A Study of Machine Learning
classifiers for Botnet Traffic Detection
with an Imbalanced Dataset

Project Report
Group 1005

Aalborg University
Electronics and IT

AALBORG UNIVERSITY
STUDENT REPORT

Title:

A Study of Machine Learning classifiers for
Botnet Traffic Detection with an Imbalanced
Dataset

Theme:
Thesis

Project Period:
Spring Semester 2024

Project Group:
1005

Participant(s):
Kamilla Andersen-Otte
Georgi Toshkov Bolgurov

Supervisor(s):
Ashutosh Dhar Dwivedi
Page Numbers: 90

Date of Completion:
May 30, 2024

Electronics and IT
Aalborg University
http://www.aau.dk

Abstract:

This thesis investigates the use of machine
learning models to classify botnet traffic
within an Internet of Things (IoT) net-
work. Given the increasing prevalence of
IoT devices in our society, their limited
computational power makes them a vul-
nerable target for botnet exploitation, mak-
ing advanced detection mechanisms that
can adapt to evolving threats with mini-
mal false positives necessary. Traditional
methods of network security often fail to
adapt to the dynamicaly adjusting nature
of botnet attacks, making machine learn-
ing, with its ability to learn and detect pat-
terns in data a more effective solution. This
study refines and enhances machine learn-
ing models specifically tailored for IoT bot-
net detection by tackling three key ques-
tions: ensuring proper pattern recognition
through training on imbalanced datasets,
optimizing machine learning models for
botnet traffic detection in IoT networks,
and identifying the most influential net-
work traffic features for detecting poten-
tial botnet activities. Five machine learn-
ing models - decision tree, random forest,
Gaussian Naive Bayes, XGBoost, and a vot-
ing classifier - were trained on the BoT-IoT
dataset sample, with the feature sets be-
ing selected based on both feature correla-
tion and forward and backward selection
methods. Addressing the dataset imbal-
ance, different techniques were employed
to balancing the classes. The trained mod-
els were also tested on a newly sampled
dataset to provide performance validation.
The results indicated that the voting vlassi-
fier, combining decision tree and XGBoost
on an oversampled dataset, achieved the
most favorable performance.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with
the author.

Contents

1 Practical Methods and Approaches
2 Introduction & Background
2.1 Introduction e
2.1.1 Problem formulation
22 Background
23 Stateoftheart
3 Theory
3.1 Rationale for choice of machine learning models
3.2 Featureselection e
3.3 BoT-IoT dataset @ e
4 Experiments
41 Model parameters. L L
42 Experimentsetup
43 Featureselection
44 Entropy
45 Feature correlation e
46 Wrappermethods o
5 Interpretation of Results
51 Insights from the Machine Learning Models
5.2 Insights from the Feature Selection
53 LimitationsoftheStudy o .
5.4 Future Directions and Recommendations
6 Conclusion
Bibliography

A Appendix

iv

14
14
18
21

28
28
34
35
37

65

69
69
71
74
75

79

85

Preface

Aalborg University May 30, 2024

Here is the preface. You should put your signatures at the end of the preface.

Kamilla Andersen-Otte Georgi Toshkov Bolgurov
kande22@student.aau.dk gbolgu22@student.aau.dk

Chapter 1

Practical Methods and Approaches

This chapter will outline the methods used for gathering and analyzing the data in this
thesis to provide an overview of the process and agenda behind the development of the
project and solution.

Information gathering

The information gathering for this thesis was initiated with a literature review of the
state of the art within the field of botnets, IoT and machine learning. The literature was
found through Google Scholar and Aalborg University’s PRIMO and the search was based
around the following keywords and their combinations:

¢ "botnet"

e "detection"

¢ "identification"

e "IoT"

¢ "network"

e "traffic"

* "machine learning"

Each type of chosen literature represents a contemporary analysis of botnets, some of them
specifically within IoT networks, with some of the literary works also providing suggested
solutions as to how they can be detected through the employment of machine learning.

Information processing

The data used for the experimental part of this thesis builds on the theory gathered from
the literature review. The dataset was chosen by exploring the state-of-the-art literary
works within the field of botnet detection, many of which utilized the BoT-IoT dataset
from UNSW Canberra.[1] The classifiers used for the initial test cases in this thesis were
also assembled from the literature review.

Python was used for training and testing all the models on the dataset, by using the
following relevant libraries:

* xgboost for the deployment of the XGBoost classifier [2]

¢ scikit-learn for deploying the remaining models, for preprocessing of the data, per-
formance metrics and for the feature selection methods [3]

¢ time for calculating the training time of the classifiers [4]

¢ matplotlib for plotting Pearson’s correlation coefficients into a heatmap and visual-
ising the decision tree[5]

* seaborn for visualizing the heatmap [6]
¢ pandas for loading the dataset files [7]

¢ numpy for handling arrays of data, such as saving the dataset in an array and then
splitting it into testing and training sets [8]

¢ pickle for saving the trained models [4]
¢ math for certain mathematical tasks, such as calculating the Shannon entropy [4]

¢ imblearn for oversampling and undersampling of the dataset [9]

Overview of thesis structure

Chapter 2 will introduce the topic of botnets and how they relate to IoT networks, laying
the groundwork for the problem formulation. The rest of the chapter will delve deeper
into the background of the issue and draw on literary sources from the state of the art to
extract the necessary tools for botnet detection.

Chapter 3 will further examine the theory, construction, and limitations of these tools
to discard the ones that are not relevant.

Chapter 4 will describe the experiments conducted using the previously selected tools.

The theoretical approach behind the test cases will be explained with mathematical ex-
pressions, and the practicalities of the chosen parameters will also be described. The
results from the experiments will be presented.

Chapter 5 will interpret the results by exploring their purpose, alignment, and any limita-
tions of the experiments. The chapter describes how they could be transferred to a real-life
detection system and possible future directions.

