Low/No Code Development and
Generative Al

Thesis Report

Nourjan Sido
Eksan Ahmed Emon

Aalborg University, Copenhagen
Electronic Systems

AALBORG UNIVERSITY
STUDENT REPORT

Title:
Low/No Code Development & Generative
Al

Theme:
Thesis

Project Period:
Summer Semester 2024

Project Group:

Participant(s):
Nourjan Sido
Eksan Ahmed Emon

Supervisor(s):
Morten Falch

Page Numbers: 108

Date of Completion:
May 31, 2024

Electronic Systems
Aalborg University, Copenhagen
http://www.aau.dk

Abstract:

The landscape of software development is
continuously evolving, with new technolo-
gies regularly emerging. This thesis aims
to investigate the potential of low-code de-
velopment, a rising technology, and its im-
pact on the software development process.
Additionally, it examines how the integra-
tion of generative Al, another trending tech-
nology, can further accelerate this impact.
By exploring the synergy between genera-
tive Al and low-code development, we aim
to understand its implications for the fu-
ture of software development and address
current limitations in low-code platforms.
Furthermore, a business analysis is con-
ducted to evaluate the market positioning
of these technologies. Our investigation re-
veals these technologies’ immense potential
in transforming the software development
landscape.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.aau.dk

Contents

1 Introduction

1.1 Research Motivation
1.2 Problem Statement

1.2.1 Research Sub-questions:
1.3 Delimitation e

2 Methodology

21 Project Approach
211 Background L o
212 Stateofthe Art o
213 Business Analysis. 0 L.
214 Technical Analysis

3 Background

3.1 History of Software Development Practices

3.2 Tranditional Software Development Methodologies

3.3 Modern Software Development Methodologies.

3.4 Evolution of low/no-code Development

4 State of the Art

41 Low/No Code Development

42 LowCodeVsNoCode.
421 Low Code Development:
422 UseCases:t
423 Challenges and Limitations:
424 No CodeDevelopment
425 UseCases: i
426 Challenges and Limitations:
4.2.7 Difference between low code and no code development

43 Core Principles of Low/No-Code Development Platforms

44 Current State & Trends of low/no-code Development

ii

Contents 1ii

45 Existing Low/No-Code Development Platforms 38
451 OutSystems 38

452 JogetDX e 43

453 Mendix. 48

46 Generative AL 52
4.6.1 Key Features and Benefits of Generative AI: 54

4.6.2 Current State and Applications 55

4.7 Generative Al and Low/No-Code Development 58
47.1 Benefits and Features of Integrating Generative AI 58

472 Current Scenario: Lo 60

473 Key Challengesand Issues 60

5 Analysis 62
51 Technical Analysis 62
51.1 Low code platform Architecture 62

51.2 Low code development lifecycle 64

5.1.3 Stages where gen Alcancometoplay 68

52 Business Analysis 72
52.1 Stakeholder Analysis. 72

522 Market Analysis L o 76

523 SWOT Analysis 78

524 Porter's5Forces 80

525 Value PropositionCanvas 82

52.6 BusinessModelCanvas 85

53 Requirements L 88

6 Discussion & Future Work 90
7 Conclusion 93

Bibliography 96

Chapter 1

Introduction

In the ever-changing technological world, a revolution is brewing, ready to transform the
way software is developed. The growth of low /no-code development platforms represents
a significant shift in how software is designed, distributed, and managed in today’s dy-
namic digital environment [1] [2]. This disruptive development method democratizes app
creation, taking it outside the traditional sphere of professional programmers. This shift
is driven by two major forces: low/no-code Development Platforms (LCDPs) and Gen-
erative Al (Gen Al). As these technologies become more prevalent in the industry, they
can democratize development, accelerate digitalization, and improve software production
efficiency [1].

low /no-code development platforms (LCDPs) provide simple visual interfaces and pre-
built components, enabling anybody without coding knowledge to create usable appli-
cations [2]. This enables "citizen developers" (business users and non-technical users) to
contribute into software development, potentially increasing agility and innovation [3].The
growing need for solutions that simplify a company’s operations has created opportuni-
ties for using platforms designed for low/no-code development. These platforms include
pre-packaged features that may be utilized by both non-programmers inside a firm and
software developers to construct software applications and automate operations without
the need for human programming [4]. However, the promise of LCDPs extends beyond cit-
izen development. By automating repetitive tasks, producing code snippets, and enabling
speedier prototyping, they can enhance traditional software development processes. This
has the potential to significantly enhance development efficiency while cutting costs for
experienced professionals [5].

The low /no-code (LCNC) sector is quickly expanding, with excellent estimates and figures
demonstrating its importance in the IT industry. Gartner believed that the LCNC industry
would grow to $26.9 billion by 2023 [6], while Forrester expects a $45.5 billion market by
2025. Furthermore, by 2024, low-code approaches are predicted to account for 65% [6] of

1.1. Research Motivation 2

app development activity, indicating that these platforms are becoming increasingly pop-
ular.

The rise of gen Al is fueling this shift even further. This cutting-edge technology includes
several strategies that enable computers to produce innovative and creative outputs such
as text, code, and graphics [7]. gen Al has enormous potential to transform software de-
velopment by automating many processes formerly undertaken by humans, such as code
creation, testing, and documentation [8]. This automation can not only improve devel-
opment workflows but can also customize experiences and tailor solutions to individual
project demands, resulting in increased productivity and creativity.

The possible collaboration between LCDPs and gen Al is a positive indicator for the fu-
ture of software development. Integrating gen Al capabilities into LCDPs might simplify
development processes, empower citizen developers, and enable even more efficiency and
creativity [9]. This collaboration has huge promise for many industries, enabling faster
time-to-market, improved software quality, and more business agility. However, manag-
ing in this changing environment has a variety of challenges. Ensuring the quality and
security of Al-generated code, addressing ethical concerns around gen Al development
and deployment, and managing potential disruptions to established development pro-
cesses are all key issues that must be carefully handled.

Given these successes and difficulties, we intend to explore the current state of software
engineering methodologies and identify the potential of low /no-code development to help
in the discussion of those development methodologies and provide a way to digital inno-
vation. Our research will concentrate on the low /no-code software development method-
ology and its implications on digitalization and business innovation. We intend to perform
an analysis from both business and technical perspectives. Furthermore, we will explain
how low code platforms work, identify the the life cycle of the development process and
investigate how Gen Al can manifest itself over the development process.

1.1 Research Motivation

In the fast-changing technology world, software development is considered to be one of
the biggest factors that foster innovation, productivity, and digital transformation in differ-
ent sectors. Traditional methods for software development were based on a coding process
that was complicated and required skilled programmers; for so long, it has served as the
main pillar of software development industry. Although the concept of low /no-code de-
velopment platforms (LCDPs) and generative Al technology (gen Al) is challenging the
traditional paradigm and reshaping the way software is created and delivered, the new
norm in the software industry will most probably be the adoption of these two trends [10].

1.2. Problem Statement 3

The motivation behind our research is the acknowledgement of the transformative power
of low/no-code development in addition to generative Al technologies. These innovations
serve as disruptive forces for all software developers that aim to speed up the digitaliza-
tion process and revolutionize the process for the creation of efficient and accessible apps.
LCDPs allow individuals who do not have coding skills to be included in the development
process and help boost agility, innovation, and technology democratization. On the one
hand, the advancements of generative Al have made it possible to apply automation and
augmentation, which on the other hand will accelerate the workflows, enhance the cre-
ativity and come up with solutions that fit the specific project requirements.

The core motivation of this research is the notion that low/no-code development, along
with generative Al, can revolutionize software development and digitalization processes.
Our goal is to examine how these technologies can be leveraged together and provide the
necessary instructions, thus allowing us to contribute to a future where software develop-
ment is increasingly affordable, faster, and inclusive.

1.2 Problem Statement

The integration of Generative Al and low/no-code development platforms promises to
revolutionize the future of software development. By combining the advance capabilities
of generative Al with the accessibility of low/no-code development platforms, these tech-
nologies can enhance productivity, reduce development time, and democratize software
developments. Hence, it leads us to the following problem statement:

"How will the offering of low/no-code solutions, enhanced by generative Al tech-
nology, affect the future of software development?"

To answer the problem statement of our thesis, we identified the following research sub-
questions:
1.2.1 Research Sub-questions:

¢ How have the limitations of traditional and modern software development method-
ologies influenced the rise of low /no-code platforms and generative Al technologies?

¢ What are the core components and key features that define a development approach
as "low/no-code" development?

* How can the integration of generative Al across the stages of the low code develop-
ment process enhance its capabilities?

* How does integrating generative Al enhance the business value and competitive
market positioning of low /no-code development platforms?

1.3. Delimitation 4

1.3 Delimitation

There are several delimitations faced during the research process in this thesis:

¢ Theoretical Approach: Some aspects of this thesis, such as the integration of gen-
erative Al in low-code development, are discussed only theoretically without actual
implementation. The complexity of the topic requires more time and resources for
technical realization than was available for this thesis.

¢ Available Resources: The technologies under investigation—low-code development
platforms and generative Al—are relatively recent. Consequently, the research on
their synergy is limited, which constrains our ability to draw comprehensive conclu-
sions.

¢ Data Collection: Due to the limited research available, we intended to collect pri-
mary data by contacting relevant companies and conducting interviews. However,
our efforts were constrained by the availability and willingness of companies to par-
ticipate.

¢ Company Participation: Given that this technology is not widely adopted in our
region, we found only a single company specializing in this field. Unfortunately,
our request for collaboration with this company was declined, limiting our access to
practical insights and firsthand information.

