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1  Introduction

The stock market is characterized by continuous fluctuations in stock prices. These
fluctuations are not always smooth. The stock market occasionally experiences sudden
change in prices. These sudden changes are known as jumps. Jumps in stock prices can
result from macroeconomic news, company announcements, to name a few. Being able to
understand and detect these jumps is crucial for people in the financial sector since jumps
significantly influence the price of a stock.

High frequency data is an important element to be able to capture the intricate behaviors
of stock prices. High frequency data provide a detailed view of market activities. This
will allow for a precise identification of discontinuities that are missed in lower frequency
observations. The ability to be able to detect and analyze a jump using high frequency
data is indispensable. Hence, there are some developed statistical tests to detect jumps in
high frequency data. Methods for detecting such jumps have been introduced in [1] and
2]

The statistical tests £ and G described in [1] and [2], respectively, are powerful tools to
detect jumps. These tests utilize high frequency data to detect significant jumps in stock
prices. The statistical test £ focuses on identifying jumps by analyzing the stock’s return,
while the statistical test G focuses on identifying jumps by analyzing the volatility. By
utilizing the theory of the two tests, the intention of this thesis is to explore the potential
of the two tests. A tool for detecting jumps in a stock’s return and in volatility will be
created to identify jumps in high frequency data. With all this in mind, the main goal of
the thesis is answer the following problem statement.

Problem Statement

Can we develop tools to detect jumps in stocks using high frequency data?
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2 Jump Tests

This chapter is based on [1, p. 2535-2543|, |2, p. 1-9], [3, p. 2-12], and [4, p. 4-6].

In financial markets, asset prices experience sudden and significant changes known as
jumps. Detecting these sudden jumps is crucial when considering various aspects of
financial management. Using high frequency data has enhanced the ability to detect such
jumps with great precision. Here high frequency data refers to financial data that is
observed at short intervals. Utilizing the high frequency data provides a detailed view of
price movements which helps with more accurate identification of jumps and allows for the
development of non-parametric tests to detect jumps in asset prices. Asset pricing models
typically assume that the price paths are continuous. However, jumps could occur due
to unexpected market information such as economic announcements or company specific
news resulting in paths that are discontinuous.

2.1 Preliminaries

In this section, the intuition behind the detection technique is presented. In addition, the
jump detection statistic £ will be mathematically defined later on. The statistic £ tests
whether there is a jump at time ¢; or not. To get an intuition of the test, envision that
asset prices continuously evolve over time in the interval [0, T]. The logarithm of the price
process S; for an asset, defined within a probability space (€2, F;, P), is such that S; is
adapted to a filtration and evolves continuously over time. The price process S; can be
represented as

leg(St) = Mtdt + Utth, (21)

where p; is the drift, o; is the diffusion, and W, is a standard Brownian motion. Now,
suppose at an arbitrary ¢; a jump occurs. When there are jumps, the price process of S; is

d 10g<St) = /,Ltdt + Utth =+ th, <22)

where J; is the jump process at time t. The jump process J; is defined as J; = fiTl Kt
where x;, denotes the magnitude of the individual jump at time ¢;, and Ny is the counting
process that represents the total number of jump up to time 7. Now, if a jump occurs at
time t;, the realized return at t; is expected to be greater than usual. However, there is a
problem if the spot volatility at that time is also high. In the absence of jump, given that
the spot volatility is high and limited observations at discrete times, the observed realized
return may be equivalent to the return because of a jump. To distinguish the scenarios,

3
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the returns are standardized using a measure that accounts for the local variation only
from the continuous part of the process. The measure that accounts for the local variation
is the instantaneous volatility o,,, which is incorporated into the jump detection statistic
L. Essentially, the statistic £ is the realized return at any given time ¢; compared to
a consistently estimated instantaneous volatility. However, how can the instantaneous
volatility be estimated?

