
Robust stabilization of a system with
distributed pumping

Electronic Systems, GR-1028, 05-2024

Master Thesis

S
T

U

D
E

N
T  R E P O R T



Copyright © Aalborg University 2023



Electronic Systems
Aalborg University

https://www.aau.dk

Title:
Robust stabilization of a system with dis-
tributed pumping

Theme:
Master thesis

Project Period:
Spring 2024

Project Group:
GR-1028

Participant(s):
Mikkel Schjøtt Pedersen
Rasmus Vestergaard Johansen

Supervisor(s):
Carsten Callesø
John-Josef Leth

Copies: Available online

Page Numbers: 94

Date of Completion:
31-05-2024

Abstract:

In this project, a cooling system using dis-
tributed pumps was analysed and exam-
ined for the possibility of designing robust
controllers that can operate with uncer-
tainty in the hydraulic connection. The
cooling system consist of four different air
handling units, containing pumps, which
share the same cooling water through a
hydraulic connection. To this extend a
model was derived for the system, where
the uncertainty was described using both
norm-bounded and polytopic interpreta-
tions. The distribution of the pumps in
the network required a specific structure
of the controller, to which Linear Matrix
Inequality based methods was used.
Based on the requirements on the con-
troller, an examination was performed
to find a possible design procedure that
could handle the uncertainty in the hy-
draulic network.
The examinations found methods for de-
signing state feedback and static output
feedback controllers, which was robustly
stable towards the uncertainties, while
also fulfilling specific response require-
ments.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

https://www.aau.dk


GR-1028

Rasmus Vestergaard Johansen
<rjohan19@student.aau.dk>

Mikkel Schjøtt Pedersen
<mipede19@student.aau.dk>

ii



Preface

This report was written during the 4th semester of the master’s program Electronic
Systems in spring 2024.

Reading guide

The report contains references as hyperlinks to elements in the bibliography, which can
be found at the end of the report, before the appendices. The references are formatted
using the Vancouver method, such that the sources in the text are framed as “[No.]” and
numbered chronologically, such that the first source shown in the report will be [1]. The
bibliography is, likewise, numbered in this order. In the bibliography, the sources are
specified with author, title, publication month, year, and, if relevant, link and date of
visit. In cases where the date of publication is unavailable, instead, the date of access is
used. Immediately after the bibliography is the appendices, which are numbered using
Roman numerals.

External appendices like MATLAB-scripts can be found on GitHub:
https://github.com/RasmusvJohansen/P10-Thesis-Matlab.

The figures, tables, etc. within this report are numbered in order of appearance and
where in the report they are placed. For instance, figure 3.2 will be the second figure
found within chapter 3. Figure captions are written beneath the figures, while table
captions can be found above.

The report is written in accordance with the ISO 80000 standard. Matrices are denoted
with bold upper-case letters, while vectors are denoted with bold lower-case letters. The
notation (M)ij indicates the i,j entry of M. 0n×m is the n ×m zero matrix and 1n×m

is the n × m matrix of ones, with 1n being a vector of ones. The identity matrix of
size n is denoted In. In some summations, matrices can be denoted A0×0. This is to be
understood as the matrix does not exist. A ⋆ can occur in a matrix and is used to imply
the value needed to make the matrix symmetric:A B

⋆ C

 =

 A B

BT C


vert(∆) is the set of vertices of a convex polytope ∆.
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Summary 1
This project examines the possibility of guaranteeing robust stability towards uncertain-
ties in the hydraulic network of a heating ventilation and air condition (HVAC) system
with distributed pumping. To this end, a model of the HVAC system was derived, with
pumps in the individual air handling units (AHU), which is distributed throughout the
system. Using the derived model state feedback (SF) and static output feedback (SOF)
controllers was synthesised to achieve robust stability.

As the HVAC system utilizes distributed pumping, this introduced a requirement on the
allowed structure of the controller. Specifically the controller had to have a block diagonal
structure, which implied the pump only has measurements from its own AHU. To fulfill
this requirement, linear matrix inequalities (LMIs) was utilized, as these are based on an
optimisation problem, which allows for constraints and structure to be included.

In the case of SF, the uncertainties was defined as norm-bounded uncertainties, which
implied synthesis could be performed based on the small gain theorem. The small gain
theorem utilize the general control configuration in frequency domain, and as such it was
necessary to relate to statespace which was achieved using bounded real lemma.

For SOF the uncertainties was redefined to be polytopic, which resulted in the system
becoming a linear parameter varying (LPV) system, with the uncertainty being the
parameter that varies. Utilizing that the uncertainties is time-invariant and described a
convex hull, robust stability of such a LPV system was achieved by guaranteeing stability
at each vertex. To achieve this, two different methods was investigated.

The design procedure for SF and SOF, resulted in controllers which could guarantee
robust stability for their respective uncertainties. Furthermore, the design procedures was
extended such that the system behaved according to a desired response using frequency
weighted model matching.
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Introduction 2
Today, Heating Ventilation and Air Conditioning (HVAC) systems are an important
factor for providing comfort for occupants in a building, however HVAC is also among
the largest consumers of energy in buildings. Especially in commercial buildings where
almost 50% of the energy is used for cooling [1]. In 2016 cooling of buildings consumed
just below 12.000 GW, with half of this being consumed by commercial buildings [2].
This number is expected to increase due to rising temperatures, as a results of climate
changes and a growing middle class in developing countries, resulting in more households
able to afford cooling. This would suggest that commissioning of HVAC is an important
factor in the design process. However, it has been a problem in the building sector, and
it is often not done to the necessary extend, primarily due to costs [2].

In addition, when the HVAC system is designed, it is often designed to work during
normal operation, that being when every room of the system is active. However, when
the system is deployed, it is practical to turn on the rooms independently, which could
potentially lead to an unstable systems [3]. For this reason it would be practical, if
the designed control scheme was stable in the both cases. Designing a single controller
capable of this becomes complicated due to the connections of the HVAC system. HVAC
systems typically consists of a hydraulic network, where a chiller is connected to a number
of Air Handling Units (AHU)s, through a number of pipes which are shared between the
AHUs as illustrated on figure 2.1.

3
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Figure 2.1: Illustration of the general structure of a HVAC system. Each AHU is connected in
parallel with the chiller through pipes. The arrows indicate the inflow of air to the AHU, which
is then chilled before entering the room.

Such a system can have different configurations, however, a new approach is to have
pumps distributed at each AHU. Having a pump at the individual AHU also significantly
reduces the price of both installing and operating the HVAC system [2]. The design
structure also implies that each AHU is responsible for controlling its own temperature,
usually through a PI controller [3]. This design is practical for the case of controlling the
temperature for a single room, however when the entire system is considered, this design
choice becomes problematic, as each AHU only has knowledge of its own temperatures
and flows, which means the coupling of the hydraulic network is unaccounted for. An
alternative design option could be that each AHU has knowledge of measurements from
every AHU. This would require a centralized controller, which would eliminate the option
of controlling each AHU individually. Additionally, having a centralized structure would
also require communication between each AHUs sensor and the centralized controller,
which would increase complexity.

Instead, it is investigated if a decentralized controller can be designed, using the exist-
ing structure, which can stabilize the individual AHUs, while being robust towards the
influence from the changes caused by the other AHUs.
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Requirements 3
To design a controller capable of fulfilling the specification introduced in chapter 2, the
control scheme must be able to stabilize the decoupled system and be robust towards
the uncertainties introduced in the hydraulic connection. Additionally it is required that
the designed controller be decentralized, meaning an AHU can only react on changes
measured by its own sensors. This implies that the designed controller must have a block
diagonal structure.

Table 3.1: List of requirements

Requirement Description

R.1 The designed controller must stabilize the decoupled system

R.2 The designed controller must be robust towards the uncertain-
ties introduced by the hydraulic network.

R.3 The designed controller must have a block diagonal structure

5





Modelling 4
The HVAC system used in the project is based on a new design proposed in [2], where the
hydraulic system has been modified to have dedicated pumps at the AHU, as opposed
to control valves. An illustration of the system can be seen on figure 4.1.

C
hiller 1

C
hiller 2

T

T

T

T

T

T

T

Figure 4.1: Illustration of the HVAC system used in the project [2].

To the left on figure 4.1 a pair of chillers can be seen, their responsibility is to cool the
returning water, the chillers in the system are assumed to be designed and regulated
such that a constant inlet water temperature Tw,c is maintained. Placed parallel to the
chillers are n AHUs, which are responsible for adjusting the air temperature. To adjust
the air temperature, each AHU use a pump in combination with sensors measuring the
output temperature of the water and air in a Water to Air Heat Exchanger (WAHE). In
addition, a one-way valve blocks the flow of water from returning to the pump, which
implies the flow being in the clockwise direction on figure 4.1. The WAHE is the element
responsible for the heat transfer between the chilled water and air, and is illustrated on
figure 4.2.

On figure 4.2 the waterflow (qi) is shown to flow left to right, while the airflow (Qi) flows
from bottom to the top. The middle part is the actual WAHE, where transfer of heat
between the water and air occurs through convection. Convection describes heat transfer
between two materials, due to a fluid or gas being moved. Generally convection can be

7
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split into two categories, one called natural convection, where the convection happens due
to natural reasons, such as when the heat transfers from a radiator to the air. The other
category is forced convection, where the flow is induced by some mechanical actuation
such as a pump.

Figure 4.2: Illustration of the i’th WAHE, the blue area illustrates water volume, while the
white is the air volume [3].

As the WAHE is a closed system, the flows in and out are the same, however due to
the convection, the temperatures at the inlet and outlet of the water and air can be
different. For the given system, the flowrate of air (Qi) is assumed to be constant, as the
fan moving the air is rotating at a constant angular velocity.

4.1 Thermodynamics

The WAHE depicted in figure 4.2 is modelled using a control volume approach, where
the temperature dynamics of the air and water in the WAHE are described. The control
volume approach is used, as the energy transfer in the WAHE is seen as homogeneous,
implying that the temperature at the output is the same as within the WAHE. A one
phase energy balance can be used as the phase of both the air and water remains the
same, which means they can be expressed by:

cCVMCV(t)dTCV(t)

dt
= Pext(t) + cmin(t)Tin(t)− cmout(t)Tout(t) (4.1)

Where:

8



4.1. THERMODYNAMICS Aalborg University

cCV ∈ R specific heat capacity of control volume
[

J
KgK

]
MCV ∈ R Mass in control volume [Kg]

TCV ∈ R Temperature in control volume [K]

Pext ∈ R External power in the system [W]

c ∈ R specific heat capacity of the material in the control volume
[

J
KgK

]
min ∈ R mass flow into control volume

[
Kg
s

]
mout ∈ R mass flow out of control volume

[
Kg
s

]
Tin ∈ R Temperatur into control volume [K]

Tout ∈ R Temperatur out of control volume [K]

As the WAHE is homogeneous, the temperature of the control volume is the same as the
outlet temperature, thereby TCV(t) = Tout(t). In (4.1) the energy balance is expressed
in terms of the mass and massflows, however these parameters are unknown. Instead a
representation in terms of the volume, density, and flowrate can be used as:

Ma = ρaVa Mw = ρwVw (4.2)

ma = Qρa mw = q(t)ρw (4.3)

Where:

ρw ∈ R Density of water
[
Kg
m3

]
ρa ∈ R Density of air

[
Kg
m3

]
Vw ∈ R Volume of water

[
m3]

Va ∈ R Volume of air
[
m3]

q(t) ∈ R Flowrate of water
[
m3

s

]
Q ∈ R Flowrate of air

[
m3

s

]

With this reformulation, the only remaining unknown is the external power, which is the
transfer of energy between the water and air in the WAHE through convection, where
the transferred power from material a to b can be described by:

Pconvection,a→b(t) = Aα(Ta(t)− Tb(t)) (4.4)

Where:

9
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A ∈ R Surface area of contact between the two materials transferring heat energy
[
m2]

α ∈ R Heat transfer coefficient of the two materials
[

W
m2K

]
Ta ∈ R Temperature of material a [K]

Tb ∈ R Temperature of material b [K]

The WAHE is assumed to absorb a negligible amount of energy from the convection
between water and air. Therefore, the convection path can be reduced to, the convection
from water to air, and air to water in the control volumes. As such, the convection can
be described, based on the temperatures of water and air in the control volumes:

Pconvection,w→a =Aα(Tw − Ta) (4.5)

Pconvection,a→w =Aα(Ta − Tw) (4.6)

Where:

Tw(t) ∈ R The output temperature of the water control volume [K]

Ta(t) ∈ R The output temperature of the air control volume [K]

By pre-multiplying −1 in (4.6), both equations become identical, with only a change
in sign. The constant Aα can be combined to a single constant, describing the energy
transfer from a know surface area.

B = Aα (4.7)

Where:

B ∈ R Heat transfer constant between air and water in a WAHE
[
W
K

]
The energy balance for water and air in a WAHE can then be described using (4.1),
(4.2), (4.3), (4.5), and (4.7) as:

CwρwVw
dTw(t)

dt
= Cwρwq(t)(Tw,c(t)− Tw(t))−B(Tw(t)− Ta(t)) (4.8)

CaρaVa
dTa(t)

dt
= CaρaQ(Ta,amb − Ta(t)) +B(Tw(t)− Ta(t)) (4.9)

Where:

10



4.2. HYDRAULICS Aalborg University

Cw ∈ R Specific heat capacity of water
[

J
KgK

]
Ca ∈ R Specific heat capacity of air

[
J

KgK

]
Tw,c ∈ R Temperature of the water entering the WAHE [K]

Ta,amb ∈ R Temperature of the ambient air entering the WAHE [K]

The input air temperature in the air energy balance of (4.9) use a constant temperature
Ta,amb. This choice is based on the assumption that the change of outdoor air temperature
occurs slowly, and may therefore be seen as constant. As the HVAC system consists of n
WAHE’s the two expressions, (4.8) and (4.9), are extended to describe the i’th WAHE’s
energy balance, to this extend, the parameters Ta,amb,Tw,c, CA, ρA, CW and ρW does not
change, as these are constant with respect to the specific HVAC system. The i’th WAHE
energy balance can therefore be expressed as:

CwρwVw,i
dTw,i(t)

dt
= Cwρwqi(t)(Tw,c(t)− Tw,i(t))−Bi(Tw,i(t)− Ta,i(t))

CaρaVa,i
dTa,i(t)

dt
= CaρaQi(Ta,amb − Ta,i(t)) +Bi(Tw,i(t)− Ta,i(t))

(4.10)

4.2 Hydraulics

The dynamics found in (4.10) assumes that the input is the flow of water (qi) in the
individual AHU. However, no direct way of controlling the flow exists, instead the flow
can be found from the angular velocity of the pump, which can be controlled. For this,
a relation between the angular velocity of the pump and the waterflow must be derived.
This can be achieved by modeling the dynamics of the hydraulic system.

Firstly the individual elements of the system from figure 4.1 is modelled. From a hydraulic
modelling perspective, the chiller, WAHE, and pipes can all be modeled as a pipe with
the equation:

∆P =
Lρ

A

dq

dt
+R|q|q (4.11)

Where:

∆P ∈ R Pressure difference [Pa]

L ∈ R Length of the pipe [m]

A ∈ R Cross-sectional area of the pipe
[
m2]

R ∈ R Resistance of the pipe
[Pa s

m3

]

11
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(4.11) has the term |q|q to describe the direction of flow, however as the system on
figure 4.1 incorporates a one-way valve in every loop, this expression can be written as
q2.

To model the chiller using (4.11), the flow qc must first be derived as it is not available.
The flow can be found by using KCL on the hydraulic network illustrated on figure 4.1.
Applying this, the flow into an vertex must be equal to the flow out, which by extending
through the system results in the that flow from the chillers must be equal to the sum
of flows from all n pumps. This means the chiller can be modelled as:

∆Pc =
Lcρ

Ac

d
∑n

k=1 qk
dt

+Rc

(
n∑

k=1

qk

)2

(4.12)

The flow though the WAHE in the i’th AHU is simply the flow generated by the pump
in the respective AHU. This means that the WAHE can be modelled as:

∆PW,i =
Lr,iρ

Ar,i

dqi
dt

+ riq
2
i (4.13)

When modelling the pipes, the flow though the different pipe sections change, the further
down the network the pipe is located. Nevertheless, using KCL, similar to the chiller, it
is known that the flows in a section of pipe, must be equal to the total flow of all AHU
further down the network. This results in the model for the i’th pipe segment as:

∆PR,i =
LR,iρ

AR,i

d
∑n

k=i qk
dt

+Ri

(
n∑

k=i

qk

)2

(4.14)

The last element in the network is the pump. The pump used in the system is a centrifugal
pump, which can be modelled as [2]:

∆Pp,i = −aiq
2
i + biω

2
i (4.15)

With a model for the different elements of the hydraulic network derived, a model for
the individual loops can be derived using KVL. To do this, the pressure change of the
i’th loop can be expressed as a sum of the pressure changes over the chiller, i’th WAHE,
i’th pump, and two times the sum of the pipes from the chiller down to the i’th AHU.
This results in the expression:

∆Pi =
Lcρ

Ac

d
∑n

k=1 qk
dt

+Rc

(
n∑

k=1

qk

)2

︸ ︷︷ ︸
Chiller

+
Lr,iρ

Ar,i

dqi
dt

+ riq
2
i︸ ︷︷ ︸

WAHE

− (−aiq
2
i + biω

2
i )︸ ︷︷ ︸

Pump

+

2

i∑
m=1

(
LR,iρ

AR,i

d
∑n

k=m qk
dt

+Rm

(
n∑

k=m

qk

)2)
︸ ︷︷ ︸

Pipe

(4.16)
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4.3. SYSTEM REPRESENTATION Aalborg University

This expression can be isolated for the changes in flow (dqdt ), to express the dynamics
of the hydraulic network. These dynamics can then be used in combination with the
dynamics of the thermodynamics from (4.10) to describe the dynamics of the HVAC
system. However, as the changes in the hydraulic network is much faster than the
thermodynamics and the network is stable, (4.16) can be modelled using only the static
components [3]. This results in a static expression for the relation between the flowrate
and angular velocity of the i’th pump as:

∆Pi = riq
2
i︸︷︷︸

WAHE

+Rc

(
n∑

k=1

qk

)2

︸ ︷︷ ︸
Chiller

− (−aiq
2
i + biω

2
i )︸ ︷︷ ︸

Pump

+2

i∑
m=1

Rm

(
n∑

k=m

qk

)2

︸ ︷︷ ︸
Pipe

(4.17)

KVL dictates that the total pressure change of the closed loop must be equal to 0, which
means the angular velocity can be isolated:

ω2
i =

ai + ri
bi

q2i +
Rc

bi

(
n∑

k=1

qk

)2

+ 2

i∑
m=1

Rm

bi

(
n∑

k=m

qk

)2

(4.18)

This expression can now be used in (4.10) to express the flowrate in terms of the pumps
angular velocity. However, (4.18) shows that a coupling exists between the individual
pumps and the flowrates throughout the system, which implies that changing the angular
velocity of one pump affects the flowrate of the entire network.

