if there exists a strategy f from q in
G. By W(G) we denote the set of winning states in G.

For timed reachability games, the computation of winning states is based on
controllable predecessors of X . For this, the concept of safe, timed predecessors
Pred t is needed. A state q will be in Pred t(X,Y) if we can reach q′ ∈ X from q
by delaying, and we at no point in the path from q to q′ reach Y . The formal
definition of Pred t is[14]:

Pred t(X,Y) = {q ∈ Q ∣ ∃δ ∈ R≥0 s.t. q
δÐ→ q′, q′ ∈X and Post [0,δ](q) ⊆ Y }

where Post [0,δ](q) = {q′ ∈ Q ∣ ∃t ∈ [0, δ] s.t. q
tÐ→ q′} and Y = Q − Y

(9)

If Y is a convex set, the computation of Pred t can be defined in terms of
basic operations on zones[14]:

Pred t(X,Y) = (X↙ − Y ↙) ∪ ((X ∩ Y ↙) − Y)↙ (10)

Pred t can be be defined for unions of zones using the following distribution
law[14]:

Pred t(⋃
Dg∈Fg

Dg, ⋃
Db∈Fb

Db) = ⋃
Dg∈Fg

⋂
Db∈Fb

Pred t(Dg,Db) (11)

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 13

Algorithm 2 Symbolic On-The-Fly Algorithm for Timed Reachability Games

1: Passed ← {S0} where S0 = {(l0,0)}↗
2: Waiting ← {(S0, a, S

′) ∣ S′ = Posta(S0)↗}
3: Win[S0] ← S0 ∩ ({Goal} ×RX

≥0)
4: Depend[S0] ← ∅
5: while ((Waiting ≠ ∅) ∧ (s0 ∉Win[S0])) do
6: e = (S, a,S′) ← pop(Waiting)
7: if S′ ∉ Passed then
8: Passed ← Passed ∪ {S′}
9: Depend[S′] ← {e}
10: Win[S′] ← S′ ∩ ({Goal} ×RX

≥0)
11: Waiting ←Waiting ∪ {(S′, a, S′′) ∣ S′′ = Posta(S′)↗}
12: if Win[S′] ≠ ∅ then
13: Waiting ←Waiting ∪ {e}
14: else

15:
Win∗ ← Pred t(Win[S] ∪ ⋃

S
cÐ→T

Predc(Win[htbp]),
⋃

S
uÐ→T

Predu(T −Win[htbp])) ∩ S

16: if (Win[S] /⊆Win∗) then
17: Waiting ←Waiting ∪Depend[S]
18: Win[S] ←Win∗

19: Depend[S′] ← Depend[S′] ∪ {e}

Timed games can be solved on-the-fly with a symbolic extension to the al-
gorithm proposed by [32], intertwining a forward computation of the simulation
graph of the TGA with a backwards propagation of information on winning
states [14]. The SOTFTR algorithm, as seen in Algorithm 2, utilises passed-
and waiting-lists, containing symbolic states of the simulation graph that has
already been encountered, and edges in the simulation graph that is to be ex-
plored, respectively. The set Win[S] ⊆ S tracks the set of states that (at any
given time) is known to be winning. Depend[S] indicates the predecessors of S
which must be added to the waiting-list whenever new information regarding
Win[S] is acquired. An edge e = (S, a,S′) where S′ ∈ passed is added to the set
of predecessors for S′ s.t. future information regarding additional winning states
in S′ may also be propagated back to S.

The correctness of the SOTFTR algorithm is given by Lemma 1 and Theorem
1, directly from [14].

Lemma 1. The while-loop of algorithm SOTFTR has the following invariance
property when running on a timed game automaton G:

1. For any S ∈ Passed if S
αÐ→ S′ then either (S,α,S′) ∈Waiting or S′ ∈ Passed

and (S,α,S′) ∈ Depend[S′]
2. If q ∈Win[S] for some S ∈ Passed then q ∈ W(G)
3. If q ∈ S −Win[S] for some S ∈ Passed then either

– e ∈Waiting for some e = (S,α,S′) with S′ ∈ Passed, or
– q /∈ Pred t[Win[S] ∪ ⋃

S
cÐ→T

Predc(Win[T]),⋃
S

uÐ→T
Predu(T −Win[T])].

14 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Theorem 1. Upon termination of running the algorithm SOTFTR on a given
timed game automaton G the following holds:

1. If q ∈Win[S] for some S ∈ Passed then q ∈ W(G);
2. If Waiting = ∅, q ∈ S −Win[S] for some S ∈ Passed then q /∈ W(G)

3 GP-GPU Framework CUDA

CUDA is a programming interface and extension of C and C++, developed by
NVIDIA, that allows issuing and managing data-parallel computations specif-
ically on NVIDIA Graphical Processing Units (GPUs) [34]. The CUDA inter-
face discriminates between CPU and GPU computations, by viewing them as
co-processing units. For the remainder of this thesis, we follow the precedence
of referring to CPU and GPU as host and device, respectively. The device is
viewed as a set of multiprocessors, each of which use a Single Instruction, Multi-
ple Threads (SIMT) architecture. In this paradigm, each single sub-processor of a
multiprocessor executes the same instruction at the same clock-cycle – although
on different threads. The host invokes asynchronous device functions referred to
as kernels that are executed in parallel by N threads.

3.1 Thread hierarchy

CUDA treats device threads in a hierarchy of abstraction levels. Threads can be
operated on individually, but are also part of a warp, a collection of exactly 32
threads. Warps are further organised in equal sized blocks that reside on only
one multiprocessor, where instructions are issued to threads using the SIMT
architecture. CUDA also allows for generic groupings of threads.

The exact number of blocks and threads is determined at a kernel launch,
e.g. a configuration with a grid of (10,3) blocks with (32,32) threads each, gives
a total of 30 blocks, 1024 thread per block, resulting in 30720 threads. However,
the maximal number of threads per block is 32×32, as a block can have at most
32 warps.

During the execution of a kernel, the instruction unit of the multiprocessor
will issue a shared instruction to a given warp from the set of blocks residing
on the corresponding multiprocessor per clock cycle. This is the core attribute
of the SIMT architecture, achieving a high level of parallelism on the device for
a computation where threads of a given warp agree on their execution path.
However, it is important not to introduce a high degree of thread divergence,
where different threads in a warp await different instructions to be issued from
the instruction unit. This is due to warps being a static grouping, and that the
threads of a warp will always be issued a shared instruction, such that when two
different subsets of threads a, b ∈ warp must execute different instructions, it will
take additional clock cycles, i.e. a can not execute in parallel with b and must
be executed sequentially.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 15

3.2 Memory Model

Device threads may access multiple memory spaces during their execution. A
thread has private local data, and each block has a shared memory space visible
to all threads within it. Furthermore, all threads can access a global memory
space that is visible throughout the device. As CUDA enables co-processing
computations, the host memory is also worth consideration when representing
the entire memory model. Figure 6 shows a high level overview of such memory
model. Most importantly on the host side is the pinned memory, as this is directly
involved in the process of data transfer between host and device.

Host memory is pageable by default, meaning infrequently accessed data can
be moved to swap memory, and data residing in pageable memory can not be
transferred to the device directly. Instead, page-locked memory (called pinned-
memory) is utilised for transfers between host and device. Similarly, when trans-
ferring from device to host, the destination on host side also must be pinned
memory. All kinds of communication between host and device – even transferring
data from device to host – is managed and dictated by the host. The bandwidth
of the data transfer is obviously hardware specific. The NVIDIA RTX 3070 TI
consumer card has a bandwidth of 608.3 GB/S while the NVIDIA A100 data
centre card has a bandwidth of 1555 GB/S (these are only when utilising pinned
memory).

Device Shared Memoryij

Host Memory Pinned
Memory

Device Global MemoryDevice

Host

Transfer between
Dictates communication

(stream order)

Access private

Has

Blockij

Access public
Has many

Has

Fig. 6: The memory model, and which aspects can be interacted with by the host
and device

Streams Communication between host and device occurs asynchronously through
CUDA streams. Streams allow for controlling the ordering of operations (kernel
invocation, transfers, etc.) within a single stream, and allows for running multiple
operations in parallel, by using multiple streams. Multiple streams of operations
can greatly enhance the overall throughput of a co-processing computations,
especially if data transfer and communication is of major concern.

16 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

3.3 Notation

We shall in later sections utilise many CUDA related concepts when describing
Algorithms and correctness. As stated previously, the host and device operate in
a co-routine, with the host dictating device computations through kernel invo-
cations. By launch async x, we denote the host asynchronously launching the
specific kernel x on the device. Additional notation for CUDA related concepts
is summarised in the following:

Thread Groupings CUDA operates on data with groups of threads with vary-
ing size. By T , W , B and G we denote the sets of a singular thread, a warp, a
block, and a grid of threads, respectively, which operate in parallel.

Furthermore, by count(x, y) we denote ⌊ ∣y∣∣x∣ ⌋, e.g. count(W,B) for the num-

ber of warps in a block. We use ∣x∣ as shorthand for count(T,x) for the generic
group x, e.g. ∣B∣ for the number of threads in a block and ∣W ∣ for the number of
threads in a warp. In addition to the build in groupings, CUDA provides support
for custom groupings that we denote CGn for a custom group with n threads.

Hierarchical Identifiers All generic groupings are automatically assigned
unique and incremental IDs in a hierarchical manor at kernel launch. Threads
are ranked from 0 to ∣W ∣ in a warp and 0 to ∣B∣ in a block, warps are ranked
from 0 to count(W,B) etc. We will often utilise these unique IDs to determine
what data each partition from a larger whole it should operate on. We denote
by rank(x, y) the unique ID of x in y.

Group Partitioning Most involved is the device thread granularity that is
utilised, i.e. how groups are partitioned and operated with. We denote by par-
allel(x, y) i = 0 to n generically partitioning y into count(x, y) groups, and
loop over them in parallel s.t.

parallel(x, y) i = a to b . . .

≡
concurrently ∀x ∈ y for(i = rank(x, y) + a; i < b; i = i + count(x, y)) . . .

(12)

For example, we write parallel(T,B) for partitioning a block into its sin-
gular threads, and parallel(W,B) for partitioning a block into its warp com-
ponents. For any uneven groupings e.g. parallel(x, y) where ∣x∣ mod ∣y∣ ≠ 0, y
is partitioned into count(x, y) groups where the remaining idles. For example,
parallel(CG10,W) will partition a warp into 3 groups of 10 threads, with the
remaining 2 threads in the warp idling (count(CG10,W) = 3).

We illustrate how this notation is used in Figure 7 with a custom group of 4
threads CG4 operating on a shared array with 7 entries. Each value in the array

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 17

is to be squared, and the work distributed as equally as possible amongst the
custom group. Using the defined notation, we would write

parallel(T,CG4) i = 0 to 7 do

array[i] = array[i]
2 (13)

2 7 9 14 21 33 8

t0 t1 t2 t3

4 7 9 14 441 33 8

t0 t1 t2 t3

rank(t0, CG4)

+count(T, CG4)

Custom Group CG4

Array with values to be squared

2 49 9 14 21 1089 8

t0 t1 t2 t3

2 7 81 14 21 33 64

t0 t1 t2 t3

2 7 9 196 21 33 8

t0 t1 t2 t3

rank(t1, CG4)

+ count(T, CG4)

rank(t2,CG4)

+count(T, CG4)

rank(t3, CG4)

4 49 81 196 441 1089 64

Result+count(T,CG4) > ArraySize

Fig. 7: Illustration of how work is distributed amongst a group of threads based
on the size of the group and the rank of each thread

Communication & Consensus For some operations, some predicate must
hold for all or at least one threads of the computation. We will write g.any(p)
denoting if the predicate p holds for any of the threads in the generic group g.
Likewise, we write g.all(p) denoting if the predicate p holds for all threads in
the generic group g. This is only applicable for warps and custom groups that
contain fewer threads than a warp i.e. 32.

4 GDBM

Our DBM libraryGDBM [3] was originally developed for the purpose of symbolic
reachability analysis of timed automata. We have reworked and extended this
library to now also support operations involved in controller synthesis for timed
games. We will exemplify the theoretical benefit of computing these operations
massively in parallel through complexity analysis. Unless stated otherwise, the
derived complexity of the operations always assume an equal number of device
threads used during the computation and DBM entries. The same is applicable
when discussing partitioned operations on federations, i.e. we will assume that

18 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

the grid size (number of launched blocks) to be equal to the amount of DBMs
in the federation.

4.1 Thread Mapping

The standard DBM operations from Bengtsson [11] and Behrmann et al. [8]
as mentioned in Section 2.2 are in general computed using the threads of an
entire thread block in GDBM. Some operations benefit from being computed on
a varying level of device thread granularity – we will note this when discussing
these operations in more detail. The block is utilised by mapping each thread
within it to a unique subset of DBM entries. We will always require that there
are fewer threads than the number of DBM entries, i.e. ∣B∣ ≤ n2, where n is the
amount of clocks. As such, each thread will always be mapped to at least one
DBM entry.

A thread is initially mapped to i, j values based on its rank(T,B) and the
number of clocks s.t. i = rank(T,B)/n, j = rank(T,B) mod n. Each thread
will then in parallel compute on its given DBM entry, dictated by the specific
operation. If ∣B∣ < n2, i.e. some threads are mapped to multiple entries, the
values of i, j are offset in a three-step process, as seen in Algorithm 3.

Algorithm 3 Offsets the mapping of a thread to i, j values

1: procedure nextIndex (i, j, n, g) ▷ g is a generic group of threads
2: j ← j + (∣g∣ mod n) ▷ n is the number of clocks
3: i← i + (∣g∣/n) + (j ≥ n)
4: j ← j − ((j ≥ n) ∗ n)
5: return i, j

While not explicitly illustrate, the computed offsets (∣g∣ mod n) and (∣g∣/n)
on Line 2 and 3 are pre-computed as both the total number of threads and the
number of clocks are constant throughout the kernel execution. Many NVIDIA
GPUs do not support integer division and modulo instructions, and instead relies
on floating point conversions and reciprocal multiplication, which compiles to
unnecessarily many instructions.

4.2 GDBM Closure

We illustrate the use of thread mapping concretely in the computation of DBM
closure in Algorithm 4. Parallelisation of the all-pairs shortest path algorithm has
been done before, e.g. [29,27]. Each thread evaluates its entry’s bound for each
step of the shortest path algorithm concurrently, and synchronises after each
step, i.e. if any threads have updated their entry’s bound then it is written to
the main memory such that if any other thread accesses that bound, then they
get the updated bound. Essentially, GDBM closure is computed sequentially,
with ∣B∣ entries being computed concurrently at a time, thus becoming O(n) as
compared with the sequential O(n3).

