
0.1 Mandatory Summary Section

This thesis describes various transformation and prediction tasks executed on the
data generated by a 2023 paper [36] that parsed the medieval gazetteer Kitāb
Mu’jam al-Buldān written by Yâqût al-Hamawî [14].

First, the various technologies and concepts that form the core of this thesis
are introduced. These concepts include but are not limited to Knowledge Graphs,
Graph Neural Networks, Wikidata [33], and various evaluation metrics such as
Mean Rank and Hits@K.

Then, the next short section details the original gazetteer and its parsed version.
Having established the base knowledge necessary to follow this thesis, the next
sections analyze the initial parsed dataset represented as a graph. The graph, in
its purest form, includes only place type nodes, administrative hierarchical, and
distance edges. This analysis includes metrics such as network density, average
node degree, and clustering.

Then, some initial link prediction experiments were performed using various
knowledge graph embedding models, as implemented in Ampligraph [7]. These
approaches are namely: TransE [3], DistMult [34], ComplEx [32], HolE [22] and
RotatE [31]. However, these first attempts fell short of expectations regarding sta-
tistical performance and the ability to predict new, true positive links.

After analyzing the shortcomings of the initial models, the graph’s structure
was heavily modified. The graph on which the previous models were trained
included various ancillary edges and nodes representing data scraped from Wiki-
data; these were removed. Moreover, previously, the graph’s ontology did not
differentiate between various distances and treated them equally. In later versions,
these edges are binned according to predefined boundaries. Second, the hierar-
chical edges were explicitly defined across all levels. Third, reverse edges were
added.

After some additional tests, it became apparent that there was a need to ex-
periment with recent state-of-the-art models. Therefore, the rest of the thesis uses
Neural Bellman-Ford Networks [39] as its basis (NBFNet). The model proposed in
the NBFNet paper is currently SOTA [20] for link prediction using the FB15K-237
dataset.

The next section evaluates the results after training the NBFNet model on the
gazetteer dataset. While the results are marginally better in some metrics, this
thesis hypothesizes that it is possible to reach even better results by pretraining
the model on a similar, but orders of magnitude larger, synthetic dataset. To create
such a dataset, the thesis relies on WorldKG [9], a geographical knowledge graph
constructed based on Open Street Maps [5] data.

The data found in the WorldKG dataset is used to create a synthetic dataset
mimicking Yāqūt’s Kitāb Mu’jam al-Buldān. This synthetic dataset also allowed



the introduction of specific biases that are not commonly found in the original
data source but are of interest to the researchers.

The penultimate chapter discusses predicted new positive triplets and potential
false positives generated by the original parsing strategy, the NBFNet interpreta-
tion of these triplets is also discussed. Within this section, there is also a dedicated
part for triplet candidate discovery strategies, as it is a computationally expen-
sive process. Various techniques, such as hop limiting and cluster triangles, are
detailed.

The final section of the thesis reiterates the results and reflects on potential
improvements, shortcomings, and future research possibilities.
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Chapter 1

Introduction

1.1 Problem Statement

A common task of historians is to digitize, parse, and categorize historical written
records. One such project is The Middle East Heritage Data Integration Endeavour
(MEHDIE) [28]. MEHDIE aims to aggregate and align multilingual data generated
in the Medieval Middle East.

One such dataset is derived from Yaqut al-Hamawi’s Dictionary of Countries
[14]. This dataset was created by scanning a manuscript with OCR technology and
then extracting parsed data from the text entries using a rule-based model [36]

However, this parsed dataset has some shortcomings. First, it is only available
in a non-standard format, making it difficult for subsequent researchers to con-
sume the data. Second, it is strictly based on the data parsed from the original
manuscript. This limitation, however, hinders MEHDIE’s data alignment initia-
tives. This thesis addresses the former issue by experimenting with various knowl-
edge graph representations of the original dataset . It addresses the latter issue
by using these new representations to create link prediction models to expand the
available information.

1.2 Relevant Concepts and Technologies

2



1.2. Relevant Concepts and Technologies 3

1.2.1 Knowledge Graphs

Figure 1.1: Example of a knowledge graph.

One may think of Knowledge Graphs
as directed heterogeneous graphs cre-
ated with the intent of representing
knowledge bases in a machine inter-
pretable manner. Nodes may (but not
bound to) be objects, events, situations,
abstract concepts or locations, with the
edges between the nodes representing
conceptual relationships among the en-
tities.

Knowledge graphs are often repre-
sented as lists of statements such that a
statement is: s = (h, r, t) where h refers
to the head entity, t represents the tail
entity and r represents the edge con-
necting the two entities. These state-
ments have also been called triplets.

Knowledge graphs are often backed
by predefined ontologies. Ontologies define entities and relationships referenced
in the list of statements. serving as their explicit schema, making the parsing of
and work with these graphs easier. One may also think of knowledge graphs as
the combination of the statements, and the relevant ontologies.

Some use cases of knowledge graphs include Google’s enhanced contextual
response to search queries [30] (using their internal knowledge graph) or a more
recent example: researchers have been experimenting with augmenting large lan-
guage models with knowledge graphs [24], in order to ensure factual answers.

Examples of publicly available knowledge graphs are: Wikidata [33] a generic
knowledge graph backing the rest of the Wikimedia ecosystem, or WN18 dataset
parsed from WordNet introduced by [3] and is commonly used to evaluate the
performance of various graph machine learning models.

1.2.2 Graph Representation Learning

Graph Representation Learning is a research field dedicated to creating various
methods of embedding nodes of a graph into a low-dimensional vector space that
may be used to perform various downstream tasks such as graph and node classi-
fication or link prediction.

These GRL models rely on an encoder-decoder model. "The intuition be-
hind the encoder-decoder idea is the following: If we can learn to decode high-
dimensional graph information—such as the global positions of nodes in the graph
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or the structure of local graph neighborhoods—from encoded low-dimensional
embeddings, then, in principle, these embeddings should contain all information
necessary for downstream machine learning tasks" [16]

In other words, while downstream tasks consume the vector representation, the
decoder is used to create a well-trained encoder model.

The encoder may create either shallow embeddings or deep embeddings. Shal-
low embedding techniques are generally simpler and faster to train but may strug-
gle to capture highly complex patterns and hierarchical relationships within the
graph.