4.3 System representation

With the thermodynamics and hydraulics expressed, a system representation can be
made. Firstly, since the normal structure uses PI, an additional integral state is added for
the temperature of the air. This assures that the desired air temperature is reached. With
this state and the thermodynamics from (4.10) the system dynamics can be expressed
as:

Ṫw,i(t) =
qi(t)

Vw,i
(Tw,c − Tw,i(t))−

Bi

CwρwVw,i
(Tw,i(t)− Ta,i(t))

Ṫa,i(t) =
Qi

Va,i
(Ta,amb − Ta,i(t)) +

Bi

CaρaVa,i
(Tw,i(t)− Ta,i(t))

δ̇i = Ta,i − Tref,i

(4.19)

Where:

Tref,i ∈ R is the reference for the WAHE output air temperature [K]

δi ∈ R is the integral state [K]

13



GR-1028 CHAPTER 4. MODELLING

Before any additional derivations is performed, the controllability of the individual WAHE
is investigated. For the system to be controllable, the controllability matrix must have full
rank. The controllability matrix is however only defined for linear system, and therefore
(4.19) is linearised using a first order Taylor approximation, which is defined as:

f(x,u) ≈ f(x∗,u∗) +
∂f(x,u)
∂x

∣∣∣∣x=x∗
u=u∗

(x − x∗) +
∂f(x,u)
∂u

∣∣∣∣x=x∗
u=u∗

(u − u∗) (4.20)

This linearisation method requires an operating point (x∗,u∗). When defining an op-
erating point, it is desirable that the system is in steady state, which for (4.19) means
the temperatures and flow do not change. The point at which this is the case can be
calculated by defining T ∗

a,i = Tref,i, which reduced the remaining equations to:

T ∗
w,i =

BiT
∗
a,i − CaρaQi

(
Ta,amb − T ∗

a,i

)
Bi

q∗i =
Bi

(
T ∗

w,i − T ∗
a,i

)
Cwρw

(
Tw,c − T ∗

w,i

) (4.21)

This operating point (q∗i ,T
∗
w,i,T

∗
a,i, 0) can then be used in the first order Taylor approxi-

mation (4.20) to derive a linearised model where x =

[
Tw,i Ta,i δi

]T

and u = qi. Since

the operating point is found at a steady state, f(x∗,u∗) = 0, as a result the linearised
model becomes:

ẋ =
∂f(x,u)
∂x

∣∣∣∣x=x∗
u=u∗︸ ︷︷ ︸

A

(x − x∗) +
∂f(x,u)
∂u

∣∣∣∣x=x∗
u=u∗︸ ︷︷ ︸

B

(u− u∗) (4.22)

with

∂f(x,u)
∂x

∣∣∣∣x=x∗
u=u∗

=


−
(

q∗i
Vw,i

+ Bi
CwρwVw,i

)
Bi

CwρwVw,i
0

Bi
CaρaVa,i

−
(

Qi
Va,i

+ Bi
CaρaVa,i

)
0

0 1 0



∂f(x,u)
∂u

∣∣∣∣x=x∗
u=u∗

=


(
Tw,c−T ∗

w,i
Vw,i

)
0

0


(4.22a)

These matrices are used in appendix I to derive the determinant of the controllability
matrix as:

det(CCC) =
(
Tw,c − T ∗

w,i

Vw,i

)3(
Bi

CaρaVa,i

)2

(4.23)
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For a system to be controllable, the determinant must be different from zero. From
(4.23) the specific heat capacity (Ca) and density (ρa) are physical constants which are
different from zero, in addition the heat transfer coefficient (Bi) is different from zero.
The presence of the WAHE implies the volumes Vw,i and Va,i are different from zero,
which means that that the determinant is different from zero when the temperature of
the water is different from the temperature of the chiller. As shown in appendix I, the
singularity is linked to the choice of air temperature reference, it is therefore possible to
avoid this singularity through the choice of the reference.

With controllability handled, an expression for the entire system is derived. From (4.19),
it is apparent that the equations can be restructured into a bilinear expression in terms
of the states and input. This expression can be written in matrix form as:

żi = Fizi + Miziqi + Giqi + Ei (4.24)

with

zi =


Tw,i

Ta,i

δi

 , Fi =


−Bi

CwρwVw,i

Bi
CwρwVw,i

0

Bi
CaρaVa,i

−
(

Qi
Va,i

+ Bi
CaρaVa,i

)
0

0 1 0



Mi =


− 1

Vw,i
0 0

0 0 0

0 0 0

 , Gi =


Tw,c
Vw,i

0

0

 , Ei =


0

QiTa,amb
Va,i

−Tref,i


(4.24a)

Where:

zi ∈ R3×1 is the states of the i’th WAHE

Fi ∈ R3×3 is a matrix describing the dynamics relating to only the states

Mi ∈ R3×3 is a matrix describing the dynamics relating to both states and inputs

Gi ∈ R3×1 is a vector describing the dynamics relating to only the inputs

Ei ∈ R3×1 is a vector describing the dynamics not dependent on state or input.

This describes the dynamics of the i’th WAHE, however a description for the entire
system is desired. Such a description can be derived by expanding (4.24) to n WAHEs,
by combining the matrices as block diagonals. Additionally, it is assumed every state is
directly measurable at the output, which in results in the system:
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ξ̇ξξ = FFFξξξ + H(ξξξ)q +GGGq + EEE
y = Cξξξ

(4.25)

Where:

FFF ∈ R3n×3n is the block diagonal matrix diag (F1, . . . ,Fn)

H(ξξξ) ∈ R3n×n is the block diagonal matrix diag (M1z1, . . . ,Mnzn)

GGG ∈ R3n×n is the block diagonal matrix diag (G1, . . . ,Gn)

EEE ∈ R3n×1 is the vector
[
E1 . . . En

]T

ξξξ ∈ R3n×1 is the vector
[
z1 . . . zn

]T

q ∈ Rn×1 is the vector
[
q1 . . . qn

]T

n ∈ R is the number of WAHE’s in the system

C ∈ R12×12 is the output matrix defined as I12

With the thermodynamics of the entire system described in terms of the flow, this ex-
pression is altered to be described in terms of the pumps angular velocity as expressed
in (4.17). However, as the the designed controller must be stable in both the case where
every AHU is on and only one is on, two different models are needed. One model which
takes the coupling of the hydraulics into account and one that ignores it. These two dif-
ferent models are denoted coupled and decoupled -model and are derived in the following
sections.

4.3.1 Decoupled model

In the decoupled model, the hydraulic coupling is ignored, which means that the flows
not originating form the i’th pump are ignored. This is equivalent to qj = 0 for j ̸= i,
which means (4.17) reduces to:

ω2
i =

(
ai + ri
bi

+
Rc

bi
+

i∑
m=1

2
Rm

bi

)
q2i (4.26)

Due to the physical construction of the system, the direction of flow is the same as the
direction of the angular velocity, this implies that sign(ωi) = sign(qi), which further
implies (4.26), can be written as:

16
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ωi =

√√√√ai + ri
bi

+
Rc

bi
+

i∑
m=1

2
Rm

bi
qi (4.27)

As the terms in the square root is constant, these can be defined as a ᾱi. In addition,
(4.27) can be extended to every WAHE and isolated for the flow as:

q = Λ̄ΛΛ
−1
ωωω (4.28)

Where:

Λ̄̄Λ̄Λ ∈ Rn×n is the diagonal matrix diag (ᾱ1, . . . ,ᾱn)

ωωω ∈ Rn×1 is the vector
[
ω1 . . . ωn

]T

Substituting (4.28) into (4.25) results in:

ξ̇ξξ = Φ̄ΦΦ(ξξξ,ωωω) = FFFξξξ + H(ξξξ)Λ̄ΛΛ
−1
ωωω +GGGΛ̄ΛΛ−1

ωωω + EEE (4.29)

This model describes the dynamics of the thermodynamic system without considering
the coupling introduced by the hydraulic connections.

4.3.2 Coupled model

In the coupled model the hydraulic coupling described in (4.17) must be considered. This
definition can be reformulated into a quadratic expression as [3]:

ω2
i = qT(ΛΛΛi +ΨΨΨi +ΓΓΓi)q = qTSiq (4.30)

with

(ΛΛΛi)jl =

{
αi ≜

ri+ai
bi

, j = l = i

0, otherwise

ΨΨΨi =
Rc

bi
111n×n ≜ ψi111n×n

ΓΓΓi =

i∑
m=1

2
Rm

bi
diag

(
000(m−1)×(m−1),111(n−m+1)×(n−m+1)

)
(4.30a)

Using this formulation for the pump, a function relating the angular velocity of the pumps
to the flows can be formulated as:

ωωω = f(q) =


√

qTS1q
...√

qTSnq

 (4.31)
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It is, however, the inverse of this function, if it exists, that is desired, since this would
describe the flow in terms of the angular velocity. To determine if an inverse exists the
inverse function theorem is used. This theorem states that if f(x) is differentiable at a
point x and its derivative ∂f

∂x(x) is continuous and non singular at x, then there exists
a local inverse function f−1(x) which is also differentiable. Firstly the derivative ∂f

∂q(q)
is found from (4.31). Note that since the water can only flow in the positive direction
q > 0 then qTSiq > 0.

∂f(q)
∂q

=

[
ρ1(q)S1q . . . ρn(q)Snq

]T

(4.32)

with
ρi(q) =

1√
qTSiq

> 0 (4.32a)

In this projects it is assumed that the Jacobian (4.32) is non singular at q and an
inverse always exists. In fact, the inverse exists in almost every case, and the simulations
performed could calculate the inverse. As such the inverse is defined as:

g(ωωω) = f(q)−1 (4.33)

Inserting this function into (4.25), results in a description of the coupled system as:

ξ̇ξξ = ΦΦΦ(ξξξ,ωωω) = FFFξξξ + H(ξξξ)g(ωωω) +GGGg(ωωω) + EEE (4.34)

With a model describing the dynamics of both the coupled and decoupled system, these
can now be used to design a control scheme, which stabilizes both the decoupled and
coupled dynamics.
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Uncertainty modelling and
control schemes 5

Based on the requirements from chapter 3, this project aims at deriving a design pro-
cedure for a controller, which can guarantee robust stability towards uncertainty in the
inputs, the model derived in the previous chapter must first be expanded to include these
uncertainties. As such, the first part of this chapter explores uncertainty modelling and
robust control. Furthermore, it is necessary to limit the synthesised controller to be
block diagonal. This is important, as the designed controller can only operate on a given
AHU and that AHUs measurements. This limits the design approaches, as traditional
control schemes such as pole placement and Linear Quadratic Regulator both design a
full feedback matrix. Instead, to ensure that the feedback matrix has a block diagonal
structure, control schemes using optimisation are investigated, as these has the possibility
to apply a constraint on the structure of the feedback matrix. Specifically, an alternative
control scheme using Linear Matrix Inequalities (LMI)s is investigated, as this offers the
necessary constraints on the feedback matrix. Control design using LMI requires a linear
model, and therefore the two models are first linearised.

5.1 Linearisation and state feedback

As the control should take into account the coupled and decoupled model, both models
are linearised. The models are linearised using a first order Taylor approximation as
shown in (4.20). In addition to the linearisation, the control, in terms of state feedback,
is also applied to the models (4.29) and (4.34). State feedback is defined as u = Kx,
however as the models are linearised u = (ωωω − ωωω∗), where ωωω∗ is the operating point for
the angular velocities. With this linearisation, the state feedback becomes:

(ωωω −ωωω∗) = Kx

ωωω = Kx +ωωω∗ (5.1)

The operating point ωωω∗ is different for the coupled and decoupled model. These different
operating points are hereafter denoted ω̄ωω∗ for the decoupled model and ωωω∗ for the coupled
model.
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5.1.1 Decoupled model

The decoupled model (4.29) is linearised around the states ξξξ∗, which are the states at
the operating point from (4.21), and the inputs ω̄ωω∗ which gives the linearised model:

ξ̇ξξ =
(
FFF + H(Λ̄ΛΛ

−1
ω̄ωω∗)
)
(ξξξ − ξξξ∗) +

(
H(ξξξ∗)Λ̄ΛΛ

−1
+GGGΛ̄ΛΛ−1

)
(ωωω − ω̄ωω∗) (5.2)

Applying the state feedback from (5.1) and defining x = (ξξξ − ξξξ∗) results in the linear
state space model:

ẋ =

FFF + H(Λ̄ΛΛ
−1
ω̄ωω∗)︸ ︷︷ ︸

Ā

+(H(ξξξ∗) +GGG) Λ̄ΛΛ−1︸ ︷︷ ︸
B̄

K

x (5.3)

5.1.2 Coupled model

The same approach can be applied to the coupled model on (4.34). Firstly the equation
is linearised around the states ξξξ∗ and the inputs ωωω∗ which gives the linearised model:

ξ̇ξξ =

(
FFF + H

(
g (ωωω∗)

))
(ξξξ − ξξξ∗) +

(
(H(ξξξ∗) +GGG) ∂g(ω

ωω∗)

∂ωωω

)
(ωωω −ωωω∗) (5.4)

Note that ∂g(ωωω∗)
∂ωωω is the inverse of the derivative of the function f(q), which means ∂g(ωωω∗)

∂ωωω =(
∂f(q∗)
∂q

)−1
, where q∗ is the operating point for the hydraulic flows. Applying the state

feedback from (5.1) and defining x = (ξξξ − ξξξ∗) results in the linear state space model:

ẋ =

FFF + H
(
g (ωωω∗)

)
︸ ︷︷ ︸

A

+(H(ξξξ∗) +GGG) ∂g(ω
ωω∗)

∂ωωω︸ ︷︷ ︸
B

K

x (5.5)

5.1.3 Comparison

By comparing (5.3) and (5.5), it can be seen the that the system matrix Ā and A are
identical since Λ̄ΛΛ

−1
ω̄ωω∗ = q∗ = g (ωωω∗). This was expected as these matrices describes the

systems dynamics without input, which is the linearised thermodynamics, and therefore
A is used to describe both models. As the difference between the two system originates
in the hydraulic network, these are tied to the inputs of the system, which are described
by B̄ and B. Indeed, by investigating these two matrices it can be seen that these differ
by the decoupled model having the term Λ̄ΛΛ

−1, while the coupled system has ∂g(ωωω∗)
∂ωωω . By

simulating a open-loop step response of the two linearised system, shown on figure 5.1,
the impact of the hydraulic becomes apparent.
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Figure 5.1: Open-loop step response of the linearised decoupled and coupled system.

From the difference between it is clear that the designed controller should be able to
stabilize both system. Additionally the coupled model introduces connections from the
hydraulics, which has been simplified. Therefore, the designed controller should be robust
towards these uncertainties.

5.2 Uncertainties in models

When designing a controller, the model is supposed to describe the dynamics of the phys-
ical system which is to be controlled. However, when deriving a model, it is well known
that the mathematical model is different from the physical model [4]. These differences
in the model are known as model uncertainties, and originates from inaccuracies and
assumptions in the modeling process. As such, there are many different sources of un-
certainties, but these can be categorized into either dynamic or parametric uncertainties
[4].

