The effect of different time-embeddings
on an end-to-end diffusion speech
enhancement model
Magnus Munk Jensen

Electronic Systems 2024-06

Master’s Thesis

This page is blank on purpose

AALBORG UNIVERSITY
STUDENT REPORT

Title:

The effect of different time-embeddings
on an end-to-end diffusion speech en-
hancement model

Theme:
ES10 Master Thesis

Project Period:
Spring 2024

Project Group:
1029c¢

Participant(s):
Magnus Munk Jensen

Supervisor(s):
Jesper Rindom Jensen
Tobias Piechowiak
Diego Caviedes-Nozal

Page Numbers: 84

Date of Completion:
315¢ of May 2024

Electronic systems
Aalborg University
http://www.aau.dk

Abstract:

This research proposes an end-to-end
diffusion model for speech enhance-
ment, trained directly on raw au-
dio waveforms. While aiming to
achieve performance comparable to ex-
isting methods that rely on Short-Time
Fourier Transform (STFT) representa-
tions, the model utilizes a U-Net struc-
ture with a time step embedding. Here,
the embedding leverages an existing
technique but applies it in a novel way
for speech enhancement within a dif-
fusion model framework. This embed-
ding facilitates the model’s awareness of
its position within the diffusion process,
potentially improving performance.
The results demonstrate that incor-
porating the time step embedding is
a key factor, significantly enhancing
the model’s capabilities. However,
the model’s performance remains be-
low current state-of-the-art methods
like SGMSE and Facebook Demucs for
speech enhancement.

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the author.

http://www.aau.dk

Summary

Noise is an unavoidable part of recording an acoustic signal - including recording
speech for amplification in hearing assistive devices such as hearing aids. It is though
known, that noise vastly increase the listening effort for the user of such hearing aids.
Therefore, speech enhancement is a crucial part of a good experience with hearing
aids.

Speech enhancement is a well-known concept, explored both in statistical signal
processing, with solutions such as Wiener filtering, but is also a highly researched
topic within neural networks. Speech enhancement is possible with classical deep
neural networks, such as recurrent neural networks, where speech is mapped from
noisy, to clean. Neural networks can also be used in cooperation with classical signal
processing, example by estimating wheter there is speech present or not, in order to
only process the signal when necessary.

Speech enhancement is though also possible with a newer era of neural networks,
namely generative models. Generative models does not map noisy speech to clean
speech, but instead learns how to generate new speech. Multiple such models exist,
eg. Generative Adversarial Networks, and Autoencoders.

This research is looking into how a third type, generative diffusion model, can be
developed as an end to end model. It tries to achieve this, by utilizing existing neural
network architectures, not initially designed to work within a diffusion context. The
architecture is then optimized, by making it diffusion-aware, in order to improve
upon performance.

Evaluating a generative model is not as simple, as looking at the Signal to Noise
ratio of the clean speech compared to the enhanced speech. This is due to the fact,
that a generative model generates the speech. This means, that it might sound
different, than the true clean speech - but even if it do, it might give the user a
better experience, as there are reduced levels of noise. This scenario will though
not necessarily perform well if only judged by Signal to Noise ratio. Therefore, the
model is evaluated using both specifically chosen objective measures, and a subjective
listening experiment to ensure that it is evaluated appropriately.

From the objective metrics it is shown, how SGMSE and Facebook Demucs outper-
form the proposed end-to-end model. If the end-to-end models enhanced speech is
evaluated separately as speech and background signal, it is evident from evaluation
with DNSmos that the quality of the speech is higher from the end-to-end model
than what Facebook Demucs achieve, being on par with SGMSE.

This is also evident in the subjective listening test, where on average the proposed
end-to-end model is close to performing as well as Facebook Demucs, even outper-
forming it at specific input SnR scenarios.

From the results, an apparent problems has been identified - the model was not
able remove all of the white noise. It is proposed, that this can be solved eg. by
continuing training, as the proposed model training was stopped early. From this one
can evaluate if training can reduce any of the last white noise. In order to improve

vi

further on the model, a study into how the scheduler affects it is also proposed, and
finally, a new loss function is proposed, where the loss is determined in the frequency
domain.

It can also be evaluated if an U-net architecture was the right choice, even though
valid arguments was given for this. Other models, that also aims to develop and end-
to-end model uses different architectures, but they differ from the proposed solution
as they condition on STFT representations.

1 Preface

This project report was typeset with the online LaTeX editor Overleaf.

The front page illustration is by Adrian on Unsplash illustrating liquid diffusion.
This is a 10th semester master thesis project by Magnus Munk Jensen, at Aalborg
University (AAU) Electronic Systems. It is made in the period from February 2024
to May 2024.

Reading instructions

The reader is expected to have general knowledge of machine learning, including,
different layer types, loss functions, and optimization methods.

The report makes use of references according to the Harvard method. The references
will occur in the text in the following manner: [Surname/publisher, year (possible
page number)], where the end of the report is a comprehensive list of literature.

Reference numbers are made as hyperlinks in the digital copy. Figures and tables are
listed as the chapter number, followed by the figure/table/equation number, as an
example Figure 7.2 is the second figure in Chapter 7. Figure and table explanatory
text can be found below the figure and above tables. Furthermore, section references
are made using the section numbering. The unit system used in the report is the
SI system with a dot as the decimal separator. All figures without references are
created by the author using the python package Matplotlib and the online flowchart
and diagram maker draw.io.

Acknowledgment

I would like to express my sincere gratitude to GN Audio, especially to Tobias
Piechowiak and Diego Caviedes Nozal.

Diego Caviedes Nozal built the framework, that made this study possible, and have
through the project been ready to assist at all times, when i had problems.
Furthermore, both Tobias and Diego have offered their expertise, and guidance
throughout the project.

vii

https://unsplash.com/@adrienl?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
Adrien Ledoux on <a href="https://unsplash.com/photos/blue-smoke-on-white-background-mBHuEkka5wM?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Nomenclature

Symbols
+ Elemt-wise Addition
& Concatenation

Elemt-wise multiplication

Broadcasting
Abbreviations
CI Cochlear Implant

GAN Generative Adversarial Network

HA Hearing Aid

HASQI Hearing-Aid Speech Quality Index

LSTM Long Short-Term Memory

MOS Mean Opinion Score

MUSHRA MUIti Stimulus test with Hidden Reference and Anchor
NCSN++ Noise Conditional Score Network

NN Neural Network

PESQ Perceptual Evaluation of Speech Quality
SDR Signal-to-Distortion Ratio

SE Speech enhancement

SI-SDR. Scale-Invariant Signal-to-Distortion Ratio
SnR Signal-to-Noise ratio

STFT Short-time Fourier transform

STOI Short-Time Objective Intelligibility

VAE Variational Autoencoders

WARPQ Weighted Average of Relative Phone Quality

ix

Contents

1 Preface
Nomenclature

2 Introduction
2.1 Research question.

3 Diffusio-based speech Enhancement
3.1 Diffusion process
3.2 Reverse process e e e
3.3 Training objective
3.4 Training algorithm

4 Training Methodology
4.1 AllInOne framework
4.2 Data e
4.2.1 Data representation L.
4.3 Network architecture oL
4.3.1 Encoder and decoder
4.3.2 Timeembedding
4.4 Trainingo e e e

5 Testing Methodology
5.1 Evaluation metrics o
5.2 Listening test

6 Results
6.1 Overall results
6.2 Detailed results
6.3 Results from subjective test oo

7 Discussion
8 Conclusion
Bibliography

A Training with different architectures
A.1 Experiments with Wave-U-Net architecture
A.1.1 Results with native Wave-U-Net architecture
A.1.2 Results with dilated Wave-U-Net architecture
A.2 Experiments with Demucs architecture

xi

vii

ix

10
12
13
15
16
21

23
23
25

27
27
28
30

31

35

37

xii

A21
A2.2
A23
A24

Contents

Results with native Demucs architecture
Results with dilated Demucs architecture
Results for Demucs with Batch Normalization architecture
Results for Dilated Demucs with Batch Normalization archi-
tecture L L Lo e e

B Experiment with different time embedding
B.1 Simple time-embedding oo o
B.2 Time-embedding with positional encoder
B.3 Time-embedding with positional encoder inputted to each encoder and
decoder e
B.4 Comparison between simple time embedding, and the complex time
embedding L

C Visual impression of enhanced data

C.0.1
C.0.2
C.0.3
C.04

Facebook Demucs
SGMSE
Non diffusion aware E2E model
E2E model

D Postprocessing filter

Listening experiment
E.1 Experimental listening test 000

E.1.1
E.1.2
E.1.3
E.14
E.1.5

Procedure
Setup
Equipment
Calibration of equipment
Results

52

53
53
54

57

61

63
63
64
65
66

67

2 Introduction

In a world, where noise is an apparent part of life, it also needs an apparent focus. In
applications where a microphone captures a signal, it often captures unwanted noise
or reverberations alongside the intended sound. This interference can stem from
various sources, ranging from passing cars to background conversations. Aside from
the noise picked up by the microphone, the speech signal may also suffer degradation
from compression, clipping, and downsampling.

Speech enhancement techniques aim to mitigate this interference, enhancing recorded
signals and ensuring clear communication in real-world settings.

In the hearing assistive device (HA) industry speech enhancement is widely adopted.
People invalidated by hearing loss can get access to hearing aids, that enable them
to hear - but studies have shown, that to reduce the listening effort, noise reduction
algorithms must be used [Desjardins og Doherty, 2014; Sarampalis et al., 2009; Picou
et al., 2013]. This probably stems from habit, meaning the HA user probably has not
been used to background noises in the period where they have had degraded hearing.
Therefore it is overwhelming to suddenly hear everything around you. Furthermore,
it is shown that the presence of babble noise significantly diminishes the intelligibility
of human speech for HA users [Park og Lee, 2016].

Consequently, emphasizing speech enhancement for users of hearing aids emerges
as a prudent strategy. Besides being relevant in the hearing aid industry, it finds
extensive application across various sectors including mobile phones, teleconferencing
systems, and speech recognition.

Speech enhancement poses a significant challenge for two primary reasons [Benesty
et al., 2005]. Firstly, the nature of the signal can undergo variations over time and
across different scenarios. These variations may be due to factors such as fluctuating
background noise levels, differences in microphone characteristics, and changes in
recording conditions. Secondly, the performance criteria for speech enhancement
can vary significantly. For instance, the emphasis might be on maximizing speech
clarity and minimizing background noise. Therefore, developing speech enhancement
techniques that can meet the diverse requirements of different scenarios, such as when
used with hearing assistive devices, poses a significant challenge for researchers and
engineers.

Several methods for speech enhancement already exist and are widely adopted. Such
methods include Wiener filtering, spectral subtraction, statistical model-based ap-
proaches, and subspace algorithms. Wiener filtering applies a linear filter to minimize
the Mean Squared Error between the estimated clean signal and the observed noisy
signal [Haykin, 2014; Benesty et al., 2005]. Spectral subtraction aims to estimate
the noise spectrum and subtract it from the observed signal in the frequency domain
[Berouti et al., 1979]. Statistical model-based methods utilize probabilistic models

2 Chapter 2. Introduction

to distinguish between signal and noise components|Ephraim, 1992]. Subspace al-
gorithms exploit the subspace structure of the signal and noise to separate them
effectively [Ephraim og Van Trees, 1995].

One limitation of these methods is that, even though they handle noise reduction
rather well, they do not directly address reverberation [Benesty et al., 2005]. The
methods might improve upon this indirectly by enhancing the overall signal-to-noise
ratio (SnR), but their primary focus remains on noise reduction. However, it is
crucial to focus on reverberation as well, particularly because it significantly im-
pacts speech intelligibility for hearing-impaired individuals using assistive devices
[Kokkinakis et al., 2011]. Therefore, there is a pressing need to develop algorithms
specifically designed to handle reverberation. Fortunately, such algorithms already
exist, like the single-channel blind dereverberation method, based on the harmonicity
of speech signals [Benesty et al., 2005]. This method approximates an inverse room
transfer function, resulting in high-quality dereverberation [Benesty et al., 2005].

In order to further improve speech enhancement, Neural Networks (NN) are utilized.
The idea of using NN is not new, dating back to the 1980s, when researchers started
to use NN for noise reduction. In 1988 Waibel and Tamura published an article
where they used a four-layered feed-forward network to make a model that maps a
noisy signal to a noise-free signal [Tamura og Waibel, 1988]. They showed, that they
were able to make a NN model that worked on both new signals, and noise that
differed from the noise present at training.

In recent times, there has been increased interest in using generative models. Deep
Neural Networks (DNNs), Recurrent Neural Networks, and similar models have long
been at the forefront of speech enhancement models. Despite the rise in popularity of
generative models, these traditional architectures remain widely utilized, particularly
in edge applications where their efficiency and effectiveness shine. Classical models
like DNNs has also been used in combination with classical signal processing, where
the DNN estimate something, eg. if speech is present, in order to optimize the signal
processing [Tao et al., 2023].

The approach for the aforementioned non-generative model is, that they directly map
a noisy signal to a corresponding clean signal. This approach can be simpler to both
train and implement compared to the generative models, but they often struggle with
capturing variability and complexity in speech enhancement.

