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Abstract:

This thesis investigates the use of machine
learning models to classify botnet traffic
within an Internet of Things (IoT) net-
work. Given the increasing prevalence of
IoT devices in our society, their limited
computational power makes them a vul-
nerable target for botnet exploitation, mak-
ing advanced detection mechanisms that
can adapt to evolving threats with mini-
mal false positives necessary. Traditional
methods of network security often fail to
adapt to the dynamicaly adjusting nature
of botnet attacks, making machine learn-
ing, with its ability to learn and detect pat-
terns in data a more effective solution. This
study refines and enhances machine learn-
ing models specifically tailored for IoT bot-
net detection by tackling three key ques-
tions: ensuring proper pattern recognition
through training on imbalanced datasets,
optimizing machine learning models for
botnet traffic detection in IoT networks,
and identifying the most influential net-
work traffic features for detecting poten-
tial botnet activities. Five machine learn-
ing models - decision tree, random forest,
Gaussian Naive Bayes, XGBoost, and a vot-
ing classifier - were trained on the BoT-IoT
dataset sample, with the feature sets be-
ing selected based on both feature correla-
tion and forward and backward selection
methods. Addressing the dataset imbal-
ance, different techniques were employed
to balancing the classes. The trained mod-
els were also tested on a newly sampled
dataset to provide performance validation.
The results indicated that the voting vlassi-
fier, combining decision tree and XGBoost
on an oversampled dataset, achieved the
most favorable performance.
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Chapter 1

Practical Methods and Approaches

This chapter will outline the methods used for gathering and analyzing the data in this
thesis to provide an overview of the process and agenda behind the development of the
project and solution.

Information gathering

The information gathering for this thesis was initiated with a literature review of the
state of the art within the field of botnets, IoT and machine learning. The literature was
found through Google Scholar and Aalborg University’s PRIMO and the search was based
around the following keywords and their combinations:

• "botnet"

• "detection"

• "identification"

• "IoT"

• "network"

• "traffic"

• "machine learning"

Each type of chosen literature represents a contemporary analysis of botnets, some of them
specifically within IoT networks, with some of the literary works also providing suggested
solutions as to how they can be detected through the employment of machine learning.
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Information processing

The data used for the experimental part of this thesis builds on the theory gathered from
the literature review. The dataset was chosen by exploring the state-of-the-art literary
works within the field of botnet detection, many of which utilized the BoT-IoT dataset
from UNSW Canberra.[1] The classifiers used for the initial test cases in this thesis were
also assembled from the literature review.

Python was used for training and testing all the models on the dataset, by using the
following relevant libraries:

• xgboost for the deployment of the XGBoost classifier [2]

• scikit-learn for deploying the remaining models, for preprocessing of the data, per-
formance metrics and for the feature selection methods [3]

• time for calculating the training time of the classifiers [4]

• matplotlib for plotting Pearson’s correlation coefficients into a heatmap and visual-
ising the decision tree[5]

• seaborn for visualizing the heatmap [6]

• pandas for loading the dataset files [7]

• numpy for handling arrays of data, such as saving the dataset in an array and then
splitting it into testing and training sets [8]

• pickle for saving the trained models [4]

• math for certain mathematical tasks, such as calculating the Shannon entropy [4]

• imblearn for oversampling and undersampling of the dataset [9]

Overview of thesis structure

Chapter 2 will introduce the topic of botnets and how they relate to IoT networks, laying
the groundwork for the problem formulation. The rest of the chapter will delve deeper
into the background of the issue and draw on literary sources from the state of the art to
extract the necessary tools for botnet detection.

Chapter 3 will further examine the theory, construction, and limitations of these tools
to discard the ones that are not relevant.

Chapter 4 will describe the experiments conducted using the previously selected tools.
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The theoretical approach behind the test cases will be explained with mathematical ex-
pressions, and the practicalities of the chosen parameters will also be described. The
results from the experiments will be presented.

Chapter 5 will interpret the results by exploring their purpose, alignment, and any limita-
tions of the experiments. The chapter describes how they could be transferred to a real-life
detection system and possible future directions.

Chapter 6 is the conclusion, where the problem formulation will be addressed and the
final solution for a botnet detection method will be presented.



Chapter 2

Introduction & Background

2.1 Introduction

Botnets are collections of compromised devices infected with malware and connected over
the internet for an entity to exploit for malicious purposes [10]. Each compromised device
in the botnet and the entity controlling them is the botmaster. Botnets increasingly disrupt
our digital society through activities like spam, data theft, denial of service attacks, and
malware propagation.[11]

A fundamental element of any botnet is its communication strategy[12]. Traditionally,
botnets have used Internet Relay Chat (IRC) for coordination, with bots linking to an
IRC server[13]. The botmaster in control of the botnet uses command and control (C&C)
channels on this platform to manage the network of infected machines, sending commands
and updates to maintain control over long periods.

While IRC for many years has been the dominant method, the adoption of HTTP-
based communication has also become common[12]. Both IRC and HTTP-based botnets
are based on a centralized structure, which makes them vulnerable to a single point of
failure through the control server.

In recent years, there has been a shift towards more decentralized Peer-to-Peer (P2P)
architectures. P2P botnets are constructed without a single point of failure that can be eas-
ily targeted, unlike IRC and HTTP. This decentralized approach allows the bot master to
disseminate commands across the network, complicating the destruction of the botnet[14].
Modern botnets also often use various encryption methods[15], further complicating detec-
tion efforts. This combination of decentralization and encryption in newer botnets makes
it challenging to fully assess their size and influence, thereby escalating the risks and chal-
lenges faced by cybersecurity measures.

Previously, the threat of botnets was primarily confined to home and office computers.
However, this has changed with the exponential growth of the Internet of Things (IoT)
sector, connecting millions of devices daily [16]. The now widespread use of IoT devices
throughout most modern environments is rapidly growing, from fully automated factories
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to smart cities. IoT devices offer both convenience and potential attack vectors[17]. While
the connectivity offered by various IoT devices has immense benefits, it must be recog-
nized that most prioritize functionality over security. The lack of encryption and usually
outdated software leaves them vulnerable to malicious attacks [18]. For instance, a 2023
report by Securelist highlighted a significant increase in brute-force attempts targeting IoT
devices, with 97.91% of these attempts targeting the Telnet protocol—widely used by var-
ious IoT devices [19], underscoring the need for research into detection solutions in this
field.

This thesis focuses on detecting botnet traffic on an IoT network, addressing the detec-
tion of traffic in the attack phase of the botnet life-cycle. The machine learning algorithms
employed will be decision tree, random forest, XGBoost, and Naive Bayes, as well as a
voting classifier combining XGBoost with decision tree and Naive Bayes. The models will
be trained on a 5% sample of the BoT-IoT dataset and tested on an additional dataset
sampled for the purpose of this project, as well as oversampled and undersampled vari-
ations. Emphasis will be placed on dataset analysis and feature engineering, examining
how imbalanced datasets impact machine learning algorithms and addressing this imbal-
ance, along with how to optimize the classification through feature selection. For this,
different filter and wrapper methods will be explored and implemented. Our work aims
to provide clarity on multiple subject matters in the field, as outlined in the next section
containing the problem formulation.

2.1.1 Problem formulation

In this thesis, we address the issue of detecting botnet attacks in IoT environments, of
which the exploitation of the vulnerabilities in these connected devices is an increasing
problem in our digitized society. The wide use of IoT technologies presents unique chal-
lenges in maintaining security measures, highlighting the need for advanced detection
mechanisms that can adapt to evolving threats with minimal false positives and false neg-
atives. Our study seeks to refine, enhance and validate the use of machine learning models
specifically tailored for IoT botnet detection by answering the following key questions:

1. How can we ensure proper pattern-recognition through training of machine learn-
ing models when handling imbalanced datasets, in a botnet detection scenario
where attack traffic significantly outnumbers normal traffic?

• Here, we consider various machine learning algorithms and their configurations
to determine which models provide the best trade-off between detection preci-
sion and computational efficiency, as well as how we can validate the success of
the performance evaluations.

2. What are the most effective strategies to optimise machine learning models for
botnet traffic detection in IoT networks?
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• This question explores methods and techniques for adapting the learning al-
gorithms to improve the model performance when handling imbalanced data
from an IoT network, thus preventing bias towards the majority class.

3. Which network traffic features are most influential in identifying potential botnet
activities, and how can these features be systematically evaluated and selected?

• This involves describing and analysing network traffic features based on their
predictive power and relevance to identifying malicious activities, potentially
leading to more streamlined and focused detection models.

By addressing these questions, our research aims to develop a framework that enhances
the detection of botnets in IoT networks with more precision and less false predictions,
thereby contributing to more secure IoT environments.

2.2 Background

Due to the IoT systems being a both young and booming field, the devices are susceptible
to suffer from numerous security issues. Some of the problems that are often represented
within IoT security happen because of the rapidly growing market, where the manufactur-
ers might bring the products to market before they have implemented sufficient security
measures[20]. In addition to this, IoT devices are often small with limited processing
power, which means that they might not have the computing resources to constantly up-
date their firmware and run robust security protocols[21]. They are also physically ex-
posed to security threats, since they are often placed in order to be accessible for the user,
but in return is also more vulnerable to be tampered with - in addition to this, they are
placed directly in the hands of often uneducated end users that do not have sufficient se-
curity awareness to know the benefits of changing the default password and not neglecting
updates to the device[22].

All of these vulnerabilities, in addition to the sheer volume of IoT devices existing world-
wide, make them prime targets for botnets. Cybercriminals can exploit these weaknesses
by using automated scripts to scan and compromise large numbers of devices[23]. Sig-
nificant incidents, like the Mirai botnet, demonstrated how default credentials in IoT de-
vices could be leveraged to create massive botnets capable of launching large-scale DDoS
attacks[24]. The Mirai malware targets IoT devices by scanning the internet for devices
with default login credentials, infecting them, and using them to launch coordinated at-
tacks. This botnet notably disrupted major internet services, highlighting the severe impact
of insecure IoT devices[23].

Modern botnets have evolved from relying on centralized C&C servers to adopting de-
centralized, P2P architectures[25]. P2P botnets are established through P2P transfer pro-
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tocols where the devices in the botnet are able to communicate directly with each other
and therefore do not rely on a single server for C&C. This means that the botmaster does
not need a centralized server to issue commands to the zombies but can instead use any
of the zombies in the botnet to do this. This enhances resilience by eliminating single
points of failure, making disruption more challenging. Additionally, botnets may employ
evasion techniques that requires more sophisticated detection mechanisms, for instance
through encrypted communication channels or domain generation algorithms that gener-
ate a large number of domain names for C&C servers, making it difficult to predict and
block malicious domains[10].

Traditional detection methods, like signature-based and heuristic-based approaches,
often fall short against the more sophisticated botnets. Detection techniques that are based
on recognizing signatures of the botnet traffic may struggle with polymorphic and zero-
day attacks, while heuristic methods that identify botnet traffic based on defined rules or
behavior analysis may result in a large amount of benign traffic being flagged as suspi-
cious [26]. Furthermore, the encryption and obfuscation strategies employed by modern
botnets may obscure the malicious activities, complicating detection based on heuristics
[27].

Nazir et al. [28] conduct a comprehensive review of the state-of-the-art within IoT botnet
detection. Machine learning algorithms are mentioned as one approach for automatically
identifying potential threats, which is an increasingly popular approach as they can ana-
lyze large amounts of data and learn from and adapt to novel types of data. This is an
innovative and likely solution for the growing landscape within IoT, and using ML algo-
rithms will be beneficial for scalability, real-time detection, and accuracy in identifying and
analyzing IoT botnets.

Machine learning offers a promising solution for botnet detection by analyzing large
volumes of network traffic to identify the patterns that are indicative of botnet activity.
Machine learning algorithms can learn from both labeled and unlabeled data, making
them adaptable to new and evolving threats. For supervised machine learning, the model
is trained on data where the desired output to be predicted is already known, while for
unsupervised, the model finds the structures in the data without human intervention. Su-
pervised learning generally produces better performance; however, unsupervised learning
may be more appropriate for experimenting with training a model on unknown data.

By integrating the problem of botnets within the field of IoT networks with supervised
machine learning detection methods, this study aims to explore enhancing IoT network
security through the development of robust and accurate botnet detection systems, con-
tributing to a more secure digital ecosystem.
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2.3 State of the art

After establishing the background for exploring botnets and analysing their traffic for the
purpose of finding a robust method for detecting them, this section will focus on the
examination of current identification solutions. The goal is to gain insights into specific
advancements and challenges within this field and examine state-of-the-art methodologies
used for detecting and mitigating botnet traffic, exploring both their effectiveness and lim-
itations.

Alhowaide, Alsmadi and Tang [29] explored how to mitigate threats within the realm
of IoT devices through intrusion detection systems based on machine learning. They lean
on feature selection as a method for handling the often large amount of dimensional data
needed for analysis when looking into solutions in this field, since effective feature se-
lection reduces the volume and variety of the data by removing any redundant features
while keeping the ones necessary for receiving satisfactory results. They tested multiple
filter methods for feature selection on multiple datasets, both with regular network traffic
and specifically IoT traffic, and the performances of the differently selected feature sets
were measured. The results were based around the elapsed time of each filter method,
how much they reduced the dataset in percentage, how many features were chosen, as
well as the F-Score and ROC-AUC when training and testing five different machine learn-
ing models with the feature sets. The models were Bernoulli Naive Bayes, decision tree,
k-nearest neighbor (KNN), Gaussian Naive Bayes, and random forest, where Bernoulli had
the broadest distribution of performances depending on the feature selection method and
random forest and K-Nearest Neighbor generally had the best performance metrics.

Alothman, Alkasassbeh and Baddar [30] aim for a multiclass approach where they not
only distinguish between benign and botnet traffic, but also identify the type of botnet
traffic. They preprocess the data by oversampling with Synthetic Minority Oversampling
Technique (SMOTE) and train three different classifiers: decision tree, random forest, and
multi-layer perception with the BoT-IoT dataset. This is done both with the complete fea-
ture set, as well as with two selected feature sets based on Pearson’s Correlation Coefficient
and Relief-F. The performance evaluation results were based on which classifier reached
the highest accuracy and F-score with which feature set. In addition to this, they evaluated
the false negative rate for both binary classification of benign versus botnet traffic, as well
as for the specific categories and subcategories of botnet traffic, to measure which type of
classification resulted in most of the botnet traffic being undetected. The results showed
that random forest and decision tree were superior in achieving the best scores for both
binary and multiclass classification.

Saad et al. [31] specifically focus on the detection of P2P botnets, which have the added
functionality of decentralisation, where the botmaster can use any of the bots to distribute
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commands to other bots, making the botnet more difficult to shut down. They train five
different machine learning models: support vector machine (SVM), KNN, Gaussian-based
classifier, Naive Bayes, and artificial neural network (ANN), and extract the features for
training based on whether they are useful for linking specific types of network traffic or if
they can identify hosts with similar patterns. They classified the traffic into three different
classes and evaluated the models on training speed, prediction speed, the ratio of true pre-
dictions, and the ratio of total errors. They concluded that none of the models managed
to satisfy all of the requirements. SVM, KNN, and ANN performed well for the detection
of botnets; however, both the ANN and SVM were deemed unsuitable for online detection
due to the training and classification time.

Leevy et al. [32] analyze specifically the BoT-IoT dataset in order to find the minimum
number of features for binary classification with the decision tree classifier to provide
a simplified approach for handling the large amount of data. In addition to this, they
generated the feature importance in order to choose the features that caused the biggest
reduction in impurity, thereby increasing the accuracy, and the results showed that the top
three features (1: destination ports, 2: source to destination byte count and 3: transaction
state) were sufficient for receiving near-perfect results, where the evaluation metrics they
used for the performance of the models were AUC, the F-score and the AUPRC.

Pokhrel, Abbas and Aryal [33] aim to detect specifically DDoS attack traffic in an IoT
network. The machine learning models used where KNN, Gaussian Naive Bayes and
multi-layer perception ANN. They used the BoT-IoT dataset, where they applied feature
selection by setting a F-score threshold value and oversampled the minority class with
SMOTE. The models were evaluated with the accuracy score and ROC-AUC, where KNN
showed the most stable results with both the imbalanced dataset and the oversampled
version.

Venu, Kumar and Rao [34] explore how four different machine learning models, KNN,
Naive Bayes, random forest and logistic regression, manages to detect botnets in three
different datasets, CTU-13, CICIDS2017 and IoT-23. Feature selection was performed by
using logistic regression to extract the top 10 features from each data set, based on what
features that have the strongest associations with the target variable. The results were
evaluated on accuracy, precision, recall and F1-score, where random forest got a perfect
score on all three datasets.

Kim et al. [35] aim to analyze the performance of seven different machine learning mod-
els, as well as two deep learning models. The machine learning models were Naive Bayes,
KNN, logistic regresssion, decision tree and random forest. They were trained on the
N-BaIoT dataset and tested with both binary and multiclass classification, which was eval-
uated with the F1-score. The results showed that all models except logistic regression got
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satisfactory scores on the binary, while both logistic regression, KNN and Naive Bayes
showed low performance results on the multiclass - leaving decision tree and random for-
est as the best classifiers in this study.

