
SignPredict: A machine learning approach to gesture recognition —
AAU mandatory summary for thesis projects

Today, 5% of the world’s population has some degree of hearing loss, and it is expected to increase by 100%
within the next 30 years. Deaf people, in particular, experience communication barriers when trying to integrate
into a hearing society, affecting both their health and social life. This project aimed to explore the possibilities
of creating a baseline for a system capable of recognizing Danish sign language, which in turn could be used
to minimize these barriers. This paper has explored the domain of recognition of Danish sign language using
a machine-learning approach. It has been solely conducted by a single individual, which resulted in certain
limitations to be set to finish it within reasonable time due to the hard deadline. Agile project management has
been used to structure the workflow, through the utilization of sprints. A total of four different sprints have
been conducted, each with their own focus. The first sprint entailed creating the necessary data to be used for
training a machine intelligence model, capable of predicting single gestures performed within small, pre-recorded
videos. The next phase focussed on training a total of nine models split into three types of three variants each.
The first type was solely trained on coordinate data, the second type used linear graphs, and the final type was
trained on a collection of both data types. The variants of each type were trained on either 25, 50, or 100 samples
of each label. The labels used were “can”, “thumb”, and “peace”. With all models successfully trained, the next
sprint entailed the evaluation of each model with the given metrics; accuracy, loss, precision, recall, F1-score,
and prediction on a new set of data. The final sprint entailed bundling the models into an API, allowing other
systems to freely utilize the prediction prowess of the model. This is accessible through public endpoints.
For data extraction, the open-source library, OpenCV2 has been used. This library provides a collection of

different computer vision functionalities, one of which is frame extraction in videos, which has been the only
functionality used throughout the development of this project originating from said library. For locating hand
landmarks within each frame, the library MediaPipe has been utilized. This is a well-trained module that’s easy
to use. This module locates the coordinates of each landmark, which can then be extracted and saved for later
use. For model training, the open-source library Keras has been used, which provides a collection of different
deep learning functionalities, such as training of custom MI models. The API has been configured using FastAPI,
and deployed using the web server uvicorn. The API has been structured in a REST architecture. For evaluation
of the model, Keras has been used for extraction of accuracy and loss, while another open-source library, SciKit,
has been used to extract precision, recall, and F1-score. The API has been evaluated using the open-source tool
Locust, allowing for quick and easy configuration in order to test both scalability and response time.
The results gathered from evaluating the model yielded positive results for the models trained only with

coordinate data. They proved able to predict and differentiate fairly between the different three gestures. However,
in terms of API performance, that evaluation yielded poor results, showing an inability to successfully scale as a
higher load was received. All models proved themselves slow when it came to predicting a gesture, taking more
than 2 seconds to produce a single label. Overall, the entire system should undergo a major refactor, focusing on
improving the architecture and infrastructure, in order to combat these long processing- and response times.

This paper concluded that it is possible to recognize single gestures through machine intelligence, only using
publicly available resources. However, it is fairly slow with its current implementation and does therefore not
fit into any real-time systems. Optimizing this system could provide the wanted accessibility for deaf people,
allowing them to more effectively communicate with the hearing society. The next step would be to improve the
system and model, followed by conducting a user study to see if it works in real contexts.

Author’s address:

SignPredict: A machine learning approach to gesture recognition
Nicholas D. Jørgensen
ndja19@student.aau.dk

Department of computer science
Aalborg, Denmark

ABSTRACT
Around 5% of the world’s current population has some sort of hear-
ing loss, which is predicted to double over the next 30 years. Being
deaf in a hearing society brings communication barriers within
their daily life, and affects them in several ways. This research aims
to explore the possibilities within sign language prediction using
machine intelligence models, through three different approaches,
all bundled into a single system called SignPredict. This solution uti-
lizes a Sequential model and predicts using a series of coordinates,
representing 21 landmarks located on a hand. The broader aim of
this study is to provide a baseline solution, to be further developed
in the future, capable of predicting Danish sign language gestures
accurately. To secure a baseline to determine the success of the
system, Oracle’s Quality of Service criteria have been used through-
out development, as fulfilment of these ensures quality within the
system. Furthermore, an agile project management approach has
been used, splitting the development process into four phases. For
the MI models, the Sequential model from Keras has been used,
utilizing an LSTM, a type of RNN, to produce a prediction giving a
series of data. For data extraction, computer vision and landmark
detection have been used. Every model developed has undergone
benchmarking, evaluating their accuracy, loss, precision, recall, F1-
score, as well as their correctness of predicting gestures on a data
set. The models trained solely on coordinate data yielded positive
results and adhered to the industry standard. The other models,
trained on either linear graphs or a combination of both graph and
coordinate data, yielded poor results, entailed both bad metrics and
an inability to predict more than one of three labels. Throughout
the research and development of this project, it was discovered
that through utilizing coordinates as primary data, inputted into
a Sequential model, it was possible to predict single gestures and
differentiate between similar ones. However, the final bundled API,
containing all functionality accessible through public endpoints,
proved itself unacceptable in terms of overall response time during
higher loads. A major refactor of this API is needed, focusing on
optimization.

KEYWORDS
Sign Language Recognition, SLR, MI, evaluation, system develop-
ment

1 INTRODUCTION
According to WHO, around 430 million (5%) of the world’s current
population requires some kind of rehabilitation to address their
disabling hearing loss1 [34]. This number is estimated to increase to
700 million (10%) within the next 30 years[34]. As hard-of-hearing

1Disabling hearing loss refers to hearing loss greater than 35 decibels (dB) in the better
hearing ear. [34]

individuals often can communicate through spoken language, as
well as being able to benefit from external devices such as hearing
aids, deaf individuals often rely entirely on communication through
sign language [2, 8, 19, 34].

Due to this, many deaf individuals experience communication
barriers, which present themselves within a broad spectre of con-
texts, such as their workplace [19, 21]. This causes desocialization,
which in turn can lead to significant long-term health issues [14, 28].
These communication barriers therefore hinder deaf individuals in
the integration into a hearing society, causing them to experience a
feeling of segregation. Some deaf individuals can read lips, hereby
establishing a one-way communication channel, yielding mediocre
results in group dialogue [7]. However, this ability only provides
them with mediocre results in terms of communication with hear-
ing individuals. As the amount of deaf individuals is set to increase
significantly [34], and they of all ages experience some sort of com-
munication barrier, preventing them from successfully integrating
into a hearing society [19], systems focusing on providing the nec-
essary accessibility can be seen as a priority. Such systems would
strengthen deaf individuals’ independence, as it would allow them
to communicate more easily with society, thereby minimizing, or
completely avoiding, the communication barriers. Advancements
in providing sight-impaired individuals with more independence
have already been made, whereas deaf individuals still struggle2.

A handful of software applications exist, containing functionality
in aiding deaf individuals communicating with a hearing society,
such as Google’s Live Transcribe [9]. This application acts as a
communication medium between deaf and hearing individuals. It
provides a deaf individual with the ability to participate in the
conversion through text messages. However, deaf individuals often
have a lower literary level compared to others, and can therefore not
fully express themselves with this format [19]. This lower literary
level stems from the difference in syntax between Danish sign lan-
guage and Danish. This issue can be a result of misunderstandings
between the parties involved in the conversation.

To develop and maintain a reliable system to translate sign lan-
guage, hereby providing deaf individuals with the ability to com-
municate without barriers, is an elaborate venture and therefore
has not been done yet, as such a solution would be very resource-
dependent. Google has conducted a study, where they evaluated
the usability, preferability, and likeability of different sign language
recognition (SLR) approaches in controlling a personal assistant on
a smartphone [16]. Furthermore, just as well as there exist different
languages, with several dialects, so is the case with sign language.
Over 300 different official sign languages exist, where within each
language exists up to several styles [10, 11]. These styles result
in gestures being performed differently, hereby adding additional

2www.bemyeyes.com/language/danish

1

www.bemyeyes.com/language/danish

Nicholas D. Jørgensen

complexity to training and perfecting a functional system for SLR
[10].

Therefore, my contribution to this field is an exploration into the
ability of gesture recognition, to predict Danish sign language using
a machine intelligence (MI) model. Danish sign language has been
chosen as the language to use for the proof of concept. This is partly
due to the author being Danish himself, but also due to the author
having had contact with a local deaf society. The recognition is
accomplished utilizing a vast amount of data inputted into an LSTM
model, training both pattern and sequence recognition. The pro-
cess entailing data extraction and processing, in conjunction with
prediction, is encapsulated into a publicly available API, requiring
only a video containing a single gesture as input. The capabilities
of the API and model are shown thorough evaluation, entailing
different techniques. This paper shows that it is possible to predict
sign language utilizing machine intelligence, thereby opening a
wide range of contexts for it to adapt into.

The paper is structured as follows: Next in section 2 we will
present the work related to bridging the gap within the commu-
nication barrier between hearing and deaf people. section 3 will
entail the formal description of the workflow and algorithms uti-
lized, allowing for the reproduction of the system. Following this,
in section 4, the approach chosen for testing purposes will be pre-
sented. In section 5 the results gathered from testing the different
parts of the system will be presented factually. These results will be
discussed and compared to the related works in section 6. Finally,
the conclusion of the work will be presented in section 7.

2 RELATEDWORK
The following section aims to present related work conducted by
other entities, that has affected the designing and experimentation
of the final model and system. This will include other approaches
to sign language recognition, performed both by other studies and
companies who have developed technology to solve the problem
of the limited communication capabilities of a deaf individual.

2.1 Research
Several contributions, in terms of studies, regarding sign language
recognition have been conducted [22, 27, 33]. One thing in com-
mon with all of these contributions, is they all involve training an
independent machine intelligence model from scratch. Pathan et
al. have developed a model capable of recognizing finger spelling
gestures. The model was a trained multi-headed convolutional neu-
ral network (CNN)3, and yielded positive results in terms of its
ability to accurately predict the gesture performed, with a 98.981%
test accuracy [25]. The purpose of this study was to provide a
foundation, which may be used by other entities, to develop an
accurate and efficient communication channel for deaf individu-
als. Their model’s primary focus was to recognize finger spelling
gestures and translate the gesture into the corresponding letters.
Their model achieved successful prediction of a total of 24 letters,
all characterized by not containing any movement [25].

Another study, on MI-based gesture recognition, was conducted
by Mihir Garimella. Their solution, the same as above, was able to

3A CNN is a type of machine intelligence model, often used when processing static
images, due to its filter optimization method.

predict a static finger spelling gesture. However, instead of bench-
marking his solution, he created a functionality that allowed for
calculating the confidence in the correctness of the prediction [23].
This approach was tried solely by a single individual, which can
be seen in its overall contribution as well, as there is no actual
platform or application utilizing this yet. However, as his approach
is fully open source, other developers can benefit from his work,
and adjust functionalities to their liking to research a related topic
[23]. The final approach is yet another attempt at making a sign
language prediction model. Srivastava et al. developed a model
with the capability of recognizing Indian Sign Language through
the utilization of the open-source library TensorFlow [31]. Their
approach was limited to only a subset of the entire language, yet
yielded positive results. They manage to upkeep a confidence rate
of 80-90% of every single letter on average [31].