Example of shallow embedding methods include: Node2Vec [12] or Deep-
Walk [26]

Deep embedding methods are commonly some variation of Graph Neural Net-
works detailed in section 1.2.3

1.2.3 Graph Neural Networks

The challenge in creating encoding models that capture deep insight into graph
structures is that graph structures are inherently variable [15].

For example, if one was to build a model that categorizes social networks us-
ing classical tools such as Convolutional Neural Networks or Recurring Neural
Networks, The model would be restricted to graphs with a set number of nodes.

Graph neural networks, which use the concept of neural message passing, are
used to address the above issue and leverage the structure of graphs. The recent
state-of-the-art knowledge graph completion models are commonly based on some
neural message passing framework [25] due to their inherent ability to capture
deeper neighborhood structures.

Figure 1.2 illustrates the basic concept of message passing. In a message-
passing layer, each neighboring node exchanges its features and encodings with
others. For each node, these incoming messages are aggregated to form a new
encoding for that node. Depending on the architecture, several message-passing
layers may be stacked. By the end of this process, nodes will represent a combina-
tion of their initial features and the features of their local neighborhood.

1.2.4 Wikidata

"Wikidata is a free, collaborative, multilingual, secondary knowledge base, collect-
ing structured data to provide support for Wikipedia, Wikimedia Commons, the
other wikis of the Wikimedia movement, and to anyone in the world."

"The Wikidata repository consists mainly of items, each one having a label,
a description and any number of aliases. Items are uniquely identified by a Q
followed by a number, such as Douglas Adams (Q42). Statements describe detailed
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Figure 1.2: A figure from the book Graph Representation Learning [15] showcases the general intu-
ition behind neural message passing.

characteristics of an Item and consist of a property and a value. Properties in
Wikidata have a P followed by a number, such as with educated at (P69)." [33]

As detailed later in section 2.1, the initial dataset that forms the basis of this
thesis contains some nodes that have inferred Wikidata IDs. Therefore, Wikidata
will be a potential source for enriching the dataset and creating a denser network.

Moreover, a secondary object of this thesis is to represent Kitāb Mu’jam al-
Buldān in a consumable knowledge graph format. Therefore, it is easy to argue
that using Wikidata’s ontology will streamline such efforts.

1.2.5 Evaluation Metrics

This section details the commonly used metrics in link prediction literature. The
usual environment for model evaluation involves the generation of synthetic neg-
ative triplets. The need for negative is explained in subsection 3.1.4 These negative
triplets, alongside the positives are then ranked based on some score

Notationally, in the next few sections Q refers to a set of triples s = (h, r, t)
where s ∈ Q [7]

Rank Score

Simple integer value, the rank of a triplet in a vector of triplets.

Mean Rank

The average rank score of a vector of positive triplets in Q

MR =
1
|Q|

|Q|

∑
i=1

rank(h,r,t)i
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Mean Reciprocal Rank

Similar to the mean rank, but instead of averaging triplet ranks, the reciprocal
ranks are averaged. This should make the metric more robust against outliers [7].

MRR =
1
|Q|

|Q|

∑
i=1

1
rank(h,r,t)i

Hits@K

The ratio of how many positive triplets make it to the top K list of triplets when
ranked against negative triplets.

Hits@K =
|Q|

∑
i=1

1 if rank(h,r,t)i
≤ K

In this thesis K = 1, 3, 5

1.3 Kitāb Mu’jam al-Buldān Dataset

Kitāb Mu’jam al-Buldān [14] "Dictionary of Countries" was written by Yāqūt Shihāb
al-Dı̄n ibn-Abdullāh al-Rūmı̄ al-áamawı̄ between 1224 and 1228.

The Gazetteer is a "comprehensive index of places and places descriptions,
mainly in the Muslim World ... he (Yāqūt) depicted a semi-anachronistic look
at the Muslim Caliphate in the 7th-10th centuries " [36]

At the time of writing, there is no exact number for the places detailed in the
book, but there are at least 12,400 entries. Some projects, however, distinguish
multiple places if they are mentioned within a different entry, lacking their own
dedicated one. [29]. Example entries are shown on figure 1.3

Figure 1.3: original, Arabic entries from Kitāb Mu’jam al-Buldān with their corresponding English
translations [36]

.
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1.3.1 Parsed Dataset - Places

The layout of the gazetteer is highly structured. Therefore, researchers were able to
create a rule-based method to parse and expose the data in a tabular database [36].
This database serves as the primary data source for this thesis.

Figure 1.4: Example of a Mujam al-Buldān entry [36]

.
The primary, parsed datasource provided the following information:

• Latitude

• Longitude

• Wikidata ID

• al-Turayyā ID [29]

• Name (Arabic)

• Name (English)

• Type (lower hierarchy)

• Type (upper hierarchy)

• Metropolitan ID (reference to another place in the dataset)

• District ID (reference to another place in the dataset)

• Provincial ID (reference to another place in the dataset)

The only fields guaranteed to have data were the Arabic name and the unique
identifier assigned based on the corresponding al-Turayyā gazetteer [29].
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al-Turayyā ID

The IDs correspond to the database entries partially backing the al-Turayyā gazetteer
project. Namely, al-Turayyā used the same IDs to identify the OCR scanned entries.
A small caveat is that [36] occasionally parsed multiple place descriptions from the
same entry, therefore, these entries have additional suffixes after the al-Turayyā ID
to keep them unique.

Wikidata ID

Some more well-known and easily identifiable place entries, such as Baghdad,
were already enriched with Wikidata [33] IDs. This information was initially used
to build some graphs, but later iterations skipped its use due to their unreliability.
As an example, the entry for Mecca, which is a highly central and important node,
had the Wikidata ID of Q3289054 which refers to a city in the United States, not
the Saudi Arabian city.

Categories

The rule-based parsing system also attempts to assign a category to each place
entry. The categories are selected from a pre-defined hand-verified list.

The categories are split into a two-level hierarchy. For example, the level one
category "town" has multiple sub-categories, like village, small town, neighboring
villages, or abodes.

However, not all entries will necessarily have a secondary category. In total,
there are 96 distinct categories; they are available in the Appendix 8.1.

1.3.2 Parsed Dataset - Distances

The other important block of data available in the parsed dataset are the distances.
Over a thousand entries parsed from the original book express some spatial rela-
tionship between two places. The dataset this thesis works with already contains
this information in kilometers. However, it is important to remember that the kilo-
meter values provided vary significantly in accuracy. This is because the original
entries defined distance in terms of various non-standard methods such as days of
walking, traveling on camelback, and so on.