Alshamkhany et al. [36] explore the application of classic machine learning models for
detecting botnet attacks. Their study utilizes the UNSW-NB15 dataset and employs fea-
ture selection through principal component analysis, Chi-squared and ANOVA. Decision
tree, Naive Bayes, KNN and SSVM are trained and tested, where the key findings show
that decision trees achieve 100% performance evaluation in precision, recall and F-score
after applying feature selection.

Guerra-Manzanares, Bahsi and Nomm [37] delve into different types of feature selec-
tion methods for improving machine learning models for detecting botnet traffic in IoT
networks. They explore Fisher’s score and Pearson’s correlation coefficient along with se-
quential forward feature selection and sequential backward feature selection, evaluating
them separately and combined. They used KNN and random forest for multi-class clas-
sification and the results were evaluated with the F-score, showing that combining filter
and wrapper methods for a hybrid feature selection does improve the F-score as opposed
to just using filter methods, while it also reduces some of the computational complexity of
wrapper methods. The best results were received when using Fisher’s score with random
forest, or combining Fisher’s score with the wrapper methods for KNN.

Lefoane et al. [38] research how to apply feature selection for removing redundant features
with the aim of making botnet detection methods more efficient. In this study, the feature
selection is based on the feature value frequency in each of the features as represented
in a dataset for binary classification of benign and botnet traffic, in order to remove the
features with the most noise based on a threshold value. After this, they use decision tree,
logistic regression, and SVM for classification and evaluation of their performance, where
they measured the true positive rate, the false positive rate, the precision, F-score, and the
overall success rate, which is the proportion of all the correctly classified instances to the
total amount of instances. The results showed that the proposed feature selection method
does result in improved performance across all of the evaluation metrics, with logistic re-
gression and decision tree achieving the overall best scores.

Kalakoti, Nomm and Bahsi [39] explore how to minimise feature sets for machine learning
by applying either filter or wrapper method feature selection - namely Pearson’s correla-
tion coefficient, Fisher’s score, mutual information, and ANOVA for filter methods, while
for wrapper methods they used recursive feature elimination, sequential forward feature
selection, and sequential backward feature selection. These feature selection methods were
applied to two different datasets, N-BaIoT and MedBIoT. The classification formulations
were both binary for benign and botnet traffic, as well as multiclass for predicting multi-
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ple other attributes such as the specific attack type, the malware type or the botnet phase.
For predicting these target variables, four different machine learning models were used -
decision tree, random forest, KNN, and extra tree classifier. They were evaluated based on
the F1-score, and the highest detection rate with the least time to classify was achieved by
the decision tree with sequential backward selection for both binary and multiclass classi-
fications. In general, the wrapper methods were more effective in finding optimal feature
sets for each classification.

Al-Sarem et al. [40] study how to maximise the efficiency of machine learning intrusion de-
tection systems through feature selection on the N-BaIoT dataset. The proposed method is
an aggregated version of mutual information, principal component analysis, and ANOVA,
and the models used for classification are random forest, XGBoost, Gaussian Naive Bayes,
KNN, SVM, and logistic regression. The models predicted both binary classification for
benign or TCP attack traffic, and multiclass classification for benign, Bashlite, and Mirai
traffic instances. The evaluation of the performance of the models was done with preci-
sion, recall, and F1-score, where the best results were yielded with mutual information
feature selection for binary classification, and XGBoost and KNN generally achieved the
best scores.

State of the art key findings

This section evaluated state-of-the-art literary works within the topic of botnet identifi-
cation. It identified the models, datasets, feature selection methods and evaluation tech-
niques employed in various studies within the topic of botnet detection, providing valu-
able insights into potential directions for our own further research. The literature showed
tendencies between the machine learning models used for classification, in all cases mul-
tiple models were used either separately for comparison or combined to make a hybrid
model. In addition to this, favorable results were often received when utilizing feature
selection methods to remove redundant features or emphasize features with strong corre-
lation to the target variable. Guerra-Manzanares, Bahsi & Nomm chose to combine filter
and wrapper methods with favorable results, while the other works compared feature se-
lection techniques. The evaluation metrics were most often based on accuracy, precision,
recall and/or the F1-score.

Table 2.1 will show an overview of the notable findings from the literature that we will
consider for the further progress of this project, in terms of the different machine learning
models used and their performances.

When exploring the suitable datasets for training a model to identify IoT botnets, nu-
merous datasets appeared in the state of the art, one of them being BoT-IoT. The Bot-IoT
dataset was created by UNSW Canberra and incorporates both benign and botnet traffic
with more than 72 million records - as the name suggests, it consists of IoT network traffic,
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including multiple different types of botnet attacks, such as (D)DoS, keylogging and data
exfiltration, in addition to benign traffic[1]. This dataset has been referenced in numerous
of the literary works in this chapter, which prompts us to further explore the performance
and resilience of models that are trained with the BoT-IoT dataset. We will be using the
BoT-IoT dataset for this project to assess its performance and explore opportunities for
enhancement.
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Table 2.1: The best performing machine learning models from the literature review

Model Sources that used it Results

KNN Pokhrel, Abbas & Aryal [33] 92.1 Accuracy & 92.2 ROCAUC

Al-Sarem et al. [40] 98.28 Accuracy

Guerra-Manzanares, Bahsi & Nomm [37] Over 99.9 accuracy when
using Fisher’s score + SFFS

Alhowaide, Alsmadi & Tang [29] 2nd best performance across
feature selection methods

Decision Tree Kalakoti, Nomm & Bahsi [39] Highest detection rate
& lowest time to classify

Alshamkhany et al. [36] 100 Precision, Recall & F-score

Lefoane et al. [38] 99.9 Overall Success Rate & F-score

Kim et al. [35] 100 Precision, Recall
& F1-score for binary

Leevy et al. [32] 100 F1-score & AUPRC

Alothman, Alkasassbech & Baddar [30] 96.0 Accuracy in binary
& 93.0 in multiclass

Random Forest Venu, Kumar & Rao [34] 100 Accuracy, Precision
Recall & F1-score

Alothman, Alkasassbech & Baddar [30] 96.3 Accuracy in binary
& 93.0 in multiclass

Guerra-Manzanares, Bahsi & Nomm [37] Over 99.9 accuracy when
using Fisher’s score

Alhowaide, Alsmadi & Tang[29] Best performance across
feature selection methods

Kim et al. [35] 100 Precision, Recall
& F1-score for binary

Naive Bayes Kim et al. [35] 100 Precision, Recall
& F1-score for binary

XGBoost Al-Sarem et al. [40] 99.19 Accuracy

SVM Saad et al. [31] Highest detection rate
& highest training time

Logistic Regression Lefoane et al. [38] 100 Overall Success Rate & F-score



Chapter 3

Theory

After having explored the state of the art within botnet identification, understanding the
underlying theories behind its models and techniques becomes essential. The machine
learning models that were highlighted in the previous chapter, as well as methods for
feature selection, will be further examined in this chapter. The goal of adding feature
selection is to identify which features in the dataset that will be most informative for
achieving an optimal result when applying the model.

3.1 Rationale for choice of machine learning models

The selection of algorithms for any machine learning task is critical and should be based
on the specific characteristics of the data, the computational resources available, and the
desired accuracy and interpretation of the model[41]. In this section, we will discuss the
models from last chapter and choose which ones to use for our experiments based on their
characteristics, strength and weaknesses.

For the analysis of the BoT-IoT dataset, which is both large and highly imbalanced, the
chosen models should be well-suited to handle the complexities of network traffic data,
which includes handling large volumes of data containing numerous features with a wide
range of feature values across the data set.

The models chosen for further analysis as based on the literature review is KNN, SVM,
decision tree, random forest, XGBoost, logistic regression and Naive Bayes. This section
will describe their characteristics, highlight their differences and explore their practical im-
plementation for detection of botnet traffic through a large-scale dataset such as BoT-IoT.

Naive Bayes

Naive Bayes is based on Bayes theorem, which describes the probability of an event based
on already acquired knowledge about conditions that might be related to this event. Naive

14



3.1. Rationale for choice of machine learning models 15

Bayes assumes that each feature will contribute independently, and therefore will not affect
the presence of other features, even though this independence might not hold in real-world
data, where they might actually be dependent - this is why it is called "naive". Since the
model assumes that the presence of each feature is independent of the others, the probabil-
ity is calculated for each class. To make a prediction, the class with the highest conditional
probability is selected[42].

Naive Bayes is fast in making predictions, since it only computes the probabilities of the
features for each class and then chooses the class with the highest probability, which is
a significant advantage in real-time detection systems. It works under the assumption of
feature independence, which might not always hold in real-life but provides a simplified
assumption for the computation. It requires a smaller amount of training data for estima-
tion, which makes it suitable for quickly adapting to changes in attack behaviors, which
is appropriate dynamic environments such as IoT networks. While not directly applicable
here, its effectiveness in text classification tasks demonstrates its robustness in handling
diverse types of data, supporting its use in network traffic classification where metadata
also often behaves independently, such as duration, source port and packet rates[43].

K-Nearest Neighbors

The KNN algorithm classifies data points based on the "nearest neighbours". If we visu-
alize our existing data as points in a graph – depending on how they cluster, we can then
classify them on that. If we want to classify a new data point, we will do that based on
what its nearest neighbours in the graph are. This means that KNN is a way to say that
we do not need to compare the new data to classify with the whole graph, but just the K
nearest neighbours, where K is whichever number we choose.

KNN showed notably good performance in multiple of the literary works - however, it is
very computationally costly and therefore not recommended for use with large datasets[44].

Support Vector Machine

For SVM, the goal is to find the best line that divides different categories in your data
- this line is called the decision boundary. The decision boundary should maximize the
margin, which is the distance between the line and the nearest data points of any class. By
maximizing this margin, the SVM will find the best possible separation between classes.
The support vectors are the specific points that are the closest to this line and will there-
fore be the points that decide how the line is positioned to find the best possible separation.

As already denoted in table 2.1 in the past chapter, SVM suffers from high training time,
since finding the line that maximizes the margin between classes is a complex problem[45].
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Decision tree

The decision tree algorithm breaks the dataset down into smaller and smaller subsets
based on different attributes - similar to a flow chart where the branches are the decisions
made based on the features represented by the nodes. The tree starts with a root node
representing the entire dataset. The model will examine all features and selects the one
that best splits the dataset into two subsets that are as homogeneous as possible with re-
spect to the target variable. The dataset will be split into smaller subset and this continues
recursively until it is stopped or it reaches a point where its confident enough to make a
final decision or prediction[46].

Decision trees are advantageous for their ease of interpretation as they provide clear visu-
alization of the decision-making process, which can help with understanding the feature
importance in network security. They are capable of handling both numerical and cate-
gorical data and unlike SVM or KNN, decision trees do not require defining a hyperplane
or calculating distance metrics, which can become an obstacle for the computational re-
sources in high-dimensional spaces, such as in network traffic data[47].

Random forest

Random forest is called an ensemble learning method - meaning that it aggregates the
predictions from multiple models, specifically multiple decision trees. It builds multiple
decision trees and merges them together during training - it will make a final prediction
and for classification, it will output the most frequently predicted class by the individual
trees. Specifically for random forest, the ensembling technique is called bagging, where
the focus is on building new models independently of each other and averaging the en-
semble of the independent models[48].

As an ensemble of decision trees, random forest mitigates the risk of overfitting associated
with individual decision trees, making it robust across various datasets. It can provide a
less biased performance through averaging multiple trees, reducing the variance of pre-
dictions. Each tree is built on a random subset of features, making the model more diverse
and less likely to bias towards specific features. However, the process of building multiple
trees is more costly than building just one and therefore random forest will often have a
higher training time than decision tree[49].

XGBoost

XGBoost stands for eXtreme Gradient Boosting and similar to random forest, XGBoost is
also bases its predictions on an ensemble consisting of multiple trees. The difference lies
in that XGBoost iteratively builds the trees for correcting the errors that the previous tree
made in its predictions. For XGBoost, the ensembling technique is called boosting and
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focuses on building the new models sequentially of each other to give them the chance to
correct mistakes iteratively, as opposed to the parallel nature of random forest.

XGBoost can use multiple CPU cores at the same time, which will speed up the train-
ing process. It can also be tailored to specific problems since the parameters allows for
the user to define the loss functions and evaluation metrics. In addition to this, it reduces
overfitting due to its built-in regularization techniques[50].

Logistic regression

Logistic regression is another classification algorithm used mostly for binary classification.
The algorithm will assign weights to each feature according to how dominant they are in
making the prediction - to do this, a sigmoid function is used to combine the features and
their weights and deliver a value between 0 and 1. This value will denote the probability
of what class a data instance should belong to and the prediction will be made based on a
threshold.

Logistic regression is easy to implement and understand through the statistical coef-
ficients that decides the predictions. It does not require a lot of computational resources,
however it also assumes independence between the features which is often not true, simi-
larly to Naive Bayes. In addition to this, it is mostly efficient for binary classifications and
since it assumes a linear relationship between features it may not capture any complex
relationships represented in the data[51].

Comparative analysis

For the selection of appropriate algorithms for the BoT-IoT dataset, a comparative analysis
was conducted to evaluate the strengths and weaknesses of each algorithm. The objective
was to evaluate multiple models for the purpose of detecting botnet traffic and therefore
no specific number of models were to be discarded before moving on to the experiments.
The goal was instead to exclude any of the previously mentioned models that could pre-
emptively be proven to not be suitable for the nature of this project. For instance, the char-
acteristics of the BoT-IoT dataset — large scale, many features, and severe class imbalance
— require models that can efficiently process vast amounts of data with high accuracy and
reasonable computational cost, which some of the models may not be suitable for [52, 53].
In addition to this, an IoT network usually consists of devices with limited computing re-
sources; because of these considerations, we are prioritising machine learning models that
can do efficient classification on large datasets with a viable training time. The following
considerations were made regarding possible disadvantages of the previously mentioned
models as presented by the literature review:

• Computational efficiency: Both SVM and KNN are computationally demanding
with large datasets. SVM requires extensive grid searching for optimal hyperpa-
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rameters, and KNN suffers from having to compute the distance to every single data
point in the dataset, which is impractical with over 72 million traffic instances[54, 55].

• Scalability and real-time applicability: Given the need for real-time analysis in net-
work security, algorithms that can be easily scaled and parallelized across multiple
processors are preferred. For instance, XGBoost and random forest offer built-in
methods for parallelization of the training of multiple trees, whereas KNN and SVM
generally do not scale as well with increasing data size[50, 48].

The decision to exclude certain models from the experiments was based on the follow-
ing strategic considerations: the computational cost and lack of real-time applicability of
SVM and KNN are unfitting for this project. For the purpose of realistic results, the size of
the dataset is not negotiable and therefore these models were not appropriate. Therefore,
we decided to proceed with Naive Bayes, decision tree, random forest, XGBoost, and logis-
tic regression to evaluate their performance. As mentioned previously, XGBoost specifies
a custom-defined learning objective. Referring back to chapter 2, Al-Sarem et al. [40] did
not specify which learning objective was used for their results, therefore we have chosen to
implement logistic regression for the learning objective of XGBoost instead of separately.
By integrating logistic regression within the ensemble learning of XGBoost, we allow the
logistic regression to serve as a baseline model that will benefit the iterative ensemble tech-
nique of XGBoost.

Each of the chosen models allows for both binary and multi-class classification of data.
This means that if we want to classify network traffic, we can classify it as either benign
or botnet when using binary classification; but if we use multi-class classification, we can
classify the network traffic into more than two different classes, for instance DDoS, DoS,
keylogging, and benign. This can be useful if we want to predict exactly what type of
attack the botnet traffic can be classified as. For this project, we will focus on binary clas-
sification, since the imbalance in the dataset that we want to explore is already prevalent
within the binary classes.

3.2 Feature selection

As presented in the literature review in the previous chapter, feature selection is a method
for improving the performance of a machine learning model. Feature selection is the pro-
cess of systematically choosing the most relevant subset of the full feature set based on
certain criteria, with the goal of finding the most relevant features for predicting the target
variable. In other words, we want to determine the most optimal set of features that will
allow us to construct a machine learning model for, in this specific case, detecting botnet
traffic in an IoT network. The criteria used to choose this feature set can be based on statis-
tics, which are known as filter methods, or it can be based on optimising the performance
of the given model at training time, which are known as wrapper methods.
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One reason for performing feature selection is to avoid overfitting, which occurs when
the model is trained "too well" with the data and therefore may capture any noise in the
data instead of learning the actual patterns we are looking for to classify the data correctly.
If this happens, the model may not make the right predictions when introduced to new
data. Feature selection techniques can mitigate overfitting by reducing the complexity of
the model and focusing on the most informative features[56]. In addition to this, a smaller
feature set may reduce the training time. Since the BoT-IoT dataset has more than 30
features, we assume that some features may be more informative than others and that it
should be possible to reduce the dimensionality of the input space. Also, the model will
require less training time and computational resources, which will be beneficial since the
BoT-IoT dataset is large.