Chapter 6 is the conclusion, where the problem formulation will be addressed and the
final solution for a botnet detection method will be presented.

Chapter 2

Introduction & Background

2.1 Introduction

Botnets are collections of compromised devices infected with malware and connected over
the internet for an entity to exploit for malicious purposes [10]. Each compromised device
in the botnet and the entity controlling them is the botmaster. Botnets increasingly disrupt
our digital society through activities like spam, data theft, denial of service attacks, and
malware propagation.[11]

A fundamental element of any botnet is its communication strategy[12]. Traditionally,
botnets have used Internet Relay Chat (IRC) for coordination, with bots linking to an
IRC server[13]. The botmaster in control of the botnet uses command and control (C&C)
channels on this platform to manage the network of infected machines, sending commands
and updates to maintain control over long periods.

While IRC for many years has been the dominant method, the adoption of HTTP-
based communication has also become common[12]. Both IRC and HTTP-based botnets
are based on a centralized structure, which makes them vulnerable to a single point of
failure through the control server.

In recent years, there has been a shift towards more decentralized Peer-to-Peer (P2P)
architectures. P2P botnets are constructed without a single point of failure that can be eas-
ily targeted, unlike IRC and HTTP. This decentralized approach allows the bot master to
disseminate commands across the network, complicating the destruction of the botnet[14].
Modern botnets also often use various encryption methods[15], further complicating detec-
tion efforts. This combination of decentralization and encryption in newer botnets makes
it challenging to fully assess their size and influence, thereby escalating the risks and chal-
lenges faced by cybersecurity measures.

Previously, the threat of botnets was primarily confined to home and office computers.
However, this has changed with the exponential growth of the Internet of Things (IoT)
sector, connecting millions of devices daily [16]. The now widespread use of IoT devices
throughout most modern environments is rapidly growing, from fully automated factories

2.1. Introduction 5

to smart cities. IoT devices offer both convenience and potential attack vectors[17]. While
the connectivity offered by various IoT devices has immense benefits, it must be recog-
nized that most prioritize functionality over security. The lack of encryption and usually
outdated software leaves them vulnerable to malicious attacks [18]. For instance, a 2023
report by Securelist highlighted a significant increase in brute-force attempts targeting IoT
devices, with 97.91% of these attempts targeting the Telnet protocol—widely used by var-
ious IoT devices [19], underscoring the need for research into detection solutions in this
field.

This thesis focuses on detecting botnet traffic on an IoT network, addressing the detec-
tion of traffic in the attack phase of the botnet life-cycle. The machine learning algorithms
employed will be decision tree, random forest, XGBoost, and Naive Bayes, as well as a
voting classifier combining XGBoost with decision tree and Naive Bayes. The models will
be trained on a 5% sample of the BoT-IoT dataset and tested on an additional dataset
sampled for the purpose of this project, as well as oversampled and undersampled vari-
ations. Emphasis will be placed on dataset analysis and feature engineering, examining
how imbalanced datasets impact machine learning algorithms and addressing this imbal-
ance, along with how to optimize the classification through feature selection. For this,
different filter and wrapper methods will be explored and implemented. Our work aims
to provide clarity on multiple subject matters in the field, as outlined in the next section
containing the problem formulation.

2.1.1 Problem formulation

In this thesis, we address the issue of detecting botnet attacks in IoT environments, of
which the exploitation of the vulnerabilities in these connected devices is an increasing
problem in our digitized society. The wide use of IoT technologies presents unique chal-
lenges in maintaining security measures, highlighting the need for advanced detection
mechanisms that can adapt to evolving threats with minimal false positives and false neg-
atives. Our study seeks to refine, enhance and validate the use of machine learning models
specifically tailored for IoT botnet detection by answering the following key questions:

1. How can we ensure proper pattern-recognition through training of machine learn-
ing models when handling imbalanced datasets, in a botnet detection scenario
where attack traffic significantly outnumbers normal traffic?

¢ Here, we consider various machine learning algorithms and their configurations
to determine which models provide the best trade-off between detection preci-
sion and computational efficiency, as well as how we can validate the success of
the performance evaluations.

2. What are the most effective strategies to optimise machine learning models for
botnet traffic detection in IoT networks?

2.2. Background 6

¢ This question explores methods and techniques for adapting the learning al-
gorithms to improve the model performance when handling imbalanced data
from an IoT network, thus preventing bias towards the majority class.

3. Which network traffic features are most influential in identifying potential botnet
activities, and how can these features be systematically evaluated and selected?

¢ This involves describing and analysing network traffic features based on their
predictive power and relevance to identifying malicious activities, potentially
leading to more streamlined and focused detection models.

By addressing these questions, our research aims to develop a framework that enhances
the detection of botnets in IoT networks with more precision and less false predictions,
thereby contributing to more secure IoT environments.

2.2 Background

Due to the IoT systems being a both young and booming field, the devices are susceptible
to suffer from numerous security issues. Some of the problems that are often represented
within IoT security happen because of the rapidly growing market, where the manufactur-
ers might bring the products to market before they have implemented sufficient security
measures[20]. In addition to this, IoT devices are often small with limited processing
power, which means that they might not have the computing resources to constantly up-
date their firmware and run robust security protocols[21]. They are also physically ex-
posed to security threats, since they are often placed in order to be accessible for the user,
but in return is also more vulnerable to be tampered with - in addition to this, they are
placed directly in the hands of often uneducated end users that do not have sufficient se-
curity awareness to know the benefits of changing the default password and not neglecting
updates to the device[22].