Chapter 2

Methodology

This chapter outlines the research approach and processes we followed to explore the cur-
rent state and potential of low/no-code development platforms and generative Al tech-
nologies. We will provide a summarized explanation of what we have done in each in-
dividual chapter of the report to address the problem formulation of our thesis and the
research subquestions identified in relation to our problem statement. By systematically
addressing each chapter’s key focus and intended outcomes, this chapter will offer a clear
and structured framework for understanding how these emerging technologies can trans-
form current software development practices and create business opportunities as well as
digital innovation. The following sections will describe the methods we followed and the
insights we gained from our exploration of low/no-code development and generative Al
technologies.

2.1 Project Approach

In our research, we followed a document analysis approach so that we can gain a compre-
hensive understanding of the low/no-code development and generative Al technologies.
This involved systematically reviewing and analysing existing literature, academic papers,
industry reports, and relevant articles from databases like IEEE Xplorer, ACM Digital
Library, and Google Scholar to gain historical context and understand significant advance-
ment in these fields. We also looked at some industry reports and white papers from
different big companies and firms such as Gartner, Forrester, and McKinsey for getting
insights into the market scenario, trends and practical applications. We also reviewed and
went through different articles and blog posts from different reputed technology websites
and experts to stay updated on the latest developments and real-world case studies. By
accumulating this information, we could identify the current market trends as well as
emerging trends, and key insights that helped us to formulate our research questions and
focus areas.

2.1. Project Approach 6

21.1 Background

For better understanding of the current software development methodologies we looked
into the history of these development practices, how they evolve over time from manual
coding to modern methodologies. We explored different traditional methodologies like
waterfall, and spiral models highlighting their limitations and the subsequent emergence
of iterative and incremental methods like rational unified process, agile, etc. This back-
ground study helped us to identify the core foundational shift that paved the way for
low /no-code development and generative Al

2.1.2 State of the Art

In this chapter, we explored the current state of low /no-code development and generative
Al technologies. We looked at their functionalities, key features, benefits of usage and
market adoption. We also looked at the differences between low and no code develop-
ment methodologies. We looked at some of the existing platforms to understand their
functionalities, features, and the challenges they currently have. We also discussed the
advancements and applications of generative Al in software development. We explored
the current implementation scenario of generative Al and low /no-code platforms as well
as challenges of implementation.

2.1.3 Business Analysis

For the business analysis section of our report, we evaluated the market and strategic
implications of low/no-code development platforms and generative Al technologies. We
analyzed what are the market trends, adoption rates of these technologies, and key com-
petitions available to understand the competitive landscape. We also utilized different
business analysis frameworks like swot analysis, porter’s five forces, value proposition
canvas, and the business model canvas to demonstrate the business opportunities and
challenges associated with the integration of generative Al technology into low/no-code
development platforms.

Stakeholder Analysis

In the stakeholder analysis, we identified the stakeholders relevant to the successful im-
plementation of generative Al into low/no-code development platforms. We made the
power-interest grid for the identified stakeholders and placed them into specific grids
based on their power, influence, interest, and contribution to the idea of integration.

SWOT Analysis

We performed the SWOT analysis so that we could identify the core strengths, weaknesses,
opportunities, and threats associated with the integration of generative Al into the plat-

2.1. Project Approach 7

forms. This helped us to identify different factors both internal and external that can have
an impact on the adoption and success of the integration.

Porter’s Five Forces

We used the framework of porter’s five forces to evaluate the market scenario and competi-
tive landscape. This included analyzing the possible threat of new entrants, the bargaining
power that both suppliers and buyers have, the threat of substitute products on the market,
and the competitive rivalry intensity.

Value Proposition Canvas

The value proposition canvas was used to determine the kind of value that the users
of low/no-code platforms would obtain after integrating AI. We mapped out customer
requirements, pains they were facing, and this included generative Al integration that
could help solve their problems and give them the expected value.

Business Model Canvas

We also developed a business model canvas around the idea of integrating generative
Al into these platforms. We conceptually outlined the strategic positioning and potential
revenue models for the successful implementation of the idea. We identified all the key
components of the canvas, which helped us to understand how businesses can effectively
leverage these technologies to create value, reach target customer segments, and generate
sustainable revenue out of them.

2.1.4 Technical Analysis

The purpose of the technical analysis is to understand the architecture and functionality of
low-code platforms, as well as their development life cycle, to investigate how emerging
generative Al technologies can be integrated into this field. This part will be solely based
on existing literature an research papers.

Chapter 3

Background

In this chapter, we provided a historical overview of software development methodologies
from different traditional models like waterfall, spiral to modern methodologies like ra-
tional unified process and Agile. We discussed their development processes, principles,
what kind of development is suitable for utilizing them, their advantages and disadvan-
tages, and later how the evolution of low /no-code development happened to mitigate their
limitations.

3.1 History of Software Development Practices

Software development approaches have transformed significantly in the last decades due
to technological enhancements, changes in business needs, and software delivery models.
The history of software development can be traced back as far back as the early 1950s and
1960s when programming was initially developed. During this period, the development
process was often non-sophisticated and heuristic in nature with a minimum organized
framework for a development process [11]. However, with the increased size of software
projects, many people realized the need for more formalized methodologies.

Waterfall model is recognized as one of the first systematic approaches of software de-
velopment that was introduced in the late 1960s and early 1970s [12]. The waterfall model
developed by Winston W. Royce in 1970, offered a linear and strict methodology for soft-
ware development where phases are well-defined [13]. While the Waterfall model offered
a clear plan of action, it was criticized for its rigid structure and inability to accommodate
changes in the requirements.

Later, in the 1980s and 1990s methods like incremental and iterative emerged to over-
come the difficulties of waterfall model. In 1986, Barry Boehm developed the spiral model
which combined the features of iterative and risk-based approaches that could be adjusted
and improved during the development phases [14]. In addition, some other approaches

3.2. Tranditional Software Development Methodologies 9

like rapid application development (RAD) and unified process (UP) emerged, focusing on
the iterative approach and the participation of end-users [15].

It was only at the beginning of this century that this concept called Agile movement was
popularised, claiming that the traditional methodologies had their shortcoming. The man-
ifesto of agility, issued in 2001, detailed a set of stated ideals centered on humans and
interactions, functional software, consumers, and rapid feedback to change [16]. This led
to the rise of numerous Agile frameworks like scrum, kanban, XP, and lean software de-
velopment, which encouraged iterative work, teamwork, and frequent delivery [17].

Alongside the agile movement, other complementary development approaches also gained
attraction. Some of them are:

* DevOps: DevOps methodology emerged in the late 2000s and intended to close
the communication gap between the operation and development teams to enhance
collaboration, automation and continuous delivery [18].

* Model-Driven Development: MDD focuses on utilizing models as the key assets for
software development, allowing automation and code generation [19].

¢ Continuous Integration/Continuous Delivery (CI/CD): Automating the build, test-
ing, and deployment procedures was a key component of CI/CD methods, which
allowed for frequent and dependable software releases [20].

Technologies such as cloud computing, containerization, and artificial intelligence (AI)
have advanced significantly in recent years, impacting the software development land-
scape. Because of these improvements, new methods and techniques have evolved, such
as:

¢ Serverless Computing: Serverless computing allows for users to create and deploy
applications without managing the underlying infrastructure [21].

* low/no-code Development:This development method enables users (both technical
and non-technical) to create software applications using visual interfaces and pre-
buiilt components [22].

¢ Al-assisted Development: Using machine learning and Al approaches to help with
development, testing, and automatic code generation [23].

3.2 Tranditional Software Development Methodologies

Traditional software development has its roots in the early days of computer science, when
software was developed sequentially and document-driven. This technique, known as the
"Waterfall" model, was initially established in the 1970s and remained the predominant

3.2. Tranditional Software Development Methodologies 10

paradigm for software development for several decades. [24].

The waterfall approach is linear in nature, with activities carried out indirectly related
to the different stages of requirement gathering, design, implementation, testing, and de-
ployment [24]. This approach completely specifies about the outcomes of each stage of the
development process as well as the commitments of planning and documentation.

Over time, the traditional software development methodology has expanded to embrace a
variety of approaches, including the spiral model, the V-model. These techniques empha-
size prior planning, detailed documentation, and a disciplined phase-based approach to
software development [24].

Some of the most common traditional development methods and their descriptions are
described below:

¢ Waterfall Model: The waterfall model was first introduced first by Winston Royce,
which is linear in nature [25]. This approach divides the development life cycle into
segments that are convenient to manage. These phases are organized in a sequential

manner, where a new phase begins only once another phase has been completed
[26].

‘ Requirements \

Specification
\'
Design
\

l Implementation

J

\

Maintenance

Figure 3.1: The Waterfall Model [27].

Phases of the Waterfall Model: The waterfall development model phases are de-
scribed below [27]:

— Requirements: In this phase the requirements of the users are collected and
documented properly.

— Specification: In this phase of the model, a formal document is created that
contains all the requirements of the application.

— Design: Based on the identified requirements and specifications, the architec-
ture and design of the application are developed.

3.2. Tranditional Software Development Methodologies

11

— Implementation: To translate the design into a functional system, the actual

source code is written based on the system design documents in this section.

— Unit Testing: The components are tested individually in this phase of the de-

velopment cycle.

— Integration Testing: In this stage of model all the components are combined

and tested together here.

— Maintenance: In this last phase, the necessary enhancements and corrections of
the final application is done based on the requirements.

Advantages and disadvantages of the waterfall model are described in the table:

Advantages

Disadvantages

— As the waterfall model is linear and
sequential in nature so it provides
a clear and structured approach to
software development [26].

- Each phase produces detailed doc-
umentation, which aids in mainte-
nance and knowledge transfer [26].