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 19

Algorithm 4 GDBM Close

1: procedure Floyd-Warshall(D) ▷ D is a DBM
2: parallel(T ,B) idx ← 0 to ∣B∣ do
3: for k ← 0 to n do ▷ n is number of clocks (size of D)
4: i, j ← getIndex(idx , n)
5: repeat
6: Di,j ← min(Di,j ,Di,k +Dk,j)
7: i, j ← nextIndex(i, j, n,B)
8: until i ≥ n
9: sync()

Correctness The synchronisation is pivotal to ensure correctness of the par-
allel closure algorithm. Our implementation synchronises all threads after each
iteration of k, as to guarantee termination in n iterations (without synchronisa-
tion the algorithm will eventually compute the all-pairs shortest path but can
not be guaranteed in any finite number of steps). After synchronising, if any
threads have updated their entry’s bound, it is written to the main memory and
the updated value becomes accessible to all other threads. One may still be con-
cerned that the order of updates occurring during any iteration of k somehow
affects the correctness, e.g. an entry Di,j is updated depending on the value of
Di,k +Dk,j such that the order in which these are updated affects the result. We
argue that, as long as the k-loop occurs sequentially, the inner i, j-loops can be
parallelised, as the order of i, j has no effect on the correctness. In the following,
3 identified cases for pairs of entries illustrates the correctness of GDBM closure.
The cases and arguments are strongly based on our previous work [3], but has
been reworded for clarity and conciseness:

No dependency indicates two DBM entries where neither is updated accord-
ing to the other. As updates are only dependant on other entries where either
index = k for any given k = 0 . . . n, no dependency involves two entries Di,j ,
Dl,m where i, j, l,m ≠ k. The order in which these are updated is obviously of no
concern.

One-way dependency indicates a dependency between an entry Di,j and
either Di,k or Dk,j , i.e. the two entries that are part of the update Di,j =
min(Di,j ,Di,k +Dk,j). While this initially looks to be a case where the order of
update matter, unfolding the supposed update of Di,k (Dk,j , respectively) shows
that Di,k = min(Di,k,Di,k +Dk,k) (Dk,j = min(Dk,j ,Dk,j +Dk,k), respectively).
As the diagonal of a DBM is always 0, the values of Di,k and Dk,j are never
updated, thus making the order irrelevant.

Two-way dependency indicates two entries in the DBM where both are de-
pendant on the other. This is of no concern for similar reasons as the case for
one-way dependency. Furthermore, for this case to even be present, the two en-
tries must have either index = k, and share both column and row with the other.
In other words, this dependency is only present for the case that both entries are
Dk,k, making it obviously of no concern.

20 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

4.3 GDBM Relation

The relation operation relates to inclusion checking described in Section 2 as a
two-way inclusion check between a pair of DBMs D,D′, producing a relation
being either subset, superset, equal or different. Computing the relation between
two DBMs is one of the operations that can benefit from a higher thread gran-
ularity, i.e. computing on a warp rather than block level abstraction. This is
changed from the previous version of our DBM library from [3] where an entire
thread block was utilised, with the benefit of now being able to terminate early.
For the sake of self-containment, we now re-state how relation was computed
from our previous work (with minor modifications). While not explicitly stated
(as the notation slightly differs from this thesis), the procedure still utilises a
similar thread mapping as has previously been described.

Relation Computing relation between two DBMs is easily parallelisable, as the
operation only requires reading values from both DBMs. Each entry is compared
using a ≥ and ≤ comparison on each of their corresponding matrix entries, as
seen on Line 6 and 7 in Algorithm 5, such that if all entries of D are ≤D′, then
we can deduce a subset relation. All entries are equally distributed between all
threads to maximise concurrency.

Afterwards, each thread knows the result only from the entries it has checked,
and thus we need to form a consensus between threads, as shown on Line 10 and
11. Consensus synchronises all threads in a kernel, and returns true if all threads
agree on the value being true, otherwise false. This mimics the ∧ operation of
Line 6 and 7. Computing relation in parallel gives a complexity of O(1).

Algorithm 5 GDBM Block Relation

1: procedure Relation(D,D′) ▷ D, D’ are a DBMs
2: parallel(T,B) idx← 0 to ∣B∣ do
3: i, j ← getIndex(idx , n)
4: sub, super ← true
5: repeat
6: sub ←Di,j ≤D′i,j ∧ sub
7: super ←Di,j ≥D′i,j ∧ super
8: i, j ← nextIndex(i, j, n,B)
9: until i ≥ n
10: sub ← consensus(sub) ▷ returns true if all threads provides true
11: super ← consensus(super) ▷ returns true if all threads provides true
12: return ⟨sub, super⟩

Warp Relation While good results was reported from the block relation com-
putation, we noticed a potential limitation in being incapable on terminating
early in the case of contradicting relation on DBM entries, e.g. for DBMs D, D′

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 21

and there are entries such that Di,j > D′i,j and Dl,m < D′l,m, we can conclude
early that the relation should be different.

Computing the relation on a warp, as opposed to a block, allows us to utilise
the very fast intra-warp communication warp.any(). The procedure shown in
Algorithm 6 utilises mostly the same procedure as the block relation algorithm,
but allows us to check 32 entries at a time, and terminate once counter evidence
is found, as oppose to reading all entries of the DBM.

Algorithm 6 GDBM Warp Relation

1: procedure Warp Relation(D,D′, n) ▷ DBMs and number of clocks
2: parallel(T,W) idx ← 0 to ∣W ∣ do
3: i, j ← getIndex(idx , n)
4: repeat
5: if warp.any(Di,j <D′i,j) then
6: repeat
7: if warp.any(Di,j >D′i,j) then
8: return different

9: i, j ← nextIndex(i, j, n,W)
10: until i ≥ n
11: return subset
12: else if warp.any(Di,j >D′i,j) then
13: repeat
14: if warp.any(Di,j <D′i,j) then
15: return different

16: i, j ← nextIndex(i, j, n,W)
17: until i ≥ n
18: return superset

19: i, j ← nextIndex(i, j, n,W)
20: until i ≥ n
21: return equal

The obvious benefit of this re-implementation has been the added possibility
of early termination. A more subtle benefit, is that this should provide better
device occupancy, as threads have more work to do per relation computation.
With block relation, each thread had fewer entries to compare, but required
a synchronisation barrier to form a consensus, which significantly slows down
the computation. This should also result in being able to compute many more
relations with the same number of threads, under the assumption that the com-
putation will often terminate early. Regardless, both the sequential Algorithm
described in Section 2.2 and GDBMs implementation has a complexity of O(n2),
as it is essentially O(n2

count(T,W)
) = O(n2

32
) = O(n2), however, with a best-case

complexity of Ω(1).

22 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

4.4 Intersection

Thread mapping and consensus as a concept is similarly used when computing
the intersection between two DBMs. The procedure is listed in Algorithm 7.
Consensus is reached (in principle) on the block shared variable changed that
indicates whether the constraints in D have changed. If not, there is no need
for closing the DBM, as it would already be on canonical form. The DBMs do
not intersect if D becomes empty. As the operation may need to recompute
the canonical form of the DBM, the complexity of the operation is similarly
O(n). We utilise an optimisation not depicted in the algorithm, by continuously
keeping track of the DBM entries Di,j that are changed. We can thus compute
the canonical form based only on these changed entries, i.e. pre-selecting values
of k (based on the changed entries) rather than looping over all values of k from
0 . . . n.

Algorithm 7 GDBM Intersection

1: procedure Intersection(D,D′) ▷ DBMs
2: block shared changed← false
3: parallel(T ,B) idx← 0 to ∣B∣ do
4: i, j ← getIndex
5: repeat
6: if D′i,j <Di,j then
7: Di,j ←D′i,j
8: changed← true

9: i, j ← nextIndex(i, j, n,B)
10: until i ≥ n
11: sync()
12: if changed then
13: Close(D)
14: return D

The procedure can trivially be modified to only compute whether or not the
DBMs have an intersection in O(1) time by disregarding the close operation on
Line 13, without actually computing the intersection. We will later use this as a
subroutine in larger and more expensive operations.

4.5 Restrict

While the restrict operation follow the tendency of utilising a full thread block,
the main body of the computation has no need for any thread specific data,
as it only relies on the bound passed as parameter. The computation can be
seen in Algorithm 8. It checks whether the bound to be added will produce an
empty DBM on Line 3. If not, and if the bound is tighter than what the DBM
already holds, we update the bound. The DBM must be closed as a consequence
of updating the bound, as the restrict break the canonicity otherwise. It is only

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 23

in restoring the canonical form subroutine that the device threads are properly
utilised in parallel.

Algorithm 8 GDBM Restrict

1: procedure Restrict(D ,n, (x − y ∼ m))
2: parallel(T,B) idx ← 0 to ∣B∣ do
3: if Dy,x ≤ ¬(∼m) then
4: D = ∅
5: else if (∼m) <Dx,y then
6: sync()
7: Dx,y = (∼m)
8: Closeij (D,n,x, y, idx)
9: return D
10: procedure Closeij (D,n,x, y, idx)
11: i, j ← getIndex(thread , n)
12: repeat
13: Di,j ← min(Di,j ,Di,x +Dx,y +Dy,j)
14: i, j ← nextIndex(i, j, n,B)
15: until i ≥ n
16: return D

Restoring the canonical form of the DBM, after updating a constraint utilises
a special form of the all-pairs shortest path algorithm. The DBM is already as-
sumed to be in canonical form before the constraint was updated. The short-
est path has been shortened between the entries of the new bound denoted
Da,b, so we only need to recompute potential shortest path on the form Di,j =
min(Di,j ,Di,a +Da,b +Db,j). This is essentially similar to computing all-pairs
shortest path with a pre-selected k, omitting the otherwise needed loop. As this
is the case, the complexity of the entire restrict procedure becomes O(1).

4.6 Extrapolation

GDBM has support for the four types of extrapolation named in Section 2.2. The
approach follows the thread mapping established earlier and utilises an entire
thread block for the computation. For the sake of conciseness, we only show the
procedure for LU+extra, as it is the most involved while the others are similar. It
can be seen in Algorithm 9.

Extrapolation unfortunately requires 2 synchronisation points, as the results
found in the repeat-until loop from Line 4 is required in updating based on upper
bounds from Line 11, that is again required before recomputing the canonical
form. While this limits the speed of computation in practice, the complexity of
the operation is still O(n) through the need of recomputing the canonical form
of the DBM, while the remaining of extrapolation is O(1). The call to CloseLU
is a specialised computation of the canonical form on only clocks that have a
corresponding lower or upper bound from the input parameter.

24 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Algorithm 9 GDBM LU Extra+

1: procedure LU Extra+(D, [L0,⋯, Ln], [U0,⋯, Un]) ▷ DBM, lower and upper
bounds

2: parallel(T,B) idx ← 0 to ∣B∣ do
3: i, j ← getIndex(idx , n)
4: repeat
5: if i ≠ j ∧ i > 0 then
6: if Di,j > Li ∨D0,i < −Li ∨D0,j < −Uj then
7: Di,j ←∞
8: i, j ← nextIndex(i, j, n,B)
9: until i ≥ n
10: sync()
11: if idx < n then
12: if D0,idx < −Uidx then
13: if Uidx ≥ 0 then
14: D0,idx ← −Uidx

15: else
16: D0,idx ← (0,≤))
17: sync()
18: CloseLU (D, [L0,⋯, Ln], [U0,⋯, Un])

GDBMmakes no discrimination whether to extrapolate as a global or location-
based zone abstraction [7], but only provides the functionality to compute this
given the bounds. The intended extrapolation is determined by the symbolic
verification algorithm that will interact with GDBM.

4.7 Shortest-Path Reduction

Computing the shortest-path reduction in GDBM differs slightly from the proce-
dure established in Section 2.2 and [11,30]. As opposed to searching for redundant
edges, they are initially assumed to be redundant and we search for evidence of
the contrary.

The procedure is listen in Algorithm 10. The computation occurs on a thread
block that is further partitioned into custom groups of size n (CGn) to find
equivalence classes (zero cycles) on Line 5. Threads in a custom group shares
the set P that is used to contain all nodes in an equivalence class, while the
entire thread block shares the set Eq used to keep track of the leaders (lowest
node in P according to assumed ordering) of each equivalence class. Each custom
group is assigned a node i in the graph that it will search for zero cycles from.
Each thread in the custom group is further assigned to every other node j in
the graph, and will evaluate concurrently if there is a zero cycles between i and
j (Line 6) and add it to the set F . If the equivalence class contains multiple
nodes, it indicates a zero cycles between the nodes in P . Edges in a zero cycles
are connected in an incremental manner in the resulting DBM Dm on Line 11.
We use Next(P, i) as a shorthand for the smallest value i′ ∈ P, i < i′. In the case

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 25

that no i < i′ is found, i′ becomes the smallest value i′ ∈ P , in order to complete
the loop.

Synchronisation is needed on Line 12 to guarantee all equivalence classes
has been found, and that their leaders have been elected. The straightforward
procedure Reduce is then computed across all threads in the block, where only
the leaders of equivalence classes are considered when finding edges that should
be part of Dm in a similar approach to [30].

Algorithm 10 GDBM Shortest-Path Reduction

1: procedure Mingraph(D)
2: block shared Eq ← ∅,Dm ← ∅
3: parallel(CGn,B) i← 0 to n do
4: group shared P ← {i}
5: parallel(T,CGn) j ← 0 to n do
6: if Di,j +Dj,i = 0 then
7: P ← P ∪ {j}
8: if i is smallest in P then
9: Eq ← Eq ∪ {i}
10: if ∣P ∣ > 1 then
11: connect i to Next(P, i) in Dm ▷ Assumes loop around

12: sync()
13: Reduce(D ,Eq ,Dm)
14: sync()
15: return Dm

16: procedure Reduce(D,Eq,Dm)
17: parallel(T,B) i , j ∈ Eq do
18: if ∀k ∈ Eq, k ≠ i, j ∶Di,k +Dk,j >Di,j then
19: Connect i→ j in Dm

Interestingly, the reduction algorithm described in [11] utilises more opti-
mised nested loops (i from 0 to n, j from i + 1 to n) than our implementation
(i from 0 to n, j from 0 to n) for finding equivalence classes. A sequential com-
putation can easily keep track of nodes to be elected leaders of their equivalent
classes as part of the loops, while a parallel computation can not – e.g. if we
partition generic groups to nodes i and have them search from i to n for equiv-
alence classes, there is much added overhead in communication and reaching
consensus regarding equivalence classes and finding the leader of these, as only
the exact group that is assigned the correct leader will initially find this as part
of the zero cycle. The essence of this is that a sequential computation has the
benefit of being able to skip certain comparisons, e.g. if for i = 0, j = 2 it is found
that (i, j) is an equivalence class, there is no need to check for the synonymous
case of i = 2, j = 0. Utilising the worse structure in our implementation allows
for better parallelability – partitioning the block into n groups of n threads re-
sults in all computations occurring concurrently, with the only added overhead

26 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

in atomic insertions into sets P and Eq and the synchronisation point. With
perfect partitioning, each thread will have O(1) work. The Reduce procedure
is sequentially O(∣Eq∣3) but is parallelisable in a similar manner to computing
closure, thus becoming O(∣Eq∣).