All of these vulnerabilities, in addition to the sheer volume of IoT devices existing world-
wide, make them prime targets for botnets. Cybercriminals can exploit these weaknesses
by using automated scripts to scan and compromise large numbers of devices[23]. Sig-
nificant incidents, like the Mirai botnet, demonstrated how default credentials in IoT de-
vices could be leveraged to create massive botnets capable of launching large-scale DDoS
attacks[24]. The Mirai malware targets IoT devices by scanning the internet for devices
with default login credentials, infecting them, and using them to launch coordinated at-
tacks. This botnet notably disrupted major internet services, highlighting the severe impact
of insecure IoT devices[23].

Modern botnets have evolved from relying on centralized C&C servers to adopting de-
centralized, P2P architectures[25]. P2P botnets are established through P2P transfer pro-

2.2. Background 7

tocols where the devices in the botnet are able to communicate directly with each other
and therefore do not rely on a single server for C&C. This means that the botmaster does
not need a centralized server to issue commands to the zombies but can instead use any
of the zombies in the botnet to do this. This enhances resilience by eliminating single
points of failure, making disruption more challenging. Additionally, botnets may employ
evasion techniques that requires more sophisticated detection mechanisms, for instance
through encrypted communication channels or domain generation algorithms that gener-
ate a large number of domain names for C&C servers, making it difficult to predict and
block malicious domains[10].

Traditional detection methods, like signature-based and heuristic-based approaches,
often fall short against the more sophisticated botnets. Detection techniques that are based
on recognizing signatures of the botnet traffic may struggle with polymorphic and zero-
day attacks, while heuristic methods that identify botnet traffic based on defined rules or
behavior analysis may result in a large amount of benign traffic being flagged as suspi-
cious [26]. Furthermore, the encryption and obfuscation strategies employed by modern
botnets may obscure the malicious activities, complicating detection based on heuristics
[27].

Nazir et al. [28] conduct a comprehensive review of the state-of-the-art within IoT botnet
detection. Machine learning algorithms are mentioned as one approach for automatically
identifying potential threats, which is an increasingly popular approach as they can ana-
lyze large amounts of data and learn from and adapt to novel types of data. This is an
innovative and likely solution for the growing landscape within IoT, and using ML algo-
rithms will be beneficial for scalability, real-time detection, and accuracy in identifying and
analyzing IoT botnets.

Machine learning offers a promising solution for botnet detection by analyzing large
volumes of network traffic to identify the patterns that are indicative of botnet activity.
Machine learning algorithms can learn from both labeled and unlabeled data, making
them adaptable to new and evolving threats. For supervised machine learning, the model
is trained on data where the desired output to be predicted is already known, while for
unsupervised, the model finds the structures in the data without human intervention. Su-
pervised learning generally produces better performance; however, unsupervised learning
may be more appropriate for experimenting with training a model on unknown data.

By integrating the problem of botnets within the field of IoT networks with supervised
machine learning detection methods, this study aims to explore enhancing IoT network
security through the development of robust and accurate botnet detection systems, con-
tributing to a more secure digital ecosystem.

2.3. State of the art 8

2.3 State of the art

After establishing the background for exploring botnets and analysing their traffic for the
purpose of finding a robust method for detecting them, this section will focus on the
examination of current identification solutions. The goal is to gain insights into specific
advancements and challenges within this field and examine state-of-the-art methodologies
used for detecting and mitigating botnet traffic, exploring both their effectiveness and lim-
itations.

Alhowaide, Alsmadi and Tang [29] explored how to mitigate threats within the realm
of IoT devices through intrusion detection systems based on machine learning. They lean
on feature selection as a method for handling the often large amount of dimensional data
needed for analysis when looking into solutions in this field, since effective feature se-
lection reduces the volume and variety of the data by removing any redundant features
while keeping the ones necessary for receiving satisfactory results. They tested multiple
filter methods for feature selection on multiple datasets, both with regular network traffic
and specifically IoT traffic, and the performances of the differently selected feature sets
were measured. The results were based around the elapsed time of each filter method,
how much they reduced the dataset in percentage, how many features were chosen, as
well as the F-Score and ROC-AUC when training and testing five different machine learn-
ing models with the feature sets. The models were Bernoulli Naive Bayes, decision tree,
k-nearest neighbor (KNN), Gaussian Naive Bayes, and random forest, where Bernoulli had
the broadest distribution of performances depending on the feature selection method and
random forest and K-Nearest Neighbor generally had the best performance metrics.

Alothman, Alkasassbeh and Baddar [30] aim for a multiclass approach where they not
only distinguish between benign and botnet traffic, but also identify the type of botnet
traffic. They preprocess the data by oversampling with Synthetic Minority Oversampling
Technique (SMOTE) and train three different classifiers: decision tree, random forest, and
multi-layer perception with the BoT-IoT dataset. This is done both with the complete fea-
ture set, as well as with two selected feature sets based on Pearson’s Correlation Coefficient
and Relief-F. The performance evaluation results were based on which classifier reached
the highest accuracy and F-score with which feature set. In addition to this, they evaluated
the false negative rate for both binary classification of benign versus botnet traffic, as well
as for the specific categories and subcategories of botnet traffic, to measure which type of
classification resulted in most of the botnet traffic being undetected. The results showed
that random forest and decision tree were superior in achieving the best scores for both
binary and multiclass classification.

Saad et al. [31] specifically focus on the detection of P2P botnets, which have the added
functionality of decentralisation, where the botmaster can use any of the bots to distribute

2.3. State of the art 9

commands to other bots, making the botnet more difficult to shut down. They train five
different machine learning models: support vector machine (SVM), KNN, Gaussian-based
classifier, Naive Bayes, and artificial neural network (ANN), and extract the features for
training based on whether they are useful for linking specific types of network traffic or if
they can identify hosts with similar patterns. They classified the traffic into three different
classes and evaluated the models on training speed, prediction speed, the ratio of true pre-
dictions, and the ratio of total errors. They concluded that none of the models managed
to satisfy all of the requirements. SVM, KNN, and ANN performed well for the detection
of botnets; however, both the ANN and SVM were deemed unsuitable for online detection
due to the training and classification time.