2.2 Estimating Volatility

A frequently employed estimator for the instantaneous volatility is the realized power
variation (RPV), also better known as the realized variance. The estimator is defined as

RPV = 77, (2.3)
i=1
where 1, = log(S;,) — log(S;,_,) is the log return at time t; and n is the number of

observations. The RPV is defined by an equally spaced discretization of time, At = %,
where the interval of interest is [0, 7']. Furthermore, it is assumed that observations occur
every At > 0 periods of time. The interest now lies in observing what happens as At — 0.
The key property for the RPV is given in the following theorem.

Theorem 2.1. Suppose the price process S; follows (2.2) and that the drift u; and
diffusion o; are independent of the standard Brownian motion W;. Then, as At — 0,

T
RPV:/ o2ds.
0

The theorem states that as the number of observations increase, the RPV converges to
the integrated volatility. The integrated volatility measures the total volatility over the
time interval [0, 7]. The integrated volatility offers a thorough assessment of the asset’s
volatility over that period, capturing the combined impact of changes in instantaneous
volatility. However, this frequently employed estimator exhibits inconsistency when jumps
occur in a return process [1, p. 2539]. Alternatively, one can use a modified version of
RPV. The modified version is the realized bipower variation (RBPV) which is defined as

RBPV = i |Tti

=2

Tt |- (2.4)

The key property for the RBPV is given in the following theorem.
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Theorem 2.2. Suppose the price process S; follows (2.2) and the diffusion coefficient
is independent of the standard Brownian motion and that the drift is zero. Then, as
At — 0,

T
RBPV:/ o2ds.
0

The theorem states that the RBPV converges to the integrated volatility as the number of
observations increase. However, in contrast to the RPV, the RBPV remains consistent in
the presence of jumps in the return process, regardless of the magnitude of the jumps [1,
p. 2539, [3, p. 2].

2.3 Detecting Jumps in Returns

In this section, the test that tests whether or not there is a jump at t; will be presented.
Suppose a fixed time horizon 7" with n number of observations in the interval [0, T'] where
the distance between two consecutive observations is At = % Now, within the interval
[0, T, consider a window of observations of size K. The instantaneous volatility is estimated
based on the RBPV using the realized returns within the window of the K — 1 observations
just before testing time t;. Subsequently, the ratio of this estimated volatility to the
subsequent realized return is computed to ascertain the occurrence and magnitude of a
jump at time ¢;. Mathematically, the test statistic £; is defined as follows.

Definition 2.3. The statistic £;, which at time t; tests whether there was a jump
from t;_; to t;, is defined as

T,
L= (2.5)
O¢;
where 7, is the log return at time ¢;, and
1 i—1
£2
O-ti = m ‘ Z |th||rtj+l | (26)
j=t—K+42

Notice that RBPV is used in the denominator of the statistic (2.5) as the estimation for
instantaneous volatility. Using the RBPV as the estimator for the instantaneous volatility
in the denominator of the test statistic £; ensures that the consistency of estimation remains
unaffected by the presence of jumps at earlier times. Hence, the test remains robust in
detecting current jumps even in the presence of earlier jumps. Furthermore, to hold on
to the benefit of the RBPV, the window size K is selected in such a way that the impact
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of jumps on the instantaneous volatility estimation vanishes. Additionally, the subsequent
theorem states the asymptotic behavior of the jump detection statistic £; in instances
where there is no jump at time ¢;. In addition, suppose that the realized return from
time ;1 to t; is from the diffusion part of the model in (2.1) and (2.2). The asymptotic
distribution of the jump detection statistic £; is provided in the following theorem.

Theorem 2.4. Let £; be defined as (2.5) and K = O,(At), where —1 < —a < —0.5.
Suppose that the process follows either (2.1) or (2.2) and that the drift and diffusion
coefficients remain relatively constant within a short time span. Let A, be the set of
i €{1,2,...,n} such that there is no jump in (¢;_1,t;]. Then, as At — oo,

sup |£; — L] = O, (At%"”a’e) :

1€EA,
where ¢ satisfies 0 < § < % + a and
.U
L,=—.
c

Here U; = \/%(Wti — W, ,) is a standard normal variable and ¢ = \/L% is a constant.