Furthermore, Google, in collaboration with Gallaudet University,
conducted a study where they looked into the preferability and
likeability of a system recognizing sign language [16]. This system
provided the ability to control a mobile assistant, such as Apple’s
Siri. To gather their results, they tested three different interfaces,
with different controls. The interfaces were tested with people who
depend on sign language as their primary communication medium
[16]. The purpose of their study was also to mitigate the communi-
cation barrier between deaf and hearing individuals, by developing
a platform allowing for real-time sign language recognition. This
yielded positive results for their tap-to-sign interface, which in-
volves holding down a record button, signing a single gesture, and
then the gesture would be translated to text and used as input for
the mobile assistant [16]. However, they utilized a Wizard-of-Oz
prototyping approach, meaning they had no underlying model per-
forming the prediction, which creates cause for another study to
be conducted in the future to validate the results produced.

2.2 Product
This section of the related works will formally present released
products, which aid in providing deaf individuals with the ability
to minimize the communication barriers that occur during their
daily routine. This will entail both a presentation of products uti-
lizing hardware as a primary component and software platforms
accessible to the public.

2.2.1 Hardware. CyberGlove Systems4, a company established in
1990, has developed a physical piece of hardware. This hardware
takes the form of a physical wearable glove. These gloves utilize sen-
sor technology to accurately track the movement of hands, thereby
providing them with the ability to be used to recognize gestures
corresponding to sign language. Another piece of hardware, also
in the form of a wearable glove, was developed by a pair of un-
dergraduates at the University of Washington in 2016 [13]. The
technology within these gloves involves capturing everything from
XYZ coordinates to individual finger- flex and bending, to accurately
recognize the gesture performed. These gloves were developed with
communication with the hearing world as the primary focus, and
specialized in American Sign Language (ASL). However, the gloves
only provide the necessary data needed for a computer to process,

4www.cyberglovesystems.com/

2

www.cyberglovesystems.com/

SignPredict: A machine learning approach to gesture recognition

therefore leaving the responsibility of predicting the gestures to
the computer [13]. However, due to ASL being more complex than
just single gestures, their system was limited to only a subset of
the entire language, as proof-of-concept (PoC). These gloves ended
up winning the Lemelson-MIT student prize, for their possibilities
within the field of providing accessibility and independence to deaf
individuals [13].

2.2.2 Software. Hello Monday, a company located in Denmark and
the USA, has developed an online web platform, fingerspelling.xyz,
freely available, that allows users to enter and try spelling a collec-
tion of different words using their fingers through finger spelling
[17]. This platform was developed for the American Society for
Deaf Children and was developed to help bridge the communication
barrier between deaf and hearing children [17]. As it is made with
children as the primary focus, gamification elements have been
utilized. This presents itself by being awarded a point score upon
each successful completion of a gesture. Gamification, when done
correctly, aids in motivating the users during their utilization of
the system [17]. The author of this paper has been in contact with
Hello Monday’s Aarhus division, where it was discovered that they
are looking into improving the system further, enabling it to predict
additional gestures and hereby, hopefully, bridge the gap within
the communication barriers present in today’s society even further.

Before starting this project, the group had been in contact with
a local deaf society5 located in Aalborg. Through email correspon-
dence, it was presented to us that many deaf people, especially in
Denmark, utilize a free mobile application called Live Transcribe6.
This application is developed by Google, in collaboration with Gal-
laudet University, an institution specializing in providing education
for deaf and hard-of-hearing individuals. The application is often
used as the primary communicationmedium between deaf and hear-
ing individuals, as it provides a two-way communication channel
between the parties involved [9].

3 METHODOLOGY
The entire process of developing the system has been split up into
several phases, each part representing an agile sprint. An agile
sprint is a period of time allocated with the sole focus of finishing
a subset of the entire project backlog, a log containing all tasks to
complete before a project version is achieved [1]. This approach
has been chosen as the project management structure to follow
throughout this project, as it provides a clear overview of the entire
process that must be completed, to reach a minimal viable prod-
uct (MVP) [1]. This paper entails detailed descriptions of all parts
and phases, which collectively make up the MVP. These phases
will be presented throughout this section and the next. Each phase
consists of 7 parts, where some specific choices have been made.
These will be presented when necessary. Phase one, Produce data
set, consists of the steps taken to develop the entire data set con-
sisting of 300 videos containing gestures. The second phase, Model
Training, describes the steps taken to develop all nine models de-
veloped throughout the production of this paper. The third phase,
Model Evaluation, will be elaborated in section 4, and contains the

5aalborgdeaf.dk/
6https://play.google.com/store/apps/details?id=com.google.audio.hearing.
visualization.accessibility.scribe&hl=en_US&pli=1

steps performed to evaluate the model. The final phase, Bundle API,
consists of the steps taken to bundle the trained prediction model
into a Python FastAPI, and making it accessible through public
endpoints.

3.1 Data extraction and preparation
Before any data was produced, the gestures and the corresponding
matching labels had to be determined. A label is a classifier used to
determine the type of gesture performed, meaning if the Danish
sign language gesture for “elephant” is performed, the correspond-
ing label, that will be produced by the prediction model, used for
classification is “elephant” as well. This involved gathering inspi-
ration from the Danish Sign Language Dictionary7. As the author,
who produced the data set, is not fluent in Danish sign language, the
gestures performed may not be 100% accurate. Therefore, it being
said that inspiration from Danish sign language has been taken,
means that the gestures performed may be incorrect, and therefore
are not fit for production. However, it does share similarities with
the performed gesture found in the dictionary. Furthermore, as
one individual had to produce all data, the amount of gestures was
limited to three, where they all shared similarities in their perfor-
mance, and therefore could be used to test whether the produced
model would be able to differentiate between them. The gesture
and corresponding labels were limited to a total of three and were
determined to be “can”, “peace” and “thumb”, as earlier presented.
The limitation of three gestures was made as they each require 100
samples, and with a hard deadline set for the project, three were
deemed reasonable to make within the given time frame. These
specific gestures were chosen as they were similar to each other,
with only a few differences, meaning that they would provide a
good baseline for how effective the models developed were in dif-
ferentiating between small differences. This step and the decisions
made are all depicted in Figure 1, and represent the step Determine
labels.

With this step done, a format for the produced video data was
determined. This was done to ensure consistency within the entire
data set. As this paper has taken inspiration from the use case
of commanding a mobile assistant[16], as presented in section 2,
the device chosen to record all data on was determined to be a
mobile device, more specifically an iPhone 14 Pro. Furthermore, it
was determined to record the videos with HDR disabled, in 720p
resolution, 30 fps, and of a duration between 1–2 seconds. These
decisions were made in an attempt to limit the file size of each video.
Furthermore, it was also decided that all videos had to contain one,
and only one, hand, as it was decided that the device should be
held with the other hand. Collectively, these decisions made up
the entirety of step 2, depicted in Figure 1 as the step Determine
video format. With this determined, the data was now ready to be
recorded. All of this was done on a single device. A total of 300
videos were recorded, 100 for each of the three labels, all consistent
with the requirements determined in steps 1 and 2. The process of
recording data is represented in Figure 1 as the step Record training
data.

7https://www.tegnsprog.dk/

3

fingerspelling.xyz
aalborgdeaf.dk/
https://play.google.com/store/apps/details?id=com.google.audio.hearing.visualization.accessibility.scribe&hl=en_US&pli=1
https://play.google.com/store/apps/details?id=com.google.audio.hearing.visualization.accessibility.scribe&hl=en_US&pli=1
https://www.tegnsprog.dk/

Nicholas D. Jørgensen

Figure 1: Phase 1, Produce data set, and the seven steps it entails. This process constitutes a full sprint, lasting three weeks.

The next step in Figure 1, Extract frames, entailed developing a
Python script capable of loading each video, extracting each sepa-
rate frame, and storing them in a list. The pseudocode for this pro-
cess is presented inAlgorithm 1 in the procedure ExtractFrames(vp).
This procedure utilizes OpenCV2, a Python library containing
functionality allowing others to easily perform computer vision
tasks on sets of data, such as images or videos. The procedure
ExtractFrames(vp) gets a string representation of a path contain-
ing a video file as input. This path is then inputted into OpenCV2’s
function Capture, which returns a list of objects containing differ-
ent attributes, one being all frames. These objects are then looped
through, extracting the frame f and appending it to the list of all
frames vf. After extracting all frames, the entire list of frames is
returned to the caller of the function, which then can be used for
further processing. This will be elaborated in the next step Process
w/MediaPipe.

With all data having undergone the frame extraction process, the
next step, Process w/MediaPipe, entails processing all frames using
Google’s MediaPipe8 solution. This is done by looping through
every frame of every video and inputting them as a parameter to
the procedure ProcessFrames, presented in Algorithm 1. When
the procedure processes a frame, it loops through all the landmarks
found. A landmark is one of the fundamentals within the field of
computer vision, and describes the coordinates of interest within a
picture or frame [4]. A landmark within the hand could for example
be the coordinate of the outermost joint on an index finger. The hand
recognition model, MediaPipe, used for this implementation locates
a total of 21 landmarks on a single hand [3]. A total of 21 landmarks
are present on every hand, and with the restriction of having a max
of one handwithin every frame, this resulted in the procedure’s loop
in line 18 to loop 21 times. All 21 landmarks were then saved into a
custom object, FrameData, storing the relative image coordinates.
These coordinates will be used as input to calculate the linear graphs
between every landmark of every frame in the next step Calculate
direct graphs.

This step entails calculating every linear graph located between
each landmark, within all frames. Linear graphing is a graph be-
tween two data points, such as coordinates, containing an x- and
y-value. These graphs follow the notation of “ax + b”, and are used to
show the relationship between two or more quantities [5]. Through
the utilization of linear graphs, the ability to perform interpolation
is present. Interpolation is heavily used in a wide variety of soft-
ware, such as games, 3D animation, and image manipulation [6].

8developers.google.com/mediapipe/solutions/vision/gesture_recognizer

Algorithm 1 The “Extract Frames” and “Process w/MediaPipe”
Algorithms from step 4 and 5 in Figure 1

1: procedure ExtractFrames(𝑣𝑝)
2: Description: Given a path to a video 𝑣𝑝 return a list of all frames

𝑣 𝑓 from video 𝑣 . Represents the algorithm used in step 4 from
Figure 1.