Generative models distinguish themselves from non-generative models by not just
transforming a noisy signal into a clean one. Rather, they approximate the distri-
bution of clean speech signals. Utilizing this learned distribution, they can produce
novel, improved speech samples from noisy inputs. One advantage of this method-
ology, beyond its enhanced performance, is its capability to reconstruct lost speech,
such as that caused by clipping, saturation, or bandwidth constraints. This is not
possible for "classical" Deep Learning Approaches. Leading generative models for
effective speech enhancement include Variational Autoencoders (VAEs) and Gener-

ative Adversarial Networks (GANs) [Fang et al., 2021]

VAEs, illustrated as a noise-aware VAE on figure 2.1, are in many ways similar to
classical autoencoders. VAEs differ from an autoencoder in their latent space, which
must adhere to a standard Gaussian distribution z ~ N (uz,0,). Classical VAEs
are not very suitable for speech enhancement as it is purely trained on clean speech.
This results in a sensitivity to noise, such that when the SnR is low the performance
is degraded [Fang et al., 2021]. Therefore more advanced VAEs have been designed,
which are noise-aware [Fang et al., 2021]. Noise-aware VAEs are initially trained
on clean speech. Following pre-training on clean speech, a noise-aware encoder is
subsequently trained using both clean and noisy signals in a supervised manner. This
process aims to achieve a latent space, Z , that resembles the original encoders latent
space, Z, as closely as possible. For inference, the noise-aware encoder is then used,
but the decoder is the one trained on clean speech. These noise-aware VAEs are
showing improved result compared to the regular VAE [Fang et al., 2021].

X +—>» encoder —» 7 > decoder —>» X

Latent
space

noise-aware
Piran sy—>

encoder z [

Figure 2.1: Block diagram of an noise-aware VAE

GANs are unsupervised models, that learn from a low-dimensional random latent
space. GANSs trained for speech enhancement works by training two NN. The process
is shown in figure 2.2. One NN is called the generator, and the other the discriminator
[Donahue et al., 2017; Asante et al., 2023]. The generator enhance the noisy speech,
while the discriminator learns to distinguish between enhanced speech and true clean
speech. This have shown to be effective, but there is also shortcomings [Donahue
et al., 2017; Asante et al., 2023]. GANs can be unstable while training, risking
collapse, cause the generated speech to contain a limited diversity aand therefor the
potentioal for generating unrealistic speech and a risk that they do not converge
[Goo, 2022].

Instead of GANs and VAEs mentioned earlier, there is another type of neural network
known as Diffusion Probabilistic Models. These models have demonstrated promising
outcomes in producing high-quality images [Dhariwal og Nichol, 2021a]. In this study,
we’ll explore the potential of utilizing diffusion networks in improving speech quality.

4 Chapter 2. Introduction

ajepdn
» dosdyoeg

€~ -=-=-===

o — =

Feed Forward
- -

Feed Forward
Pt

ajepdn
% dosdyoeg

s

O

Feed Forward

ajepdn
=5 doidyoeg

P A

N D e O e
N D) — o O —s =

Figure 2.2: Training process of a SEGAN[Pascual et al., 2017]

2.1 Research question

Score-based Generative Diffusion Models are already shown to be better at image
synthesis than GANs[Dhariwal og Nichol, 2021a], be able to denoise images[Ho et al.,
2020a], and have been shown to be effective for speech enhancement as well [Welker
et al., 2022a; Richter et al., 2023].

This research will look further into diffusion models, for speech enhancement. What
is noticeable about current studies is, that they all work completely or partly in
the Short-time Fourier transform (STFT) frequency domain, either in training and
inference or in training[Richter et al., 2023; Welker et al., 2022a; Lemercier et al.,
2023; Lu et al., 2021, 2022; Kong et al., 2021]. This is probably because, diffusion
models are initially made for image synthesis, making it easy to adapt from images
into spectrograms.

Thus, this research will focus on adapting an architecture to enable a diffusion model
to directly process raw audio waveforms rather than STFT representations. The
reason for this is, to simplify the pipeline when the model is deployed, as it removes
the need for pre-processing to get the data into the STFT domain and removing the
post-processing to get it back into the time domain. Furthermore, the research aims
to simplify the training process, as this should no longer be dependent on STFT
representations. By learning directly on the raw audio waveform, the model might
capture more nuanced features, and temporal dependencies that otherwise might be
lost in the transformation into the STFT domain.

The research will address how well a new end-to-end model scores in specific chosen
evaluation metrics, and a listening experiment, compared to current SE models. The
research question is:

How does incorporating diffusion-aware training techniques into non-diffusion net-
works in the waveform domain affect speech quality compared to diffusion models
that use Short-Time Fourier Transform (STFT) representations?

3 Diffusio-based speech Enhance-
ment

This chapter aims to give the necessary background about diffusion-based generative
models for speech enhancement. It does not aim to show all the underlying math, as
this is well described in the literature [Ho et al., 2020b; Dhariwal og Nichol, 2021b;
Lu et al., 2021, 2022; Welker et al., 2022a).

The objective of a diffusion model for SE is, to denoise a noisy object. In this brief
background section, the object will be assumed to be a sound, but it is not limited
to such, which is easily seen in the literature as diffusion is original made for image
synthesis [Dhariwal og Nichol, 2021a].

The process is based on two sub processes. A forward process, called the diffusion
process, and a reverse process. The explanation of the sub processes is based on the
explanation by S. Welker in [Welker et al., 2022a], which is based on the work in the
CDiffuSE [Lu et al., 2022]. Welker uses a score-based generative diffusion model, to
enhance a noisy speech signal. For the mathematical proofs please refer to the article
by S. Welker [Welker et al., 2022a)].

3.1 Diffusion process

The forward process take place before training the model. It transforms a clean
object, xq, into pure Gaussian noise by gradually adding small amount of Gaussian
noise to it. This process of adding a small amount of noise is repeated for T steps,
until the object has turned into Gaussian noise, xp [Dhariwal og Nichol, 2021b; Kong
et al., 2021; Ho et al., 2020b]. The process is a so-called Markov chain, meaning that
it is a sequence of possible events, where each event is only dependent on the last
event. The process is illustrated in figure 3.1:

x q(z1|x q(z2|x
Gaata(70) 1l0) 2|71) diffusion iffusion process

\@

. reverse process
po(xolz1) g po(z1|z2) ;De Tp— 1|$T) Platent (Z7)

A A MMWW‘WWWW

Figure 3.1: The diffusion process, shown with a audio wave [Kong et al., 2021]

ﬂfT\ﬂfT 1

6 Chapter 3. Diffusio-based speech Enhancement

To adapt the diffusion process to a use case where the goal is SE the diffusion process
has been defined as in equation 3.1, a so-called stochastic differential equation (SDE)
[Welker et al., 2022a]. This process turns xo into x7 as illustrated in figure 3.1.

dxy = f(x¢,y)dt + g(t)dw (3.1)

where,

f(x¢,y) a function called the drift coefficient, that determines how the process state
changes over time, based on the current state x;

t is a variable describing the process

y is noisy speech

g(t) is a function called the diffusion coefficient, which control the amount of Gaussian
white noise added at each time step

w is a standard Wiener process.

The drift coefficient is further defined as in equation 3.2, and the diffusion coefficient
as in 3.3 [Welker et al., 2022a].

fxe,y) = vy — xt) (3.2)

9(t) = omin (”ma">t 21og (”max> (3.3)

Omin Omin

where,
v is a constant called stiffness
Omin and opq, defines the noise schedule in the Wiener process.

3.2 Reverse process

The reverse process is the process of trying to estimate the Gaussian noise, such
that the original signal can be restored again. Like the diffusion process, it is also a
Markov process, but from the latent space x7, to xg. The reverse process is defined
as in equation 3.4, which is called the plug-in reverse Stochastic Differential Equation
(SDE)[Welker et al., 2022a].

dxe = (—f%4,y) + g(t)*so(x¢,y, t))dt + g(t)dw (3.4)

where,
so(Xt,Yy,t) is the score model, which stems from Vy, log pi(x¢|y)
0 is a set of parameters

3.3. Training objective 7

3.3 Training objective

S. Welker shows, that because the SDE in equation 3.1 describes a Gaussian process,
a training objective is defined as equation 3.5 [Welker et al., 2022a]. The training
objective is based on the SDE and is used to estimate the score function, which is
the gradient of the log probability density function. The score function helps guide
the reverse diffusion process.

arg mein Et,xo,xt\xo HSG (Xt7 t, Y) - vxt IOgPOt(Xt\XO, y) Hg] (35)

This training objective differs from the one proposed in CDiffuSE, [eq. (21) [Lu
et al., 2022]]. CDiffuSE is another SE diffusion model, and the thing to notice is that
CDiffuSE includes the term "y — x¢" which means the network is trained to remove
some of the environmental noise in each step. The solution proposed by S. Welker
instead simply conditions the input to the model on the noise version of the clean
speech. This means that the model by S. Welker only has to estimate the artificially
added Gaussian noise.

3.4 Training algorithm

In this section, the training algorithm are shown, utilizing the math discussed prior.

Algorithm 1 Diffusion Model Training
Parameters: Score model sgp(x¢,t,y)
1: for i =1,2,..., Niter do
2: Sample training set of pairs (29, y) ~ ¢data
3: Sample diffusion time ¢ ~ U(1,2, ..., Niter)
4: Sample noise signal z ~ N(0, I)
5 Compute the gradient of the loss function:

VGL = E(xt,t),x() ||89(Xt7 ta Y) - VXt long(Xt|X07 Y)Hg

6: Update network parameters 6 using the gradient VgL with respect to 6,
employing backpropagation
7: end for

4 Training Methodology

Knowing the basic of how diffusion works, this chapter aims to discuss how the Neural
Network (NN) is trained. This includes a description of the AlllnOne framework
from GNaudio, the clean speech dataset, the data processing to get noisy speech
signals, and the motivation behind the different architectures for the end-to-end
(E2E) network.

The ultimate objective is to develop a network that performs nearly as well as, or
on par with, SGMSE. The code for SGMSE is publicly available on Github[Welker
et al., 2022b], and is well described in the article by S. Welker [Welker et al., 2022a].

4.1 AllInOne framework

The AllInOne framework from GNaudio, is a framework built to make experiments
within a diffusion context.

The AlllnOne framework is built upon an existing framework called called Hydra,
developed by Facebook Research. Hydra is a framework, which key feature is to
generate hierarchical configurations dynamically [Yadan, 2019]. It does so by using
hierarchical configuration files, adjustable from multiple sources. One key benefit of
using Hydra is, that it is easy to make experiments without doing hard-coding.
Based on this, the AlllnOne framework is constructed, incorporating a range of
essential components:

e Data loader

o Diffusion model
o Diffusion Engine
o FEvaluation

These features make it easy to incorporate new NN architectures, even those not
originally designed for diffusion contexts, and simplify adjustments to the diffusion
engine responsible for scheduling. The built-in data loader allows for different repre-
sentations of the signal, and are able to create the necessary distorted signals from
clean speech signals. In figure 4.1, a block diagram of the framework is depicted,
showing all the processes.

10 Chapter 4. Training Methodology

Speech database Dataloader Distorted speech

Diffusion Model

(Neural Network) Sl S Evaluation

Y

Diffusion Engine

Data log

Figure 4.1: A blockdiagram showing the processes of the AlllnOne framework. Block diagram
based on figures by Diego Caviedes Nozal.

In the following sections, the data, data loader, and architecture will be discussed and
investigated in more detail, as these will be key components in creating an end-to-end
model.

4.2 Data

The AlllnOne framework has a built-in data loader, that allows for the use of only
clean speech in the training, as it can distort speech on the fly. The dataset used
for training the models is the open-source speech dataset from Centre for Speech
Technology, called Voice Cloning Toolkit (VCTK).

The dataset is made from 109 native speakers of English, which reads around 400 sen-
tences from a newspaper called The Herald [for Speech Technology Voice Cloning Toolkit,
2016; van den Oord et al., 2016].

Each speaker is assigned unique newspaper sentences, curated through a greedy
algorithm aimed at maximizing both contextual relevance and phonetic diversity [for
Speech Technology Voice Cloning Toolkit, 2016; van den Oord et al., 2016].

The dataset is exclusively a clean speech dataset, but as stated, the AlllnOne frame-
work is designed to generate distorted speech from clean speech signals. This ap-

4.2. Data 11

proach allows for controlled degradation of clean speech signals, making it easier to
evaluate speech processing. Furthermore, it reduces the need for extensive data, as
there is no requirement for both clean and distorted data to exist beforehand, only
clean speech, as well as some noise signals.

The method by which the AlllnOne framework distorts clean speech is illustrated in
the block diagrams, depicted in figure 4.2. For all the speech distortions methods, it
is true that it is user adjustable, meaning eg. for the bandwidth limited speech, the
cut off frequencies can be adjusted accordingly to the use case.

It is also true, that each of the distortions can be combined, so that the generated
speech both contains eg. ambient noise, and reverberation.

When combining distortions, it is important to consider the order of the non-linear
distortions. It is assumed, that the order linear distortions should not matter, as it
can be assumed that the rules of super positioning is true, as well as the rules for
time linear systems is true. When the distortion in non-linear, like compression, it
is no longer assumed that these rules are true.