— The sequential flow of the model
simplifies project management, es-
pecially for large teams and com-
plex projects [25].

— The model assumes that all require-
ments will be collected at the begin-
ning of the development, providing
a clear roadmap for the develop-
ment process [25].

- It is difficult to go back to early
phases and make changes once a
phase is completed, which makes
the model less adaptable to evolv-
ing requirements [26].

- As testing is done after the imple-
mentation, it can result in late dis-
covery of critical issues [26].

— The model requires full under-
standing and documenting of the
requirements from the beginning
which is difficult in real life scenar-
ios [25].

— The model’s rigidity can lead to in-
efficiencies and increased costs in
long-term projects where changes
are inevitable [25].

Table 3.1: Advantages and Disadvantages of the waterfall model [25]

The following types of projects are appropriate for the waterfall model [28]:

— Suitable for small-scale development.

— Stable and clear requirements are available/identified.

— Stable environment available.

— Stable development tools are available.

3.2. Tranditional Software Development Methodologies 12

— Has well-trained resources available.

¢ Spiral Model: It is a risk-driven software development process that was developed
by Barry Boehm in 1986 [29]. It is a higher-level model that integrates features of the
other categories, namely, incremental, waterfall, and prototyping models, offering an
orderly as well as cyclical method of developing application software.

A Cumulative cost

1.Determine Progress 2. Identify and
objectives /——h- resolve risks

equirements i
n Prototype 1) Prototype 2| prototype
c o
requirements
equirements r

Detailed
design

Review

Implementation
4. Plan the Release

next iteration 3. Development
and Test

Figure 3.2: The spiral model [29].

Phases of the Spiral Model: Different phases of the spiral model are as follows
[29]:

— Planning: It is the first phase of the spiral model where the main purpose of
the project is identified. For the next phase of the model proper planning is also
done in this phase.

— Risk Analysis: In this phase the risk related to the project is clearly identified
and necessary assessment is also done for the identified risks.

- Engineering: After that the engineering phase comes where the software is
built following the requirements that were collected in the previous phase of
the model.

— Evaluation: Lastly in the evaluation phase, the software is evaluated to see
whether the developed software fulfills requirements of the customer and also
meets the quality standard.

Applications of the Spiral Model: It is commonly used for these kinds of
projects [30]:

+ Large Scale Projects

3.2. Tranditional Software Development Methodologies

+ Frequent updates and releases needed

+ Prototyping Requirements
+ Risk and cost evaluation

+ Moderate to high risk
Complex Requirements

*

13

Advantages and disadvantages of the spiral model are described in the table below

[30]:

Advantages

Disadvantages

- Effective risk management through
iterative cycles and continuous as-
sessment.

- Flexibility accommodating
changes based on stakeholder feed-
back and evolving requirements.

in

— Allows for incremental releases,
providing early prototypes and par-
tial system implementations.

— Enhances user involvement
through regular reviews and
evaluations, leading to better re-
quirements validation.

— Complexity in managing multiple
iterations and maintaining detailed
documentation.

- Higher cost and time investment
due to iterative nature and contin-
uous risk analysis.

— Requires highly skilled project
managers and developers with ex-
pertise in risk management.

- Not suitable for smaller projects
due to its extensive planning and
resource requirements.

Table 3.2: Advantages and Disadvantages of the Spiral Model [30]

* V-Model: It is the evolution of the traditional waterfall model and also known as
the verification and validation model. This model also incorporates a formal and
structured approach to software development that follows a step-by-step process of
software and puts importance on the verification and validation of the developed
software. It is a linear model that has testing phases for each different stage of a
project’s development; therefore, it has a V shaped appearance [31]. This makes sure
that each process is checked and verified before moving to the next step and this
makes the work reliable and ensures the product quality.

Phases of the V-Model: The phases of the V-Model are as follows [31]:

- Requirements Analysis: This phase involves identifying the requirements for
the system from stakeholders. These requirements are described in detail and

. Tranditional Software Development Methodologies 14

V- Model

Developer's life Cycle Tester's Life Cycle

Business req. Acceptance
Specification Testing

Systemn
Intergration
Testing

System Req.
Specification

High level Component

Design Testing

Low level
Design

Figure 3.3: Diagram of V-model [31].

form the basis for all other stages.

— System Design: After that, both functional and non-functional requirements
are described clearly, as well as the system elements and connections between
them.

— Architecture Design: In this stage software architecture is designed in detail
based on the system design.

— Module Design: In this stage the actual software components are planned and
developed.

— Coding: The actual source code is then written based on the detailed design
documents in this phase. Every module or component is developed and then
tested separately.

— Unit Testing: Module tests are done to check whether each of the modules
is functioning in the right manner. This phase deals with the testing phase
whereby the correctness of a particular module is determined.

— Integration Testing: The modules are connected and the coupling between
them is verified. This phase confirms that the integrated system components
interact with each other in the desired manner.

— System Testing: To ensure that system has the required characteristics the veri-
fication of the integrated system is done in this phase.

— Acceptance Testing: This phase frequently includes end-users. In order to sat-
isfy the needs and requirements of the end-users the system is implemented in
the real world.

3.3. Modern Software Development Methodologies 15

Applications of the V Model: The V-model is suitable and effective for projects
or developments where the requirements are well-defined and have less chance of
modifications [31].

— Suitable for small to medium-sized projects where requirements are clearly
specified and finalized.

— Projects that have technical resources available and essential technical expertise
also.

— Where accuracy and reliability are concerns and are often safety-critical as well
as require thorough validation.

The table below illustrates the key advantages and disadvantages of V-Model [31]:

Advantages

Disadvantages

- Enhanced quality assurance is
achieved through continuous ver-
ification and validation at each
phase of the development cycle.

— Clear structure and different phases
make the project easy to manage
and track progress.

- Extensive documentation through-
out each phase helps in under-
standing and maintaining the sys-
tem.

— Early detection of defects through
systematic testing corresponding to
each development phase.

- Inflexibility in accommodating
changes once the project is under-
way, similar to the Waterfall model.

- High documentation overhead can
be time-consuming and costly.

- Late discovery of some issues, as
testing phases occur after develop-
ment phases.

- Not suitable for projects with un-
clear or frequently changing re-
quirements.

Table 3.3: Advantages and Disadvantages of the V-Model

3.3 Modern Software Development Methodologies

The traditional approaches have been passed through a great deal of criticism due to their
limits, sequential nature, and document-centricity. These methodologies often end up
not being able to meet new requirements anymore, leading to problems such as delayed
projects, high costs, and substandard software [32]. These challenges paved the way for
the introduction of new methods of software development in an attempt to enhance the

3.3. Modern Software Development Methodologies 16

efficiency of software development. They helped unblock the limitations of the old tech-
niques through an emphasis on flexibility, cooperation, and continuous development [33].

Most of the software development processes that are followed today, like Agile, DevOps,
and Rational Unified Process, are iterative and incremental processes through which soft-
ware developers are able to respond to changes in requirements and deploy working soft-
ware much more quickly [34]. The current software development practices involve multi-
ple teams where developers, business people, and customers work together to ensure that
the software being developed reflects the needs of the business and its customers.

Key characteristics of modern software development methodologies include:
¢ lterative and incremental development
¢ Emphasis on collaboration and communication
¢ Continuous integration and deployment
¢ Agility and adaptability
¢ Focus on delivering value
Some of the most known modern development methodologies are described below:

¢ Rational Unified Process (RUP): The Rational Unified Process (RUP) is an iterative
software development process that has been developed by the Rational Software Cor-
poration, which is currently owned by IBM. RUP aims to offer a structured frame-
work for project management and software development based on identified risks
and collaboration [35]. The concept is not a prescriptive recipe but a framework for
project teams and development organizations to follow and adapt to the needs as
they see fit.

RUP is built around six best practices in modern software engineering. They are
[35]:

— Developing Iteratively

- Managing the requirements

— Employing component-based architecture

— Modeling software visually

— Continuous verification of quality

- Controlling changes

Phases of RUP: The key phases of RUP model are described below:

3.3. Modern Software Development Methodologies 17

Business value is delivered incrementally in
time-boxed cross-discipline iterations.

Inception | Elaboration Consfruction Transition

I1 El | E2 C1i c2 c3 c4 ([T1 | T2

Business Modeling h

Requirements

Analysis & Design] D

Implementation] e

Test — —— ——

Deployment I W, o .

Time =>

Figure 3.4: Rational Unified Process Model [35].

— Inception: In this phase, the project scope is outlined and its feasibility is con-
sidered. This involves the formation of project objectives and goals, the assess-
ment of risks, and the development of an initial communication plan [35].

Elaboration: The main emphasis is on defining the vision, risk analysis, and
management of the project, as well as the subsequent creation of a detailed
project plan. In this phase, an architecture is also created [35].

Construction:This is actually the most critical phase in the development of the
software system since the actual implementation of the system is done in this
phase. These components are integrated among themselves and with other
elements to guarantee the fulfillment of the requirements [35].

Transition: It is moved from development to production, where the software
products are released to the actual users. Information on feedback and, when
necessary, modifications to the tool and parameters is received [35].

Applications of RUP Model: Some of the applications suitable for the Rational

Unified Process (RUP) model are [36] [37]:

— Complex Software Development Projects

— Object-Oriented Systems Development

- Requirements Analysis and Documentation
— Iterative and Incremental Development

— Use Cases and Requirements Management

- Component-Based Architecture
- Risk Management

— Collaboration and Communication

3.3. Modern Software Development Methodologies

18

The table below illustrates the advantages and disadvantages related to the Rational

Unified Process Model:

Advantages

Disadvantages

— Decreases the possibility of project
failure by enabling ongoing input
and development [37].