4.8 Federation Operations

GDBM is developed to primarily operate on federations – represented in memory
as a linked list of DBMs – rather than singular DBMs, in order to achieve a higher
degree of device occupancy and thus concurrency. The intended interaction with
symbolic verification algorithms is to operate on every zone associated with
a discrete state at once. To achieve this, federations can be operated on with
varying degrees of device thread granularity, i.e. varying size and abstraction in
the grouping of threads (grid, block, warp), depending on the specific operation.

We utilise the IDs assigned to generic groups to associate them with a unique
DBM in the federation, and compute the DBM operation concurrently. As an
example, Algorithm 11 shows how the canonical form of all DBMs in a federa-
tion are computed concurrently across a number of blocks. Based on the group
IDs, this is trivially extended to all other DBM operations with varying generic
groupings.

Under the assumption that there are z DBMs in F , and that there are an
equal number of blocks in the grid, as there are DBMs in the federation, the
complexity of this operation is O(z + n), as each block must traverse at most z
elements through the linked list to find their corresponding element, and compute
the closure. Going forward, we will omit the traversal of the linked list as part
of the complexity analysis, as this in practice is only a minor concern of the
algorithms.

Algorithm 11 GDBM Federation Closure

1: procedure Fed Close(F) ▷ Federation
2: parallel(B ,G) idx ← 0⋯∣G∣ do
3: D ← F [idx]
4: Floyd-Warshall(D)

Representing federations as linked lists may introduce problems common in
concurrent computations in regards to insertion and deletion of new nodes in
the linked list, as illustrated in 8. If two threads concurrently wants to remove
nodes B and C from the same linked list, the first thread, will attempt to con-
nect node A to node C (thus removing B) while the other thread will attempt
to connect node B to D (thus removing C), which can result in the linked list
being left disconnected. Our general approach is to handle this through lazy syn-
chronisation, e.g. marking nodes as logically removed on-the-fly, only physically
removing them from the linked list as part of a final cleanup after the operation
has concluded, as proposed in [26, Chapter 9].

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 27

A B C D

thread 0
head0prev0

head1prev1

thread 1

Remove C Remove B

thread 0 thread 1

Remove C Remove B

prev.next <- head.next

A B C D

head0prev0

head1prev1

A B C D

illegal access

head0prev0

head1prev1

thread 0

Remove C

thread 1

Remove B

prev.next <- head.next

dealloc C

Fig. 8: Threads 0 and 1 working on the same linked list, each attempting to
remove different nodes, resulting in an illegal memory access and a disconnected
list

For the sake of comparison, GDBM also support naive federation operations
with no partitioning of DBMs, i.e. computing the parallel DBM operations se-
quentially on a single block for all DBMs in the federation. The anomaly to this
is federation intersection, that only implements this naive approach.

4.9 DBM Subtract

Multiple challenges arise from subtraction due to the non-convexity of the result
of the operation. In a sequential computation, the primary concern is the rapid
growth of the federation, while GDBM suffers additional adversity in not being
able to predetermine the size of the result.

Dynamic Allocation While the size of the set resulting from subtraction is
bounded by n2−n DBMs, assuming this a priori quickly becomes too large to fit
in memory. This is problematic as while CUDA does provide a built-in dynamic
device allocator, it is well known to perform poorly, almost certainly forfeiting
any speed-ups gained from computing the operation massively in parallel. Dy-
namic device allocation is an active research topic, e.g. [24,36]. We instead opt
for circumventing this issue entirely, by preemptively creating a device memory
pool of DBMs. The memory pool is held as a linked list of DBMs, with a global
device pointer to the head of the list. Dynamically allocating a new DBM thus
becomes a simple process of moving the global pointer as to disconnect the head

28 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

from the rest of the list. The drawback of doing this in parallel is the necessity
of a locking mechanism, in our case handled through a simple spinlock scheme
with a tiny critical section (compiles down to < 10 instructions). Furthermore,
this introduce some overhead on startup in having to preemptively allocate the
memory and connect the nodes in a linked list.

(a) Non-disjoint DBM subtract (b) Disjoint DBM subtract

Fig. 9: Illustration of different subtract variations, subtracting the inner (red)
zone from the outer (blue) zone

Algorithm 12 GDBM DBM Subtraction

1: procedure Disjoint Subtract(D,E) ▷ DBMs
2: block shared fed← ∅
3: for (i − j ∼m) ∈ Em do ▷ From reduced DBM, order based on heuristic
4: if i ≠ j ∧Di,j < Ei,j then
5: if Dj,i < ¬Ei,j then ▷ D becomes empty, add remaining to fed
6: fed← fed ∪D
7: break
8: block shared D′ ←mempool.next() ▷ next dbm in mempool
9: D′ ←D ▷ Copy D
10: D′ ← Restrict(D′,¬Ei,j)
11: D ← Restrict(D,Ei,j)
12: fed← fed ∪D′

13: return fed
14: procedure Nondisjoint Subtract(D,E) ▷ DBMs
15: block shared fed← ∅
16: if D ∩E = ∅ then
17: return fed ∪D
18: parallel(W,B) i, j ∈ Em do
19: if Di,j < Ei,j then
20: warp shared D’←mempool.next()
21: D’←D
22: D’← Restrictwarp(D′,¬Ei,j) ▷ restrict for warp instead of block
23: fed← fed ∪D′

24: return fed

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 29

Disjoint Subtract GDBM implements multiple variations of the subtract com-
putation, such as using reduced DBMs and keeping the resulting federation dis-
joint. It is hypothesised in [20] that it may be beneficial for the overarching
verification algorithm to keep DBMs in the result set disjoint. An example of
the discrepancy between in keeping DBMs disjoint is illustrated in Figures 9a
and 9b.

Algorithm 12 lists the disjoint computation using reduced form (using all
constraints is a trivial altercation). Unfortunately, the disjointedness requires
an almost sequential computation. The only added parallelism stems from the
Restrict subroutine from Line 10 and selecting the next constraint according
to the heuristic function (sequentially is O(n2), can be done in constant time in
parallel). The ordering mentioned on Line 3 is the efficient heuristic from [20],
i.e. the smallest value of ∣Ei,j ∣ − ∣Di,j ∣ in each iteration of the loop.

Non-disjoint Subtract Disregarding the disjointedness leads to much more
potential for parallelism, as each restrict no longer requires the previous to be
computed. Algorithm 12 lists the procedure for computing this form of subtrac-
tion using the reduced DBM form (again only trivial altercation is needed to
use all constraints). Each constraint can now be partitioned amongst warps in
a block instead of looping through this sequentially on a block. Computing on
warp rather than block level necessitates a change in the call to Restrict on
Line 22 – it is a trivial altercation to the procedure from using a block to using a
warp. Only the locking scheme associated with using the memorypool on Line 20
and atomically inserting D′ into the result set on Line 23 limits the parallelism.

While disregarding the disjointedness brings more potential for parallelism,
the size of the result may become larger than it would otherwise. This stems
from the disjoint algorithm being able to terminate earlier, i.e. when the se-
lected constraint according to the heuristic would produce an empty DBM. If
our assumption in regards to complexity analysis is consistent, and we thus as-
sume that count(W,B) = n2 (a warp per constraint in Em), the complexity of
the non-disjoint subtraction is O(1). This assumption only holds in exceedingly
rare cases in practice, and the derived complexity is a great exaggeration that
poorly reflect the true nature of the operation. The number of constraints each
warp must go through still scales by n2. Similarly, computing restrict on a warp
breaks the assumption of having a thread per DBM entry. The more conservative
analysis thus deems the operation to be O(n4). However, even with a theoreti-
cal worse complexity than the disjoint DBM subtract operation, the non-disjoint
operation has more benefit from being parallelisable to a greater extend.

Naive Subtract For the sake of being able to better gauge the effect of different
subtract strategies, GDBM supports a naive subtract method as well, where no
heuristic function is used for the ordering of constraints, the full DBMs are used
as opposed to reduced ones, and the resulting set is kept disjoint.

30 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Federation Subtract Subtracting federations is, for the most part, a straight
forward extension of subtracting DBMs. Similarly to how federation closure is
computed in Algorithm 11, the federation that is being restricted is partitioned
into singular DBMs across many blocks in the grid. For subtracting F −F ′, each
D ∈ F is partitioned across blocks and each block computes D −D′ for all D′ ∈
F ′. This procedure is listen in Algorithm 13. Each block must continuously
manage a partial result set (P and R on Line 7-8) until the partial set is added
to the globally shared result on Line 9.

Algorithm 13 GDBM Federation Subtract

1: procedure Federation Subtract(F,F ′) ▷ Federations
2: global shared result← ∅
3: parallel(B ,G) idx ← 0 to ∣G∣ do
4: block shared R ← {F [idx]}, P ← ∅
5: for E ∈ F ′ do
6: for D′ ∈ R do
7: P ← P ∪ Subtract(D ′,E)
8: R ← P,P ← ∅
9: result ← result ∪R ▷ Concurrent union across blocks

10: return result

Concurrent Union Implementation wise, adding to the global result on Line 9
of Algorithm 13 is much more involved than what is indicated in the algorithm,
as the federation invariant must be enforced, i.e. no DBM in the federation is
subsumed by another.

The intuition is a continuous union across blocks until the entire result has
been reached, as illustrated in Figure 10. Specifically, each block will try to write
to some global memory space. If this is empty, the block will simply write its
federation F in its place. Otherwise, the block will load the partial result into
local block memory (thus removing it from global), combine it with its own local
F (which involves removing subsumed DBMs) and re-attempt to write to global
memory. This more detailed procedure is similarly illustrated in the lower half of
Figure 10. A block will finish its part of this procedure whenever it writes to the
global memory space and that space contains an empty set. The concurrency and
thus device occupancy of this procedure diminishes over time as a consequence.

The removal of redundant DBMs whenever two federations are combined is
computed concurrently on a single block. Given two federations F,F ′ that we
want to union, we partition DBMs D ∈ F across warps in the block, and compute
the relation between D and all D′ ∈ F ′, marking D as redundant whenever
D ⊆ D′ (and D′ whenever D′ ⊆ D). When a DBM is found to be subsumed by
another, it is only marked redundant and only removed when all relations have
been computed. Removal of DBMs on-the-fly would introduce conflicts similar
to the ABA problem that plagues concurrent computing.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 31

Time

Block1Block2Block3

F1F2F3

F1 U F2

F12 U F34

1 2

3 4

F1 F2

Ø

F1 Ø

F2

F1UF2 Ø

Ø

Ø Ø

F1UF2

Block Memory

Global
Memory

Block4

F4

F3 U F4

Fig. 10: Concurrent union computed across blocks. Each block begins with its
own locally stored federation denoted Fi that are continuously combined. Partial
results are combined through access to global memory, as illustrated in the box
with dashed blue lines in the lower half.

32 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

4.10 Merging Convex Sets

Reducing a federation through merging of convex unions follows the method-
ology described in Section 2.2 closely with little added parallelism. All pairs of
DBMs in the federation are sequentially looped through on a single block when
the merge is attempted, while the heuristic IsMergable and the subsequent sub-
tractions and convex union on Line 4 in Algorithm 14 are computed concurrently.
We utilise CG2 (custom groups of 2 threads) for computing the heuristic, such
that both i, j and j, i entries are computed concurrently with shared communi-
cation between the threads in the group. The heuristic checks for at least n − 2
compatible opposite constraints on Line 15 (this is not mentioned in [17,18] but
is in accordance with Uppaal’s DBM library UDBM). Additionally, we check
that non-strict DBMs are not intersecting on Line 17, and if either DBM is sub-
sumed by the other. Subsumptions would obviously not be present initially due
to the federation invariant, but may be introduced as a consequence of earlier
merges.

Algorithm 14 GDBM Merge

1: procedure Merge Reduce(F)
2: for all (D,D′) ∈ F do
3: if IsMergable(D,D′) then ▷ Heuristic
4: if ((D ⊔D′) −D) −D′ = ∅ then
5: Remove D and D′ from F
6: F ∶= F ∪ {D ⊔D′}
7: procedure IsMergable(D,D′)
8: block shared sup, sub ← true
9: block shared count ← 0
10: parallel(CG2,B) idx ← 0 to count(CG2,B) do
11: i, j ← getLowerTriangularIndex(idx , n)
12: repeat
13: if rank(T,CG2) = 0 then
14: i, j ← j, i

15: if CG2.all(Di,j =D′i,j) ∧ rank(T,CG2) = 0 then
16: count + +
17: if CG2.any(−D+i,j ≥D′j,i+) then
18: intersects ← false

19: sub ← (Di,j ≤D′i,j) ∧ sub
20: sup ← (Di,j ≥D′i,j) ∧ sup
21: i, j ← nextTriangularIndex(i, j, n,count(CG2,B))
22: until i ≥ n
23: sync()
24: return sub ∨ sup ∨ (intersects ∧ (count ≥ n − 2))

A final note is that the check ((D⊔D′)−D)−D′ = ∅ is computed in place, i.e.
with no additional memory usage. We may rewrite the check as ((D⊔D′)−D) ⊆

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 33

D′, where each resulting restriction (from subtract) can be compared against
D′ without being stored. For a more thorough merge, using more resources, the
check can be rewritten as (((D ⊔D′) −D) −D′) ⊆ F when D,D′ ∈ F .

4.11 Predt

Due to the nature of the operation, computing Predt is a very expensive pro-
cedure. Parallelising the operation is conceptually rather straight forward and
similar to a sequential implementation. The procedure is listed in Algorithm 15.
The call to Pred t on Line 5 is shorthand for Equation 10, consisting of previously
described DBM operations (e.g. subtract and past). The partial result computed
in parallel on each block is added to a global result set on Line 6 in similar way
to federation subtract.