Chapter 2

Building the Initial Graph and its
Analysis

2.1 Building the Graph

Within this thesis, two target edge categories are valuable to predict: distance and
hierarchy. Therefore, creating an initial investigative graph containing only this
information is reasonable. The graph will contain only place nodes, one node for
each unique place ID. For simplicity, the distance edges will not yet be binned,
and each hierarchical relationship will explicitly be defined instead of relying on
meta-paths. The database engine storing the graph will be Neo4J [21], populated
by a Python script, while the analysis will be mainly done with Gephi [1].

While building the graph, it became apparent that the number of disconnected
nodes is exceedingly high (6289 nodes are orphans out of 14863 total nodes); there-
fore the decision was made to only consider connected nodes as part of the graph,
especially since the link prediction methods require at least some connections.

2.2 Initial Analysis

2.2.1 Network Density and Connectivity

Even with the disconnected nodes removed, the graph appears to be extremely
sparse. This is apparent from the density, which may be calculated as follows:

D =
2E

N(N − 1)

With 8574 nodes and 10790 edges, the density is 0.00029. Considering that a
graph’s density is such that: (0 ≤ density ≤ 1), this graph is rather disconnected.

9
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2.2.2 Average Degree and Degree Distribution

The average node degree is 1.258, reinforcing the perception that the graph is
sparse. This low density may cause problems down the line, as link prediction
methods commonly perform better on denser graphs

The degree distribution (figure 2.1) shows that there are a few nodes in the
graph that are exceedingly central (upwards of 300 edges). After some investiga-
tion, it was found that these nodes generally correspond to large medieval cities
or countries such as Baghdad, Alexandria or Yemen. Besides these highly central
nodes, most nodes (6000+) only have a single edge.

Figure 2.1: Degree Distribution of the initial graph.

2.2.3 Modularity

Using Gephi’s [1] implementation of the Louvian method [2] with a resolution of
5.0, 217 communities were found. However, the high number of communities is
only indicative of a highly disconnected graph, with many small, isolated islands.
In practice, eight large groups account for 94.62% of the nodes. The modularity
breakdown is shown on table: 2.1

Figure 2.2 shows that the detected, large communities are fairly easy to visually
distinguish. Moreover, it shows that the highly central nodes (visualized by a larger
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Name Population Color on Figure 2.2
Group 1 22.26% Pink
Group 2 17.46% Green
Group 3 15.13% Blue
Group 4 9.41% Black
Group 5 9% Orange
Group 6 8.69% Red
Group 7 6.85% Yellow
Group 8 5.82% Cyan

Table 2.1: Communities detected by the Louvain method

diameter) are spread around the communities fairly evenly.
.

2.2.4 Unexpected Patterns

While working with the parsed dataset, some odd patterns were found. First,
distance triplets were found, where both the head and tail entities were the same.
At the recommendation of the head, author of [36], these triplets were discarded.

Secondly, during manual observation of the data, "odd" hierarchical patterns
were observed; that did not fit to the classical strict, unidirectional layout of other
similar structures, shown on figure 2.3 and 2.4 .

These patterns were extracted and forwarded to the MEHDIE researchers using
the following Neo4J query:

MATCH (n)-[:{r1}]->(m)-[:{r2}]->(n) RETURN n,m

Where r1 and r2 correspond to all potential pairwise combinations of the edge
types: wd_P131_METROPOLITAN, wd_P131_DISTRICT and wd_P131_PROVINCE

2.3 Creating a Knowledge Graph

A secondary focus of this thesis is to transform the parsed dataset into an easily
interpretable and information-rich knowledge graph to serve further downstream
research as part of MEHDIE [28].

To create such a graph, it is beneficial to rely on existing ontologies, to increase
inter-compatibility and standardization. Specifically, this new Kitāb KG’s ontology
extends Wikidata’s ontology in terms of relationship and category types.

In terms of place node ontology, however, the KG was constructed by entirely
using internal IDs.
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Figure 2.2: Graph visualization showing the communities listed on table 2.1

As mentioned earlier in section 1.3.1, some Wikidata equality information was
already available in the parsed dataset. This information was also used to expand
the graph, and moreover, could potentially be used to help training better models
for link prediction.

2.3.1 Hierarchical Edges

One could take two different approaches when constructing the hierarchical edges.
Either the graph could explicitly contain all known hierarchical edges (figure 2.6),
or just the next level up in the hierarchy (figure 2.5).

It seems that the larger, well-known graphs do not explicitly define all levels
of hierarchy for any given place. Therefore, this knowledge graph was also con-
structed in a compositional manner.

Another caveat is that Wikidata’s ontology does not define various hierarhical
edge types and instead relies on the aggregating P131 edge type (located in the
administrative territorial entity).

For the purposes of this KG, it is more beneficial to split this type into three
distinct types, namely: wd_P131_METROPOLITAN, wd_P131_DISTRICT and
wd_P131_PROVINCE
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Figure 2.3: Unusual hierarchical pattern where two nodes reference each other as their province.

Figure 2.4: Unusual hierarchical pattern where two nodes reference each other as their district.

2.3.2 Distance Edges

In the parsed Kitāb dataset, there is a large amount of distance information be-
tween various place pairs. However, by simply inserting these edges into the KG,
without the numerical distance values, the informational value of the graph would
be significantly diminished.

However, the simple triplet structure of knowledge graphs does not allow the
definition of features on edges or nodes. Normally, the place nodes would have a
corresponding point literal in the triplet store, and the distance between the two
points could be extracted using some geospatial calculation.

Unfortunately, in this case, there are very few nodes with known coordinates.
As a compromise, the Distance edge types were split into multiple edge types,
each type representing a specific range.

These binned edge types are also shown on table: 2.2
Finally, as the distance is obviously symmetric, these triplets were defined twice

by switching the head and tail entities.
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Figure 2.5: Small example of a graph where not all known hierarchical relationships are defined.

Figure 2.6: Small example of a graph where all known hierarchical relationships are explicitly de-
fined.

2.3.3 Categories

There is a significant overlap between the categories defined in the parsed Kitāb
dataset and the available conceptual entities in Wikidata, wherever available, the
Wikidata Ontology ID was used.