The emphasis is on risk minimiza-
tion and early detection, making
sure that possible problems are
dealt with as soon as possible [38].

It can be customized so that it meets
the unique requirement of a project
due to its versatility and adaptive
nature [37].

Ensures that everyone involved in
the project is aware of its current
state and direction [36].

- It might take a lot of time and re-
sources to install and maintain the
framework because it can be com-
plex [37].

- Experienced developers and project
managers are necessary for the suc-
cessful use of RUP [36].

- Development may be slowed down
by the emphasis on documentation
and procedure, which can create
additional overhead [38].

Table 3.4: Advantages and Disadvantages of the Rational Unified Process (RUP)

¢ Agile: Agile methodologies emerged in the early 2000s due to the rigid and inflexible
nature of traditional software development models like waterfall. With the appear-
ance of the Agile Manifesto in 2001, Agile methodology and its foundations were
established [39]. This manifesto was authored by seventeen software practitioners
who wanted to promote more human-centric and adaptive methods of software de-
velopment.

The Agile manifesto has twelve principles and four core values, which primarily
put a lot of emphasis on iterative approaches, customer interaction, and flexibility.

The four core values of the Agile Manifesto are [39]:

— People and Their Interactions over Procedures and Instruments

— Functional Software instead of Detailed Documentation

3.3. Modern Software Development Methodologies 19

— Consumer Involvement in Contract Negotiations

- Adapting to Change Rather Than Sticking to a Plan
The Agile Manifesto has twelve principles [40]:
— To meet the needs of customers by delivering valuable software on time and

consistently.

— Accepting changes in requirements, even if they arrive late in the development
cycle.

— Delivering working software frequently in shorter timescale.
— Close collaboration with business stakeholders and developers is required.

— Project should be built around motivated individuals and trust them to get the
job done.

— The most efficient and effective way to deliver information is through face-to-
face conversation.

- Working software is the fundamental metric of progress.

— The sustainable rate of development should be maintained.

— Continuous focus on technical excellence and good design is required.

— The art of simplicity, or optimizing the amount of effort not done, is crucial.
— The best designs and architectures are produced by self-organizing teams.

- keeping a regular eye on ways to improve effectiveness and making the neces-
sary modifications.

There are many phases in the Agile software development technique, each with a
distinct emphasis and set of tasks. The main stages of Agile are described below:

— Project Initiation: In this phase the project vision and ROI justification is dis-
cussed. The role of DevOps is considered, and the project charter is prepared
during project initiation to discuss the project vision and ROI justification [41].

- Planning: It is the foundational pillar of the entire project. Project team collab-
orates with the stakeholders to identify the features and functionalities of the
project. This phase involves release planning, backlog creation, and prioritiza-
tion based on business value and dependencies [42].

— Development: During this phase, the development is incremental and takes
place in sprints or iterations, which can be enhanced through Al and/or ma-
chine learning. The development stage is crucial to the agile approach; it per-
mits the construction of a product with only the bare necessities while imple-
menting the rest of the functionality afterward [42].

3.3. Modern Software Development Methodologies 20

Initiation Planning

Agile System

Developmen

Retirement Development

Release

Figure 3.5: Agile System Development Life Cycle [41].

— Testing: The primary activities in this phase include quality assurance activities,
the generation of technical documentation, and the verification that the software
is operating optimally. Unit, integration, and system testing are among the
several tests which are included in this phase. [41].

— Deployment: During this stage, the program is made available to end users.
In addition to making sure the software is installed and set properly, the team
needs to teach end users so they can utilize it efficiently [42].

— Retirement: When it comes to this stage, it typically involves discontinuing the
product, which is usually because newer versions are available or there is a lack
of support [41].

Popular Agile Frameworks: Some of the popular agile frameworks are:

— Scrum: This is a well-known Agile model that divides development work into
sprints, which are two to four-week-long fixed-length iterations. Along with
roles like Scrum Master, Product Owner, and Development Team, it includes
sprint planning, daily stand-ups, sprint reviews, and retrospectives [43].

— Kanban: It is an agile approach that emphasizes reducing work-in-progress
and visualizing the process to increase productivity [43]. To monitor work and
encourage continuous delivery, it makes use of a Kanban board.

3.4.

Evolution of low/no-code Development

21

— Extreme programming (XP): Through practices like test-driven development
(TDD), pair programming, and frequent releases, XP focuses a high emphasis
on technical excellence and continuous improvement [43].

The table below illustrates the advantages and disadvantages associated with the

Agile software development methodology:

Advantages

Disadvantages

- As it is an iterative approach, teams can

react rapidly to shifting demands and
market situations, which increases cus-
tomer satisfaction. [44].

Agile encourages constant communica-
tion and collaboration between stake-
holders and team members [45].

Agile approaches guarantee that func-
tional software is accessible early and
throughout a project by providing it in
short, incremental cycles [46].

Software quality is improved overall
when problems are found and fixed
early on, thanks to continuous testing
and integration [47].

In order to lower the risk of produc-
ing a product that does not fulfill user
demands, regular feedback loops make
sure the changing product satisfies con-
sumer expectations [44].

— It might be difficult to implement agile

in conventional, hierarchical businesses
since it demands a culture shift toward
cooperation and adaptability [48].

Consistency and dedication to iterative
procedures and feedback loops are nec-
essary for implementing agile principles
[49].

If changes are not properly handled,
the adaptability of Agile might result in
scope creep [47].

It can be difficult to scale agile for big
projects or organizations, and additional
frameworks like SAFe may be needed
[50].

There is a chance that as Agile grows,
its guiding principles will be compro-
mised, resulting in a "waterfall" method
disguised as Agile [49].

Table 3.5: Advantages and Disadvantages of Agile Methodology

3.4 Evolution of low/no-code Development

The origin of low /no-code development (LCND) goes back to the complexity of traditional
software development and the simpler, more accessible platforms that exist now. The jour-

ney began with traditional methods that, despite their systematic approach to software
production, usually resulted in lengthy development cycles. The 1980s and 1990s wit-
nessed a shift towards Rapid Application Development (RAD), which emphasized shorter,

3.4. Evolution of low /no-code Development 22

more iterative creation cycles and user interaction, establishing the foundation for acceler-
ating the development process [51].

Parallel to RAD, the invention of Fourth-generation Languages (4GLs) around the same
time was a revolutionary move from the more complex progeny languages, processing
raw coding to a higher level of abstractions and a more natural language similarity. These
language types were proposed as a way to reduce the technological limits of software de-
velopment from the initial stages [52].

In the late 1990s and early 2000s, contemporary LCND systems emerged, including drag-
and-drop interactivity and visual processes. This was a period of principle for these low-
code enthusiasts to open up the development of the application to a wider community as
expert developers. This was illustrated by tools and platforms including Microsoft Access
and Salesforce.com, leading to the organic acceleration of the application development of
the LCNDc [53].

The previous decade has seen rapid expansion and adoption of LCND systems by or-
dinary users, due to the availability of cloud computing in recent years. This advancement
has laid the framework for complicated software operating on LCND platforms to expand,
enhance its appeal, and become widely used in all sectors [54].

At present, LCND platforms are the leading actors of digital transformation operations,
allowing organizations to react swiftly to the market’s demands, and innovate without
going through the old barriers that used to impede software development. New technolo-
gies, including Al and machine learning, incorporated into LCND systems will have a
profound impact on software creation making it more accessible and effective [29].

In the future, we anticipate seeing a lot more of LCND combined with new technologies
like generative Al, as the area of LCND has a bright future. These expected developments
will impact automation, efficiency and software development and function, demonstrating
the leadership and implementation of LCND platforms [55].

Chapter 4

State of the Art

In this chapter, we explore the current advancements and trends in low /no-code develop-
ment platforms and generative Al technologies. We discussed the core features, benefits,
and market adoption of these technologies, emphasizing their role in democratizing soft-
ware development and enhancing efficiency. We also explored the challenges associated
with these technologies and how the handling of these limitations can bring numerous
opportunities.

4.1 Low/No Code Development

Low-code/no-code development platforms have evolved rapidly since their introduction
in the early 2000s. LNCD began in the early 2000s with the emergence of RAD (Rapid
Application Development) platforms, which aimed to provide a more visual approach to
application development. In 2016, a market research institute created the phrase "low
code" to refer to a variety of low code players [56].

Low code development is a visual method to software development that enables faster
application delivery with less hand coding. A low code development platform’s graphical
user interface and drag-and-drop capability automate aspects of the development process,
reducing the requirement for traditional computer programming approaches [57]. These
low code development platforms make software development more accessible, especially
to "citizen" developers, enterprises that use minimal professional coding skills, such as
business analysts or project managers [57]. On the other hand, A no-code development
platform (NCDP), similar to low-code also lets the users to develop software with drag-
and-drop interfaces rather than traditional manual programming. Both low-code and no-
code platforms are developed to accelerate development process automation while also
providing scalability in these operations [57].

The rise of these platforms is a dramatic shift in the software development landscape

23

4.1. Low/No Code Development 24

that breaks the barrier of programming complexities, allowing anybody to use already
existing reusable building blocks of programs to create an application [58]. These plat-
forms empower both programmers already skilled in techniques and non-technical users
via graphical interfaces and pre-written templates, thus lowering the need for extensive
hand-coding of code [59].

LCND platforms implement abstraction and visual programming strategies. They pro-
vide a visual development environment in which users may drag and drop components
to create apps, graphically design processes, and set functions without difficult coding
[60]. This template-based approach not only speeds up the development process, but also
makes it available to an increasing public, which is a symbol of the generalization of de-
velopment [61].