Algorithm 15 GDBM Predt
1: procedure Pred t(Fg, Fb) ▷ Federations
2: global shared result← ∅
3: parallel(B ,G) idx ← 0 to ∣Fg ∣ do
4: Dg ← {F [idx]}
5: P ← ⋂

Db∈Fb

Pred t(Dg,Db) ▷ Concurrent intersection across blocks

6: result ← result ∪ P ▷ Concurrent union across blocks

7: return result

The intersection on Line 5 may be computed across multiple blocks, limited
by the size of the federation Fg. The approach is similar to concurrent union
across blocks described in Section 4.9, but using multiple addresses (one for
each DBM in Fg) in global memory as opposed to just one. When all intersec-
tions have been written to the global memory space, we take the union of all
intersections. Each DBM in Fg must have an associated address that is known
a priori, as the implemented dynamic allocation through a memory pool only
supports allocating DBMs. We denote the version of predt that partitions only
Dg ∈ Fg as multi predt and the version that partitions both Dg ∈ Fg and Db ∈ Fb

as super predt.

4.12 DBM Hash Table

For the purpose of reducing the memory footprint of GDBM, we have imple-
mented a DBM hash table such that identical DBMs can be shared rather than
needlessly duplicated. We base this on similar structures found in Uppaal’s
DBM library UDBM [19], while closely following the state of the art work by
WarpCore [28]. The DBM table is modelled as a Struct of Arrays in global de-
vice memory, consisting of keys (a hashed DBM), references (reference counting)
and values (pointer to the DBM), as can be seen in Figure 11. The table is struc-
tured in such a way that the same index is correlated in all 3 arrays, i.e. keys[x]

34 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

corresponds to references[x] and values[x]. Reference counting is introduced as
a consequence of sharing DBMs, in order to determine when the DBM can be
deallocated and removed from the table.

h0 h1 h0 h3 ⊥ h5 h6 0

4 2 7 4 0 1 7 0

ptr ptr ptr ptr ptr ptr

keys

refs

values

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Fig. 11: DBM table consisting of keys (h, �, and 0 indicating a hash value, tomb-
stone value, and empty slot), references, and values (pointers)

Collisions We utilise an Open Addressing strategy for dealing with hash col-
lisions – that is, when attempting to insert a DBM D′ whose key k′ collides
with another key k already placed in the table, if for the corresponding DBMs
D ≠ D′, we must compute a new index where k′ is inserted. Using Open Ad-
dressing, this is resolved by a probing strategy that searches through candidate
positions until an unused slot is found. WarpCore has developed the Cooperative
Probing Strategy for device hash tables that utilises warps during the probe.
This strategy is based on a Linear Probing Strategy for threads within a warp –
threads in a warp has a fixed offset based on their id in the warp – and a Double
Hashing Strategy for indexing the search of the entire warp. For example, if we
are looking for an empty slot in the table, the warp is initially indexed through
double hashing, and each thread in the warp is linearly offset from each other.
If no empty slot is found, the double hashing strategy determines the next slot
from which to continue the search.

We modify this probing strategy slightly, such that we also index warps based
on linear probing – essentially offsetting the search by the size of a warp. Not
utilising a double hashing strategy makes our probing much more sensitive to
clustering but should have much improved cache performance. The strategy is
illustrated in Figure 12.

Insertion, Deletion & Retrieval Insertion of a key-value pair into the storage
structure is done on a warp level abstraction, where the outer linear probing
scheme is used to determine the initial index of the warp. Each thread in a warp
is offset from the initial probing index for its warp, and will check whether its

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 35

0 1 2 3 4 5 6 7 8 9 10 11

hash(DBM) = 4 + rank

coalesced load

registers

group vote

0 01 1bitmask

leader election

DBMtable

= filled

= empty

= tombstone

Fig. 12: The modified Cooperative Probing Scheme. Based on Figure 2 from [28]

assigned key slot is a potential candidate, determined by the slot being currently
empty or holding a Tombstone value. This is communicated to the rest of the
warp through intra-warp communication. If no potential candidate is found,
the entire process is restarted. Otherwise, the smallest candidate slot index is
selected. An atomic Compare And Swap operation is attempted on the selected
candidate slot with the key-value pair. This may fail due to successful insertion
by another thread in the meantime, and in that case, we select the next lowest
potential candidate slot index and retry from there. If successful, the key and
value are inserted and the associated reference count is incremented. As such,
either a pointer to the newly inserted DBM, or a pointer to an already inserted
identical DBM, is returned to the caller.

Deleting entries is accomplished by decrementing the reference count to the
value. If the reference count reaches zero, a tombstone value overwrites the key
slot and the DBM is deallocated.

The maximum size of the DBM table is limited to 228 entries, for purpose
that will become clearer when discussing the federation table. Normally, similar
storage structures are implemented as an expandable table. As ours is fixed
and statically allocated, GDBM will terminate entirely in the (albeit unlikely)
scenario that tableSize + 1 entries are required. Each entry takes up 16 bytes,
allowing for the table to require up to 4 GB of memory.

36 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

4.13 Federation Table

While federations are held as linked list during most operations, this become
infeasible for operations with insertion and deletion of DBMs in the federation,
due to the infamous ABA problem in concurrent computations. As such, federa-
tions are stored in a multi map structure consisting of keys, dbmIdx and flags as
seen in Figure 13. Keys are acquired from a mapping of discrete states to natural
numbers f ∶ L→ N in an incremental manner, and placed in the table according
to a hash value of the keys. The keys are placed in the federation according to
the hashed value rather than the natural number in order to encourage more
locality of federations, i.e. diminishing the chance that entries belonging to dif-
ferent federations being interleaved in the table. A federation is thus described
by all entries that share a key. In practice, this structure acts as the PW list of
Algorithm 1.

1
5

flag

1
2

flag

3
5

flag

1
10
flag

3
1

flag

5
9

flag

5
3

flag

keys
dbmIdx
flags

0 1 2 3 4 5 6 7

hash(1) hash(3) hash(5)

Fig. 13: Fed table consisting of keys, dbmIdx (for indexing in the DBM table),
and flags

The dbmIdx is stored as a 32bit integer value, corresponding to the index of
the zone in the DBM hash table. As the maximum size of the DBM hash table is
limited to 228, we utilise the remaining 4 bits for flags, indicating the following:

– Is waiting

– Is passed

– Is losing (timed games)

– Is winning (timed games)

By limiting the size of the DBM table, and thus bitcram the flag indicators
into the value field instead of using additional memory, we can contain each
entry in the Fed table to exactly 8 bytes, which allows us to fully utilise atomic
operations, making the table entirely lock-free and wait-free. Otherwise, the
federation table is similar to the previously described DBM hash table as it
utilises the same probing scheme, i.e. searching from an initial candidate entry
according to the hashed value until the desired entry or an empty entry is found.
Similarly, when removing entries from the federation table, a tombstone value is
left in its place.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 37

5 Asynchronous Co-Processing Reachability Engine

Uppaal andUppaal Tiga have been extended to allow for integration of GDBM
functionality and support for an asynchronous host-device verification of timed
automata and synthesis for timed reachability games. This section will exclu-
sively detail the integration into Uppaal, i.e. symbolic reachability, as a pre-
requisite for discussing Uppaal Tiga, due to reachability similarly being part
of the synthesis for timed games. For a fairer comparison in later experiments,
we have also implemented an asynchronous host exclusive symbolic reachability
algorithms that we also describe briefly.

5.1 Host-Device

The asynchronous workflow between host and device is essentially modelled as
a producer-consumer pattern, such that the host is responsible for discrete ex-
ploration and queuing jobs associated with continuous exploration, i.e. DBM
operations, for the device. The respective host and device parts of the overall
verification is shown in Algorithm 16 and 17. The verification is entirely dictated
by the host, by asynchronously launching kernels on the device, and receiving
data back into the waiting set, that stores discrete states (locations l) that are
yet to be explored by the host. Once explored (through discrete transitions), the
reachability kernel is asynchronously launched with source and successor loca-
tions, that the device uses to grab associated waiting DBMs from the combined
passed-waiting (PW) list. The device computes new continuous states associ-
ated with discrete successor states, updates its PW list, and sends results back
to the hosts waiting set.

Algorithm 16 Asynchronous symbolic reachability – Host

1: procedure reachabilityhost(l0,D0, ϕ)
2: waiting ← {l0}
3: Compute (l0,D0)↗ on device and save resulting DBM as D′

4: Insert (D′,w) into PW [l0] on the device
5: while ¬terminate do
6: while waiting ≠ ∅ do
7: l ← pop(waiting)
8: if l ⊢ ϕ then return true

9: succ ← {(l′, g, r) ∣ l g,rÐ→ l′}
10: launch async forwarddevice(l, succ)
11: return false

DBMs are exclusively stored on the device, as to limit the data that needs to
be transferred back and forth. The device only needs discrete states in order to
grab DBMs and their associated flags, as described in Section 4.13. More specif-
ically, the device procedure Grab finds all waiting DBMs – in practice creating a

38 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

federation – for a given discrete state. The flags of these DBMs are then changed
from waiting (w) to passed (p) to avoid unnecessary future re-computations. The
device also utilises the update procedure to handle subsumption checking against
all other DBMs in the PW list for a given discrete state. If the new DBM is sub-
sumed by another it returns false, indicating it should not be explored further.
DBMs from the PW list that are subsumed by the new DBM are removed. If the
new DBM is not subsumed by any in the PW list, it is added and the discrete
state parts are send to the hosts waiting set.

The host holds a user specified number of CUDA streams – dubbed workers –
for communicating with the device. The work scheduled within a CUDA stream
is totally ordered, while we desire a concurrent and asynchronous reachability
analysis (and later synthesis of timed games), thus the need for multiple workers.
The number of workers is limited by each requiring its own device memory space.

The algorithm runs until some termination criteria (denoted terminate) be-
tween the host and device is met. For this asynchronous workflow, it is important
that neither the host nor the device terminate as soon as their respective wait-
ing set is empty, as the other might still be in the midst of performing forward
exploration. Termination is only fulfilled when both the host and device have no
more work i.e. there are no more states to be explored, which is guaranteed due
to the finite state space achieved through the use of extrapolation.

Algorithm 17 Asynchronous symbolic reachability – Device

1: procedure forwarddevice(l, succ)
2: FW ← grab(l)
3: for all {(l′,D′) ∣ (l′, g, r) ∈ succ ∧D ∈ FW ∧D′ ← ((D ∩ JgK)[r])↗} do
4: if D′ ≠ ∅ ∧ update(l′,D′,{p,w},w) then
5: send(l′,waiting)
6: procedure grab(l)
7: FW ← ∅
8: for all (D,w) ∈ PW [l] do
9: FW ← FW ∪ {D}
10: PW [l] ← (PW [l]/(D,w)) ∪ (D,p)
11: return FW

12: procedure update(l,D,flags, fn)
13: for all (D′, f) ∈ PW [l] ∧ f ∈ flags do
14: if D ⊆D′ then
15: return false
16: else if D′ ⊆D then
17: PW [l] ← PW [l]/{(D′, f)}
18: PW [l] ← PW [l] ∪ {(D, fn)}
19: return true

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 39

5.2 Exploiting Concurrency

The continuous state computation on the device is described in Algorithm 17
in a sequential manner for the purpose of simplicity and clarity. In practice, the
computation proceeds concurrently similarly to how federation operations are
described in Section 4.8. Instead of launching the forward procedure once on a
single block, the host keeps track of how many DBMs are waiting for each state
and launches the kernel with (∣waitingDBMs ∈ Source∣ × ∣Successors∣) blocks.
Each launched block grabs a single unique DBM, and is only tasked with the
forward exploration of a single successor state and a single DBM. As such, we
compute many DBM operations in parallel on Line 3, while the computation of
each of these DBM operations is also parallelised.

During the update procedure, each block attempts to check their newly com-
puted DBM against the PW list for the successor state, finding whether it is
subsumed by any DBM already in the PW list. In practice, we first check if said
DBM is subsumed by another newly computed DBM for the same successor,
and if not, then compare it to the PW list. If the newly computed DBM super-
sedes an element of the PW list, we remove it using lazy synchronisation, by
unmarking its passed and waiting flags. Insertion into the PW list is only done
once every block has finished their subsumption check, and removed their DBM
or unmarked ones in the PW list that is superseded by it. If it gets added to the
PW list, the successor state is send back to the hosts waiting set, as it should
get further explored. Unmarked entries are also removed from the PW table.

5.3 Work Dependencies

The concurrent exploration may result in work being queued that should be
mutually exclusive. The timed automata (with clocks, guards, and invariants
omitted for simplicity) illustrated in Figure 14 can have undefined or incorrect
behaviour if explored concurrently. For example, if l1 and l2 are forwardly
explored concurrently, the transition l1 → l3 may be evaluated first, beginning
the subsumption check and removing symbolic states on l3. Symbolic states
reachable from l1 and l3 may overlap, such that a scenario may arise where the
transition l2 → l3 is evaluated after symbolic states have been removed by the
previous subsumption check, but before writing the zones that supersedes these,
leading to undefined behaviour between the two processes.

Our solution to this is utilising CUDA stream events for a linearisation
scheme for critical sections, similar in nature to a dependency graph. One can
conceptualise this as a locking scheme, as this guarantees exclusive access to
critical sections, although with the benefit of not using any system resources, as
an agreed upon ordering of tasks emerges through the linearisation. The many
workers (CUDA streams) that is utilised during reachability is used to asyn-
chronously communicate between host and device. Tasks queued from a single
worker is totally ordered, but utilising multiple workers gives no guarantee of
the execution order between them. A stream event is completed when all pre-
ceding tasks from the worker has been completed. The critical section that is

40 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Fig. 14: A timed automaton with converging location on l3. Clocks, guards and
invariants are omitted for simplicity

locked is always a discrete state and all of its successors (both for forward ex-
ploration in reachability analysis and later for back-propagation in synthesis of
timed games). For the timed automata in Figure 14, we will only lock l1 and
l3 when exploring l1 → l3, while locking all of l2, l3, l4 and l5 in Figure 15
when forwardly exploring l2.

Fig. 15: A timed automata. Clocks, guards and invariants are omitted for sim-
plicity

5.4 Exploration Order

The exploration order in the algorithm can be determined by how work is ex-
tracted from the waiting list. The waiting list is implemented as a queue giving
an exploration order of breadth first search (BFS), but since the device works
in parallel there is no guarantee of strict BFS. Using no guarantee of order the
device will do its computations in parallel and adding to the hosts waiting list
in whatever order it finishes its work. Having no order gives way for differing
run times of the algorithm between different runs as some explorations of the
state space might lead to exploring fewer states. Strict BFS can be implemented

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 41

by always adding work to the waiting list in the same order that it is retrieved
from the device. This can lead to less concurrency as it has to wait for the strict
ordering, but it will make the runs of the algorithm more uniform as it is guar-
anteed to explore the states in the same order, and will resemble the exploration
order of Uppaal.