3: 𝑣 𝑓 ← ∅
4: 𝑣 ← {CV2.capture(𝑣𝑝)}
5: for all 𝑓 ∈ 𝑣 do
6: append 𝑓 to 𝑣 𝑓 ⊲ Add element 𝑓 to the end of list 𝑣 𝑓
7: end for
8: return 𝑣 𝑓

9: end procedure

10: procedure ProcessFrames(𝑓)
11: Description: Given a single frame 𝑓 return a list of FrameData

𝐹𝐷 . Represents the algorithm used in step 5 from Figure 1.
12: 𝐹𝐷 ← ∅
13: 𝑚𝑝ℎ ← {mp.solutions.hands} ⊲ Initialize MediaPipe

gestures recognition
14: 𝑝 𝑓 ← {cv.cvtColor(𝑓 , 𝑐𝑣 .𝐵𝐺𝑅2𝑅𝐺𝐵)} ⊲ Convert frame

from RBG to BGR
15: 𝑟 ← {mph.process(𝑝𝑓)}
16: if 𝑟 .𝑚𝑢𝑙𝑡𝑖_ℎ𝑎𝑛𝑑_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 then
17: for all 𝐿 ∈ {(𝑟) .𝑚𝑢𝑙𝑡𝑖_ℎ𝑎𝑛𝑑_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠} do
18: for all 𝑙 ∈ 𝐿 do
19: 𝑓 𝑑 ← {FrameData([𝑙 .𝑥, 𝑙 .𝑦, 𝑙 .𝑧])}
20: append 𝑓 𝑑 to 𝐹𝐷

21: end for
22: end for
23: end if
24: return 𝐹𝐷

25: end procedure

Interpolation is the ability to find data in between other data [6].
The pseudocode for the procedure used for these calculations can
be seen in CalculateLineEquation, found in Algorithm 2.

This procedure takes two FrameData objects as input. However,
the procedure can be used for every object containing an x and y
coordinate. As the coordinates change according to the movement
of the landmarks, several security checks are made to not provide
inconsistent data or crash the system. The first check occurs in lines

4

developers.google.com/mediapipe/solutions/vision/gesture_recognizer

SignPredict: A machine learning approach to gesture recognition

Algorithm 2 The “Calculate direct graphs” Algorithm from step 6
in Figure 1

1: procedure CalculateLineEqation(𝑝1, 𝑝2)
2: Description: Given two sets of X and Y coordinates, 𝑝1 and 𝑝2,

return a string 𝐺 representing the graph equation.
3: 𝑐𝑝1← 𝑝1
4: 𝑐𝑝2← 𝑝2
5: if 𝑐𝑝1.𝑥 > 𝑐𝑝2.𝑥 then
6: 𝑐𝑝1← 𝑐𝑝2
7: 𝑐𝑝2← 𝑐𝑝1
8: end if
9: if 𝑐𝑝2.𝑥 − 𝑐𝑝1.𝑥 = 0 then
10: return 0
11: end if
12: 𝑆 ← (𝑐𝑝2.𝑦 − 𝑐𝑝1.𝑦) ÷ (𝑐𝑝2.𝑥 − 𝑐𝑝1.𝑥)
13: 𝑌 ← 𝑐𝑝1.𝑦 − 𝑆 × 𝑐𝑝1.𝑥
14: 𝐺 ← ”𝑆𝑥 + 𝑌 ”
15: return 𝐺

16: end procedure

5-7 as if the first coordinate’s x-coordinate is higher than the second
coordinate, the slope will be negative. The second check occurs
in lines 9-10, where, if the subtraction of the second coordinate’s
x-value with coordinate one is 0, division by zero will be performed,
which would cause the system to crash. If these checks are passed
successfully, the slope is then calculated using the equation (𝑐𝑝2.𝑦−
𝑐𝑝1.𝑦) ÷ (𝑐𝑝2.𝑥 − 𝑐𝑝1.𝑥), and the y-intercept of the graph with the
equation 𝑐𝑝1.𝑦 − 𝑆 × 𝑐𝑝1.𝑥 . These values get stored in a single
string representation and returned to the caller of the function.
This process constitutes the entire step Calculate direct graphs.

The final step, save to JSON-files, entails saving everything ex-
tracted and calculated from the previous two steps into JSON-files.
This is done, as it makes it faster to reuse when needed, by provid-
ing the ability to skip the whole extraction and processing steps.
These files are stored locally within the code repository.

3.2 Building the model
This section will entail a detailed description of the process of
building all the developedmodels. It follows the seven steps depicted
in Figure 2.

When it comes to deciding on an MI model, it is important to
use a model suitable for the needs. This was the purpose of the step
Determine model type. The Sequential model9 has been chosen as
the model type to be used for all the models produced. This type
of model is appropriate to use when the input comes as a list of
layers, such as the list of all frames within a video. For this, a Long
short-termmemory (LSTM) model has been used, which is a type of
Recurrent Neural Network (RNN). The LSTM has been chosen as it
allows the output of the previous sequence, in this case the previous
frame, to be used as input in the current sequence. This allows for
the model to predict patterns, such as the pattern of landmarks
within each frame. Furthermore, the Sequential model requires the
density to be determined. The density informs the model of how
9https://keras.io/guides/sequential_model/

many types of results are possible to reach, which in this case would
be three, as three different labels can be produced. Finally, it was
determined that there would be three kinds of Sequential models to
be developed. The first would only consist of sequences containing
the coordinates extracted from the frames, the other would utilize
the linear graphs calculated, and the final model would use a com-
bination of both. These models will be presented as coordinates,
graphs, and combined throughout the rest of this paper. These
three kinds of sequential models were determined to be developed
to evaluate their performance and accuracy regarding each other,
as they all provide different approaches to reaching the same goal.

Furthermore, each of these models will have three variations,
correlating to the amount of samples per label used for each model.
These variations will be trained on 25, 50, and 100 of each sample.
The number of samples per label used will be added to the end of
the model name, e.g. coordinates25.

With the general model type and configurations, in conjunction
with the number of different models and their variations, deter-
mined, the process advanced to the next step Load data, as depicted
in Figure 2. This step entailed loading the data save into JSON files,
as presented earlier. The data loaded had to be concurrent with the
kind of model, therefore coordinate data would be loaded if the
coordinate model was the model in question being trained.

When the data had been successfully loaded, the process pro-
gressed to the next step, Transform to sequences. This step entailed
using the loaded data and transforming it into sequences consistent
with the format required by the Sequential model. The pseudocode
for this procedure can be seen in Algorithm 3, and is contained in
the procedure TransformToSequences. When the data is loaded
from the JSON files using the json python module, they are stored
within a dictionary object. This procedure takes this dictionary and
converts it to a list of lists. The outermost list represents a video,
with each containing a sublist representing a frame. Each of these
sublists, representing frames, contains a single list. This innermost
list contains all data regarding the coordinates and/or linear equa-
tions. In Listing 1, a pseudo-representation of this structure can be
seen.

1 [outmost list , representing a video

2 [inner list , representing a frame in the video

3 [innermost list , containing the coordinate/graph data

4 values ...

5]

6],

7 ... repeat for amount of frames in video

8]

Listing 1: Sequence structure

When the data has been transformed, the list is flattened, to
remove all unwanted empty sub-lists occurring during the trans-
formation process. This list is then returned to the caller of the
procedure, which will be explained later in the step Train model.

With the transformation of all video data, the process moves
forward to step Determine sequence length. This step entails figuring
out the longest possible sequence within the entire set of video data.
This length is dependent on the amount of frames within a video.
With this length calculated, all other sequences not matching the
length, are padded with the value 0. This ensures consistency within
the data set and is required for the model to successfully predict a

5

https://keras.io/guides/sequential_model/

Nicholas D. Jørgensen

Figure 2: Phase 2,Model Training, and the seven steps it entails. This process constitutes a full sprint, lasting three weeks.

single gesture. If the length were of different variation, more than
one label could be produced. This process of determining length and
padding sequences can be seen in procedure LoadModelData, found
in Algorithm 3, in lines 14-15. These two operations constitute this
entire step.

The next step, Configure model, utilizes the configurations deter-
mined in step Determine model type. This configuration is made in
procedure TrainModel, found in Algorithm 3, in lines 16-19. This
utilizes the methods provided by the python Keras module10, which
allows for easy configurations.

With all data preparations and the model configuration done, the
next step, Train model, involves training and fitting the model. This
is done with a single function call, again utilizing a method from
the Keras module, which can be seen in procedure TrainModel in
Algorithm 3 in line 20. This function uses the padded sequences,
the corresponding labels for each sequence, the number of epochs
to perform, as well as the number of batches as input. The method
used returns a history object, containing the accuracy and loss of
the trained model, which will be elaborated in section 4. With the
model trained, the last step, Save model, entails saving the recently
trained model into a local Keras file, allowing it to be loaded and
used at another time.

3.3 Bundling the API
To access and use the model to predict gestures, the entire solution
has been bundled into an API. The process of initializing the API
and bundling the prediction functionality is divided into seven
steps, as depicted in Figure 3. This section will contain a detailed
description of each step, as well as the decision made.

The first step, Determine structure, concerns determining the
structure of the API. As the model prediction does not require
storing any data to successfully predict a label, the RestAPI archi-
tecture has been chosen. As Keras, OpenCV, and MediaPipe all have
been implemented using Python as the programming language, it
has been decided to use this for the API as well. For the practical
implementation of the API, the module FastAPI11 has been used.
FastAPI is a web framework used for developing Python-based

10https://keras.io/
11https://fastapi.tiangolo.com/

APIs. This framework was chosen due to its native high perfor-
mance and its ease of use. In conjunction with this, uvicorn12 is
used to deploy a web server containing the API. uvicorn is best
known for being a minimal low-level server/application interface,
acting as an ASGI web server for Python-based applications and
systems.

With the structure determined, the next step, Initialize frame-
work, entailed initializing the FastAPI and uvicorn module. This
can be seen in procedure RunAPI, located in Algorithm 4. When
the API was initialized, it loaded all nine models trained earlier
using the Keras module. In the pseudocode in Algorithm 4, an ex-
ample of how a single model was loaded is seen in line 1, using the
load_model method. This method requires a string representation
of the model’s path to locate the model. This method constitutes
the entirety of step Load model(s).

The next step was to determine the public endpoints and develop
the video processing procedure within the API, which the user had
to communicate with to obtain a prediction for their video. It was
determined that the API had a different endpoint for each of the
models, allowing public access to all three approaches and their
different variations. An example of this, specific to the coordinate
models, is located in procedure Predict, seen in Algorithm 4. This
endpoint requires the request received to contain a video file, which
then in turn saves the video as a temporary file on the machine. This
temporary file is then processed with the data frame extraction and
processing procedures, ExtractFrames and ProcessFrames from
Algorithm 1, presented earlier. Following this, Predict utilizes the
data transformation functionality from TransformToSequences,
also presented earlier. Furthermore, it also utilizes the functionality
of padding sequences to the length determined during phase II.
Finally, with the data transformation completed, it can utilize the
loaded model to predict the gestures performed, using the Predict
method from the Keras module. With the prediction performed, the
label is extracted and converted to a string, which is then returned
as a JSONReponse to the user. When the response has been returned
to the user, the temporary video file is deleted, thereby ensuring
privacy. The process explained here constitutes step Determine
endpoints and Develop video processing shown in Figure 3.