The above theorem states that the statistic £; approximately follows that same distribution
as EAZ when there is no jump at t;. As Theorem 2.4 states, ﬁz — N(0,1) since U; is a
standard normal random variable. However, how does the test statistic £; behave upon
arrival of jumps. The following result shows that as the sampling interval At — 0, the test
statistic £; becomes so large such that it is possible to detect a jump.

Theorem 2.5. Let £; be defined as (2.5) and K = O,(At®), where —1 < —a < —0.5.
Suppose that the process follows (2.2) and that the drift and diffusion coefficients
remain relatively constant within a short time span. Suppose there is a jump at any
time 7 € (ti—la tl] Then

Ko
G
cov At

where k. is the actual jump size at jump time 7. Hence, £; — oo as At — 0. If there
is no jump at any time 7 € (¢;_1,t;], £; has the asymptotic behavior as in Theorem 2.5.

Li%

o | S

When considering the RBPV, the benefit of employing it as an instantaneous volatility
estimator in the denominator of the test statistic is that the presence of jumps at earlier
times does not affect the consistency of the estimation. Therefore, the test is robust to
earlier jumps in detecting current jumps. Furthermore, to hold onto the benefit of the
RBPV, the window size K is selected in such a way that the impact of jumps on the
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instantaneous volatility estimation vanishes. In addition, the window size K clearly has to
be smaller than the number of observations (nobs) n. The selection of sampling frequency
At will dictate the size of the window K. Typically, the number of observations per day
are calculated as At = m Hence, integers between /252 X nobs and 252 X nobs are
candidates for the window size K. However, in [1, page 2542| they suggest some optimal
window sizes K. They are as follows: one week (7), one day (16), one hours (78), 30

minutes (110), 15 minutes (156), and 5 minutes (270).

Now, the rejection region for the test statistic will be introduced. Taking a look at what
is described in Theorem 2.4 and Theorem 2.5, the test statistic presents different behavior
depending on the existence of jumps at testing times; if there is not a jump, the test
statistic approximately follows a normal distribution, however, if there is a jump, the
test statistic becomes very large. To ascertain a reasonable rejection region, the question
revolves around how large the test statistic can be in the absence of a jump. Thus, the initial
focus is taking a look at the asymptotic distribution of maximums of the test statistics
when there is no jumps at any time in (¢;_1, t;]. Such a distribution informs the selection of
relevant threshold for the test to distinguish when there is a jump at a testing time. The
following lemma states the limiting distribution of the maximums.

Lemma 2.6. Let £;, K, and A, be as in Theorem 2.4. Then, as At — 0,

maX;ec 4, [Ei = Cx
—
Sn §7

where & has cumulative distribution function P(§ < 8*) = exp(— exp(—5%)),

2log(n)  log(m) + log(log(n)) and S — 1

% 2 % log(n) % log(n)

Cn=

where n is number of observations.

Note that the the normalizing constants C,,, S,, have been demonstrated to hold [5]. To
utilize the above result for selecting a rejection region, start by choosing a significance level
of, for instance, a = 5%. Then, the threshold for ‘ @ s B*, such that P(¢ < 5%) = 0.95.
Here g* is calculated to be 2.9702. Hence, the hypothesm of no jump at time ¢; is rejected
whenever £=C > 29702, Additionally, by observing the sign of L£; it is possible to
determine the direction of the jump, which is crucial.