When these uncertain models are used to design a controller, this controller is guaranteed
to perform differently than designed, since the system it controls is different from the
one it was designed on [4]. Due to this, the notion of robust control was introduced to
formulate analysis and design tools which guarantee stability and performance despite
these uncertainties. The dynamics in robust control theory is represented in terms of
a set of possible models which describes the systems and its uncertainties. This set,
often denoted G̃, is defined by the nominal, or average, model G0 and a set of bounded
uncertainties ∆∆∆.
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As previously stated, these uncertainties are categorised into parametric and dynamic
uncertainties. Parametric uncertainties are the ones describing an uncertainty with re-
spect to a parameter. With these types of uncertainties the dynamic equation is known,
however the parametric values are uncertain [4]. These types of uncertainties are typi-
cal when systems are linearised or determined through identification techniques. Given
these uncertainties only describe parameters, it is assumed the uncertainty of a given
parameter is in the interval [ρmin, ρmax], from which a general form can be expressed as
[4]:

ρ = ρ0 + ρdδ (5.6)

Where:

ρ ∈ R is the uncertain parameter

ρ0 ∈ R is the nominal parameter value

ρd ∈ R is the difference ρmax−ρmin
2

δ ∈ R is the bounded uncertainty given by: |δ| < 1

Dynamic uncertainties describe dynamics which are unaccounted for in the mathemat-
ical model. These are often higher frequency dynamics, which are deliberately ignored
so a lower order model is obtained, it can however also be dynamics due to physical
phenomenons which are unknown [4]. As these uncertainties are more complex, no single
way of representing them exists. Instead, different representations exist depending on
the suspected type of uncertainty. Commonly used LTI representations are input multi-
plicative uncertainty, output multiplicative uncertainty, and additive uncertainty, which
influence can be seen from the illustrations on figure 5.2.

(a) Input multiplicative uncertainty. (b) Output multiplicative uncertainty.

(c) Additive uncertainty.

Figure 5.2: Commonly used types of uncertainties [5, p.293].
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In the case of input multiplicative uncertainties, these can be expressed by the model [4]:

G̃ =
{
G(s) | G(s) = G0(s)(I4 +∆∆∆W∆(s)), ∆∆∆ ∈ ||∆||∞ ≤ 1

}
(5.7)

Where:

G̃ is the set of transfer functions for the uncertain system

G0(s) is the nominal model

W∆(s) is the maximal multiplicative model deviation

∆∆∆ is the set of uncertainties defined by all stable transfer function ∆ fulfilling

||∆||∞ ≤ 1

While these two categories of uncertainties describe different aspects, both are often
present when modeling [4]. This might not be intuitive, but when modelling low fre-
quencies, the dynamics are often known, but the specific parameters are uncertain, while
the higher frequency dynamics are often assumed insignificant. Given both types of un-
certainties are present, a representation of both is desired. Such a representation can be
expressed as an extended general control configuration shown on figure 5.3a [5, p.289].
The general control configuration provides a useful structure during analysis and synthe-
sis of a controller. Furthermore, figure 5.3a can be transformed into the N∆-structure on
figure 5.3b. In this structure, the controller has been used to close the interconnection
of y and u loop, and as such the new structure is useful for analysis of the system with
a controller [5, p.289].

P

K
(a) The general control configuration, where P
is the model of the interconnections between the
inputs and outputs, K is the controller, and ∆ is
the uncertainties [5, p.290].

P

K
N

(b) The N∆-structure where the interconnection
with the controller has been incorporated into the
N block [5, p.290].

Figure 5.3: General control configurations, where (a) is used for synthesis while (b) is used for
analysis.
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Until now ∆∆∆ ∈ Cp×q has been assumed to be any uncertainty fulfilling ||∆∆∆||∞ < 1, which
is also known as unstructured uncertainties. This assumption implied that no structural
information of the uncertainties are considered, hence the naming. Instead, in cases
where knowledge of the structure of the uncertainties are available, ∆∆∆ can be redefined
to be a block diagonal matrix whose diagonal entries encapsulate the given structure of
the uncertainty. Following this, the uncertainty can be formulated as:

Unstructured: ∆∆∆U = {∆∆∆ ∈ Cp×q | ||∆∆∆||∞ < 1} (5.8)

Structured: ∆∆∆S =


∆∆∆1 0 0

0
. . . 0

0 0 ∆∆∆n

 = {∆∆∆i ∈ Cpi×qi | ||∆∆∆i||∞ < 1} (5.9)

From the two definitions, it can be seen that the structured uncertainties is a subset of
unstructured uncertainties.

5.3 Robust stability

As previously stated, every model has uncertainties, and as such it is necessary to find a
condition which guarantees the designed system be stable for all these uncertainties [4].
If the system is stable for every uncertainty, then the system is said to be robust stable.
More specific robust stability is defined for a given controller K as [6, p.97]:

Robust stability: K robustly stabilizes figure 5.3b against the uncertainties ∆∆∆i ∈ ∆∆∆ if
K stabilizes the system figure 5.3b for any uncertainty ∆∆∆i taken out of the underlying set
∆∆∆.

This definition requires validating if the system is stable for every uncertainty in the set,
which is inefficient, and as such the definition is of little use given it cannot be tested
efficiently [5, p.300]. If instead, the interconnection between w∆ and z∆, as illustrated
on figure 5.4, is investigated, a condition for robust stability can be defined by the small
gain theorem [7, p.66]:

Theorem 1 (Small gain theorem) Assume that ||M||∞ < 1 and ||∆∆∆||∞ ≤ 1, then the
interconnection on figure 5.4 is asymptotically stable, meaning any initial condition close
to an equilibrium will be driven to the equilibrium, for every uncertainty in the set ∆∆∆.
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M

Figure 5.4: The M∆-structure, where M, derived from N, describers the interconnection
between w∆ and z∆.

This implies that by verifying the H∞-norm of M(s) is less than 1, then the system
is robust stable towards the uncertainties bounded by ||∆∆∆||∞ ≤ 1. This gives a simple
condition, which can efficiently be calculated, to verify robust stability. The H∞-norm has
two definitions depending on the type of system. For SISO systems the H∞ describes the
largest gain ∥G(s)∥∞ = max

s
|G(s)|, while for MIMO systems H∞ describes the largest

singular value ∥G(s)∥∞ = max
s

σ(|G(s)|) [5, p.60,80]. Unfortunately both definitions
are only applicable for transfer functions, however, a bound on the H∞-norm can be
determined for a state space representation by the bounded real lemma [7, p.64]:

Lemma 1.1 (Bounded real lemma) Let us consider an LTI system with transfer func-
tion:

Ĝ(s) = C (sI+A)−1 B+D

Then, the following statements are equivalent:

1. The H∞-norm of Ĝ is smaller than γ > 0.

2. There exists a P > 0 such that the LMI
ATP+PA PB CT

⋆ −γI DT

⋆ ⋆ −γI

 < 0 (5.10)

holds.

Combining theorem 1 and lemma 1.1, robust stability for a state space model can be
guaranteed if the LMI in (5.10) is feasible for a γ ≤ 1. The small gain theorem disregard
structure in the uncertainty, and as such is only applicable for unstructured uncertainties.
Due to this, the theorem yields conservative results in cases where the uncertainty is
structured or parametric [4].

25



GR-1028 CHAPTER 5. UNCERTAINTY MODELLING AND CONTROL SCHEMES

Since the uncertainty itself is not present in M, and therefore not part of the calculation of
the norm, simply structuring ∆∆∆ will not influence the calculation. Instead, the structure
of the uncertainties can be introduced by using scaling matrices, which is structured in
accordance with the uncertainty [5, p.306]. The scaling matrix D must be structured as
a block-diagonal matrix, with dimensions corresponding to the respective dimensions of
the uncertainty. To achieve the desired structure in ∆∆∆, the block-diagonals in D, must
be constructed following the relation in (5.11) [5, p.310]:

∆∆∆ = δI, D = Full matrix

∆∆∆ = Full matrix, D = δI

∆∆∆ =

∆1 0

0 ∆2

 ,∆1 and ∆2 Full matrix, D =

δ1I 0

0 δ2I

 , (5.11)

In theory, any non-singular matrix which commute with the uncertainty, that is ∆∆∆D =

D∆∆∆, can be applied, which leads to the set of possible D as:

DDD =
{
D | ∆∆∆D = D∆∆∆,

}
(5.12)

The scaling matrix can be applied to the M∆-structure as:

M

Unstructured uncertainty

New interconnection

Figure 5.5: Interconnection of the M∆-structure where the scaling matrices D is included to
introduce structure [5, p.305].

By calculating the uncertainty in the upper box on figure 5.5, it can be seen that if D is
structured in accordance with ∆∆∆D = D∆∆∆, then the unstructured uncertainty reemerges
[5, p.306]. Since DD−1 = I, the scaling matrices does not influence the closed loop
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stability, however the new system, for which the stability is to be determined, is now
given by DMD−1, which means the structure is included and will influence the norm.
Using this structure, a new condition for robust stability can be formulated as [5, p.306]:

min
D(ω)∈DDD

||D(ω)M(jω)D(ω)−1||∞ < 1, ∀ω (5.13)

While this condition can be used to determine a scaled H∞-norm, it requires solving the
minimisation for every frequency, meaning an infinite number of calculations. A better
condition can be formulated in terms of the structured singular value, which uses this
minimisation problem as a bound.

5.3.1 Structured Singular Value

The Structured Singular Value (SSV) is a function which generalizes the singular value
and spectral radius [5, p.306]. More specifically, it provides a value for the H∞-norm
given any structure of the uncertainties. The SSV of M wrt. the set ∆∆∆ is defined as [6,
p.113]:

µ∆(M) =
1

sup{r| det(I − M∆) ̸= 0 ∀∆ ∈ r∆∆∆}
(5.14)

This definition of the SSV states, that one should find the maximum value r, for which I−
M∆ is non-singular in the set r∆∆∆, which is essentially a scaling of the set of uncertainties
[6, p.113]. The SSV is unfortunately difficult to calculate directly, however, efficient
methods exists for determining an upper bound. By using the scaling matrix D, the
smallest upper bound can be found as [5, p.310]:

µ∆∆∆(M(jω)) ≤ min
D(ω)∈DDD

||D(ω)M(jω)D(ω)−1||∞, ∀ω (5.15)

This minimization problem is convex and can be formulated as a Linear Matrix Inequality
(LMI) [6, p.126]. From (5.13) and using (5.15), a condition for robust stability for
structured uncertainty can be formulated as a generalization of the small-gain theorem
[5, p.306]:

Theorem 2 (Generalized small gain theorem) Assume that µ∆∆∆(M(s)) < 1 and
||∆∆∆||∞ ≤ 1, then the interconnection on figure 5.4 is asymptotically stable toward any
structured uncertainty ∆∆∆.

This condition requires the SSV must be below 1 for every frequency, however in practice
the SSV is calculated for a finite number of frequencies an interpolated. The worst SSV
can then be found and used to determine the bounds, and hence stability. This method
gives an acceptable estimate, as the SSV is a continuous function when the uncertainties
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are complex [6, p.124]. Another property of the SSV, is that it is monotonic in the set
∆∆∆. i.e. assume two sets of matrices satisfy:

∆∆∆1 ⊂∆∆∆2 (5.16a)

then
µ∆∆∆1(M) ≤ µ∆∆∆2(M) (5.16b)

Furthermore the SSV can be calculated explicitly for the following structures:

µ∆∆∆1
(M(s)) = ρ

(
M(s)

)
, ∆∆∆1 = {δI ∈ Cp×q | ||δ||∞ < 1}

µ∆∆∆2
(M(s)) = ||M(s)||∞, ∆∆∆2 = {∆∆∆ ∈ Cp×q | ||∆∆∆||∞ < 1}

(5.17)

where ρ(·) is the spectral radius. These structures, given the monotonicity, has the
property:

∆∆∆1 ⊂∆∆∆ ⊂∆∆∆2 (5.18)

Which implies SSV must be bound by the H∞-norm and the spectral radius:

ρ(M(s)) ≤ µ∆∆∆(M(s)) ≤ ||M(s)||∞ (5.19)

From this, it can be concluded that the SSV is bounded by the spectral radius and H∞-
norm, which implies that every possible structure of the uncertainties must be within
these bounds. Addition, since the spectral radius gives the lowest possible value of the
SSV, if this is larger than 1, then no structure can guarantee robust stability.

5.4 LMI Framework

The previously mentioned upper bound on the SSV can be found by solving an LMI,
in addition, the bounded real lemma is defined as an LMI, and robust stability also
requires that the system, with controller, is stable, which can also be defined as an
LMI. Therefore, a brief introduction to LMIs are made. An LMI is an affine linear
inequality defined over some variable called a matrix variable. This simply means that
LMIs are convex constraints, which can be applied to an optimisation problem and solved
with numerical methods [5, p.473]. More specifically, LMIs are a part of SemiDefinite
Programming (SDP), which is a subfield of convex optimisation, where a linear objective
function is constrained by LMIs and/or linear equality constraints, as such SDP problems
are structured as:

minimize
x

cTx

subject to F(x) = F0 +
m∑

i=1

xiFi ≥ 0

Ax = b

(5.20)
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Where:

m ∈ W is the number of variables, which for the worst case is Fi ∈ Rqi×pi is

given by:
∑n

i=1(qi · pi)

Since these problems are convex, a solution can efficiently be found and the solution is
guaranteed to be a global minimum. In this project YALMIP with the MOSEK solver is
used to solve these problems, for more information the reader is referred to appendix II.

Due to LMIs being a part of SDP, many different problems, often categorised as LMI prob-
lems, can be formulated [5, p.476-479]. Most notable are Linear objective minimization
problem (LOMP), Generalized Eigenvalue Problem (GEVP), and LMI feasibility problem
(LMIFP). In LOMP and GEVP some linear function is minimized or maximized, where
the difference between the two is that for LOMP, the objective must be convex, while
in GEVP the objective can be quashi convex. On the other hand, the LMIFP is not
attempting to find an optimal solution, instead it attempts to find a feasible solution,
and as such the solution is not guaranteed to be unique. This essentially means the
objective function on (5.20) is 0, which implies the problem is solved only subject to the
LMI constraints.

The application of LMIs in control theory is not apparent from the formulation of the
LMI problems, however their use emerges from Lyapunovs theory of Stability, which
states that a continuous autonomous linear system ẋ = Ax is stable iff there exists a [5,
p.476]:

P > 0 (5.21)

such that
ATP + PA < 0 (5.21a)

Where:

A ∈ Rn×n State matrix

P ∈ Rn×n Is the symmetric matrix variable for the LMI problem

If this LMI is feasible, then it is equivalent to the more traditional definition that, all
states must go to 0 as time goes to infinity, or stability of the system is guaranteed
iff. Re{λi(A)} < 0,∀i. This definition allows for the validation of stability for a given
continuous system. However, if the system is extended to contain an input, that is
ẋ = Ax+Bu, and apply a control law for state feedback u = Kx, then the dynamics of
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the system becomes:
ẋ = (A + BK)x (5.22)

Where:

B ∈ Rn×p input matrix

K ∈ Rp×n state feedback

From the definition of stability in (5.21), it can be seen that the stability is now dependent
on the feedback matrix K. This implies that if K is set as a variable in the optimisation
problem, then the LMI can be used to find a feedback K guaranteeing the system is
stable. Writing Lyapunovs stability (5.21) for the system with feedback results in the
inequality:

(A + BK)T P + P (A + BK) < 0 ⇒
ATP + PA + KTBTP + PBK < 0

(5.23)

As (5.23) contains a nonlinearity it is no longer a LMI, but a bilinear matrix inequality.
This can be rectified by changing the definition of the variables. This however, requires
the variables to be next to each other in the terms, therefore a congruence transform
with P−1 is applied resulting in:

P−1AT + AP−1 + P−1KTBT + BKP−1 < 0 (5.24)

Now with the variables causing the nonlinearities being next to each other, two new
variables are defined as Q = P−1 and Y = KQ, resulting in the LMI:

QAT + AQ + YTBT + YB < 0 (5.25)

If the LMI is feasible for Q > 0 and Y, then K can be recovered as K = YQ−1.
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Application 6
This chapter aims to apply the methods described in chapter 5 to obtain a robustly stable
controller for the system described in chapter 4. Initially parameters of the system will
be given, afterwards the different methods will be applied.

6.1 System Parameters

The parameters of the systems is obtained from the paper [3].

Table 6.1: System parameters

Parameter Sym i = 1 i = 2 i = 3 i = 4 Unit

Heat transfer constant
between water and air in
AHU

B 24.00·
103

14.00·
103

12.00·
103

20.00·
103

[
W ·K-1]

Specific heat coefficient
for water

Cw 4183
[
J ·m-3 ·K-1]

Specific heat coefficient
for air

Ca 728
[
J ·m-3 ·K-1]

Density of water ρw 997
[
Kg ·m-3]

Density of air ρa 1.225
[
Kg ·m-3]

Nominal air tempera-
ture reference

T ∗
a,ref 293.15 [K]

Nominal ambient tem-
perature

Ta,amb 308.15 [K]
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Nominal supply water
temperature

Tw,c 283.15 [K]

Water volume in AHU VW 230.00·
10−3

134.00·
10−3

115.00·
10−3

192.00·
10−3

[
m3]

Air volume in AHU Va 9.00 5.20 4.50 7.50
[
m3]

Nominal water flow
through AHU

q 5.75 ·
10−3

3.336·
10−3

2.89 ·
10−3

4.81 ·
10−3

[
m3
s

]
Nominal air flow
through AHU

Q 5.98 3.49 2.99 4.98
[
m3
s

]
Hydraulic resistance of
the chilled water source

Rc 8.85 · 103
[
Pa·s
m3

]
Hydraulic resistance of
supply/return pipe to
branch

R 8.85 ·
103

20.45·
103

42.23·
103

108.26·
103

[
Pa·s
m3

]

Hydraulic resistance of
branch

r 151.23·
103

442.59·
103

599.11·
103

216.51·
103

[
Pa·s
m3

]
Pump constant a 453.69·

103
2212.96·
103

4193.79·
103

1948.61·
103

[·]

Pump constant b 30 50 70 90 [·]

6.2 Obtaining the general configuration

The methods for determining the robustness of a system, as described in section 5.3
is based on the general control configuration presented in section 5.2. As such, the
configuration must be derived before robustness can be analyzed. The configuration
describes the open loop system, where P describes the interconnection of all the inputs
and outputs, and the controller K and uncertainty ∆∆∆, describes its own IO relation. This
means that the model can be derived from the block diagram for the system shown on
figure 6.1a. Note the block diagram uses the notation Bu and Bw for the input matrices,
and Cy and Cz for the output matrices. These matrices relate to the models linearised
in (5.3) and (5.5) as that Bu can be substituted by either B̄ or B and Cy is the output
matrix from (4.25). The last matrices Bw and Cz are virtual matrices, which are used
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in the synthesis process to specify the performance of the system, and are described in
later examinations.