Some care must be taken as to limit unnecessary duplication of forward
exploration. For a timed automaton with a converging location, e.g. in Figure 14
with locations l1, l2, l3 and l4. When both l1 and l2 explore forwardly, i.e. the
transitions l1 → l3 and l2 → l3, they would needlessly queue the exploration of
l3 twice when only once would be necessary. Discrete states are thus locked from
having exploration tasks duplicated in the waiting set, which is then unlocked
as soon as the forward exploration has begun.

5.5 Host Version

The algorithm has also been implemented as a multi-core host version. It still
uses an asynchronous producer-consumer workflow with a single CPU core han-
dling the discrete exploration in the same manner as Algorithm 16. Work entail-
ing continuous exploration is added to a queue of jobs for workers (implemented
as a lockfree queue from boost), as opposed to launching device kernels. The con-
tinuous exploration (DBM operations) is computed with a user specified amount
of CPU cores (number of workers) similarly to the workflow of the host-device
implementation. The successor locations that should be explored further are sim-
ilarly send back to the waiting list of the producer. The amount of cores used for
continuous exploration is obviously limited by the specific CPU, e.g. a CPU with
16 cores can use up to 15 cores for computing DBM operations concurrently.

6 Asynchronous Co-Processing Timed Games Engine

Extending Uppaal Tiga to allow for integration of GDBM functionality is un-
doubtedly more convoluted than extending standard Uppaal, while the guiding
principles remain the same. The asynchronous workflow still employ a producer-
consumer pattern with the host responsible for discrete exploration and queuing
DBM operations for the device. As a quick note, in Section 2.3, we assumed
semantically that uncontrollable actions can not be forced to occur as a conse-
quence of a broken location invariant, i.e. that uncontrollable actions can only
ruin the game. However, as was reported by [15], the Uppaal Tiga [9] tool does
in fact force an uncontrollable transition whenever an invariant is violated. As
we develop an extension of Uppaal Tiga, and because we want to verify correct
results, implementation wise, we will do the same.

The host and device part of the overall synthesis is portrayed in Algorithm 18
and 19, respectively. The host and device must continuously communicate the
direction of any given state, i.e. whether the state should be forwardly explored
or propagated back to its predecessor, depending on the presence of winning
information. Winning information is determined through the property ϕ, which

42 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Algorithm 18 Asynchronous Timed Reachability Games – Host

1: procedure TimedGameshost(l0,D0, ϕ)
2: if l0 ⊧ ϕ then
3: return true
4: waiting ← {(l0, forward)}
5: Depend[l0] ← ∅
6: flag ← waiting
7: Compute (l0,D0)↗ on device and save resulting DBM as D′

8: On device PW [l0] ← (D′,flag)
9: while ¬terminate do
10: while waiting ≠ ∅ ∧ ¬terminate do
11: (l,direction) ← pop(waiting)
12: succ ← {(l′, g, r,win) ∣ l g,rÐ→ l′,win ← l′ ⊧ ϕ}
13: if direction = forward then
14: launch async forwarddevice(l, succ)
15: else if direction = backward then
16: launch async backwarddevice(l, succ,Depend[l])
17: return ∃(D,win) ∈ PW [l0]

is assumed to only regard discrete information (e.g. a location is marked Goal
without any timing constraints in ϕ). The direction of a state determines the
operations, thus the kernel, that is asynchronously launched on the device. The
forward kernel is especially similar to that of the Uppaal extension, only dif-
fering in updating dependencies (Algorithm 19 Line 5), and re-queuing states in
the case of winning information (Algorithm 19 Line 8). The procedures grab and
update are the same procedures which are used in the GDBM enabled symbolic
reachability algorithm. The backwards kernel initially seems complex, but for the
most part only entails gathering respectively winning and losing zones from the
PW list associated with different locations (Algorithm 19 Lines 10-12), and sub-
sequently computing Pred t. If location l turns out to be winning as a result from
this procedure, all its predecessors must compute backward, as they may end
up being winning as well (Algorithm 19 Line 16). The terminate criteria in the
while-loops is extended to ∃((D,win) ∈ PW [l0]) ∨ (waiting = ∅ ∧ device idles),
as to guarantee that the algorithm terminates in the case that winning informa-
tion has reached the initial state, or both host and device are left with no more
work to be done.

Correctness Under the assumption that our forward and backward kernels are
correct, our asynchronous implementation is correct as it satisfies both Lemma
1 and Theorem 1 that similarly gives the correctness of the SOTFTR algorithm,
mainly differing in the additional case of forwards and backwards kernels concur-
rently being computed on the device. The inner-mostwhile-loop in Algorithm 18
Line 10 has a similar invariance to that of Lemma 1:

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 43

Algorithm 19 Asynchronous Timed Games – Device

1: procedure forwarddevice(l, succ)
2: FW ← grab(l)
3: for all {(l′,D′, f) ∣ (l′, g, r, f) ∈ succ ∧D ∈ FW ∧D′ ← ((D ∩ JgK)[r])↗} do
4: if D′ ≠ ∅ ∧ update(l′,D′,{p,w},w) then
5: send(l,Depend[l′])
6: send((l′, forward),waiting)
7: if f = win then
8: send((l, backward),waiting)
9: procedure backwarddevice(l, succ,depends)
10: Fwin ← grabFlag(l,win)
11: F ′win ← ⋃

lc∈succ
{Predc(D) ∣D ∈ grabFlag(lc,win)}

12: F ′loss ← ⋃
lu∈succ

{Predu(D) ∣D ∈ (grabFlag(lu,¬win) − grabFlag(lu,win))}

13: Win∗ ← Pred t(Fwin ∪ F ′win, Floss) ∩PW [l]
14: if ∃{D ∣D ∈ win∗ ∧ update(l,D,{win},win)} then
15: for all prev ∈ depends do
16: send((prev , backward),waiting)
17: procedure grabFlag(l, t)
18: return {D ∣ (D,f) ∈ PW [l] ∧ f = t}

1. For any l ∈ PW if l
αÐ→ l′, either

– l′ ∈ waiting
– l′ ∈ PW and l ∈ Depend[l′] or
– a forwarddevice(l′, succ) kernel is currently being computed.

2. If (D,win) ∈ PW [l] for some l ∈ PW , then (l,D) ∈ W(G) for the timed
game automaton G.

3. If D ∈ grabFlag(l,¬win) for some l ∈ PW , either

– l′ ∈ PW with l ∈ Depend[l′] and l ∈ waiting
– a backwarddevice kernel is currently being computed or
– D /∈ Win∗, i.e. (l,D) is not currently winning based on information on

its successors.

Theorem 1 is also fulfilled, as the termination criteria is either when l0 is
found to be winning, or when neither the host nor device has any more work
to do. Additionally, there is no concern of race conditions in regards to queuing
and performing tasks. Whenever a task of back-propagation is queued either

1. No other back-propagation task is queued for that discrete state, in which
case no issue arise

2. The discrete state is already queued for back-propagation, in which case we
don’t re-queue it, as the potentially new winnings zones are already inserted
into the PW list for that state

3. A back-propagation task for that discrete state is currently being computed,
in which case we queue it anew

44 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

6.1 Exploiting Concurrency

The forward exploration for timed games utilises concurrency similar to that
described for reachability analysis in Section 5.2, i.e. by launching a block for
each zone associated with the discrete state, and computing the forward explo-
ration across these multiple blocks. Back-propagation can exploit concurrency
with a similar methodology, as a block is launched for each discrete successor
that computes that states’ Predc and Predu. Once all blocks have completed
their computations and their results gathered, we similarly compute Predt con-
currently, i.e. we launch a block for each good DBM.

6.2 Exploration Order

The exploration order in the algorithm is well documented to have large ramifi-
cations for the synthesis time for any given model [10]. As with the exploration
order for the extension of Uppaal, no guarantee can be given in terms of compu-
tation order, i.e. a task a can be launched before task b, but task b can complete
before task a. A similar scheme which was utilised for reachability, can be used
here to enforce a strict ordering of task, and enforce a similar ordering toUppaal
Tiga.

A lot of care is taken to minimise unnecessary duplication of forward ex-
ploration and back-propagation, through the use of directed locks on discrete
states. Consider the case illustrated in Figure 16 with location l1, l2, l3, l4,
with l2 and l4 containing winning information. Consider the ordering of:

1. exploring l1 finding l2 and l3 with l2 to be winning (thus queuing to back-
propogate on l1),

2. exploring l3 finding l4 to be winning, thus queuing to back-propagate on
l3,

3. finding l3 to be winning as a result of back-propagation, thus queuing to
back-propagate on l1.

In this computation order, l1 would be scheduled to back-propagate infor-
mation from its successors twice, which would obviously be detrimental as only
one would be necessary. In the case that a state is both scheduled for back-
propagation and forward exploration, we will always prioritise forward explo-
ration, as this may lead to more winning information being discovered. Simi-
larly, if both a location and its successor is marked for back-propagation, we
will always prioritise the successor first, as this, once again, may lead to discov-
ering more winning information, e.g. if both l3 and l4 in Figure 16 is marked
for back-propagation. However there is a potential downside to this approach if
e.g. after finding out that l2 is winning this could be back-propagated to the
initial state, we could then terminate early, but as Uppaal uses the approach
of prioritising successors we do the same.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 45

Fig. 16: Timed game automata with locations l1, l2, l3, l4, with l2 and l4
containing winning information. Clocks, guards and invariants have been omitted
for simplicity

7 Experiments

Our experiments section documents the applicability of GPUs for computing
DBM operations massively in parallel. We shall initially experiment on DBM
operations in isolation, with comparisons to both our own multi-core CPU
implementation (that distributes the operations over multiple cores, with no
added parallelism within each computation), and againstUppaal’s DBM library
UDBM. We additionally conduct experiments on our asynchronous host-device
implementations of symbolic reachability analysis and synthesis of timed games.
These are compared against our own asynchronous multi-core CPU implemen-
tation and Uppaal, and against Uppaal Tiga, respectively.

The CPU and GPU which the experiments are conducted on can be found
in Table 1. Reachability and Timed Games experiments are conducted on a
number of case study models, an overview of which can be seen in Table 2 and
6, respectively.

Name Cores
Clock
speed

Memory
size

Memory
bandwidth

Compute
capability

Release
year

GPU
NVIDIA

RTX 3070 TI
48 1575 MHz 8 GB 608.3 GB/s 8.6 2021

CPU
Intel

i7-11700KF
8 3.60 GHz 32 GB - - 2021

Table 1: The CPU and GPU used for the experiments

46 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

7.1 DBM/Federation Operations

While we have already reported on isolated DBM experiments in [3], the ex-
tension of, and subsequent re-implementations in GDBM, warrants conducting
similar experiments once more. A specific DBM or federation operation is ap-
plied to a large set of DBMs or federations with varying federation size and
DBM dimensions. DBMs and federations are generated by UDBM and GDBM
in canonical form, except for experiments involving the closure operation.

Both libraries are used for generating data for these experiments, as the
resulting DBMs differ in their properties stemming from the generating methods.
GDBM initialises the first row to 0 and first column to random values within the
range of 2 to 30 (all bounds are randomly strict or non-strict), and closes the
DBM. This guarantees that all DBMs have root in the origin, i.e. that they all
intersect to some extend, ensuring that we avoid trivial or degenerate cases in
experiments for intersect, subtract and predt. UDBM uses a more sophisticated
method for generating DBMs. Both the first row and column are initialised
with random values within a range of 20 centred around 10, followed by closing
the DBM. Based on randomness, some clocks in the DBM may be deactivated
and diagonal constraints may be tightened in different ways. DBMs generated
through this method are more scattered through the continuous state space,
giving more variety in experiments such that they more accurately reflect DBMs
found during reachability analysis or synthesis of timed games. Importantly, all
configurations are run on DBMs generated from the same seed, such that all
configurations uses the same DBMs for e.g. 16 dimensions.

The general structure of these experiments is comparing the performance of
UDBM with both host and device computations of GDBM on 250000 DBMs
with varying dimensions. For host computations, we run experiments with both
a single CPU thread and 16 CPU threads, while device experiments are run with
varying batch sizes for partitioning DBMs, ranging from 1 to 1024. In addition,
the device experiments does not include overhead time in transferring DBMs,
as this is also not part of the reachability analysis or synthesis of timed games.
When applicable, we will compare different device methods for computing the
same DBM operation, e.g. different subtract methods (disjoint vs. non-disjoint)
and using either blocks or warps for computing the relation between DBMs. We
conduct experiments on the following DBM and federation operations:

– DBM Operations
● Close
● Intersection
● ExtrapolationLU
● DBM Subtract
● Shortest-Path Reduction

– Federation Operations
● Approximate Relation
● Federation Subtract
● Predt

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 47

For the experiments whenever Host or Device is followed by a number in
parentheses it specifies the amount of threads or the batch size, respectively,
which were used in the experiments. As an example Host (1) and Device (1) refers
to performing the experiments with 1 thread and a batch size of 1, respectively.

Close The performance of the different experiment configurations for comput-
ing the canonical form can be seen in Figure 17. Notably, we see that device
computations with a batch size of 1 outperform UDBM and single threaded
host computations on DBMs larger than 16 dimensions. Unsurprisingly, using
larger batches for device computations generally results in better performance,
although with diminishing returns going from a batch size of 256 to 1024. Com-
paring device computations with a batch size of 1024 to UDBM, we see a 68.2
times speedup, while comparing the same device configuration with the multi-
threaded host computation shows a speedup of 8.8 times on 64 dimensions.
While this may initially seem worse than the results we reported in our previ-
ous work [3], where we saw a 76 times speedup on close with 64 dimensions, the
hardware utilised in those experiments are significantly more powerful than what
is used in these experiments. Comparing the methods on the same hardware, we
measure varying speedup between 1.35 times on 64 dimensions to 10.32 times
on 32 dimensions in comparison to our previous work.

6 16 32 64
100

101

102

103

104

DBM Dimensions

R
u
n
ti
m
e
(m

s)

Close Time

Host (1) Host (16) UDBM Previous Work (1024)

Device (1) Device (8) Device (32) Device (256)

Device (1024)

Fig. 17: Plot of computation time of different configurations computing the
canonical form of 250000 DBMs for different dimensions. The y-axis in scaled
logarithmic.

48 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Intersection Figure 18 shows the results of the experiments on the intersection
operation. While these experiments are still conducted with 250000 DBMs, the
operation takes 2 DBMs as input, thus the operation is performed 125000 times.
The results are somewhat similar to those observed from the closure experi-
ments, as device with a single a batch size of 1 is slowest on 6 dimensions, but
on 64 dimensions outperforms UDBM, single-threaded- and multi-threaded host
configurations. The device configurations utilising a batch size of 1 to 32 for their
computations initially seem almost static in execution time across DBM dimen-
sions from 6 to 32. Given that this phenomenon does not persist in any of the
other configurations of the same dimensions, we believe that this likely reflects
the device not being sufficiently saturated on those experiments. The gained
speedup between UDBM and GDBM ranges from 21 times on 6 dimensions to
52.9 times on 64 dimensions.