Leevy et al. [32] analyze specifically the BoT-IoT dataset in order to find the minimum
number of features for binary classification with the decision tree classifier to provide
a simplified approach for handling the large amount of data. In addition to this, they
generated the feature importance in order to choose the features that caused the biggest
reduction in impurity, thereby increasing the accuracy, and the results showed that the top
three features (1: destination ports, 2: source to destination byte count and 3: transaction
state) were sufficient for receiving near-perfect results, where the evaluation metrics they
used for the performance of the models were AUC, the F-score and the AUPRC.

Pokhrel, Abbas and Aryal [33] aim to detect specifically DDoS attack traffic in an IoT
network. The machine learning models used where KNN, Gaussian Naive Bayes and
multi-layer perception ANN. They used the BoT-IoT dataset, where they applied feature
selection by setting a F-score threshold value and oversampled the minority class with
SMOTE. The models were evaluated with the accuracy score and ROC-AUC, where KNN
showed the most stable results with both the imbalanced dataset and the oversampled
version.

Venu, Kumar and Rao [34] explore how four different machine learning models, KNN,
Naive Bayes, random forest and logistic regression, manages to detect botnets in three
different datasets, CTU-13, CICIDS2017 and IoT-23. Feature selection was performed by
using logistic regression to extract the top 10 features from each data set, based on what
features that have the strongest associations with the target variable. The results were
evaluated on accuracy, precision, recall and Fl-score, where random forest got a perfect
score on all three datasets.

Kim et al. [35] aim to analyze the performance of seven different machine learning mod-
els, as well as two deep learning models. The machine learning models were Naive Bayes,
KNN, logistic regresssion, decision tree and random forest. They were trained on the
N-BaloT dataset and tested with both binary and multiclass classification, which was eval-
uated with the Fl-score. The results showed that all models except logistic regression got

2.3. State of the art 10

satisfactory scores on the binary, while both logistic regression, KNN and Naive Bayes
showed low performance results on the multiclass - leaving decision tree and random for-
est as the best classifiers in this study.

Alshamkhany et al. [36] explore the application of classic machine learning models for
detecting botnet attacks. Their study utilizes the UNSW-NB15 dataset and employs fea-
ture selection through principal component analysis, Chi-squared and ANOVA. Decision
tree, Naive Bayes, KNN and SSVM are trained and tested, where the key findings show
that decision trees achieve 100% performance evaluation in precision, recall and F-score
after applying feature selection.

Guerra-Manzanares, Bahsi and Nomm [37] delve into different types of feature selec-
tion methods for improving machine learning models for detecting botnet traffic in IoT
networks. They explore Fisher’s score and Pearson’s correlation coefficient along with se-
quential forward feature selection and sequential backward feature selection, evaluating
them separately and combined. They used KNN and random forest for multi-class clas-
sification and the results were evaluated with the F-score, showing that combining filter
and wrapper methods for a hybrid feature selection does improve the F-score as opposed
to just using filter methods, while it also reduces some of the computational complexity of
wrapper methods. The best results were received when using Fisher’s score with random
forest, or combining Fisher’s score with the wrapper methods for KNN.

Lefoane et al. [38] research how to apply feature selection for removing redundant features
with the aim of making botnet detection methods more efficient. In this study, the feature
selection is based on the feature value frequency in each of the features as represented
in a dataset for binary classification of benign and botnet traffic, in order to remove the
features with the most noise based on a threshold value. After this, they use decision tree,
logistic regression, and SVM for classification and evaluation of their performance, where
they measured the true positive rate, the false positive rate, the precision, F-score, and the
overall success rate, which is the proportion of all the correctly classified instances to the
total amount of instances. The results showed that the proposed feature selection method
does result in improved performance across all of the evaluation metrics, with logistic re-
gression and decision tree achieving the overall best scores.

Kalakoti, Nomm and Bahsi [39] explore how to minimise feature sets for machine learning
by applying either filter or wrapper method feature selection - namely Pearson’s correla-
tion coefficient, Fisher’s score, mutual information, and ANOVA for filter methods, while
for wrapper methods they used recursive feature elimination, sequential forward feature
selection, and sequential backward feature selection. These feature selection methods were
applied to two different datasets, N-BaloT and MedBIoT. The classification formulations
were both binary for benign and botnet traffic, as well as multiclass for predicting multi-

2.3. State of the art 11

ple other attributes such as the specific attack type, the malware type or the botnet phase.
For predicting these target variables, four different machine learning models were used -
decision tree, random forest, KNN, and extra tree classifier. They were evaluated based on
the Fl-score, and the highest detection rate with the least time to classify was achieved by
the decision tree with sequential backward selection for both binary and multiclass classi-
fications. In general, the wrapper methods were more effective in finding optimal feature
sets for each classification.

Al-Sarem et al. [40] study how to maximise the efficiency of machine learning intrusion de-
tection systems through feature selection on the N-BaloT dataset. The proposed method is
an aggregated version of mutual information, principal component analysis, and ANOVA,
and the models used for classification are random forest, XGBoost, Gaussian Naive Bayes,
KNN, SVM, and logistic regression. The models predicted both binary classification for
benign or TCP attack traffic, and multiclass classification for benign, Bashlite, and Mirai
traffic instances. The evaluation of the performance of the models was done with preci-
sion, recall, and Fl-score, where the best results were yielded with mutual information
feature selection for binary classification, and XGBoost and KNN generally achieved the
best scores.