In this project, disturbances (d) and sensor noise (n) has been ignored, to simplify
the calculations and deviations. The signals could be introduced to the synthesis by

appending them to the reference r which expands w to
[
r d n

]T

. These exogenous

inputs can then be applied to the methods in the chapter by introducing the signals at
their respective locations on figure 6.1a.

Both figure 6.1a and 6.1b has some redundant signals, e.g. u = z∆ and y = uk, these
are used in later derivations and additions to the model and for consistency are also in
this model.

(a) Block diagram of the input uncertain system, where the
controller K and uncertainty ∆∆∆ has been removed to illus-
trate the diagram is open-loop.

P

K
(b) The general control configuration
without connections between the blocks,
where P describes the interconnections.

Figure 6.1: Illustration of the block diagram for input uncertainty, and its equivalent open
loop general control configuration, where K is the controller, and ∆∆∆ is the uncertainties.

From figure 6.1a, the equivalent P, shown on figure 6.1b can be derived as:

ẋ

z∆

z

y


=



A Bu Bw Bu

04×12 04×4 04×4 I4

Cz 04×4 04×4 04×4

Cy 012×4 012×4 012×4





x

w∆

w

u


(6.1)

This representation is extended to include the IO relations of the controller and uncer-
tainty shown on figure 6.1b. The new relations are applied to the system in a manner
that simplifies later derivation.
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

ẋ

z∆

y∆

z

y

yk


=



A 012×4 Bu Bw 012×12 Bu

04×12 04×4 04×4 04×4 04×12 I4

04×12 ∆∆∆ 04×4 04×4 04×12 04×4

Cz 04×4 04×4 04×4 04×12 04×4

Cy 012×4 012×4 012×4 012×12 012×4

04×12 04×4 04×4 04×4 K 04×4





x

u∆

w∆

w

uk

u


(6.2)

This representation can be used to derive the N∆-structure, shown on figure 5.3b, where
the loop around the controller is closed. Firstly the outputs regarding the loop (y,yk),
is extracted from (6.2) and expressed in terms of the inputs to the remaining loops
(x,u∆,w∆,w) and the inputs for the controller loop (uk,u) as:

 y

yk

 =

 Cy 012×4 012×4 012×4

04×12 04×4 04×4 04×4




x

u∆

w∆

w


+

012×12 012×4

K 04×4


uk

u

 (6.3)

From the blockdiagram on figure 6.1b, it can be seen that closing the connection gives
y = uk and yk = u, which means (6.3) can be expressed as:

 y

yk

 =

I12 012×4

-K I4


−1  Cy 012×4 012×4 012×4

04×12 04×4 04×4 04×4




x

u∆

w∆

w


(6.4)

As (6.4) is expressed only in terms of the inputs from the remaining loops (x,u∆,w∆,w),
it can be used to eliminate the outputs (y,yk) on (6.2), which results in the N∆-structure
represented as:
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

ẋ

z∆

y∆

z


=



A 012×4 Bu Bw

04×12 04×4 04×4 04×4

04×12 ∆∆∆ 04×4 04×4

Cz 04×4 04×4 04×4





x

u∆

w∆

w


+



012×12 Bu

04×12 I4

04×12 04×4

04×12 04×4


I12 012×4

-K I4


−1  Cy 012×4 012×4 012×4

04×12 04×4 04×4 04×4




x

u∆

w∆

w



=



A + BuKCy 012×4 Bu Bw

KCy 04×4 04×4 04×4

04×4 ∆∆∆ 04×4 04×4

Cz 04×4 04×4 04×4





x

u∆

w∆

w



(6.5)

From this structure, the interconnection between z∆ and w∆, called N11 or M, can be
used to determine robust stability. Furthermore, since Cy = I12 it can be neglected as
KCy = K. From this, the interconnection can be expressed as:

N11(s) = M(s) = K
(
sI12 − (A + BuK)

)−1

Bu (6.6)

or as the state space model:

ẋ = Amx + Bmw∆

z∆ = Cmx
(6.7)

with:
Am = A + BuK, Bm = Bu, Cm = K (6.7a)

This description of M can now be used in the bounded real lemma to find an upper
bound on the H∞-norm.

6.3 Synthesis of robust controller

To synthesise a robust controller, this project builds on the already established design
procedures in [3]. The idea behind the procedures are the same, however to validate
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robust stability, this project utilizes the bounded real lemma expressed in lemma 1.1.
This implies the design procedures can be formulated as:

Design procedure 1 synthesises a controller which stabilizes the decoupled system
(5.3) by solving Lyapunovs stability defined by the LMI derived in (5.25). With the
parameters for the decoupled system, this LMI can be written as:

AQ + QAT + B̄Y + YTB̄T
< 0 (6.8)

with Q = diag(Q1, . . . ,Qn) > 0, Qi ∈ R3×3, Y ∈ R4×12. From this LMI, the synthesised
controller can be recovered by solving K = YQ−1. Following this, the robustness is
analysed by computing a bound on the H∞-norm, using the bounded real lemma on the
interconnection expressed in (6.7).

R (A + BK) + (A + BK)T R RB KT

⋆ −γI4 04×4

⋆ ⋆ −γI4

 < 0 (6.9)

with γ > 0, R = diag(R1, . . . ,Rn) > 0, Ri ∈ R3×3. If this LMI is feasible with a γ < 1,
then the H∞-norm is less than 1, which implies the coupled system (5.5) is robust stable.

Design procedure 2 synthesises a controller, by simultaneously solving for stability of
the decoupled system (5.3) and robust stability of the coupled system (5.5). This requires
a transformation of (6.9), similar to the one described in section 5.4. This simplifies the
design procedure to simultaneously solve (6.8) and:

AQ + QAT + BY + YTBT B YT

⋆ −γI4 04×4

⋆ ⋆ −γI4

 < 0 (6.10)

with Q = diag(Q1, . . . ,Qn) > 0, Qi ∈ R3×3 and γ > 0, while minimizing wrt. γ. This
procedure also uses the bounded real lemma to bound γ, which means the synthesised
controller will find the lowest value of γ which still stabilizes both systems. This implies
that if γ is used as a parameter equal to one, this procedure will find a controller which
is guaranteed to be robustly stable. The default option using this design procedure is
γ = 1.

To test the performance of the controller, two different simulations, both simulating a
step response, are run on the system with the designed controller. The first simulates
the decoupled linear system and the other simulates the coupled linear system. These
simulations are useful for validating the performance of the controller.
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6.4 Investigation

Using design procedure 1, a controller is synthesised which shows satisfactory response
in both simulations as shown on figure 6.2a. However, the procedure yields a γ =

119.16, which means robust stability is not guaranteed. On the other hand, using design
procedure 2, the synthesised controller is robust stable, however when simulated, the
system showed undesirable performance, to the degree that the controller failed to step
as shown on figure 6.2b.
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(a) Simulated response of the system with a con-
troller synthesised by design procedure 1.
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(b) Simulated response of the system with a con-
troller synthesised by design procedure 2.

Figure 6.2: Simulated step response of the system with the synthesised controllers.

The response from system with the controller synthesised by the two procedures showed
contradicting results, i.e. if good performance is desired robust stability cannot be guar-
anteed, and inversely if robust stability is desired, the controller has poor performance.

6.4.1 Examination of stability from state matrix

As the uncertainty impacts the inputs and could potentially cause undesirable inputs,
it was examined if a better stability of the state dynamics would yield better results.
Calculating the eigenvalues of the state matrix, showed that A is only marginal stable,
i.e. it has eigenvalues on the imaginary axis. As such, the eigenvalues of A was moved
into the left half plane by altering A, defined in (4.22), to:

Amodified =


−
(

q∗i
Vw,i

+ Bi
CwρwVw,i

)
Bi

CwρwVw,i
0

Bi
CaρaVa,i

−
(

Qi
Va,i

+ Bi
CaρaVa,i

)
0

0 1 −1

 (6.11)
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Synthesising new controllers using the modified A slightly reduced γ in design procedure
1, however, the value was found to be 85.54, meaning it is still not robust stable. By
investigating the step response, shown on figure 6.3, it can be seen that neither controller
achieves satisfactory results, as neither controller manages to perform the step.
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(a) Simulated response of the system with a con-
troller synthesised by design procedure 1.
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(b) Simulated response of the system with a con-
troller synthesised by design procedure 2.

Figure 6.3: Simulated step response of the system with the synthesised controllers with A
modified.

6.4.2 Examination of structured uncertainties

Given the response with the modified A proved undesirable, attention was moved back
towards the baseline on figure 6.2. Particularly, the controller synthesised by design
procedure 2 indicates robust stability is obtained if the controller is numerically small
relative to A. In fact, the controller values are close to 0, meaning there is no control of
the system, but it relies on the stability of the plant to remain stable.

It is known that, if a robust controller is conservative, it is likely due to the uncertainty
being assumed to be unstructured, as described in section 5.3. Therefore, the possibility
of structure in the uncertainty is examined. As described in section 5.3, robust stability
under structured uncertainty is quantified by the µ∆(M(s)), which is a quantity bounded
between the unstructured uncertainty, given by ||M(s)||∞ and the structure with only
a single variable δI, which is given by the spectral radius ρ(M(s)). In (5.17), it was
shown that given a specific structured, the SSV becomes µ∆(M(s)) = ||M(s)||∞ or
µ∆(M(s)) = ρ(M(s)). Using this relation and the generalized small gain theorem from
theorem 2, robust stability can be guaranteed if these bounds yield a value less than one.
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(a) The H∞-norm, SSV and spectral radius plotted
over frequency with the controller synthesised from
design procedure 1.
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(b) The H∞-norm, SSV and spectral radius plotted
over frequency with the controller synthesised from
design procedure 2.

Figure 6.4: The impact of structure in the uncertainty.

Figure 6.4a illustrates that the largest spectral radius of M(s) is larger than one, which
implies no possible structure of the uncertainty can guarantee stability for the controller
using design procedure 1. Furthermore, in both figure 6.4a and figure 6.4b, the two
bounds are almost the same, which suggest the structure only has a small impact on
robust stability.

As noted in the description of the design procedure 2, γ can be selected as a variable
which can be minimized, to find a stable controller with the best robustness, however not
guaranteed to be robust stable. Using this procedure unfortunately results in a controller,
which cannot guarantee robust stability. However, from figure 6.5a the largest spectral
radius is found to be 1.0023, which implies the system is close to being robust stable.
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(b) Step response of the coupled and decoupled
system.

Figure 6.5: The impact of structure in the uncertainty and step response of system with the
controller synthesised using design procedure 2 with γ as a variable found to be 1.0023.

Furthermore, the step response of the system shown on figure 6.5b, show that the con-
troller is able to perform the step in a desirable manner and remain stable, but not
fulfilling the condition for robust stability.

6.4.3 Examination of real structured uncertainties

In the previous examination it was found that no structure could guarantee robust sta-
bility when the uncertainties where complex. This examination attempts to determine
if real uncertainties can guarantee robust stability. Real uncertainties imply the uncer-
tainty can vary between ±1 of its nominal value, and as such are a realistic uncertainty.
Unfortunately, the SSV is less reliable and difficult to compute when real uncertainties
are present [6]. However, if a different interpretation of robust stability is used, Linear
Parameter Varying (LPV) system can be used to determine robust stability.

In LPV systems, some or all of the system matrices are dependent on a parameter
ρ(t) ∈ P, where P =

{
ρ : R≥0 → ∆ρ ⊆ RN

}
and N is the number of parameters [7,

p.3-4]. The variable ρ can vary, which for a simple dynamic system means ẋ = A(ρ)x.
For such an LPV system, stability can be determined through the use of a parameter
varying Lyapunov function P(ρ). This type of stability is called Parameter-Dependent
Quadratic (PDQ) stability [4, p.163] or robust stability [7, p.46], and is determined by
solving the LMI:

A(ρ)TP(ρ) + P(ρ)A(ρ) +

N∑
i=1

ρ̇i
∂P(ρ)

∂ρi
< 0, ∀(ρ, ρ̇) ∈ P × V (6.12)
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with P(ρ) > 0, P being a compact set and V a hypercube. This stability condition
includes the rate of which the parameter can change ρ̇ ∈ V, however, if there is no
bound on the rate, this condition reduces to quadratic stability, in which the Lyapunov
parameter is constant [4, p.163]:

A(ρ)TP + PA(ρ) < 0, ∀ρ ∈ P (6.13)

with P > 0. In the case that the parameter is time-invariant, condition (6.13) is suf-
ficient for robust stability. This condition requires validation for an infinite number of
ρ, however, if P is a convex polytope and A(ρ) is affine in ρ, then by the Vertex prop-
erty(Theorem) it is necessary and sufficient to validate the stability at the vertices [7,
p.52][4, p.156]. (6.13) determines stability of the open-loop system, if the loop is closed
using a controller K and using the procedure described in (5.23), (6.13) becomes:

A(ρ)Q + QA(ρ)T + B(ρ)Y + YTB(ρ)T < 0, ∀ρ ∈ P (6.14)

with Q > 0. As this examination is into real uncertainties of the system, these are time-
invariant, furthermore, the uncertainties are given by δI4, δ ∈ [−1; 1], this means the set
becomes P̄ =

{
ρ ∈ P | ∆ρ = [−1,1]

}
. This means, by the vertex property(Theorem),

that robust stability is achieved by solving (6.14) at the two vertices −1 and 1. Addition-
ally, the uncertainties only affect the inputs of the system, which means A(ρ) = A and
B(ρ) = (1 + ρ)B. From this, a controller can be synthesized by simultaneously solving
stability of the decoupled system (6.8) and:

AQ + QAT + (1 + v)BY + (1 + v)YTBT < 0, ∀ v ∈ vert(P̄) (6.15)

with Q = diag(Q1, . . . ,Qn) > 0, Qi ∈ R3×3. This procedure synthesised a controller
which could stabilize the system and be robust stable towards the uncertainties. By
performing a step response, shown on figure 6.6, it can be seen the system shows desirable
performance.
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Figure 6.6: Step response of the coupled and decoupled system with a controller designed for
identical real uncertainties on the inputs.

This shows that given real uncertainties robust stability can be achieved. The case shown
in figure 6.6 only showed the simple case of every input being affected identically by the
uncertainty. To investigate a broader robustness, the structure of the uncertainty is
change to a diagonal matrix with different uncertainties for each input:

∆ =



δ1 0 0 0

0 δ2 0 0

0 0 δ3 0

0 0 0 δ4


, δi ∈ [−1,1] (6.16)

With four uncertainties, the set P̄ becomes P̄ =
{
ρ ∈ P | ∆ρ = [−1,1]4

}
. Additionally,

with the uncertainties being a matrix instead of a scalar, (6.15) is rewritten to formulate
the uncertainties as a matrix.

AQ+QAT +B(I4+ diag(v))Y+YT(I4+ diag(v))TBT < 0, ∀ v ∈ vert(P̄) (6.17)

with Q = diag(Q1, . . . ,Qn) > 0, Qi ∈ R3×3. Solving this LMI yields a feasible solution,
however the models become marginally stable. Indeed by simulating a step response,
shown on figure 6.7, it can be seen the controller is incapable of adjusting to the new
reference.
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Figure 6.7: Step response of the coupled and decoupled system with a controller designed for
different real uncertainties on the inputs.

This result was not surprising when considering the case presented. When determining
stability at the vertices, some uncertainties are 1 while others are −1, this corresponds
to some AHU being able to adjust, while others are unable to. This case will never be
stable due to the coupling in the hydraulics, and as such the best option is to synthesise
a controller of zeroes.

6.4.4 Examination of weighted uncertainties

The previous investigations showed robust stability could only be achieved in the case
of a single real uncertainty affecting all the inputs. This case is limited, therefore, this
section examines utilizing the weight function W∆(s) from figure 5.2 on the input of
∆∆∆, to affect the uncertainties and thereby achieve robust stability. As illustrated on the
block diagram on figure 6.8, the weighting function can be used to inject restrictions onto
∆∆∆, such as mitigating the effect of the uncertainties at given frequencies. To analyse the
effect of W∆(s) a new description of P is required.
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Figure 6.8: Block diagram of the input uncertain system with the weighting function W∆,
where the controller K and uncertainty ∆∆∆ has been removed to illustrate the diagram is open-
loop.