Among the core merits of the LCND tools are high productivity, low cost, and making
software development accessible to a large number of users, even those with no or little
technical skills [57]. Such platforms accelerate the prototyping and deployment of solu-
tions and, therefore, the company is able to respond to market demands and innovation
opportunities as quickly as possible [62]. Nevertheless, LCND platforms offer their advan-
tages, yet they are not free from weaknesses. However, critics are of the view that while
they offer unique features of accessibility and efficiency, they might lack the high level of
flexibility and customization that regular software development options offer. This could
cause performance and scalability problems when implemented in complex business sce-
narios [63].

The integration of Al and machine learning (ML) models into these low/no-code de-
velopment platforms can create new possibilities for automation capabilities, analytical
prediction, and decision-making. While these platforms are still in their early stages, if
they continue to advance, they will have a significant influence on a variety of businesses,
particularly those that require rapid transformation yet have limited resources for software
development [64]. This phenomenon has not only democratized the software development
environment, allowing a larger part of the user community to create, but it has also re-
sulted in a more collaborative approach to software development, in which everyone con-
tributes their unique expertise to a given problem. Surpassing phone applications, such
as issues related to secure data security, regulatory compliance, and application perfor-
mance, remains a key priority. However, the basic notion symbolizes the continued role
of LCND platforms in future technological growth, as it functions as a force that allows
for simplicity of the process, efficiency, and responsiveness to the changes experienced by
companies and society [62].

4.2. Low Code Vs No Code 25

4.2 Low Code Vs No Code

low /no-code development has been leading the current software development and tech-
nology area with its functions and capabilities. These are two different approaches of
creating software applications and solutions. Low-code is a method of software develop-
ment that employs tools and technologies to dramatically reduce the number of lines of
code required for a similar software solution. No code Development is defined as a soft-
ware development approach that does not require coding to create a functional software
application [65]. Both speed up application development while appealing to a diverse
audience and use cases. Let’s look at each individual’s qualities and differences.

4.2.1 Low Code Development:

Low-code is a technique for developing applications that converts textual coding to visual
[58].

Low-code uses a model-driven, drag-and-drop interface approach instead of a techni-
cal coding environment. This development method allows developers of all skill levels
like beginner, professional developers, subject matter experts, business stakeholders, and
decision-makers — to create business applications that can create value [58].

Some of the characteristics of low code development and their benefits are described be-
low:

* Visual modeling: Through drag-and-drop functionality and an integrated visualiza-
tion UlI, professional developers can boost their own performance; citizen developers
too can build all sorts of applications [58]. By using model-driven technology, the
user can graphically present how an application works, simultaneously launching
the one-click deployment. The benefits of visual modeling are :

— Make use of current personnel to develop and deliver apps more quickly.
— Encourage participation in development from departments other than IT
— Create a range of alternatives without spending a lot of money .

— Improved cross-functional team cooperation and decision-making

- Allow expert developers to focus on more ambitious and intricate projects.

* Reusable components: Users can create cross-platform apps using pre-built logic,
connections, templates, and modules. Skilled developers can alter and expand the

functionality of low-code application components. The benefits of reusable compo-
nents are as follows [58]:

— Accelerate development with increased effectiveness.

4.2. Low Code Vs No Code 26

— Depend on reusable components with performance and security testing com-
pleted beforehand.

- Create apps that are more scalable and consistent.
— Extend program features as soon as necessary

¢ Collaboration tools: Capable of collaborative development with integrated features
for user stories, revision tracking, feedback loops, chat, and more. Low code keeps
everyone using the same programming language since it is visual. Benefits are [58]:

- Divide departments to promote a more robust business-IT collaboration.
- Encourage enhanced inter-organizational communication.
— Simplify the development process and minimize rework.

* Scalable environments: As consumer wants and company requirements change,
developers can swiftly implement new apps and enhance current ones [58]. Scalabil-
ity for both run-time and development-time on demand, flexibility, and support for
continuous delivery are features of a cloud-based low-code platform. Benefits are:

— Creating scalable, easily maintainable systems with cloud-native architecture.
— When required, assisting in making quick adjustments.

— Continuously improving end user experiences by means of engaging mobile,
web, conversational, or immersive experiences.

— Maintaining an adaptable organization in the face of change.

¢ Data integration: Tntegration of data and logic can be done securely from any
source, system, or service. It can be done by either using APIs and connectors that
are pre-configured or experienced developers can create custom integrations [58].

— More than 30% of the developers’ time can be reclaimed.
- Creating and managing larger-scale systems.
- Finding and sharing data between projects and teams with ease.

— Easily accessing company data to create reusable components and microservices
more quickly.

¢ Application lifecycle management: Integrative low-code platforms combine Agile
development principles and DevOps technologies to support all stages of the ap-
plication development lifecycle with tools that accelerate project management, re-
quirements management, version control, testing, deployment, and more. Benefits
[58]:

- Moving apps through every stage of their lifetime with ease: Conceptualization,
creation, evaluation, implementation, and management.

- Automating and abstracting to accelerate every stage for faster delivery.
- Giving teams the freedom to operate independently and iteratively.

4.2. Low Code Vs No Code 27

4.2.2 Use Cases:

For companies looking to adapt digitally, cut costs, and quickly create applications, low-
code development has become an excellent option. Low-code development facilitates the
rapid and effective creation of applications by both developers and non-developers due to
its visual development tools, drag-and-drop capability, and low coding requirements [66].
The most common business use cases for low-code development include the following;:

¢ Legacy application modernization: Modernizing and updating outdated systems is
a common use case for low-code platforms. This entails, without beginning from
scratch, converting outdated programs into more contemporary, effective, and scal-
able solutions [66].

¢ Process automation: Companies automate and simplify complicated business opera-
tions with low-code platforms. Increasing overall efficiency and decreasing the need
for manual intervention, might involve anything from straightforward procedures to
complicated operational systems [66].

Low-Code Development

Use Cases

Figure 4.1: Low code development use cases [67]

¢ Digital experience solutions: In order to improve the customer experience, this
includes developing online portals, mobile applications, and other digital interfaces.
Low-code platforms, which frequently have responsive designs for cross-platform
compatibility, let companies create and implement these solutions fast [66].

* Rapid prototyping and development: Rapid development and prototyping are made
possible by low-code platforms. Companies can quickly develop and refine new
concepts and apps by utilizing low-code platforms. This flexibility is essential in a
fast-moving corporate environment, where requirements can change abruptly [66].

4.2. Low Code Vs No Code 28

¢ Data integration and management: Effective data management and integration of
several data sources are possible with low-code platforms. Businesses that need to
significantly combine vast volumes of data from many sources may find this very
helpful [66].

¢ Custom business applications: These platforms enable businesses to develop unique
apps that are suited to their own business requirements and workflows. This can
include consumer applications, as well as internal tools for staff use [66].

¢ Customer relationship management (CRM) and sales automation: Low code plat-
forms can be used by businesses to improve customer engagement and sales pro-
ductivity by automating sales processes and developing or upgrading CRM systems
[66].

* Supply chain management: Supply chain processes, including distribution and
transportation, as well as inventory management, can be made more efficient with
low-code [66].

* Reporting and analytics: Applications for improved reporting and analytics may be
developed by businesses, allowing them to make data-driven choices more quickly
and effectively [66].

¢ Compliance and risk management: Solutions to manage risk assessment and man-
agement, as well as compliance with various requirements, can be developed using
low-code platforms [66].

4.2.3 Challenges and Limitations:

Low-code development is becoming more and more popular, as it can accelerate software
development, save costs and promote cooperation. Businesses should be aware of the
challenges and limitations associated with this technique before using it. These are some
of the primary challenges and limitations that come with low-code development.

¢ Limited Flexibility and Customization: The limitation of low-code platforms lies
in the predefined templates and components that limit the level of applications to
which they can be customized to meet specific business requirements. Finding a
suitable balance between speed and individualization is one of the most important
things.

* Integration Complexity: Integration of applications with existing systems and databases
is demanding, as these systems are becoming more and more complex. In order to
achieve effective integration with older systems as well as the third-party apps, low-
code platforms should provide powerful integration capabilities.

4.2. Low Code Vs No Code 29

¢ Security Risks: The security of low-code applications should be a top priority for
the platforms, as they ensure that the applications are safe from any vulnerability
and fall within the regulations of the industry. Inability to handle security correctly
can lead to data leaks and legal implications.

¢ Scalability Challenges: Low-code platform applications need to be adaptable enough
to meet evolving business needs and handle increasing loads. To achieve scalability,
extensive planning and architectural work are required.

* Dependency on Skilled Developers: Low-code platforms are meant to be user-
friendly, but in order to solve complicated issues and complete advanced activities,
experienced developers are required. Hiring a competent team that can fully uti-
lize low-code development’s strength and potential is something that organizations
should focus on.

* Vendor Lock-in: Most low-code platforms do not allow access to the source code,
making it difficult to migrate programs to different platforms. This limitation will
force the business to continue working on the same platform or rebuild it from
scratch, which will result in a substantial increase in time and cost.

¢ Team Collaboration: The shortcomings of low-code platforms often are that they
do not provide the appropriate platform for team cooperation. The lack of standard
mechanisms for code reviewing, as well as pull requests, can cause conflicts or over-
writes with multiple people working on the project, and this may be the cause of the
issue of maintaining coherence.

¢ Developer Experience and Limitations: At this early stage, the user experience of
most existing low-code and no-code products is typically not up to the expected level
of quality. This can severely reduce development productivity, since developers may
have to choose between depth of feature and convenience of usage.