For example, the city category was mapped to the Wikidata entity Q515. How-
ever, there were some very specific categories in the parsed dataset, such as kasbah
(city center), which is distinct from just a generic kasbah Q89468

These special category entities were defined in the Mehdie ontology. E.g., kas-
bah (city center) became mehdie_11

Since the categories are hierarchical, this hierarchy was captured using the P279
(subclass of) edge type, with the place nodes referencing the lowest available cate-
gory level. Between Place and Category entities, the P31 edge type was used.
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2.3.4 Scraping Wikidata

As mentioned earlier, in the parsed Kitāb dataset, a number of places had a Wiki-
data ID defined. This introduced the opportunity to enrich the knowledge graph
with extra Wikidata information.

The full list of scraped edge types are listed on table 2.2
One could make the argument that if a place node has a corresponding Wiki-

data entity, then it is bad practice to keep both nodes in the graph.
However, considering that these ID assignments may be incorrect, it is safer to

link the corresponding. MEHDIE and Wikidata entities with a P460 - "said to be
the same as".

Table 2.2: Edge types used in the Kitāb Knowledge Graph

Name Description
wd_P131_METROPOLITAN head is in the metropolitan area of tail
wd_P131_DISTRICT head is in the district area of tail
wd_P131_PROVINCE head is in the provincial area of tail
DISTANCE_0_5 head and tail are closer than 5km to each other
DISTANCE_5_10 head and tail are between 5 and 10 kilometers from each other
DISTANCE_10_20 head and tail are between 10 and 20 kilometers from each other
DISTANCE_20_50 head and tail are between 20 and 50 kilometers from each other
DISTANCE_100_200 head and tail are between 100 and 200 kilometers from each other
DISTANCE_200_500 head and tail are between 200 and 500 kilometers from each other
DISTANCE_500_1000 head and tail are between 500 and 1000 kilometers from each other
DISTANCE_1000_inf head and tail are over 1000 km away from each other
P17 Wikidata type: "Country"
P206 Wikidata type: "located in or next to body of water"
P706 Wikidata type: "located in/on physical feature"
P361 Wikidata type: "part of"
P402 Wikidata type: "OpenStreetMap relation ID"
P11693 Wikidata type: "OpenStreetMap node ID"
P625 Wikidata type: "coordinate location"
P460 Wikidata type: "said to be the same as"



Chapter 3

Knowledge Graph Embedding Meth-
ods

The first broad classification of link prediction methods explored in this thesis are
the knowledge graph embedding methods (KGE). Since graph neural networks
generate node embeddings as well, the terminology is somewhat ambiguous. The
following few paragraphs will attempt to distinguish the class of methods detailed
in this chapter.

KGE methods attempt to position each node in a vector space (figure 3.1). In a
well-trained model, nodes from the same neighborhood will be placed near each
other within the vector space. Moreover, these positions are strictly unique, i.e.,
two distinct nodes cannot occupy the same place. From this, it naturally follows
that KGE methods are strictly transductive and cannot be generalized.

Fortunately, a transductive setting is not necessarily limiting for the purposes
of this thesis. as all the link-predictions tasks are limited to the domain of places
mentioned in Kitāb Mu’jam al-Buldān.

KGE methods are generally more efficient and easily more scalable than their
GNN counterparts.

.

3.1 General Architecture

Generally, KGE models, at least within the context of this thesis, fit into the same
generic architecture (figure 3.2).

.

16
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Figure 3.1: Visualization of Vector Space Embedding [8]

Figure 3.2: Generic KGE architecture [8]

3.1.1 Lookup Layer

The Lookup layer just simply functions as a dictionary between the individual
nodes and relationships and their respective embeddings.

3.1.2 Scoring Layer

Colloquially, the heart of the architecture, the scoring layer takes the encoding of
each member of the triplet and assigns a score to the whole statement. The higher
the score, the more likely it is that the statement is a true statement. The specific
scoring functions are detailed in section 3.2

3.1.3 Loss Function

As with all other neural models; the generic KGE architecture relies on a loss
function, which is necessary to optimize the model. In the KGE section of this
thesis, two loss functions were used.
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Pairwise, Max-margin Loss

This function penalizes the model if the score assigned by scoring function fmodel
to a positive triple t+ selected from the set of positives G, is lower than the score
assigned to a negative triple t− selected from the set of corruptions C by margin γ

L(Θ) = ∑
t+∈G

∑
t−∈C

max(0, [γ + fmodel(t−; Θ)− fmodel(t+; Θ)])

Negative Log-Likelihood Loss

Another commonly used loss function, y ∈ −1, 1 dependent on whether the state-
ment is positive or negative.

L(Θ) = ∑
t∈G∪C

log(1 + exp(−y fmodel(t; Θ)))

3.1.4 Negatives Generation

A very distinctive feature of the domain of knowledge graph link prediction is
the (usual) lack of true negative data points. Let’s consider the domain of image
recognition. If someone were to train a model to detect the presence of a cat
in a photo, the negative data points could be any photos that do not contain a
cat. However, in the case of knowledge graphs, there are no negative facts. A
knowledge graph may contain the triplet <London,CapitalOf,UnitedKingdom>

And even though for a human reader, this automatically means that <London,
CapitalOf, Denmark> is a false statement, a normal knowledge graph will not con-
tain such information explicitly. Therefore, link prediction methods commonly rely
on some form of synthetic negative triplet generation.

While there have been many strategies proposed [17], in this thesis, a very
simple method was chosen. Given a true statement s = (h, r, t), a negative sample
will be generated by corrupting t by randomly replacing it with another node from
the graph. Of course, corruption is done with consideration of the ground truth
triplets.

This has a negative effect under the open world assumption of potentially la-
beling unknown true positives as negative data points [35]. However, due to its
simplicity, this approach has the benefit of avoiding any potential bias in the train-
ing and being computationally efficient.

3.1.5 Optimizer

Same concept as in other machine learning architectures, in this thesis two opti-
mizers were used: Adam [18] and AdaGrad [10]
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3.2 Embedding Methods

3.2.1 Translating Embeddings (TransE)

Commonly used benchmark, and one of the first KGE models. This approach
attempts to model relationships as translations between two points (nodes) in a
vector space

Given a statement s = (h, r, t), ideally h and t should be close to each other in
the vector space, with the difference being the translation of the relation r [3].

Figure 3.3: Visualization of TransE [13]

.

3.2.2 Relational Rotation Embeddings (RotatE)

"The RotatE model maps the entities and relations to the vector space and defines
each relation as a rotation from the source entity to the target entity." [31]

The benefit of RotatE over TransE lies in expressiveness. It is able to model more
relationship patterns, such as symmetry, antisymmetry, inversion and composition.