State of the art key findings

This section evaluated state-of-the-art literary works within the topic of botnet identifi-
cation. It identified the models, datasets, feature selection methods and evaluation tech-
niques employed in various studies within the topic of botnet detection, providing valu-
able insights into potential directions for our own further research. The literature showed
tendencies between the machine learning models used for classification, in all cases mul-
tiple models were used either separately for comparison or combined to make a hybrid
model. In addition to this, favorable results were often received when utilizing feature
selection methods to remove redundant features or emphasize features with strong corre-
lation to the target variable. Guerra-Manzanares, Bahsi & Nomm chose to combine filter
and wrapper methods with favorable results, while the other works compared feature se-
lection techniques. The evaluation metrics were most often based on accuracy, precision,
recall and/or the Fl-score.

Table 2.1 will show an overview of the notable findings from the literature that we will
consider for the further progress of this project, in terms of the different machine learning
models used and their performances.

When exploring the suitable datasets for training a model to identify IoT botnets, nu-
merous datasets appeared in the state of the art, one of them being BoT-IoT. The Bot-IoT
dataset was created by UNSW Canberra and incorporates both benign and botnet traffic
with more than 72 million records - as the name suggests, it consists of IoT network traffic,

2.3. State of the art 12

including multiple different types of botnet attacks, such as (D)DoS, keylogging and data
exfiltration, in addition to benign traffic[1]. This dataset has been referenced in numerous
of the literary works in this chapter, which prompts us to further explore the performance
and resilience of models that are trained with the BoT-IoT dataset. We will be using the
BoT-IoT dataset for this project to assess its performance and explore opportunities for
enhancement.

2.3. State of the art

13
Table 2.1: The best performing machine learning models from the literature review
Model Sources that used it Results
KNN Pokhrel, Abbas & Aryal [33] 92.1 Accuracy & 92.2 ROCAUC
Al-Sarem et al. [40] 98.28 Accuracy
Guerra-Manzanares, Bahsi & Nomm [37] Over 99.9 accuracy when

Decision Tree

Random Forest

Naive Bayes

XGBoost

SVM

Logistic Regression

using Fisher’s score + SFFS

Alhowaide, Alsmadi & Tang [29] 2nd best performance across
feature selection methods
Kalakoti, Nomm & Bahsi [39] Highest detection rate
& lowest time to classify
Alshamkhany et al. [36] 100 Precision, Recall & F-score
Lefoane et al. [38] 99.9 Overall Success Rate & F-score
Kim et al. [35] 100 Precision, Recall

& Fl-score for binary
Leevy et al. [32] 100 Fl1-score & AUPRC

Alothman, Alkasassbech & Baddar [30] 96.0 Accuracy in binary
& 93.0 in multiclass

Venu, Kumar & Rao [34] 100 Accuracy, Precision
Recall & Fl-score

Alothman, Alkasassbech & Baddar [30] 96.3 Accuracy in binary
& 93.0 in multiclass

Guerra-Manzanares, Bahsi & Nomm [37] Over 99.9 accuracy when
using Fisher’s score

Alhowaide, Alsmadi & Tang[29] Best performance across
feature selection methods

Kim et al. [35] 100 Precision, Recall
& Fl-score for binary
Kim et al. [35] 100 Precision, Recall
& Fl-score for binary
Al-Sarem et al. [40] 99.19 Accuracy
Saad et al. [31] Highest detection rate

& highest training time

Lefoane et al. [38] 100 Overall Success Rate & F-score

Chapter 3

Theory

After having explored the state of the art within botnet identification, understanding the
underlying theories behind its models and techniques becomes essential. The machine
learning models that were highlighted in the previous chapter, as well as methods for
feature selection, will be further examined in this chapter. The goal of adding feature
selection is to identify which features in the dataset that will be most informative for
achieving an optimal result when applying the model.

3.1 Rationale for choice of machine learning models

The selection of algorithms for any machine learning task is critical and should be based
on the specific characteristics of the data, the computational resources available, and the
desired accuracy and interpretation of the model[41]. In this section, we will discuss the
models from last chapter and choose which ones to use for our experiments based on their
characteristics, strength and weaknesses.

For the analysis of the BoT-IoT dataset, which is both large and highly imbalanced, the
chosen models should be well-suited to handle the complexities of network traffic data,
which includes handling large volumes of data containing numerous features with a wide
range of feature values across the data set.

The models chosen for further analysis as based on the literature review is KNN, SVM,
decision tree, random forest, XGBoost, logistic regression and Naive Bayes. This section
will describe their characteristics, highlight their differences and explore their practical im-
plementation for detection of botnet traffic through a large-scale dataset such as BoT-IoT.

Naive Bayes

Naive Bayes is based on Bayes theorem, which describes the probability of an event based
on already acquired knowledge about conditions that might be related to this event. Naive

14

3.1. Rationale for choice of machine learning models 15

Bayes assumes that each feature will contribute independently, and therefore will not affect
the presence of other features, even though this independence might not hold in real-world
data, where they might actually be dependent - this is why it is called "naive". Since the
model assumes that the presence of each feature is independent of the others, the probabil-
ity is calculated for each class. To make a prediction, the class with the highest conditional
probability is selected[42].

Naive Bayes is fast in making predictions, since it only computes the probabilities of the
features for each class and then chooses the class with the highest probability, which is
a significant advantage in real-time detection systems. It works under the assumption of
feature independence, which might not always hold in real-life but provides a simplified
assumption for the computation. It requires a smaller amount of training data for estima-
tion, which makes it suitable for quickly adapting to changes in attack behaviors, which
is appropriate dynamic environments such as IoT networks. While not directly applicable
here, its effectiveness in text classification tasks demonstrates its robustness in handling
diverse types of data, supporting its use in network traffic classification where metadata
also often behaves independently, such as duration, source port and packet rates[43].