Filter methods

Filter methods for feature selection are usually the computationally cheapest option, since
the features are evaluated based on statistical measures to determine their relevance. This
means that the features are evaluated independently of the machine learning model we
are planning to use. This method is generally used to perform an initial "filtering" of the
features in the dataset before training the model[56].

Referring back to section 2.3, one of the most widely used methods for feature selec-
tion when using filter methods is Pearson’s correlation coefficient. It measures the linear
correlation between two sets of data—where a set of data could be one feature in a dataset,
so this would be the linear correlation for each pair of features in a dataset. If the corre-
lation between two features is perfectly linear, this means that if one variable changes, the
other variable will also change by a constant amount, and the relationship between the
two variables, or features, will therefore appear as a straight line if plotted on a graph.
The Pearson correlation coefficient ranges from 1 to -1, where 1 represents a perfectly lin-
ear relationship between two variables, and 0 means that there is no linear relationship
and therefore no correlation between the two variables. A value of -1 indicates a perfect
negative linear correlation, meaning that if one variable increases, the other will decrease
proportionally.

A reason for excluding features with too much linear correlation is that it may be dif-
ficult for the model to distinguish the individual effect of each feature, thus not properly
recognising the patterns in the data if the features are too highly correlated. In addition
to this, features that have a high linear correlation with other features may provide mostly
redundant information that does not improve the training of the model. By removing the
redundant feature, it will both decrease the training time of the model and minimise the
risk of overfitting the model to any redundant data represented in the highly correlated
features[56].
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We will proceed with Pearson’s correlation since it is widely used in the state of the art
literary works, as seen in the previous chapter. In addition to this, we want to measure
the correlation between the features and the target variable, similar to Venu, Kumar and
Rao[34]. This can also be done with Pearson’s - we would just have to measure the correla-
tion between each feature and the target variable instead of just measuring the correlations
between each pair of features. However, another filter method for feature selection that
was represented in the literary works in the last chapter is ANOVA. ANOVA stands for
Analysis of Variance and the purpose is not to identify any linear correlations in the fea-
ture set, but differs from Pearson’s in that it calculates the correlation between the features
and the target variable based on how the feature values are represented for both groups
within the target variable (the groups would in this case be attack and normal traffic). It
does this by assessing if the variance between normal and attack traffic can be explained
by the variance between the values of the features in the dataset[57].

Since the redundancy in the dataset that can be expressed with linear correlation is
already handled with Pearson’s, we found it more insightful to use ANOVA for measur-
ing how the values of the target variable are represented across the feature set. This can
capture more complex patterns that are not linear in categorical target variables while
portraying how different ranges of feature values impact the final prediction, providing a
deeper understanding of the relationship between the feature values and the target vari-
able.

Wrapper methods

As mentioned previously, wrapper methods actually take the performance of the given
machine learning model into account in order to decide which features are the most infor-
mative and relevant. A search algorithm will be used for exploring the different feature
combinations for finding the subset that will optimize the model at training time, which
will make it more computationally expensive than the filter methods that simply calcu-
lates a score and where the selected feature set will be based on the threshold as set by the
individual interpreting the results.

Feature selection using wrapper methods can be done by exploring all possible subsets
of features with the model, but also by starting with an empty set of features and then it-
eratively adding the feature that makes the best contribution to model performance – this
is called forward feature selection. We can also do backward feature selection, in which
we include all features in the model from the beginning and then iteratively remove the
feature that makes the smallest decrease to the model performance. Both of these methods
will iteratively run until a specified number of features is met or there is no significant
enhancement to the model. Exhaustive feature selection will evaluate all possible feature
subsets, making it very computationally costly but very accurate in finding the most op-
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timal subset of features for the model[56]. Therefore, we will be using forward feature
selection and backward feature selection.

3.3 BoT-IoT dataset

TThe BoT-IoT dataset was created by Koroniotis et al.[1] in the Cyber Range Lab at UNSW
Canberra with multiple virtual machines (VMs) for producing both benign and botnet
traffic, as well as simulated IoT sensors. These were simulated using the Node-red tool,
which is installed on Ubuntu VMs and creates JavaScript code for mimicking IoT device
and sensor behaviour. The resulting simulated IoT devices consisted of a weather station, a
smart fridge, motion-activated lights, a thermostat, and a garage door, generating normal
IoT traffic. Ostinato, a traffic generator tool, was used for generating additional normal
traffic within the network. The attacks were performed by four Kali Linux machines,
representing bots launching different types of network attacks[1].

The features were extracted with Argus and new, additional features were gener-
ated. These were created to capture additional patterns over time within the network
traffic—each additionally created feature is based on analysing and measuring different
aspects of the traffic within a window consisting of 100 connections of the collected data
points. These additional features are only included in the 5% sample of the dataset. The
features and their descriptions are denoted in the table below.

As described in the table, mean, stddev, sum, min and max are features indicating at-
tributes about aggregated records. Koroniotis et al.[1] do not provide further explanation
on what the term "aggregated records" represent, but after consulting the Argus documen-
tation we found that the aggregation of records can be based on different criteria, such as
the protocol and/or the destination port, in order to generate statistics based on the cho-
sen criteria, such as mean duration and standard deviation for the records with a specific
protocol and state to generate data that is useful for detecting specific attacks[58].
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Figure 3.1: Descriptions of the extracted features in the BoT-IoT
dataset [1]
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Figure 3.2: List of generated features in the 5% BoT-IoT dataset [1]

The scenarios that were generated with the virtual machines and simulated IoT devices to
generate the traffic in the dataset included probing attacks in the form of scanning, denial
of service and distributed denial of service attacks with UDP, TCP, and HTTP, and infor-
mation theft attacks with either keylogging or data theft. In addition to this, benign traffic
was generated. In total, benign traffic constituted 9543 of the instances in the full dataset,
while the attack traffic constituted more than 73.3 million instances. Out of the attack
traffic, the majority consisted of DoS traffic with more than 71.5 million instances, while
the probing attacks contributed more than 1.8 million instances, and the information theft
constituted 1587 instances. This obviously makes for a highly imbalanced dataset, whether
the goal is binary classification with the benign/attack feature or multiclass classification
with the specific types of attacks. As mentioned above, the dataset includes an already
extracted 5% sample of the entire dataset. This sample is the first dataset that we will be
using for this project.

Data preprocessing

To prepare the 5% BoT-IoT dataset for effective machine learning analysis, several pre-
processing steps were undertaken. These steps were crucial in ensuring that the data
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was suitable for training machine learning models to classify network traffic behaviours
accurately.

The primary objective of using the BoT-IoT dataset was to develop a predictive model
capable of identifying different types of network traffic, specifically distinguishing be-
tween normal and attack traffic. This setup defines a classification problem where the type
of traffic is the target variable that we want to predict. This is demonstrated as a binary
classification problem, where the target variable is categorised into two classes, attack traf-
fic and normal traffic. This can also be represented with a binary encoding of 0 and 1,
where 0 represents normal traffic as the Negative class and 1 represents attack traffic as
the Positive class.

The dataset was divided into training and validation sets to evaluate the model’s per-
formance accurately. The splitting was conducted with an 80:20 ratio, where 80% of the
data was used for training the models, and 20% was reserved for testing. This division
helps in ensuring that the model has a substantial amount of data for learning while also
retaining a separate subset for prediction.

In addition to this, the dataset was encoded into numerical values instead of strings to
process and interpret the data as the same data type.

Figure 3.3: Workflow diagram visualizing the steps from data collection to our final interpretation

In table 3.5, the complete process of this project is shown. The creation of the BoT-IoT
dataset is shown, including data collection as well as the usage of ARGUS to extract the
features and generate additional features, which is then composed into the full dataset
consisting of all the generated network traffic instances, as well as the smaller version of
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the dataset, as generated by the original creators, consisting of 5% of the dataset with some
extra generated features. For the full dataset, we create a new sample that is slightly larger
than the 5% dataset with a larger proportion of normal traffic to attack traffic. Both of these
are encoded into numerical values for more seamless processing and go through multiple
rounds of feature selection. The models are trained on 80% of the 5% dataset, then tested
on the remaining 20% of the set, and the trained model is then tested additionally on the
new sample of the full dataset that was generated for the sake of additional validation in
this project. Lastly, the results will be interpreted.

Dataset samples for this project

As mentioned above, a new sample was created for validation of the trained models. The
original 5% dataset as sampled by Koroniotis et al.[1] will be denoted D1, and the second
dataset that we sampled from the full BoT-IoT set will be denoted D2 in the rest of the
report. D1 contains 477 instances of normal traffic and more than 3.6 million instances
of total traffic, making the proportion of normal traffic 0.01% of the total traffic. For D2,
we have 7003 normal traffic instances and 4 million traffic instances in total, making the
proportion of normal traffic 0.18% of the total traffic.

Figure 3.4: Proportions of the types of traffic classifications in the datasets

The reason for creating a new sample of the full dataset is that D1 has an even lower
amount of normal traffic, leaving us with queries about how well the model is learning and
recognising the patterns of the data and whether it will be able to subsequently identify
botnet traffic when introduced to new traffic instances. The aspect of introducing new data
to a model trained for botnet detection was not represented in any of the literary works in
section 2.3, and that is why we want to explore the introduction of new data.

In a real-life scenario, a trained model would not be of much use if it were only able to
predict the standard 20% testing data of the original dataset that it was also trained on. In
addition to this, due to D1 being so imbalanced, the accuracy score can be very high since
the majority class is so dominant compared to the minority class. The skewed nature of a
dataset like BoT-IoT can lead to a phenomenon known as the "majority class trap", where
the majority class, which in this case is the attack traffic, is so abundant that it overwhelms
the model’s learning process. This leads to the evaluation of model performance using
metrics such as overall accuracy becoming misleading in the context of class imbalance.
A high overall accuracy can mask the model’s inability to generalise to unseen benign
data points. Therefore, a more nuanced evaluation approach is crucial, and this is why
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we have chosen to also focus on F1-score and the confusion matrix to provide a more
comprehensive picture of the model’s performance across both classes.

Evaluation metrics

Before moving on to the experiments, we will take a look at metrics for the evaluation
of the machine learning models in order to ensure an informed choice of the evaluation
metrics that we choose for measuring the performance of our own test cases.

The confusion matrix is a table showing how a model’s predictions compare to the
actual classes, illustrating where it got confused. Visualised in the confusion matrix is
the True Positive rate (TP) and True Negative rate (TN) denoting how many instances
of each class were correctly predicted along with the False Negative rate (FN) and the
False Positive rate (FP), representing the proportion of the instances that were incorrectly
classified as belonging to the wrong class. If a Positive instance were incorrectly classified,
this would be a False Negative, since it would falsely be predicted as being Negative.

Figure 3.5: Confusion matrix

The table above visualises the confusion matrix and how exactly it presents the summary
of the predictions. For this project, the Positive class is the attack traffic class and the
Negative class is the normal traffic class. So when we refer to TP, this will mean correctly
classified attack traffic, visualised in the bottom right corner of the confusion matrix, and
TN will mean correctly classified normal traffic, visualised in the upper left corner of the
confusion matrix.

Classification accuracyAccuracy measures the amount of correct predictions to the
total amount of predictions that the model has made. Therefore, in a very imbalanced
dataset such as BoT-IoT, the accuracy can be high even though there is a low classification
rate for just the minority class. This can be expressed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(3.1)

Precision measures the proportion of how many of the positive predictions are true posi-
tives—meaning how many of the traffic instances that were classified as attack traffic were
actually attack traffic. This is calculated as:

Precision =
TP

TP + FP
(3.2)

Recall measures the proportion of true positive instances among all positive instances—meaning
how many of the attack traffic instances were actually predicted correctly. This can be cal-
culated as:
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Recall =
TP

TP + FN
(3.3)

F1-score combines the recall and precision scores and measures how many correct
predictions were made in total. When a dataset is imbalanced, accuracy is not always the
best performance metric to use as mentioned above. Precision describes how good the
model is at making accurate attack traffic predictions, while recall describes how good
the model is in general at making accurate predictions for both types of traffic instances.
Aiming to increase precision, thus the number of correct attack predictions, may lead to
low recall since the model will become more conservative and only predict an instance as
attack traffic if it is very confident—this will lead to some false negatives. On the other
hand, if we want to increase recall, making as many attack predictions as possible, it will
be less conservative to ensure that it will not miss any attack traffic instances, which will
lead to some false positives.

The F1-score computes the harmonic mean of recall and precision. The harmonic mean
places more weight on the lower of the two values in order to also capture the changes
made in the minority class. This can be expressed as:

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3.4)

The F1-score will primarily be used for evaluating the performance of the models in
the next section, as it will capture the balance between precision and recall. In addition
to this, the confusion matrix will be used for gaining insights into the predictions of the
models[59].



Chapter 4

Experiments

For the experimental part of this project, the goal is to evaluate the different machine
learning algorithms that were chosen in the last chapter due to their prevalence in the
state of the art as well as their suitability for a large dataset like BoT-IoT, and to evaluate
their performance metrics in order to make informed choices on using machine learning
for botnet detection.

4.1 Model parameters

For finding an optimal solution for using machine learning to identify botnet traffic, we
decided to focus on four different machine learning models: decision tree, Naive Bayes,
random forest, and XGBoost, specifically with logistic regression as the learning task, since
these were all represented in section 2.3 with good performance evaluations.

For the initial experiments, the attack, category, and subcategory features are dropped,
as these are the features that denote whether we are dealing with normal or botnet traffic,
which is what we want the models to predict.

Attack denotes whether the traffic is attack traffic or not (1: attack, 0: normal), category
further categorises the traffic into specific attacks (DoS, DDoS, Reconnaissance, Theft), and
subcategory categorises the specific attacks into even more specifics—for example, DoS can
be subcategorised as HTTP, UDP, or TCP. Each of these features is an evident choice for
a target variable depending on what the goal is for the model to predict, but we chose
to focus on binary classification, where attack is the only binary variable. However, as
explained previously, category and subcategory would be appropriate for multi-class classi-
fication. Therefore, the target variable for all experiments in this report is attack.

For each of the models, the following parameters were selected as chosen by a grid
search:

28
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Figure 4.1: The parameters that were chosen for the Python implementations of the models [2][3]

For the Naive Bayes, decision tree and random forest, the classifiers from the scikit-learn
library was used and the XGBoostClassifier from the XGBoost library was used. This
chapter will elaborate on the mathematical foundations of the models, in order to elaborate
on and clarify the model descriptions in the last chapter.

Gaussian Naive Bayes

For Naive Bayes, the Gaussian Naive Bayes classifier was used. This is a variant of the
Naive Bayes classifier specifically designed for classifying continuous features, and it uses
a Gaussian distribution to model the likelihood of the features. This means that we as-
sume each feature follows a normal distribution within each class. This was chosen over
Bernoulli and multinomial Naive Bayes because Bernoulli assumes that all features are bi-
nary and would therefore not be able to handle the variance of the feature values, but only
1 and 0. For multinomial Naive Bayes, the feature values typically represent the frequency
of the given feature. Since the features we are dealing with for traffic classification will
mostly be represented as numerical values that can be any real number within a range,
and therefore are continuous variables, we will be using Gaussian Naive Bayes.
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Bayes’ theorem is used to combine the likelihoods of observing specific feature values
given each class:

P(y|X) =
P(X|y)P(y)

P(X)
(4.1)

P(y|X) is the posterior probability of the target variable y given the feature set X, which is
the measurement of how likely it is for a class label to be true given the observed features.
P(y) is the prior probability of the target variable y, which is how likely it is for a class
label to be true in the absence of any information about the features. This is where an
imbalanced dataset might make an impression, since this prior probability can represent
the proportion of the high amount of attack traffic with a high number, compared to the
low amount of normal traffic where the prior probability of this class would have a much
lower number. P(X|y) is the likelihood of observing any feature in X given the target
variable y, while P(X) is the probability of observing a feature in X without considering y.

Since Gaussian Naive Bayes is based on the normal distribution, this means that for
each feature X, the likelihood of observing feature X given the target variable y is cal-
culated using the mean and the standard deviation for each class for each feature. This
means that we would calculate the mean and standard deviation of both the attack traffic
class and the normal traffic class for each feature. After this, the likelihoods of all features
for each class are multiplied. The joint likelihoods for each class are then multiplied by the
prior probability, which gives us the posterior probability for each class. The class with
the highest posterior probability is the class to which the instance should be assigned[42].

The var_smoothing parameter calculates the variance in each feature in the dataset, rep-
resenting the spread of the feature values around the mean. For the largest variance, this
will be multiplied by the specified value, which in this case is 1. The largest feature vari-
ance multiplied will then be added to all features in the dataset to smooth this variance and
ensure that no features have too small a variance, providing stability to the calculations[3].