6 16 32 64
100

101

102

103

104

DBM Dimensions

R
u
n
ti
m
e
(m

s)

Intersection Time

Host (1) Host (16) UDBM Device (1)

Device (8) Device (32) Device (256) Device (1024)

Fig. 18: Plot of execution time of different configurations computing the inter-
section of 125000 pairs of DBMs for different dimensions. The y-axis in scaled
logarithmic.

Shortest-Path Reduction The results illustrated in Figure 19 somewhat sur-
prisingly show great benefit in using concurrency for computing the shortest-path
reduction of DBMs. We mentioned in Section 4.7 that our concurrent implemen-
tation utilises less optimal looping structures than the sequential computation
for the purpose of more parallelism. It is unclear how much of the performance
gain can be credited to this optimisation strategy. More likely is it that the per-
formance gains stem from the underlying Reduce procedure that sequentially is

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 49

an O(n3) whereas in our implementation is an O(n) procedure run many times
in parallel. The subroutine essentially benefit from parallelism similarly to the
Close operation, with additional advantage in not having to synchronise for each
iteration of the O(n) loop. Device computations with a batch size of 1024 have
a 63.2 times speedup to UDBM on 64 dimensions and a 9.5 times speedup to
the multi-threaded host configuration.

6 16 32 64
100

101

102

103

DBM Dimensions

R
u
n
ti
m
e
(m

s)

Shortest-Path Reduction Time

Host (1) Host (16) UDBM Device (1)

Device (8) Device (32) Device (256) Device (1024)

Fig. 19: Plot of execution time of different configurations computing the Shortest-
Path Reduction of 250000 DBMs for different dimensions. The y-axis in scaled
logarithmic.

ExtrapolationLU All extrapolation experiments are performed with lower and
upper bounds of (≤,5) and (≤,15) respectively. The implementation of extrapo-
lation utilises the specialised CloseLU for re-establishing the canonical form of
the DBMs. This subroutine is similarly utilised by UDBM, thus making the ex-
periments a better indication of its performance during reachability analysis or
synthesis of timed games. The result of these experiments are seen in Figure 20,
reinforcing the benefit of device computations. Using either a batch size of 1024
or 256 seems to make no difference, while both outperforms configurations of a
batch size of 32 and 8 initially with a 37 times speedup, but have diminishing
returns with only a 1.25 times speedup on 64 dimensions. This phenomenon
occurs across multiple experiments and seems to stem from better device oc-
cupancy with more blocks and lower dimensions. We hypothesise that this is a
result of the SIMT architecture – with lower dimensions there are fewer threads
within a device block, thus making more blocks able to compute concurrently. As

50 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

such, the fewer clocks in the DBMs, the more we rely on the concurrent number
of blocks in order to achieve high device occupancy.

6 16 32 64
100

101

102

103

104

DBM Dimensions

R
u
n
ti
m
e
(m

s)

Extrapolate LU Diagonal Time

Host (1) Host (16) UDBM

Previous Work (1024) Device (1) Device (8)

Device (32) Device (256) Device (1024)

Fig. 20: Plot of execution time of different configurations extrapolating 250000
DBMs for different dimensions. The y-axis in scaled logarithmic.

DBM Subtraction DBM subtraction experiments are conducted with the in-
tend of comparing the disjoint, non-disjoint and naive methods. We anticipated
that the non-disjoint methods would perform the best in isolation, but may lead
to worse performance when used for the synthesis of timed games. The results
of these experiments can be seen in Figure 21, where it is clear that the multi-
threaded Host (16) configuration performs the best, which may indicate that
the device is poorly occupied during these experiments. While not initially clear
only from Figure 21, we surprisingly found the disjoint method to outperform
the non-disjoint one on all configurations. The difference is initially subtle on
fewer dimensions and batches, having a speedup of 1.06 times between Device D
(1) (361ms) and Device ND (1) (381ms) on 6 dimensions. The difference becomes
slightly more pronounced, measuring a speedup of 1.5 times between Device D
(1024) (3366ms) and Device ND (1024) (5024ms) on 64 dimensions.

Notably, subtract seems to be unique in that it does not scale much with
an increase in batch size, rather sometimes having larger batch sizes being beat
out by smaller batch sizes. We hypothesise that this is due to the varying de-
grees in which DBMs intersect and thus having varying degrees of splitting. The

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 51

larger batch sizes have to wait before all DBMs in a batch have finished comput-
ing before another batch can be launched, creating a bottleneck on the slowest
computation in the batch.

6 16 32 64
100

101

102

103

104

DBM Dimensions

R
u
n
ti
m
e
(m

s)

DBM Subtract Time

Host (1) Host (16) UDBM

Device D (1) Device D (32) Device D (1024)

Device ND (1) Device ND (32) Device ND (1024)

Device N (1) Device N (32) Device N (1024)

Fig. 21: Plot of execution time of different configurations computing subtraction
of 125000 pairs of DBMs for different dimensions. D = Disjoint, ND = Not
Disjoint, N = Naive. The y-axis in scaled logarithmic.

Approximate Relation The experiments regarding the approximate relation
operation are conducted between 250000 DBMs and a federation of 100 DBMs to
more closely mimic the subsumption check during reachability analysis and syn-
thesis of timed games. GDBM implements computing the relation either across
a block or a warp, both of which are tested in this experiment, the results of
which can be seen in Figure 22. It seems to be entirely detrimental to only use a
batch size of 1 for these computations, as those configurations were consistently
outperformed by both single threaded Host and UDBM on all DBM dimensions.
Even still, the warp version of the computations often outperforms its counter-
part on the same batch size, which we credit to the ability to terminate early
that is similarly found in sequential versions. This is not surprising, as the early
termination was the incentive for the warp implementation, as was discussed in
detail in Section 4.3. This early termination criteria may also result in almost
static performance across different DBM dimensions for the warp configurations.
On 64 dimensions, we measure a 13.7 times speedup between UDBM and the

52 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

warp computation with a batch size of 1024, but only a 1.4 times speedup in
comparison to the multi-threaded host configuration. We additionally observe
a speedup between all versions with and without warp computations on 64 di-
mensions, ranging from 3.7 times on a batch size of 1 to the largest difference of
22.3 times speedup on a batch size of 1024. On DBMs with only 6 dimensions,
we measured virtually no difference between block and warp computations. This
is unsurprising, as blocks are always launched with sizes of increments of 32
threads, meaning that both configurations are computed with exactly 32 device
threads.

6 16 32 64
100

101

102

103

DBM Dimensions

R
u
n
ti
m
e
(m

s)

Fed DBM Approx Relation Time

Host (1) Host (16) UDBM

Device (1) Device (32) Device (1024)

Device W (1) Device W (32) Device W (1024)

Fig. 22: Plot of execution time of different configurations computing the relation
of 250000 DBMs against a federation of 100 DBMs for different dimensions. W
signifies warp version of the operations. The y-axis in scaled logarithmic.

7.2 Fed-Fed Subtract

With the experiments regarding subtraction of federations, we primarily want
to establish whether it in isolation is beneficial to disregard the disjointedness
of the result set, in addition to the effect of partitioning DBMs across multiple
blocks. The results of these experiments are visualised in Figure 23, where it is
immediately noticeable how little deviation there is between disjoint and non-
disjoint configurations. The disjoint configurations surprisingly outperform the
non-disjoint ones on all but 6 dimensions, Non-Multi having a speedup of 1.17
when comparing Multi D (32) (1098ms) to Multi ND (32) (1284ms). We had

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 53

anticipated that ND configurations would be faster in isolation, but that it would
bring some degree of penalty when used during reachability analysis. The Multi
configuration also had a slight positive effect, measuring a speedup of 1.26 when
comparing Device D (32) (1377ms) to Device multi D (32) (1091ms). On 6
dimensions, all device configurations are outperformed by Host (1), Host (16)
and UDBM. The largest difference on this number of dimensions is measured
between Device Multi N (32) (34ms) and Host (16) (1ms).

It intuitively looks rather strange that UDBM (292ms) outperforms Host (16)
(756ms) on 16 dimensions. The explanation for these results is a sub-optimal
host implementation in that it will have to re-compute the shortest-path re-
duction multiple times. Implementation wise, the shortest-path reduction only
computes a mask for DBMs that indicates non-redundant constraints, instead of
altering the DBMs directly. Unlike UDBM and the device implementation, the
host implementation does not cache this mask. When computing F − F ′ where
D1,D2,D3 ∈ F and D′ ∈ F ′, the shortest path reduction of D′ is computed for
each of D1 −D′, D2 −D′ and D3 −D′.

6 16 32
100

101

102

103

104

DBM Dimensions

R
u
n
ti
m
e
(m

s)

Fed Fed Subtract Time

Host (1) Host (16) UDBM

Device D (1) Device ND (1) Device N (1)

Device Multi D (32) Device Multi ND (32) Device Multi N (32)

Fig. 23: Plot of execution time of different configurations computing Fed-Fed
subtraction of 512 pairs of federations with a size of 3 DBMs on different di-
mensions. D = Disjoint, ND = Not Disjoint, N = Naive. The y-axis in scaled
logarithmic.

54 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Predt We experimentally compare our different methods for computing Predt.
To reiterate, the different device methods involve either the entire computation
on a single block, partitioning the DBMs in the ”good” federation across many
blocks (denoted ”Multi”), and partitioning DBMs in both the ”good” and ”bad”
federations across many blocks (denoted ”Super”). The results of these experi-
ments are seen in Figure 24. Each experiment is run with 1024 federations of size
3, generated using the GDBM method, resulting in many splits, due to all good
and bad intersecting at origin. These experiments therefore test the worst case of
predt, which causes the most splits. While not initially obvious from Figure 24,
we generally see the super configuration outperforming both multi and the se-
quential methods on DBMs with more dimensions. For example, we measured a
1.95 times speedup between super and the sequential methods with a batch of 1
and 32 dimensions, while showing a 1.44 times slowdown on 6 dimensions and a
batch size of 32 (57ms for sequential vs. 87ms for dimension). On 32 dimensions
and a batch size of 32 we see a speedup of 1.05 between Device (27386 ms) and
multi (25928 ms) and additional speedup of 1.09 between multi and super (23649
ms).

6 16 32

101

103

105

DBM Dimensions

R
u
n
ti
m
e
(m

s)

Predt Time

Host (1) Host (16) UDBM

Device (1) Device (8) Device (32)

Device Multi (1) Device Multi (8) Device Multi (32)

Device Super (1) Device Super (8) Device Super (32)

Fig. 24: Plot of execution time of different configurations computing predt of 512
pairs of federations with a size of 3 DBMs on different dimensions. The y-axis
in scaled logarithmic.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 55

These results are somewhat surprising, as we had anticipated a larger speedup
from both the multi and super configurations. We may conclude that the meth-
ods utilising more concurrency are limited by the small federation size, and that
these experiments poorly reflect the speedup that could be acquired from using
these. However, this would be disingenuous, as our empirical experiments result-
ing in out of memory errors on the device with larger federation sizes. Still, we
see a speedup of 11.77 times when comparing UDBM (713857 ms) to Device Su-
per with a batch size of 1 (60619 ms) on 32 dimensions. The super configuration
with a batch size of 32 only achieves a 1.91 times speedup when compared to
the multi threaded host version on 32 dimensions (45203 ms).

7.3 Reachability

We have similarly already conducted and reported on symbolic reachability anal-
ysis experiments in [3] with our prototype tool SMAcc. We then noted how
the co-processing implementation introduced many performance hampering ele-
ments such as locking mechanisms, and that Uppaal may benefit from a more
optimised implementation from years of fine-tuning, that were not present in
SMAcc. Having extended Uppaal with interweaved GDBM functionality simi-
larly warrants re-conducting those experiments. The case study models and their
type of property can be seen in Table 2. We compare the device enabled versions
on a varying number of workers, and with both the strict and non-strict search
orders that we mentioned in Section 5.4 to Uppaal. Additionally, we compare
both versions with the host version of our algorithm, utilising both 1 and 15
workers. Our achieved results can be seen in Table 3.

Model Property Exhaustive #Clocks #Components

FischerMutex-N9 A[] Yes 10 9

FischerMutex-N12 A[] Yes 13 12

Milner-N100d4 E<> No 202 101

TrainMutex-N9 A[] Yes 10 10

Vikings-N16 E<> No 18 17

Table 2: The different models, their type of property, whether the property is
exhaustive, and the amount of clocks and components in the models.

Notably, many of the device configuration are now within a single order of
magnitude of the performance of Uppaal, which is a large improvement on
the results obtained from SMAcc [3]. For example, on the FischerMutex-N9
model we previously reported a performance of 7 minutes, meaning we now
have a 178.72 times speedup. On Milner we now see a speedup of 4.91 times
with the old runtime of 44 seconds. The Milner experiments might not seem as
impressive, but a point worth considering is the difference between search orders.
Our previous work, used a loosely defined BFS with work stealing queues, which

56 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

had the effect of only approximating BFS (more loosely than current non-strict
version) rather than strictly following BFS, and would therefore terminate faster
once the property was satisfied.

Model Workers Device
Device
Strict

Host
Host
Strict

Uppaal

1 8.36 8.34 31.69 31.99 0.83
FischerMutex-N9 64/15 2.35 2.38 7.63 7.67 -

256 2.38 2.40 - - -
1024 2.49 2.40 - - -

1 302.50 303.80 TO TO 51.66
FischerMutex-N12 64/15 87.23 88.09 TO TO -

256 86.34 86.59 - - -
1024 89.77 89.53 - - -

1 25.09 24.89 14.23 14.27 8.00
Milner-N100d4 64/15 9.50 9.22 3.02 3.61 -

256 10.04 8.96 - - -
1024 10.24 9.47 - - -

1 369.35 368.03 24.5 22.46 20.91
TrainMutex-N9 64/15 87.77 87.05 38.41 37.54 -

256 87.87 87.14 - - -
1024 91.60 92.03 - - -

1 358.37 357.57 22.38 22.21 25.82
Vikings-N16 64/15 89.33 89.88 34.45 32.70 -

256 89.10 88.76 - - -
1024 93.04 92.92 - - -

Table 3: Run times for reachability experiments. Host and Device refers to the
asynchronous Host and Host-Device implementations, respectively, and Strict
refers to running it with the strict exploration order. The columns with 64/15
workers indicate that the Device and Host were run with 64 and 15 workers,
respectively. TO indicates termination due to timeout after 10 minutes. Run-
times are measured in seconds.