W∆(s) can be expressed in state space as:

W∆(s)
ss
=

 Aw∆ Bw∆

Cw∆ Dw∆

 (6.18)

Using the same procedure as described in section 6.2, an expression for P in the general
control configuration, which incorporates the weighting W∆, can be expressed as:

ẋ

ẋw∆

z∆

z

y

y∆

yK



=



A 012×4 Bu Bw 012×12 012×4 Bu

04×12 Aw∆ 04×4 04×4 04×12 04×4 Bw∆

04×12 Cw∆ 04×4 04×4 04×12 04×4 Dw∆

Cz 04×4 04×4 04×4 04×12 04×4 04×4

Cy 012×4 012×4 012×4 012×12 012×4 012×4

04×4 04×4 04×4 04×4 04×12 ∆ 04×4

012×4 012×4 012×4 012×4 K 012×4 012×43





x

xw

w∆

w

uk

u∆

u



(6.19)

Similar to section 6.2, the controller can be incorporated into the model by closing the
lower loop, resulting in the interconnections, described by Nw, becoming:
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

ẋ

ẋw∆

z∆

z

y∆


=



A + BuK 012×4 Bu Bw 012×4

Bw∆K Aw∆ 04×4 04×4 04×4

Dw∆K Cw∆ 04×4 04×4 04×4

Cz 04×4 04×4 04×4 04×4

04×12 04×4 04×4 04×4 ∆





x

xw∆

w∆

w

u∆


(6.20)

From this structure, the desired interconnection w∆ to z∆, can be expressed as:

Mw =

[
Dw∆K Cw∆

]sI16 −
A + BuK 012×4

Bw∆K Aw∆




−1  Bu

04×4

 (6.21)

or as the state space model:

ẋ = Amwx + Bmww∆

z∆ = Cmwx
(6.22)

with:

Amw =

A + BuK 012×4

Bw∆K Aw∆

 , Bmw =

 Bu

04×4

 , Cmw =

[
Dw∆K Cw∆

]
(6.22a)

Before the effect can be analysed, a numeric value of the weight function must be derived.
As the object is to verify stability towards uncertainties in the input, the weight function
should describe the behaviour of the inputs. Given these uncertainties are caused by
the hydraulics, the weight function is chosen to describe the influence of each individual
pump on the remaining pumps, which is difference between the coupled and decoupled
hydraulics B − B̄. As seen on figure 6.8, the uncertainty is acting on the input signal,
which is u ∈ R4×1, however B − B̄ ∈ R12×4, which means it cannot be used. The
figure also shows the uncertainty being added to the nominal input before entering the
system, this implies Bu affects the uncertainty twice, and hence if the inverse of Bu is
pre-multiplied to (B − B̄), this both removes the additional multiplication of Bu and
changes the dimensions of the uncertainty to be in R4×4. However, B is not square and
therefore does not have an inverse, instead the pseudo inverse is used, resulting in the
weight defined as:

B†(B − B̄) = B† (H(ξξξ∗) +GGG)
(
∂g(ω∗ω∗ω∗)

∂ωωω
− Λ̄ΛΛ

−1
)

(6.23)
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Where:

B† ∈ R4×12 is the pseudo-inverse of B.

This definition of the uncertainties are based on the model derived from the hydraulics,
which was assumed to be static. As such, (6.23) is only a scaling, which is a direct
feedforward on the input, and can be expressed in terms of W∆ as:

W∆(s)
ss
=

 04×4 04×4

04×4 B† (H(ξξξ∗) +GGG)
(
∂g(ω∗ω∗ω∗)
∂ωωω − Λ̄ΛΛ

−1
)
 (6.24)

With the weight function determined, the effect on the robustness can now be investi-
gated. For this, a controller is synthesized using design procedure 2 with γ as a variable.
The singular values of the controller with and without the weight function over frequency
is shown on figure 6.9a and figure 6.9b respectively.
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(a) Singular values of M with unity weight func-
tion plotted over the frequency range [10−3; 104].

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency [rad/s]

0

0.05

0.1

0.15

0.2

0.25

A
m

p
lit

u
d
e
 [

]

(M)

(b) Singular values of M with weight function de-
fined in (6.24) plotted over the frequency range
[10−3; 104].

Figure 6.9: Singular values of the uncertain interconnection M, with and without a weight
function, plotted over the frequency range [10−3; 104].

The unity gain, on figure 6.9a, shows the earlier established conclusion, that the synthe-
sised K, does not guarantee robust stability. When the weight is applied, the singular
values are reduced such that the largest singular value is smaller than 1 over every fre-
quency, thereby resulting in the system fulfilling the criteria for robust stability.
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6.4.5 Synthesis using weighted uncertainties

In section 6.4.4 it was found that the synthesised feedback gain K from design procedure
2 could make the system robust stable, if the weighting function in (6.24) was applied.
From figure 6.9b it can also be seen that the singular values are significantly lower than
one, which means the synthesised K might be more conservative than necessary for
achieving robust stability.

This section therefore focuses on deriving a method for synthesising a K with the knowl-
edge of the weighting function W∆. This procedure follows from Design procedure 2,
however, since the decoupled system, and the new coupled system with the weighting
function has a different number of states, the Lyapunov variable Q cannot be applied
to the new system. Nevertheless, from the definition of Lyapunov stability, the dy-
namic system is defined as ẋ = Ax, which by investigating the state of the new system

xmw =

[
x xw∆

]T

it can be seen the first states are the same as the decoupled, while

the latter are new. This implies a Lyapunov variable can be structured as:

P̄ =

P P1,2

⋆ P2,2

 (6.25)

with P = diag(P1, . . . ,Pn), Pi ∈ R3×3 and Pi,j appropriate dimensions. Using this
Lyapunov variable, robust stability of the coupled system can be determined by solving
the bounded real lemma in (5.10) wrt. the derived Amw, Bmw, Cmw and Dmw matrices
from (6.22), i.e 

AT
mwP̄ + P̄Amw P̄Bmw CT

mw

⋆ −γI4 DT
mw

⋆ ⋆ −γI4

 < 0 (6.26)

with P̄ > 0. Before this inequality can be applied during synthesis, the expression must
be rewritten such that K is pulled out from both Amw and Cmw. This can be achieved
by rewriting Amw and Cmw as:

Amw =

 A 012×4

04×12 Aw∆


︸ ︷︷ ︸

Āmw

+

 Bu 012×4

Bw∆ 04×4


︸ ︷︷ ︸

B̄mw

 K 04×4

04×12 I4


︸ ︷︷ ︸

K̄mw

(6.27)
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Cmw =

[
Dw∆ Cw∆

]
︸ ︷︷ ︸

C̄mw

 K 04×4

04×12 I4


︸ ︷︷ ︸

K̄mw

(6.28)

Using these definition (6.26) is rewritten as:
(Āmw + B̄mwK̄mw)

TP̄ + P̄(Āmw + B̄mwK̄mw) P̄Bmw K̄T
mwC̄T

mw

⋆ −γI4 DT
mw

⋆ ⋆ −γI4

 < 0 (6.29)

This inequality is unfortunately bi-linear, however by using the same method described
in section 6.3 an LMI can be formulated as:

ĀmwQ̄ + Q̄ĀT
mw + B̄mwȲ + ȲTB̄T

mw Bmw ȲTC̄T
mw

⋆ −γI4 DT
mw

⋆ ⋆ −γI4

 < 0 (6.30)

with:

Q̄ = P̄−1
, Ȳ = K̄mwQ̄ =

KQ KQ1,2

QT
1,2 Q22

 (6.30a)

By solving (6.8) and (6.30) with Q̄ > 0 and γ > 0 simultaneously, a K can be synthesised.
It is worth noting that due to the structure of Cmw in (6.28), K only influences the term
if Dw∆ ̸= 0. This means that if the weighing functions does not have a feedforward
term, then γ in (6.30) becomes unbounded by K, and has no influence on the controller
synthesis.

Using the definition of the weight from (6.24) a K is synthesised for γ = 1 and another
for γ as a variable found to be 0.2282. The resulting step response for the two cases can
be seen on figure 6.10.
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(a) Step response of the coupled and decoupled
system with K synthesised using the weight func-
tion (6.24) and γ = 1.
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(b) Step response of the coupled and decoupled sys-
tem with K synthesised using the weight function
(6.24) and γ = 0.2282.

Figure 6.10: Step response of the coupled and decoupled system with K synthesised using the
weight function (6.24).

For γ = 1 it can be seen that the controller results in a more aggressive controller while
the controller for γ = 0.2282 results in a more conservative controller as it guarantees
a stronger robustness. As two different controllers are obtained, it would suggest the
possibility to move between the two controllers and try to enforce some performance on
the closed loop from w to z by varying the amount of achieved robustness.

6.4.6 Examination of performance

In section 6.4.5 robustness was achieved for multiple controllers, therefore it is examined
if a controller K can be synthesised, such that a specific performance of the system can be
achieved. For a system with uncertainties, performance can be specified as nominal-and
robust-performance. Nominal performance disregards the uncertainties and is determined
by the interconnection from w to z being stable. Robust performance expands on this,
and is determined by the interconnection from w to z to be stable for all uncertainties
in ∆∆∆ [6, p.146].

To analyse performance, the general configuration, seen on figure 6.11, can be used. It
should be noted that two additional weights have been added to the system Wz and Ww

as in section 6.4.5, with the same objective of inferring a priori knowledge of the system
into the performance analysis [6, p.138-140]. The choice of weights will be introduced
later.

49



GR-1028 CHAPTER 6. APPLICATION

P

K
N

Figure 6.11: The general configuration with weights on the exogenous input and controlled
output.

The configuration from figure 6.11 can be written as the system:z∆
z

 =

 M N1,2

N2,1 N2,2


w∆

w

 (6.31)

Where M, N1,2, N2,1, and N2,2 describe the transfer function between the respective
inputs to outputs. From this, nominal performance of the system on figure 6.11, is
determined as the relation between z and w, ie. how much the exogenous inputs affect
the controlled outputs. From this, it is clear that this relation is desired to be small, as
this infers that the disturbance has little influence on the controlled outputs. The nominal
performance is quantified in terms of the H∞-norm, and specifically if ||N2,2(s)||∞ ≤ 1

then the system is said to have nominal performance [6, p.146]. From this definition, it
is clear that for any system with nominal performance, no disturbance w can cause an
unstable behavior in regards to the selected z [6]. When determining robust performance,
the impact of the uncertainties must be considered. This requires ∆∆∆ to be included in
the calculations, which is ineffective. This can fortunately be solved by using the main
loop theorem, which defines a new set of uncertainties ∆∆∆e = diag(∆∆∆,∆̂∆∆) where ∆̂∆∆ is a full
block uncertainty, with the same dimensions as N2,2 [6, p.147-151]. Using the extended
uncertainty, robust performance can be determined by calculating µ∆∆∆e(N(s)) ≤ 1. From
this, conditions for robust stability, nominal performance and robust performance can be
expressed as:

Robust stable Nominal performance Robust performance

µ∆∆∆(M(s)) ≤ 1 ||N2,2(s)||∞ ≤ 1 µ∆∆∆e(N(s)) ≤ 1 (6.32)

From these definitions, it can also be concluded that robust stability is guaranteed by
robust performance [6, p.149]. These metrics are determined strictly from the systems
transfer functions, which means impacts from the entire frequency domain is considered.
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However, w and z are often frequency dependent, and therefore should not be considered
over the entire frequency domain [6, p.138-140]. Instead, priori information can be applied
in the analysis using the weight functions Wz and Ww, as shown in figure 6.11, which
result in two new signals:

z̃ = Wz(s)z w = Ww(s)w̃ (6.33)

These new signals can be written into (6.31) as:z∆
z̃

 =

 M N1,2Ww

WzN2,1 WzN2,2Ww


︸ ︷︷ ︸

Nw

w∆

w̃

 (6.34)

From (6.34), it can be seen that the weights does not effect the robust stability, as
it relates to the signals w∆ and z∆. The weights does however change both nominal
performance and robust performance, as these describes the response from w to z, and
the entire Nw respectively. As such these can be written with the weights as:

Nominal performance Robust performance

||WzN2,2Ww(s)||∞ ≤ 1 µ∆∆∆e(Nw(s)) ≤ 1 (6.35)

To validate the performance with the weights, the system (6.22) must be expanded to
include the dynamics of the weights. This is achieved by augmenting the block diagram
from figure 6.8 to contain the new wights Ww and Wz, as depicted in figure 6.12.
Furthermore, the weights are defined in state space as:

Wz(s)
ss
=

 Awz Bwz

Cwz Dwz

 Ww(s)
ss
=

 Aww Bww

Cww Dww

 (6.36)
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Figure 6.12: Block diagram of the input uncertain system with the weighting function W∆,
where the controller K and uncertainty ∆∆∆ has been removed to illustrate the diagram is open-
loop.

Based on figure 6.12 and (6.36) a state space model can be obtained as:

ẋ

ẋww

ẋwz

z∆

z̃

z

y∆

yw

yk

y



=



A 012×4 012×4 Bu 012×4 Bw 012×4 012×4 Bu 012×12

04×12 Aww 04×4 04×4 04×4 04×4 04×4 Bw 04×4 04×12

04×12 04×4 Awz 04×4 Bwz 04×4 04×4 04×4 04×4 04×12

04×12 04×4 04×4 04×4 04×4 04×4 04×4 04×4 Dw∆ 04×12

04×12 04×4 Cwz 04×4 Dwz 04×4 04×4 04×4 04×4 04×12

Cz 04×4 04×4 04×4 04×4 Dz 04×4 04×4 04×4 04×12

04×12 04×4 04×4 04×4 04×4 04×4 ∆∆∆ 04×4 04×4 04×12

04×12 Cww 04×4 04×4 04×4 04×4 04×4 Dww 04×4 04×12

012×12 012×4 012×4 012×4 012×4 012×4 012×4 012×4 012×4 K

Cy 04×4 04×4 04×4 04×4 04×4 04×4 04×4 04×4 04×12





x

xww

xwz

w∆

uz

w

u∆

w̃

u

uk


(6.37)

Similar to in section 6.2, the loops are closed around the controller and the auxiliary
signals z = uz and yw = w, which results in:
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

ẋ

ẋww

ẋwz

z∆

z̃

y∆


=



A + BuK BwCww 012×4 Bu 012×4 BwDww

04×12 Aww 04×4 04×4 04×4 Bww

BwzCz BwzDzCww Awz 04×4 04×4 BwzDzDww

Dw∆K 04×4 04×4 04×4 04×4 04×4

DwzCz DwzDzCww Cwz 04×4 04×4 BwzDzDww

04×12 04×4 04×4 04×4 ∆∆∆ 04×4





x

xww

xwz

w∆

u∆

w̃


(6.38)

From (6.38), Nw can be expressed as the following state space representation.

ẋNw = ANwxNw + BNwwNw

zNw = CNwxNw + DNwwNw
(6.39)

with:

xNw =

[
x xww xwz

]T

, wNw =

[
w∆ w̃

]T

(6.39a)

ANw =


A + BuK BwCww 012×4

012×4 Aww 04×4

BwzCz BwzDzCww Awz

 , BNw =


Bu BwDww

04×4 Bww

04×4 BwzDzDww

 (6.39b)

CNw =

Dw∆K 04×4 04×4

DwzCz DwzDzCww Cwz

 , DNw =

04×4 04×4

04×4 BwzDzDww

 (6.39c)

Similar to when uncertainty weights were introduced in section 6.4.5, this requires the
Lyapunov variable to be expanded as:

P̂ =


P P1,2 P1,3

⋆ P2,2 P2,3

⋆ ⋆ P3,3

 (6.40)

with P = diag(P1, . . . ,Pn), Pi ∈ R3×3 and Pi,j appropriate dimensions. With the model
derived, the performance can be calculated using the bounded real lemma from (5.10).
This however first requires the matrices Bw, Cz, Dz and the weights to be expressed. The
matrix Bw describes how the exogenous inputs affect the system, which for the HVAC
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system is the reference, as no disturbance or sensor noise is treated. As the objective
is to control the air temperature, applying the reference to the air temperature state is
obvious. However, as each AHU has an integral state on the air temperature, applying the
reference to the integral state would drive the air to the desired temperature. Therefore,
Bw is designed to allow the unique air temperature reference for each AHU to enter
independently as:

Bw =



0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1



T

(6.41)

As z is the controlled outputs or errors which is minimised wrt., these are desired to be
expressed as the difference between the reference and air temperature of the individual
AHU. This can be achieved by defining the feedforward matrix Dz as identity and Cz

such the the air temperature is selected from the states. This implies the two matrices
can be defined as:

Cz =



0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0


, Dz = −I4 (6.42)

The weight Ww describe the frequency content of w [5, p.363]. Without the weight w is
a white signal, meaning it acts on every frequency. In practice, this is not the case and
w has some dynamics. For this system, w describes the references, which are typically
low frequency [6, p.138]. For the HVAC system, the reference would be set by a user,
and would theoretically not be adjusted rapidly. As such Ww is modelled as a first-order
low-pass filter with a cutoff frequency at one hertz, which in state space can be defined
as (6.43).