Decision tree

The decision tree classifier does not have a formula similar to Naive Bayes, as it is based on
binary decisions that partition the feature set X into subsets, with the aim of these subsets
having similar values of the target variable y. This process continues until a set criterion
for stopping is met, which is determined by the parameters max_depth, min_samples_splits
and min_samples_leaf.
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Figure 4.2: Decision tree visualized

The maximum depth, represented in scikit-learn with max_depth, sets a criterion that
the tree can reach a specific maximum depth. For our test cases, this maximum depth is
40. This means that there can be a maximum of 40 levels of decision nodes descending
from the root node. The decision tree visualised in figure 4.2 has a max_depth of 3[5].

The minimum number of samples required to split an internal node, represented by
min_samples_split, is set to 10 for our test cases. This means that if the subset of dataset
samples at an internal node is less than 10, it cannot be split further. The minimum number
of dataset samples required to be at a leaf node, represented by min_samples_leaf, is set to
5. This means that the leaf nodes, which are the endpoints of the tree where the prediction
is made, need to have at least 5 samples to base the decision on. If a split will cause any
of the resulting leaf nodes to have fewer than 5 samples, the split will not be considered.

The class_weight parameter balances the classes by penalising a class with its weight
compared to the other class. The weights for the classes are computed as

wi =
n

kni
(4.2)

where wi denotes the weight for class i, n is the total number of dataset samples, k is the
amount of classes - so for binary classification, that would be 2 and ni is the number of
dataset samples specifically belonging to class i[3, 46].



4.1. Model parameters 32

Random forest

For random forest, which consists of multiple decision trees, the explanations for max_depth,
min_samples_split, min_samples_leaf, and class_weight are the same for each tree in the
"forest". The number of trees that the random forest will consist of is represented by
n_estimators—for our test cases, this is set to 400. Each of these estimators will be indi-
vidually trained on a randomly sampled subset of the dataset during the training of the
model. These subsets are not mutually exclusive; each record in the dataset can appear
in multiple samples or not at all. When all 400 trees are trained on randomized samples,
the random forest model will combine their predictions to make one final prediction. The
final class prediction for a given record in the dataset is determined by considering the
prediction of each tree as a vote for either normal or attack traffic. The traffic record will
then be classified as the class label that has the highest number of "votes".

If we refer back to the visualised tree in 4.2, we can see that, according to one of the leaf
nodes, the decision tree has predicted that traffic records with a feature value of 21.914
for sum belong to the class label ’normal traffic’. If we had a random forest with three
additional estimators that predicted that traffic records with a feature value of 21.914 for
sum belong to the class label ’attack traffic’, then this would be the final prediction due to
attack having the highest number of votes[3, 48].

XGBoost

The XGBoost model also consists of multiple trees with the same values for max_depth,
min_samples_split, min_samples_leaf, and n_estimators. For XGBoost, the estimators are en-
sembled differently than for random forest. The estimators are built sequentially, with each
new tree trained to correct the prediction errors made by any of the previous trees. This
is where the learning_rate parameter comes into use—it controls the size of the step taken
at each iteration in the direction that will minimise the loss function. The loss function
quantifies the difference between the predicted values by the model and the true values
in the dataset, measuring how well they match. The value of the learning_rate denotes
the scaled contribution of each tree to the final prediction—meaning that when we set the
value to 0.1, the contribution of an estimator will be scaled by 0.1 when it is added to the
ensemble.

The XGBoost implementation for our experiments was specified to use logistic regres-
sion for binary classification as the objective function, meaning that the loss function used
for optimisation when training the trees will be logistic loss. Because of this, XGBoost will
adjust the parameters of the decision trees, such as when to split a node, to minimise the
divergence between the predicted probabilities and the true binary labels in the training
data. When using logistic regression with XGBoost, it creates trees that iteratively learn
how to minimise the divergence between the predicted probabilities and the true binary
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labels in the training data.
Returning to the loss function, this is defined by the eval_metric parameter. When we

use logistic loss as the evaluation metric for evaluating the performance of the model, we
want a lower value since this will indicate that the predictions are more aligned with the
actual labels.

The objective parameter specifies how the model is trained. It is for specifying what the
model should achieve during training—which is set to binary:logistic, since it is trying to
predict binary classes and it is using logistic regression to make these predictions. Despite
the name, it is in fact used for classification and not regression.

The binary logistic loss function is defined as:

Log loss =
1
N

N

∑
i=1

−(yi log(pi) + (1 − yi) log(1 − pi)) (4.3)

where N is the total number of samples in the dataset, yi is the true label of sample i—it
will be 1 if the traffic record belongs to the positive class and 0 if it belongs to the negative
class—while pi is the predicted probability that the model has assigned the sample i to the
positive class.

(1− yi) will therefore be defined based on what the true label of the sample i is, acting
as a switch that will turn off the contribution of log(1− pi) if the actual label of the sample
is positive. However, if the true label of sample i is negative, (1− yi) will be 1 and therefore
allow log(1 − pi) to contribute to the loss calculation.

This effectively means that the function is split into two terms, where (yi log(pi)) cal-
culates the loss associated with predicting the positive class and consists of the product
of the actual label of the instance and the natural logarithm of the predicted probability
that the instance is assigned to the positive class. The other term, (1 − yi) log(1 − pi), cal-
culates the loss associated with predicting the negative class and consists of the product
of the complement of the actual label and the natural logarithm of the complement of the
predicted probability that the instance is assigned to the positive class. This is the term
that will be switched off if the true label of the instance we are trying to predict is positive.

The scale_pos_weight denotes the weight for the positive class, which in this case is
the attack traffic. This parameter can be used to deal with class imbalance. For our
experiments, the parameter value is kept as the default, as this gave the best results in the
grid search. However, the following formula can be used to calculate an appropriate value
to combat imbalance between the negative and positive classes in the dataset:

scale_pos_weight =
n
p

(4.4)

where n is the number of negative samples in the dataset and p is the number of positive
samples in the dataset.
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The regularisation parameters are represented by gamma, reg_alpha, and reg_lambda,
where gamma denotes the threshold for the minimum loss reduction required to split a
node further. This means that a split will only be made if the potential decrease in loss
from splitting a node is equal to or larger than 0.1.

The reg_alpha and reg_lambda parameters are used for regularisation. Lasso regularisa-
tion is represented by reg_alpha, where the purpose is to penalise the coefficients of less
important features so they will have less effect on the training of the model.

Ridge regularisation is represented by reg_lambda, which penalises the magnitude of
the feature coefficients. This means that it will focus less on the features that are impor-
tant, ensuring that the training of the model does not depend too heavily on just a few
features[2].

4.2 Experiment setup

The experiments outlined in the subsequent sections were conducted using two different
machines, each configured to ensure consistency across the tests while leveraging distinct
system architectures. This section details the specifications of each machine.

Machine 1: MacBook Pro

Machine 1 is a MacBook Pro, selected for its robust performance and reliability in handling
computational tasks. Below are the detailed specifications:

MacBook Specifications:

– Processor: Apple M2 Pro with a 10-core CPU

– Memory: 16GB Unified RAM

– Storage: 512GB SSD

– Display: 14.2-inch Liquid Retina XDR display with a resolution of 3024x1964

– Graphics and Neural Engine: 16-core GPU coupled with a 16-core Neural Engine

– Operating System: macOS Sonoma 14.0

Python Version: Python 3.10.4, which is the latest stable version compatible with macOS
Sonoma as of the latest updates.

Machine 2: Ubuntu Virtual Machine

Machine 2 is a virtual machine hosted on an enterprise-grade server, chosen to evaluate
the scalability and performance of the algorithms under a controlled, high-resource envi-
ronment. The specifications are as follows:

VM Specifications:
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– Processor: AMD EPYC with Instruction-Based Process Branching (IBPB)

– CPU Details: Family 23 model, with 16 physical cores

– Memory: 32GB RAM

– Operating System: Ubuntu Linux 22.04

Python Version: Python 3.11.0, the most recent release optimized for performance and
compatibility with Ubuntu 22.04.

4.3 Feature selection

Koroniotis et al.[1] perform a type of filter feature selection on the dataset themselves by
calculating an entropy score for each feature to measure the uniqueness of the information
that the feature carries, and a correlation score for each feature to measure how unrelated
they are to other features. The goal was to choose the features that have the least amount
of redundant information and are minimally correlated with the other features.

Lefoane et al.[38] also state that some features specifically included in the BoT-IoT dataset
may be too trivial to contribute significantly to the classification of botnet traffic. These can
be features such as packet sequence ID, which is introduced for administrative purposes
rather than providing information about the content of the traffic, or source port, which is
generated arbitrarily by the network protocol and again does not carry information about
the content of the traffic. By eliminating these features from the dataset, we will facilitate
the next step for ranking the features that are genuinely relevant to our analysis.

In continuation of this, Lefoane et al.[38] also apply a type of filter method for feature
selection by setting a threshold for the frequency of each unique value in a column com-
pared to the total instances in the whole dataset. If any of the unique values in a column
exceed this threshold, the column will be dropped as it is deemed redundant and less
informative. However, for features such as packet sequence ID, a unique value will never
exceed the threshold, as each unique value occurs only once—in this case, they will also
need to be considered less informative.

These observations from the reviewed literature may help us in creating our own
method for feature selection. As already mentioned above, the attack, category, and subcat-
egory features are dropped from the dataset since they represent the values that we want
to predict. We know that we do not want features where excessive uniqueness is added
for administrative purposes, but we also do not want features characterised by a lot of
redundancy. In addition to this, calculating the correlation between features may aid in
figuring out how dependent the features are. If the features are less correlated, it means
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they provide independent information, possibly making them more valuable for analysis
since they will contain less redundant information.

Other than pkSeqID, as established above, some of the features that can be considered as
being unique for administrative purposes are stime, the start time of the record, and ltime,
the end time of the record, both represented in Unix time and therefore can be considered
another type of sequence number that will be distinctive for each individually initiated
network traffic record. Also, seq represents the Argus sequence number—Argus is a sys-
tem for network monitoring that was used for generating the records for the dataset and
extracting the information for the features from the original pcap files. The Argus sequence
number is a unique identifier generated by Argus to identify each flow in the traffic, simi-
lar to pkSeqID. In addition to this, three features are represented twice, both textually (flgs,
proto, state) and numerically (flgs_number, proto_number, state_number). Therefore, moving
forward, we will only be using their numerical representations since the processing of the
numerical representation will align with the other features in the dataset that are also nu-
merical.
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Figure 4.3: The features that are selected and discarded after the first round of feature selection

In table 4.3, we have presented the features that have so far been excluded from training
any model for identifying botnets, as they were deemed too trivial and not informative
enough about the traffic instances to provide meaningful contributions. The features that
we have selected to move forward with for additional experimenting and further selection
are also represented.

4.4 Entropy

For the remaining set of features, we want to calculate an entropy score in order to deter-
mine how random the values of the features are. We have already removed the features
with excessive uniqueness, but as mentioned above, a feature with too much redundancy
will be less informative. The Shannon entropy is calculated for each feature, as seen in the
table below. We chose the Shannon entropy since it calculates the randomness of each fea-
ture independently of the other features, simplifying the comparison across the different
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features. This independence of the calculation is especially beneficial as we assess and re-
fine the feature set as an ongoing process. If we chose to calculate the joint entropy instead,
this would measure the randomness while considering the combined outcomes of multiple
variables, which may introduce more complexity and noise for the initial interpretation of
the feature informativeness. The formula for Shannon entropy is as follows:

S(X) = −
n

∑
i=1

P(xi) log2(P(xi)) (4.5)

where S(x) is the Shannon entropy, P(xi) is the probability of a specific feature value i and
the sum is taken over all the possible values of that feature[60].

A low entropy suggests that the data is more predictable, meaning there are fewer
possible outcomes. A high entropy value indicates that the feature has greater uncertainty,
resulting in a larger number of possible outcomes.

Figure 4.4: The Shannon entropy scores of the features

Each feature’s entropy is calculated by summing all possible values of the feature in the
dataset and the probability that a given feature value will occur, and the base-2 logarithm
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of this probability. The Shannon entropy uses a base-2 logarithm, and the unit of the cal-
culated entropy is bits. The entropy value denotes the average number of bits required to
encode the values of the feature. For example, since the entropy of stddev is approximately
15.597, this means that on average we need 15.597 bits to represent each value of that fea-
ture in the dataset. This ties in with the concept of randomness, as a higher entropy value
represents more randomness and variability in the feature values. Therefore, if we were to
encode the feature values into binary, we would need 15.597 bits on average to represent
the range of possible feature values.

We will now set a threshold for how much unique information we want the features
to provide. We aim to select the features with the most informativeness, and while there
are no specific metrics for doing this, by examining the table above, we see a notable leap
between the features with the lowest entropy (0-5) and those with a higher entropy (8-18).
Therefore, we discard all features with an entropy below 5, leaving us with the following
features:

Figure 4.5: The features chosen based on the entropy threshold

Validation of results

To validate the results of the entropy-based feature selection, we created a new dataset
sample (D2) based on the full version of the BoT-IoT dataset. The full version of the
dataset is split into 74 files with around 500,000 traffic records in each, and we concate-
nated 4 of them to create D2. In total, D2 consisted of around 4 million records, of which
7,003 were normal traffic and the rest were attack traffic.
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For the initial experiments, we trained and tested decision tree, random forest, XGBoost,
and Naive Bayes models on 80% and 20% of D1, respectively. For this, D1 was oversam-
pled, undersampled, and kept in its original imbalanced state. Then, the trained models
were saved and tested on D2 to examine how the trained models would react to new data
that they were not trained on. The purpose of this was to explore whether overfitting
or underfitting is present in the trained models and, if it is, what methods and modifi-
cations may minimise it. Overfitting is when the trained model learns the dataset "too
well", causing it to consider too much of the noise as a part of the pattern to recognize for
the learning task, which will cause a low performance when testing the model with new
data. Underfitting is when the model is not trained enough on the patterns of the data
and therefore will not recognize the patterns when introduced to new data - also resulting
in low performance.[61]

For the full dataset, the generated features as shown in 3.2 were not included and there-
fore were discarded for the validation, so the trained model would be compatible with
the newly created dataset. This limits the scope of the testing results to the shared set of
features between D1 and the full set, as shown in 3.1. The features that are valid for further
filtering due to being represented in both D1 and D2 and having an entropy exceeding the
threshold of 5 are shown in table 4.6.

Figure 4.6: The features that are represented in both D1 and D2 and their entropy scores

However, we still assume that the intersection of features between D1 and D2 will give an
indication of whether feature selection based on the Shannon entropy is a relevant metric
for identifying botnet traffic and that it will provide a relevant perspective on how the
trained models perform, since all the generated features are based on the same original set
of features.

Since both D1 and D2 are highly imbalanced, there is a possibility of getting a high
accuracy score without the normal traffic actually being predicted correctly, as it is the
class with notably fewer records. As mentioned previously, we will not only look at the
F1-score but also prioritise the confusion matrix and the number of TPs and TNs when
checking for satisfactory results, to get a better understanding of the predictions made
by the trained model. These metrics will provide insights into the classifier’s ability to
correctly identify negative and positive instances and thereby help us assess how effective
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the trained model is in classifying the different types of traffic and not just how many
accurate predictions it makes in total.

As mentioned above, we trained the models with the original, imbalanced version of
D1. In addition to this, we trained the models with an undersampled version of D1, where
the majority class containing attack traffic was undersampled with RandomUnderSampler.
We also trained the models with two different oversampled versions of D1, where the
minority class was oversampled with either Synthetic Minority Oversampling Technique
(SMOTE) or RandomOverSampler. These were all implemented with the imbalanced-learn
library in Python [9]. The purpose of this was to see if oversampling the minority class or
undersampling the majority class would affect the predictions, especially when testing the
model additionally with D2, which has a larger ratio of normal traffic, the minority class.
By balancing the class distribution, the model may be able to learn the characteristics of
the minority class better, thus leading to better performance.

The oversampling is done differently between RandomOverSampler and SMOTE, which
is why we found it informative to explore both options. RandomOverSampler randomly
replicates already existing records that belong to the minority class until the dataset is
balanced, while SMOTE generates synthetic examples by choosing one record belonging
to the minority class and then selecting the 5 nearest neighbours of that record. The newly
generated record in the minority class will then be created with the feature values of these
neighbours [62]. RandomUnderSampler works by simply selecting a subset of the records
belonging to the majority class, with the same size as the minority class, and then discard-
ing the rest of the majority class [63].

For the test cases in this section, the feature set that the models were trained on was
either the full set or a selected subset based on Shannon entropy scores. We calculated the
entropy scores based on the imbalanced dataset, and not the undersampled or oversam-
pled datasets, to have more universal entropy scores that are based on the "original" D1 as
generated by the creators. As seen in table 4.6, this left us with the following features after
applying the previously established entropy threshold of 5: sport, dur, mean, stddev, sum,
min, max, rate, and srate.