2.4 Detecting Jumps in Volatility
In addition to the jump detection statistic £, a comparison to one of the first tests for

detecting jumps in high frequency will be made. The test in question is the Barndorfl-
Nielsen and Shephard test (BNS test), specifically the linear jump statistic G. The test

7
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compares the RBPV with RPV, respectively equation (2.4) and (2.3). However, to be able
to construct a computable linear jump test, the integrated quarticity (1Q) fOT olds has to

be estimated. The IQ can be consistently estimated using the realized quadpower variation
(RQPV) which is defined as

RQPszﬁiM@

=4

Ttipq ‘ ‘thurz | ‘Tti+3" (27)

Now that it is possible to consistently estimate the 1Q, the statistic is defined as
., 5RBPV, —RPV,
G = .

\/ 2 ZURQPV,

Here ¥ = %2 + 7 —>5 is a coefficient that is related to the IQ. Furthermore, Theorem 1 in |2,
p. 6] states the asymptotic distribution. The theorem states that the test is A(0, 1) under
the null hypothesis that there are no jumps. However, when (2.8) becomes very large or
small, the null hypothesis is rejected.

(2.8)
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3  Using Jump Tests

In this chapter, the relevant theory that has been introduced in Chapter 2 has been coded
in Julia Programming Language (henceforth referred to as Julia) and will be thoroughly
explained. The objective is to explain how one can use these tests or tools in practice.
The jump tests are included in the HighFrequencyJumps. j1 package and can be found on
GitHub.

3.1 Jumps in Returns

The L statistic, which is defined in Definition 2.3, tests whether there is a jump from ¢;
to t;. The test has been coded in Julia as the function LMJumpTest (S, K, «). As can be
seen, the function has three inputs: S, K, a. Here S are the prices, K is the window size,
and « is the significance level. In addition to Definition 2.3, Lemma 2.6 is implemented
into the function LMJumpTest (S, K, a) to check the null hypothesis.

The function LMJumpTest (S, K, «) starts by finding the length of the input S, which are
the prices of a stock for instance. We do this since we need to calculate all the returns in
(2.5). Then we initialize a vector of zeros, where we will store the computed L statistic.
Hence, the function LMJumpTest (S, K, «) now starts by looping from the ¢’th return.
This loop goes from K + 1 up to n. The reason it starts from K + 1 and not just K is
because when we calculate the RBPV in (2.6) it will start from Sy, which is the initial
price in theory. However, the initial price is S; in Julia since a loop can not start from
zero. Nevertheless, inside the loop is another loop. The inside loop starts by initializing
a number where the loop calculates the RBPV from i — K + 2 up to ¢ — 1. After it has
calculated the RBPV in (2.6), the RBPV is divided by K — 2 and then assigned to 2.
The last step is to divide the i’th log return by the standard deviation. The loop will go
through all log returns and calculate the £ statistic such that we can access them when
we want check the null hypothesis. Note that we check if the RBPV is greater than zero
such that we do not divide by zero. If it is zero, the L statistic is set to zero.

Now that the L statistic has been calculated, we want to test whether to reject the
hypothesis of no jump at time ¢; or not. This is done by looking at Lemma 2.6. We
start by defining the normalizing constants C,,, S,, and 5*. Here §* is defined such that it is
possible to choose any significance level o, which is an input in the function LMJumpTest (S,
K, «). Nevertheless, we initialize a vector containing a boolean, which is a true or false
statement. A loop then goes through all the £ values to test whether there is a jump
or not. Finally, the function LMJumpTest (S, K, a) returns the vector of £ values and a
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vector Hy containing the statements "true" (1) and "false" (0) where "true" is a jump.

3.2 Jumps in Volatility

The G statistic, which is defined in (2.8), tests whether there is a jump in volatility at time
t;. The test has been coded in Julia as the function BNSJumpTest (S). As can be seen, the
function has one input: S. Here S are the prices again.