Wz describes behaviour of z, which is the error between the reference and output of the
system. For this system, it is chosen to apply a constant scaling of one, which implies
Wz can be defined as (6.43).

Ww(s)
ss
=

 −2πI4 2I4

πI4 04×4

 , Wz(s)
ss
=

 04×4 04×4

04×4 I4

 (6.43)
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With these definitions, robust performance can be determined by calculating the bounded
real lemma (5.10) on the system (6.39) and validating condition (6.35). While this
allows for analysis, as mentioned it is of interest to synthesise a controller with desired
performance. To synthesise with performance, the system (6.39) could be split so the
controller is separated similar to section 6.4.5. Another option, called frequency weighted
model matching, is explored, where the controller is synthesised so the system response
best match a desired response.

Frequency Weighted Model Matching

As mentioned frequency weighted model matching (FWMM) is a method for synthesising
a controller such that the systems matches a desired frequency response [5, p.363][6,
p.142]. To achieve this, the desired response Wref(s) can be introduced into the block
diagram from figure 6.12 as shown on figure 6.13.

Figure 6.13: Block diagram for the synthesis using frequency weighted model matching, where
the controller K and uncertainty ∆∆∆ has been removed to illustrate the diagram is open-loop.

By investigating the transfer function from w̃ to z̃, it can be seen how z̃ describes the
difference between the actual system output, and the output from the desired response.
This implies that if the error z̃ is zero, then the actual system is equal to the desired
response, hence minimizing z̃ will find a K that makes the system best match the desired
response. Figure 6.13 also has the weighted output zu, which is the weighted input to
the system. If this is appended to z̃, then a controller will also minimize the actuation
needed, since Wuu becomes part of the output to be minimized [5, p.363].

Following the performance definitions (6.35), figure 6.13 can be used to express a robust
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performance problem, for which a condition can be expressed as [5, p.364]:

µ(NDS(s)) ≤ 1,∀s (6.44)

where NDS(s) describes the interconnection between

 w̃

w∆

 and


zref

zu

z∆

 (6.44a)

As mentioned in (5.17) for full uncertainty, the SSV is equivalent to the H∞-norm, for
which an upper bound can be found using (5.10). To apply the bounded real lemma, a
description of the system is required. From figure 6.13 a state space description using
the general control configuration can be expressed as:
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

ẋ

ẋww

ẋwz

ẋwref

ẋwu

z̃

zu

z∆

y∆

yw

y

yk



=



A 012×4 012×4 012×4 012×4 Bw 012×4 Bu

04×12 Aww 04×4 04×4 04×4 04×4 Bww 04×4

BwzCz 04×4 Awz −BwzCwref 04×4 −BwzDwref 04×4 04×4

04×12 04×4 04×4 Awref 04×4 Bwref 04×4 04×4

04×12 04×4 04×4 04×4 Awu 04×4 04×4 04×4

DwzCz 04×4 Cwz −DwzCwref 04×4 −DwzCwref 04×4 04×4

04×12 04×4 04×4 04×4 Cwu 04×4 04×4 04×4

04×12 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×12 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×12 04×4 04×4 Cref 04×4 Dref 04×4 04×4

012×12 Cww 012×4 012×4 012×4 012×4 Dww 012×4

04×12 04×4 04×4 04×4 04×4 04×4 04×4 04×4

012×4 Bu 012×12

04×4 04×4 04×12

04×4 04×4 04×12

04×4 04×4 04×12

04×4 Bwu 04×12

04×4 04×4 04×12

04×4 Dwu 04×12

04×4 Dw∆ 04×12

∆∆∆ 04×4 04×12

04×4 04×4 04×12

012×4 012×4 012×12

04×4 04×4 K





x

xww

xwz

xwref

xwu

w

w̃

w∆

u∆

u

uk



(6.45)

Using this expression, the auxiliary signal yw = w and controller can be pulled into the
expression similar to in section 6.3. This results in a system expressed by:
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

ẋ

˙xww

ẋwz

ẋwref

˙xwu

z̃

zu

z∆

y∆



=



A + BuK BwCww 012×4 012×4 012×4

04×12 Aww 04×4 04×4 04×4

BwzCz −BwzDwrefCww Awz −BwzCwref 04×4

04×12 BwrefCww 04×4 Awref 04×4

BwuK 04×4 04×4 04×4 Awu

DwzCz −DwzDrefCww Cwz −DwzCref 04×4

DwuK 04×4 04×4 04×4 Cwu

Dw∆K 04×4 04×4 04×4 04×4

04×12 04×4 04×4 04×4 04×4

BwDww Bu 012×4

Bww 04×4 04×4

−BwzDwrefDww 04×4 04×4

BwrefDww 04×4 04×4

04×4 04×4 04×4

−DwzDwrefDww 04×4 04×4

04×4 04×4 04×4

04×4 04×4 04×4

04×4 04×4 ∆∆∆





x

xww

xwz

xwref

xwu

w̃

w∆

u∆



(6.46)

From this expression, the state space model from
[
w̃ w∆

]T

to
[
z̃ zu z∆

]T

can be

written as:

ẋDS = ADSxDS + BDSwDS

zDS = CDSxDS + DDSwDS
(6.47)

where

xDS =

[
x xww xwz xwref xwu

]T

, wDS =

[
w̃ w∆

]T

, zDS =

[
z̃ zu z∆

]T

(6.47a)
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ADS =



A BwCww 012×4 012×4 012×4

04×12 Aww 04×4 04×4 04×4

Bwz −BwzDwref Awz −BwzCwref 04×4

04×12 BwrefCww 04×4 Awref 04×4

04×12 04×4 04×4 04×4 Awu


︸ ︷︷ ︸

ĀDS

+



Bu

04×4

04×4

04×4

Bwu


︸ ︷︷ ︸

B̄DS



K

04×4

04×4

04×4

04×4



T

︸ ︷︷ ︸
K̄DS

(6.47b)

CDS =


DwzCz −DwzDrefCww Cwz −DwzCwref 04×4

04×12 04×4 04×4 04×4 Cwu

04×12 04×4 04×4 04×4 04×4


︸ ︷︷ ︸

C̄DS,1

+


04×4

Dwu

Dw∆


︸ ︷︷ ︸

C̄DS,2



K

04×4

04×4

04×4

04×4



T

︸ ︷︷ ︸
K̄DS

(6.47c)

BDS =



BwDww Bu

Bww 04×4

−BwzDwrefDww 04×4

BwrefDww 04×4

04×4 04×4


, DDS =


−DwzDwrefDww 04×4

04×4 04×4

04×4 04×4

 (6.47d)

Using these definitions a controller can be synthesised by solving the bounded real lemma
with a change of variable. That is finding a QDS > 0 such that:

QDSĀ
T
DS + ĀDSQDS + Ŷ

T
DSB̄

T
DS + B̄DSŶDS BDS QDSC̄

T
DS,1 + Ŷ

T
DSC̄

T
DS,2

⋆ −γI8 DT
DS

⋆ ⋆ −γI12

 < 0

(6.48)
where:
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QDS = P−1
DS =



Q Q1,2 Q1,3 Q1,4 Q1,5

⋆ Q2,2 Q2,3 Q2,4 Q2,5

⋆ ⋆ Q3,3 Q3,4 Q3,5

⋆ ⋆ ⋆ Q4,4 Q4,5

⋆ ⋆ ⋆ ⋆ Q5,5


, ŶDS = K̄DSQDS =



KQ

KQ1,2

KQ1,3

KQ4,1

KQ5,1



T

(6.48a)
Q = diag(Q1, . . . ,Qn), Qi ∈ R3×3 and Qi,j appropriate dimensions. Before K can be
synthesised, the desired response must be defined. For this project it is chosen to have a
step response resulting in a settling time of ten minutes. Furthermore, it is desirable to
limit the output of the controller such that the actuator does not saturate. To guarantee
this, the actuation range of the pump must be known. As an example, this project will
use the pump MAGNA3 100-120F 97924315, which is a pump that could be installed in
the system [8]. For this type of pump, the amount of flow, which can be generated by the
pump, is dependent on the height the water needs to be lifted, as shown in figure 6.14.
For this project, it is assumed that the system can be installed in a configuration such
that the height of the water is between 3 and 5 meters, which results in a maximum
flowrate between 66 and 58m3

h .

Figure 6.14: Pump characteristics of MAGNA3 [8].
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With the actuation range found, the desired response must be realised. As the desired
response only requires a settling time of ten minutes, this can be realised as a first order
lowpass filter, for which it is known that after approximately five times the time-constant,
the transient period is finished. This corresponds to defining the settling time threshold
to be within 0.7% of the target value. From this, the desired response is defined as the
state space realization:

Wref(s)
ss
=

 − 1
120I4

1
8I4

1
15I4 04×4

 (6.49)

Since Wref is a first order lowpass filter, the maximal actuation required, will be the
actuation needed to maintain steady-state. As the pump is assumed to be sufficient to
achieve steady state at every reference, this implies Wu can be chosen as 04×4.

Applying Wref with Wu = 04×4 a K can be synthesised, resulting in the system response
seen on figure 6.15a. From figure 6.15a it can be seen, that the controller does not meet
the specified requirement of having a settling time of ten minutes, as it uses 6.667 minutes.
As the synthesis tries to minimize the H∞-norm of the error, to improve the response,
the penalty on the error z̃ was increase, which resulted in the response on figure 6.15b.
The penalty was increased by adjusting the weight Wz to:

Wz(s)
ss
=

 04×4 04×4

04×4 5I4

 (6.50)
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(a) Linear simulated response of the decoupled
and coupled system with a controller synthesised
to match Wref, resulting in a settling time of 290s.

Time [s]

A
ir
 t
e
m

p
e
ra

tu
re

 [
o
C

]

0 100 200 300 400 500 600 700 800
20

20.5

21

Decoupled

Coupled

Ref

0 100 200 300 400 500 600 700 800
20

20.5

21

0 100 200 300 400 500 600 700 800
20

20.5

21

0 100 200 300 400 500 600 700 800
20

20.5

21

(b) Linear simulated response of the decoupled
and coupled system with a controller synthesised
to match Wref with the adjusted weight Wz from
(6.50), resulting in a settling time of 594s.

Figure 6.15: Step response of the coupled and decoupled system with a synthesised K based
on Wref and Wz
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As figure 6.15b shows a desired response using the synthesised controller, the worst case
generated flow for each AHU can then be checked to see if the required flow exceed the
amount which can be delivered from the pumps. The largest flow can be found by setting
the reference to 10° as this is equal to matching the output of the chiller. The response
of the AHU’s can be seen on figure 6.16a, with the corresponding flow on figure 6.16b.
From the flow, it can be seen that the maximum flow is 50m3

h , which is smaller then the
specified limit of 66 and 58m3

h for water heights between 3 and 5 meters specified. It can
therefore be concluded, that the method can synthesise a controller guaranteeing robust
performance, while matching the desired response, and not exceeding the flow limit of
the pump.
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(b) Required flow to bring the system to 10° for a
controller synthesised with operating point in 20°

Figure 6.16: Step- and controller- response for the synthesised controller K

6.4.7 Examination of static output feedback

The previous examinations determined that a state feedback(SF) controller could be
synthesised to be robust stable and achieve a desirable performance. However, the HVAC
system investigated is in practice controlled by a PI-controller, which, for this system,
implies only the air temperature Ta and integral state δ are available. As such, the
following will examine if a static output feedback(SOF) controller exists. As the SOF
controller only has access to Ta and δ, the output matrix Cy from (6.5) becomes:
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Cy,SOF =



0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



(6.51)

This change of output matrix has significant impact on the design procedures previously
developed. The previous methods utilized that Cy = I12 to reduce BKCyQ to BKQ.
This allowed for the change of variable Y = KQ, and recovery of the controller as
K = YQ−1. Attempting this method for Cy,SOF yields the variable Y = KCy,SOFQ,
from which the controller is recovered as K = Y(Cy,SOFQ)−1. This requires Cy,SOFQ
to be non-singular, however, given Cy,SOF ∈ R8×12 and Q ∈ R12×12, the product of the
two would yield a non-square matrix, which would be non-invertible. Furthermore, no
known alternative change of variable is known to exist for SOF [9]. Without the change
of variable, the problem of stabilizing the system becomes the Bilinear Matrix Inequality
(BMI):

(A + BKSOFCy,SOF)
TP + P(A + BKSOFCy,SOF) < 0 (6.52)

with P > 0. To solve this problem, alternative methods are necessary for SOF synthesis.
There exists several methods using iterative algorithms to solve the problem [10]. These
methods has the property that they have monotonic non-decreasing criteria through
iterations, which means the methods converge to a criteria, unfortunately there is no
characterization of dead points, and the cost function often rapidly converges to a local
plateau or minimum [10]. An alternative non-iterative method proposed in [9], firstly
calculates a SF, and then uses that to calculate a SOF. To investigate which, if any,
method performs best, both types are implemented and tested.

When considering the uncertainties, these are assumed to be polytopic similar to the ones
introduced in the examination of real uncertainties. This implies the uncertainties on
the matrices become A(ρ) = A, B(ρ) = B(I4 + diag(ρ)W∆), and Cy,SOF(ρ) = Cy,SOF.
Additionally, robust stability can be verified by guaranteeing stability at each vertex,
which means the BMI on (6.52) can be expressed as:
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(
A + B(I4 + diag(v)W∆)KSOFCy,SOF

)T
P

+ P
(
A + B(I4 + diag(v)W∆)KSOFCy,SOF

)
< 0, ∀ v ∈ vert(P) (6.53)

with P > 0. However, for generalization of the methods and for cleaner notation, A(ρ),
B(ρ), and Cy,SOF(ρ) is used in the following derivations.

The methods also use the notion of a prescribed degree of stability or α-stability, which
moves the closed loop poles to the left side of the line define by Re(s) = −α for α > 0

[11]. To implement α-stability, the A(ρ) matrix is perturbed as:

Aα(ρ) = A(ρ) + αI (6.54)

Applying the perturbation (6.54) to the Lyapunov stability from (5.25) results in an
additional term:

QAT + AQ + YTBT + YB + 2αQ < 0 (6.55)

This additional term αQ bounds the rate of convergence of the states by e−αt [5, p.478].

Iterative method

The iterative method examined, called Iterative Linear Matrix Inequality (ILMI), iter-
atively solve a Quadratic Matrix Inequality (QMI), which guarantees the existence of a
SOF controller [12]. The method has been expanded to include robust stability towards
polytopic uncertainties. The method utilizes the following theorem, derived from (6.53):

Theorem 3 ([12]) The realization (A,B,Cy,SOF) is robust stabilizable towards polytopic
uncertainties ρ via static output feedback if and only if there exists matrices P > 0 and
KSOF satisfying the following matrix inequality:

A(ρ)TP+PA(ρ)−PB(ρ)B(ρ)TP

+
(
B(ρ)TP+KSOFCy,SOF(ρ)

)T(
B(ρ)TP+KSOFCy,SOF(ρ)

)
< 0,

∀ρ ∈ P (6.56)

This theorem guarantees the existence of a SOF controller, however similar to the BMI
(6.53), this QMI cannot be solved efficiently. Some QMI can be transformed into LMI
by using Schur complement, however due to the sign, the term −PB(ρ)B(ρ)TP cannot
be transformed using Schur complement. However, PB(ρ)B(ρ)TP can be replaced by
introducing a new variable X as [12]:

(X − P)TB(ρ)B(ρ)T(X − P) ≥ 0, ∀ρ ∈ P (6.57)
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This term is guaranteed to be positive semi definite [12]. Expanding the parentheses
leads to an inequality:

XTB(ρ)B(ρ)TP + PTB(ρ)B(ρ)TX − XTB(ρ)B(ρ)TX ≤ PB(ρ)B(ρ)TP,

∀ρ ∈ P (6.58)

The left hand side of this inequality can replace PB(ρ)B(ρ)TP in (6.56), which by
applying Schur complement results in the matrix inequality (6.59). This replacement of
variables results in (6.59) being a sufficient condition for (6.56) when X is fixed.A(ρ)TP + PA(ρ)− XTB(ρ)B(ρ)TP − PTB(ρ)B(ρ)TX + XTB(ρ)B(ρ)TX(

B(ρ)TP + KSOFCy,SOF(ρ)
)

(
B(ρ)TP + KSOFCy,SOF(ρ)

)T

−I

 < 0, ∀ρ ∈ P (6.59)

with P > 0, X > 0 and F. When X is fixed, the matrix inequality (6.59) has no
quadratic terms and becomes an LMI. Fixing X, changed (6.59) to only be a sufficient
condition for the existence of a stabilizing SOF [12]. This is also apparent from (6.58),
as this inequality becomes an equality when P = X, and hence (6.59) is a necessary and
sufficient condition when P = X. The necessity of (6.59) can be recovered by perturbing
Aα(ρ) = A(ρ)− (α/2)I12, α ≥ 0 [12]. Applying the perturbation to the (6.59) results in:A(ρ)TP + PA(ρ)− αP − XTB(ρ)B(ρ)TP − PTB(ρ)B(ρ)TX + XTB(ρ)B(ρ)TX(

B(ρ)TP + KSOFCy,SOF(ρ)
)

(
B(ρ)TP + KSOFCy,SOF(ρ)

)T

−I

 < 0, ∀ρ ∈ P (6.60)

To illustrate the necessity, suppose that (6.56) holds, then (6.60) must also hold for some
α > 0 since:

XTB(ρ)B(ρ)TP + PTB(ρ)B(ρ)TX − XTB(ρ)B(ρ)TX + αP ≥ PB(ρ)B(ρ)TP,

∀ρ ∈ P (6.61)

This implies (6.56) is sufficient for (6.60) given (6.61) or in other words (6.60) and (6.61)
is necessary for (6.56). Comparing this implementation of the perturbation to (6.54), it
shows that this moves the closed loop poles to the left of Re(s) = α. This implies that by

65



GR-1028 CHAPTER 6. APPLICATION

reducing α the poles are moved towards the left half plane. As α becomes smaller, (6.60)
closes in to the feasibility of (6.56) [12]. From this interpretation of α and from (6.60)
and (6.59), if α = 0, then (6.60) becomes sufficient for (6.56). As such, the sequence of α
is desired to be non-increasing. To illustrate this is the case, note that (6.65a) is feasible
for the optimal solution from the previous iterations Pi = P∗

i-1 and αi = α∗
i-1 [12]. This

implies (6.65a) for iteration i becomes:A(ρ)TPi + PiA(ρ)− αiPi − PT
i B(ρ)B(ρ)TPi

(
B(ρ)TPi + KSOFCy,SOF(ρ)

)T(
B(ρ)TPi + KSOFCy,SOF(ρ)

)
−I

 < 0

, ∀ρ ∈ P (6.62)

However, since (6.65a) is sufficient for (6.62), then by solving step 2 in algorithm 1 the
optimal αmust fulfil α∗

i ≤ α∗
i-1 [12]. Lastly, to guarantee the convergence of the algorithm,

the sequence of P∗
i must be decreasing, which is the case due to the minimisation of the

trace(Pi) in (6.66) [12].