12https://www.uvicorn.org/

6

https://keras.io/
https://fastapi.tiangolo.com/
https://www.uvicorn.org/

SignPredict: A machine learning approach to gesture recognition

Figure 3: Phase 4, Bundle API, and the seven steps it entails. This process constitutes a full sprint, lasting three weeks.

With the API developed, a Docker image was created. This was
done during the step Create Docker Image. Creating a Docker image
for the entire system and bundled API allows for easy deployment,
independent of the machine used. Furthermore, through the utiliza-
tion of the Docker image and the Docker engine, the system could
be deployed in a containerized environment using Docker Swarm.
Docker Swarm allows developers to deploy more replicas of the
same system on the same machine, without changing anything in
the implementation. Meaning, that when the usage of the system
increases, the number of instances can be increased as well, allow-
ing for the system as a whole to handle higher loads. It therefore
opens the door for scalability within the final system, which will
be tested in section 4. Deploying the system with Docker Swarm
constitutes the last step of this phase.

With phases I, II, and IV explained, one phase remains, the Model
evaluation phase. This phase will be explained in section 4, which
entails an elaborate description of testing the different parts of the
system.

4 TESTING
This section will contain a formal description of the test processes
conducted to evaluate the system capabilities in terms of Oracle’s
quality of service (QoS) requirements [24]. In total, 4 experiments
have been performed. Within each presentation of the experiment,
its relation to Oracle’s QoS will be elaborated.

4.1 Test #1: Model Metrics
This experiment entails benchmarking the model, extracting spe-
cific metrics, and analysing the results of them through comparison
with the suggested standard [15]. This is a common practice to
engage in when developing new MI models, as it gives an objective
quantification of the model’s performance [15]. This entire process
describes phase III of developing the system and is depicted in
Figure 4.

The metrics of interest in this test are summarized below:

• Accuracy: is the metric describing how often predictions
equal labels [30].

• Loss: measures the difference between the predicted class
probabilities and the actual class labels [30].

• Recall: is the model’s ability to find all positive samples
[30].

• Precision: is the ability of the model not to label a negative
sample as positive [30].

• F1-score, also known as the F-measure, is classified as the
weighted harmonic mean of the results extracted from pre-
cision and recall [30].

To extract these metrics from the saved trained models acquired
in the final step of phase II, Figure 2, a workflow was created. This
entire process was repeated for all the nine models created and de-
scribed in section 3. The first step, Load model, entailed loading the
saved model through the usage of the Keras function load_model.
The next step entailed using the fitting function, presented in pro-
cedure LoadModelData from Algorithm 3 in line 20, to extract the
accuracy and loss of eachmodel using the Keras functionality. These
metrics were saved to a local .csv file. As the tests do not always
provide the same results, this extraction process was conducted 10
times for each of the aforementioned models.

The next step, Extract precision and recall, entailed extracting the
precision and recall of the loaded model. This was done through
utilization of Scikit’s sklearn.metrics13 functionality, allowing
for easy extraction of the wanted metrics. With both the precision
and recall of the model extracted, these values were then used in the
following step, Calculate F1-score. For this another of Scikit’s func-
tionalities was used, however, it was also calculated manually with
the following equation: 𝐹1 = 2∗ ((𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙) ÷ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+
𝑟𝑒𝑐𝑎𝑙𝑙)) These three metrics were when saved and stored in a local
.csv file. These two processes were also performed 10 times for each
model.

With all of these metrics extracted and saved, the next step was
to perform a train-test split test of the model. As the train segment
of the model was already performed during fitting, the next step,
Load test data, involved loading 20 videos not used for training.
These videos underwent the same frame extraction and processing
procedure, as presented in LoadModelData fromAlgorithm 3, as the
training data did. The next step, Predict test data labels, was to use
the loaded models to predict the gesture and produce the correct
label for each video. This procedure is similar to the prediction
performed in procedure Predict fromAlgorithm 4. These produced
labels were compared to the actual label, with all results saved
into .csv files as well. The final step of this phase, Evaluate results,
involved analysing and evaluating the results gathered from this
phase, which will be done in section 5.

13https://scikit-learn.org/stable/modules/model_evaluation.html

7

https://scikit-learn.org/stable/modules/model_evaluation.html

Nicholas D. Jørgensen

Figure 4: Phase 3,Model Evaluation, and the seven steps it entails. This process constitutes a full sprint, lasting three weeks.

4.2 Test #2: Load Testing
This test focuses on the QoS requirements regarding scalability,
reliability, and availability of the bundled application within the
API. This involves sending varying amounts of requests to the
server, asking it to process and predict a gesture performed within a
prerecorded video, all while monitoring metrics such as throughput,
latency, and response time [12, 29]. Each of the three models, and
their variations, will undergo four types of load testing scenarios,
as described below:

• Standard load testing entails evaluating the API’s perfor-
mance under the expected amount of load. As this is not
yet determined, as there is no official user base utilizing the
system in its current state, this has been determined to be
10 users [12, 29].

• Stress testing entails testing the system’s capabilities to
perform under unusually high demand [12, 29].

• Spike testing entails sending varying amounts of loads to-
wards the server, where some are more moderate and other
of higher demand [12, 29].

• Soak testing concerns itself with subjecting an API to high
request rates over a longer period of time. For this paper,
the extended period of time has been determined to be 60
minutes, meaning 4x the standard used for the other tests
[12, 29].

The open-source library, Locust14, has been used to perform these
tests. This has been chosen due to its ease of use and fast config-
urability. This was done by loading the 60 videos used for testing
purposes, 20 of each label, into a Python script, followed by sending
a post request, containing a video as the data body, to the API and
awaiting the response. Each test ran for a total of 15 minutes, with
all metrics recorded and dumped into a save-file, provided by locust
itself.

Both the API handling the load, and the locust instance, were
deployed on the same machine.

4.3 Test #3: Scalability Testing
As presented in section 3, the system is deployed within a con-
tainerized environment using docker swarm, allowing for more
than one instance of the system running. This, by default, utilizes a
load balancer, ensuring the load is as evenly distributed between
the worker nodes as possible. The architecture allows for scalability
testing, where the performance of the system is evaluated in terms
of its ability to handle bigger loads when more resources are allo-
cated between each test [32]. To test the scalability, the tool Locust,

14locust.io/

presented above, is once again used, and the only configurations
in need of alteration are in the environment and not server-sided.
The test will seek out to see, if changing the amount of contain-
ers in the environment, permits the system to handle higher loads
more efficiently. This test tries to answer the question concerning
if the amount of containers is scaled, will even higher loads, with
reasonable metrics, be possible to successfully handle.

This experiment will run a total of 9 times, each time with dif-
ferent configurations. This amount of tests has been chosen, due to
the number of containers within the environment, altering between
1, 3, and 5 containers running simultaneously. This, in conjunc-
tion with the simulation of 10, 100, and 1000 users, results in a
total of 9 different tests. The amount of users simulated will be
configured within the Locust UI, upon execution of the tool. The
amount of containers is configured within the Docker-compose
specification for the docker swarm cluster. The models, which are
accessed through endpoints on the API, will be the ones trained
on 100 samples of each label, resulting in 300 total videos used for
training each model.

Both the containerized environment and the locust instance will
be deployed on the same machine during these tests.

4.4 Test #4: Response Benchmarking
The final test entails testing the response time of the application. Re-
sponse time is a conjunction of both server latency and processing
time [20]. Processing time refers to the time it takes for the appli-
cation to execute its functionality and compile the result, whereas
latency refers to the time it takes to receive and send data from/to
the client [20]. The processing time is evaluated through gathered
data elaborating on the time spent per function executed within
the system. The time variable directly correlates to the response
time of the application. To gain the aforementioned metric, the
python module time15 has been used. The time module has been
used to save the start time of each function, and once more when a
function has ended. These times have then been subtracted from
each other, providing the time taken in nanoseconds, which then
later is converted to seconds. This was achieved using a regular
function call from within the module and saving the values to a
variable.

5 RESULTS
This section will entail the formal representation of the results
gathered throughout testing and evaluation of the system. All re-
sults have been gathered through the tests described in section 4.

15https://docs.python.org/3/library/time.html

8

locust.io/
https://docs.python.org/3/library/time.html

SignPredict: A machine learning approach to gesture recognition

Algorithm 3 The “Train model” and “Transform to sequences”
Algorithms from step 6 and 3 in Figure 2

1: procedure TrainModel
2: Description: Loads and transforms model data, configured

model, fits and saves model. Represents the algorithm used
in step 6 from Figure 2.

3: 𝐹 ← {list_files}
4: 𝑆 ← []
5: 𝐿 ← []
6: 𝑟 ← ∅
7: for all 𝑓 ∈ 𝐹 do
8: 𝑑, 𝑙 ← {LoadJson(𝑓)}
9: append 𝑙 to 𝐿

10: 𝑟 ← {TransformToSeqences(𝑑)}
11: append 𝑟 to 𝑆

12: end for
13: 𝐿 ← {np.array(𝐿)}
14: 𝑚𝑙 ← {max(𝑆)}
15: 𝑃𝑆 ← {pad_seqences(𝑆,𝑀𝐿, ”𝑝𝑜𝑠𝑡”, ”𝑓 𝑙𝑜𝑎𝑡32”)}
16: 𝑙𝑠𝑡𝑚 ← {Seqential(128, (𝑚𝑙, 84))}
17: 𝑑 ← {Dense(3, ”𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥”)}
18: 𝑀 ← {Seqential([𝑙𝑠𝑡𝑚,𝑑])}
19: {M.compile([𝑙𝑠𝑡𝑚,𝑑])}
20: ℎ ← {M.fit(𝑃𝑆, 𝐿, 10, 1)}
21: {save_model(𝑀)}
22: end procedure

23: procedure TransformToSeqences(𝑑)
24: Description: Given a dictionary of data 𝑑 , convert and return a

list-representation 𝑠 of the same data. Represents the algorithm
used in step 3 from Figure 2.

25: 𝑠 ← []
26: for all 𝑓 ∈ 𝑑 do
27: 𝑙 ← []
28: for all 𝑙𝑑 ∈ {f.values} do
29: {l.extend(ld)}
30: end for
31: 𝑓 𝑙 ← [𝑖 for 𝑠𝑢𝑏𝑙𝑖𝑠𝑡 ∈ 𝑙 for 𝑖 ∈ 𝑠]
32: append 𝑓 𝑙 to 𝑠

33: end for
34: return 𝑠

35: end procedure

In Figure 5 a table providing an overview of the models trained,
their abbreviations, and the amount and type of samples used for
training can be seen.