For all test cases, we will primarily focus on and discuss the performance evaluation of
D2 unless otherwise specified, since the addition of the new dataset D2 for testing and ad-
ditional validation of classical machine learning methods is the primary objective of these
experiments.
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Figure 4.7: Decision Tree initial test results with full feature set and entropy-selected features

For the decision tree tests, the full feature set showed high F1-scores for all test cases except
the undersampled one. However, the TN scores were very low. In comparison, the test
cases with the entropy-selected feature sets showed a significant improvement in the TN
scores in D2, especially for both of the oversampled test cases. However, the TP scores
were lower, thereby resulting in lower F1-scores for the entropy-selected test cases.
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Figure 4.8: Random forest initial test results with full feature set and entropy-selected features

For the random forest tests, the entropy-selected test cases had higher F1-scores than the
decision tree. For the full set of features, both the TN and TP scores for D2 were higher than
those for the decision tree. For both decision tree and random forest, the undersampled
test cases showed relatively high TN scores but also the lowest TP scores so far.
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Figure 4.9: Naive Bayes initial test results with full feature set and entropy-selected features

The F1-scores for the full set with the Naive Bayes test cases were extremely low. This
was due to very low TP scores with D2; however, these test cases all had very high TN
scores. For the entropy-selected test cases, the TN scores were similarly high except for the
imbalanced test case. In addition, the entropy-selected test cases showed a much higher
TP score than the full set, although still quite low compared to both the decision tree and
random forest.



4.4. Entropy 45

Figure 4.10: XGBoost initial test results with full feature set and entropy-selected features

The XGBoost test cases showed the most diverse results. When oversampling the entropy-
selected set with both RoS and SMOTE, the D2 results showed relatively high TN scores
and TP scores similar to the decision tree test cases. When oversampling or undersampling
the full set, the performance evaluation on D2 shows very high TN scores, but with low
TP scores, where specifically the undersampled test case had a TP score of 0.

We can conclude that feature selection based on the Shannon entropy score of the fea-
tures does not improve the F1-score for most of the test cases. However, it does improve
the number of TP classifications for XGBoost on D2 and the number of TN for Naive Bayes
and Decision Tree on D2, which is something we want to explore further. It also seems to
prevent the model from overfitting to the majority class in some test cases, specifically for
the decision tree as shown in 4.7.

We can also conclude that it seems beneficial to oversample or undersample the imbal-
anced D1 for some test cases. Specifically for XGBoost, the oversampled test cases balance
out the TN and TP scores—still showing signs of overfitting to the minority class, but with
a better TN ratio for the entropy-selected test cases. For Naive Bayes, the performance
evaluations do not show a notable difference when oversampling or undersampling the
dataset. However, for both decision tree and random forest, the TP scores in D2 are the
highest when either oversampled or kept in its imbalanced state.
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The performances of the decision tree, random forest, and XGBoost are near perfect when
training them on D1 with the full feature set. However, the validation test cases with D2
suggest that they are overfitting. Therefore, the near-perfect performance results when
testing on D1 are obviously not enough to define them as sufficient for botnet detection
when introduced to new data.

On account of this, we will further explore the selection of appropriate features for the
detection of botnet traffic in order to improve the performance of the models further.

4.5 Feature correlation

After testing and validating the initial feature selection based on entropy, we will measure
whether the dependency between the features can affect the performance of the mod-
els. Two types of correlation dependency are measured: Pearson’s correlation coefficient,
which measures the correlation between the remaining features, and ANOVA, which mea-
sures the correlation between the remaining features and the target variable.

For Pearson’s, if two features have a strong correlation, the information they provide
will be less diverse and carry more redundant information. Therefore, we would prefer-
ably discard the features where the Pearson’s correlation coefficient is high. For ANOVA,
we want a higher score since this will represent larger differences between the features
and therefore less redundancy.

Pearson’s correlation coefficient

First, we will calculate Pearson’s correlation coefficient. This was used in multiple literary
works in section 2.3 and provides a way to identify the relationship between the features
that is easy to understand and interpret. Pearson’s correlation coefficient is calculated
by finding the mean of feature X and the mean of feature Y, as well as the covariance
between these features. The covariance denotes the relationship between the two features:
if it is positive or negative, it will indicate a linear relationship, while a zero covariance will
indicate that the relationship between the features is not linear. The mean of the features is
then used to calculate the standard deviation σ of each feature, and Pearson’s correlation
coefficient is then calculated with this formula:[56]

P =
cov(X, Y)

σX · σY
(4.6)

In table 4.11, the calculated correlation coefficients are represented between each pair of
remaining features after applying the Shannon entropy threshold. In figure 4.12, a heat
map generated with Matplotlib[5] and seaborn[6] is shown to visualise the correlations—a
darker colour represents a strong negative correlation between two features, while a lighter
colour represents a strong positive correlation between two features.
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Figure 4.11: Table with Pearson’s correlation coefficients, showing how much each pair of features are corre-
lated

Figure 4.12: Heat map of correlation coefficients

We can define a high correlation as being represented by a positive or negative co-
efficient closer to 1.0. We can see that a number of the remaining features have a high
correlation with another feature. However, as seen in the table, a feature may have a
high correlation with one feature but a low correlation with another, so defining a feature
and the information it carries as redundant based on its correlation coefficient is a more
complex task. Therefore, we would like to get an overview of the average correlation coef-
ficient for each feature in order to identify the features that stand out as being particularly
correlated with other features. As mentioned above, the coefficient can be both negative
and positive based on whether a positive or negative linear correlation is found between



4.5. Feature correlation 48

the features, but a strong correlation will be represented by a number closer to either -1.0
or 1.0. Therefore, we calculate the mean of the absolute values of each feature’s correlation
coefficients, as shown in the table below.

Figure 4.13: The mean correlation coefficient for each feature

As seen in table 4.13, the mean of the absolute values of each feature’s correlation
coefficient ranges roughly between 0.1 to 0.55. While there is no definitive method for
setting a threshold for when Pearson’s correlation is too high, selecting the five features
with the least amount of correlation would effectively establish the upper threshold to be
0.45 and above, where the correlation is considered too high and the features are deemed
too redundant. This leaves us with the following five features: dur, stddev, sum, sport and
min.

ANOVA

Analysis of Variance (ANOVA) measures the variability in the features of the dataset by
taking the target variable and its categories — in this case, normal and attack — and then
calculating the feature value variability within these categories for each feature. This vari-
ability is found by calculating the mean value of each feature in each group (the groups
being normal traffic and attack traffic in our case). For example, the mean values of both
sport, dur, stddev, and all other features would be calculated for both normal traffic and
attack traffic. By using the mean value for a feature, ANOVA then calculates both the vari-
ability within the groups (e.g., how the values of dur vary within the attack traffic group)
and the variability between groups (e.g., how the values of dur vary between the normal
traffic group and the attack traffic group, and whether there is a significant difference in
the distribution of dur values between the two groups).

The ratio between the within-group variability and the between-group variability is
called the F-value. If this value is high, it indicates that the feature is relevant for predicting
the target variable since the mean of the feature values differs significantly between the two
class groups. This suggests less redundancy in the information provided by the feature
across the different categorical groups.[57]
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Figure 4.14: The ANOVA score for each feature

The ANOVA scores range from 9 to 490. Similar to Pearson’s, there is no definitive method
for setting a threshold for the level of correlation, but opting to select the top five features
would establish a threshold of 400 for the ANOVA correlation score. We consider this
threshold to be appropriate, since the rest of the features have notably lower correlation
scores below 400, resulting in the following five features being selected based on their
ANOVA correlation: dur, stddev, sum, max, and rate.

Filter methods conclusion

To conclude on whether feature dependency affects the performance of the models, both
for the training and testing on D1 and for testing the trained model on D2, the four models
were trained first with the selected features from the ANOVA correlation score, then with
selected features from Pearson’s correlation coefficient, and lastly with the combined se-
lected features from both ANOVA and Pearson’s. For these experiments, the dataset was
again employed in four different states: the imbalanced D1, as well as D1 oversampled
with SMOTE, RoS, and undersampled with RuS.

The reason for testing both correlation-based feature sets individually as well as com-
bined is that they measure correlation differently, as mentioned above. Pearson’s measures
the linear correlation between each pair of features, while ANOVA measures the correla-
tion between each feature and the target variable based on the feature value variability.
The two feature sets may prove to be complementary to each other and thereby improve
robustness when training a model. Selecting features based on Pearson’s correlation co-
efficient ensures that there are no features with excessive redundancy included, while
selecting features based on ANOVA’s correlation score ensures that the features have a
more informative contribution to the target variable.

The time for calculating the Shannon entropy score, Pearson’s coefficient, or the ANOVA
score for the selected feature sets was all under 1 second, making all of them feasible and
easily attainable methods for measuring the variance and dependency in the feature set,
as seen in table 4.15.
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Figure 4.15: The calculation time of the three different methods for filtering the features

This knowledge gives further purpose to using these filter methods as a computationally
resourceful approach for restricting the feature set. However, to evaluate the usefulness of
the selected feature sets, the model performances will now be studied.

Figure 4.16: Decision Tree results, first trained + tested D1 and then tested on D2

The results showed that 30 out of 36 of the XGBoost, decision tree, and random forest test
cases scored an F1-score of at least 0.96 when training and testing the model on the D1
dataset. The test cases for the Decision Tree are shown in figure 4.16. However, many of
these models did not achieve similar F1-scores when tested on the D2 dataset. Among
those that did, none reached a TN score suggesting that the model effectively identified
the feature values characterizing normal traffic. As seen in table 4.16, only a few D2 test
cases managed to get a TN score higher than the FP score.
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Figure 4.17: XGBoost results, first trained + tested D1 and then tested on D2

When training the XGBoost model with features chosen by ANOVA, Pearson’s, or both,
there was a significant improvement in accuracy scores compared to the initial XGBoost
test cases. The test cases where D1 was undersampled showed the lowest accuracy for that
model, while both the ANOVA-selected features and the combined ANOVA + Pearson’s
selected features yielded an F1-score of more than 0.99 when testing the trained model on
D2, as shown in figure 4.17. Both of these test cases had some of the highest TP scores in
this section, with 3,965,103 TP classifications and 27,894 FN classifications for the ANOVA
+ Pearson’s, and 3,971,573 TP classifications and 21,424 FN classifications for the ANOVA
test case on the imbalanced D1.

However, the number of TN classifications was subpar, with 891 TN classifications and
6,112 FP classifications for the ANOVA + Pearson’s on the imbalanced D1, and 495 TN
classifications and 6,508 FP classifications for the ANOVA on the imbalanced D1.
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Figure 4.18: Random Forest results, first trained + tested D1 and then tested on D2

Random Forest had a notably higher training time than any of the other classifiers used -
it took more than 800 seconds to train the model on the imbalanced D1, whereas all of the
other models had a training time below 10 seconds, as visualized in table 4.20. The train-
ing time increased even further with the oversampled D1 dataset, making Random Forest
an impractical choice compared to the other models. As seen in table 4.18, the TN scores
were generally not better than they were for the decision tree test cases, but the TP scores
were generally higher for Random Forest. The TP results of Random Forest were, how-
ever, more comparable to the TP results of XGBoost. Since the training time of Random
Forest was unfavourable compared to the other models, but the performance evaluations
for Random Forest were similar to some of the other test cases, it will be excluded from
further testing.

In contrast, most of the Naive Bayes test cases, for both the Pearson’s, ANOVA and the
combined set, with both the SMOTE D1, the RoS D1, and the RuS D1 resulted in the high-
est TN score for any of the test cases in this section, with at least 6607 TN classifications
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out of the total number of 7003 in the normal class - however, with subpar TP scores for
these test cases, where the FN score was more than 3,000,000 for all test cases. As seen in
table 4.19, all of the Naive Bayes test cases done with the imbalanced D1 resulted in lower
TN classifications, with much higher scores for the TP.

Figure 4.19: Naive Bayes results, first trained + tested D1 and then tested on D2

Figure 4.20: Training time in seconds for the four differen classifiers

The most notable results from the D2 test cases in this section, in regard to favourable
confusion matrix scores, were the TN classifications from Naive Bayes when trained on the
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oversampled and undersampled D1, as well as the TP classifications from XGBoost when
trained on the imbalanced D1. Random Forest also showed notably good TP classification
scores when trained with the imbalanced D1; however, the training time was more than 100
times higher than for XGBoost. In addition to this, the D2 TN performance evaluations for
Random Forest were comparable to Decision Tree. This leads us to discard Random Forest
due to its resource-intensive training time, with not much better results than Decision Tree
and XGBoost.

The results from the correlation-based test cases in this section have shown us that
generally, selecting a feature set based on correlation does improve the performance. For
instance, referring back to ??, the D2 F1-scores were not only lower than in 4.17, but the
TN and TP scores were also more balanced when applying feature selection based on
correlation. XGBoost in ?? had high TN scores, but for all test cases except one, the FN
scores were higher than the TP scores throughout the test cases. In comparison, Table 4.17
shows that the correlation-based feature set has prevented some of the previous overfitting
to the minority class. However, this possibly introduces some overfitting to the majority
class instead, since the TN scores in Table 4.17 are generally lower than the FP scores.

Similar patterns can be seen for the correlation-based Decision Tree test cases in Table
4.16, where the D2 F1-scores are higher than they were in the initial Decision Tree test
cases, as shown in Table 4.7. Again, the exclusion of features with redundancy based on
correlation has prevented some of the previously apparent minority class overfitting and
instead introduced some overfitting to the majority class. However, for Naive Bayes, the
overfitting is still evident in the minority class, but again with much better F1-scores than
in the initial test cases with only entropy and the full feature set.

We would like to further improve the performance of the models and therefore explore
the potential of combining the strengths of the remaining classifiers. When a dataset is
as imbalanced as the ones we are dealing with in this project, there is of course a certain
amount of false classifications to be expected, especially for the minority class. However,
since some of the test cases showed a relatively high TN classification score, the next step
is to explore how we can train a model to recognise the patterns for both normal traffic
and attack traffic. So far, the models have seemingly overfitted to either one of the classes,
which is visible when introducing the trained models to new data in the form of D2. This
leads us to speculate that combining Naive Bayes, which tends to overfit to the minority
class, with XGBoost, which seems to overfit to the majority class, might provide some con-
trast to each other when combined. As mentioned previously, we have decided to discard
Random Forest for further testing due to excessive training time, similar to why KNN and
SVM were initially discarded. However, we would also like to do further testing on the
combination of Decision Tree and XGBoost. Even though XGBoost is an ensemble method
consisting of multiple trees, the XGBoost as implemented for our test cases focuses on
optimising logistic regression, whereas Decision Tree simply makes splits based on fea-
ture values. This allows Decision Tree to capture essential patterns quickly but makes it



4.5. Feature correlation 55

sensitive to overfitting, whereas XGBoost focuses on minimising errors through boosting,
thereby capturing some of the more complex interactions between features that Decision
Tree might miss.

Voting classifier

In this section, we will explore the combination of some classifiers from the previous test
cases. Naive Bayes generally gave good score ratios for TN/FP, while decision tree and
XGBoost generally gave a better ratio of scores for TP/FN. Therefore, we decided to im-
plement an additional ensemble method combining some of these classifiers to improve
their robustness.

As mentioned previously, random forest and XGBoost are also ensemble methods. They
are defined as such because they base their prediction on an ensemble of decision trees.
However, the definition of an ensemble method is simply a learning algorithm that trains
multiple "base models" for the classification task at hand, and these base models do not
have to be decision trees. By combining multiple base learners, the idea is to produce
a better-performing model. As mentioned previously, random forest and XGBoost use
bagging and boosting for the ensemble of trees, respectively. Both bagging and boosting
can employ something called "voting" for aggregating the ensemble of predictions. When
using voting for combining the predictions, it means that the final decision is made based
on a vote that each model makes. For bagging, the voting is called majority voting because
the final decision will be based on what class received the majority of the votes[50]. This
type of voting is also employed by the voting classifier along with soft voting. Soft voting
is when each model provides an estimate for the probability of each class being the cor-
rect prediction. The final decision is then made based on the average of the probabilities
provided by each of the models in the ensemble.

The voting classifier is essentially another ensemble method that, as mentioned above,
trains multiple models on the same data and makes the final predictions based on their
votes. The decision to explore the voting classifier as a method for botnet detection was
made since we wanted to combine the strengths of Naive Bayes and XGBoost to leverage
their performance. In addition to this, as seen in the results from the previous test cases,
the models made different errors when trying to classify the data. The goal was to reduce
these errors and thereby the impact of a single model’s mistakes by averaging the probabil-
ities from each classifier while still capturing the different aspects and diverse perspectives
of the data[64].
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Figure 4.21: The parameters specified for the voting classifier[3]

Similar to some of the other classifiers used in this project, the voting classifier is also im-
plemented through the scikit-learn library in Python. Table 4.21 shows the parameters that
were specified for the voting classifier test cases in this project. The estimators parameter
specifies what classifiers should be trained on the data. This is specified to be either Naive
Bayes and XGBoost or decision tree and XGBoost, each of which is specified with the same
parameters as shown in Table 4.1. Then the type of voting mechanism is specified to be soft,
which, as previously explained, means that it will base the final estimation on an average
of the probability estimates provided by each model rather than just the prediction with
the highest number of votes. The weights parameter specifies that each model should be
weighted the same amount when making the final prediction. The last parameter, verbose,
simply ensures that the time lapse for training the model is printed[3].