Input Speech Input Speech
e Noisy speech SpeechWithRiR
Noise Room impulse
response
(a) Block diagram showing, how the ambient (b) Block diagram showing, how the room im-
noise is added to the speech input pulse response is convolved to the speech input
Input Speech Input Speech
Speech with Codec Phase inverted
speech
1 10 Lyoice 1
. 20 -
RMS,
(c) Block diagram showing, how a codec is sim- (d) Block diagram showing, how the speech is
ulated phase inverted

(Input Speech 1—» Bandpass filter *>{ Ba“dw'd‘““m'tedw
speech

(e) Block diagram showing, how the speech can
be bandwidth limited with a bandpass filter

Figure 4.2: Different on-the-fly methods of distorting the signal in the GN frameweork

12 Chapter 4. Training Methodology

The model will be trained, with ambient noise added to the clean speech. The
range of Signal to Noise Ratio is adjustable within the AlllnOne framework and is
uniformly distributed between -5 and 50 dB skewed around lower values. The choice
of training the model on ambient noise has already been indirectly discussed. It is
well-known that ambient noise poses a challenge for users of hearing aid (HA), and
noise cancellation helps reduce listening effort. Therefore, it is evident that removing
ambient noise is a logical starting point.

4.2.1 Data representation

Data will be represented differently, in the baseline and the proposed networks. For
SGMSE, the data is represented as STFT, as described in the SGMSE article [Welker
et al., 2022a]. For the new network, which aims to have an end-to-end approach, the
data is represented in the time domain, as an audio wave.

One of the key parts of getting the diffusion model to work for SE is, that the input
signal, clean speech, must be conditioned on a noisy version of the speech [Welker
et al., 2022a]. In this research, the clean speech is simply concatenated with a noisy
version of the speech resulting in a 2 dimensional waveform. From prior research
into conditioning, it can be argued it should not change anything, if the condition
in concatenated or additioned to the input signal, but a small experiment shown
in figure 4.3 shows, that if concatenation is replaced by element-wise addition the
network trains significantly slower. It is not tested, if they will reach the same
equilibrium at some point.

R Training and Validation Loss
10

Validation loss when element-wise addition
Taining loss when element-wise addition
— Validaticn loss when concatenating
—— Taining loss when concatenating

jug

o 5000 10000 15000 20000 25000
Iteration

Figure 4.3: A short experiment, where the conditioning signal is either concatenated or element-
wise addition to the clean speech.

4.3. Network architecture 13

4.3 Network architecture

The network has been trained with multiple different architectures, in an attempt
to match the performance of SGMSE, proposed by S. Welker[Welker et al., 2022a].
SGMSE will be used as a baseline, and even though it is possible to train with the
AllInOne framework, a checkpoint from the official GIT repo is used [Welker et al.,
2022b].

SGMSE is based on an NCSN++ architecture depicted in figure 4.4. NCSN++ is
a multi-resolution U-net structure, which has shown to be effective at generative
tasks [Ronneberger et al., 2015; Welker et al., 2022a]. This is well-described in the
original article, and will therefore only be briefly discussed in this research[Mittal
et al., 2020].

‘ Conv2D mp DownLayer UpLayer mp BottleneckLayer ProgDown ProgUp ‘

4 4 2
4 4
4 4

4
So
o 2
3 &
o kS

32x32
——-
16%16
—-
8x8
—-
4x4
-
4x4
O-
8x8
—-
1616
—-
X3!
——

[x¢,y]
256 X 256
128 x 128
64 X 64
——

128 %128
256 X 256
56 X 256

256 X 256
256 X 256
128 % 128
256 X 256

'IZXXIZX

32x32
64 X 64

[Xt) Y]

2 oms L I s
| |

Figure 4.4: The NCSN++ architecture, as shown in [Welker et al., 2022a]

NCSN++ utilizes so-called Conv2D layers, similar to multiple other generative mod-
els for SE, like SEgan. The reason why they choose architectures that utilize the
Conv2D layers is often, that the original model is made for image enhancement or
image synthesis. Hence, the approach is to conduct a STFT on the speech signal,
thereby transforming it from the time domain to the frequency domain. This trans-
formation enables the creation of a spectrogram, a visual representation of the signals
frequency components. It is expected, that it is easier to make a model designed for
image processing work with the spectrograms. The apparent preference for image-
oriented models, including those for SE, may explain their suboptimal performance
when dealing directly with raw audio files in the time domain.

This research will try to obtain an end-to-end model, by using an architecture that is
based on Conv1D layers. The reasoning for this is that these operate by convolving
a convolution kernel with the input layer along a single spatial dimension, and not
in multiple dimensions like Conv2D [Keras, 2022].

Many such architectures exists, showing good results for speech enhancement in

14 Chapter 4. Training Methodology

non-diffusion contexts. Examples of such architectures are Wave-U-Net for speech
enhancement, Demucs for speech enhancement and Spiking Neural Networks [Stoller
et al., 2018; Defossez et al., 2020; Riahi og Plourde, 2023]. It must be noted, that
Demucs exist in multiple versions, that are also built with different architectures,
that do not solely rely on Conv1D.

A unifying characteristic among these models is their foundation on the U-Net ar-
chitecture, distinguished by specific modifications tailored to optimize performance
for individual use cases.

It has already been described how SGMSE is using NCSN++4, which is a multi-
resolution U-net architecture. This means that NCSN++ has proven to perform
well in a diffusion context, which is why it makes inherent sense to use a U-Net
architecture, such as Wave-U-Net or Demucs for the end-to-end model.

As none of the U-Net models proposed is directly designed for a diffusion model,
multiple U-Net models will be tested. The general structure of the U-net architecture
is shown in figure 4.5.

Input Output
chip, =1 choy =1
o Skip connection out
| Encoder block 1 | ——————————————————————————————————— > Decoder block 1
chou = H chiy, = H
l A
chin = H chouw = H
n Skip connection out
| Encoder block 2 | ----------------------------------- > Decoder block 2
chopy =n-H chy, =n-H
' A
v

L2 _ L2
chin =n"H Skip connection chouw =n""H
Encoder block N | r-----omommmoo oo > Decoder block N

chouwt =n* 1H chiy, =nt1H
A

1D convolution

or

LSTM

Figure 4.5: The general idea of a U-net architecture

4.3. Network architecture 15

Key points of the U-net architecture is the encoder-decoder structure, as shown in
figure 4.5, where the encoder blocks is visualized with the green boxes, and the
decoder blocks with the blue boxes. In this study, the U-net architecture is designed
to facilitate easy modification of its details. This enables it to seamlessly integrate
various established effective architectures, such as Demucs, Wave-u-net, etc.

4.3.1 Encoder and decoder

As described, the AlllnOne framework, and especially the implemented U-Net archi-
tecture is made such that it is easy to test different architectures. The experimental
work will be based on the architecture used in Demucs for speech enhancement,
Wave-U-Net, and a combination of these. These architectures are chosen, as they
are based on a U-Net structure, and ConvlD layers [Stoller et al., 2018; Defossez
et al., 2020]. In the following, when "Wave-u-net" or "Demucs" is written, it solely
refers to the architecture, which has been implemented in the AlllnOne framework.

In-between all experiments the hyperparameters, and depth are kept constant,
such that it is solely the architecture that influences the outcome of the ex-
periment.

One key difference between Demucs and Wave-U-Net is in the bottleneck layer.
Where Wave-U-Net has a regular ConvlD bottleneck layer, Demucs has a Long
Short-Term Memory (LSTM) bottleneck layer. Networks with LSTM are known to
capture long-range dependencies in sequential data well. The original signal is a
speech signal, which is sequential data, with temporal dependencies. Due to this, it
is expected that Demucs will perform better than Wave-U-Net. This is researched
further in appendix A where the results from running Demucs and Wave-U-Net na-
tively, with a simple time-embedding, are shown. From appendix A it is seen, that
Demucs shows the lowest validation loss, also depicted in figure 4.6.

Based on the experiments, the choice for the encoder and decoder blocks, mirrors
the implementation found in Demucs for Speech Enhancement [Defossez et al., 2020].
This architecture performs better than the Wave-U-Net architecture. Figure 4.7
displays a visual representation of the encoder and decoder from Demucs showing its
structure. The bottleneck layer, as detailed in the Demucs for Speech Enhancement
article, employs a LSTM [Defossez et al., 2020].

Based on this choice, a more sophisticated time-embedding will be investigated, to
improve further upon the performance of the model.

16 Chapter 4. Training Methodology

Loss over Iterations

— Validation loss using Wawe-U-Net architecture
10° 4 = Taining loss using Wave-U-Net architecturs
—— Walidation loss using Demucs architecture

—— Taining loss using Demucs architecturs

10°!

Loss

1072

0.00 025 0.50 D75 100 125 150 175 200
Iteration 1e6

Figure 4.6: Comparison of the loss for Demucs and Wave-U-Net with simple time-embeddings.

4.3.2 Time embedding

From Diffwave, CDiffuSE and SGMSE, it is known that the diffusion-step ”t” is a
crucial part of the input to the model [Kong et al., 2021; Welker et al., 2022a; Lu
et al., 2022]. In order to get better performance from the Demucs architecture, it
will be investigated how recent embeddings can be used in a novel way, with Demucs
in a diffusion context.

In SGMSE a Fourier embedding is used, transforming the timestep into an M-
dimensional vector, which then can be integrated into every residual layer [Welker
et al., 2022a].

In Diffwave, the time is embedded by inputting the time condition into a positional
encoder and then applying three fully connected layers to the embedding. Lastly, it
is broadcast over the length of the tensor and added to each input of every residual
layer [Kong et al., 2021].

In the prior testing, the time step has been embedded in the simplest way possible
imaginable in the beginning of the project. This embedding is shown to improve upon
the Demucs architecture, shown in appendix B section B.1, where an improvement
in loss is shown, by adding the time-embedding. The way, that it has been made, is
by broadcasting the time condition over the length of the input tensor, from where
they are concatenated together before inputting it into the network. The approach
is shown in figure 4.8.

It is already shown that this simple time-embedding is able to improve upon the
model when comparing loss, but more complex implementations of time-embedding
are also investigated, where the time-step "t" is passed through a positional encoder
before it is embedded into the NN.

4.3. Network architecture 17

input or encodery,_1

v

| ReLU(Conv1D) |

| GLU(Conv1D) |

Voo

encodery 1 Skip

or LSTM connection to
decoderry,
decodery 1 encodery,
or LSTM

| GLU(ConviD) |

ConvTranspose1D

Output or
RelLU then decoder,_1

Figure 4.7: The encoder and decoder as depicted in the original Demucs paper.

The idea behind using a positional encoder is, that the time step "t" might not
be able to capture the complexity of the relationship between the Gaussian noise,
and the step in the diffusion process. Addutionally, when expanded into a higher
dimensionality the model might generalize better.

Two different implementations are tested, both based on the positional encoder from
DiffWave [Kong et al., 2021]. The encoder follows equation 4.1. In figure 4.9 an
example of the result of the positional encoder is shown. This example is made with
t=1,t=2,t=3.

. 0x4 . 63x4
tembedding (t) = [sin (10 63 t) ,--,sin (10 63 t) ,

0xd s3xd (4.1)
oS (10 63 t) , o+ ,COS <10 63 t)]

18 Chapter 4. Training Methodology

Conditioned tjme cond
input B

O, &)

Input to
Demucs
architecture

Figure 4.8: A simple embedding of time step "t"

t_embedding, after positional encoder, for time_cond = 1

1.00
0.75 1 H
0.50 4
0.25 1
S
2 0.00
s
-0.25 1
-0.50 1
~0.75 1 M
-1.00
T v v v v T T
0 20 40 60 80 100 120
t_embedding, after positional encoder, for time_cond = 2
1.00
0.75 1 ﬂ H N
0.50 1
0.25 1
E]
% 0.00 A
g
-0.25 1
-0.50 4
-0.75 4
~1.00 4
0 20 40 60 80 100 120
t_embedding, after positional encoder, for time_cond = 3
1.00
0.75 1
0.50 4
0.25
S
2 0.00
g
-0.25 1
-0.50
-0.75 4 N w
—1.00
0 40

Figure 4.9: A figure showing how a simple time step "t" is transformed into higher dimension
vector, where each tempedding is different from each other.

4.3. Network architecture 19

The embedding of tenpedding into the network differ from DiffWave, and experiments
are carried out with two different embeddings.

The method shown in figure 4.10 uses three fully connected layers, activated with
ReLU, before broadcasting over the length of the input tensor and concatenating
tembedding O the input of the network.

time_cond

Positional encoding

Conditioned
input

ReLU(FC)

ReLU(FC)

Input to
Demucs
architecture

Figure 4.10: A more complex embedding of the time step "t" that utilize positional encoding

A more sophisticated embedding, depicted in figure 4.11, uses Swish instead of ReL.U,
and further inputs the f.mpedding into each encoder and decoder block.

The reason why multiple embeddings is tested, is that it is believed that giving the
network an accurate knowledge of where in the Markov-chain it is, the better at
estimating the white noise it will become.