Figure 3.4: Visualization of RotatE [31]

.
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3.2.3 Holographic Embeddings (HolE)

Holographic Embedding [22] is a model for learning representations of entities
and relationships in a knowledge graph. It uses the principles of holography and
circular correlation to combine entity embeddings in a way that captures rich in-
teractions between entities and relations.

The main benefit of HolE over other approaches is the increased modeling
power.

3.2.4 The Bilinear Diagonal DistMult Model (DistMult)

DistMult is a tensor factorization based model introduced in [34] that uses, trilinear
dot product as its scoring function.

However, a big limitation of DistMult is that it cannot model asymmetric rela-
tionships.

3.2.5 Complex Embeddings (ComplEx)

ComplEx [32] is similar to DistMult in using the dot product of two vectors to
calculate the score. However, it uses the Hermitian dot product, which is able to
handle asymmetrical relationships.

Moreover, instead of using real-valued vectors, DistMult uses a complex vector
space for both entities and relations. Allowing to capture richer information about
the graph at the cost of increased computational cost.

3.2.6 Benchmark Comparison of KGE Methods

Table 3.1 shows the performance of the above-detailed KGE methods on the FB15k
benchmark dataset.

MRR Hits@1 Hits@10
TransE 0.463 0.29 0.75
RotatE 0.797 0.746 0.884
HolE 0.524 0.4 0.73
DistMult 0.841 0.914
ComplEx 0.84 0.692 0.75

Table 3.1: Performance of Discussed KGE Methods on the FB15k Benchmark Dataset. Datasources [4,
22]
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3.3 Methodology

In the initial KGE experiments, the dataset generated in section 2.3 was used as
data for the models. The dataset was split into train, test and validation dataset in
a 80%, 10% and 10% ratio. The split was done in a transductive manner, such that
there are no, previously unseen nodes in the test and validation dataset.

The implementation of the models were done using the Python library—Ampligraph [7]
To find the best performing model and the most optimal hyperparameters, a

grid search was performed, with the MRR score being the basis of comparison.
For each method detailed in section 3.2, the following hyperparameters were

tuned:

• Batch size: 128, 256, 512, 1024, 2048

• Epochs: 5, 25, 50, 100, 200, 250

• Eta: 5, 10, 15 (eta specifies the number of corruptions to generate per each positive)

• Vector embedding size: 50, 100, 150, 200

• Loss function: pairwise, nll

• Optimizer: AdaGrad, adam

The best performing model and hyperparameter combinations are shown on
table 3.2.

batch size epochs k eta loss optimizer
TransE 2048 200 150 5 pairwise adam
RotatE 1024 90 150 15 nll adam
HolE 128 80 200 5 pairwise adam
DistMult 128 60 200 5 pairwise adam
ComplEx 128 50 200 5 pairwise adam

Table 3.2: Best performing KGE hyperparameters

3.4 Results

Unfortunately, even with the tuned hyperparameters, the KGE models produced
subpar results (table 3.3). With the highest MRR being 0.18 produced by HolE,
DistMult and ComplEx with DistMult slightly under-performing in hits@10 com-
pared to the other two.
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MRR Hits@10 Hits@5 Hits@1
TransE 0.11 0.24 0.14 0.04
RotatE 0.16 0.21 0.17 0.13
HolE 0.18 0.22 0.19 0.16
DistMult 0.18 0.21 0.18 0.16
ComplEx 0.18 0.22 0.19 0.16

Table 3.3: Performance of the hyperparameter tuned KGE models on a previously unseen test dataset

After some investigation, two apparent issues were found. First, the kilometer
values of distance edges range from 1 kilometer to over 1000 kilometers. Therefore,
all the distance edges were binned into ranges.

Second, the model was incorrectly predicting not explicitly defined hierarchical
information. Since this information was available in the source dataset, it made
sense to modify the training data to include all available hierarchical information
instead of expecting the model to learn the hierarchical meta-paths.

Finally, reverse edge types were introduced to increase the graph density. These
edges were only inserted after the train / test / validation split to avoid leakage.

The final edge composition in the data is shown on table 3.4 (excluding the
reverse edge counts as they are obviously equal to their counterparts.).

With the new training dataset, the hyperparameter tuning was repeated for
each method. Unfortunately it appears that the new dataset did not result in
increased model performance. In fact all across the board, the performance of
the models decreased (table 3.5).

However, it is important to point out that some of the reduction in performance
may be attributed to the increased difficulty in distance prediction.
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Edge Type Count
DISTANCE_0_5 50
DISTANCE_5_10 48
DISTANCE_10_20 254
DISTANCE_20_50 690
DISTANCE_50_100 340
DISTANCE_100_200 294
DISTANCE_200_500 142
DISTANCE_500_1000 6
DISTANCE_1000_inf 8
wd_P17 3507
wd_P31 13707
wd_P131_DISTRICT 3124
wd_P131_METROPOLITAN 4695
wd_P131_PROVINCE 4252
wd_P279 66
wd_P206 223
wd_P361 287
wd_P706 57

Table 3.4: Edge Count of the Second Iteration of the KGE Experiments

MRR Hits@10 Hits@5 Hits@1
TransE 0.09 0.24 0.12 0.037
RotatE 0.07 0.14 0.09 0.039
HolE 0.12 0.19 0.16 0.09
DistMult 0.16 0.22 0.19 0.12
ComplEx 0.16 0.22 0.2 0.13

Table 3.5: Performance of the hyperparameter tuned KGE models on a previously unseen test dataset



Chapter 4

Experiments with Neural Bellman-
Ford Networks

4.1 Introduction

After the lackluster result from the translation methods detailed in chapter 3, the
need for experimentation with other approaches became apparent.

At the time of writing, the state-of-the art multi-relational link prediction meth-
ods [25] are generally based on, and expand on the message passing, Graph Neural
network architecture.

Specifically, the top performing model, according to the Papers with Code
benchmark on FB15k-237 link prediction [20] are the Neural Bellman-Ford Net-
works (NBFNet).

Therefore, from now on, this thesis will focus on training an NBFNet model on
the Kitāb Mu’jam al-Buldān dataset.

4.2 Brief Overview of Neural Bellman-Ford Networks

4.2.1 Generalization of Graph Heuristics

The first intuition behind NBFNet is that many of the traditional graph heuristics
such as Katz-Index, Personalized PageRank [23] or Graph Distance can be gener-
alized into a multiplication and a summation step.