5.1 Model accuracy and loss
The first couple of metrics gathered were the accuracy and loss
of each model. These metrics were gathered simultaneously upon
training the model, and saved into a variable where they could
be extracted. This process of gathering and saving the metrics is
depicted in procedure LoadModelData, from Algorithm 3, in line
20, where h is an object that contains both metrics. This was done

Algorithm 4 The API Algorithm

1: 𝑀 ← {load_model(𝑃𝐴𝑇𝐻)}
2: 𝑀𝑅 ← {APIRouter(”/𝑚𝑜𝑑𝑒𝑙”)}
3: procedure Predict(𝑉)
4: Description: Given a Video file 𝑉 , return a JSON-reponse 𝑅

containing the prediction.
5: 𝑣 ← {V.read}
6: 𝑡 ← {CreateTempFile(𝑣)}
7: 𝐹 ← {ExtractFrames(𝑡)}
8: 𝐷 ← []
9: for all 𝑓 ∈ 𝐹 do
10: append {ProcessFrames(𝑓)} to 𝑑

11: end for
12: 𝑑 ← {ConvertListToDict(𝐷)}
13: 𝑟 ← {TransformToSeqences(𝑑)}
14: 𝑠 ← [𝑟]
15: 𝑚𝑙 ← 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑠 [”𝑐100”]
16: 𝑝𝑠 ← {pad_seqences(𝑠,𝑚𝑙, ”𝑝𝑜𝑠𝑡”)}
17: 𝑝 ← {M.predict(𝑝𝑠)}
18: 𝑝𝑙 ← {np.argmax(𝑝, 1)}
19: 𝑙 ← 𝑝𝑙 [0]
20: 𝑅 ← {JSONResponse({”𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛” : 𝑙}, 200)}
21: return 𝑅

22: end procedure

23: procedure RunAPI
24: Description: Deploy the API, running on port 8000.
25: 𝐴𝑃𝐼 ← {FastAPI}
26: {API.include_router(𝑀𝑅)}
27: {uvicorn.run(𝐴𝑃𝐼, 0.0.0.0, 8000)}
28: end procedure

Figure 5: All models developed, their respective abbrevia-
tions, amount of samples used, and type of data, used to
provide an overview.

for each of the models. The accumulated results of ten total tests
9

Nicholas D. Jørgensen

for each model, were used to provide an average accuracy score for
each model and can be seen in Figure 6.

1

0

20

40

60

80

A
cc
ur
ac
y
in

%

c25 c50 c100 g25 g50 g100 comb25 comb50 comb100

Figure 6: The accumulated average accuracy of all the 9 mod-
els, gathered during training and fitting of the models.

These results reveal that all models trained only on coordinate
data have performed fairly well. The industry standard for all met-
rics regarding prediction models is between 70- and 90%[26], mean-
ing the models c25, c50, and c100 all manage to fulfil this standard.
The remaining model, however, does not fulfil this standard, by
having results around 32-33%.

The same approach of extracting the metrics 10 times for each
model was also utilized when extracting the loss of each model.
These values were used to provide an average loss score for each
model, and can be seen in Figure 7. However, this figure only shows
the results for the coordinate models, as the remaining models’
loss scores were extracted as a “NaN” value. Why this occurred is
discussed in section 6.

1

0

20

40

Lo
ss

in
%

c25 c50 c100

Figure 7: The accumulated average loss of all the 9 models,
gathered during training and fitting of the models.

As shown by the results from Figure 7, the coordinate models
do not manage to adhere to the industry standard [26]. The loss
function used for this metric is sparse categorical cross-entropy, and
the closer the result is to 0, the better. Therefore, having loss values
of 35–56% means the models are underperforming.

5.2 Precision and recall of the models
As mentioned in section 4, the precision and recall were extracted
using Scikit’s sklearn.metricsmodule. Eachmetric was extracted
10 times each, to calculate an average value, same as before with
accuracy and loss. In Figure 8, the accumulated average precision
score of each model can be seen. The closer a value is to 100, the
better the score.

1

0

20

40

60

80

Pr
ec
is
io
n
in

%

c25 c50 c100 g25 g50 g100 comb25 comb50 comb100

Figure 8: The accumulated average precision of all the 9 mod-
els, gathered after training a model, saving it, and loading it.
All values are in percent, and the results gathered are multi-
plied by 100.

The results depicted in Figure 8 show, the values for c25, c50, and
c100 manages to fulfil the aforementioned industry standard[26],
with scores ranging between 68-84%. The remaining models, once
again, underperforms with significantly low values, reaching a max
value of 11.11%. This means the last six models fail to adhere to the
industry standard.

The same approach, of extracting the metric 10 times for each,
was performed for the recall metric. These 10 values were used
to create an average. The averages for each model can be seen in
Figure 9.

As presented by the results found in Figure 9, the coordinate
models adhere to the industry standard, however, the remaining
graph- and combined models do not. The coordinate models’ values
range between 70-85%, whereas the other only manages to score
values around 33%.

5.3 F1-scoring
The F1-score, as mentioned in section 4, is calculated using the
precision and recall scores of each model. For calculating the F1-
score for these models, a total of 10 calculations has been done for
each model, where an average of the 10 values has been used as
the final result. The results of this is depicted in Figure 10.

As the results in Figure 10 show, the spread between the coordi-
nate models and the rest is large. The coordinate models yielded
values around 75%, whereas the remaining models were around
16%. This means that 1/3 of the models, specifically the coordinate
models, adhere to the industry standard for MI-model metrics[26].

10

SignPredict: A machine learning approach to gesture recognition

1

0

20

40

60

80

Re
ca
ll
in

%

c25 c50 c100 g25 g50 g100 comb25 comb50 comb100

Figure 9: The accumulated average recall of all the 9 models,
gathered after training a model, saving it, and loading it. All
values are in percent, and the results gathered are multiplied
by 100.

1

0

20

40

60

80

F1
-s
co
re

in
%

c25 c50 c100 g25 g50 g100 comb25 comb50 comb100

Figure 10: The accumulated average F1-score of all the 9 mod-
els, gathered during training and fitting of the models. All
values are in percent, and the results gathered are multiplied
by 100.

5.4 Test split
This next test involves testing each model’s ability to predict a
gesture, given a video not used within the training segment of the
model. This means these videos represent input that could be sent
from a potential user. Each model was tested with the same 60
pre-recorded videos. In Figure 11 the results of the amount of true
positive predicted is shown.

As depicted in the graphs from Figure 11, the coordinate models
all did fairly well. They all managed to successfully predict 16 of
the samples labelled “can” and 90-100% success rate on predict-
ing “thumb”. However, c25 did not manage to predict any of the
“peace” gestures, but when adding more samples to the training,
the model succeeded with 11 true positives. The remaining models
all managed to predict the samples representing the gesture “can”,
however managed to not predict a single one of the others success-
fully. This could indicate these models predict everything as “can”,
disregarding the other possible labels.

1 2 3

0

5

10

15

20

Tr
ue

po
si
tiv

es

c25 c50 c100 g25 g50 g100 comb25 comb50 comb100

Figure 11: The accumulated amount of true positive predic-
tion. "1" containing the results for the label "can", “2” con-
taining the results for the label “thumb”, and finally "3"
containing the results for the label “peace”. All values are in
whole numbers.

Overall, the coordinate models managed to yield fairly positive
results in terms of all metrics except loss. However, the high loss
values seemed not to have a significant meaning for the general
prediction process, as they were still quite successful in producing
the correct labels for the test samples, as shown in Figure 11. The
graph and combined models, however, did not yield any acceptable
results during the entire testing process.

5.5 Response time
A system’s response time is split in two different parts; latency
and processing time [20]. If we have a look at the response time
of the system developed, this metric describes the amount of time
used by the system for executing the code and its corresponding
functionality. The amount of time it takes to load a video, process
it, and predict the gesture has been tracked for each model. The
total amount of times this has been tracked is 10. These values were
then used to calculate the average processing time. In Figure 12 the
results can be seen.

As shown by the results from Figure 12, the average processing
time of the functionality is of small variation between the models.
The biggest factor that could be causing the difference, is that the
graph and combined models need to calculate the linear graphs us-
ing the coordinates extracted from the video. Therefore, additional
actions need to be performed, involving looping an additional time
through the entire data set extracted. However, this variation is
shown to only be up to a maximum of .42 seconds.

When calculating the latency of the system, an instance of the
API was deployed locally on the machine used for testing. This test
was conducted 10 times as well, however, it was only conducted
using the models that were trained using 100 samples of each label.
The resulting average response time can be seen in Figure 13.

With the average response time calculated, these values, in con-
junction with the average processing times of the models, can be

11

Nicholas D. Jørgensen

1

0

0.5

1

1.5

2

2.5

Pr
oc
es
si
ng

tim
e
in

se
co
nd

s

c25 c50 c100 g25 g50 g100 comb25 comb50 comb100

Figure 12: The average processing time of predicting a gesture
with a given model. All values are in seconds.

1

0

1

2

3

4

Re
sp
on

se
tim

e
in

se
co
nd

s

coordinates graphs combined

Figure 13: The average response time of predicting a gesture
with a given model trained on 100 samples of each label. All
values are in seconds.

used to calculate the average latency of the locally hosted instance
of the system. The result of this is presented in Figure 14.

From Figure 14 it can be concluded that the average latency for
each model is around 1.5 seconds in total. This time indicates that
just from providing the video within the request made to the system,
and waiting for the response to be received, the system already
uses 1.5 seconds. This can come as a result of the size of the video,
requiring additional time to have all its bytes successfully uploaded.
This latency already exceeds the time that many high-performing
APIS manage to adhere to. Furthermore, as the average response
time exceeds 2 seconds, it will be noticeable within an application
communicating with the system.

5.6 Scalability- and load testing
The results revealed by these tests aims to provide insight into the
system’s overall ability to scale as the user base increases, as well
as to test how well it performs under different loads. Load testing
is important, as it can not be expected that the same load will be
present at all times, on the contrary, the load will be constantly
altering. These tests have been performed to evaluate the system

1

0

0.5

1

1.5

La
te
nc
y
in

se
co
nd

s

coordinates graphs combined

Figure 14: The average latency of predicting a gesture with a
given model trained on 100 samples of each label. All values
are in seconds.

regarding the QoS requirements concerning scalability and latent
capacity [24].

A total of nine scalability tests have been conducted, utilizing
1, 3, and 5 containers within the environment. Each amount of
containers has been tested with 10, 100, and 1000 users. All tests
ran for 15 minutes.