In appendix B the results from testing the different time-embeddings are shown. It
shows, that the time embedding shown in figure 4.11 is the better approach, which is
also depicted in figure 4.12, where the training is stopped early in order to fine-tune
the hyperparameters. As it is slower to train the final model, this was a necessity
due to the time limitation in the thesis.

20 Chapter 4. Training Methodology

time_cond

Positional encoding

input or encodery,_1

ReLU(Conv1D)
GLU(Conv1D)

(repat for each layer
in encoder /
decoder)

P am—
P am—

encodery 1 Skip

or LSTM connection to
decodery,

decodery 1 encodery,

or LSTM
E & i: s

GLU(Conv1D)

ConvTranspose1D

<_I

Output or
RelLU then decodery,—y

Figure 4.11: An embedding of timestep "t" that uses positional encoding, three fully connected
layers, and concatenation into each encoder and decoder.

Loss over lterations

100 —— Validation loss using the simplest time embedding

= Training loss using the simplest time embedding

—— Validation loss using the most complex proposed time embedding
— Training loss using the most complex proposed time embedding

107! 4

Loss

10-2 1

0 20000 40000 £0000 80000 100000
Iteration

Figure 4.12: Loss curves for the simple time-embedding, and the complex time-embedding.

4.4. Training 21

4.4 Training

The end-to-end model is trained on a machine with Nvidia GTX 1080TT with 11 gb
of VRAM, and 64 gb of system RAM.

For all the above experiments, the following parameters, which are used in the dif-
fusion process, have been chosen, such that this is constant between test:

« v=15

® TNsteps = 30

o Omin = 0.05
e Omazr = 0.5

e t.=0.03

All networks is trained with the AdamW optimizer, with a learning rate of le-4, and
models that are not stopped early are trained for 2,000,000 iterations, with a fixed
batch size of 8.

For the initial test with Demucs and Wave-U-Net, including the model without any
time embedding, the hyperparameters are as follows:

o Initial hidden (H) size: 24
o Depth: 6

o Kernel size: 8

o Stride: 4

o Growth (n): 2

For the final end-to-end model, the hyperparameters has been tuned to the following:

o Initial hidden (H) size: 48
e Depth: 6

o Kernel size: 8

o Stride: 4

o Growth (n): 2

Please do note, that the final model also uses a GELU activation function, in the
encoder and decoder as shown in figure 4.7, 4.8 and 4.11, whereas during the initial
experiments, to keep things constant, all activation functions were of the ReLU type.

5 Testing Methodology

The following chapter will describe how the models are evaluated. Evaluating a
generative model requires more of a nuanced approach, than evaluating classical
signal processing techniques, such as a Wiener filter.

A generative model is not bound to produce a signal equal to the input. Essentially,
this implies that the resulting clean speech signal might differ from the input signal
to reduce noise interference. This might not be a problem, as the speech signal can
yield a better experience for the users anyway, but it creates a problem for how to
evaluate it.

Classical methods, like SnR, might not give an accurate description of the speech
signal, because the speech might be different from the input. In this case, the SnR
might not show an improvement, but for the user, there can be an improvement.
Furthermore, it must be remembered that the speech signal is to be used by HA
users. If this affects the evaluation metrics, it is also an important factor to include,
and it might also mean that it is not enough with a single metric.

Therefore, a wide range of chosen metrics will be used, to ensure the optimum eval-
uation.

Further, an actual listening experiment will be conducted, to verify if the human test
subjects align with the objective measurements, ensuring a comprehensive evaluation.

5.1 Evaluation metrics

A range of evaluation metrics will be used, to test the different models. These include
Deep Noise Suppression Mean Opinion Score (DNSMOS), Hearing-Aid Speech Qual-
ity Index (HASQI), Short-Time Objective Intelligibility (STOI), and Scale-Invariant
Signal-to-Distortion Ratio (SI-SDR).

DNSMOS is a rather new evaluation metric, published in 2020 [Reddy et al., 2021].
The metric is developed to tackle scalability challenges in subjective testing method-
ologies, and generative models. It is a non-intrusive measure, based on a neural
network, emulating the perceptual judgment of human test subjects [Reddy et al.,
2021]. Trying to tackle this problem is not new, and the well-known metric Perceptual
Evaluation of Speech Quality (PESQ) is also developed to emulate the perceptual
judgment of humans. DNSMOS is chosen instead of PESQ, due to the improved
performance of DNSMOS. When evaluating a metric, a often used method is to cal-
culate the Pearson Correlation Coefficient (PCC) between the prediction and human
ground truth. In the article about DNSMOS, it is shown that DNSMOS has a PCC
of 0.93, compared to PESQs lower score of 0.78 [Reddy et al., 2021].

STOI is unlike DNSMOS not a metric made for the evaluation of generative models,
but it is an important metric anyway. The reason is, that a study has shown that
these metrics stand out as a particularly good measure for the perceived quality of
Cochlear Implant (CI) users [Falk et al., 2015]. This research does not primarily

23

24 Chapter 5. Testing Methodology

target CI users, but if a model demonstrates exceptional performance for this use
case, it should be highlighted.

What the study further showed was, that for HA with speech enhancement HASQI
stood out as a good measure, and this is therefore also included in this study. For
HASQI to work, an amplification must be determined. From the report prepared by
"Videnscenter for Hgrehandicap", it is seen that among those seeking an audiological
clinic to have their hearing loss examined, the majority of those tested fall into the
category called "moderate" hearing loss [Sundhedsstyrelsen, 2022]. Moderate hearing
loss is determined as a hearing loss from 41 dB - 60 dB by WHO [Sundhedsstyrelsen,
2022; , WHO]. From this, an amplification can be determined. Multiple authors
have proposed such standard amplification curves, but it is decided to use the one
proposed by Bisgaard [Bisgaard et al., 2010]. The hearing threshold is shown in
figure 5.1.

Moderate Hearingthreshold as propsed by Bisgaard

20+

40

60 1

Threshold (dB)

80

100 +

120

T T v v v v
250 500 1000 2000 4000 6000
Frequency (Hz)

Figure 5.1: Figure showing the standard audiogram for moderate hearing loss proposed by Bisgaard
[Bisgaard et al., 2010]

Lastly, SI-SDR measures the ratio of, the power of the target speech, to the power
of the generated signal. It is used, as it considers both the scale and permutation
ambiguities inherent in separating speech from noise. In the realm of SE it is ac-
knowledged as a measure of how good the improved signal sounds, which is why
this metric is particular interesting [Roux et al., 2018]. Unlike SnR or Signal-to-
Distortion ratio (SDR), SI-SDR is an evaluation designed more specifically for SE or
source separation. This is why it was chosen instead these [Roux et al., 2018].

5.2. Listening test 25

5.2 Listening test

With the algorithmic metrics in place, a listening test has also been conducted, to
verify the results from the evaluation metrics.

In all, 10 participants have been participating in the experimental listening test. 8
male, and 2 female, in the age from 20 - 29 years old. All test subjects are relatively
young and have been asked if they believe they suffer from any hearing loss or are
using HA. All test subjects answered no to this, this is why there is not performed
pure-tone audiometry before starting.

The test method has been chosen to be a variation of the Mean Opinion Score (MOS).
It can easily be argued, that this might not be the right evaluation metric, as recent
studies show that speech synthesis is of such high quality that the scale does not
range wide enough anymore [Le Maguer et al., 2024]. The study looked into speech
synthesis, but the methods for the SE in this study are equal to those for speech
synthesis in the study showing that MOS is not optimal, this is why it is assumed
that the article is also true for the SE.

A Dbetter option would be to use the MUIti Stimulus test with Hidden Reference
and Anchor (MUSHRA). MUSHRA has multiple advantages to MOS. It needs fewer
participants to be statistically significant, and it also asks the test subjective to rate
the speech in a more detailed manner, as the scale is from 0-100.

The reason why MUSHRA is not used is that, in the recommendations it clearly
states that the test subjects should be experienced listeners able to listen to the
sounds in a critical way [International Telecommunication Union (ITU), 2015]. It is
not possible to gather such experienced listeners for this experiment. Furthermore,
MUSHRA includes a reference that the test subjective always can listen to. This is
believed to be undesirable, for this exact research, as the goal not necessarily is to
be closest to the original signal, but to offer the best experience for the user.

This is why, a variation of MOS is used. The test system is inspired by the Inter-
national Telecommunication Union’s telecommunication standardization sector rec-
ommendations as described in [International Telecommunication Union (ITU), 1996,
2003]. One deliberate choice that does not cohere with the recommendations is, that
instead of using an Absolute Category Scale Rating (ACR) scale from 1-5 an open-
ended Visual Analog Scale (VAS) ranging from 1-100 will be used. This choice stems
from the aforementioned article that shows that MOS with a fixed scale of 1-5 does
not range wide enough to evaluate modern SE. The reason why it is open-ended is
to avoid lumping, around the ends. To further avoid bias, there is no numbering on
the scale, instead, there are verbal labels, based on the scale used in MUSHRA as
proposed by ITU.

In appendix E the test setup and procedure, for the listening experiment can be
found in detail.

6 Results

In this chapter, the results will be presented. The different metrics are discussed in
section 5.1, and the listening experiment in section 5.2. All results are obtained with
a dataset published by the University of Edinburgh [Valentini Botinhao et al., 2016].
The SnR of the noisy speech signal is 2.5 dB, 7.5 dB, 12.5 dB or 17.5 dB.

The results from each metric are shown for SGMSE, Facebook Demucs, and then
results is also presented, where the architecture from Demucs is used natively in a
diffusion context (Non diffusion aware E2E model) and the final proposed model. A
thing to notice is, that the final E2E model is stopped prior to the point where it
stopped learning. In appendix C a visual impression of the signals are shown in both
the time domain and in the frequency domain.

Lastly, in the metric matrix, and the listening test, as last experiment is included,
where a post filter is added to the enhanced signal, in order to remove any last white-
noise. For more details see appendix D. This result is not presented in the detailed
plots, as it is no longer an end-to-end model, as the post filter works in the frequency
domain.

6.1 Overall results

In this section, the mean results from the different metrics are shown. The results
are to be read as: u(o), where u is the mean result, and o is the standard deviation.
This means if a cell writes: 1(0.2) the mean is 1, and the standard deviation is 0.2.
The overall result is a mean across of all the enhanced data, also meaning it does
not split it into SnR of the noisy data. For all metrics and models the dataset is the
same.

Table 6.1: Comparison of different models on various metrics

Facebook Demucs | SGMSE E2E model Non diffusion aware E2E model | E2E w. post-filter
STOIL 0.9319 (0.0930) 0.9517 (0.0485) | 0.9148 (0.0606) | 0.8923 (0.0634) 0.8505 (0.058)
SI-SDR [dB| 18.08 (5.9302) 17.09 (3.826) 13.47 (3.8580) | 9.053 (4.564) 9.955 (2.295)
DSNMOS (OVRL) | 3.083 (0.2430) 3.190 (0.1980) 2.8847 (0.2901) | 2.770 (0.2970) 2.278 (0.3319)
DSNMOS (SIG) | 3.359 (0.2205) 3.483 (0.1643) | 3.4444 (0.1936) | 3.389 (0.2585) 2.644 (0.3354)
DSNMOS (BAK) | 4.0122 (0.1374) 4.025 (0.1210) 3.4660 (0.4776) | 3.323 (0.3849) 3.461 (0.3796)
HASQI 0.9635 0.9640 0.94179 0.9028 0.6780

27

28 Chapter 6. Results

6.2 Detailed results

In this section, the results in the prior section is presented in more details, with focus
on easy comparison. For each model, the three different evaluation metrics is shown,
namely STOI, SI-SDR and DNSMOS. Each plot contains the results at different SnR
-2.5dB, 7.5 dB, 12.5 dB and 17.5 dB, for all models at once.

DNSmos overall score at different SnR (higher is better)

3.4

3.2

N
9
s

DNSmos score
~
o
|

2.44
2.2
End to end model

@ End to end model with post processing filter
2.01 @ Non diffusion aware E2E model

@ Facebook Demucs

@ SGMSE
184 T T T T

2.5 7.5 125 17.5

Noisy speech SnR (dB)

Figure 6.1: Figure showing the DNSmos overall score for all four models. The dots are the
respective mean results, and the error bars shows the standard deviation.

STOI score at different SnR (higher is better)

1.00 A T
0.95 4
o
£ 0.904
@ T 1
o
F 1
1% .
0.85 1
[1
0.80 4 End to end model
. @ End to end model with post processing filter
1 @ Non diffusion aware E2E model
@ Facebook Demucs
- @ SGMSE
T T T T
2.5 7.5 12.5 17.5

Noisy speech SnR (dB)

Figure 6.2: Figure showing the STOI results for all four models. The dots are the respective mean
results, and the error bars shows the standard deviation.

6.2. Detailed results 29

SI-SDR score at different SnR (higher is better)

201

SI-SDR score (dB)
= =
1S5 &
e
—o—i
—o—
—o—i

End to end model

End to end model with post processing filter
Non diffusion aware E2E model

Facebook Demucs

SGMSE

lof o] lof jof

25 7.5 12.5 17.5
Noisy speech SnR (dB)

Figure 6.3: Figure showing the SI-SDR results for all four models. The dots are the respective
mean results, and the error bars shows the standard deviation.