Before the iterative steps of the algorithm can be performed, an initial X must be found.
A suitable X can be derived from the Algebraic Riccati equation ATP+PA−PBBTP+

Q = 0 [12]. Expanding this to include stability at each vertex, the ARE can be solved
from the optimisation problem:

maximize trace(P) (6.63)

subject to: A(ρ)TP + PA(ρ) + Q PB(ρ)

B(ρ)TP I

 > 0, ∀ ρ ∈ P

P > 0

(6.63a)

Based on this, the ILMI algorithm is given as in algorithm 1. However, due to numerical
errors when solving (6.65), (6.66) can become infeasible in which case, αi = α∗

i +∆α, for
∆α > 0 and (6.66) is solved again [12].
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Algorithm 1: Iterative linear matrix inequality [12]
Input : A(ρ), B(ρ), Cy,SOF(ρ), Q > 0

Output: KSOF

step 1: Solve the optimisation problem

maximize trace(P) (6.64)

subject to:A(ρ)TP + PA(ρ) + Q PB(ρ)

B(ρ)TP I

 > 0, ∀ ρ ∈ P

P > 0

(6.64a)

Set i = 1 and Xi = P
step 2: Solve the LMI problem:

minimize αi (6.65)

subject to:


A(ρ)TPi + PiA(ρ)− αPi − XT

i B(ρ)B(ρ)TPi − PT
i B(ρ)B(ρ)TXi

+ XT
i B(ρ)B(ρ)TXi(

B(ρ)TPi + KSOFCy,SOF(ρ)
)

(
B(ρ)TPi + KSOFCy,SOF(ρ)

)T

−I

 < 0, ∀ρ ∈ P

P > 0 (6.65a)

Set α∗
i = αi

step 3: If α∗
i ≤ 0, KSOF is a stabilizing SOF for the system, stop

step 4: If α∗
i > 0 solve the LMI problem:

minimize trace(Pi) (6.66)

subject to: (6.65a) with αi = α∗
i

Set P∗
i = Pi

step 5: If (6.66) is infeasible, set αi = α∗
i +∆α, for ∆α > 0 and go to step 4.

step 6: If ||Xi − P∗
i || < δ, a prescribed tolerance, the system might not be SOF

stabilizable, stop. Else set i = i+ 1 and Xi = P∗
i-1 and go to step 2.
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The termination criteria in step 3 terminates when a stabilizing controller has been
found. From the implementation of α, whenever this value is lower than zero, every
closed loop pole is in the left half plane, which means the system is stabilized by KSOF.
The termination criteria in step 6, ||Xi −P∗

i || < δ terminates the algorithm because the
system might not be stabilizable by a SOF. The condition originates from (6.58), where
the inequality becomes an equality for P = X. This implies from theorem 3, that since
the algorithm has not found a KSOF, then the system is not be stabilizable by SOF.

Applying the algorithm to the HVAC system with the uncertainty set P̄ =
{
ρ ∈ P | ∆ρ =

[−1,1]
}

, yields a feasible solution with the step response shown on figure 6.17.
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Figure 6.17: Step response of the coupled and decoupled system with KSOF synthesised using
algorithm 1.

From the response it can be seen the controller is able to reach the reference in a desirable
manner, as it rises slowly and has no overshoot. The response is however much faster than
the desired response investigated in section 6.4.6. As such it is of interest to investigate
if a better response can be achieved. Before this is investigated, the three step method
is examined.

Three step method

This method synthesises a stabilizing controller for (6.53) by transforming the problem
to an LMI by using a P calculated from a previous equation. P has significant impact
on which controllers can be synthesised from solving (6.53), and as such, P should be
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found such that a stable controller exists. To find a P the method utilizes that [13]:

Theorem 4 ([13] [9]) The realization (A,B,Cy,SOF) is robust stabilizable towards poly-
topic uncertainties ρ via static output feedback if and only if the realization is simultane-
ously stabilizable and detectable (SSD).

This means that SSD guarantees the existence of SOF controller which stabilizes the
system. To determine if a realization is SSD the following must be feasible [13]:

A(ρ)TP + PA(ρ)− PB(ρ)B(ρ)TP < 0, ∀ ρ ∈ P
A(ρ)TP + PA(ρ)− σCy,SOF(ρ)

TCy,SOF(ρ) < 0, ∀ ρ ∈ P
(6.67)

with P > 0 and a scalar σ > 0. This condition guarantees the existence of a SOF
controller, however (6.67) is a QMI, and it is therefore desirable to reformulate the
stability condition. This can be achieved by implementing a SF controller KSF, which
means (6.67) becomes:(

A(ρ) + B(ρ)KSF

)T
P + P

(
A(ρ) + B(ρ)KSF

)T
< 0, ∀ ρ ∈ P

A(ρ)TP + PA(ρ)− σCy,SOF(ρ)
TCy,SOF(ρ) < 0, ∀ ρ ∈ P

(6.68)

with P > I and a scalar σ > 0. If this LMI is feasible, then the realization is Simul-
taneously K-stable and detectable (SKSD), meaning the given K stabilizes the system
while simultaneously the system is detectable. From the definition of SKSD, it is a suf-
ficient condition for SSD [13]. This implies that if (6.68) is feasible, then the realization
(A(ρ),B(ρ),Cy,SOF(ρ)) is stabilizable by a static output feedback. Given this, the P
found from (6.68) can be used in (6.53). It is worth noting that in (6.68) P− I > 0, this
change is to improve numerical design in (6.53) [13]. Simply solving (6.53) using P will
find any controller for which (6.53) is feasible. This could potentially lead to controllers
with large values, which for most systems is undesirable. To rectify this, the feasibil-
ity problem (6.53) is turned into a minimisation problem, where the values of KSOF is
minimized [13]. This is achieved by minimising the vectorization k = vec(KSOF) wrt. a
scaled-2-norm defined by a positive definite M [13]. That is ||k||M2 =

√
kTM−1k. In-

troducing this minimisation to the feasibility problem (6.53) results in the minimisation
problem:

minimize γ (6.69)
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subject to: γ kT

k M

 > 0

(
A(ρ) + B(ρ)KSOFCy,SOF(ρ)

)T
P + P

(
A(ρ) + B(ρ)KSOFCy,SOF(ρ)

)
< 0,

∀ ρ ∈ P

(6.69a)

where k is the vectorization of KSOF, and M is a positive definite matrix describing
the norm for which k is minimized. (M = I corresponds to minimising KSOF wrt. the
Frobenious norm).

From (6.69), it is clear that the KSOF found is dependent on the P used, this implies
that there might be a smaller KSOF wrt. the chosen scaled-2-norm, however to find this,
a corresponding P must be found first [13]. Furthermore, given P is dependent on KSF,
it is clear that the choice of SF impacts the SOF, which unfortunately means that there
might exist some SSD systems where a KSF is found, but (6.68) is infeasible [13]. As
this is the case, it is important that KSF is derived such that the system is SKSD [9]. A
method for deriving a KSF, which for LTI systems works in most cases, can be formulated
in terms of minimising an invariant ellipsoid while solving for stability of the SF system
(6.14) [9]. If the size of the ellipsoid is interpreted as the sum of its radii, then this can
be achieved by the LMI minimisation problem [9]:

minimize trace(Q) (6.70)

subject to:

Q − I > 0

QA(ρ)T + A(ρ)Q + YTB(ρ)T + B(ρ)Y < 0, ∀ ρ ∈ P
(6.70a)

Summarising the method, the algorithm for synthesising a controller is formulated as:
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Algorithm 2: Synthesis of static output feedback controller [9]
Input : A(ρ), B(ρ), Cy,SOF(ρ) and α
Output: KSOF

step 1: Define Aα(ρ) = A(ρ) + αI
step 2: Solve the LMI problem:

minimize trace(Q) (6.71)

subject to:

Q − I > 0

QAα(ρ)
T + Aα(ρ)Q + YTB(ρ)T + B(ρ)Y < 0, ∀ ρ ∈ P

(6.71a)

step 3: Recover the SF controller
KSF = YQ−1 (6.72)

step 4: Solve the LMI feasibility problem

find P, σ (6.73)

such that:

P > I(
Aα(ρ) + B(ρ)KSF

)T
P + P

(
Aα(ρ) + B(ρ)KSF

)
< 0, ∀ ρ ∈ P

Aα(ρ)
TP + PAα(ρ)− σCy,SOF(ρ)

TCy,SOF(ρ) < 0, ∀ ρ ∈ P
σ > 0

(6.73a)

step 5: Solve the LMI minimisation problem:

minimize γ (6.74)

subject to: γ kT

k M

 > 0

(
Aα(ρ) + B(ρ)KSOFCy,SOF(ρ)

)T
P + P

(
Aα(ρ)

+ B(ρ)KSOFCy,SOF(ρ)
)
< 0, ∀ ρ ∈ P

(6.74a)

where k is the vectorization of KSOF, and M is a positive semidefinite
matrix describing the norm for which k is minimized. (M = I is the
Frobenious norm).
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Applying the algorithm to the HVAC system with α = 0 the uncertainty set P̄ =
{
ρ ∈

P | ∆ρ = [−1,1]
}

, yields a feasible solution with the step response shown on figure 6.18a.
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(a) Step response of the coupled and decoupled
system with KSOF synthesised using algorithm 2
with α = 0.
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Figure 6.18: Step response of the coupled and decoupled system with KSOF synthesised using
algorithm 2.

From figure 6.18a it can be seen that the response of the system is aggressive and over-
shoots by a significant amount before quickly dropping and settling at the reference value.
It is important to note that SKSD is dependent on the SF controller found in step 2 and
3 of algorithm 2. This implies that by adjusting the SF controller, the SOF controller
will also be adjusted. As such, the algorithm is attempted with α = 0.5, unfortunately
this resulted in a conservative controller that was unable to adjust to the reference. This
was assumed to be because the uncertainty requires the α-stability to be satisfied at
each vertex. Nevertheless, to illustrate the influence of α, step responses for systems
with controllers synthesised on the nominal plant for different values of α is shown on
figure 6.18b. From figure 6.18b, it can be seen how adjusting α impacts the response
by reducing the overshoot. This results illustrate how α affects the system, while not
being applicable for the system investigated due to the uncertainties. Due to this, it is
investigated if different methods for deriving the SF controller can yield a more desirable
performing SOF controller.

Comparison

From figure 6.17 and figure 6.18 it can be seen that very different responses is achievable
for SOF controllers. Particular the different synthesis methods resulted in very different
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responses, as the three step method produced more aggressive controllers, while the ILMI
is more relaxed.

6.4.8 Examination of SOF with performance

The previous examination showed two different methods for deriving a robust SOF con-
troller for the HVAC system. This examination expands on this and introduces perfor-
mance through FWMM as described in section 6.4.6. To introduce FWMM, the realiza-

tion (A,B,Cy,SOF) must be expanded to include the relation between w̃ and
[
z̃ zu

]T

.

This relation can be expressed by the open loop system in (6.45). By removing the rows
and columns relating to w∆ and z∆ and closing the control loop, the closed loop system
becomes:

ẋDS = ADSxDS + BDSw̃

zDS = CDSxDS + DDSw̃
(6.75)

where

xDS =

[
x xww xwz xwref xwu

]T

, zDS =

[
z̃ zu

]T

(6.75a)

ADS =



A BwCww 012×4 012×4 012×4

04×12 Aww 04×4 04×4 04×4

Bwz −BwzDwref Awz −BwzCwref 04×4

04×12 BwrefCww 04×4 Awref 04×4

04×12 04×4 04×4 04×4 Awu


︸ ︷︷ ︸

ĀDS

+



Bu

04×4

04×4

04×4

Bwu


︸ ︷︷ ︸

B̄DS

KSOF



Cy,SOF

08×4

08×4

08×4

08×4



T

︸ ︷︷ ︸
C̄DS,2

(6.75b)

CDS =

DwzCz −DwzDrefCww Cwz −DwzCwref 04×4

04×12 04×4 04×4 04×4 Cwu


︸ ︷︷ ︸

C̄DS,1

+

04×4

Dwu


︸ ︷︷ ︸

D̄DS,1

KSOF



Cy,SOF

08×4

08×4

08×4

08×4



T

︸ ︷︷ ︸
C̄DS,2

(6.75c)
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BDS =



BwDww

Bww

−BwzDwrefDww

BwrefDww

04×4


, DDS =

−DwzDwrefDww

04×4

 (6.75d)

The system (6.75) is missing the uncertainties from (6.47). This is due to the SOF
investigation assuming the uncertainties are polytopic, and hence defined explicitly in
Bu = B(ρ). That is B(ρ) = B(I4 + diag(ρ)W∆), ∀ρ ∈ P. Using this description the
two previous SOF algorithms are investigated to include the FWMM.

ILMI

The H∞ bound used in FWMM can be introduced into the ILMI algorithm by redefining
the variables of the realization (A,B,Cy,SOF) [12]. By writing the bounded real lemma
for the closed loop system (6.75), it can be shown that it is equivalent to:

ĀTP̄ + P̄Ā + P̄B̄KSOFC̄ + (P̄B̄KSOFC̄)T < 0 (6.76)

where

P̄ =


PDS 028×4 028×8

04×28 I4 04×8

08×28 08×4 I8

 , Ā =


ĀDS BDS 028×8

04×28 −γ/2I4 04×8

C̄DS,1 DDS −γ/2I8

 , (6.76a)

B̄ =


B̄DS(ρ)

04×4

D̄DS,1

 , C̄ =

[
C̄DS,2 08×4 08×8

]
(6.76b)

with PDS > 0. The inequality (6.76), is the static output stability problem (6.52) for the
system defined by (Ā,B̄,C̄), and hence can be solved using the ILMI algorithm 1. Unlike
the method from section 6.4.6, when implemented on the ILMI algorithm, γ cannot be
minimised and is instead selected to a specific value before the algorithm is started.
When γ is a constant, it becomes a tuning parameter, which is inversely related to Wz.
Due to this, γ is selected to be one, and instead Wz is used to tune the response in a
manner similar to section 6.4.6.

This change of variable cause the optimisation problem for finding the initial X from
(6.63) to become an unbounded problem. Instead, to find an initial X, the SF with
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FWMM from section 6.4.6 can be solved, and from that solution X = Q−1
DS can be used.

Choosing X as this, guarantees the initial value is stable for state feedback, similar to
how (6.63) found an initial stable X in the original algorithm.

Using the desired reference from (6.49) with Wu = 04×4 and the output weight Wz from
(6.77) a controller was synthesised, with the system response shown on figure 6.19.

Wz(s)
ss
=

 04×4 04×4

04×4 6.5I4

 (6.77)
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Figure 6.19: Step response of the coupled and decoupled system with a KSOF synthesised from
ILMI algorithm with FWMM.

From the step response on figure 6.19, it can be seen that the synthesised SOF controller
yields a response similar to the desired Wref. It can therefore be concluded, that the
procedure can synthesise a robust stable controller with a desired system response.