A soft voting classifier was combined XGBoost and Naive Bayes, with the aim of com-
bining the general ability of classifying TN from Naive Bayes with an optimized ensemble
method like XGBoost. Since random forest showed to be more computationally expensive
but did not provide significantly better results than decision tree or XGBoost, the other
voting classifier combined decision tree and XGBoost. This aimed to combine the more
straightforward decision-making of decision tree with the iterative focus on minimizing
errors of XGBoost.

The Naive Bayes classifier will assume that the features used for prediction of a given tar-
get variable are conditionally independent of each other. To give an example, this means
that the model assumes that the features min and dur are considered separately when pre-
dicting if the traffic is botnet or normal - which is a naive assumption, since the shortest
duration of the aggregated records, min, may very well be directly dependent on the dura-
tion of the specific traffic instance, dur, since there is a possibility that min is derived from
dur. With this in mind, if we refer back to the Naive Bayes results in figure 4.19, it may
suggest that when we oversample or undersample our dataset, the dependencies between
the features in the normal traffic become less prominent when we remodel the minority
class, allowing for a high TN score with Naive Bayes since it already explicitly assumes
that the features are independent and therefore will not base its classification on that.

The very high TP rate when training on the imbalanced dataset suggests that the pat-
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terns of the majority class (attack traffic) are strong enough that the assumption of feature
independence in Naive Bayes does not significantly impact its classification of attack traf-
fic. However, this same assumption causes Naive Bayes to struggle with classifying the
minority class (normal traffic) correctly. This is because Naive Bayes overlooks the depen-
dencies between features that might be crucial for recognizing patterns in the minority
class.

In contrast, models like XGBoost, decision tree, and random forest can capture and uti-
lize these dependencies between features when making splits in the feature space. This
capability allows them to better distinguish between normal and attack traffic, even in the
presence of class imbalance.

Figure 4.22: The performance evaluations of the voting classifier with XGBoost and Naive Bayes

As seen in the table 4.22, the highest F1-score on D2 were 0.997 when training the vot-
ing classifier with the Pearson’s feature set on the imbalanced D1 set. Even though this
test case managed to get a very high TP score, the TN score was very low - which would
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be effective for detecting botnet traffic, however the system would not be very usable if
it also filtered out all the normal traffic. Therefore, this does not seem to be the optimal
solution. None of the test cases managed to combine the high TN score from Naive Bayes
with the more preferable TP score from XGBoost, and generally the oversampled and un-
dersampled test cases had a lower F1-score with the voting classifier than they did when
just using the XGBoost on its own.

The combination of decision tree and XGBoost gave the most optimal results for testing
on D2 for any of the test cases in this project - when using the combined feature set of
ANOVA and Pearson’s, the results showed both high F1-scores as well as better TP and
TN ratios than for any previous test cases.

Figure 4.23: The performance evaluations of the voting classifier with XGBoost and decision tree

As seen in table 4.23, the F1-score was generally higher than for the previous voting clas-
sifier test cases - however this was still mainly due to the TP classifications being very
high compared to the TN. When training the classifier with the combined ANOVA + Pear-
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son’s feature set on D1 oversampled with SMOTE, it did manage to classify 5688 normal
traffic instances correctly in the D2. However, this test case classified 303635 attack traf-
fic instances incorrectly, which would most likely not be a successful result for a botnet
detection system.

This test case did not show overfitting and had a F1-score of 0.958 where 81.2% of the
normal traffic was classified correctly and 92.4% of the attack traffic was classified correctly.
Even though these numbers are not necessarily optimal for a botnet detection system, they
do not show an evident bias towards either of the target variable classes. A few of the
other test cases did have higher F1-score, however they all showed signs of overfitting.

It was difficult to conclude the specific metrics for an optimal botnet detection system
through these results, as all the other the performance evaluations of the voting classifiers
did not show a clear preference for any of the feature sets or the oversampled, under-
sampled or imbalanced dataset. For instance, in table 4.22, the highest TN scores were
provided when either undersampling or oversampling the dataset - except when using the
Pearson’s feature set, of which only the undersampled test case showed high TN scores. In
addition to this, as seen in table 4.23, for the ANOVA + Pearson’s test cases, the imbalanced
set, RuS and RoS all showed signs of either underfitting or overfitting.

We found that generally for many of the test cases for all of the classifiers, a big part of
the FN results were caused by specific feature values being very imbalanced between the
classes. When oversampling D1, this imbalance of feature values was amplified depending
on the method of oversampling - specifically RoS caused a lot of feature value imbalance
when using it to balance out the minority class. This is most likely because RoS duplicates
existing instances directly. A specific example is shown in table 4.24, where the voting
classifier is trained on an oversampled D1, resulting in 3496 FN classifications, but when
all records that have the value of 0 for the feature stddev are removed, the performance
scores are perfect for D1. Referring to table A in appendix A, we can see that when we
oversample the dataset with RoS, the normal traffic will have 4.85 as many records where
stddev is 0 compared to the attack traffic.



4.5. Feature correlation 60

Figure 4.24: Table showing the how the feature value imbalance effects the performance with both SMOTE
and RoS

When the records containing the feature values that were very imbalanced were re-
moved from the test set without removing them from the training set, we got closer to
ideal scores on the subset of features that is the combination of the chosen features based
on the ANOVA score and Pearson’s coefficient. This led us to the hypothesis that the ma-
jority of the FN and FP classifications across the test cases were caused by some specific
feature values being significantly imbalanced between normal and attack traffic. Therefore,
oversampling and undersampling may not be optimal solutions for botnet detection.

As mentioned above, our findings show that the best method for classifying botnet
traffic based on an imbalanced dataset is by training a soft voting classifier with both
the XGBoost ensemble method and Naive Bayes, using entropy-based feature selection
that considers both a high correlation between the features and the target variable, as
well as low correlation between the features. We also found that this does not fully ad-
dress the most substantial feature value imbalances between the attack and normal traffic.
Therefore, an optimal solution would not be to emphasize this through oversampling or
undersampling the imbalanced dataset.

Imbalanced feature values

In our analysis of the dataset, we observed several features exhibiting significant imbal-
ances in their values. These imbalances could potentially introduce bias in our test cases,
thereby impacting the reliability and prediction capabilities of our models. To further ana-
lyze this imbalance and the impact it has on the predictions, we calculated which features
had the most feature value imbalance. The calculations were made by evaluating the va-
riety of the feature values. If any feature has a disproportionately high occurrence of a
specific value for a specific class, the imbalance may cause a large number of records in
the opposite class to be misclassified, as the model is trained to associate that feature value
predominantly with the "wrong" class.

In order to take a better look at the specific feature values causing this imbalance and
thereby further address it, we have calculated an imbalance ratio based on how many times
a feature value is represented in one class compared to the other class. These are shown in
Appendix A. We have taken the full feature set and created four test cases where we ap-
plied both undersampling with RuS, oversampling with RoS and SMOTE, and keeping the
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original records in the dataset as is. Then, for each of the most represented feature values
in each of the test cases, we calculated the imbalance from the normal class to the attack
class and the attack class to the normal class—that is, for the feature values that appear in
both classes. The feature value imbalance is first calculated for D1, since this is the dataset
that the model is trained on and therefore, this is the dataset where a large imbalance of the
feature values between classes can influence the patterns learned by the model and sub-
sequently impact the model’s ability to predict which class any new data should belong to.

In the tables shown in Appendix A, we included every feature value imbalance exceeding
2 for the 10 most represented feature values for each feature, since this will indicate that
a feature value is at least twice as represented for one of the classes (normal or attack)
than for the other. The normal to attack traffic ratio for a given feature value represents
the proportion of normal traffic instances compared to attack traffic instances. It indi-
cates how much more prevalent some feature values are in the normal traffic relative to
attack traffic, and vice versa for attack to normal traffic ratio, where the table shows what
feature values are much more prevalent in the attack traffic compared to the normal traffic.

The feature value imbalance was especially present in the attack to normal traffic ratio
in D2, as seen in the rightmost column in Table A.3—in this table, the dataset is neither
undersampled nor oversampled and is therefore imbalanced between the benign and at-
tack records, which is why many of the feature values are represented more in the attack
traffic than in the normal traffic. Therefore, the feature value imbalance is to be expected.

However, the feature value imbalance for D1 is more interesting, primarily due to the
oversampling of the dataset. In Table A, we can see that when we oversample D1, many
feature values will be more than twice as represented for the normal class than for the at-
tack class, which will most likely introduce a bias towards the normal class. This is further
emphasised in Table A, where we can see that the feature values that in the imbalanced D1
are more than twice as represented for the attack traffic are eliminated when oversampling
the minority class. This is, of course, to be expected to a certain degree; however, this will
dilute some of the defining features for the patterns in the majority class.

When looking at the normal to attack traffic ratio of the RandomOverSampler test case,
it is clear that many feature values have increased representation in the normal traffic.
The purpose of applying oversampling and undersampling to a dataset is to balance the
dataset—this means that even though the RandomOverSampler has balanced the records
to an even number, the feature values inside the records are not necessarily as balanced
and proportionally distributed in the minority class that has been oversampled as they
are in the untouched majority class. The variety of the feature values will depend on
the method used for oversampling. As mentioned previously, RoS just makes additional
copies of the records that already exist in the dataset, while SMOTE makes new records
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that consist of different feature values comprised of the 5 nearest neighbour records of a
sample from the minority class. This may explain why the imbalanced feature values are
more prominent in the RoS oversampled normal traffic than the attack traffic, since the
records are just replicated directly, causing the existing feature values to be amplified ac-
cording to the ratio that the minority class needs to be amplified in order to reach balance
between the classes, instead of being created as new but plausible representations of the
minority class.

For the SMOTE test case, the feature value representation ratio is more even; however,
the features that have multiple feature values with high ratios are different from the nor-
mal to attack traffic and the attack to normal traffic. In the normal traffic (the minority
class that has been oversampled), the features that have more than four feature values
with a higher ratio of representation are sport, dport, state, stddev, max, and dpkts. For the
attack traffic, the features that have more than four feature values with a higher ratio of
representation are daddr, pkts, bytes, spkts, sbytes, and dbytes.

The RandomUnderSampler shows the least amount of highly represented feature values
when measuring across both normal and attack traffic. Only two features, pkts and spkts,
show more than four feature values with a ratio of more than 2, specifically for the attack
traffic.

As mentioned previously, table A.3 shows the imbalance in D2. The feature value ra-
tios were only calculated for the original imbalanced version of this dataset, as D2 was
never over- or undersampled for previous experiments, as it is created to be an imbal-
anced dataset for validation purposes and is never used for training. This dataset showed
to be the most imbalanced dataset when compared to the previous test cases, since only
one feature value of dport for normal traffic had a relatively high representation compared
to the attack traffic, whereas all the features had at least one value that was represented
with a ratio of more than 2 for the attack traffic. To further explore the imbalance ratio
shown through the most represented feature values in both normal and attack traffic and
how this may affect the results from testing and training the different models, we would
like to experiment further with adjusting the specific feature values.

To further visualise how the imbalance is represented in the test cases, the largest feature
value count for each feature in the ANOVA + Pearson’s set is shown in Table 4.25 when
using both SMOTE, RoS, and the imbalanced D1 with the voting classifier with decision
tree and XGBoost. If we refer back to Table 4.23, we can see that the number of misclas-
sified attack traffic instances is very similar to the number of features where the value of
stddev is 0. In relation to this, the RoS and imbalanced feature values are very similarly
represented — which is logical, since the additional samples of the minority class that are
created when using RoS are direct copies of already existing records.
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Figure 4.25: The values that are most represented in each feature, all test cases uses the voting classifier with
decision tree and XGBoost

As seen for the voting classifier test cases in table 4.17, the best results specifically for
TN classifications in D2 were achieved using SMOTE, where it correctly classified 5688
out of 7003 instances. This is most likely due to SMOTE creating more "randomised" new
instances of the minority class, which adds variety to the trained model and makes it easier
for the model to recognise the new instances of normal traffic present in D2 but not in D1.
In contrast, for RoS, the oversampling merely multiplies the already existing samples of
normal traffic, of which there are already few in D1. As a result, when the trained model
is tested on D2, it does not recognise all the patterns of normal traffic when presented with
an "organically" larger minority class.

However, the majority class will experience a loss in the TP predictions from this, since
its own amplification of its defining feature values lies in that it is the majority class and
will therefore have a larger index of feature values to be defined on. By oversampling the
minority class, we will inevitably reduce some of that amplification since we redistribute
the feature values.
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Figure 4.26: Some of the BoT-IoT traffic instances where the standard deviation is 0 [1]

Table 4.26 shows a sampled selection of the traffic instances in D1 where stddev is 0. We
can see that they vary widely across source IP addresses, protocols, durations, bytes, type
of attack, etc. This indicates that even though stddev is a feature highly correlated with the
target variable according to the ANOVA score, it is not specifically representative of one
type of traffic. This makes sense, since the standard deviation is not based on the records
as singular instances but shows how the records generally deviate from the standard du-
ration within an aggregated group. This would make stddev an obvious choice as a sorting
criterion for filtering out which records are grouped together. To do this, we filtered D1
first based on the ascending order of stddev and then based on the descending order of
mean.

With the help of the generated features that were initially discarded due to not being
included in D2, we can assume that the groups are aggregated based on the source ad-
dress, the destination address, and the state of the transaction, since those features also
correlate with the aggregated groups of the records. The connection between the gener-
ated features based on the aggregation of records and saddr and daddr features can be seen
in Table A.4 in Appendix A.

The reason for the generated features being aggregated based on these three features is
most likely that it makes it easier to identify sources that are frequently initiating specific
requests or connections to certain destinations, which can often be indicative of specific
attacks.

Building on the knowledge that the models are showing difficulties in predicting the traf-
fic instances where the standard deviation is 0, we ran some test cases without including
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stddev in the selected feature set, as seen in Figure 4.26. However, this did not show any
significant enhancement in the performance evaluation; specifically, the TN scores were
lower in D2 compared to the previous test cases, and the confusion matrix showed signs
of overfitting to the majority class. This is most likely because it removes a feature from the
minority class that is highly correlated with the target variable and therefore informative
for classification, making it even harder to recognise any patterns than it already is due to
the class imbalance.

Figure 4.27: Running the decision tree + XGBoost model where standard deviation is removed from the
feature set

A solution to the feature value imbalance may be to handle some feature values indi-
vidually. An approach for this could be to set a threshold for how much a given feature
value can be represented in one type of traffic compared to the other. For example, if the
normal traffic has 4.85 times as many records where the stddev feature has the value of
0 compared to attack traffic, there would likely be a partiality towards the normal traffic
when the model is trying to classify a record with stddev as 0. Consequently, a significant
portion of predictions could also be misclassified if there is still a substantial amount of
attack traffic with this specific feature value. According to the threshold, a mask could be
added to some of the imbalanced feature values to dilute the imbalance, similar to han-
dling missing values in a dataset. Another solution may be to handle the imbalance of
the dataset by creating more authentic instances of the minority class, which would not
just amplify the feature values that are already represented in the minority class, but also
possibly create more diversity for diluting this imbalance.

4.6 Wrapper methods

As explained in the preceding sections, the analysis of feature contribution in dataset train-
ing can take various forms, offering different types of insight into the model’s performance
and feature patterns. One such approach is the utilisation of wrapper methods, which in-
volves finding a selected set of features by actually training the model and evaluating the
resulting performance at runtime.
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There are multiple ways of finding a feature set through evaluating the performance of
the models; we have chosen to explore forward selection and backward selection, as im-
plemented by the Sequential Feature Selector in Python. The best model performance in
the previous section resulted from training the model with the combined set of ANOVA
and Pearson’s features, which consisted of seven independent variables. Therefore, the
wrapper methods in this section will also choose the seven best features. Additionally,
since the voting classifier gave the best result, it will also be used in this section.

Forward feature selection (FFS) works by starting with an empty set of features. For
each iteration, it will run a classifier and add the feature to the feature set that maximises
the performance of the model according to the specified metric. For our test cases, we
chose the voting classifier with decision tree and XGBoost as the model and F1-score as
the performance metric. This process continues until a specific number of features in the
set is reached or until the F1-score does not improve. In contrast to FFS, backward feature
selection (BFS) starts with the full set of features. For each iteration, a feature will be re-
moved if its removal results in the highest possible F1-score for the model.[56]

For this project, the Sequential Feature Selector from the scikit-learn library in Python
was used to implement both the FFS and BFS with the parameters shown in Table 4.28.[3]
The voting classifier with XGBoost and decision tree was defined as the classifier to be
optimised since this model generally achieved the most desirable results with the filter
methods. Additionally, 5-fold cross-validation was used to ensure that the entire dataset
was utilised for training and testing and that the features chosen as the best would repre-
sent a more reliable estimate of the model’s performance.