30

6.3 Results from subjective test

In this section, the result from the listening experiment is shown. In the results is

Chapter 6. Results

included a model where a post filter is added, in an attempt to remove whitenoise.

Mean Opinion Score

Figure 6.4: The mean results in the listening experiment. The dots are the respective mean results,

Mean Opinion Score by Neural Network Model

90 - Excellent

70 - Good -

50 - Fair q

30 - Poor 4

10 - Bad

Neural Network Model

and the error bars shows the standard deviation.

Mean Opinion Score

Figure 6.5: A detailed version of the results from the listening experiment, showing the result split
into the SnR of the noisy signal, that has been enhanced. The dots are the respective mean results,

Mean Opinion Score by SnR for Each Filter Type

90 - Excellent

70 - Good

50 - Fair 4

30 - Poor

10 - Bad

®

lof lof l@f

Model:
Model:
Model:
Model:
Model:

Non Diffusion aware End2End model
End2End with post filter

Diffusion aware End2End model
Facebook Demucs

SGMSE

T
2.5dB

T
7.5 dB

Noisy speech SnR (dB)

and the error bars shows the standard deviation.

T
12.5dB

T
17.5dB

7 Discussion

This study tried to propose an end-to-end diffusion speech enhancement model, based
on an architecture not initially intended to work in a diffusion context. The study
aimed to optimize the architecture with diffusion-aware training, meaning that time-
step from the Markov process has been embedded into the architecture. The aim
was to train a model, solely on data in the time domain, not including any data in
the frequency domain.

Experimental work was carried out to see what initial architecture would perform
the best. Multiple models were tested, all based on a U-Net structure, with ConvlD
layers in the encoders and decoders. Reasonable arguments why this would be a good
solutions was given, such as the fact that SGMSE utilize NCSN++, an architecture
based on a U-Net structure, with Conv2D layers.

It was shown, that the architecture used in Demucs designed by Facebook outper-
formed Wave-U-Net when implemented equally in the diffusion context. To ensure,
that the architecture was the only variable in performance, the hyperparameters was
kept constant during the experiments, including the activation functions. It has been
discussed why the Demucs architecture was best, pointing towards the LSTM layer,
both due to theory, and experimental work.

From the literature, it was found that the time step "t" is an important feature for
the network. In the initial experiments, the time step was therefore given in the
simplest possible form, to the network, as depicted in figure 4.8.

To improve further on the network, complex embedding of time step "t" has been
researched. The reason why, it has been researched, other than the statement from
the literature, is that an idea arose that if the model has better knowledge of where
in the Markov process the network is, it might be easier for it to learn how to remove
the artificial white noise which was a problem in the simpler implementation of
Demucs architecture in the diffusion context. Therefore, multiple implementations
is proposed, embedding the time in different ways, with varying complexity. The
different implementations is shown in section 4.3.2.

From this, multiple experiments are performed, showing that time embedding indeed
matters, and the complexity of the time embedding also plays a role.

Firstly, it is shown that even the simplest embedding of time improves the loss
significantly. This is shown in section 4.3.2, figure 4.12.

From this, two more complex models are made - but with focus on the one de-
picted in figure 4.11 one from hereon. The model utilized both a positional encoder,
multiple fully connected layers, and embedded time into each decoder, and encoder
block. Without changing the activation layers, it showed lower initial loss, and faster
learning, shown in figure 4.12. It was stopped early, to ensure some hyperparameter
tuning, within the time frame of the project.

Within the hyperparameter tuning, the depth was increased, as well as the number
of hidden layers. Another change, in the final embedding of the timestep "t" is, that
instead of using ReLU in the fully connected layers, the Swish function (SiLU) is

31

32 Chapter 7. Discussion

used. The reason for this, is that the author of the Swish function shows, that it
performs as well as, or better than ReLU across their suit of tests|[Ramachandran
et al., 2017]. It is arguable that more in-depth testing should have been conducted
to assess both the positive and negative effects of changing to Swish.

From the objective metrics, it is shown that SGMSE outperforms the other models,
except from in SI-SDR, where Facebook Demucs had the best score. No metric
stood out in either STOI or HASQI, except for SGSME, indicating that no model
performed exceptionally well by chance for either HA users or CI users.

It is from the metrics also seen, that the final proposed end-to-end model, outper-
forms the non-diffusion aware end-to-end model, in all of the measured metrics. This
shows that the time step is indeed an important feature. Additionally, when the entire
enhanced speech signal is evaluated using DNSmos, the proposed end-to-end model
performs worse than both SGMSE and Facebook Demucs. If the DNSmos score is
split into speech signal and background noise, instead of rating the overall signal,
it can be seen that the end-to-end model has a better signal quality than Facebook
Demucs, being on par with SGMSE. Where it falls through is in the background
noise, where one of the significant challenges identified in the end-to-end diffusion
model for speech enhancement, is the high level of white noise during silent periods.
It is evident in both figure C.4a and C.4c as shown in appendix C.

The listening test showed the same, namely that SGMSE beats both Facebook De-
mucs, and the proposed end-to-end model on average. Looking into details, it get
more complicated, as the end-to-end model outperforms Facebook Demucs at 2.5 dB,
and at 12.5 dB where it also outperforms SGMSE. At 7.5 dB, and 17 dB Facebook
Demucs beats the proposed model, and SGMSE beats Facebook Demucs. This is
even though, the objective metrics clearly shows that it should not be the case.
According to the objective metrics, aswell as the listening test, the addition of a
post-filter did not improve upon the model. This can be due to various reason, but
one valid guess is that the filter introduces artifacts, which the objective metrics
punished, and the subjects in the listening test did not like. Instead of implementing
a spectral subtraction filter, other filters might work better, eg. the General filter
[Benesty et al., 2014] which could enhance a Wiener filter’s performance by recovering
high frequencies.

One of the considerations when evaluating generative models has been, that the
evaluation metric should cohere with the nature of the model - meaning, that the
model is not bound to generate the exact ground truth signal. From the objective
function, it can be argued that this might not be true, as it specifically compares
the ground truth, with the generated signal. But, in order to ensure comprehensive
evaluation, it is still believed, that the final enhanced signal can differ, and therefore
the metrics STOI, SI-SDR and DNSmos was chosen as they cover both traditional
evaluation, where the ground truth is compared to the enhanced signal, aswell as a
new NN approach to evaluation.

This choice align well with the results, where it is seen, that Facebook Demucs
outperforms SGMSE in SI-SDR even though it does not outperform SGMSE in other

33

metrics, or the listening test. The higher score from Facebook Demucs compared to
SGMSE, could be cause by the generative nature of SGMSE, that might introduces
variability and potential artifacts, which can reduce the SI-SDR as the generated
speech may not perfectly align with the ground truth.

It is also seen how, the inclusion of DNSmos give valuable insights in the models, as
it can evaluate both the overall signal, the speech it self, and the background noise.
Besides the introduction of a post-filter, that can be improved further, it is known
from the literature that combining the noisy speech, and the enhanced speech can
result in better speech intelligibility due to recovering high frequencies [Defossez
et al., 2020; Phan et al., 2020; Lu et al., 2022]. This method could be used with the
Wiener filter, as this removes high-frequency signals when removing the white-noise.
Instead of believing the solution is a post-filter, another option is to let the model
train longer. The reverse process in the diffusion model is a matter of estimating the
white noise present, and therefore, it is plausible, that the model would improve and
maybe even remove the last of the white noise if trained for a longer period than
what it is trained for now. The evaluated model was stopped prior to the finishing
training, in order to be able to show initial results.

If this however is not a product of the stopping training early, it is arguably an
inherent problem in making diffusion work solely in the time domain with a simple
U-Net architecture. It would be easy to understand why, the last white noise is
hard to estimate, from looking at the time domain plots in appendix C.0.4. This is
also evident in that other models that enhance end-to-end is in the training process
conditioned on the clean speech in the STFT [Lu et al., 2022]. If it is truly the
case, that it is an inherent problem, and one would continue the work creating, an
end-to-end model trained solely in the timedomain, an optimized loss function could
be a possible solution.

One simple proposal to optimize the loss function is to adapt it into the frequency
domain, as shown in equation 7.1. As discussed previously, white noise can be difficult
to detect when analyzing speech signals in the time domain because it blends into
the background and lacks distinct patterns, making it seem insignificant. However, it
might correspond to significant frequency differences, as observed in the STF'T plot.
Therefore, the idea is that white noise can be more easily identified and reduced in
the frequency domain. By adapting the loss function into the frequency domain, it
might implicitly reduce such noise by aligning the overall spectral distribution of the
output and the target.

Et,xo,xt|x0 ”]:(SG(Xtatay))_]:(vxt IOgPOt(Xt‘XOaY))Hg (71)

Limitations

This study is limited to look into architectures that were not initially meant for
diffusion, and how to improve upon these. The study does not look at the schedulers
used in the training process. It is known, that they have an impact of performance,

34 Chapter 7. Discussion

and therefore a study on these might help further improve the performance seen,
in the proposed end-to-end model. Different schedulers change how much training
time the model uses with a given amount of white noise, and it is imaginable that
this will affect the end-to-end model. Another point of improvement, of the current
proposed solutions, is to adjust the hyperparameters for each architecture. In the
experiments, the hyperparameters are kept constant, until the last trained model,
to see differences only from the architecture. With more time, the hyperparameters
could have been adjusted for each model, ensuring optimal performance. For the last
model, a more thorough hyperparameter tuning might also show a further decrease
in the loss.

One could also imagine, that to obtain a different end-to-end model that might per-
form better, than what is presented, the solution is to not use an U-Net architecture
with Conv1D. Other types of architectures must be investigated, to obtain a model,
that can compete with current SOA, like SGMSE or Demucs Speech Enhancement.
One option is to be inspired by Diff Wave or WaveNet, instead of SGMSE. DiffWave
and WaveNet are not made for speech enhancement, but rather for speech synthesis
in the time domain. DiffWave uses a bidirectional dilated convolution architecture,
and WaveNet uses a architecture based on Casual convolutions, which both differ
significantly from a U-Net structure. CDiffuSE is a diffusion model for SE that is
not based on the U-Net structure either, but is conditioned on spectrograms.

A shortcoming of the research is, that it assumes the user of the model will be HA
users, but most evaluation is focused around normal-hearing people. Two evaluation
metrics stand out, as they are shown to work well for people with hearing assistive
device, namely STOI and HASQI. STOI stood out for cochlear implant users, and
HASQI is developed specifically for HA users. It is true for for HASQI, that even
though it is developed for HA users, this research is limited to a single level of hearing
loss, within the moderate hearing loss category. It would make sense, to broaden this
to multiple categories, like mild, and severe.

8 Conclusion

How does incorporating diffusion-aware training techniques into non-diffusion net-
works in the waveform domain affect speech quality compared to diffusion models
that use Short-Time Fourier Transform (STFT) representations?

In this study, an end-to-end model is proposed based on a known architecture, Face-
book Demucs, which is not initially designed to work within a diffusion context. It
has been shown, how making the architecture diffusion aware with embedding of
the time step ¢, from the markov process, improve upon the final result, both eval-
uated by loss, as well as evaluated by objective metrics and a subjective listening
experiment.

It was not possible to create a model that perform as well as SGMSE, the current
state of the art. SGMSE outperforms the proposed model overall, except in a single
case in the subjective listening experiment, where the proposed model has a better
mean result when the input before enhancement has a SnR of 12.5 dB.

It was not possible to create a model that performs as well as SGMSE, the current
state-of-the-art. SGMSE outperforms the proposed model overall, except in one in-
stance during the subjective listening experiment, where the proposed model achieves
a better mean result if the SnR of the noisy speech before enhancement is 12.5 dB.
When evaluated solely on signal quality using DNSmos, the proposed model’s signal
quality is comparable to that of SGMSE.

Based on the results and a visual inspection of the enhanced speech in the STFT
domain, it can be identified that the performance issue with the end-to-end model
arises from the inability to remove all the artificial white noise from the diffusion
process.

It has been proposed that it can be due to a lack of training duration, or a fun-
damental flaw in training in the time domain. A solution on how to improve the
training process, like optimizing the objective function, or looking at different archi-
tectures, has been stated. It was furthermore attempted to improve upon the model
with a post-filter, which did not improve the objective measures, or the results in
the listening experiment.

35

Bibliography

, 2022. Common Problems, 2022. URL https:
//developers.google.com/machine-learning/gan/problems. Last
acces: 02-16-2024.

Asante et al., 08 2023. Bismark Asante, Clifford Broni-Bediako og Hiroki
Imamura. Ezploring Multi-Stage GAN with Self-Attention for Speech
Enhancement. Applied Sciences, 13, 9217, 2023. doi: 10.3390/app13169217.

Benesty et al., 2005. Jacob. Benesty, Shoji. Makino og Jingdong. Chen. Speech
Enhancement. Signals and Communication Technology. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1st ed. 2005. edition, 2005. ISBN 1-280-33791-5.

Benesty et al., 2014. Jacob Benesty, Jesper Rindom Jensen, Mads Graesboll
Christensen og Jingdong Chen. Speech Enhancement: A Signal Subspace
Perspective. Elsevier Science, San Diego, 1 edition, 2014. ISBN 9780128002537.