For example, to find the shortest Graph Distance between two nodes, first we
count the number of hops (generalized multiplication step by count) and then we
select the path with the fewest hop (generalized summation via the min function)

The second intuition behind NBFNet is that traditional link prediction methods
that rely on encapsulating local neighborhoods [19, 11] perform random walks
between the source and the target node.

24



4.2. Brief Overview of Neural Bellman-Ford Networks 25

Figure 4.1: Generalized Graph Heuristic [38]

Instead of these random walks, the pair representation can be formulated as
"a generalized sum of path representations between u and v with a commutative
summation operator

⊕
” [39].

Within this summation, each path "is defined as a generalized product of the
edge representations in the path with the multiplication operator" [39].

4.2.2 Generalized Bellman-Ford Algorithm

Calculating such metrics for each node pair is computationally expensive due to its
exponential nature. As a solution, the NBFNet performs these calculations as part
of a generalized Bellman-Ford algorithm, as that algorithm is highly parallelizable
(figure 4.2).

Figure 4.2: Generalized Bellman-Ford Algorithm [39]

4.2.3 Neural Bellman-Ford Networks

Finally, to increase the potential of the models and detach from classical, hand-
crafted methods, the creators of NBFNet replaced the generalized summation and
multiplication operators with neural functions.

A Neural Bellman-Ford Network has three neural functions.
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The INDICATOR function

"The INDICATOR function initializes a representation on each node, which is taken
as the boundary condition of the generalized Bellman-Ford algorithm." [39]

It replaces the h(0)
q (u, v)← 1q(u = v) step, seen on figure 4.2

The MESSAGE function

"The MESSAGE function replaces the binary multiplication operator
⊗

” [39]

The AGGREGATE function

"The AGGREGATE function is a permutation invariant function over sets that re-
places the n-ary summation operator

⊕
. . . one may alternatively define AGGRE-

GATE as the commutative binary operator
⊕

and apply it to a sequence of mes-
sages." [39]

The combination of the three neural function are shown on figure 4.3.

Figure 4.3: Neural Bellman-Ford Network Architecture [38]

Finally, the learned vector representation is then fed into a multi-layer per-
ceptron to predict the probability of a tail node given a head node and a query
relationship (figure 4.4)

Figure 4.4: Final Prediction Step in NBFNet [38]

4.3 Methodology

4.3.1 NBFNet Function Selection

The training of the model was mainly done using the Pyg implementation of
NBFNet, a codebase written by the original authors of [37]. For the AGGREGATE
function, the principal neighborhood aggregation (PNA) [6] architecture was used,
while for the MESSAGE function, the DistMult [34] function was used. This com-
bination was picked as it was the highest-performing setup in the original paper.
The model was trained with an Adam optimizer, with a learning rate of 5.0e-3
using 64 item batches for 20 epochs.
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4.3.2 Experiment Data

For this experiment, a simplified view of the knowledge graph was used. This
approach was selected due to the relatively low number of secondary edges de-
rived from Wikidata which may have led to the introduction of damaging biases.
Therefore, in the NBFNet experiment, only place nodes were used, with dense hier-
archical edges and binned distance edges. In total, there were 25,982 triplets, which
were split in a 0.8/0.1/0.1 for train, test, and validation datasets in a transductive
manner.

4.4 Results

Unfortunately, the performance of the trained NBFNet model (table 4.1) on the
previously unseen test dataset was comparable to the performance of the initial
KGE models. It performed slightly worse in terms of MRR, but it achieved the
highest score on Hits@10 and Hits@5

MRR Hits@10 Hits@5 Hits@1
TransE 0.11 0.24 0.14 0.04
RotatE 0.16 0.21 0.17 0.13
HolE 0.18 0.22 0.19 0.16
DistMult 0.18 0.21 0.18 0.16
ComplEx 0.18 0.22 0.19 0.16
NBFNet 0.17 0.27 0.21 0.11

Table 4.1: Performance of the KGE and NBFNet models

A potential approach to improve the model’s performance is discussed in the
next chapter.



Chapter 5

Pretrained WorldKG NBFNet Model

The previous experiments in chapter 4 and chapter 3 show that regardless of the
class of approach used, there is a fundamental barrier when working with this
thesis’ knowledge graph. Namely, there is a high chance that the sparsity of the
graph prevents any potential model from properly being able to generalize.

As a solution, this thesis proposes an alternate approach. Instead of trying
additional models, the previously used NBFNet model could be pre-trained on a
denser graph. Since the Kitāb KG, ultimately, is just the graph representation of
a geospatial area, it is relatively easy to create a synthetic dataset that mimics it.
Moreover, creating such a dataset allows for the introduction of specific distance
edge biases, not generally present in Kitāb, that could provide valuable information
to researchers. Pre-training the NBFNet model on such a dataset could allow it to
generalize significantly better.

A perfect source of data for creating such a synthetic dataset is WorldKG [9] -
a research project that parsed OpenStreetMaps [5] data into triplestore data. The
desired synthetic dataset could be created by sampling WorldKG and converting
the relevant triples to use this thesis’ ontology.

5.1 Constructing The Dataset

To construct the synthetic dataset, useful patterns need to be created first. While
it is entirely possible to create a fully connected graph, it would not represent
the biases found Kitāb well. Nodes like Alexandria are central because Yâqût
found it important to define places in relation to big, central places. Second, the
local structures in Kitāb KG exist because Yâqût also found it important to define
places in relation to their surroundings. These ideas may be boiled down into the
following simple bullet points:

• A nodes’s local neighborhood should be well-connected.

28
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• Each node should be connected to some central entity.

• Central entities should be connected to each other.

Following these simple rules, one could create a Kitāb KG-like synthetic dataset
with higher density. In theory, the entire WorldKG dataset could be used to create
such a synthetic dataset, for practical purposes, in reality, the data was heavily
down-sampled.

5.1.1 Selecting Relevant Nodes

In WorldKG, there are over one thousand node types, most of them irrelevant to
this thesis’ purpose since, for example, there were exceedingly few airports in the
medieval arab world. Instead, the categories discussed in subsection 2.3.3 were
mapped to their OSM equivalent.

Then, with Baghdad selected as the center point, all WorldKG place nodes (of
relevant type) were selected in a 2000 km radius, using the following SPARQL
query:

SELECT ?subject ?type ?label ?wikidata ?subjectWKT ?distance
WHERE {

# wkg:21034458 = Baghdad
wkg:21034458 wkgs:spatialObject ?spatialObject .

?spatialObject geo:asWKT ?referenceWKT .