The function BNSJumpTest (S) starts by finding the length of the input S. We do this since
we need to calculate the RPV, RBPV, and RQPV in (2.3), (2.4), and (2.7), respectively,
which all go up to n. Then the coefficient related to the IQ is defined. In addition, we
initialize three vectors of zeros, where we will store the calculated RPV, RBPV, and RQPV
values. The function then continuous to calculate all the values of RPV, RBPV, and RQPV
for every i. Once they have been calculated, we initialize a vector of zeros, where we will
store the G values. These are calculated using (2.8). Note that the the sum to calculate
(2.8) starts from five and not four as the sum suggests in (2.7). This is the same reason
as for the other test where the initial price is S; in Julia since a loop can not start from
zero. In addition, it is taken into account that the G values are computed for i starting
from five to n, which ensures it uses the appropriately indexed values from RPV, RBPV,
and RQPYV. This consistency in indexing ensures that all calculations are aligned with the
same sequence of prices. Finally the function BNSJumpTest (S) returns the G values. Note
that we check if the RQPV is greater than zero such that we do not divide by zero. If it
is zero, the G-statistic is set to zero.

3.3 Applying Jumps in Returns

Now we dive into how it is intended to use the Julia function LMJumpTest(S, K, «).
First of all, we need some prices, a window size, and a significance level. Once those
are established, we can use the function LMJumpTest (S, K, «). In what follows is the
intended use of the function.

£, ) = LMJumpTest (S, K, «)

histogram (Z[K+1:1length(Z)], normalize=:pdf)
num_true = count (==(true), J4)

index_true = findall (==(true), J4)

As explained before, the LMJumpTest (S, K, «) function returns a vector of £ values and
a vector Hy containing the statements "true" and "false". Hence, do as in line 1 to extract
the £ values and H, statements. Once they have been extracted, we start by checking how
the £ values are distributed. This is what line 2 does. Note that we use the values from
K + 1 since the first K values are used to calculate the first value of £ and are therefore
zero. Nevertheless, once it has been shown how the distribution of the £ values is, we can

10
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dive in and look at how many jumps the function has actually detected. This is what line
3 does. Essentially, this just says we detect X amount of jumps. Line 4 will find at what
index the jump is. These indices can now be used to look at what point in time did a jump
occur, and can be analyzed to see why the jump might have occurred.

3.4 Applying Jumps in Volatility

The other function we dive into to see how it is intended to use is the Julia function
BNSJumpTest (S). All we need in this function are some prices. Once those are established,
we can use the function BNSJumpTest(S). In what follows is the intended use of the
function.

G = BNSJumpTest (S)

histogram (G[5: length (A1)

minb = partialsort (G, length (G) -4: length (G))

partialsort (é, 1:5)

maxb

As explained before, the BNSJumpTest (S) returns a vector of G values. Hence, do as in line
1 to extract the G values. Once they have been extracted, we start by checking how the G
values are distributed. This is what line 2 will check. Line 3 and 4 will give the smallest
and biggest G values, respectively. These will be used to find at what point in time did a
jump occur, and can be further analyzed to see why the jump might have occurred.

11






Jump Tests on Stock Prices Aalborg University

4  Jump Tests on Stock Prices

In this chapter, the tests will be used on high frequency data. In particular, the tests will
be used on Vestas Wind Systems (VWS) stock prices as well as Tesla, Inc. (TSLA) stock
prices. The stock prices of VWS are high frequency data down to 1 second while the TSLA
stock prices are observed every 5 minutes. The stock prices of VWS are from 16,/03/2023
to 11/04/2023 and the stock prices of TSLA are from 29/04/2024 to 20/05/2024. The
stock prices are from when their respective market is open. For VWS, the market is open
from 09:00 to 16:55 while the market for TSLA is open from 09:30 to 16:00. The prices of
the two stocks are presented in the following figures.

Vs prices ‘
205 195 b M.
y
200 190 ) L
185 w “‘ ry
é 195 W E M" Mwm\ & Wﬂv
180 Wr v *‘ WA uﬁwm e
f \n I\ 2 f\1
190 | 175 LMWW N}\Y Lﬂ, M'Vr V’LWM
""/\,‘\ “M“*WJ /A»\'
185 | mor IV'W‘
2023-03-1‘6Tll:10:13 2024-04-2‘9T09:30:00
Time Time
FIGURE 4.1: VWS’s price movement. FIGURE 4.2: TSLA’s price movement.