Figure 4.28: The parameters that were chosen for the Sequential Feature Selector to implement the wrapper
methods [3]

These two processes were performed on the imbalanced D1 dataset with the full fea-
ture set to either validate or provide a contradiction to the previously selected features.
Through the feature selection process with FFS, we identified seven features that should
impact the F1-score of the voting classifier. The seven features chosen through FFS were
saddr, daddr, stddev, spkts, dpkts, srate, and drate. The feature set defined through BFS in-
cluded flgs_number, saddr, daddr, pkts, min, sbytes, and srate, as shown in Figure 4.29. The
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features that overlap between the sets are saddr, daddr, and srate—these are all features that
would generally be considered very informative when trying to classify traffic as normal
or attack.

Normal traffic would originate from a wide range of arbitrary IPaddresses and gener-
ally show predictable patterns with legitimate destination addresses. Attack traffic may
communicate with a C&C server that originates from or is directed to specific IP addresses
associated with these servers—bots within a botnet might also be deployed within the
same or similar IP ranges. Attack traffic may also be indicated through the source rate
through burst patterns or low and slow attacks, whereas normal traffic would show more
variability that responds to organic user patterns.

Figure 4.29: The selected features by each wrapper method and their training time

The feature sets that were found by using FFS and BFS were used for training the
voting classifier combining decision tree and XGBoost, since this is the classifier that got
the most favorable results with the filter methods. The undersampled dataset have not
been included, since it primarily has introduced redundant results with low F1-scores in
previous test cases. In the table below, it can be seen that both the BFS and FFS showed
near-perfect results for D1. The second column shows an extremely low results for all
test cases, meaning that the feature set as selected by wrapper methods do not showcase
superiority to the correlation-based feature sets. The second column shows that the TN
predictions were much higher than the TP, since none of the attack traffic instances were
classified correctly. This is most likely due to the model overfitting when trying to find the
patterns that will give the highest performance, rather than actually recognizing the mean-
ingful patterns in the data. When looking at the results in table 4.30, it is evident that the
trained models are biased towards the minority class - the model might overcompensate
by focusing too much on the minority class, therefore placing emphasis on the minority
class to correct for the imbalance. When oversampling, the patterns in the minority class
are not "organic", they are artificially amplified, which can make the model too sensitive
for these technically non-existing patterns that do not occur when the minority class is
larger due to consisting of more real traffic instances, which is the case for D2.
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Figure 4.30: Performance of the feature sets as chosen by forward and backward feature selection

Even though it did manage to correctly predict the minority class, the model did not
manage to predict the attack traffic, making it useless for the purpose of botnet detection.
In addition to this, BFS was the most demanding feature selection method in terms of
computational power - selecting a feature set using this method took 13096.721 seconds,
while the training time of FFS was 4251.116 seconds. This, in comparison with the time it
took to calculate the scores used for the entropy and correlation-based feature selection as
shown in 4.15, also emphasizes that the wrapper methods are not feasible for reducing the
feature set when compared to the filter methods.



Chapter 5

Interpretation of Results

In this chapter, we will present an overview of the results from the previous chapter as well
as an analysis of the insights it provides in relation to the detection of botnet traffic. The
purpose of this is to understand how well the models performed and conclude whether
machine learning is a comprehensive tool for identifying attack traffic in IoT networks.
We will also identify which features, variables, and models provided the most notable
performance and highlight any limitations we found. Specifically, we will review the
models, feature importance, and feature selection methods by examining the results and
patterns from the last chapter. These insights will also be used to set a scope for possible
future directions.

5.1 Insights from the Machine Learning Models

For our experiments, four different models were chosen: Gaussian Naive Bayes, decision
tree, random forest, and logistic regression with XGBoost. Initially, a few other models
were considered, namely SVM and KNN. However, SVM and KNN were discarded in the
initial testing stages due to being too computationally costly.

Naive Bayes

As mentioned previously, we chose Gaussian Naive Bayes since it assumes a normal dis-
tribution of the feature values, whereas Bernoulli Naive Bayes assumes that all the feature
values are binary. This is not the case for most of the features relating to network traf-
fic, such as protocol, destination/source IP, and bytes—these are continuous values rather
than binary, which is why Gaussian Naive Bayes was deemed more appropriate. The Naive
Bayes test cases received high F1-scores when using the imbalanced dataset; however, this
was due to the almost complete set of attack traffic instances being classified correctly,
while none of the minority class normal traffic was classified correctly. This would not be
feasible in an intrusion detection system since even though almost all attack traffic would
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be detected and blocked, it would also block all normal traffic. When oversampling or
undersampling the dataset, Naive Bayes achieved the best True Positive rate for the correct
classification of normal traffic when cross-validating on the D2 dataset, with around 6000
correct classifications and 700 misclassifications. For the D1 dataset, it repeatedly misclas-
sified around 10000 normal instances. The steady number of misclassifications suggests
that it is most likely due to the imbalance of specific feature values when the dataset is
either oversampled or undersampled.

XGBoost, Decision Tree, and rRandom Forest

XGBoost, decision tree, and random forest showed comparable results. When cross-
validating with the D2 dataset, the confusion matrices were similar for most of the test
cases, showing signs of overfitting to either the majority or the minority class. For most
of the test cases where D1 was undersampled, the performance models on D2 showed
relatively high FN scores and either signs of underfitting or overfitting to the minority
class. This indicates that undersampling the majority class does not effectively capture
the underlying patterns. When keeping D1 imbalanced, the performance on D2 showed
definite signs of overfitting to the majority class for most test cases; however, this was less
prevalent when oversampling with SMOTE and using the ANOVA feature set.

The similarities in the results are most likely because XGBoost and random forest are
ensemble methods that are trained on multiple decision trees. However, random forest
had a longer training time, leading us to discard it for the voting classifier.

Voting Classifier

The idea of introducing the voting classifier originated from our own ideas of creating a
hybrid model that would combine the TN classifications of Naive Bayes with the TP of
XGBoost. The voting classifier was chosen since it would train multiple models on the
same dataset and then make a final prediction based on a voting system, which averages
the probabilities provided by each model. The voting classifier was also trained on a
combination of decision tree and XGBoost to give further context to the performance of
the voting classifier as a whole.

Essentially, the goal of combining the models was to balance out their biases and vari-
ances, thus creating a more robust model that would not be as sensitive to the character-
istics of a single classifier. This approach showed only slight improvement in some test
cases, but it did result in the most favourable scores for detecting attack traffic correctly
when validating on the D2 dataset. The most optimal performance came from training the
voting classifier with decision tree and XGBoost on the D1 dataset that was oversampled
with SMOTE, using the combined feature set of Pearson’s and ANOVA.

This raises the question of why this combination resulted in the most favourable results.
When the decision tree and XGBoost were trained on the same test case separately, they
achieved very similar results. Since both models separately showed a clear bias towards
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the majority class, it is possible that the addition of a soft voting classifier, which combines
them to make an average of their predictions, helped dilute this bias. The combination of
their outputs could capture a wider range of patterns. This effect was particularly notable
when combined with SMOTE, which introduces new minority class samples that might be
considered more original by the model due to them not being direct copies. When using
RoS, the new samples are just duplicates, which likely does not capture any complexities
of the minority class distribution. This lack of diversity might cause overfitting in the test
case with RoS instead of SMOTE, as seen in 4.23.

5.2 Insights from the Feature Selection

For the feature selection, we initially focused on filter methods. Filter methods are based
on statistics rather than the actual performance of the model at runtime. This approach
allows for a thorough examination of feature characteristics while maintaining neutrality
towards specific classifiers.

Balancing Uniqueness and Redundancy

Initially, the sequential purpose features were removed from the dataset since they would
introduce a new feature value for each traffic instance without actually denoting anything
other than the sequence of the traffic instances for administrative purposes. These features
revealed more about the context of the traffic rather than the content. This would introduce
a lot of uniqueness without revealing anything descriptive about the packet headers of the
traffic instances.

In addition to this, we also wanted to discard the features with too much redundancy
that would also not be descriptive of the individual packets of the traffic instances, but on
the other end of the spectrum, in that these features would reveal information about the
content of the traffic, but would not have enough differing values within the features to
show any informative variance.

The Shannon entropy measures the average information content of the features, thereby
quantifying which features carry more or less information. This was calculated for the
features in order to identify which features did not have enough diverse feature values
and which features did have a diverse amount of values and therefore more information
content. This allowed us to remove any features where the distribution of values was too
uniform and therefore would have a pattern that is too vague for predictive modelling.
There is no correct way to set a threshold for this, but when we calculated the threshold
values, a notable gap appeared between the lowest threshold values between 0-5 and the
higher threshold values from 8 and up. This indicated a natural distinction for the diverse
distribution of feature values, which is why we chose to discard the lower threshold values
below 5.

Additionally, the generated features that were only present in D1 were also discarded.
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This was done for the purpose of validating with D2—D2 did not contain these features,
so if we had trained the model with them, it would not be possible to test the saved model
on D2 without generating them. The choice not to generate them was made both because
it would be extremely computationally expensive and because the set of features already
in D2 covers what would typically be expected to be contained in a network traffic dataset;
therefore, we did not find it necessary.

When looking at the selected features based on the entropy method described above,
the chosen feature values are obvious choices for basing the prediction on diverse value
patterns.

• sport: The source port depends on the type of communication and the device it
originates from, allowing for a wide range of values.

• dur: The duration of the traffic instances can vary significantly in a network with
multiple components.

• mean, stddev, sum, min, max: All based on the durations of a given group of aggre-
gated records, where the aggregation is based on the records having the same source
IP, destination IP and transaction state.

• rate: Different devices and systems will generate traffic at different rates—a ther-
mostat may send and receive data more frequently than motion-activated lights, for
example.

• srate: This is specifically for the packets transmitted by the source and also varies
depending on the source.

As seen in the table, the reduction of the feature set based on entropy did introduce
lower performance when training on D1, but also introduced much higher performance
when testing on D2 for Naive Bayes and XGBoost. For decision tree and random forest,
the F1-scores were lower with the entropy-selected feature set, but the confusion matrices
were generally more balanced, showing less bias towards either class.

Pearson’s and ANOVA

We found the Shannon entropy to be appropriate for this feature selection since the mea-
surement of the diversity of a feature is based on the single feature, and the entropy will
be the same independently of what the diversity is of the other features. This allows us to
gain a clearer understanding of its standalone importance in the dataset.

We also wanted to measure the correlation between features, but we wanted this to
be a separate step in the process because we wanted a modular and easy-to-interpret
approach to feature selection, allowing us to address different aspects of feature relevance
systematically. Pearson’s and ANOVA were regarded as appropriate for measuring the
correlation of the variables in the dataset due to being widely used in the state of the art.
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Pearson’s measured the correlation between each pair of features of the independent
variables. When measuring the correlation between these, we preferably want features
that do not correlate too much, since this would indicate redundant information, similar
to the reason for setting an entropy threshold. However, this type of correlation calculation
allows for a lot of overlapping results between each pair of features. In order to assemble
comparable correlation scores, the average correlation for each feature was calculated.

The features with the highest average feature correlation that were discarded were max,
mean, rate, and srate.

For ANOVA, the correlation between each of the independent variables and the tar-
get variable was measured, in order to measure information gain from a feature through
how much it affects the target variable, which we want to predict. For measuring this
correlation, we aim for the highest measured scores.

The features that were discarded due to having too low a correlation with the target
variable were sport, min, srate, and mean.

The models were also trained with the shared set of Pearson’s and ANOVA. This was
done to test if it would give the best results if both types of correlation calculations were
accounted for when training the model; however, this would also introduce the possibility
of "diluting" the correlation since some of the features included in the ANOVA subset
for having a strong correlation with the target variable were not included in the chosen
Pearson’s subset for having a low correlation with the other independent variables. For
example, sport was included in the Pearson’s feature set but scored the lowest on the
ANOVA scores. The features that are included in both ANOVA and Pearson’s are only
sum, stddev, and dur, but using only these for training the model resulted in only 15.91%
of the normal attack traffic being classified correctly.

As stated previously, the best overall results in this project came from training the
voting classifier with the combined set of features as defined by the ANOVA and Pearson’s
correlation scores. This resulted in 92.4% correctly predicted attack traffic classifications.

Wrapper

As mentioned previously, the results from filter methods are based on statistics rather than
the actual run-time of training the model, which is where the wrapper methods become
interesting. In order to give some more context to the field of feature selection, we decided
to also find selected feature sets based on FFS and BFS, where the models are iteratively
tested with new features that are only added to the final feature set if they improve the
performance of the model. The initial results on D1 were near perfect, but for D2, the
voting classifier failed to classify any attack traffic correctly when using the feature sets as
defined by the wrapper methods.

The chosen features were features that would generally be considered informative
when distingushing attack traffic from normal traffic, such as saddr, daddr and srate, how-
ever they were initially discarded from the filter methods. The saddr and daddr did not
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have a high enough entropy score, which would mean that they introduce too much re-
dundancy and the feature values are simply not informative enough. For srate, it was both
too highly correlated with other features and not enough with the target variable.

This means that, according to our findings, the most useful features for detecting bot-
net traffic are dur, stddev, sum, max, min, sport and rate. The success of the filter methods
was most likely due to them not relying of the performance of the model, rather than the
statistical properties of the feature values and relevance both in relation to the other fea-
tures and the target variable. This would create a more generalized and robust feature set
with clear criteria that is not biased towards a specific type of model, performance metric
or dataset imbalance.

sum, dur, min, stddev and max all relate to the duration of the traffic instances. This is
relevant for detecting botnet traffic, since very short or long durations can indicate specific
types of attacks. For example, a short duration with a high packet count might suggest
a burst attack, whereas a long duration with a consistent packet rate might indicate a
persistent intrusion or data exfiltration attempt.

sport is the source port - in IoT networks, certain devices typically communicate over
specific ports. Unusual source ports could indicate compromised devices or unauthorized
access attempts. For example, if a device that normally uses port 80 (HTTP) suddenly
starts using a different port, it may suggest that the device has been compromised and
is being used for malicious purposes, such as scanning the network for vulnerabilities or
exfiltration of data.

rate describes the packets per second in the transaction, where a high rate can be
indicative of high-volume attacks like (D)DoS, in which a large number of packets are
sent to overwhelm the target. Alternatively, an unusually low rate might signify stealthy
or low-and-slow attacks designed to evade detection.

5.3 Limitations of the Study

One of the initial limitations of this project established early in the process is the range of
machine learning models used for the experiments. In order to train and test the KNN and
SVM with a large dataset with many features, a significant amount of computing resources
is necessary. An initial test run for each of these models was conducted to set a benchmark
for their computational costs within our experimental setup, which showed that it would
take many hours to train the models. This limited the scope of the project, especially since
KNN was one of the models that generally performed the best according to the literature
review. Both KNN and SVM are able to capture more complex and non-linear relation-
ships in the data, which would be useful for recognising complex patterns in the network
traffic.
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Another factor that possibly limited the scope of the study was the feature set of the
BoT-IoT dataset. In D1, a range of additional features were generated specifically for the
purpose of multiclass classification of the specific types of attack traffic. These were not
generated for the full dataset and therefore were not included in the trained models for this
project. Many of the features that exceeded the entropy threshold, as presented in table
4.5, were from this generated set of features, highlighting them as possibly very relevant
for training the models. A solution could be to generate them ourselves, but that would
be a complex and cumbersome operation as the complete dataset is very large and all of
the traffic instances would have to be taken into account when calculating them since they
describe aggregated feature values. For instance, to calculate the total number of bytes per
source IP, one would have to go through the whole dataset with more than 71.5 million
records to find all instances with the given source IP. Nevertheless, the feature engineering
of this project is fully based on the BoT-IoT dataset and therefore there is no guarantee
that they would translate to a dynamic real-time traffic analysis environment and still be
optimal for the performance of the model. Continuous updates based on both the threat
landscape and analysis of the network traffic would be the best option for ensuring a rele-
vant feature set for a real-life IoT network.

For this project, botnet detection is limited as a theoretical concept based on statistical
measures and the runtime of the algorithms. This is a limitation in that it does not reflect
a true IoT network scenario, even though certain steps were taken in the process to repli-
cate this scenario. For instance, the classifiers employed for this project would have to be
scalable as well as not require too many computational resources if they were to be im-
plemented in an IoT network managing real-time data, which is also why KNN and SVM
were excluded. However, for botnet detection in a real IoT network, additional security
measures would have to be considered, such as any adversarial attacks designed to de-
ceive machine learning detection techniques. The threat landscape is constantly evolving,
so the botnet detection technique would not only need a robust detection mechanism to
be successful but also need to be adaptable to changes and new evasion techniques. Since
our solution is trained on historical data in a simulated setup, a future concern would
be how to handle zero-day attacks that do not conform to the patterns recognised by the
model. Furthermore, the evaluation of our models was limited to offline data analysis,
which might not fully capture the more dynamic and unpredictable nature of live network
traffic.

5.4 Future Directions and Recommendations

This section will explore directions for future research and further exploration of this
project.
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Deeper Classification Analysis

Using machine learning models for classification can feel like a black box approach, espe-
cially when dealing with a large dataset where it is impossible to check all misclassified
instances to analyse and understand where the model became confused.