M. Berouti, Richard Schwartz og J. Makhoul, 05 1979. M. Berouti, Richard
Schwartz og J. Makhoul. Enhancement of speech corrupted by acoustic noise.
volume 4, pages 208 — 211, 05 1979. doi: 10.1109/ICASSP.1979.1170788.

Bisgaard et al., 06 2010. Nikolai Bisgaard, Marcel Vlaming og Martin
Dahlquist. Standard Audiograms for the IEC 60118-15 Measurement Procedure.
Trends in amplification, 14, 113-20, 2010. doi: 10.1177/1084713810379609.

Defossez et al., 2020. Alexandre Defossez, Gabriel Synnaeve og Yossi Adi. Real
Time Speech Enhancement in the Waveform Domain, 2020.

Desjardins og Doherty, 03 2014. Jamie Desjardins og Karen Doherty. The
Effect of Hearing Aid Noise Reduction on Listening Effort in Hearing-Impaired
Adults. Ear and hearing, 35, 2014. doi: 10.1097/AUD.0000000000000028.

Dhariwal og Nichol, 05 2021a. Prafulla Dhariwal og Alex Nichol. Diffusion
Models Beat GANs on Image Synthesis, 2021a.

Dhariwal og Nichol, 2021b. Prafulla Dhariwal og Alex Nichol. Diffusion Models
Beat GANs on Image Synthesis, 2021b.

Donahue et al.; 11 2017. Chris Donahue, Bo Li og Rohit Prabhavalkar.
Ezxploring Speech Enhancement with Generative Adversarial Networks for Robust
Speech Recognition. 2017.

Ephraim og Van Trees, 1995. Y. Ephraim og H.L. Van Trees. A signal subspace
approach for speech enhancement. IEEE Transactions on Speech and Audio
Processing, 3(4), 251-266, 1995. doi: 10.1109/89.397090.

37

https://developers.google.com/machine-learning/gan/problems
https://developers.google.com/machine-learning/gan/problems

38 Bibliography

Ephraim, 11 1992. Yariv Ephraim. Statistical-Model-Based Speech Enhancement
Systems. Proceedings of the IEEE, 80, 1526 — 1555, 1992. doi: 10.1109/5.168664.

Falk et al., 03 2015. Tiago Falk, Vijay Parsa, Jodo Santos, Kathryn Arehart,
Oldooz Hazrati, Rainer Huber, James Kates og Susan Scollie. Objective Quality

and Intelligibility Prediction for Users of Assistive Listening Devices. IEEE
Signal Processing Magazine, 32, 114-124, 2015. doi: 10.1109/MSP.2014.2358871.

Fang et al., 02 2021. Huajian Fang, Guillaume Carbajal, Stefan Wermter og
Timo Gerkmann. Variational Autoencoder for Speech Enhancement with a
Noise-Aware Encoder, 2021.

for Disease Control og (CDC). Centers for Disease Control og Prevention
(CDC). What Noises Cause Hearing Loss? URL https://www.cdc.gov/
nceh/hearing_loss/what_noises_cause_hearing loss.html.
Accessed May 13, 2024.

for Speech Technology Voice Cloning Toolkit, 2016. Centre for Speech
Technology Voice Cloning Toolkit. VCTK, 2016. URL
https://datashare.ed.ac.uk/handle/10283/2950.

Haykin, 2014. Simon Haykin. Adaptive filter theory. Prentice Hall, 5th edition,
2014.

Ho et al., 06 2020a. Jonathan Ho, Ajay Jain og Pieter Abbeel. Denoising
Diffusion Probabilistic Models, 2020a.

Ho et al., 2020b. Jonathan Ho, Ajay Jain og Pieter Abbeel. Denoising Diffusion
Probabilistic Models, 2020b.

International Telecommunication Union (ITU), 2015. International
Telecommunication Union (ITU). Recommendation ITU-R BS.1534-3: Method
for the subjective assessment of intermediate quality level of audio systems,
ITU-T, 2015.

International Telecommunication Union (ITU), 1996. International
Telecommunication Union (ITU). ITU-T P.800: Methods for subjective
determination of transmission quality, ITU-T, 1996.

International Telecommunication Union (ITU), 2003. International
Telecommunication Union (ITU). ITU-T P.835: Subjective performance
assessment of speech communication quality, ITU-T, 2003.

Keras, 2022. Keras. Convolution layers, 2022. URL
https://keras.io/api/layers/convolution_layers/. Last acces:
02-24-2024.

https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html
https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html
https://datashare.ed.ac.uk/handle/10283/2950
https://keras.io/api/layers/convolution_layers/

Bibliography 39

Kokkinakis et al., 05 2011. Kostas Kokkinakis, Oldooz Hazrati og Philipos
Loizou. A channel-selection criterion for suppressing reverberation in cochlear
tmplants. The Journal of the Acoustical Society of America, 129, 3221-32, 2011.
doi: 10.1121/1.3559683.

Kong et al., 2021. Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao og Bryan
Catanzaro. DiffWave: A Versatile Diffusion Model for Audio Synthesis, 2021.

Le Maguer et al., 2024. Sébastien Le Maguer, Simon King og Naomi Harte. The
limits of the Mean Opinion Score for speech synthesis evaluation. Computer
Speech & Language, 84, 101577, 2024. ISSN 0885-2308. doi:
https://doi.org/10.1016/j.cs1.2023.101577. URL https://www.
sciencedirect.com/science/article/pii/S0885230823000967.

Lemercier et al., 2023. Jean-Marie Lemercier, Julius Richter, Simon Welker og
Timo Gerkmann. StoRM: A Diffusion-Based Stochastic Regeneration Model for
Speech Enhancement and Dereverberation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 31, 27242737, 2023. ISSN 2329-9304. doi:
10.1109/taslp.2023.3294692. URL
http://dx.doi.org/10.1109/TASLP.2023.3294692.

Lu et al., 2021. Yen-Ju Lu, Yu Tsao og Shinji Watanabe. A Study on Speech
Enhancement Based on Diffusion Probabilistic Model, 2021.

Lu et al., 2022. Yen-Ju Lu, Zhong-Qiu Wang, Shinji Watanabe, Alexander
Richard, Cheng Yu og Yu Tsao. Conditional Diffusion Probabilistic Model for
Speech Enhancement, 2022.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric
Battenberg og Oriol Nieto, 2015. Brian McFee, Colin Raffel, Dawen Liang,
Daniel PW Ellis, Matt McVicar, Eric Battenberg og Oriol Nieto. librosa: Audio
and music signal analysis in python. In Proceedings of the 14th python in science
conference, volume 8, 2015.

Mittal et al., 2020. Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti,
Murray Shanahan, Guillaume Lajoie, Michael Mozer og Yoshua Bengio. Learning
to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks
with Attention over Modules, 2020.

Park og Lee, 2016. Se Rim Park og Jinwon Lee. A Fully Convolutional Neural
Network for Speech Enhancement, 2016.

Pascual et al., 2017. Santiago Pascual, Antonio Bonafonte og Joan Serra.
SEGAN: Speech Enhancement Generative Adversarial Network, 2017.

Phan et al., 2020. Huy Phan, Ian Vince McLoughlin, Lam Dang Pham, Oliver Y.
Chén, Philipp Koch, Maarten De Vos og Alfred Mertins. Improving GANs for

https://www.sciencedirect.com/science/article/pii/S0885230823000967
https://www.sciencedirect.com/science/article/pii/S0885230823000967
http://dx.doi.org/10.1109/TASLP.2023.3294692

40 Bibliography

Speech Enhancement. CoRR, abs/2001.05532, 2020. URL
https://arxiv.org/abs/2001.05532.

Picou et al., 02 2013. Erin Picou, Todd Ricketts og Benjamin Hornsby. How
Hearing Aids, Background Noise, and Visual Cues Influence Objective Listening
Effort. Ear and hearing, 34, 2013. doi: 10.1097/AUD.0b013e31827f0431.

Ramachandran et al., 2017. Prajit Ramachandran, Barret Zoph og Quoc V. Le.
Searching for Activation Functions. CoRR, abs/1710.05941, 2017. URL
http://arxiv.org/abs/1710.05941.

Reddy et al., 2021. Chandan K A Reddy, Vishak Gopal og Ross Cutler.
DNSMOS: A Non-Intrusive Perceptual Objective Speech Quality metric to
evaluate Noise Suppressors, 2021.

Abir Riahi og Eric Plourde, 2023. Abir Riahi og Eric Plourde. Single Channel
Speech Enhancement Using U-Net Spiking Neural Networks. In 2023 IEEE

Canadian Conference on Electrical and Computer Engineering (CCECE), pages
111-116, 2023. doi: 10.1109/CCECE58730.2023.10288830.

Richter et al., 2023. Julius Richter, Simon Welker, Jean-Marie Lemercier,
Bunlong Lay og Timo Gerkmann. Speech Enhancement and Dereverberation with
Diffusion-based Generative Models. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 31, 2351-2364, 2023. doi:
10.1109/TASLP.2023.3285241.

Ronneberger et al., 2015. Olaf Ronneberger, Philipp Fischer og Thomas Brox.
U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015.

Roux et al., 2018. Jonathan Le Roux, Scott Wisdom, Hakan Erdogan og John R.
Hershey. SDR - half-baked or well done?, 2018.

Sarampalis et al., 05 2009. Anastasios Sarampalis, Sridhar Kalluri, Brent
Edwards og Ervin Hafter. Objective Measures of Listening Effort: Effects of
Background Noise and Noise Reduction. Journal of speech, language, and hearing
research : JSLHR, 52, 123040, 2009. doi: 10.1044/1092-4388(2009/08-0111).

Stoller et al., 2018. Daniel Stoller, Sebastian Ewert og Simon Dixon.
Wawve-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source
Separation, 2018.

Sundhedsstyrelsen, 2022. Sundhedsstyrelsen. Personer med horetab i Danmark,
2022. URL https://www.sbst.dk/media/12157/Personer%20med$%
20h%C3%B8retab%20i%20Danmark.pdf. Rapport fra Sundhedsstyrelsen.

Shin’ichi Tamura og Alex Waibel, 05 1988. Shin’ichi Tamura og Alex Waibel. Noise
reduction using connectionist models. pages 553 — 556 vol.1, 05 1988. doi:
10.1109/ICASSP.1988.196643.

https://arxiv.org/abs/2001.05532
http://arxiv.org/abs/1710.05941
https://www.sbst.dk/media/12157/Personer%20med%20h%C3%B8retab%20i%20Danmark.pdf
https://www.sbst.dk/media/12157/Personer%20med%20h%C3%B8retab%20i%20Danmark.pdf

Bibliography 41

Shuai Tao, Yang Xiang, Himavanth Reddy, Jesper Rindom Jensen og
Mads Grasbgll Christensen, 2023. Shuai Tao, Yang Xiang, Himavanth Reddy,
Jesper Rindom Jensen og Mads Graesbgll Christensen. Single Channel Speech
Presence Probability Estimation based on Hybrid Global-Local Information. In
2023 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), pages 1-5, 2023. doi:
10.1109/WASPA A58266.2023.10248067.

Cassia Valentini Botinhao, Xin Wang, Shinji Takaki og Junichi Yamagishi,
September 2016. Cassia Valentini Botinhao, Xin Wang, Shinji Takaki og Junichi
Yamagishi. Speech Enhancement for a Noise-Robust Text-to-Speech Synthesis
System using Deep Recurrent Neural Networks. In Proceedings of Interspeech
2016, Interspeech, pages 352—-356. International Speech Communication
Association, September 2016. doi: 10.21437/Interspeech.2016-159. URL
http://www.interspeech2016.org/. Interspeech 2016 ; Conference date:
08-09-2016 Through 12-09-2016.

van den Oord et al., 2016. Aaron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior
og Koray Kavukcuoglu. WaveNet: A Generative Model for Raw Audio, 2016.

Virtanen et al., 2020. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antonio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt og SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17, 261-272, 2020. doi: 10.1038/s41592-019-0686-2.

Simon Welker, Julius Richter og Timo Gerkmann, 2022a. Simon Welker, Julius
Richter og Timo Gerkmann. Speech Enhancement with Score-Based Generative
Models in the Complex STFT Domain. In Proc. Interspeech 2022, pages
2028-2932, 2022a. doi: 10.21437/Interspeech.2022-10653.

Welker et al., 2022b. Simon Welker, Julius Richter og Timo Gerkmann. Speech
Enhancement and Dereverberation with Diffusion-based Generative Models,
2022b. URL https://github.com/sp-uhh/sgmse/tree/main.

(WHO), 2021. World Health Organization (WHO). World report on hearing 2021,
2021. URL https://www.who.int/health-topics/hearing-loss.
Report by the World Health Organization (WHO).

http://www.interspeech2016.org/
https://github.com/sp-uhh/sgmse/tree/main
https://www.who.int/health-topics/hearing-loss

42 Bibliography

Yadan, 2019. Omry Yadan. Hydra - A framework for elegantly configuring
complex applications. Github, 2019. URL
https://github.com/facebookresearch/hydra.

https://github.com/facebookresearch/hydra

A Training with different ar-
chitectures

A.1 Experiments with Wave-U-Net architecture

This section shows the results from the experiments, that is based on training with
a Wave-U-Net architecture, in a diffusion context.
2 different architectures, both based on Wave-U-Net is trained:

« Native Wave-U-Net architecture

o Dilated Wave-U-Net architecture
This show that an improved wave-u-net can be obtained by using dilated Conv1D

layers, which improved upon the speech quality assessment metrics, even though it
did not show any improvement in the loss.