?subject rdf:type ?type .
?subject rdfs:label ?label .
?subject wkgs:spatialObject ?subjectSpatialObject .
?subjectSpatialObject geo:asWKT ?subjectWKT .
OPTIONAL {{ ?subject wkgs:wikidata ?wikidata . }}

FILTER (?type IN ({types}))
BIND(geof:distance(?referenceWKT, ?subjectWKT, uom:metre) AS ?distance) .
FILTER(?distance < 2000000).

}

This query returned 238135 distinct nodes. These nodes were then randomly
down-sampled to 47627 entities (20%).

5.1.2 Generating Hierarchy Triplets

The only piece of information that was not readily available in WorldKG was the
hierarchical information. Fortunately, for each node selected, there is a correspond-
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ing geometric point literal. This point can be used to query an OSM Overpass API,
such as [27] to get all administrative objects in which the point is contained.

is_in({x},{y})->.a;
rel(pivot.a)[boundary=administrative];
out tags center;

The above query, written in Overpass API Query Language, among other things,
gets the ID, administrative level, and the geographical center of all enclosing ad-
ministrative boundaries overlapping the parameter point. In OpenStreetMaps,
there are 11 levels of administrative hierarchy that try to represent every nation’s
system. To construct the hierarchical data for the synthetic dataset, the levels were
split as follows:

1. [4, 3, 2] 7→ wd_P131_PROVINCE

2. [7, 6, 5] 7→ wd_P131_DISTRICT

3. [11, 10, 9, 8] 7→ wd_P131_METROPOLITAN

The logic was written such that it always tries to pick the level with the highest
integer value; this was done to increase granularity in the data.

5.1.3 Generating Distance Edges

In line with the above-detailed rules, for each node, its close neighborhood should
be as dense as possible. Therefore, for each node pair, a corresponding great circle
distance was calculated. Then, for each node, these distance edges were sampled,
such that the further away the nodes were from each other, the less likely to be
sampled.

5.1.4 Generating Distance Edges for Hierarchical Nodes

To generate the distance edges between nodes that are higher in the hierarchy (i.e.,
more important places) all possible pair combinations were selected. These pairs
then, without sampling, were written into triplets with the corresponding distance
edge type, selected based on the great circle distance.

5.1.5 Generating Category Triplets

In the original query, where all the nodes were selected, their types were also
queried. These can be mapped onto the Kitāb KG categories.

Finally, every node is then connected to the initial starting point, Baghdad,
based on the great circle distance.
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Select Predictions and Interpretations

Although the performance metrics of the trained models fell short of the expec-
tations. The trained models could still potentially be used to generate valuable
information, especially in cases where the model is highly certain about the truth
value of a triplet.

Moreover, due to how NBFNet works, the reasonings behind the model’s pre-
dictions are human-interpretable. Understanding these reasonings may also be
used to create hand-made rule-based link prediction algorithms.

Some of these results were also analyzed and evaluated by the first author
of [36], the explanations provided also offer an interesting insight into the blind
spots of the original rule-based model, and why the NBFNet model struggled in
some situations.

6.1 Generating New, Potentially Positive Triplets

To generate previously unknown positive triplets, one needs to generate a set of
candidates. A generation strategy is necessary as trying all possible (h, r, t) com-
binations is computationally expensive with its cost increasing exponentially with
the number of nodes and edge types.

In the case of hierarchical edges, first, the nodes with missing hierarchical in-
formation were selected as the head entities. Second, all place nodes within 2-hops
of the head entity were selected as tail entity candidates.

For the distance-type edges, such a hop limitation would not be beneficial as
the kilometer value of the edges ranges from One kilometer to over a thousand
kilometers.

Therefore, it was decided to randomly sample nodes with low centrality mea-
surements. This approach has the benefit of potentially providing the highest value
information.
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Predicting a new edge for an entity that only has 1–2 connections to the rest of
the graph increases the average node degree at a larger ratio than the prediction of
a new edge for Baghdad, which is already an extremely central node in the graph.

The Ampligraph [7] library exposes several strategies for finding such nodes.
These strategies are:

• Entity Frequency

• Entity connectedness: Graph Degree, Cluster Coefficient

• Local Graph Structures: Cluster Triangles, Cluster Squares

The Local Graph Structures Strategies rely on the idea that well-connected
structures are less likely to have missing facts. In this thesis, the Cluster Trian-
gles approach was used to generate triplet candidates.

6.1.1 Hierarchical Triplet Candidates

The general feedback on the predicted hierarchical candidates was that the model
is seemingly able to recognize hierarchical ordering between two places but strug-
gles to correctly identify the exact level of hierarchy. A false positive example

highlighted in the evaluation was the prediction that I. » @Q Ö
Ï @ (almrākb), a city in

Tunisia was in the province of Tunisia. However, Tunisia is not actually a province;

instead, both Tunisia and I. » @QÖ
Ï @ are in the province of North Africa. Upon review-

ing the graph, it was found that no node has a wd_P131_PROVINCE edge with
Tunisia as the tail.

When making this prediction, the model’s decision could be followed as:

weight: 3.33629:
<almrākb, wd_P131_DISTRICT, Tunisia>

This is to be interpreted such that the model’s main reason for predicting this
triplet to be true is the known wd_P131_DISTRICT edge between the two entities.
This is a rather odd finding, as no similar patterns were found in the training
dataset, where the district and the province tail entity of a head node is the same.
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6.1.2 Distance Triplet Candidates

The Distance predictions fail in a similar manner, the general feedback was that the
model seems to be able to capture some form of semantic relation between places.
For example, the highest rated distance predictions are consistently for places that
are found in the same administrative area. However, the types of distance edge
chosen are often wildly inaccurate. For example, a highly rated false positive
triplet is between the Spanish city of Córdoba and the Spanish municipality of
Toledo. The model, with high certainty predicted that these two entities should be
within 5 kilometers of each other, when in reality they are roughly 230 kilometers
away from each other.

The main contributor to this prediction is as follows:

weight: 3.27499
<Córdoba, DISTANCE_200_500, Toledo>

This is once again an unusual result, as the model predicted a different distance
edge based on the existence of another distance edge between the two places. It
also highlights a bug in the candidate selection logic.