To deal with these problems, companies should consider adopting a hybrid development
model, establishing a dedicated team responsible for integration solutions, assigning an
unambiguous security position, establishing a scaling plan, and conducting continuous
staff training. Moreover, organizations would be responsible for a good appraisal before
adoption and ensuring the platform is scalable and meets the long-term needs of the entity.
Some of the most popular low code development platforms are [68]:

¢ OutSystems

e Appian

* Microsoft PowerApps

¢ Salesforce Lightning

4.2. Low Code Vs No Code 30

Mendix

Zoho Creator

Quickbase

¢ Creatio

424 No Code Development

With the use of the no-code software development process, anyone without any prior pro-
gramming experience or knowledge may develop and distribute apps without writing any
code. By utilizing a robust visual programming environment with drag-and-drop func-
tionality and pre-existing components, no-code development gives users the opportunity
to construct web and mobile applications without ever writing a line of code [69].

Some of the common functionality that no code tools provide is as follows:

* A good, user-friendly interface with a drag-and-drop editor, visual workflow, and
other capabilities that allow users to develop apps without writing any code [69].

* A collection of already assembled components, such as forms, tables, buttons, and
other user interface elements commonly used in software systems [69].

¢ Users can use website, mobile, and workflow templates to start using their no-code
apps [69].

¢ Integration with other tools and services, such as payment gateways, email mar-
keting platforms, and customer relationship management (CRM) systems, enables
users’ apps to connect to other systems and data sources [69].

* A variety of deployment choices, enabling customers to roll out their apps on other
platforms, the web, or mobile devices [69].

4.2.5 Use Cases:

No-code development platforms have been more popular in the last several years, allowing
companies and people to develop software applications without having to write traditional
code. These platforms meet a variety of demands and circumstances by providing a range
of use cases. The following are a few typical applications for no-code development plat-
forms [70]:

* Rapid Prototyping: Without requiring extensive coding skills, users may construct
and validate application prototypes using no-code development platforms. This case
study has several benefits, particularly when it comes time to design and you require

4.2. Low Code Vs No Code 31

prototypes based on user feedback [70]. Programming visual tools and pre-built
modules speed up the approval and prototype process, cutting down on time-to-
market and length accordingly.

¢ Internal Tools and Automations: Organizations frequently need specialized internal
tools and automated processes to optimize operations and improve operational ef-
ficiency. No-code platforms enable non-technical people to create solutions without
relying on IT resources [70]. From staff onboarding systems to data gathering forms
and workflow automation, no-code platforms allow the building of customized apps
that answer particular business objectives.

¢ Cost-Effective Solutions: It may be expensive and resource-intensive to develop
apps using standard coding techniques, particularly for startups and small enter-
prises. By eliminating the requirement for specialist developers and cutting down
on development timeframes, no-code platforms provide a more affordable option
[70]. Thanks to this use case, businesses may construct useful apps without having
to pay hefty costs for developing proprietary software.

* Reduced Maintenance Costs: Conventional software programs may be difficult and
expensive to maintain and update, sometimes needing specialist knowledge and re-
sources. Due to its visual design and pre-built components, no-code systems of-
ten have cheaper maintenance expenses. The difficulty of updating and improving
custom-coded apps is decreased, as is the overhead involved in doing so.

¢ Agility and Iteration: No-code platforms provide for more agility and iteration in
application development. Because modifications may be made fast and without con-
siderable coding, firms can swiftly adjust to changing requirements, user input, or
market situations [70]. This use case provides a more iterative development strategy,
allowing applications to be improved and refined on a constant basis.

¢ Easier Maintenance and Over-the-Air Updates: Maintaining and upgrading pro-
grams becomes easier with no-code platforms. Many systems support over-the-air
(OTA) updates, which allow upgrades to be sent to deployed apps without the need
for manual intervention [70]. This use case streamlines the update process, ensuring
that apps are up to date with the newest features and advancements.

* Order management: No-code platforms may be used to create order management
systems that help organizations optimize their order processing and fulfillment pro-
cedures. These apps can interface with a variety of systems, including inventory
management, shipping, and payment gateways, to provide a consolidated order
management solution [70].

* Employee directories: Employee directories are a common use case for no-code plat-
forms in business. Companies may use these platforms to create customized di-
rectories that include employee information, organizational hierarchies, and search

4.2. Low Code Vs No Code 32

functions [70]. Employees may instantly modify and access these directories, which
improves internal cooperation and communication.

4.2.6 Challenges and Limitations:

Much like low-code development platforms, no-code development platforms (NCDPs)
have revolutionized software development by enabling non-technical individuals to write
programs using graphical user interfaces and configuration instead of traditional cod-
ing [71]. Though these platforms save development times and improve accessibility, they
have a number of drawbacks that may restrict their applicability in settings that are more
complicated or scaled. Some of the challenges and limitations associated with no code
development tools are described below:

¢ Limited Customization: Most no-code platforms come with ready to use templates
along with limited customization options making it hard to build robust applications
which cater the unique business requirements [70].

* Scalability Concerns: No-code platforms may be not designed for managing large
amount of data or number of users so it would be difficult to develop applications
that the broader audience uses them. Scale to handle more traffic from users or
complex functionalities are still a limitation that many no-code tools have [70].

* Vendor Lock-In: The no-code platforms are proprietary, thus, if a project was build
with a certain platform, it can be hard to migrate or have another platform. It may
reduce the agility and portability of programming and hurt the chances to apply new
gadgets or methods [71].

¢ Limited Integration and Collaboration: No-code platform may have a drawback of
integration of other systems and collaboration between technical and non-technical
personnel too. This can obstruct the smooth data flows and automation of workflow
among various tools [71].

¢ Data Security and Compliance: It may be difficult to ensure data security and reg-
ulatory compliance while using no-code applications. Organizations should exercise
extreme caution when it comes to access restrictions, encryption, and data protection
to prevent unauthorized access or data breaches[71].

Some of the popular no-code development platforms are:

Bubble

Airtable

Webflow

e Zapier

4.3. Core Principles of Low/No-Code Development Platforms

® Quickbase

¢ FlutterFlow

4.2.7 Difference between low code and no code development

33

The following table highlights the key distinctions between low-code and no-code devel-

opment tool:

Criteria

Low-Code Development

No-Code Development

Customization

Allows for some custom coding

Does not require any coding

Target
Audience

IT professionals with coding skills

Non-technical users without
coding knowledge

Flexibility

More flexible than no-code, but less than
traditional coding

Limited flexibility due to rigid
templates

Security

Requires some attention to security, but
can be customized

Security can be a concern due to
lack of control

Cost

Can be more expensive due to the need
for coding talent

Generally more cost-effective
due to ease of use

Integration

Can be integrated with other systems and
customized

Limited integration abilities due
to rigid templates

Scalability

Better positioned for scalable solutions

Limited ability to scale complex
apps

Examples

Appian, Mendix, Zoho Creator

Webflow, Bubble, Glide, Zapier,
Adalo, Thunkable

Figure 4.2: Low Code Development vs No Code Development [72]

4.3 Core Principles of Low/No-Code Development Platforms

Traditional application development always requires skilled coders and is typically de-
layed until the department of those coders in IT approves any creation or modification of

apps [73].

Low-Code Development Platforms (LCDPs) and No-Code Development Platforms (NCDPs)
utilize visual programming, model-driven development, and automatic code generation

4.3. Core Principles of Low/No-Code Development Platforms 34

concepts. These platforms are generally intended for users who are already familiar with
their company’s department’s technological stack, protocols, and workflows, independent
of their programming expertise level. Individuals with and without prior experience will
be required to participate under the concept [73].

The core principles are described below:

¢ Visual Programming (Drag-and-Drop Interfaces): Drag-and-drop interfaces reflect
a paradigm shift in software development, with a focus on visual connections rather
than textual code. This interface allows users to create programs by dragging and
dropping objects such as texts, buttons, and connections onto a grid and organizing
them to construct a working user interface and workflow [73] [74]. This visual mode
converts fundamental coding logic into graphic blocks that are much easier to grasp
and work with, lowering the technical barrier to app creation. Not only accelerates
workflow and core tasks, but also democratizes software development, making it
available to a wide range of stakeholders, including business analysts, designers,
and subject matter experts [73].

VA

[raditional Programming Visual Programming

Figure 4.3: Traditional Programming vs Visual Programming [74]

* Model-driven Design: Model-driven design is the basic idea behind LCND plat-
forms, which uses high-level concept models to define an application’s design by
categorizing its structure, behavior, and interaction of application components. This
solution automates a substantial portion of the app production process; the system
converts technical models into operational apps using a set of predefined rules and
a library of templates. The model-based architecture naturally encourages quick and
repeated simulations and versions of the application, as any changes to the model
are immediately reflected in the code without the need for manual intervention [58].

This flexibility feature ensures that app development is done quickly and easily and

4.3. Core Principles of Low/No-Code Development Platforms 35

Figure 4.4: Model Driven Development [58]

that any changes based on feedback and growing needs are properly addressed. On
the contrary, model-oriented design integrates technological and syntactical aspects
into the design solution in a smooth manner by focusing on the domain layer, which
is the logical part of software development. In addition to making the development
cycle more beautiful and deliberate, the idea also lends the application design a more
focused and strategic approach [58].

¢ Automatic Code Generation: Automatic code creation in low /no-code Development
platforms simplifies software development by eliminating the tediousness of manual
coding. These systems, such as OutSystems and Mendix, start code creation via a vi-
sual interface, turning user actions into executable code using model-driven concepts
[75]. Using pre-defined templates and libraries, users, including citizen developers,
can focus on functions while the platform addresses technical needs such as reusabil-
ity and usability. Automation empowers developers by making app development
more accessible while also improving code quality, maintainability, and processes,
allowing for the effective and easy creation of software in a dynamic digital arena
[73].