K-Nearest Neighbors

The KNN algorithm classifies data points based on the "nearest neighbours". If we visu-
alize our existing data as points in a graph — depending on how they cluster, we can then
classify them on that. If we want to classify a new data point, we will do that based on
what its nearest neighbours in the graph are. This means that KNN is a way to say that
we do not need to compare the new data to classify with the whole graph, but just the K
nearest neighbours, where K is whichever number we choose.

KNN showed notably good performance in multiple of the literary works - however, it is
very computationally costly and therefore not recommended for use with large datasets[44].

Support Vector Machine

For SVM, the goal is to find the best line that divides different categories in your data
- this line is called the decision boundary. The decision boundary should maximize the
margin, which is the distance between the line and the nearest data points of any class. By
maximizing this margin, the SVM will find the best possible separation between classes.
The support vectors are the specific points that are the closest to this line and will there-
fore be the points that decide how the line is positioned to find the best possible separation.

As already denoted in table 2.1 in the past chapter, SVM suffers from high training time,
since finding the line that maximizes the margin between classes is a complex problem[45].

3.1. Rationale for choice of machine learning models 16

Decision tree

The decision tree algorithm breaks the dataset down into smaller and smaller subsets
based on different attributes - similar to a flow chart where the branches are the decisions
made based on the features represented by the nodes. The tree starts with a root node
representing the entire dataset. The model will examine all features and selects the one
that best splits the dataset into two subsets that are as homogeneous as possible with re-
spect to the target variable. The dataset will be split into smaller subset and this continues
recursively until it is stopped or it reaches a point where its confident enough to make a
final decision or prediction[46].

Decision trees are advantageous for their ease of interpretation as they provide clear visu-
alization of the decision-making process, which can help with understanding the feature
importance in network security. They are capable of handling both numerical and cate-
gorical data and unlike SVM or KNN, decision trees do not require defining a hyperplane
or calculating distance metrics, which can become an obstacle for the computational re-
sources in high-dimensional spaces, such as in network traffic data[47].

Random forest

Random forest is called an ensemble learning method - meaning that it aggregates the
predictions from multiple models, specifically multiple decision trees. It builds multiple
decision trees and merges them together during training - it will make a final prediction
and for classification, it will output the most frequently predicted class by the individual
trees. Specifically for random forest, the ensembling technique is called bagging, where
the focus is on building new models independently of each other and averaging the en-
semble of the independent models[48].

As an ensemble of decision trees, random forest mitigates the risk of overfitting associated
with individual decision trees, making it robust across various datasets. It can provide a
less biased performance through averaging multiple trees, reducing the variance of pre-
dictions. Each tree is built on a random subset of features, making the model more diverse
and less likely to bias towards specific features. However, the process of building multiple
trees is more costly than building just one and therefore random forest will often have a
higher training time than decision tree[49].

XGBoost

XGBoost stands for eXtreme Gradient Boosting and similar to random forest, XGBoost is
also bases its predictions on an ensemble consisting of multiple trees. The difference lies
in that XGBoost iteratively builds the trees for correcting the errors that the previous tree
made in its predictions. For XGBoost, the ensembling technique is called boosting and

3.1. Rationale for choice of machine learning models 17

focuses on building the new models sequentially of each other to give them the chance to
correct mistakes iteratively, as opposed to the parallel nature of random forest.

XGBoost can use multiple CPU cores at the same time, which will speed up the train-
ing process. It can also be tailored to specific problems since the parameters allows for
the user to define the loss functions and evaluation metrics. In addition to this, it reduces
overfitting due to its built-in regularization techniques[50].

Logistic regression

Logistic regression is another classification algorithm used mostly for binary classification.
The algorithm will assign weights to each feature according to how dominant they are in
making the prediction - to do this, a sigmoid function is used to combine the features and
their weights and deliver a value between 0 and 1. This value will denote the probability
of what class a data instance should belong to and the prediction will be made based on a
threshold.

Logistic regression is easy to implement and understand through the statistical coef-
ficients that decides the predictions. It does not require a lot of computational resources,
however it also assumes independence between the features which is often not true, simi-
larly to Naive Bayes. In addition to this, it is mostly efficient for binary classifications and
since it assumes a linear relationship between features it may not capture any complex
relationships represented in the data[51].

Comparative analysis

For the selection of appropriate algorithms for the BoT-IoT dataset, a comparative analysis
was conducted to evaluate the strengths and weaknesses of each algorithm. The objective
was to evaluate multiple models for the purpose of detecting botnet traffic and therefore
no specific number of models were to be discarded before moving on to the experiments.
The goal was instead to exclude any of the previously mentioned models that could pre-
emptively be proven to not be suitable for the nature of this project. For instance, the char-
acteristics of the BoT-IoT dataset — large scale, many features, and severe class imbalance
— require models that can efficiently process vast amounts of data with high accuracy and
reasonable computational cost, which some of the models may not be suitable for [52, 53].
In addition to this, an IoT network usually consists of devices with limited computing re-
sources; because of these considerations, we are prioritising machine learning models that
can do efficient classification on large datasets with a viable training time. The following
considerations were made regarding possible disadvantages of the previously mentioned
models as presented by the literature review:

¢ Computational efficiency: Both SVM and KNN are computationally demanding
with large datasets. SVM requires extensive grid searching for optimal hyperpa-

3.2. Feature selection 18

rameters, and KNN suffers from having to compute the distance to every single data
point in the dataset, which is impractical with over 72 million traffic instances[54, 55].

* Scalability and real-time applicability: Given the need for real-time analysis in net-
work security, algorithms that can be easily scaled and parallelized across multiple
processors are preferred. For instance, XGBoost and random forest offer built-in
methods for parallelization of the training of multiple trees, whereas KNN and SVM
generally do not scale as well with increasing data size[50, 48].