Three step method

FWMM can be included into the three step method by adjusting step 2, calculation of
the SF controller, and step 4, finding the P that is used in the SOF calculation. This
approach assumes that by adjusting these two steps to find a SF matching the desired
response, and then applying that to find a P, this P yields a SOF controller with a
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similar response to the SF. The initial SF controller can be found by solving:

minimize γ (6.78)

subject to:
QDSĀ

T
DS + ĀDSQDS + Ŷ

T
DSB̄

T
DS(ρ) + B̄DS(ρ)ŶDS BDS QDSC̄

T
DS,1 + Ŷ

T
DSC̄

T
DS,2

⋆ −γI4 DT
DS

⋆ ⋆ −γI8

 < 0,

∀ρ ∈ P (6.78a)

QDS =



Q Q1,2 Q1,3 Q1,4 Q1,5

⋆ Q2,2 Q2,3 Q2,4 Q2,5

⋆ ⋆ Q3,3 Q3,4 Q3,5

⋆ ⋆ ⋆ Q4,4 Q4,5

⋆ ⋆ ⋆ ⋆ Q5,5


> 0, γ > 0 (6.78b)

with Q = diag(Q1, . . . ,Qn), Qi ∈ R3×3, Qi,j appropriate dimensions, and the matrices
given by (6.75). From this, the SF controller can be found as K̄DS = ŶDSQ−1

DS and used
to find a P by solving:

minimize γ (6.79)

subject to:
(
ĀDS + B̄DS(ρ)K̄DS

)T PDS + PDS
(
ĀDS + B̄DS(ρ)K̄DS

)
PDSBDS

(
C̄DS,1 + D̄DS,1K̄DS

)T
PDSBT

DS −γI4 DT
DS(

C̄DS,1 + D̄DS,1K̄DS
)

DDS −γI8

 < 0,

∀ρ ∈ P (6.79a)

PDS =



P P1,2 P1,3 P1,4 P1,5

⋆ P2,2 P2,3 P2,4 P2,5

⋆ ⋆ P3,3 P3,4 P3,5

⋆ ⋆ ⋆ P4,4 P4,5

⋆ ⋆ ⋆ ⋆ P5,5


> 0, γ > 0 (6.79b)
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with P = diag(P1, . . . ,Pn), Pi ∈ R3×3 and Pi,j appropriate dimensions. From this
equation, P can be extracted from PDS in (6.79b) and used to solve the minimisation
problem (6.74) to find a SOF controller, with the desired performance.

When synthesising a controller to match the desired response, the algorithm fails to
produce a SOF controller from the derived SF controller. This result shows the downside
to this algorithm, while it is faster than the ILMI, it does not cover the entire SSD space,
but only SKSD, which in this case results in it not being able to find a SOF controller,
even though the ILMI algorithm can produce one.
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Results 7
The previous chapter resulted in the development of two design procedures, one for a
SF controller and one for a SOF controller, where their response could be matched to
a desired response and fulfil the requirements from chapter 3. Controllers synthesised
using these design procedures showed a satisfactory response based on a linear simulation
of the system. These linear simulations does however not represent the real system
accurately. As such, the controllers synthesised using the procedures are tested on a
non-linear simulation of both the coupled and decoupled system, which gives a better
understanding of the expected real world behaviour.

The controllers are synthesised to match the desired response of a first order system,
with a settling time of ten minutes. To achieve the response the tuning parameters for
the design procedures was chosen as:

Wref(s)
ss
=

 − 1
120I4

1
8I4

1
15I4 04×4

 , Wu(s)
ss
=

 04×4 04×4

04×4 04×4

 (7.1)

Wz,SF(s)
ss
=

 04×4 04×4

04×4 5I4

 , Wz,SOF(s)
ss
=

 04×4 04×4

04×4 6.5I4

 (7.2)

The response of the two simulations can be seen on figure 7.1a and figure 7.1b.
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(a) Step response of the coupled and decoupled
system, using the nonlinear simulation, with a SF
controller.
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(b) Step response of the coupled and decoupled
system, using the nonlinear simulation, with a
SOF controller.

Figure 7.1: Step response using the nonlinear simulation.

From figure 7.1a, it can be seen the response, for both the coupled and decoupled system,
matches the desired response as the response has a settling time of 594 s. Looking at
figure 7.1b, these responses also follow the desired response, however they settle slightly
slower. Specifically the settling time was found to be 608s. From this, it can be concluded
that both design procedures synthesises a controller with a satisfactory performance,
and even though the SF performs most similar to the desired response, the small lose in
performance in SOF is acceptable considering the wider application for SOF controllers.
To visualise how well the FWMM is, the desired response is shown on figure 7.2 with the
response of AHU 1, from both the SF and SOF simulations.
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Figure 7.2: Step response of the desired and AHU 1 from both the SF and SOF simulations.

Figure 7.2 shows the responses follows almost identical to the desired response. To
illustrate the design procedures are able to follow other responses, a new response with
a settling time of two minutes is chosen for which controllers are synthesised. These
responses can be seen on figure 7.3, and was found by adjusting the desired response to:

Wref(s)
ss
=

 − 1
24I4

1
4I4

1
6I4 04×4

 (7.3)
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(a) Step response of the coupled and decoupled
system, using the nonlinear simulation, with a SF
controller.
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(b) Step response of the coupled and decoupled
system, using the nonlinear simulation, with a
SOF controller.

Figure 7.3: Step response using the nonlinear simulation with a two minute settling time as a
desired response.

From figure 7.3a, it can be seen that the response adjusted to the change of Wref, however
it has a slower settling time of 164 s. On the other hand the SOF controller with the
system response on figure 7.3b, has a settling time of 121 s, which is close to the desired
response of 120 s. This shows that both design procedures are able to adjust to a change
in desired response.
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This chapter explore and analyse the outcome of the project, with particular focus on
assumptions and design choices made in the preceding chapters, and how these correspond
to real life scenarios. Furthermore, alternatives which might improve design or real world
applicability is introduced and discussed.

The water to air heat exchanger model derived in section 4.1, was assumed to be
homogeneous, meaning the entire water to air heat exchanger (WAHE) was discretized
as a single control volume, which results in equal convection along the control volume.
If instead, the WAHE was modelled using multiple control volumes cascaded, the tem-
perature changes through the WAHE would be described, which would better describe
the dynamics, at the cost of increasing the complexity. The increased complexity would
greatly impact the design of the state feedback (SF) controller, as this requires a mea-
surement or estimate for each state, hence more sensors or an observer would be required.
On the other hand, the static output feedback (SOF) would properly not be affected,
as it only requires the knowledge of the currently available outputs. This implies the
method for SOF may be applied. Nevertheless, the exact impact on both SF and SOF
could be of interest to investigate.

The hydraulic model derived in section 4.2, was modelled as static due to the as-
sumption that the hydraulics is significantly faster then the thermodynamics. For the
system model, this assumption is valid, however, for the weight of the uncertainty, the
missing dynamics leaves out information, which could have been used to better describe
the uncertainties. This in turn affects the determinations of robust stability, as the fre-
quency content could be significant compared to the constant gain used. This could
either open or limit the uncertainty range, for which the impact could be interesting to
examine.

Noise and disturbances of the exogenous input were disregarded in the report to
simplify the system derivation and testing of the design procedures, as stated in sec-
tion 6.2. If these were modelled, it would better describe how these affect the system.
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However, the disturbances would describe deviations in the model, which could poten-
tially be included in uncertainties, and therefore be accounted for in the controller design.
Furthermore, the controller design includes an integrator, which compensates for any low
frequency disturbances, e.g. the airflow and inlet water temperature. The noise in the
exogenous input consist of measurement noise of the system, and as such is usually high
frequency. Given the lowpass frequency response of the system, these high frequency
disturbances is attenuated, furthermore, since the system has feedback, the impact of
the noise is reduced. Nevertheless, the noise and disturbances could be investigated for
a more thorough analysis.

The weights used to tune the stability and performance of the synthesized controller,
were all structured as either pass though or a first order low-pass filter. These simple
structures were chosen, as their effect on the system is easy to understand. More complex
filters, which might lead to a better stability and/or performance, could be used. These
however, require more knowledge about the specific system and desired response, so
specific parts can be targeted, whereas the simple filters aim at a more general part of
the response. Nevertheless, investigating the impact of higher order weights could be of
interest.

The three step method could not synthesise a SOF controller matching the desired
response, which lead to the assumption that the system was not simultaneously k-stable
and detectable (SKSD). However, the results of the previous steps in the algorithm was
investigated. Here it was found that step 4 found a P and σ fulfilling the constraints
(6.73), which implied the system should be SKSD, and as such a controller should exist
for the given P. Following this, the found P was used in the condition for simultaneously
stabilizable and detectable (SSD) from (6.67), which found the condition was not meet.
This discovery contradicts that SKSD is sufficient for SSD, furthermore, the same was
validated for the robust stability case in section 6.4.7, which also found the system was
not SSD for the given P. This discovery implies that either the algorithm may be
implemented wrong, or an error exists in the theory behind the algorithm.

The uncertainties was, in this project, interpreted as either norm-bounded by the
∞-norm or as polytopic. The different interpretations is due to difficulties in calculating
real norm-bounded uncertainties with the structured singular value. Instead, the poly-
topic uncertainties where introduced, which are almost identical. The norm-bounded
uncertainties are defined as ||∆||∞ ≤ 1, which defines an n-dimensional solid hypercube.
Similar, the polytopic uncertainties are defined as the convex hull of the vertices, and
given the vertices are {−1,1}n, these also define an n-dimensional solid hypercube. As
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such, the difference between the uncertainties are that this project only allows real ver-
tices in the polytopic case, while the norm-bounded also include complex uncertainties.
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Conclusion 9
This report set out to derive a design procedure that could synthesise a robust controller
for an heating ventilation and air condition (HVAC) system with a distributed pump
design. The synthesised controller should stabilize the HVAC both with the coupling in
the hydraulic network and without the coupling.

To that end, a model was derived for the HVAC with distributed pumping. Firstly,
the thermodynamics in the water to air heat exchanger was expressed in terms of a one
phase energy balance with the water and air temperature as states and using the flow as
inputs. After this, the hydraulic network was described using a static expression, which
gave a relation between the flow and angular velocity of the pumps. The hydraulics was
modeled in two different ways, one where the coupling of the pumps were expressed, and
one where these were ignore. Following this, the two models were used to replace the flow
as inputs in the thermodynamics, which resulted in two nonlinear state space models.
Lastly, the models where linearised resulting in two linear state space models.

Following this, different procedures was examined to determine if robust stability could
be achieved. The initial method, based on [3], was not able to achieve robust stability.
Building on the approach, it was found that a weight, describing the uncertainty, could
be obtained from the difference between the coupled and decoupled model. Using this
uncertainty, a method was found that could synthesis a state feedback (SF) controller
which robustly stabilized the system and with a response that can be designed by model
matching. Based on the achieved SF, it was then examined if a static output feedback
(SOF) controller could be synthesised with similar results. Redefining the uncertainties
as polytopic, a procedure, using linear parameter varying theory, was designed such that
a robust stable SOF controller was obtained, which were also tuneable by frequency
weighted model matching.

The SF and SOF controllers, which were synthesised from the linear system, was tested
on the nonlinear simulations to validate their performance in a more realistic setting.
These simulations showed both controllers performed close to identical to the desired
response, with the SF controller performing slightly better than the SOF.
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Determination of
controllability I

This appendix explores the controllability of the individual WAHE’s when they have
been linearised using a first order Taylor approximation. To determine wether the model
is controllable, the determinant of the controllability matrix is calculated to determine if
the matrix has full order. The controllability matrix is defined as:

CCC =

[
B AB . . . An−1B

]
(I.1)

The matrices A and B are found from the linearised model (4.22) as:

A =


−
(

q∗i
Vw,i

+ Bi
CwρwVw,i

)
Bi

CwρwVw,i
0

Bi
CaρaVa,i

−
(

Qi
Va,i

+ Bi
CaρaVa,i

)
0

0 1 0



B =


(
Tw,c−T ∗

w,i
Vw,i

)
0

0


(I.2)

The individual columns of the controllability matrix is calculated individually to simplify
the process. Note that B only has a value on the first entry, which means that only the
first column in A and A2 will have an influence in the controllability matrix, and as such
only these columns are found. In the case of A the first column is already derived, and
therefore the first column (A2

1) of A2 is calculated.

A2
1 =


(

q∗i
Vw,i

+ Bi
CwρwVw,i

)2
+ Bi

CwρwVw,i

Bi
CaρaVa,i

Bi
CaρaVa,i

(
−
(

q∗i
Vw,i

+ Bi
CwρwVw,i

)
−
(

Qi
Va,i

+ Bi
CaρaVa,i

))
Bi

CaρaVa,i

 (I.3)
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With A2
1 derived, the controllability matrix can be expressed as:

CCC =


(
Tw,c−T ∗

w,i
Vw,i

)
−
(

q∗i
Vw,i

+ Bi
CwρwVw,i

)(
Tw,c−T ∗

w,i
Vw,i

)
0 Bi

CaρaVa,i

(
Tw,c−T ∗

w,i
Vw,i

)
0 0((

q∗i
Vw,i

+ Bi
CwρwVw,i

)2
+ Bi

CwρwVw,i

Bi
CaρaVa,i

)(
Tw,c−T ∗

w,i
Vw,i

)
Bi

CaρaVa,i

(
−
(

q∗i
Vw,i

+ Bi
CwρwVw,i

)
−
(

Qi
Va,i

+ Bi
CaρaVa,i

))(
Tw,c−T ∗

w,i
Vw,i

)
Bi

CaρaVa,i

(
Tw,c−T ∗

w,i
Vw,i

)

 (I.4)

From this the determinant is calculated using the co-factor method which results in the
determinant:

det(CCC) =
(
Tw,c − T ∗

w,i

Vw,i

)3(
Bi

CaρaVa,i

)2

(I.5)

For a system to be controllable the determinant must be different from zero. From (I.5)
the specific heat capacity (Ca) and density (ρa) are physical constants which are different
from zero, in addition the heat transfer coefficient (Bi) is different from zero, since there
is always an exchange of heat between air and water. The presence of the WAHE implies
the volumes Vw,i and Va,i are different from zero. This means that that the determinant
is zero only when the temperature of the water is the same as the temperature of the
chiller.

Given the operating point of the water is found from the operating point of the air
temperature, it is investigated for which values of T ∗

a,i the determinant becomes zero.
Using (4.21) where T ∗

w,i = Tw,c and isolating for the air temperature results in:

T ∗
a,i =

Tw,cBi + CaρaQiTa,amb

(Bi + CaρaQi)
(I.6)

For the four WAHEs and their parameters found on table 6.1, the temperatures resulting
in singularities are:

Ta =



289.4

289.4

289.4

289.4


(I.7)
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This appendix briefly gives an introduction to the software used to solve the optimisation
problems and issues regarding this.

II.1 YALMIP

To solve the problems a toolbox for MATLAB called YALMIP is utilized. YALMIP
is a modelling and optimisation toolbox that is capable of solving a variety of optimi-
sation problems. YALMIP does not exactly solve the problems itself, instead it is a
general interface to multiple solvers that can be installed [14]. This means that the same
definitions and notation can be used for every solver supported by YALMIP, and then
YALMIP will figure out the translation to the specific solver. For this project a solver
called MOSEK is utilized. As mentioned YALMIP mainly functions as a interface, and
as such explanations of its definitions and structure is necessary.

II.1.1 Variables

When defining optimisation variables the sdpvar(n,m,type,field) function is called. This
function then generates a variable of the size and type defined by the input parameters.
The first two parameters indicate the size of the variable, while the type referees to the
structure of the variable either ’symmetric’ or ’full’ and the last referees to the variable
being complex or real. It is worth noting the function can be overloaded when creating
symmetric matrices, and as such a symmetric n× n matrix can be defined as either:

1 p=sdpvar(n);
2 p=sdpvar(n,n);
3 p=sdpvar(n,n,’symmetric’);

In the case a specific structure of the variable is desired, such as an diagonal matrix, the
variable can be declared as above and then used as an input parameter to the normal
MATLAB diag function:

1 X = diag(sdpvar(n,1));
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II.1.2 Constraints

In YALMIP constraints are interpreted depending on the context in which it is written.
In the case where both the left-and right-hand side are Hermitian, then the constraint
is interpreted as the definiteness, while in other cases it is interpreted as element-wise
constraints. Therefore the two different types of constraints can be declared as:

1 n = 3;
2 P = sdpvar(n);
3 C1 = [P >= 0]; % Definitness
4 C2 = [P(:,1) >= 0]; % Element-wise

When multiple constraints is present within the same problem, these can be combined
by concatenating them as:

1 C = [C1, C2];

It is worth noting that YALMIP returns an error if a strict inequality is used and advises
that non-strict inequality should be used instead. In practice, the change from strict
to non-strict has no actual impact when applied to numerical solvers, as solvers applies
tolerances when solving, and as such only return a solution within some threshold of the
actual solution [14].

II.1.3 Objective function and solving

The objective function is declared as traditionally in MATLAB. The solution to the
problem is found by using the optimize(Constraints,Objective,options) function. This
function solves the objective function subject to the constraints using the options speci-
fied. This function assumes the objective is a minimisation problem, which means that if
the problem is to maximize an objective, the objective should be multiplied by −1. The
options parameter is where the user can specify the, among other things, which solver
should be used. As the MOSEK solver is used, the options is specified as:

1 options = sdpsettings(’solver’,’mosek’);

When YALMIP/mosek has found a solution, the numeric from the optimisation variable
can be retrieved by calling value(var). Furthermore if the constraints is of interest, a
function called check(constraints), can be called to retrieve the solved information of the
constraints.

94


	Front page
	English title page
	Indholdsfortegnelse
	Summary
	Introduction
	Requirements
	Modelling
	Uncertainty modelling and control schemes
	Application
	Results
	Discussion
	Conclusion
	Bibliography
	Appendix
	Determination of controllability
	YALMIP