6.2 False Positive Triplet Detection

Besides generating new potential positive triplets, the training data was fed through
the model once again as well. The training triplets with the lowest certainty were
then evaluated to check whether they were actually true statements. Surprisingly,
unlike in the domain of new triplet prediction, the model appeared to perform
much better at recognizing false negative triplets.

For example, the model flagged the DISTANCE_0_5 relationship between armı̄ah
and al-Buheirah as a potential false positive. After reviewing the text snippet, from
which these places were parsed from, it was found that there is another place called
al-Buheirah.

Another interesting example was the triplet of ÉJ

�
®k, wd_P131_METROPOLITAN

úÎª ÖÏ @ Q î
	
E . In this case, the text from which these places and relationships were

parsed contained a story told by a shepherd. And because the shepherd men-
tioned one of the places, the rule-based parser picked up on it and generated a
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false positive triplet. The model apparently picked up the issue as the two nodes
were in a different province.

The general feedback on the highlighted potential false positives was that the
model marked a lot of triplets where one of the members had a very generic name
like mountain or lake.
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Conclusion

7.1 Potential Areas of Improvement

There are many potential areas for improvement. The largest area is the fact the
pre-trained NBFNet model discussed in chapter 5 only hypothetically outperforms
the other models, but this hypothesis was not tested.

Second, the section on false positives highlighted many potential issues in
the training dataset. Perhaps better results all across the board could have been
reached by aggressively filtering out these triplets. In the same manner, the true
positive prediction section 6.1 showed how restrictive the distance bins are on the
smaller end.

It could also have been interesting to explore rule-based methods or spend
more time interpreting the NBFNet results to generate such rules.

7.2 Final Conclusion

This thesis explored various subjects, including knowledge graph construction 2.3,
experiments with Knowledge Graph Embedding models (chapter 3), and Graph
Neural Networks (chapter 4). The research focused on two main areas of im-
provement: firstly, modifying or replacing the experimental models, and secondly,
continually experimenting with the methods of feeding the generated knowledge
graph into the model. Another area of the thesis was the construction of a second,
larger synthetic knowledge graph mimicking the original Kitāb KG, to train better
NBFNet models (chapter 5).

However, the most promising results came from false positive detection for
Kitāb KG’s source dataset. It could be argued that the ultimate result of this thesis
is an Error Detection model for the rule-based parser introduced in [36]
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Chapter 8

Appendix

8.1 Complete List Kitāb Mu’jam al-Buldān Knowledge Graph
Categories

categories_dict = {
’mehdie_01’: ’islamic longitude’,
’Q3024290’: ’descent’,
’mehdie_02’: ’two mountains’,
’Q149621’: ’district’,
’Q8085493’: ’borders’,
’Q39715’: ’lighthouse’,
’Q23442’: ’island’,
’Q23397’: ’lake’,
’Q32815’: ’mosque’,
’mehdie_03’: ’palaces’,
’Q16560’: ’palace’,
’mehdie_04’: ’neighboring villages’,
’Q34442’: ’road’,
’mehdie_05’: ’neighboring castles’,
’Q12819564’: ’station’,
’Q47499118’: ’date palm orchard’,
’Q8514’: ’desert’,
’mehdie_06’: ’small abodes’,
’Q131401’: "caliphate’s country",
’mehdie_07’: ’neighboring forts’,
’Q2472587’: ’people’,
’mehdie_08’: ’cultivated low terrain’,
’Q133311’: ’tribe’,
’Q3957’: ’town’,
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8.1. Complete List Kitāb Mu’jam al-Buldān Knowledge Graph Categories 37

’Q34876’: ’province’,
’mehdie_09’: ’two rivers’,
’mehdie_10’: ’small town’,
’mehdie_11’: ’kasbah (city center)’,
’Q34770’: ’language’,
’Q54050’: ’hill’,
’Q1907114’: ’metropolitan area’,
’Q8384057’: "yemeni districts",
’Q236371’: ’orchard’,
’Q580112’: ’military district’,
’mehdie_12’: ’two valleys’,
’Q4026570’: ’countries’,
’Q98929991’: ’place’,
’Q811979’: ’structure’,
’mehdie_13’: ’inhabited wide valley’,
’mehdie_14’: ’frontier town’,
’mehdie_15’: ’neighboring towns’,
’mehdie_16’: ’neighboring places’,
’Q44782’: ’port’,
’Q133346’: ’border’,
’Q515’: ’city’,
’Q30892871’: ’inhabited region’,
’mehdie_17’: ’pole’,
’mehdie_18’: ’fortified round tower’,
’Q1355821’: ’frontier’,
’Q80018988’: ’idol’,
’Q330284’: ’market’,
’Q75520’: ’plateau’,
’Q1785071’: ’fort’,
’Q6256’: ’country’,
’mehdie_19’: ’frontier district’,
’mehdie_20’: ’border sign’,
’mehdie_21’: ’travelers station’,
’mehdie_22’: ’roof shed’,
’mehdie_23’: ’low place’,
’Q6617100’: ’yemeni district’,
’Q5620504’: ’provinces’,
’Q8502’: ’mountain’,
’Q4022’: ’river’,
’Q33829’: ’population’,
’Q6493590’: ’castles’,



8.1. Complete List Kitāb Mu’jam al-Buldān Knowledge Graph Categories 38

’Q11081619’: ’land’,
’mehdie_24’: ’non-arab province’,
’mehdie_25’: ’inhabited valley’,
’Q12518’: ’tower’,
’Q165’: ’sea’,
’Q532’: ’village’,
’mehdie_26’: ’cultivated populated lands’,
’mehdie_27’: ’cultivated populated land’,
’Q39816’: ’valley’,
’Q6394918’: ’islands’,
’Q7163803’: ’valleys’,
’Q12280’: ’bridge’,
’mehdie_28’: ’abodes’,
’Q124714’: ’spring’,
’Q43742’: ’oasis’,
’Q5461006’: ’villages’,
’Q82794’: ’region’,
’mehdie_29’: ’suburbs’,
’Q188509’: ’suburb’,
’Q9126476’: ’cities’,
’mehdie_30’: ’small village’,
’Q5741923’: ’mountains’,
’mehdie_31’: ’khan’,
’Q89468’: ’kasbah’,
’Q23413’: ’castle’,
’Q7481476’: ’places’,
’Q93352’: ’coast’,
’Q43483’: ’well’,
’Q27862014’: ’forts’,
’Q15324’: ’water’,
’mehdie_32’: ’sand (desert)’

}
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