The decision to exclude certain models from the experiments was based on the follow-
ing strategic considerations: the computational cost and lack of real-time applicability of
SVM and KNN are unfitting for this project. For the purpose of realistic results, the size of
the dataset is not negotiable and therefore these models were not appropriate. Therefore,
we decided to proceed with Naive Bayes, decision tree, random forest, XGBoost, and logis-
tic regression to evaluate their performance. As mentioned previously, XGBoost specifies
a custom-defined learning objective. Referring back to chapter 2, Al-Sarem et al. [40] did
not specify which learning objective was used for their results, therefore we have chosen to
implement logistic regression for the learning objective of XGBoost instead of separately.
By integrating logistic regression within the ensemble learning of XGBoost, we allow the
logistic regression to serve as a baseline model that will benefit the iterative ensemble tech-
nique of XGBoost.

Each of the chosen models allows for both binary and multi-class classification of data.
This means that if we want to classify network traffic, we can classify it as either benign
or botnet when using binary classification; but if we use multi-class classification, we can
classify the network traffic into more than two different classes, for instance DDoS, DoS,
keylogging, and benign. This can be useful if we want to predict exactly what type of
attack the botnet traffic can be classified as. For this project, we will focus on binary clas-
sification, since the imbalance in the dataset that we want to explore is already prevalent
within the binary classes.

3.2 Feature selection

As presented in the literature review in the previous chapter, feature selection is a method
for improving the performance of a machine learning model. Feature selection is the pro-
cess of systematically choosing the most relevant subset of the full feature set based on
certain criteria, with the goal of finding the most relevant features for predicting the target
variable. In other words, we want to determine the most optimal set of features that will
allow us to construct a machine learning model for, in this specific case, detecting botnet
traffic in an IoT network. The criteria used to choose this feature set can be based on statis-
tics, which are known as filter methods, or it can be based on optimising the performance
of the given model at training time, which are known as wrapper methods.

3.2. Feature selection 19

One reason for performing feature selection is to avoid overfitting, which occurs when
the model is trained "too well" with the data and therefore may capture any noise in the
data instead of learning the actual patterns we are looking for to classify the data correctly.
If this happens, the model may not make the right predictions when introduced to new
data. Feature selection techniques can mitigate overfitting by reducing the complexity of
the model and focusing on the most informative features[56]. In addition to this, a smaller
feature set may reduce the training time. Since the BoT-lIoT dataset has more than 30
features, we assume that some features may be more informative than others and that it
should be possible to reduce the dimensionality of the input space. Also, the model will
require less training time and computational resources, which will be beneficial since the
BoT-IoT dataset is large.

Filter methods

Filter methods for feature selection are usually the computationally cheapest option, since
the features are evaluated based on statistical measures to determine their relevance. This
means that the features are evaluated independently of the machine learning model we
are planning to use. This method is generally used to perform an initial "filtering" of the
features in the dataset before training the model[56].

Referring back to section 2.3, one of the most widely used methods for feature selec-
tion when using filter methods is Pearson’s correlation coefficient. It measures the linear
correlation between two sets of data—where a set of data could be one feature in a dataset,
so this would be the linear correlation for each pair of features in a dataset. If the corre-
lation between two features is perfectly linear, this means that if one variable changes, the
other variable will also change by a constant amount, and the relationship between the
two variables, or features, will therefore appear as a straight line if plotted on a graph.
The Pearson correlation coefficient ranges from 1 to -1, where 1 represents a perfectly lin-
ear relationship between two variables, and 0 means that there is no linear relationship
and therefore no correlation between the two variables. A value of -1 indicates a perfect
negative linear correlation, meaning that if one variable increases, the other will decrease
proportionally.

A reason for excluding features with too much linear correlation is that it may be dif-
ficult for the model to distinguish the individual effect of each feature, thus not properly
recognising the patterns in the data if the features are too highly correlated. In addition
to this, features that have a high linear correlation with other features may provide mostly
redundant information that does not improve the training of the model. By removing the
redundant feature, it will both decrease the training time of the model and minimise the
risk of overfitting the model to any redundant data represented in the highly correlated
features[56].

3.2. Feature selection 20

We will proceed with Pearson’s correlation since it is widely used in the state of the art
literary works, as seen in the previous chapter. In addition to this, we want to measure
the correlation between the features and the target variable, similar to Venu, Kumar and
Rao[34]. This can also be done with Pearson’s - we would just have to measure the correla-
tion between each feature and the target variable instead of just measuring the correlations
between each pair of features. However, another filter method for feature selection that
was represented in the literary works in the last chapter is ANOVA. ANOVA stands for
Analysis of Variance and the purpose is not to identify any linear correlations in the fea-
ture set, but differs from Pearson’s in that it calculates the correlation between the features
and the target variable based on how the feature values are represented for both groups
within the target variable (the groups would in this case be attack and normal traffic). It
does this by assessing if the variance between normal and attack traffic can be explained
by the variance between the values of the features in the dataset[57].

Since the redundancy in the dataset that can be expressed with linear correlation is
already handled with Pearson’s, we found it more insightful to use ANOVA for measur-
ing how the values of the target variable are represented across the feature set. This can
capture more complex patterns that are not linear in categorical target variables while
portraying how different ranges of feature values impact the final prediction, providing a
deeper understanding of the relationship between the feature values and the target vari-
able.

Wrapper methods

As mentioned previously, wrapper methods actually take the performance of the given
machine learning model into account in order to decide which features are the most infor-
mative and relevant. A search algorithm will be used for exploring the different feature
combinations for finding the subset that will optimize the model at training time, which
will make it more computationally expensive than the filter methods that simply calcu-
lates a score and where the selected feature set will be based on the threshold as set by the
individual interpreting the results.