The number of observations for VWS and TSLA are 34178 and 1264, respectively.

4.1 Jump Tests on TSLA prices

We start by using the Julia function LMJumpTest (S, K, «) on TSLA prices. Here we have
to choose a window size and a significance level. The choice of window size will be 77 which
means we use prices from a whole trading day to calculate RBPV. This is a suggestion
they have in [4, p. 5], where they use data that is observed every 5 minutes. The choice of
significance level is 1% since we want to look at the jumps that are extreme. First we will
take a look at how the calculated £ values are distributed.

13
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FIGURE 4.3: Distribution of the calculated £ values.

As can be observed in Figure 4.3, it seems that the £ values are normally distributed
around 0. The mean of the £ values is approximately -0.04 while the standard deviation
is approximately 1.70 which could indicate that there might be jumps in TSLA prices.
Indeed, the test statistic £ detects 14 jumps in the price series. Out of the 14 jumps, 12 of
them are from when the market opens with the remaining two being from when the market
has been open for a while. Relevant information about the two jumps can be found in the
following table.

Time of detection Return at time ¢; | £ at time ¢;
10:25:00 on 10th of May -1.47 -5.76
10:30:00 on 17th of May 1.73 6.41

TABLE 4.1: Information about jumps.

As can be seen in Table 4.1, we have two instances where the price jumps a significant
amount up and down. Now it will be analyzed what could have caused the price to jump
up and down. On the 10th of May, there were protests at a Tesla factory in Germany.
They were demonstrating against the environmental impact of the construction of the
new factory. The incident involved clashes with police which lead to arrests!. This
negative publicity surrounding the protests and potential disruptions to operations could
have contributed to a decrease in investor confidence. This could potentially have led to
the fall in TSLA’s stock price the 10th of May. On the other hand, there were some other
news on the 17th of May where there were news about job reduction at Tesla. Around
600 positions were eliminated in California?. Considering these adjustments, the increase

L Article can be found on cnbe.com.
2 Article can be found on cnbe.com.

14
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in TSLA’s stock price could be associated to factors such as cost savings. Investors might
see these changes as good, thinking that Tesla will run better and be more profitable in
the future.

Now we will take a look at the other test using the Julia function BNSJumpTest(S) on
TSLA price. Here we just need the prices to calculate the G values. First we will take a
look at how the calculated G values are distributed. Note that if the denominator is zero
in (2.8), the function BNSJumpTest (S) will return a zero. These will be removed when
looking at how the G values are distributed.

0.012
0.010
0.008
0.006
0.004 -

0.002

0.000
-200 —-100 0 100 200

FIGURE 4.4: Distribution of the calculated G values.

As can be observed in Figure 4.4, it seems that the G values are normally distributed.
However, with a mean of approximately -194.14 and a standard deviation of approximately
4350.03 could indicate that there might be jumps in volatility. As described, we will be
looking at the five biggest and smallest G values and then analyze at which point in time
the jump occurred. Of those ten values, five of them are from when the market opens. The
remaining five are from when the market has been open for a while. Relevant information
about the five jumps in volatility can be found in the following table.

Time of detection G at time ¢,
15:05:00 on 29th of April 914.34
15:40:00 on 29th of April 947.38
15:40:00 on 16th of May 1440.61
15:00:00 on 20th of May -127673.00
15:05:00 on 20th of May 25382.16

TABLE 4.2: Information about jumps.

15
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As can be seen in Table 4.2, we have three different days where the jump in volatility is
significant. Now it will be analyzed what could have caused the jump in volatility. Note
that it does not detect the same days as in Table 4.1. On the 29th of April, TSLA’s stock
price surged following the company’s significant progress in gaining approval for its Full
Self-Driving technology in China®. News on 16th of May could have caused a jump in
volatility due shareholders urging a vote against Elon Mush’s pay package, which could
have a negative impact on the company?*. On the 20th of May could have caused a jump in
volatility due to Tesla loosing a legal appeal in Sweden concerning a labor strike. Swedish
authorities blocked the issuance of new license plates for Tesla vehicles during the strike®.