Comparing the run-times using strict to non-strict does not show any sig-
nificant changes. Increasing the amount of workers from 1 to 64, enabling more
concurrency, gives a performance boost on all models, however increasing this
count further does not seem to produce significantly better outcomes. This might
be due to there being too few states in the waiting list on the host, and the GPU
can therefore not utilise the extra workers since there is no work for them to
compute. Additionally, the overhead associated with launching kernels likely in-
troduces a bottleneck in the form of under utilising the device. Profiling work
shows 35% of the runtime on FischerMutex-N9, and 22% on TrainMutex-N9,
to be consumed by kernel invocation. The work dependency system is much
more lightweight in this iteration of the tool, taking up only 11% and 5% of the

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 57

runtime on FischerMutex-N9 and TrainMutex-N9 respectively. This is a huge
improvement to our previous work, where locking took up 30% of the runtime.

Our host exclusive implementation outperforms the device enabled imple-
mentation on all models except for the two FischerMutex models where it either
is a bit slower or not able to perform the reachability analysis within the 10
minute timeout limit. On compute heavy models, such as the Milner model,
increasing the number of workers greatly decreases the runtime, as the 15 work-
ers version outperforms even Uppaal. This is likely due to the model requiring
more computations per task, due to the number of clocks in the system. Through
profiling work with gprof we found the communication overhead through boost’s
lockfree queue to be the major bottleneck, having around 48% of the runtime
being contained within said queue. Additionally, we had anticipated increasing
the number of workers on the host implementation to always be beneficial, but
surprisingly this was not the case on the Vikings and TrainMutex models. We hy-
pothesise that this is due to the number of unique DBMs encountered during the
reachability analysis to be exceedingly low for these models, limiting the tasks
being performed by each worker, thus further pronouncing the bottle-necking
effect of the communication overhead.

Hash Table Experiments We have documented statistics of both the DBM
and federation hash tables that were described in Sections 4.12 and 4.13 at the
end of the reachability analysis, to better gauge their significance. Both the
DBM table and federation table were initialised with 226 entries, resulting in
them occupying 1GB and 0.5GB of device memory, respectively.

Model #DBMs
#Unique
DBMs

Memory
Saved

#Collisions
Max
Offset

FischerMutex-N12 2681780 24565 2108mb 171 1

FischerMutex-N9 81035 2296 39mb 0 0

Milner-N100d4 24391 12330 1955mb 1 1

TrainMutex-N9 6541957 10 3244mb 0 0

Vikings-N16 6160214 17 8882mb 0 0

Table 4: DBM hash table statistics collected at the end of the reachability anal-
ysis of various models. All results are using 1024 workers and strict ordering.

Table 4 contains these statistics for the DBM hash table, documenting the to-
tal number of stored DBMs, how many of these are unique, how much memory
the table has saved as opposed to storing every DBM, how many hash colli-
sions occurred during the reachability analysis, and the maximum offset of a
DBM compared to where the hash function would index it at. It is immediately
noticeable that collisions and thus offsets are exceedingly rare. Unsurprisingly,
collisions are more likely to occur the more unique DBMs are stored, which is

58 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

reflected in the FischerMutex-N12 and Milner models. Even having 171 hash col-
lision, the maximum offset of a stored DBM from the run of FischerMutex-N12
is still only 1. The benefit of our DBM hash table is indisputable from a glance
at the column of memory saved. Remarkably, only 17 and 10 unique DBMs was
encountered in the Vikings and TrainMutex models, respectively, saving 8GB
of memory in the most extreme case. As with the utilised system only having
8GB of device memory, we would have been unable to conduct experiments on
the Vikings-N16 model without the use of the DBM hash table. An additional,
albeit undocumented, benefit of the DBM hash table is its effect on subsumption
checking. As DBMs are shared, we can establish DBM equality simply through
pointer equality.

Model #Feds
Avg.
Offset

Max
Offset

Avg.
Span

Max
Span

#Tombstones

FischerMutex-N12 2681780 3.13 27 4.52 38 7391761

FischerMutex-N9 81035 1.89 11 2.90 13 152746

Milner-N100d4 24385 0.02 2 1.02 3 582

TrainMutex-N9 6541957 0.06 7 1.15 10 0

Vikings-N16 6160214 0.05 7 1.14 10 0

Table 5: Federation hash table statistics collected at the end of the reachability
analysis of various models. All results are using 1024 workers and strict ordering.
All models had a max fed size of ≤ 2.

Statistics from the federation table are seen in Table 5. Most importantly,
we see that the maximum offset found throughout all reachability analysis ex-
periments were 27 and the maximum span, which denotes the distance between
two empty slots, were at most 38. Using the double linear probing scheme that
utilises warps, this means that we only in very rare cases exclusively on the
FischerMutex-N12 model could potentially require additional probing for inser-
tion and subsumption checks. This is somewhat surprising, as we had anticipated
harsher penalties as the table would be exceedingly more occupied. Even when
so many entries simply store tombstone values, we see only minimal penalty.
We found the average and maximum sizes for all models to be exactly 1, with
the exception of the Milner model with a maximum federation size of 2. This is
only indicative of gathering data at the end of the reachability analysis, as the
number of tombstone value reflects federations having been larger throughout
the analysis. What we can conclude from these statistics is simple that the fed-
eration table works as intended and is not the bottleneck we anticipated it to
be.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 59

7.4 Timed Games

We conduct experiments on the synthesis of timed games with a similar method-
ology as with reachability analysis, while not being able to compare it against
any previous work. An overview of the case study models and their properties to
synthesise a controller for is listed in Table 6 with corresponding experimental
result in Table 7. Notably the models contain fewer clocks and components than
in the reachability experiments, as larger models scale worse since Uppaal Tiga
does not use local or LU extrapolation, leading to larger models timing out after
10 minutes on all configurations.

Model Property #Clocks #Components

Juggler-N2 control: A[] 5 4

Juggler-N3 control: A[] 6 5

Prodcell-3-cont control: A[] 5 4

Prodcell-3-uncont control: A[] 5 4

TrainGame-N4 control: A[] 6 4

Table 6: The different models, their type of property, and the amount of clocks
and components in the models.

We measure performance of the asynchronous device implementation that is
often on par with, but never faster than, Uppaal Tiga. We have already estab-
lished UDBM to be faster than GDBM on the subtract and predt operation on
few dimensions, which likely contributes majorly to this. Still, it is somewhat
surprising that the device enabled implementations are not far slower than Up-
paal Tiga, as we had anticipated them to be.

The effect of using either a strict or non-strict search order for timed games is
much the same as the one established for reachability analysis, while still being
somewhat inconsistent. For example, we see that the strict ordering outper-
forms non-strict on the Juggler-N3 model regardless of the number of workers,
while this is not the case on the Juggler-N2 model. The results seems to gen-
erally favour the non-strict ordering, disregarding the Juggler-N3 model and
TrainGame with few workers.

The performance effect – or lack thereof – with the growth of number of
workers is somewhat surprising, as we had anticipated larger penalty on such
small models. We mentioned in Section 6.2 how detrimental duplicate work may
be scheduled, e.g. if a location l1 and its successor l2 are both queued for back-
propagation it would be unnecessary to compute it for l1 before l2. Eliminating
such duplication is at the moment only based on work that has already com-
pleted, i.e. jobs currently being computed are not taking into account. We had
anticipated a detrimental effect on the runtime from a combination of work du-
plication growing with the number of workers as well as additional overhead,
however the results of our experiments does not suggest this to be the case.

60 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Model Workers Device
Device
Strict

Uppaal Tiga

1 0.56 0.47 0.16
Juggler-N2 64 0.33 0.31 -

256 0.31 0.32 -
1024 0.33 0.43 -

1 31.06 30.23 2.67
Juggler-N3 64 26.00 13.27 -

256 71.43 23.33 -
1024 41.10 13.84 -

1 5.34 5.20 0.15
Prodcell-3-cont 64 2.57 2.37 -

256 2.18 2.25 -
1024 2.41 2.44 -

1 0.94 0.92 0.16
Prodcell-3-uncont 64 0.66 0.66 -

256 0.67 0.69 -
1024 0.76 0.72 -

1 3.25 3.25 0.64
TrainGame-N4 64 1.80 1.97 -

256 1.92 1.83 -
1024 1.85 1.89 -

Table 7: Run times for Tiga experiments. Device refers to the asynchronous Host-
Device implementation, and Strict refers to running it with the strict exploration
order. Run-times are measured in seconds.

8 Conclusion

In this work, we show the applicability and advantages of utilising Graphical
Processing Units for operations on Difference Bound Matrices in the context
of both symbolic reachability analysis and controller synthesis of timed games.
We elaborated and extended our work from the prototype tool SMAcc [3] and
presented the GDBM library with novel techniques and methods for dealing
with DBM operations massively in parallel, specifically for enabling the syn-
thesis of Timed Game Automata. We have additionally implemented extensions
of Uppaal and Uppaal Tiga for interweaving asynchronous calls to GDBM,
such that the continuous and discrete state space explorations can be computed
concurrently between Uppaal and GDBM.

In the final part of our work, we empirically investigated the performance
of GDBM, both in isolation, in the context of symbolic reachability analysis,
and in controller synthesis of timed games. While we have achieved great re-
sults on many operations in isolation, our implementation of subtraction and
consequently predt are somewhat lacklustre, especially on DBMs with fewer
dimensions. This is especially unfortunate as these are fundamental to the con-
tribution of this thesis. Of the other DBM and federation operations, we still

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 61

outperform even the multi-threaded host computation, and have now improved
on our previous work from SMAcc [3] with up to 10.32 times.

In comparison to Uppaal and Uppaal Tiga, we are within a single order of
magnitude slower. In the case of synthesis of timed games, this is very encour-
aging, as we had anticipated larger penalties from the underperforming subtract
and predt operations. However compared to SMAcc we see up to a 178.72 times
speedup.

In addition, we documented statistics of our implemented DBM and feder-
ation hash tables, showing large memory savings and benefits. As our isolated
DBM experiments show subtraction and predt to perform poorly on DBMs with
fewer dimensions, we know this to have an effect on the timed games experi-
ments. As opposed to reachability experiments, we never outperform Uppaal
Tiga but are still surprisingly close to its performance.

In general, we have experimentally showed promising potential for both de-
vice enabled reachability analysis and synthesis of timed games, however more
work is needed to make this a viable option. Controller synthesis is primarily
due for future work in that it is severely limited by the sub-optimal subtract and
predt operations.

8.1 Future Work

Our experimental evaluation of GDBM shows great potential in isolation, while
the performance of the asynchronous extensions of Uppaal and Uppaal Tiga
are somewhat lacklustre and in no way realises this potential. Future work en-
tails devising methods for making the use of GPUs viable for formal verification.
The current implementations seem to be entirely limited by the GPU not be-
ing saturated nearly enough, i.e. an imbalance of communication overhead to
actual GPU computations. To counteract the communication overhead, an obvi-
ous point worth exploring in future work is to launch kernels for multiple discrete
states in the waiting list at once, rather than just one at a time. Additionally,
the possibility of sending successors of successors is also worth considering. More
involved would be developing methods for doing the formal verification and con-
troller synthesis exclusively on the device akin to the work of GPUExplore [37],
thus entirely eliminating the present communication overhead.

The implementation of the federation table is also worth revising. While the
statistics gathered as part of our experimental evaluation showed no signs of
performance penalty, we are still concerned about the scalability of the federa-
tion table, as empirical experiments showed clear performance drop-offs as the
number of entries grew.

While we have documented promising experimental results that hint at the
potential benefit of device computations for formal verification and controller
synthesis, it is still clear that more concurrency, better implementations and
different techniques are needed for this to be a competitive alternative toUppaal
and Uppaal Tiga. Given that the DBM subtract operation is fundamental to
the contribution of this thesis, it is unfortunate that so little performance gain
and deviation was obtained across the various described methods. Future works

62 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

should involve investigating alternative methods for computing this operation,
as our experiments suggest that to be a major limitation for the predt operation
and thus the entire synthesis of timed games. For subtraction of federations, it
is likely worth exploring the use of dynamic parallelism for partitioning of the
subtrahend, as well as purely using lazy removal during concurrent union across
blocks. However, better performance of DBM subtraction is of more pressing
concern, as it of course is involved in subtraction of federations and similar
lacklustre results were obtained from those experiments. While the subtract
operation is likely the major limiting factor of the predt operation, it would
be obvious to revisit the computation of intersection of federations, as this is
trivially parallelisable and were only omitted from the contribution of this thesis
due to time limitations.

We were for similar reasons unable to further explore potential optimisations
and variations of merging convex unions. The performance and benefit of merging
has unfortunately been left undocumented, but empirical experiments showed
its use following the predt operation to be hugely advantageous, even though
the sub-routine has seen little optimisation in our implementation. It is likely
possible to use concurrency as part of many of the subroutines of merging pairs
of DBMs. Likewise, it may be possible to use concurrency to more efficiently
attempt merging multiple DBMs as mentioned in [17,18], rather than limiting
to only pairs.

The extension of Uppaal Tiga has unfortunately seen few optimisations, as
a consequence of this thesis’ time limitation. In addition to better performance
of the underlying DBM and federation operations, it is possible to add more
parallelism to the synthesis of timed games, especially during back-propagation,
and through grouping of multiple discrete states together. Our extension assumes
only discretely defined winning states (i.e. a location named goal). Extending the
work to supporting liveness properties, involving fixed-point computations on the
dependency graphs using GPUs, is also left for future work.

Acknowledgements. The authors want to thank Marius Mikučionis for his
consultation regarding implementation into Uppaal and Uppaal Tiga, as well
as Kim Guldstrand Larsen and Thomas Møller Grosen for their guidance.

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 63

9 Bibliographical Note

The content presented in this thesis is largely a continuation of our 9th semester
project made in collaboration with Marcus D. Jensen, Simas Juozapaitis and
Andreas Windfeld. For the purpose of self-containment, this thesis include sec-
tions that are directly from this jointly made work. The correctness sub-section
of 4.2 and the Relation sub-section of 4.3 are partly from this joint work but
has been reworded. Section 2.1 is based on a section from previous work, but
updated to fit the current domain. Section 2.2 is partly from the previous work,
novel to this thesis are the sub-sections of Subtract, Shortest-Path Reduc-
tion and Merging. Section 3 is similarly partly from previous work, with only
the sub-section 3.3 being entirely novel to this thesis, while the remainder of the
section has been based on our 9th semester project. DBM operations found in
Appendix A were also part of our joint work, with new extensions from Algo-
rithm 30 and onward. The content of this thesis not mentioned here is unique
to this work.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, Apr. 1994.