The median and average response time of all the scalability tests
can be seen in Figure 15 and Figure 16.

1

0

0.2

0.4

0.6

0.8

1
·105

Re
sp
on

se
tim

e
in

m
ill
is
ec
on

ds

1c10u 1c100u 1c1000u 3c10u 3c100u 3c1000u 5c10u 5c100u 5c1000u

Figure 15: The median response times during each scalability
test. All values are in ms.

As presented in Figure 15, all the tests that ran with only 10
concurrent users managed to provide reasonable median response
times. These values are close to the response time tracked in Fig-
ure 13. However, when the load increases, such as handling 100
or 1000 concurrent users sending requests over a longer period of
time, the median response time significantly increases. The lowest
median value of any configuration handling 100 or more users is
30 seconds.

A similar conclusion can be drawn regarding the average re-
sponse time. These results are depicted in Figure 16. As seen in
the graph, once the amount of users scale with 1000%, the average

12

SignPredict: A machine learning approach to gesture recognition

response time also scales. This could be caused by either bad op-
timization within the architecture of the system, or the fact that
additional CPU and GPU power did not get allocated as the amount
of users increased.

1

0

0.2

0.4

0.6

0.8

1

1.2

·105

Re
sp
on

se
tim

e
in

m
ill
is
ec
on

ds

1c10u 1c100u 1c1000u 3c10u 3c100u 3c1000u 5c10u 5c100u 5c1000u

Figure 16: The average response times during each scalability
test. All values are in ms.

On every configuration when running with 1000 concurrent
users, the failure rate was between 80-99%. The majority of failures
during these tests were “ConnectionResetError” or “RemoteDis-
connected”, due to the server having unacceptable response time
and therefore closing the connection itself. With the error rate
so high, the system was unable to process almost any response,
and therefore the system is unfit for use regarding this amount of
load. In Figure 17 the number of requests sent throughout each test
configuration can be seen.

1

0

2,000

4,000

6,000

8,000

A
m
ou

nt
of

re
qu

es
ts

1c10u 1c100u 1c1000u 3c10u 3c100u 3c1000u 5c10u 5c100u 5c1000u

Figure 17: The number of total requests send upon testing
each environment configuration. All values are in whole
numbers.

As depicted in Figure 17, the number of requests possible to send
scales simultaneously as the number of users simulated. However,
the amount of requests sent also increases when the amount of con-
tainers running in the environment increases. Thismeans that when
increasing the amount of containers present in the environment,

allows for higher throughput. All the requests sent did, however,
not return a response successfully. This can be seen in Figure 18,
where the number of requests resulting in an error, presented in
percentage, is shown.

1

0

20

40

60

80

Fa
ilu

re
si
n
%

1c10u 1c100u 1c1000u 3c10u 3c100u 3c1000u 5c10u 5c100u 5c1000u

Figure 18: The percentage of failures within each of the tests.

As depicted in Figure 18, when the amount of users simulated
is equal to 1000, the amount of failures is a significant part of the
entire amount of requests, ranging in values between 63-93%. This
means, that even though the system can receive a vast amount of
requests, as shown in Figure 17, the amount of these requests that
fail is unacceptably high. Therefore, scaling the users to a high
amount, even with 5 containers deployed, provides an unstable
system.

6 DISCUSSION
This section aims to formally discuss the study in general. This
will entail an elaborated discussion about the results presented in
the previous section, and comparing them to the related works
presented in section 2. Following this, the limitations of this study
will be presented and discussed, and it will end with a presentation
of the future iteration concerning the system. But before any of
this, the system fulfilment of Oracles Quality of Service[24] criteria
will be discussed in detail.

6.1 Quality of Service fulfilment
The criteria determined to fully evaluate the usability of the sys-
tem are Oracle’s Quality of Service requirements. Every criterion
affects each other. E.g., focusing on improving performance, greatly
affects the security of a system. To utilize these criteria, to fully
evaluate the system, an objective approach will be used during eval-
uation. This entails looking at each of the six criteria, evaluating the
system’s fulfilment of it, and then, in the end, giving a full assess-
ment of the usability of the system, from a user’s perspective. The
QoS requirements evaluated during this section are performance,
availability, scalability, security, latent capacity, and serviceability.

Beginning with performance, a good performance is reached
when the system has reasonable response time and throughput. The
assessment of this can be drawn from the response time recorded
and depicted in Figure 13. These results revealed that the system
was unable to optimally handle more than 2 users sending requests

13

Nicholas D. Jørgensen

per container within the environment. This indicates that the ar-
chitecture and structure of the API are suboptimal, and should be
considered alternation, to successfully handle bigger loads. If the
user base gradually grew, or spike loads happened, the yielded re-
sponse times would be too slow, and greatly harm the usability
of the application communicating with the system. In terms of
the performance criteria, the system has been unable to provide
acceptable response times under a reasonable users-to-container
ratio greater than two-to-one.

The availability of the system, and its underlying docker swarm
environment, is, however, a great success. If an instance of the sys-
tem, running within a container, crashes or malfunctions, the envi-
ronment would automatically restart and deploy a new container,
as well as connect it to the underlying load balancer. This would
result in a close to constant uptime of the environment and system,
therefore allowing the users to utilize its functionality every day
and night of the week. The only time the system would experience
downtime is during a scheduled restart or maintenance, or if all
containers ended up crashing at the same time, therefore requiring
a full environment reboot.

The scalability of the system is hard to determine, as the ratio
between the amount of users and containers is so low per default.
However, the results depicted in Figure 13, also depict that when
trying to scale the system to a higher load of concurrent users,
deploying additional containers did have an overall positive effect
on both the average and median response times. Therefore, with
the results gathered throughout the testing and evaluation of the
system, the scalability criteria can be assessed as possible, however,
it would require a vast amount of resources both in terms of hard-
ware, and potentially a refactor of the entire backend architecture.
This can be concluded since, during each test, the amount of RAM
allocated by the entire containerized environment was monitored.
It reached its max of 14 GB during the test involving 1000 users
and 5 containers (5c1000) and reached its lowest amount of RAM
allocated (2.4 GB) during the test involving 10 users and 1 container
(1c10u).

Security throughout the development of this system has not
been of any priority. This is due to the system not requiring any
personal information about its users to be stored. The security
criterion is therefore of non-importance regarding the system and
its usage. Evaluating this criterion objectively does not alter this
opinion, and therefore it can be concluded that this criterion is
redundant.

The latent capacity criterion evaluates how well a system can
handle unusual peak loads without requiring any additional re-
sources to be allocated. The keyword here is unusual peak loads,
and with the results gathered and depicted in Figure 13, it can be
determined that the system does not fulfil this criterion. The same
scenario is present here as mentioned above, involving a big refac-
tor of the architecture and structure of the developed API. This
could lead to a big performance increase and therefore could result
in higher general performance and fulfilment of this criterion.

Regarding the final criterion, serviceability, this has not been a
priority throughout the design and development of the final system.
This criterion entails making the deployed system easily maintained
through monitoring, repairing problems as well as upgrading hard-
ware and software components. However, objectively, upgrading

the hardware within the deployed system is easily done, as it has
been configured to deploy into a containerized docker swarm en-
vironment. This means the system functions independently of the
operating system and hardware components in the physical server.
To deploy the system, the docker engine needs to be installed in
the machine, thereby allowing for easy deployment and additional
configuration. However, a tool lacking within the implementation
is a monitoring tool such as Jaeger16. Installing Jaeger would allow
system administrators and developers to monitor every request
made, to gather data on where the system may experience bottle-
necks. This could be used to compile a list of possible improvements
done for both the software and hardware used to deploy the system.

To conclude, the system has not successfully fulfilled the QoS
criteria set for it. However, the next move following this conclusion
would be to refactor the system significantly, to increase the API’s
general performance. The model, and its underlying prediction
functionality, yield great results and therefore are fit for use. This
means that, if possible, the prediction of gestures could be packed
into an application utilizing the model to predict gestures without
the involvement of the API. To determine the possibility of this, the
number of total resources used should be gathered and analysed, to
determine on which platforms such as a solution would be feasible.
These platforms could include a mobile application or a webpage.

6.2 Model metrics
The previous section entailed the factual presentation of the results
gathered from testing the system. These results will be discussed
throughout this section, highlighting both the positive and negative
side of their meaning.

Stating with accuracy, the graphs depicted in Figure 6 show the
mean accuracy for all nine models. Where the models trained only
with coordinate data revealed positive results, with stats ranging
from values between 71-83%. This adheres to the industry standard
of metrics ranging between 70-90%[26], meaning these models are
functional in terms of accuracy. However, the remaining six models,
all showed results around 32%, which in terms, hurts the model’s
overall reliability, as this metric described how often the model will
return a valid label, given a known gesture. Not only do these results
not live up to the industry standard, but it also means, given that
the data used for training has a corresponding label, that the model
is unfit for use within any application. The reason for this metric
being of such low quality could be because of an inconsistency
within the data used for training. As the model type used within
the testing is an RNN, it can not be compared directly to the CNN
developed by Pathan et al. presented in the section 2, as each model
has their strength and purpose. However, they managed to receive
a 98.981% test accuracy, which led to a successful prediction of all
of their data, meaning the models developed in conjunction with
this paper severely underperform.

In terms of loss, the metric closely associated with accuracy,
this metric was not possible to extract for the graph- and combined
models, as it provided a NaN result. For the coordinates models,
however, this metric was also fairly high. This means, more often
than not, these models would provide an incorrect label given a
known gesture, with values ranging between 35-56%. However,

16www.jaegertracing.io/

14

www.jaegertracing.io/

SignPredict: A machine learning approach to gesture recognition

comparing this to Pathan et al., their model was trained with 500
images of each gesture, resulting in a five times bigger data set.
Their loss was fairly low, and as shown in their results, the loss of
their model slowly decreased as the model underwent more epochs.
The models presented throughout this paper only used 100 samples
of each label and were saved in video format, which in turn resulted
in more frames to be processed. This could explain the high loss
values gathered through the evaluation, as both the total amount
of data was smaller, and videos containing more data to be exactly
compared to images. To compare these studies more equally, more
data samples for each label should be recorded and processed, to
make the models more comparable in terms of sample size.

The precision metric for Pathan et al.’s model yielded yet again
good results, with every result being close to perfect. Compared
to the results gathered from the models developed in conjunction
with this paper, depicted in Figure 8, Pathan et al.’s model greatly
outperformed these. The best results, extracted from this paper’s
models, ranged from high 60s to low 80s, gained through testing
of the coordinates models. They adhere to the industry standard,
where Pathan et al.’s model severely exceeds it, meaning that these
models are acceptable to be implemented and used. If this metric is
equal to “1”, it means that the model is as perfect as can be, meaning
that comparing my models with Pathan et al.’s would be redundant,
as they are not reasonable in their results, as it is deemed close
to impossible to have an advanced model with these results. This
same argument can be used for the recall metric, where Pathan et
al. managed to reach values close to perfection once more, whereas
my coordinate models managed to maintain their position within
industry standards. This allows the coordinate models to be deemed
fit for use. The same goes for the F1-score, where the coordinate
models managed to maintain their position within the industry
standards, whereas Pathan et al.’s model manage the 99-percentile
result.