4.2 Jump Tests on VWS prices

As for TSLA prices, we start by using the Julia function LMJumpTest (S, K, a) on VWS
prices. Here we have to choose a window size and a significance level again. The choice of
significance level is again 1% since we want to look at jumps that are extreme. However,
the choice of window size will be 2135 following the same logic as before - we use prices
from a whole trading day to calculated RBPV. In the period of the observed VWS stock
prices, there are 16 trading days. This means there are an average of %1678 = 2136.125
observations per day. Nevertheless, we will first take a look at how the calculated £ values
are distributed.

-3 -2 -1 0 1 2 3

FIGURE 4.5: Distribution of the calculated £ values.

As can be observed in Figure 4.5, it seems that the £ values are somewhat normally
distributed. The mean is approximately zero while the standard deviation is approximately

3 Article can be found on cnbe.com.
4Article can be found on bloomberg.com.
®Article can be found on bloomberg.com.
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1.50. This could indicate that there might be jumps in VWS prices. Indeed, the test
statistic £ detects 62 jumps. Out of those 62 jumps, 56 of them are from when the market
opens or close to the other remaining jumps from when the market has been open for
a while. Relevant information about the remaining six jumps can can be found the in
following table.

Time of detection Return at time ¢; | £ at time ¢;
15:29:16 on 17th of March 0.44 8.30
11:43:36 on 21st of March 0.65 10.24
12:01:37 on 24th of March -0.42 -7.01
10:01:31 on 27th of March 0.60 8.92
15:12:00 on 4th of April -0.5 -6.65
16:23:39 on 11th of April 0.40 7.63

TABLE 4.3: Information about jumps.

As can be seen in Table 4.3, we have six instances where the price jumps a significant
amount up and down. Now it will be analyzed what could have caused the price to jump
up and down. On the 17th of March, the VWS stock price likely increased due to securing
a 50 MW order in Finland and Germany®. On the 21st of March there were some news
about VWS buying ST3 Offshore”. This could have driven the VWS stock price up since
investors see positively on the VWS expansion in the offshore wind sector. Lastly, on the
11th of April there were news about VWS figuring out how to recycle old wind turbines,
which is ground breaking news for the company®. This could have resulted in a rise in stock
price since investors may see benefits when considering cost savings. For the other detected
jumps, no related news on the price movements were found. However, taking a look at
Figure 4.1, a big jump can be noticed. The jump is detected on the 30th of March when the
market has to opened. The return at that time is 6.78 with an £ value of approximately
118. This is a big return and jump which is due to securing a two huge orders of 1.310
MW in Brazil and 162 MW in Argentina®. Generally speaking, for VWS stock prices, when
there are news about huge orders, their prices tend to increase significantly, which should
be taken into account.

Now we will use the other test using the Julia function BNSJumpTest (S) on VWS prices.
Here we just need the prices to calculate the G values. First we will take a look at how
the calculated G values are distributed. Note that if the denominator is zero in (2.8), the
function will return a zero. As for TSLA, these will be removed when looking at how the
G values are distributed. For the VWS, the denominator was 0 in 15427 instances. These
are removed to see how the G values are distributed.

5Wind Turbine Orders can be found on vestas.com.
7Article can be found on renewablesnow.com.

8 Article can be found on berlingske.dk

9Wind Turbine Orders can be found on vestas.com.
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FIGURE 4.6: Distribution of the calculated G values.