A.1.1 Results with native Wave-U-Net architecture

100 Training and Validation Loss

—— Validation Loss
Training Loss

L B bl

10-2 | ﬁ‘\hpy”p LR T ' ™ e T Py '"f ey ||| N

1073

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration 1le6

Figure A.1: native Wave-U-Net training and validation loss

43

44

Score

Score

Appendix A. Training with different architectures

Generated and target STOI score

1.04

0.8+

0.4

0.2+

—— Generated score
Target score

0.0

T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.2: native Wave-U-Net STOI result

Generated and target WARP-Q score

2.00

1.754

1.50

1.254

1.00

0.75 4

0.50

0.25 4

0.00

—— Generated score
Target score

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.3: native Wave-U-Net WARP-Q score

A.1. Experiments with Wave-U-Net architecture

Generated and target DNSMOS score

5
—— Generated score
Target score
44
34
o
S
o
w
24
14
0 T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.4: native Wave-U-Net DNSMOS score

A.1.2 Results with dilated Wave-U-Net architecture

Training and Validation Loss

10*
—— Validation Loss
Training Loss
100 4
g 107!
\
il m‘wwwwmwmmwmm
|
102 | ﬂ\lml, PR L Nk 4
1073 . + + + - + + + .
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.5: Dilated Wave-U-Net training and validation loss

45

46

Score

Score

Appendix A. Training with different architectures

Generated and target STOI score

1.04

0.8+

0.4

0.2+

—— Generated score
Target score

0.0

T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.6: Dilated Wave-U-Net STOI result

Generated and target WARP-Q score

2.00

1.754

1.50

1.254

1.00

0.75 4

0.50

0.25 4

0.00

—— Generated score
Target score

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.7: Dilated Wave-U-Net WARP-Q score

A.2. Experiments with Demucs architecture 47

Generated and target DNSMOS score

—— Generated score
Target score

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.8: Dilated Wave-U-Net DNSMOS score

A.2 Experiments with Demucs architecture

This section shows the results from the experiments, that is based on training with
a Demucs architecture in a diffusion context.
Four different architectures, all based on Demucs is trained:

Native Demucs architecture

Dilated Demucs architecture

Demucs with Batch Normalization

Dilated Demucs with Batch Normalization

It was firmly believed, that Demucs could have been improved with simple measures,
inspired by the experiments with Wave-U-Net. One key difference between Demucs
and Wave-U-Net is the use of batch normalization in Wave-U-Net. Batch normal-
ization is supposed to help stabilize the training process, by normalizing the input
of each layer. It reduces the covariate shift in each block, which may also lead to
a performance increase. This addition to the architecture is investigated, in section
A.2.2, where it shows overfitting on figure A.17

Furthermore, a common way to increase the performance of models with Conv1D
layers is, to use dilation. This was also shown to be the case for Wave-U-Net, but on
figure A.13 it is shown how Demucs does not improve when dilation is used.

A dilated Demucs model, with batch normalization, is lastly investigated to ensure
comprehensive research of the proposed improvement methods. This architecture

48 Appendix A. Training with different architectures

was not expected to work, even before the experiment was carried out, as it was
already seen that adding Batch Normalization resulted in overfitting. It is though
now shown, in figure A.18, that adding both dilated layers, and batchnormalization
to the Demucs architecture is also prone to overfitting, why it is not been investigated
further.

A.2.1 Results with native Demucs architecture

Training and Validation Loss

10!
—— Validation Loss
——— Training Loss

100 4

8 1071
1072 4
1073 T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6
Figure A.9: native Demucs training and validation loss
Generated and target STOI score
1.0
0.8 1
o 0.6
8
"
0.4+
0.21
—— Generated score
—— Target score
0.0 T T ™ T ™ ™ T T T
0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 2.00
Iteration le6

Figure A.10: native Demucs STOI result

A.2. Experiments with Demucs architecture

Score

2.00

Generated and target WARP-Q score

1.754

1.50 1

1.254

1.00 1

0.75

0.50

0.25

0.00 -

—— Generated score
Target score

T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.11: native Demucs WARP-Q score

Generated and target DNSMOS score

Score

—— Generated score
Target score

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.12: native Demucs DNSMOS score

49

50 Appendix A. Training with different architectures

A.2.2 Results with dilated Demucs architecture

Training and Validation Loss

10t
—— Validation Loss
—— Training Loss
100 4
m -1
81074
10—2 4
1073 T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6
Figure A.13: Dilated Demucs training and validation loss
Generated and target STOI score
1.0
0.8
© 06
o
3
wn
0.4
0.2
—— Generated score
—— Target score
0.0 T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.14: Dilated Demucs STOI result

A.2. Experiments with Demucs architecture ol

Generated and target WARP-Q score

2.00
—— Generated score
Target score
1754
1.50 1
1.254
£ 1.00 1
S
12
0.75
0.50
0.25
0.00 A
T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6
Figure A.15: Dilated Demucs WARP-Q score
Generated and target DNSMOS score
5
—— Generated score
Target score
44
3
@
o
o
w
24
14
0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure A.16: Dilated Demucs DNSMOS score

A.2.3 Results for Demucs with Batch Normalization architecture

Due to not training until the end, speech quality assessment metrics are not shown.
It is not trained until the end, due to overfitting.

52 Appendix A. Training with different architectures

Training and Validation Loss

10!
—— Validation Loss
—— Training Loss
100 4
810714
1072 4
1073 T

T T T T T T T
0 100000 200000 300000 400000 500000 600000 700000
Iteration

Figure A.17: Demucs with Batch Normalization training and validation loss

A.2.4 Results for Dilated Demucs with Batch Normalization archi-
tecture

Due to not training until the end, speech quality assessment metrics are not shown.
It is not trained until the end, due to overfitting.

Training and Validation Loss

10!
—— Validation Loss
——— Training Loss
100 <4
2 10-1
3 1071 g
1072 4
1073 T

T T T T T
0 100000 200000 300000 400000 500000
Iteration

Figure A.18: Dilated Demucs with Batch Normalization training and validation loss

B Experiment with different time
embedding

This chapter is made to show, how different time embeddings perform, in the same
architecture. The experiments are all carried out with the architecture from Demucs,
used within the AlllnOne framework.

It is shown, how even a simple time-embedding increase perform, but also how more
complex embeddings can improve the results further.

All the embeddings, and the reasoning behind theese can be found in section 4.3.2

B.1 Simple time-embedding

This section aims to show the difference in training with, and without, even a simple
embedding of time. The simple embedding of time, is made such that the time
step is broadcast over the length of the input signal, and then concatenated. A
block-diagram of this is shown in figure B.3.

Conditioned time cond
input -

Input to
Demucs
architecture

Figure B.1: Block-diagram showting how the simple embeddig of time is made.
In figure B.2 the training and validation loss is shown, when there is no embedding

of time. in figure B.3 the training and validaiton loss is shown, when there is time
embedding as described.

53

54 Appendix B. Experiment with different time embedding

Training and Validation Loss

10!
—— Validation Loss
—— Training Loss
100 4
g 107!
1072 4
1073 T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure B.2: Native Demucs architecture, without any time embedding, training and validation
loss

Training and Validation Loss

10!
—— Validation Loss
—— Training Loss
10°
8 1071
10—2 4
1073 T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration le6

Figure B.3: Native Demucs architecture, with a simple embedding of time, training and validation
loss

B.2 Time-embedding with positional encoder

This section shows the results from increasing the complexity of the time-embedding,
by using a so-called positional encoder. The idea is show in figure B.4. The results
from these embeddings are shown in figure B.5 - B.8.

B.2. Time-embedding with positional encoder 55

time_cond

v

Positional encoding

v

ReLU(FC)

ReLU(FC)

Conditioned
input

Input to
Demucs
architecture

Figure B.4: A more complex embedding of the time step "t" that utilize positional encoding

Training and Validation Loss

10t
—— Validation Loss
Taining Loss
10° 4
i 10-1 4
5
1077 o
10-2 T T T T T T
0.0 02 04 0.6 08 10
Iteration 1e6

Figure B.5: training and validation loss for Demucs with time-embedding as in figure B.4

56

Score

Scaore

Appendix B. Experiment with different time embedding

Generated and target STOI score

10

08

0.6

0.4

02

— Generated score
Terget score
0.0 T T T T T
0.0 02 0.4 0.6 0.8 10
Iteration led

Figure B.6: STOI score for Demucs with time-embedding as in figure B.4

200 Generated and target WARP-Q score

—— (Generated score

Target score
175

150

100

0.75

050

0.25

0.00

0.0 02 04 06 0.8 10
lteration 1e6

Figure B.7: WARPQ score for Demucs with time-embedding as in figure B.4

B.3. Time-embedding with positional encoder inputted to each encoder and decoder 57

Generated and target DNSMOS score

—— (enerated score
Target score

0.0 02 0.4 06 08 10
Iteration 1e6

Figure B.8: DNSMOS score for Demucs with time-embedding as in figure B.4

B.3 Time-embedding with positional encoder inputted
to each encoder and decoder

This section shows the results from increasing the complexity of the time-embedding,
by taking the time-embedding from the last experiment but inputting the output into
each encoder and decoder. The idea is show in figure B.9. The results from these
embeddings are shown in figure B.10 - B.14. Please note, that the model has the
posibilty to improve further, as it is stopped while the loss still improved.

58 Appendix B. Experiment with different time embedding

time_cond

<« |

Positional encoding

<_

input or encodery_1

SILU(FC) |
v

| SiLUFC) |

O © e |

| ReLU(Conv1D) |
| GLU(Conv1D) |
(repat for each layer
in encoder /
decoder)
encoderry 1 Skip
or LSTM connection to
decodery,
decodery, 1 encoderry,

or LSTM
<J

(3))€

| GLU(Conv1D) |

ConvTranspose1D

v

Output or
ReLU then decodery,_

Figure B.9: An embedding of timestep "t" that uses positional encoding, three fully connected
layers, and concatenation into each encoder and decoder.

B.3. Time-embedding with positional encoder inputted to each encoder and decoder

- Training and Validation Loss

99

Taining Loss

107 4 |

10-1 4

Loss

102

—— Validation Loss

D 20000 40000 50000 8000 100000
Iteration

Figure B.10: training and validation loss for Demucs with time-embedding as in figure B.9

Generated and target STOI score

10 1

0.8

0.6 1

Score

0.4 1

0.2

—— Generated score
Target score

0.0

0 20000 40000 50000 80000 100000
Iteration

Figure B.11: STOI score for Demucs with time-embedding as in figure B.9

60

Score

Appendix B. Experiment with different time embedding

Generated and target WARP-Q score

200
—— (Generated score
Target score

175
150
125 4
100
0.75 -
0.50 4
0.25 -
0.00 -

0 20000 40000 E0000 B0000 100000

Iteration

Figure B.12: WARPQ score for Demucs with time-embedding as in figure B.9

s Generated and target DNSMOS score
—— (Generated score
Target score
4
34
2
1 B
u T T T T T T
o 20000 40000 B0000 80000 100000

Iteration

Figure B.13: DNSMOS score for Demucs with time-embedding as in figure B.9

B.4. Comparison between simple time embedding, and the complex time embedding 61

Generated and target DNSMOS score

5
—— (enerated score
Target score
_q, 4
3 -
v
o
A
2
14
0 T T T T T T
0 20000 40000 60000 80000 100000

It=ration

Figure B.14: DNSMOS score for Demucs with time-embedding as in figure B.9

B.4 Comparison between simple time embedding, and
the complex time embedding

Loss over Iterations

107 4 S —— Validation loss for 2nd time-embedding
| = Training loss for 2nd time-embedding

—— Validation loss for 3rd time-embedding
| Taining loss for 3rd time-embedding

1072

Iteration

Figure B.15: Loss curves for simple time-embedding, and the complex time-embedding.

C
data

Visual impression of enhanced

In this section, a visual impression of the results is shown. For each model, the same
samples, chosen randomly, with 2.5 dB SnR and 17.5 dB SnR is shown.

C.0.1 Facebook Demucs

P257_114 - Clean, Noisy, Enhanced

Clean

Frequency [Hz]

0.8
Time [sec]

Noisy

Frequency [Hz]

= s e — ——
0.0 0.2 0.4 0.6 0.8 10 ¥ 16
Time [sec]

Enhanced

Frequency [Hz]

0.6 1.0 ¥ 16

0.8
Time [sec]

(a) Figure showing the signal in the frequency
domain, where the input signal has a SnR of 2.5
dB.

P232_175 - Clean, Noisy, Enhanced

Clean

z
g
g
3
g
g

Time [sec]

Noisy

Frequency [Hz]

15
Time [sec]

Enhanced

Frequency [Hz]

0.0 05 1.0 15 2.0 25 3.0
Time [sec]

(c) Figure showing the signal in the frequency
domain, where the input signal has a SnR of 17.5
dB.