Low-Code/No-Code (LCND) development is a more efficient way to build software
than traditional coding. Here is an overview of the key steps involved.

¢ Defining the needs and desired outcome: To begin low /no-code software develop-
ment, the first step is to determine the project’s business requirements and end goals.
Recognizing the problem to be solved, the possible users and the data needed for the
required functionalities is critical at this stage [73].

4.4. Current State & Trends of low /no-code Development 36

¢ Drawing a Business Process or Workflow: low/no-code Business Process Manage-
ment (BPM) and development technologies are used to establish and capture the
desired procedures and workflow. Dividing the application into modules based on
its intended use, and then generating these modules as independent components.
These modules can collect data, initiate actions or events, and combine to deliver all
desired results [73].

¢ Testing and Deploying the Project: After developing the application using low/no
coding platforms, the next step is to test and deploy the product. low/no-code sys-
tems that eliminate complexity from the back end, facilitating testing by IT specialists
and beta testers. Once the feedback-based adjustments have been implemented, the
application may be made available to the general public [73].

4.4 Current State & Trends of low/no-code Development

With the rise of low-code and no-code development platforms in recent years, the land-
scape of software development has undergone significant shift [76]. The process of devel-
oping software has been transformed by these newly developed tools, which enable both
technical and non-technical people to construct completely working software applications
without writing a significant amount of code.

Low-code and no-code development has evolved to meet the demand for quick, efficient,
and accessible software. Customers from many business sectors perceive these platforms
as a strategic asset that enhances prototyping, streamlines procedures, and empowers citi-
zen developers [76]. Understanding the current and future of low-code and no-code devel-
opment requires understanding the key trends, developments, and challenges that shape
this dynamic ecosystem. Some of these patterns and present conditions are mentioned
below:

¢ Increasing Adoption and Mainstream Acceptance: A major factor influencing low-
code and no-code development is the growing recognition of the platforms as more
people start using them. According to the 2022 survey by Mendix, 94% [76] of enter-
prises from different sectors used low-code solutions in comparison to 77% in 2021
[76], as stated earlier. Furthermore, 69% of the respondents acknowledge that their
companies need to adapt low-code options rather than utilize them only for tempo-
rary measures [76]. This transformation of view is an acknowledgment that low-code
and no-code development approaches become a strategic competitive advantage to
the business.

¢ Expanding Use Cases and Industry Adoption: Low-code and no-code development
is no longer restricted to specific use cases or only for small-scale companies [76].
These platforms are being deployed across numerous fields, such as health care, e-
commerce, education, and public institutions. Employers take advantage of these

4.4. Current State & Trends of low /no-code Development 37

tools to resolve issues related to logistics, the supply chain, and customer support
[77].

¢ Increasing Integration and Collaboration: With the ongoing development of low-
code and no-code tools, collaboration and exchange become increasingly crucial [77].
Platforms are no longer confined to very simple functionality but also provide more
advanced alternatives such as real-time or seamless interaction with current systems,
real-time collaboration, and version control tools. The company’s continuous success
can be due to larger businesses” demand for a platform that allows for increasing
levels of cross-departmental connectivity [78].

* Emergence of Citizen Developers: The introduction of low-code and no-code devel-
opment has contributed to the concept of "citizen developers," which are individuals
who can build apps themselves utilizing these platforms without prior coding ex-
perience [77]. Such movement will continue since technology increases user base
diversity and allows individuals to participate in software development while also
meeting their commercial objectives [78].

¢ Advancements in AI and Machine Learning: The current trend is that low-code and
no-code development platforms integrate Al and ML to enable their users to create
more complex apps without having specialized technical knowledge. This trend is
anticipated to be faster as advanced technologies become more affordable and user-
friendly [77].

The evolution of Al-integrated platforms has greatly aided the expansion of the
worldwide low-code and no-code sectors that were valued at $13.2 billion in 2019
and growing at a rate of 21% per year [79]. Al-based support in these techniques is
expected to contribute to market growth, potentially increasing the number of users
from $50 billion to $167 billion over the next four years [79]. This integration aims
to boost the influence of citizen developers on typical coding activities while also
improving performance. However, the language barrier between natural language
and generative Al can impede the democratization of software creation, necessitat-
ing instructional support [79].

¢ Evolving Pricing and Deployment Models: As the low-code and no-code develop-
ment markets grow, pricing and deployment strategies will likely alter [78]. Plat-
forms may provide more flexible and scalable pricing choices to meet the expanding
number of users and complexity of applications. Furthermore, cloud-based deploy-
ment and subscription-based models are expected to become increasingly common,
giving enterprises greater flexibility and scalability [77].

To summarize, the current state of low-code and no-code development is characterized by
greater popularity, wider use cases, improved integration and collaboration capabilities,

4.5. Existing Low/No-Code Development Platforms 38

the rise of citizen developers, breakthroughs in Al and machine learning, and flexible pric-
ing and deployment options. These advancements highlight the platforms’ transformative
impact on the software development landscape, allowing both technical and non-technical
users to create new solutions with more efficiency and effectiveness.

4.5 Existing Low/No-Code Development Platforms

In this section, we are going to explore some of the major players in the low-code and
no-code development arena that are currently shaping the market. We'll look at platforms
like OutSystems, Mendix, and Joget DX. Our discussion will dive into what makes each
platform tick—their key features, how they operate, and what sets them apart in terms of
strengths and weaknesses. This exploration will help us understand how these platforms
respond to different needs and operational requirements.

4.5.1 OutSystems

OutSystems is a leading low-code application development platform with a strong pres-
ence in the enterprise sector. OutSystems is designed to facilitate quick application devel-
opment and delivery, allowing enterprises to build and launch sophisticated applications
with little hand-coding [59]. The platform’s novel approach has received praise from in-
dustry experts and research groups, establishing it as a leader in the low-code development
scene.

Visual Development Environment: OutSystems’ major component is its sophisticated
visual development environment, which abstracts away the complexities of traditional
coding. A drag-and-drop interface, pre-built components, and visual modeling tools can
help developers design and create apps quickly. This visual method accelerates the de-
velopment process, reduces human mistakes, and allows developers to focus on business
logic and application functionality rather than low-level code [59].

Model-Driven Architecture: It implements model-driven design, which views applica-
tion infrastructure through the lenses of logical, visual, and data layers. These designs
offer increased flexibility, easily accessible scalability, and the chance to reuse components
[80]. Developers may describe data models, business processes, and integration points,
and the platform leverages visual tools to generate the underlying code. This eliminates
the need for developers to start from scratch, ensuring that the output is consistent and
follows best practices [66].

Cloud-Native and On-Premises Deployment: In order to satisfy the diverse demands
of organizations, as well as location-independent requirements, OutSystems offers both
cloud-native and on-premises deployment options. The foundation of cloud-native de-

4.5. Existing Low/No-Code Development Platforms 39

ployment is containers, which combine with orchestration technologies to enable resilient
environments, automated upgrades, and enhanced load management [81]. Alternatively,
businesses can opt to integrate OutSystems into their infrastructure, which would enable
them to maintain control over any other service provider. All the while, they would capi-
talize on OutSystems’ extensive feature set for solution development.

Enterprise-Grade Capabilities: It is designed to address the performance, security, and
scalability problems with corporate applications, which need a significant amount of com-
puting power. It offers extensive security features that others would not, such as data en-
cryption, role-based access control, and compliance with industry standards like HIPAA
and GDPR [82]. Additionally, pre-built interfaces for the APIs and integrated data sources
are there, along with functionality from other systems. The same technology is also used
to smoothly connect the bespoke integrations.

Ecosystem and Community: A vibrant ecosystem and community of developers, partners,
and clients have been established by OutSystems. Developers may exploit pre-existing re-
sources and shorten development cycles by taking advantage of the extensive selection of
reusable components, templates, and connectors available in the OutSystems Forge [83].
In addition, the OutSystems Community offers a cooperative setting for information ex-
change, best practices, and assistance, encouraging ongoing education and creativity.

Continuous Innovation and Roadmap: As part of its ongoing commitment to innova-
tion, OutSystems often updates its platform with new features and improvements. In
order to maintain the platform’s leadership in low-code development, the business bases
its product roadmap on input from customers, market trends, and upcoming technologies
[84]. Improved DevOps integration for faster application delivery, improved mobile app
development tools, and more artificial intelligence (AI) and machine learning (ML) capa-
bilities are some of the most recent advances.

Platform Architecture: The OutSystems platform’s architecture is built for high-performance
low-code development, allowing programmers to easily create a variety of applications.
The platform provides several deployment options for various corporate infrastructures
and tech stacks [85]. OutSystems provides a layered environment that facilitates the devel-
opment of applications that modify internal business processes, expand systems of record,
restructure important business systems, and construct web and mobile applications. Key

4.5. Existing Low/No-Code Development Platforms 40

High Performance Low Code Platform

High Productivity with Integrated lifecycle and
Visual Development simplified governance

Cloud Native hosting and delivery platform
Al for development, DevOps and apps
Figure 4.5: OutSystems Platform Overview [85]

Components of OutSystems Architecture are:

* Cloud-native Architecture (ODC): Developers may create and launch apps in a
cloud environment using OutSystems Developer Cloud (ODC), a cloud-native de-
ployment solution [85].

Cloud-native architecture: ODC

WAF

<~

{ Cloudfront

1-

Figure 4.6: Cloud-native architecture: ODC [85]

4.5. Existing Low/No-Code Development Platforms 41

¢ Cloud-ready Architecture (OutSystems 11 Cloud): Building extensible apps that
can operate on a typical. NET application server is made easier with the common
architecture offered by OutSystems 11 Cloud, a cloud-ready platform [85].