Doing a deeper analysis of both the specific instances that were misclassified, as well
as the ones that were correctly classified, may lead to a clearer understanding of why
this is happening and exactly what feature values are causing the models to overfit. This
would require large-scale data analysis, since both datasets consist of close to 4 million
traffic instances. The analysis of the feature value imbalance provided an insight into the
patterns that confused the model in our test cases; however, in order to understand the
full context and further refine the models, we would have to look more closely into the
characteristics of the predictions.

Additional Datasets for Fine-Tuning

In this project, the evaluation of the models is based on testing the models on two datasets—each
dataset imbalanced with different ratios, but with normal traffic as the minority class in
both. For additional training and testing that would further confirm how robust the mod-
els are, it would be useful to test the trained classifier on a dataset that is not imbalanced
and one that has normal traffic as the majority class, where the balance of the dataset is
organic and not due to oversampling or undersampling.

Considerations of Computational Resources

The machine learning models and feature selection methods that were not chosen for
our experiments, even though they were widely used in relevant literature — SVM and
KNN — were primarily discarded due to being too resource-intensive. The evaluation of
the resource consumption of the models adds further nuances to the performances of the
models. For example, decision tree and random forest showed similar results for some test
cases based on the performance evaluation scores, but the training and testing process for
random forest consumed around 811 seconds, whereas the decision tree required around
7 seconds. This was underlined as a reason for random forest not being part of an optimal
solution for a detection system; however, not much emphasis was placed on this aspect
of evaluation. Highlighting the classification time and memory as crucial performance
metrics for each test case could have distinguished one model as more favourable than the
others and offered more nuance, rather than making them look as similar as they do with
the evaluation metrics that we did choose to use.

This would have provided a broader understanding of the relative strengths and weak-
nesses of the models, which is especially useful to take into account when dealing with
limited computing power, which is often the case with IoT devices and complex dataset,
which is often the case with large amounts of network data.
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Considerations for a Realistic IoT Botnet Detection System

If the findings of this project were to be implemented into a real-life botnet detection
system for IoT devices, a hybrid approach may be used for the placement. By making
part of the detection system edge- or cloud-based as well, the system would be able to
handle large amounts of traffic, and most of the attack traffic would be detected early
before entering the internal network. As we can see in the results for the voting classifier,
when using the SMOTE oversampled dataset with the combined feature set as selected by
Pearson’s and ANOVA, aiming to predict attack traffic would result in both the majority
of the normal traffic and attack traffic being classified correctly. This means the majority
of the normal traffic would be accepted, while the majority of the botnet traffic would be
deterred before reaching the internal network. According to the performance evaluation
of this test case, a relatively large amount of more than 300,000 attack traffic instances
were misclassified as normal traffic. If this misclassified botnet traffic were to enter the
internal network or any IoT devices, a smaller and more lightweight system might not be
sufficient to validate the traffic again. Therefore, the use of edge- or cloud-based resources
for additional validation of any FN data might be an optimal solution in order to not
saturate the possibly limited resources of the IoT network.

A relatively large amount of normal traffic is also misclassified as being attack traf-
fic—more than 18% for the D2 test case. This would effectively mean that almost a fifth of
the normal traffic would get discarded, which is another issue that should be handled in
order to effectualise a botnet detection system and make it as user-friendly as possible.

When making an IDS scalable for IoT devices, neural networks may be an evident
choice since neural networks can eliminate the need for manual feature engineering in
favour of automatically learning any relevant features from the raw IoT data.

Incorporation of Neural Networks

Neural networks offer an approach for enhancing the scalability and effectiveness of bot-
net detection systems in IoT environments. Unlike traditional machine learning models
that rely on manual feature engineering, as seen in this project, neural networks can au-
tomatically learn and extract relevant features from raw IoT data. This capability makes
them particularly suitable for complex and dynamic environments where feature relevance
may change over time. Future research could explore the implementation of various deep
learning techniques such as convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs). CNNs can be particularly effective for analysing spatial data and
patterns in network traffic, while RNNs are well-suited for sequential data and can help
in understanding temporal dependencies in network activity. Leveraging these advanced
neural network architectures can significantly improve the accuracy and robustness of de-
tection systems in detecting sophisticated and evolving cyber threats in IoT networks[11].
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Integration with IoT Device Firmware

According to the OWASP IoT top 10, many of the vulnerabilities in IoT devices are related
to the device firmware[65]. Integrating botnet detection mechanisms directly into the
firmware of IoT devices can provide an additional layer of security and enhance the over-
all defence strategy. With advancements in processing power and optimisation techniques,
it is now feasible to embed lightweight machine learning models within IoT devices. This
integration allows for real-time detection and mitigation of threats at the device level, re-
ducing the reliance on centralised network-level defences and potentially lowering latency
in threat response. Such an approach can decentralise the detection process, making the
overall system more resilient to attacks that target network infrastructure. Furthermore,
embedding detection capabilities in the firmware ensures that even if network connectiv-
ity is disrupted, the devices themselves can continue to monitor and respond to threats
autonomously. Future research could focus on optimising these models for low power
consumption and ensuring they can operate effectively within the limited computational
resources available on most IoT devices.

Exploration of Adversarial Machine Learning

Adversarial machine learning represents a critical area of research for enhancing the secu-
rity and robustness of botnet detection systems. Attackers often manipulate input data to
evade detection systems, creating adversarial examples that can deceive even well-trained
models[66]. Future work could focus on developing adversarial training techniques where
models are exposed to such adversarial examples during the training process, thereby im-
proving their resilience against manipulation. This involves generating adversarial sam-
ples that mimic potential attack patterns and incorporating them into the training dataset.
Additionally, research could explore the use of defensive mechanisms such as adversarial
detection, where models are trained to identify and filter out adversarial inputs. Under-
standing and mitigating the effects of adversarial attacks can lead to the development of
more robust and reliable botnet detection systems capable of withstanding sophisticated
evasion tactics employed by attackers.



Chapter 6

Conclusion

In this section, we will conclude on the problem formulation from section ??. We will
compare the three initial questions to our final results and their interpretation. The goal
of this project was to research the field of botnets and how they can be efficiently detected
with machine learning. To achieve this, we analysed the state-of-the-art works to exam-
ine the multitude of tools and directions to explore. We chose to work with the BoT-IoT
dataset since it was widely used in the reviewed literature, along with four machine learn-
ing models—Naive Bayes, decision tree, random forest, and XGBoost. We wanted to focus
on supervised learning algorithms with relatively low time complexity, and they were all
extensively used as binary classifiers in the literary works. In addition, XGBoost was com-
bined with decision tree and Naive Bayes in a soft voting classifier.

Initially, we trained and tested the models on a 5% sample of the BoT-IoT dataset (D1)
as generated by the creators. However, this still left us with doubts as to how effective the
models would be for detecting botnets in a real-life scenario, where the model would not
only be used to classify the 20% test set of the dataset that it was trained on. Therefore, we
decided to take a part of the full BoT-IoT dataset and create a new sample (D2) for further
testing purposes to investigate how the training of the model can be optimised and fine-
tuned to not only perform well on one set of data. Since both datasets were imbalanced,
with attack traffic being the majority class, the F1-score as well as the confusion matrix
were used for measuring performance. The additional model validation on D2 provided
some substance to the performances of the models, as good results on D1 did not neces-
sarily translate to good results on D2 due to overfitting. This gave us extra context for how
to handle the dataset imbalance and what features to add or remove in order to achieve
both sufficient and robust performance.

How can we ensure proper pattern recognition through training of machine learning
models when handling imbalanced datasets, which are prevalent in botnet detection
scenarios where normal traffic significantly outnumbers malicious traffic?
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We found that the incorporation of an additional dataset gave us more context for op-
timisation of the model. D2 had a larger minority class than D1, requiring the model to
consider a more widespread pattern for the minority class.

When studying the state of the art within the field of botnet detection, the performance
evaluations left us with an inquiry as to what would happen if new data were introduced,
in addition to the original dataset that the models were trained on. How is the issue of
overfitting fully addressed if we have not observed a trained model in multiple contexts?
This question led us to adding more testing data for further fine-tuning of the parameters.

Many of the initial test cases showed perfect results when training and testing on D1.
However, when testing the trained model on D2, it resulted in a much lower performance
evaluation, indicating overfitting to either the minority or majority class. This would not
be feasible for a realistic botnet detection system, causing us to doubt the performance
results of previous studies. We concluded that most of the test cases were prone to overfit-
ting when looking at the TN and TP scores, but that the F1-score generally improved when
adding entropy-based and correlation-based feature selection. The best test case that did
not show obvious signs of overfitting, along with a high F1-score of 0.958, was the combi-
nation of XGBoost and decision tree in a voting classifier with the combined feature set of
ANOVA and Pearson’s, where SMOTE was used to oversample the minority class. This
is most likely due to the combination of ANOVA and Pearson’s that considers both the
correlation between the features and the correlation between each feature and the target
variable, as well as SMOTE, which oversamples the minority class by not just copying traf-
fic instances from the minority class but using five samples of the minority class to create a
"new" synthetic and randomised sample, introducing more variety rather than just exactly
copying the already existing patterns.

In comparison, most of the test cases would have a relatively high TP score at the cost
of a low TN score, and vice versa. Naive Bayes generally had the lowest performance
evaluation and did not show much enhancement from being combined with XGBoost.
Random forest was very resource intensive, and the performance evaluation was similar
to XGBoost and decision tree, making it a redundant choice when factoring in the training
time. Most of the other test cases with XGBoost and decision tree with the voting classifier
did not improve much, as the performance evaluations were very similar to the perfor-
mance from the test cases with only XGBoost.

Returning to the most optimal performance evaluation, which was the voting classifier
with XGBoost and decision tree when training the model on the dataset oversampled with
SMOTE and the combined feature set of ANOVA and Pearson’s, we received an F1-score of
more than 0.958 and a TN score of 5,688 and a TP of 3,689,362 in D2. This effectively means
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that 81.2% of the normal traffic is classified correctly, while 92.4% of the attack traffic is
classified correctly. For comparison, the same test case but with RoS instead of SMOTE
resulted in 97.27% of the attack traffic being classified correctly, while only 28.94% of the
normal traffic was classified correctly. This is an evident sign of overfitting, meaning that
the trained model would most likely never conform correctly to newly introduced data.
Although the RoS test case correctly classified a larger percentage of attack traffic, it has
shown not to be an optimal solution for capturing the dataset’s underlying patterns. The
303,635 misclassified instances of the attack traffic for the SMOTE test case would likely
not be appropriate for a critical network; however, it does not exhibit signs of overfitting,
providing a more solid foundation for potential further enhancements in classification.

What are the most effective strategies to optimise machine learning models for bot-
net traffic detection in IoT networks?

The selection of the most influential features proved valuable when training the models
for the detection of botnet traffic. First, the complete set of BoT-IoT features was reduced
based on the feature entropy. This seemed to eliminate overfitting for some of the test
cases. Then, the feature set was chosen by calculating correlations based on ANOVA and
Pearson’s, and using the combined feature set. ANOVA measures the correlations between
the features and the target variable, for which we want a high score to denote that the fea-
tures are highly correlated with the class that we wish to predict. Pearson’s measures
the correlation between the features, for which we want a lower coefficient since a feature
correlating too much with the other features denotes redundancy.

In addition, feature sets were chosen with FFS and BFS, which gave subpar results. The
reason for this is most likely that when using wrapper methods, the iterations are not fo-
cused on a statistical baseline similarly to ANOVA and Pearson’s, but instead are based on
just optimising the given model with the given dataset at runtime. The resulting feature
set will therefore be less transferable to another context, which in this case is a new dataset.

For the most optimal result, the feature set was the combined feature set as defined by
both ANOVA and Pearson’s. Additionally, SMOTE was used to handle the imbalanced
dataset for the only test case that did not show evident signs of overfitting. This did
increase the feature value imbalance, resulting in a still rather large number of misclassifi-
cations.

This leads us to the conclusion that filter methods perform better when validating on
new data due to better generalisation and focusing on the statistical relationships both
between the features and the target variable. This allows for a versatile and robust method
that is not tied to a specific model’s performance at runtime. Furthermore, using SMOTE
to oversample the minority class and thus provide extra substance for recognising the pat-
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terns also resulted in the most favourable solution for a botnet detection system.

Which network traffic features are most influential in identifying potential botnet ac-
tivities in IoT networks, and how can these features be systematically evaluated and
selected?

As mentioned above, the best performance came from the combined set of ANOVA and
Pearson’s. One might think that the intersection of ANOVA and Pearson’s might give the
best results since the features that are not included in both individual sets might skew the
results as they did not get a high enough score for both. However, this was not the case,
as using only the intersection of the ANOVA and Pearson’s feature sets resulted in a very
low FN score on both D1 and D2, suggesting that a feature set only consisting of three
features is too small for the model to recognise the patterns of the minority class.

An initial removal of features was done since some of them were deemed irrelevant for the
purpose of detecting botnet traffic. These were all "sequential" features, meaning that they
represented an attribute about the order of traffic instance for administrative purposes.
Two of these were unique packet IDs, pkSeqID and seq, while two of them represented the
start time and end time of the instance in Unix time, which essentially is also a type of
sequence number. For this dataset, it was used for calculating some of the other features,
such as the three features that are the intersection between ANOVA and Pearson’s feature
set: sum, stddev, and dur. These all represent generated data based on the duration of ag-
gregated traffic instances—allowing us to use these for detecting suspicious traffic based
on grouped traffic instances. For instance, this would allow for easier detection of (D)DoS
attacks.

Elaborating on the specific features, it is interesting that the dur feature is calculated to
have a low correlation with the other features when quite a few of them are generated
based on dur feature values. In addition, it is highly correlated with the target variable.
This is most likely because the duration of a traffic instance will often vary widely and is
often highly correlated with the attack type, giving indicators to whether the transaction
is an attack and what kind of attack it could be. sum represents the sum of the durations
of the aggregated records — a large duration sum may suggest data exfiltration where
a persistent connection is needed, while a very short duration may represent brief scan-
ning. stddev will represent the duration variability of the aggregated records, where a high
standard deviation could suggest a burst attack. This feature proved to be an essential
consideration for the FN classifications — many of the misclassified attack instances had 0
as a value for stddev. Since this feature denotes how "spread out" the durations are within
the aggregated groups, the reason for this causing many FN classifications is probably
because the dur feature is very vital in distinguishing attack traffic from normal traffic, so
when there is no deviation of the durations because they are all the same within a group,
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it is much harder to classify them.

These are the three features that both correlate highly with the target variable, which
is a binary classification of normal or attack traffic, as well as having low correlation with
the other features.

The additional two features that were added to the feature set through the ANOVA score
were max and rate, meaning that they have high correlation with the target variable but are
also above the threshold for correlation with the other features. max represents the upper
duration bound of the aggregated records — if this is short, it can mean that the transac-
tion state of the aggregated traffic instances does not need a longer maintained connection
to be fulfilled, ruling out data exfiltration, for instance. rate is the packet rate per second
in the given transaction — if this is high, it could denote a UDP attack, while a slow rate
might indicate a HTTP request attack.

sport and min are the remaining features added to the final set through only having a low
Pearson’s correlation coefficient, meaning that they do not have a high correlation with
the other features but are also below the ANOVA correlation threshold. min represents
the lower duration bound of the aggregated records, which could for instance denote the
difference between a burst attack or an HTTP POST request attack. Even though it might
indicate a specific type of attack traffic, the lower bound of the durations can be influenced
by outliers or edge cases that are not representative of the accumulated instances. If this
feature captures some isolated instances of very low traffic durations, it might lead to low
correlation with the other features. sport is the source port number — this might have low
correlation with both the other features and the target variable since it is often randomised
or dynamically allocated.

From this, we can conclude that a majority of the relevant features for the detection
of IoT botnet traffic are based on the duration of the traffic instances. In addition to
the correlation-based feature selection, wrapper methods were employed in order to test
whether these two methods would complement or overthrow the statistical-based results.
The wrapper methods utilised were forward selection and backward selection, and even
though they managed to get a near-perfect performance evaluation on D1, the performance
evaluation when testing on D2 was much lower.

This thesis aimed to explore how to efficiently detect botnet traffic in an imbalanced dataset
by employing machine learning techniques. Throughout the course of the project, we
explored numerous machine learning models and accompanying feature selection tech-
niques. The analysis and experiments demonstrated that through the use of correlation-
based filter methods, a soft voting classifier combining decision tree and XGBoost can
correctly classify more than 92% of the botnet traffic in an IoT network, which was val-
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idated by introducing the trained model to an additional dataset. The exposure of the
trained model to a secondary dataset with new and re-balanced data points provided a
novel approach to fine-tuning the classifier, giving further insight into the optimisation of
the machine learning algorithm.
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Figure A.1: Normal traffic feature value imbalance in D1
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Figure A.2: Attack traffic feature value imbalance in D1



d

Figure A.3: The feature value imbalance in D2



e

Figure A.4: Two tables showing a section of the D1 dataset, showing how some of the records may be
aggregated based on source and destination address [1]
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