Feature selection using wrapper methods can be done by exploring all possible subsets
of features with the model, but also by starting with an empty set of features and then it-
eratively adding the feature that makes the best contribution to model performance — this
is called forward feature selection. We can also do backward feature selection, in which
we include all features in the model from the beginning and then iteratively remove the
feature that makes the smallest decrease to the model performance. Both of these methods
will iteratively run until a specified number of features is met or there is no significant
enhancement to the model. Exhaustive feature selection will evaluate all possible feature
subsets, making it very computationally costly but very accurate in finding the most op-

3.3. BoT-IoT dataset 21

timal subset of features for the model[56]. Therefore, we will be using forward feature
selection and backward feature selection.

3.3 BoT-IoT dataset

TThe BoT-IoT dataset was created by Koroniotis et al.[1] in the Cyber Range Lab at UNSW
Canberra with multiple virtual machines (VMs) for producing both benign and botnet
traffic, as well as simulated IoT sensors. These were simulated using the Node-red tool,
which is installed on Ubuntu VMs and creates JavaScript code for mimicking IoT device
and sensor behaviour. The resulting simulated IoT devices consisted of a weather station, a
smart fridge, motion-activated lights, a thermostat, and a garage door, generating normal
IoT traffic. Ostinato, a traffic generator tool, was used for generating additional normal
traffic within the network. The attacks were performed by four Kali Linux machines,
representing bots launching different types of network attacks[1].

The features were extracted with Argus and new, additional features were gener-
ated. These were created to capture additional patterns over time within the network
traffic—each additionally created feature is based on analysing and measuring different
aspects of the traffic within a window consisting of 100 connections of the collected data
points. These additional features are only included in the 5% sample of the dataset. The
features and their descriptions are denoted in the table below.

As described in the table, mean, stddev, sum, min and max are features indicating at-
tributes about aggregated records. Koroniotis et al.[1] do not provide further explanation
on what the term "aggregated records" represent, but after consulting the Argus documen-
tation we found that the aggregation of records can be based on different criteria, such as
the protocol and/or the destination port, in order to generate statistics based on the cho-
sen criteria, such as mean duration and standard deviation for the records with a specific
protocol and state to generate data that is useful for detecting specific attacks[58].

3.3. BoT-IoT dataset

Extracted features

Description

Example values

pkSeqlD The unique identifier assigned Unique intfrom 1, 2,
to eachrecord in the traffic 3,...,73370443
sequence

stime The start time of the record float
measured in Unix time

flgs Indicates various properties e: Ethernet
and attributes of the network encapsulated flow
flow states s: Src loss/

retransmissions
U: unknown IP options
set

flgs_number

Numerical representation of
flgs

1:e,6:eU,2:es,

proto

The transaction protocol

udp, tcp, arp

proto_number

Numerical representation of
proto

1:tep, 2: arp, 3: udp

saddr Source |IP address 192.168.100.148
sport Source port number int
daddr Destination IP address 192.168.100.6
dport Destination port number int
pkts Number of packets in the int
transaction
bytes Number of bytes in the int
transaction
state Reports the basic state of the RST: reset
transaction, depending on the | CON: connected
protocol INT: initial

state_number

Numerical representation of
state

1:RST, 2: CON, 4: INT

ltime The end time of the record float
measured in Unix time

seq Another unique identifier Unique intfrom 1, 2,
assigned to each record in the 3,...,73370443
traffic sequence

dur Total duration of the record float

Extracted features

Description

Example values

mean

Indicates the average, or
typical, duration of aggregated
records

float

stddev

Measure how the aggregated
records are spread aroung the
mean - a higher deviation will
indicate greater variability in
the durations of the records

int

sum

Represents the total combined
durations of the aggregated
records

float

The shortest duration among
the aggregated records

float

The longest duration among
the aggregated records

float

spkts

Indicates the number of
packets sent from the source
to the destination

dpkts

Indicates the number of
packets sent from the
destination to the source

sbytes

Indicates the number of bytes
transmitted from the source to
the destination in the
transaction

dbytes

Indicates the number of bytes
transmitted from the
destination to the source in the
transaction

rate

Packets per second in the
transaction

float

srate

Packets per second in the
transcation specifically from
the source

float

drate

Packets per second in the
transcation specifically from
the destination

float

attack

Indicates whether the record is
normal traffic or attack traffic

0: normal traffic
1: attack traffic

category

Category of traffic

DoS, Theft

subcategory

Subcategory of traffic

TCP, UDP, Keylogging

Figure 3.1: Descriptions of the extracted features in the BoT-IoT

dataset [1]

22

3.3. BoT-IoT dataset 23

Generated features Description Example values
TnBPSrcIP Total number of bytes per source IP int
TnBPDstIP Total number of bytes per destination IP int
TnP_PSrcIP Total number of packets per source IP int
TnP_PDstIP Total number of packets per destination int
P
TnP_PerProto Total number of packets per protocol int
TnP_Per_Dport Total number of packets per destination int
port
AR_P_Proto_P_SrcIP Average number of packets transmitted float

per time unit for each possible
combination of protocol and source IP,
where the time unit is calculated by
dividing the total number of packets
transmitted for each combination by the
total duration of which they were sent
AR_P_Proto_P_DstIP Average number of packets transmitted float
per time unit for each combination of
protocol and destination IP

N_IN_Conn_P_DstIP Number of inbound connections per int
source IP

N_IN_Conn_P_SrclP Number of inbound connections per int
destination IP

AR_P_Proto_P_Sport Average number of packets transmitted float

per time unit for each combination of
protocol and source port
AR_P_Proto_P_Dport Average number of packets transmitted float
per time unit for each combination of
protocol and destination port
Pkts_P_State_P_Protocol_P_DestIP | Packet count based on each combination | int
of state, protocol and destination IP
Pkts_P_State_P_Protocol_P_SrclP | Packetcount based on each combination | int
of state, protocol and source IP

Figure 3.2: List of generated features in the 5% BoT-IoT dataset [1]

The scenarios that were generated wit