However, these arguments can not be said for the graph- and
combined models, which achieved poor results in every test con-
ducted and failed to adhere to the standard [26]. As all models used
the same model configurations, this could indicate an error within
the data after being processed, likely stemming from the conversion
of the linear graph equations to a unique Float32 value. These values
had a wide variety, some being over the millions, and when used
in conjunction with the coordinate values ranging between 0-1000,
this could lead to potential issues within the sequence recognition
of the LSTM utilized. This could be combatted by changing the
values of the float, from instead being a unique Float32 value of the
string, to being the product of the slope and y-intersect values. This
approach would make the equations no longer unique, however, it
could result in smaller numbers and possibly better results.

6.3 API performance
This section aims to formally compare the results gathered through
the testing phase of the bundled API and compare them to the
solutions Live Transcribe and Fingerspelling.xyz, presented in sec-
tion 2. As perceived by the results given in the previous section, the
response time of the application is fairly slow, providing an average
response time of around 3.5 seconds when having only to manage
a single request. For a real-time system, such as Fingerspelling.xyz

to teach children a subset of sign language, this solution could be
used. However, for solutions such as Live Transcribe, where the deaf
user is depending on it as their primary source of communication
with hearing people, the system would provide the user with bad
experiences. Having to wait 3–4 seconds between each gesture per-
formed, also indicates that interacting with Live Transcribe through
the keyboard provided would be more effective for the users. As
depicted in Figure 15 and Figure 16, when the system experiences
soak loads of 100 concurrent users, both the average and median
response times increase significantly, reaching values up to 48 sec-
onds. These long period between request and response also results
in the system reaching an error state, such as timing out the request
or closing the connection. This hurts the users’ reliability to the
system and therefore does not make the system fit for any practical
use.

The reason for these slow response times can be caused by a
variety of different things. One thing could be how the API itself is
structured, another thing could be that the framework used is not
the optimal choice for the purpose at hand. It could also be caused
by the machine running the containerized environment. However,
to determine which case causes the issue at hand, refactoring and
monitoring of the system needs to be conducted.

6.4 The system’s limitations
The gathered results from testing several aspects of the system
performance could have been affected by certain limitations caused
by the produced data or utilized hardware. Starting with the data.
All video data was produced by a single entity, which could result
in either a small or large variation between each sample. Having a
large variation between the samples, causes the prediction model
to have difficulties predicting the correct gesture, by lowering its
confidence in the produced label. This could be the case with the
comparison done between Pathan et al.’s model and the coordinate
models developed in conjunction with this paper. Having a small
variation within the training data could provide better metrics,
however, it could increase a user’s difficulty to perform a gesture
correctly. If the system expects a certain sequence of data as input to
successfully predict, having a small altercation between the trained
data and new data trying to predict, could cause the wrong label to
be produced. Furthermore, as all gestures were recorded by a single
entity, it could have an impact on the model’s prediction confidence
when other users try to utilize its functionality. This is due to the
difference in hand size, causing a difference in landmark placement.
Another limitation within the data was the number of samples for
each label being limited to 100. Pathan et al. used 500 pictures for
each of their gestures, and the minimum industry standard is set to
be 1000 [18]. This can cause the coordinate models to underperform
within certain metrics, as they require at least ten times the amount
of data to be representable.

Concerning the results gathered from scalability- and load test-
ing, a limitation here, which may have affected the results, is the
fact that both the containerized environment and locust instance
were both running on the same machine during the testing. This
means that the same machine had the purpose of sending, receiv-
ing, processing, and responding to every request, which may have
caused an unweary load on the resources available, which in turn

15

Nicholas D. Jørgensen

then affected the response times, error rate, and amount of requests
possible to handle concurrently.

6.5 The deaf perspective
This paper aims to aid deaf individuals in bridging the gap within
communication barriers, occurring when trying to integrate into a
hearing society, through the development of a system to understand
and predict Danish sign language. Their benefit from the developed
systemwill be discussed. Asmentioned, when discussing the results,
the system, in its current state, is incapable of being integrated into
any external application, as it is unreliable in terms of responses.
However, when optimized, the system could be integrated into a
mobile application, such as Live Transcribe, presented in section 2.
As this product currently requires the deaf user to communicate
through text, the system could be integrated, thereby enabling the
ability to communicate through sign language, with the produced
text being read aloud. This would accommodate deaf individuals
with lower literary levels by allowing them to “speak” in their native
language.

Furthermore, advancement and improvement within the devel-
oped system would allow it to be integrated into various contexts.
The primary context is whenever a deaf individual would be forced
to communicate with someone unable to understand sign language.
These could be situations such as getting through airport secu-
rity or doctor appointments. Here their independence could be
strengthened, enabling them to participate without the need of
others.

6.6 Future works
The process of developing the system and reaching its current state
is, as earlier presented, split into four phases and are depicted in
Figure 1, Figure 2, Figure 4, and Figure 3. These phases collectively
represent a version of the system, where each phase, in the best-
case scenario, represents a single sprint. However, a phase can
be repeated until the desired results within the phase have been
met. This means, that if a new version of the system were to be
developed, these phases could be followed chronologically.

As suggested by the results of the scalability- and load testing
of the API, a refactoring of the system is necessary to improve its
processing time. This could include choosing another language,
other than Python, to develop the API in. This could allow for po-
tentially faster processing times, compared to the gathered results
from Figure 12. Optimizing the processing time of the application’s
internal functionalities would have a great impact on the system’s
overall usability, as it would result in lower response times and
make the system more fit for real-time system implementations.
Latency could be combatted by getting a web host to deploy the API.

Another way to improve this is to structure the application into
a microservice architecture. Through this, it would be possible to
deploy additional containers to handle the resource-heavy proce-
dures, thereby allowing for more users to be handled concurrently.
For example, the MediaPipe processing was the procedure that took
the longest amount of time of all the functionalities, as well as being
the most resource-heavy. Deploying additional containers with the
sole purpose of processing frames with MediaPipe, would allow

more resources to be allocated for this specific purpose, enabling
the system to perform this procedure more efficiently.

When the response times, and other results, have improved, a
user study is suggested to be performed. As presented in section 2,
Google performed a user study looking into the preferability and
likeability of systems using sign language recognition, and yielded
positive results [16]. However, they utilized Wizard-of-Oz proto-
types, which may have had an impact on the result as it was not
affected by response times and model performance. By having a
functional implementation, the same test could be run to compare
the results of both studies and determine if such a system is of
interest to its user base. This test should be run with a group of
people dependent on sign language as their primary form of com-
munication.

7 CONCLUSSION
Throughout this paper, the objective has been to explore the domain
of recognizing Danish sign language through amachine intelligence
model. Other approaches within the field of sign language recog-
nition have been conducted, however, they either focus on finger
spelling or involve using additional hardware. The system devel-
oped, in conjunction with this paper, has focused on small videos
containing only a single gesture, performed with one hand, as sug-
gested by Google [16]. The functionality has been bundled into an
API, and deployed within a containerized environment, allowing
applications of different sorts to utilize the prediction functionality.

The agile approach has been split into four phases/sprints; Pro-
duce data set, Model training, Model evaluation, and Bundle API.
The process begins with creating the data, followed by the nec-
essary extraction and processing tasks to make them compatible
with the Sequential model chosen for prediction. The next step in-
volves using the data created to train and fit a machine intelligence
model, able to predict gestures performed. This model is then in
turn evaluated, benchmarked, and compared to both other studies
and industry standards. Functionality to utilize the model is then
created and bundled into a python FastAPI, packed into a docker
image and finally deployed within a containerized docker swarm
environment.

The proposed system contains a total of 3 different kinds of
models; one utilizing only coordinates as data, one utilizing linear
graphs, and one utilizing a combination of both data types. All
data samples were labelled with one of three labels; “can”, “thumb”,
or “peace”. Furthermore, each type of model had three variants,
representing the number of samples of each label they were trained
on. The variations were 25, 50, and 100 of each label. All coordi-
nate model variants yielded positive results and proved able to
predict all three labels. The other variants of the two other models
proved incapable of predicting successfully, as independent of the
input, the label produced as output would always be “can”. The
API yielded poor results in terms of almost every quality of service
requirement, hereby deeming itself unfit for use. A major refactor
of the infrastructure within the API would solve these issues.

The novelty of this contribution proposes the usage of a mo-
bile application, which sends small videos as payload to the de-
veloped API, and utilizes the prediction received. This attempts
to accommodate the deaf individuals wanting to bridge the gap

16

SignPredict: A machine learning approach to gesture recognition

in the communication barrier present between them and a hear-
ing society. Furthermore, the system attempts to accommodate the
lower literary level present within the deaf community, to let them
communicate more clearly.

REFERENCES
[1] [n. d.]. The 2020 Scrum Guide. https://scrumguides.org/scrum-guide.html
[2] [n. d.]. Fakta om Døvhed. https://www.cfd.dk/cgi-bin/uploads/media/pdf/R%

C3%A5dgivning/Faktaark/Faktaark-doevhed.pdf
[3] [n. d.]. Hand landmark model bundle. https://ai.google.dev/edge/mediapipe/

solutions/vision/gesture_recognizer#hand_landmark_model_bundle
[4] [n. d.]. Introduction to Landmark Detection. https://www.baeldung.com/cs/

landmark-detection
[5] [n. d.]. Linear Graph. https://www.cuemath.com/data/linear-graph/
[6] [n. d.]. Linear Interpolation Explained. https://www.gamedev.net/tutorials/

programming/general-and-gameplay-programming/linear-interpolation-
explained-r5892/

[7] [n. d.]. Reasonable adjustments in the workplace. https://www.ndcs.org.uk/
information-and-support/professionals/workplace/reasonable-adjustments/

[8] 2023. https://ddl.dk/dansk-tegnsprog/
[9] 2023. https://www.android.com/accessibility/live-transcribe/#ready-to-start

Official webpage for the application on Android.
[10] 2024. Deaf Culture | Sign Language “Accents” or “Styles”. https://www.startasl.

com/sign-language-accents-or-styles/ Accessed: 2024-05-01.
[11] 2024. Sign Language. https://education.nationalgeographic.org/resource/sign-

language/ Accessed: 2024-05-01.
[12] Anna Irwin. 2023. API Performance Testing: Best Practices and Strategies. https:

//aptori.dev/blog/api-performance-testing-best-practices-and-strategies. Ac-
cessed: 2024-04-05.