As can be observed in Figure 4.6, it seems that the G values are heavily skewed to
right. Furthermore, is has a mean of approximately -2.17 and a standard deviation of
approximately 523.67. These findings could indicate that there might be jumps in volatility.
As for TSLA, we will be looking at the five biggest and smallest G values and then analyze
at which point in time the jump occurred. Of those ten values, nine of them are due to the
market has to opened. The last detected jump in volatility is detected at 24th of March
where it was not possible to find related news. However, when looking at the smallest
(-34923.35) and biggest (2785.90) value of G, we detect jump in volatility at the 27th of
March and 11th of April. Both are detected at when the market has just opened and could
be the same reason as described before.
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5 Discussion

It has been shown that the developed tools for detecting jumps in return and volatility
work on high frequency data. However, when applying the tools on high frequency data,
some complications may occur. When applying the Julia function BNSJumpTest(S) on
VWS stock prices, we ended up dividing by zero in the denominator in (2.8) 15427 times.
By further investigation, the dataset contained prices, where two consecutive prices could
be identical. This means if this happens at a given time, the return will be zero. By taking
a look at how the RQPV is defined in (2.7), one sees that if one of the returns give zero, the
whole sum will give zero. This will cause division by zero in (2.8), which is not possible.
Take into account these findings to ensure that when applying the BNSJumpTest (S) on high-
frequency data, situations where there are two consecutive identical prices, are properly
addressed. This also applies for Julia function LMJumpTest (S, K, «). However, note that
the numerator can be zero in (2.5) which would just mean there are no change in price at
that specific point in time. Nonetheless, applying BNSJumpTest (S) on TSLA stock prices
did not cause any problems.

When applying the Julia function LMJumpTest (S, K, «a) on stock prices, the choice of
an appropriate window size turned out to be challenging. Considering a window size of
270, which is suggested in section 2.3, the function LMJumpTest (S, K, a) detected nine
jumps when applied on TSLA stock prices. This is five less than when using a window size
of 77. Upon further examination, the nine jumps were already detected when using the
window size of 77. In addition, it only detects jumps when the market opens. However,
what happens when a window size of 39, which is half a trading, is used? When a window
size of 39 is used, the function LMJumpTest (S, K, «) detected 17 jumps. However, all
of them are from when the market has just opened. In addition, it also detects the same
jumps when the window size is 77. This suggests that using observations from an entire
trading as the window size could be optimal. The same applies for the VWS stock prices.
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6  Conclusion

In order to be able to develop tools to detect jumps in stocks using high frequency data,
necessary theory about the statistical jump tests has been introduced. The statistical tests
£ and G are powerful tools to detect jumps in high frequency data. The L statistic focuses
on identifying jumps by analyzing the return while the G statistic focuses on identifying
jumps by analyzing the volatility.

When using the developed tools LMJumpTest(S, K, a) and BNSJumpTest(S) on high
frequency data, the results indicate that the developed tools can detect jumps using high
frequency data. The LMJumpTest (S, K, «) tool has its adjustable parameters that offer
some flexibility in identifying jumps in stock prices using high frequency data. Meanwhile,
BNSJumpTest (S) has also proven to be a tool usable for identifying jumps.

Their application to VWS and TSLA stock prices reveal the accuracy of the tools. Both
tools, LMJumpTest (S, K, a) and BNSJumpTest (S), show at which point in time the jumps
occur. Typically, the jumps detected using the tools occurred when the market has just
opened. This was not a surprise. However, the tools did find jumps when the market has
been open for quite some time. When analyzing these jumps, we found some relevant news.
This means, when significant news events occur - good or bad - the developed tools can
help investors identify which events are likely to impact the market and thereby determine
the appropriate actions to take. However, when applying the LMJumpTest (S, K, a) tool,
one should be aware of how to choose the window size K. What seemed to work when
analyzing VWS and TSLA stock prices was using observations from a whole day. This
might not be the case in other applications.

The tools can be found in the Julia package HighFrequencyJumps.jl on GitHub, which
provide both the tools for detecting and analyzing jumps on high frequency data. The
tools are user-friendly and efficient allowing others to easily integrate the developed tools
into their own analysis of for instance stock prices.
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