63

P257_114 - Clean, Noisy, Enhanced

e — Clean
05
0.0

-05

1.0
05
0.0

-05

1
o —— Enhanced
05
0.0

-05

0.0 0.2 0.4 0.6 0.8 10 12 14 16

(b) Figure showing the signal in the time domain,
where the input signal has a SnR of 2.5 dB.

P232_175 - Clean, Noisy, Enhanced

—— Clean

—— Enhanced

-05

-1.0

0.0 05 1.0 15 2.0 25 3.0

(d) Figure showing the signal in the time domain,
where the input signal has a SnR of 17.5 dB.

64

C.0.2 SGMSE

P257_114 - Clean, Noisy, Enhanced

Clean

2
g
H
s
g
g

Time [sec]

Noisy
£
z
s
£
0.
Time [sec]
Enhanced

Frequency [Hz]

— c— -
0.6 0.8 1.0 § N 16
Time [sec]

(a) Figure showing the signal in the frequency
domain, where the input signal has a SnR of 2.5
dB.

P232_175 - Clean, Noisy, Enhanced

Clean

Frequency [Hz]

15
Time [sec]

Noisy

Frequency [Hz]

15
Time [sec]

Enhanced

2
g
H
s
g
g

Time [sec]

(¢) Figure showing the signal in the frequency
domain, where the input signal has a SnR of 17.5
dB.

Appendix C. Visual impression of enhanced data

P257_114 - Clean, Noisy, Enhanced

— Clean
05
00
-05
0.0 0.2 04 06 08 10 12 14 16
1
0 — Noisy
05
0.0
-05
-10
0.0 0.2 04 06 08 10 12 14 16
o —— Enhanced
05
0.0
-05
0.0 0.2 04 06 08 10 12 14 16

(b) Figure showing the signal in the time domain,
where the input signal has a SnR of 2.5 dB.

P232_175 - Clean, Noisy, Enhanced

—— Clean

— Noisy

0.0 05 10 15 2.0 25 3.0

—— Enhanced

(d) Figure showing the signal in the time domain,
where the input signal has a SnR of 17.5 dB.

65

C.0.3 Non diffusion aware E2E model

P257_114 - Clean, Noisy, Enhanced

Clean

Frequency [Hz]

Time [sec]

g
S

Frequency [Hz]

0.
Time [sec]

Enhanced

5000

Frequency [Hz]

°
°

0.6 1.0 y 16

Time [sec]

(a) Figure showing the signal in the frequency
domain, where the input signal has a SnR of 2.5
dB.

P232_175 - Clean, Noisy, Enhanced

Clean

Frequency [Hz]

15
Time [sec]

Noisy

Frequency [Hz]

15
Time [sec]

Enhanced

Frequency [Hz]

Time [sec]

(¢) Figure showing the signal in the frequency
domain, where the input signal has a SnR of 17.5
dB.

P257_114 - Clean, Noisy, Enhanced

10
— Clean
05
0.0
-05
0.0 02 04 06 0.8 10 12 14 16
1
0 — Noisy
05
0.0
-05
-10
00 02 04 06 08 10 12 14 16
— Enhanced
05
0.0
-05
-10
0.0 02 04 06 08 10 12 14 16

(b) Figure showing the signal in the time domain,
where the input signal has a SnR of 2.5 dB.

P232_175 - Clean, Noisy, Enhanced

— Clean

0.0 05 1.0 15 2.0 25 3.0

—— Enhanced

(d) Figure showing the signal in the time domain,
where the input signal has a SnR of 17.5 dB.

66

C.0.4 E2E model

P257_114 - Clean, Noisy, Enhanced

Clean

2
g
H
s
g
g

Time [sec]

Noisy
£
z
s
£
Time [sec]
Enhanced

Frequency [Hz]

0.8 . § N 16
Time [sec]

(a) Figure showing the signal in the frequency
domain, where the input signal has a SnR of 2.5
dB.

P232_175 - Clean, Noisy, Enhanced

Clean

Frequency [Hz]

15
Time [sec]

Noisy

Frequency [Hz]

15
Time [sec]

Enhanced

2
g
H
s
g
g

Time [sec]

(¢) Figure showing the signal in the frequency
domain, where the input signal has a SnR of 17.5
dB.

Appendix C. Visual impression of enhanced data

P257_114 - Clean, Noisy, Enhanced

— Clean
05
00
-05
0.0 0.2 04 06 08 10 12 14 16
1
0 — Noisy
05
0.0
-05
-10
0.0 0.2 04 06 08 10 12 14 16
o —— Enhanced
05
00
-05
0.0 0.2 04 06 08 10 12 14 16

(b) Figure showing the signal in the time domain,
where the input signal has a SnR of 2.5 dB.

P232_175 - Clean, Noisy, Enhanced

—— Clean

— Noisy

0.0 05 10 15 2.0 25 3.0

—— Enhanced

(d) Figure showing the signal in the time domain,
where the input signal has a SnR of 17.5 dB.

D Postprocessing filter

To remove any residual white noise, a post filter is tested. The filter of choice is a
spectral subtraction filter due to simple implementation, and improved performance
on this exact data compared to a wiener filter implemented with Scipy [Virtanen
et al., 2020].

The implementation of the filter, assumes that there is no speech in the first part of
the signal. This is tested randomly in the dataset, but not verified on all data. The
filter is implemented as shown in code D.1, where the noisy data is transformed into
the STFT domain. The part of the data that is assumed to be speech less is then
used to calculate the power spectrum. The power spectrum is then subtracted from
the entire noisy signal’s power spectrum. The phase is then reatined in the last step
before doing the inverse STFT turning it back into the time domain.

Pseudocode D.1: The code used to remove the last white noise

def spectral_subtraction(noisy_signal, noise_estimation):
Compute the STFT of the noisy signal
f, t, Zxx = signal.stft (noisy_signal, £s=16000, nperseg
=2506)

Estimate the noise power spectrum
noise_spectrum = np.mean (np.abs(Zxx[:, :noise_estimation
])*%2, axis=1l, keepdims=True)

Subtract the noise power spectrum from the noisy signal
/s power spectrum

signal_power = np.abs (Zxx) x*2

signal_power_subtracted = np.maximum(signal_power -
noise_spectrum, O0)

Construct the denoised STFT
Zxx_denoised = np.sqrt (signal_power_subtracted) * np.exp

(13 * np.angle (Z2xx))

Compute the inverse STFT to obtain the denoised signal
_, denoised_signal = signal.istft (Zxx_denoised, £s=16000)

return denoised_signal

67

E Listening experiment

E.1 Experimental listening test

The measurement is performed by Magnus Munk Jensen as part of hes Master thesis
at AAU. The measurements take place in May of 2024 and demonstrate the quality
of the proposed end-to-end diffusion model compared to the state-of-the-art SGMSE
model.

The experimental setup undergoes testing in a pilot experiment, where subjects can
indicate any discomforts or areas they find confusing.

The experiment is designed as a variation of the Mean Opinion Score (MOS) test, as
described by the International Telecommunication Union, Telecommunication stan-
dardization sector [International Telecommunication Union (ITU), 1996, 2003].

It differs from the standard, as the Absolute Category Scaling (ACR) is replaced
with a open-ended Visual Analog Scale (VAS). This is to avoid problems, described
in [Le Maguer et al., 2024], where the ACR is not accurate enough for modern neural
networks. The scale is open-ended to avoid problems with lumping.

The data used for the listening test stem from a dataset published by the University
of Edinburgh [Valentini Botinhao et al., 2016]. The data is recordings from 1 women,
and 1 man, both from England, and with their native language being English. The
noise in the dataset is background noise from a living room, an office space, a bus,
and 2 different streets. The Signal to Noise Ratio (SnR) of the test data is between
2.5 dB to 17.5 dB. The original sampling frequency is 46 kHz. For the dataset to work
with the model, this has been lowered to 16 kHz with Librosa [McFee et al., 2015].
In the dataset there is 824 speech recordins, where the speech that the subjects are
listening to has been chosen randomly, ensuring all SnR’s is represented.

E.1.1 Procedure

The measurements are made in a sound treated room, at Aalborg University, speci-
ficly ’Cabin B’ in the 'B5’ section at Frb. Vej 7. Before the actual listening test, the
user get to familiarize with the GUI, and the speech.

69

70 Appendix E. Listening experiment

E.1.2 Setup

USB Sound
Card

Figure E.1: A sketch showing an OAE probe, a coupler, and a tube with known length.

E.1.3 Equipment

Equipment AAU number
1 | Lenovo T14S
RME-AUDIO Fireface UFX II | 108228
3 | Beyer Dynamic DT 990 Pro

Table E.1: Equipment used for listening test

Further, a graphical user interface (GUI) is made with Python. The GUI is shown
in figure E.2. The user must input their name, but this is then randomly changed,
such that the actual name is not stored. This is to ensure, different naming in the
saved result, while still complying with GPDR.

E.1. Experimental listening test 71

Enter your name:

Start

Rate the Song

Next ‘

Play Again ‘

Quit ‘

Figure E.2: The graphical user interface for the listening test

E.1.4 Calibration of equipment

In order to increase reproduceability, the played speech level is calibrated. As human
speech is in the area of 60 dB A-Weighted [for Disease Control og , CDC], the
calibration is made to ensure the speech is between 60 dB, and 66 dB. The speech
used for the calibration, is 6 randomly chosen signals from the clean dataset [Valentini
Botinhao et al., 2016]. 3 of the speech signals is by the male speaker, and 3 is from
the female speaker. Each speech signal is played on repeat for 30 seconds, while the
average is measured in periods of 1 second.

After the speech is calibrated, a 440 Hz test tone is also measured, in order to more
easily calibrate a similar setup again. The test tone is made with Numpy, in Python.
Also this is measured as an average of 1 second measurements.

The calibration is performed on a head and torso simulator, equipped with GRAS
40 AD microphones. The measurement are made in MatLab on the RME-AUDIO
USB interface.

72 Appendix E. Listening experiment

E.1.5 Results

Mean Opinion Score by Neural Network Model

90 - Excellent 4

70 - Good -
<
o
L)
(%2}
c
o

< 50 - Fair q
Q
(]
c
©
CD
=

30 - Poor A

10 - Bad

& & 2 <
@ob &K\\& é‘ob 0&
> & > <
& N S
& & &
?f(’ & ef"
& 4 &
N & N
Q N >
N < o
N N
~‘&) .{{\0
(o) N
N

Neural Network Model

Figure E.3: The mean results in the listening experiment. The dots are the respective mean results,
and the errorbars shows the standard deviation.

Mean Opinion Score by SnR for Each Filter Type

@ Model: Non Diffusion aware End2End model
Model: End2End with post filter
@ Model: Diffusion aware End2End model
90 - Excellent § @ Model: Facebook Demucs
& Model: SGMSE
70 - Good 1
o
o
S
2]
c
o
£ }
s 50 - Fair
c
©
Q
=
30 - Poor
10 - Bad -

T
2.5dB

T
7.5dB

Noisy speech SnR (dB)

T
12.5dB

T
17.5dB

Figure E.4: A detailed version of the results from the listening experiment, showing the result split
into the SnR of the noisy signal, that has been enhanced. The dots are the respective mean results,
and the errorbars shows the standard deviation.

	Front page
	Titlepage
	Contents
	1 Preface
	Nomenclature
	2 Introduction
	2.1 Research question

	3 Diffusio-based speech Enhancement
	3.1 Diffusion process
	3.2 Reverse process
	3.3 Training objective
	3.4 Training algorithm

	4 Training Methodology
	4.1 AllInOne framework
	4.2 Data
	4.2.1 Data representation

	4.3 Network architecture
	4.3.1 Encoder and decoder
	4.3.2 Time embedding

	4.4 Training

	5 Testing Methodology
	5.1 Evaluation metrics
	5.2 Listening test

	6 Results
	6.1 Overall results
	6.2 Detailed results
	6.3 Results from subjective test

	7 Discussion
	8 Conclusion
	Bibliography
	A Training with different architectures
	A.1 Experiments with Wave-U-Net architecture
	A.1.1 Results with native Wave-U-Net architecture
	A.1.2 Results with dilated Wave-U-Net architecture

	A.2 Experiments with Demucs architecture
	A.2.1 Results with native Demucs architecture
	A.2.2 Results with dilated Demucs architecture
	A.2.3 Results for Demucs with Batch Normalization architecture
	A.2.4 Results for Dilated Demucs with Batch Normalization architecture

	B Experiment with different time embedding
	B.1 Simple time-embedding
	B.2 Time-embedding with positional encoder
	B.3 Time-embedding with positional encoder inputted to each encoder and decoder
	B.4 Comparison between simple time embedding, and the complex time embedding

	C Visual impression of enhanced data
	C.0.1 Facebook Demucs
	C.0.2 SGMSE
	C.0.3 Non diffusion aware E2E model
	C.0.4 E2E model

	D Postprocessing filter
	E Listening experiment
	E.1 Experimental listening test
	E.1.1 Procedure
	E.1.2 Setup
	E.1.3 Equipment
	E.1.4 Calibration of equipment
	E.1.5 Results