[13] Daivd Lumb. [n. d.]. These Student Built A Glove That Translates Sign Language
Into English. https://www.fastcompany.com/3059616/these-students-built-a-
glove-that-translates-sign-language-into-english. Accessed: 2024-05-22.

[14] Alan Emond, Matthew Ridd, Hilary Sutherland, Lorna Allsop, Andrew Alexander,
and Jim Kyle. 2015. Access to primary care affects the health of deaf people.
British Journal of General Practice 65, 631 (2015), 95–96. https://doi.org/10.3399/
bjgp15x683629

[15] Fatmanurkutlu. 2024. Model Evaluation Techniques in Machine Learn-
ing. https://medium.com/@fatmanurkutlu1/model-evaluation-techniques-in-
machine-learning-8cd88deb8655. Accessed: 2024-04-05.

[16] Saad Hassan, Abraham Glasser, Max Shengelia, Thad Starner, Sean Forbes,
Nathan Qualls, and Sam S. Sepah. 2023. Tap to Sign: Towards using American
Sign Language for Text Entry on Smartphones. Proc. ACMHum.-Comput. Interact.
7, MHCI, Article 227 (sep 2023), 23 pages. https://doi.org/10.1145/3604274

[17] Hello Monday. [n. d.]. Fingerspelling. https://www.hellomonday.com/work/
fingerspelling. Accessed: 2024-05-20.

[18] Kili. [n. d.]. Evaluating data: How much training data do you need for machine
learning? https://kili-technology.com/training-data/how-much-data-do-you-
need-for-machine-learning. Accessed: 2024-04-05.

[19] Lena B Larsen, Steen Bengtsson, and Mette L Sommer. 2014. Døve-
og døvblevne mennesker - hverdagsliv og levevilkår. https:
//viden.sl.dk/artikler/voksne/handicap-samfundsdeltagelse/doeve-og-
doevblevne-mennesker-hverdagsliv-og-levevilkaar/

[20] Lazar Nikolov. 2023. What’s the difference between API Latency and API Re-
sponse Time? https://blog.sentry.io/whats-the-difference-between-api-latency-
and-api-response-time/. Accessed: 2024-04-05.

[21] Pamela Luft. 2000. Communication barriers for deaf employees: Needs assess-
ment and problem-solving strategies. Work (Reading, Mass.) 14 (02 2000), 51–59.

[22] S.A. Mehdi and Y.N. Khan. 2002. Sign language recognition using sensor gloves.
In Proceedings of the 9th International Conference on Neural Information Processing,
2002. ICONIP ’02., Vol. 5. 2204–2206 vol.5. https://doi.org/10.1109/ICONIP.2002.
1201884

[23] Mihir Garimella. [n. d.]. Sign Language Recognition with Advanced Com-
puter Vision. https://towardsdatascience.com/sign-language-recognition-with-
advanced-computer-vision-7b74f20f3442. Accessed: 2024-05-20.

[24] Oracle. [n. d.]. Quality of Service Requirements. https://docs.oracle.com/cd/
E19636-01/819-2326/gaxqg/index.html. accessed: 15/05-2023.

[25] Refat Khan Pathan, Munmun Biswas, Suraiya Yasmin, Mayeen Uddin Khandaker,
Mohammad Salman, and Ahmed A. F. Youssef. 2023. Sign language recognition
using the fusion of image and hand landmarks through multi-headed convolu-
tional neural network. Scientific Reports 13 (2023). https://doi.org/10.1038/s41598-
023-43852-x

[26] Randall Hendricks. [n. d.]. What is a good accuracy score in Machine
Learning? https://deepchecks.com/question/what-is-a-good-accuracy-score-in-
machine-learning/. Accessed: 2024-04-05.

[27] G. Anantha Rao, K. Syamala, P. V. V. Kishore, and A. S. C. S. Sastry. 2018. Deep
convolutional neural networks for sign language recognition. In 2018 Conference
on Signal Processing And Communication Engineering Systems (SPACES). 194–197.
https://doi.org/10.1109/SPACES.2018.8316344

[28] Katherine D. Rogers, Emma Ferguson-Coleman, and Alys Young. 2018. Chal-
lenges of Realising Patient-Centred Outcomes for Deaf Patients. The Patient
- Patient-Centered Outcomes Research 11 (2018), 9–16. https://doi.org/10.1007/
s40271-017-0260-x

[29] SauceLabs. 2022. API Load Testing Tutorial. https://saucelabs.com/resources/
blog/api-load-testing-tutorial. Accessed: 2024-04-05.

[30] Scikit. [n. d.]. 3.3. Metrics and scoring: quantifying the quality of
predictions. https://scikit-learn.org/stable/modules/model_evaluation.html#
classification-metrics. Accessed: 2024-04-05.

[31] Sharvani Srivastava, Amisha Gangwar, Richa Mishra, and Sudhakar Singh. 2022.
Sign Language Recognition System using TensorFlow Object Detection API.
CoRR abs/2201.01486 (2022). arXiv:2201.01486 https://arxiv.org/abs/2201.01486

[32] Thomas Hamilton. 2024. What is Scalability Testing? Learn with Example.
https://www.guru99.com/scalability-testing.html. Accessed: 2024-04-05.

[33] Ankita Wadhawan and Parteek Kumar. 2020. Deep learning-based sign language
recognition system for static signs. Neural Computing and Applications 32, 12
(2020), 7957–7968. https://doi.org/10.1007/s00521-019-04691-y

[34] World Health Organization. 2024. Deafness and hearing loss. https://www.
who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss. Accessed:
2024-05-01.

17

https://scrumguides.org/scrum-guide.html
https://www.cfd.dk/cgi-bin/uploads/media/pdf/R%C3%A5dgivning/Faktaark/Faktaark-doevhed.pdf
https://www.cfd.dk/cgi-bin/uploads/media/pdf/R%C3%A5dgivning/Faktaark/Faktaark-doevhed.pdf
https://ai.google.dev/edge/mediapipe/solutions/vision/gesture_recognizer#hand_landmark_model_bundle
https://ai.google.dev/edge/mediapipe/solutions/vision/gesture_recognizer#hand_landmark_model_bundle
https://www.baeldung.com/cs/landmark-detection
https://www.baeldung.com/cs/landmark-detection
https://www.cuemath.com/data/linear-graph/
https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/linear-interpolation-explained-r5892/
https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/linear-interpolation-explained-r5892/
https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/linear-interpolation-explained-r5892/
https://www.ndcs.org.uk/information-and-support/professionals/workplace/reasonable-adjustments/
https://www.ndcs.org.uk/information-and-support/professionals/workplace/reasonable-adjustments/
https://ddl.dk/dansk-tegnsprog/
https://www.android.com/accessibility/live-transcribe/#ready-to-start
https://www.startasl.com/sign-language-accents-or-styles/
https://www.startasl.com/sign-language-accents-or-styles/
https://education.nationalgeographic.org/resource/sign-language/
https://education.nationalgeographic.org/resource/sign-language/
https://aptori.dev/blog/api-performance-testing-best-practices-and-strategies
https://aptori.dev/blog/api-performance-testing-best-practices-and-strategies
https://www.fastcompany.com/3059616/these-students-built-a-glove-that-translates-sign-language-into-english
https://www.fastcompany.com/3059616/these-students-built-a-glove-that-translates-sign-language-into-english
https://doi.org/10.3399/bjgp15x683629
https://doi.org/10.3399/bjgp15x683629
https://medium.com/@fatmanurkutlu1/model-evaluation-techniques-in-machine-learning-8cd88deb8655
https://medium.com/@fatmanurkutlu1/model-evaluation-techniques-in-machine-learning-8cd88deb8655
https://doi.org/10.1145/3604274
https://www.hellomonday.com/work/fingerspelling
https://www.hellomonday.com/work/fingerspelling
https://kili-technology.com/training-data/how-much-data-do-you-need-for-machine-learning
https://kili-technology.com/training-data/how-much-data-do-you-need-for-machine-learning
https://viden.sl.dk/artikler/voksne/handicap-samfundsdeltagelse/doeve-og-doevblevne-mennesker-hverdagsliv-og-levevilkaar/
https://viden.sl.dk/artikler/voksne/handicap-samfundsdeltagelse/doeve-og-doevblevne-mennesker-hverdagsliv-og-levevilkaar/
https://viden.sl.dk/artikler/voksne/handicap-samfundsdeltagelse/doeve-og-doevblevne-mennesker-hverdagsliv-og-levevilkaar/
https://blog.sentry.io/whats-the-difference-between-api-latency-and-api-response-time/
https://blog.sentry.io/whats-the-difference-between-api-latency-and-api-response-time/
https://doi.org/10.1109/ICONIP.2002.1201884
https://doi.org/10.1109/ICONIP.2002.1201884
https://towardsdatascience.com/sign-language-recognition-with-advanced-computer-vision-7b74f20f3442
https://towardsdatascience.com/sign-language-recognition-with-advanced-computer-vision-7b74f20f3442
https://docs.oracle.com/cd/E19636-01/819-2326/gaxqg/index.html
https://docs.oracle.com/cd/E19636-01/819-2326/gaxqg/index.html
https://doi.org/10.1038/s41598-023-43852-x
https://doi.org/10.1038/s41598-023-43852-x
https://deepchecks.com/question/what-is-a-good-accuracy-score-in-machine-learning/
https://deepchecks.com/question/what-is-a-good-accuracy-score-in-machine-learning/
https://doi.org/10.1109/SPACES.2018.8316344
https://doi.org/10.1007/s40271-017-0260-x
https://doi.org/10.1007/s40271-017-0260-x
https://saucelabs.com/resources/blog/api-load-testing-tutorial
https://saucelabs.com/resources/blog/api-load-testing-tutorial
https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
https://arxiv.org/abs/2201.01486
https://arxiv.org/abs/2201.01486
https://www.guru99.com/scalability-testing.html
https://doi.org/10.1007/s00521-019-04691-y
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

	Abstract
	1 Introduction
	2 Related work
	2.1 Research
	2.2 Product

	3 Methodology
	3.1 Data extraction and preparation
	3.2 Building the model
	3.3 Bundling the API

	4 Testing
	4.1 Test #1: Model Metrics
	4.2 Test #2: Load Testing
	4.3 Test #3: Scalability Testing
	4.4 Test #4: Response Benchmarking

	5 Results
	5.1 Model accuracy and loss
	5.2 Precision and recall of the models
	5.3 F1-scoring
	5.4 Test split
	5.5 Response time
	5.6 Scalability- and load testing

	6 Discussion
	6.1 Quality of Service fulfilment
	6.2 Model metrics
	6.3 API performance
	6.4 The system's limitations
	6.5 The deaf perspective
	6.6 Future works

	7 Conclussion
	References