2. O. S. Bak, M. W. B. Christiansen, O. V. Eriksen, M. D. Jensen, S. Juozapaitis,
and A. Windfeld. Smacc: A gpu accelerated statistical model checker for stochastic
systems. 2022.

3. O. S. Bak, M. W. B. Christiansen, O. V. Eriksen, M. D. Jensen, S. Juozapaitis,
and A. Windfeld. Multicore cpu and gpu acceleration of symbolic model checking.
2024.

4. J. Barnat, L. Brim, and M. Češka. Divine-cuda-a tool for gpu accelerated ltl model
checking. arXiv preprint arXiv:0912.2555, 2009.

5. J. Barnat, L. Brim, and P. Ročkai. Scalable multi-core ltl model-checking. In
Model Checking Software: 14th International SPIN Workshop, Berlin, Germany,
July 1-3, 2007. Proceedings 14, pages 187–203. Springer, 2007.

6. E. Bartocci, R. DeFrancisco, and S. A. Smolka. Towards a gpgpu-parallel spin
model checker. In Proceedings of the 2014 International SPIN Symposium on Model
Checking of Software, pages 87–96, 2014.

7. G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen. Static guard analysis in
timed automata verification. In Proceedings of the 9th international conference
on Tools and algorithms for the construction and analysis of systems, TACAS’03,
pages 254–270, Berlin, Heidelberg, 2003. Springer-Verlag.

8. G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek. Lower and upper bounds
in zone-based abstractions of timed automata. STTT, 8(3):204–215, 2006.

9. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.
Uppaal-tiga: Time for playing games! In Computer Aided Verification: 19th Inter-
national Conference, volume 4590 of LNCS, pages 121–125. Springer, 2007.

10. G. Behrmann, K. G. Larsen, O. Moller, A. David, P. Pettersson, and W. Yi.
Uppaal-present and future. In Proceedings of the 40th IEEE Conference on Deci-
sion and Control (Cat. No. 01CH37228), volume 3, pages 2881–2886. IEEE, 2001.

64 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

11. J. Bengtsson. Clocks, dbms and states in timed systems. Acta Universitatis Up-
saliensis, 2002.

12. F. Boenneland, P. Jensen, K. Larsen, M. Muniz, and J. Srba. Start pruning when
time gets urgent: Partial order reduction for timed systems. In CAV’18, volume
10981 of LNCS, pages 527–546. Springer-Verlag, 2018.

13. F. M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba. Partial order
reduction for reachability games. In 30th International Conference on Concurrency
Theory (CONCUR 2019). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2019.

14. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In Concurrency Theory: 16th Interna-
tional Conference, volume 3653 of LNCS, pages 66–80. Springer, 2005.

15. M. B. Dahlsen-Jensen, B. Fievet, L. Petrucci, and J. van de Pol. On-the-fly algo-
rithm for reachability in parametric timed games (extended version), 2024.

16. A. E. Dalsgaard, A. Laarman, K. G. Larsen, M. C. Olesen, and J. Van De Pol.
Multi-core reachability for timed automata. In Formal Modeling and Analysis of
Timed Systems: 10th International Conference, FORMATS 2012, London, UK,
September 18-20, 2012. Proceedings 10, pages 91–106. Springer, 2012.

17. A. David. Merging dbms efficiently–extended abstract.
18. A. David. Merging dbms efficiently. In 17th Nordic Workshop on Programming

Theory, pages 54–56. DIKU University of Copenhagen, 2005.
19. A. David, G. Behrmann, K. G. Larsen, and W. Yi. A tool architecture for the

next generation of uppaal. In Formal Methods at the Crossroads. From Panacea to
Foundational Support: 10th Anniversary Colloquium of UNU/IIST, the Interna-
tional Institute for Software Technology of The United Nations University, Lisbon,
Portugal, March 18-20, 2002. Revised Papers, pages 352–366. Springer, 2003.

20. A. David, J. H̊akansson, K. G. Larsen, and P. Pettersson. Model checking timed
automata with priorities using dbm subtraction. In Formal Modeling and Analysis
of Timed Systems: 4th International Conference, FORMATS 2006, Paris, France,
September 25-27, 2006. Proceedings 4, pages 128–142. Springer, 2006.

21. L. De Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-
state games. In CONCUR 2001—Concurrency Theory: 12th International Con-
ference Aalborg, Denmark, August 20–25, 2001 Proceedings 12, pages 536–550.
Springer, 2001.

22. D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems: International Workshop,
volume 407 of LNCS, pages 197–212. Springer, 1990.

23. R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345–
345, 1962.

24. I. Gelado and M. Garland. Throughput-oriented gpu memory allocation. In Pro-
ceedings of the 24th symposium on principles and practice of parallel programming,
pages 27–37, 2019.

25. M. Hendriks, G. Behrmann, K. Larsen, P. Niebert, and F. Vaandrager. Adding
symmetry reduction to uppaal. In K. G. Larsen and P. Niebert, editors, Formal
Modeling and Analysis of Timed Systems, pages 46–59, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

26. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming, Revised
Reprint. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edi-
tion, 2012.

27. J. Jenq and S. Sahni. All pairs shortest paths on a hypercube multiprocessor. In
S. Sahni, editor, Proceedings of the International Conference on Parallel Processing,

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 65

pages 713–716. Pennsylvania State Univ Press, Dec. 1987. Proc Int Conf Parallel
Process 1987 ; Conference date: 17-08-1987 Through 21-08-1987.

28. D. Jünger, R. Kobus, A. Müller, C. Hundt, K. Xu, W. Liu, and B. Schmidt.
Warpcore: A library for fast hash tables on gpus. In 2020 IEEE 27th international
conference on high performance computing, data, and analytics (HiPC), pages 11–
20. IEEE, 2020.

29. V. Kumar and V. Singh. Scalability of parallel algorithms for the all-pairs shortest-
path problem. Journal of Parallel and Distributed Computing, 13(2):124–138, 1991.

30. K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-
time systems: Compact data structure and state-space reduction. In Proceedings
Real-Time Systems Symposium, pages 14–24. IEEE, 1997.

31. K. G. Larsen, M. Mikučionis, M. Muñiz, and J. Srba. Urgent partial order reduction
for extended timed automata. In D. V. Hung and O. Sokolsky, editors, Automated
Technology for Verification and Analysis, pages 179–195, Cham, 2020. Springer
International Publishing.

32. X. Liu and S. A. Smolka. Simple linear-time algorithms for minimal fixed points
(extended abstract). In Automata, Languages and Programming: 25th Interna-
tional Colloquium, volume 1443 of LNCS, pages 53–66. Springer, 1998.

33. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In 12th Annual Symposium on Theoretical Aspects of Computer
Science, volume 900 of LNCS, pages 229–242. Springer, 1995.

34. NVIDIA. Cuda c++ programming guide, 2023. Last accessed 30 November 2023.
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

35. A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller synthesis for timed
automata. In System Structure and Control. Citeseer, Elsevier, 1998.

36. M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg. Scatteralloc: Massively
parallel dynamic memory allocation for the gpu. In 2012 Innovative Parallel Com-
puting (InPar), pages 1–10, 2012.

37. A. Wijs and M. Osama. Gpuexplore 3.0: Gpu accelerated state space exploration
for concurrent systems with data. In International Symposium on Model Checking
Software, pages 188–197. Springer, 2023.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

66 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

A DBM operations

Algorithm 20 Close

1: procedure Close(D) ▷ DBM D
2: for k ∶= 0 to n do ▷ Number of clocks n
3: for i ∶= 0 to n do
4: for j ∶= 0 to n do
5: Di,j = min(Di,j ,Di,k +Dk,j)

Algorithm 21 Is empty

1: procedure is empty(D) ▷ DBM D
2: for i ∶= 0 to n do ▷ number of clocks n
3: for j ∶= i to n do
4: w ∶=Di,j +Dj,i

5: if w < (0,≤) then
6: return true

7: return false

Algorithm 22 Inclusion

1: procedure relation(D,D′) ▷ DBMs D, D’
2: sub ∶= true, super ∶= true
3: for i ∶= 0 to n do
4: for j ∶= 0 to n do
5: sub = sub ∧ (Di,j ≤D′i,j)
6: super = super ∧ (Di,j ≥D′i,j)
7: return ⟨sub, super⟩

Algorithm 23 Future

1: procedure future(D) ▷ DBM D
2: for i ∶= 1 to n do
3: Di,0 = ∞

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 67

Algorithm 24 Past

1: procedure past(D) ▷ DBM D
2: for i ∶= 1 to n do
3: D0,i = (0,≤)
4: for j ∶= 1 to n do
5: if Dj,i <D0,i then
6: D0,i =Dj,i

Algorithm 25 Restrict

1: procedure restrict(D, (x − y ∼m)) ▷ DBM D, bound
2: if Dy,x + (m,∼) < 0 then
3: D0,0 = (−1,≤)
4: else if (m,∼) <Dx,y then
5: Dx,y = (m,∼)
6: for i ∶= 0 to n do
7: for j ∶= 0 to n do
8: if Di,x +Dx,j <Di,j then
9: Di,j =Di,x +Dx,j

10: if Di,y +Dy,j <Di,j then
11: Di,j =Di,y +Dy,j

Algorithm 26 Assign

1: procedure assign(D,x =m) ▷ DBM D, clock x, new value m
2: Dx,0 = (m,≤)
3: D0,x = (−m,≤)
4: for i ∶= 0 to n do
5: Dx,i = (m,≤) +D0,i

6: Di,x =Di,0 + (−m,≤)

Algorithm 27 Copy

1: procedure copy(D,x = y) ▷ DBM D, clocks x and y
2: for i ∶= 0 to n do
3: if i ≠ x then
4: Dx,i =Dy,i

5: Di,x =Di,y

6: Dx,y = (0,≤)
7: Dy,x = (0,≤)

68 Oliver S. Bak, Mathias W. B. Christiansen, and Oliver V. Eriksen

Algorithm 28 Shift

1: procedure shift(D,x = x +m) ▷ DBM D, clock x, value m
2: for i ∶= 0 to n do
3: if i ≠ x then
4: Dx,i =Dx,i + (m,≤)
5: Di,x =Di,x + (−m,≤)
6: Dx,0 = max(Dx,0, (0,≤))
7: D0,x = min(D0,x, (0,≤))

Algorithm 29 LU Extra+

1: procedure LU Extra+(D, [L0, . . . , Ln], [U0, . . . , Un]) ▷ DBM, lower, upper
bounds

2: for i ∶= 0 to n do
3: for j ∶= 0 to n do
4: if i == j then continue

5: if Di,j > Li then
6: Di,j = ∞
7: else if −D0,i > Li then
8: Di,j = ∞
9: else if −D0,j > Uj and i ≠ 0 then
10: Di,j = ∞
11: else if −Di,j > Uj and i == 0 then
12: Di,j = (−Uj ,<)
13: if i = 0 and Di,j > (0,≤) then
14: Di,j = (0,≤)
15: if j = 0 and Di,j < (0,≤) then
16: Di,j = (0,≤)
17: Close(D)

Algorithm 30 Disjoint Subtract

1: procedure disjoint subtract(D,E) ▷ DBMs D, E
2: Compute Em

3: S = false,R =D
4: for eij ∈ Em, i /= j do
5: S = S ∨ (R ∧ ¬eij)
6: R = R ∧ eij

7: return S

Accelerating Synthesis of Timed Game using Async Parallelisation and GPU 69

Algorithm 31 Reduction of Zero-Cycle Free Graph G with n nodes

1: procedure Reduce zero cycle free(G, n) ▷ Graph G, number of nodes n
2: for i ∶= 1 to n do
3: for j ∶= 1 to n do
4: for k ∶= 1 to n do
5: if Gik +Gkj ≤ Gij then
6: Mark edge i→ j as redundant

7: Remove all edges marked as redundant.

Algorithm 32 Reduction of Negative-Cycle Free Graph G with n nodes

1: procedure reduce negative cycle free(G,n) ▷ Graph G, number of nodes n
2: for i ∶= 1 to n do
3: if Nodei is not in partition then
4: Eqi = ∅
5: for j ∶= 1 to n do
6: if Gij +Gji = 0 then
7: Eqi ∶= Eqi ∪ {Nodei}
8: Let G′ be a graph without nodes.
9: for each Eqi do
10: Pick one representative Nodei ∈ Eqi
11: AddNodei to G′

12: Connect Nodei to all nodes in G′ using weights from G.

13: Reduce G′

14: for each Eqi do
15: Add one zero cycle containing all nodes in Eqi to G′

Algorithm 33 2-way merging of DBMs in Federation F

1: procedure 2way merge(F) ▷ Federation F
2: for each (D,D′) ∈ F) do
3: if H(D,D′) then ▷ Heuristic function
4: if ((D ⊔D′) −D) −D′ = ∅ then
5: F ∶= F ∪ {D ⊔D′}

	Accelerating Synthesis of Timed Game using Async Parallelisation and GPU
	Accelerating Synthesis of Timed Game using Async Parallelisation and GPU
	Introduction
	Preliminaries
	Timed Automata
	Difference Bound Matrix
	Basic DBM Operations
	Subtract
	Shortest-Path Reduction
	Federations
	Merging

	Timed Game Automata

	GP-GPU Framework CUDA
	Thread hierarchy
	Memory Model
	Streams

	Notation
	Thread Groupings
	Hierarchical Identifiers
	Group Partitioning
	Communication & Consensus

	GDBM
	Thread Mapping
	GDBM Closure
	Correctness

	GDBM Relation
	Relation
	Warp Relation

	Intersection
	Restrict
	Extrapolation
	Shortest-Path Reduction
	Federation Operations
	DBM Subtract
	Dynamic Allocation
	Disjoint Subtract
	Non-disjoint Subtract
	Naive Subtract
	Federation Subtract
	Concurrent Union

	Merging Convex Sets
	Predt
	DBM Hash Table
	Collisions
	Insertion, Deletion & Retrieval

	Federation Table

	Asynchronous Co-Processing Reachability Engine
	Host-Device
	Exploiting Concurrency
	Work Dependencies
	Exploration Order
	Host Version

	Asynchronous Co-Processing Timed Games Engine
	Correctness
	Exploiting Concurrency
	Exploration Order

	Experiments
	DBM/Federation Operations
	Close
	Intersection
	Shortest-Path Reduction
	ExtrapolationLU
	DBM Subtraction
	Approximate Relation

	Fed-Fed Subtract
	Predt

	Reachability
	Hash Table Experiments

	Timed Games

	Conclusion
	Future Work

	Bibliographical Note
	DBM operations