¢ Key Tools and Environments [85]:

Figure 4.7: Key Tools and Environments [85]

— Service Studio: It’s the environment for creating various part of the applica-
tion stack.

- Integration Studio: It is for creating components to extend the platform and
integrate with third party applications.

- Platform Server: This is the core server component that generates, optimized,
complies and deploys applications.

— Builders: Saa$S tools to simplify the complex development activities like creat-
ing workflow apps and integrating with external systems.

* Management Consoles [85]:

— Service Center: It manages the operational aspects of the environments.

- LifeTime: This enables centralized management of development environments

4.5. Existing Low/No-Code Development Platforms 42

¢ Infrastructure and Security: Outsystems cloud uses AWS data centers with ded-
icated virtual machines and database instances. For security measurements, it in-
cludes AWS Security Groups, Web Application Firewall(WAF), and high availability
options [85]. Customers has the option to upgrade to a high-compliance Outsystems
Cloud For enhance security and compliance measures.

Although the OutSystems platform has many advantages, users and organizations should
be aware that it also has limitations and obstacles. These elements may have an effect
on the user experience as a whole, integration capabilities, and the development process.
Now let’s examine the drawbacks and restrictions of the OutSystems platform.

¢ Licensing Model and Cost Constraints: The OutSystems licensing and application
object fees could probably be very challenging, for example, for enterprises that
need their business to expand. It is often difficult to justify the expenses of future
developments due to high user license costs and user number restrictions [86].

¢ Migration Challenges: There might be some challenges involved such as the migra-
tion of data or applications from other platforms to OutSystems as there aren’t many
language importers available in it. This makes the process of migrating the existing
applications or the data to the OutSystems platform smoothly challenging [86].

¢ Documentation Quality: There are a couple of issues with the OutSystems docu-
mentation, such as empty pages and duplicate or missing content, which are partic-
ularly in the best practices” standards. Such bugs make it difficult for developers to
take full advantage of the platform, resulting in chaos and ineffectiveness [86].

¢ Limited Database Integration: OutSystems’ incompatibility with numerous databases,
including PostgreSQL and Google Sheets, may limit the flexibility and compatibil-
ity of programs built on the platform. Organizations that rely on certain database
systems may have issues as a result of the absence of native integration, potentially
reducing the platform’s usefulness for their needs [86].

¢ Community Support and Isolation: Because the OutSystems platform has a unique
community forum for member engagement, users might not be able to get help
outside of this official channel. When attempting to troubleshoot issues or engage
with a wider community, some users may find it challenging to access forums and
find solutions. This might have an impact on the project and their experience [86].

* Development Process Overhead: Small changes, e.g. adding a feature or modifying
the user interface, result in more complexity because the whole program has to be
published again. This can lead to disruptions in the smooth working of development
processes and make them inflexible [86].

Although the OutSystems platform has several benefits, such as low-code development,
scalability, and integration possibilities, users should be aware of its drawbacks and limits.

4.5. Existing Low/No-Code Development Platforms 43

Comprehending these concerns may aid businesses in making well-informed selections
and adeptly navigating the complex nature of software development through the utiliza-
tion of the OutSystems platform.

4.5.2 Joget DX

Joget DX is a cutting-edge open source application platform built to speed and simplify
digital transformation. Joget DX is a simple, adaptable, and open platform that combines
the best of business process automation, workflow management, and low-code app de-
velopment. Business and technical teams may collaborate to rapidly build full-fledged
business applications visually, from anywhere, at any time [87].

Some of the features of Joget DX platform are as follows [87]:

* Non-programmers may create and manage apps from anywhere at any time using a
web-based visual approach..

Shortens the time to market from several months to a few weeks or days [87].

Joget DX-built applications are ready for the cloud and mobile devices.

It offers plugin architecture for extension and APIs for integration.

It also has “App Store” for enterprise apps — Joget Marketplace

It emphasizes the following key focus areas [87]:

* Progressive Web Apps (PWA) and User Experience (UX): Joget DX encourages
Progressive Web Apps (PWA) development in order to provide apps that function
seamlessly and provide an app-like experience regardless of the device used. PWAs
are essential in current web applications since they enable offline capabilities, load
quicker, and allow for platform-independent interfaces. This underlines the signifi-
cance of user experience, which ultimately contributes to user approval [88].

¢ DevOps and Application Performance Management (APM): Joget DX makes use
of DevOps technics such as continuous integration and delivery (CI/CD) and en-
ables enterprises to do rolling updates quickly and manage the applications better.
Moreover, with Application Performance Management (APM), errors are detected
and fixed to guarantee the speed of service levels to meet clients” expectations [88].

e Artificial Intelligence (AI) and Smart Decisions: Joget DX integrates artificial intel-
ligence (Al) into applications to enhance decision-making processes. Al in Joget gives
smart systems the capacity to make automated judgments on complex processes em-
ploying data-driven insights, resulting in more effective and efficient operations [88].

4.5. Existing Low/No-Code Development Platforms 44

Progressive Web Apps &
User Experience

DevOps & Application
Performance Management

Avrtificial Intelligence &
Smart Decisions

#0penSource #NoCode #LowCode #AppDev
#DigitalTransformation #Workflow #Automation

Pluggable Builders &
Enhanced Workflow Features

Figure 4.8: Joget DX focus areas [87]

¢ Extensibility via Add-On Builders and Enhanced Workflow: Extensibility is one
of the key features of Joget DX, as it gives users the ability to add builders in order
to tailor and extend the features of their applications. The enhanced capabilities
of workflows imply that, no matter how complicated a business may be, it can be
automated and controlled smoothly [88].

Platform Architecture: The Joget DX platform architecture is intended to offer a flex-
ible and scalable environment for developing and delivering corporate applications. It is
an open-source platform that employs a no-code/low-code approach, allowing users to
develop apps without significant programming skills.

Key Components of Joget DX Architecture:

@ JogetDx

Felix OSGI Container
(Dynamic 0SGi PLugin)

Library Folder

(standard Java PLugin)

Bundle
{Jar)

0SGl Plugin
Bundle
(ar)

0SGlI Plugin

Classes

{ar) {ar)

‘ Classes ’

ar) Gar)

0SGl Plugin 0SGl Plugin
Bundle Bundle

‘ Classes

Classes
(tar)

{ar)

Figure 4.9: Joget DX Pluggin Architecture [87]

4.5. Existing Low/No-Code Development Platforms 45

* Plugin Architecture: Standard Java Plugin and Dynamic OSGI Plugin are the two
forms of plugin packaging that Joget DX supports. Because of this architecture,
developers may add new plugins to increase the functionality of the platform [87].

* Embedded Git Integration: For cooperative development and deployment, Joget DX
works with Git. Due to this connection, deployment procedures may be automated
and several users or teams can work on the same application at once [88].

Figure 4.10: Joget DX Embedded Git Integration [88]

¢ Artificial Intelligence (AI) and Smart Decisions: The platform contains plugins for
process choices and decision making, which may be linked to process routes. It also
includes a no-code TensorFlow AI plugin to integrate pre-trained AI models into
applications [88].

& | ©... PROCESS MAPPER -xpeses cismvi

Figure 4.11: Joget DX Artificial Intelligence (AI) and Smart Decisions [88]

* Extensibility via Add-On Builders and Enhanced Workflow: Pluggable Add-on
Builders are now supported by Joget DX, enabling the platform to be expanded with
other visual builders. Additionally, improved workflow plugins are included in this
feature so that workflow forms and behavior may be customized [88].

4.5. Existing Low/No-Code Development Platforms 46

Figure 4.12: Joget DX Extensibility via Add-On Builders and Enhanced Workflow [88]

¢ Progressive Web Apps (PWA) and User Experience (UX): The platform supports
Progressive Web applications (PWA) features including offline support and push
notifications, and it comes with a new default Progressive style for applications that
was inspired by Google’s Material Design [88].

@ Joget DX 11:10 PM

Figure 4.13: Joget DX Progressive Web Apps (PWA) and User Experience (UX) [88]

* DevOps and Application Performance Management (APM): There are built-in ap-
plication performance management (APM) tools in Joget DX that provide real-time
warnings and automated monitoring of system and application performance [88].

4.5. Existing Low/No-Code Development Platforms 47

CICICICN)
|

Figure 4.14: Joget DX DevOps and Application Performance Management (APM) [88]

Limitations: Some of the challenges and limitations associated with Joget DX platform are
as follows:

Customization Complexity: Even though Joget DX has a great deal of customization
options, customizing apps to meet the demands of a particular project might require
a little expertise in technology, particularly when adding extra features or creating
intricate processes that go beyond the platform’s built-in capabilities. For users with
complex and specialized needs, this could be difficult [88].

Database Access Limitations: Due to security concerns in a shared server environ-
ment, database access is restricted for users who are subscribers to the Starter and
Standard On-Demand subscriptions. Users must upgrade to the On-Demand Dedi-
cated Server package in order to access the database, suggesting a constraint in the
lower-tier subscription options [89].

App Limitations: Users with different subscription packages can only create a cer-
tain number of apps or workflows on the Joget DX platform. For example, users with
the Standard package can only create 20 apps, while users with the Starter package
can only create 10 apps. This could limit the scalability and flexibility of application
development for users with large requirements [89].

Subscription Model Constraints: Users may be limited in terms of scalability, access
to advanced functionality, and customization choices depending on their selected
plan by the platform’s subscription model, which offers many packages with differ-
ing features and constraints. This may reduce the platform’s usability for users with
a range of demands and financial situations [89].

Learning Curve: Moving to a new platform might be difficult, especially for users
used to traditional development approaches, even if Joget DX is recognized for its
ease of use, simplicity, and low learning curve. A little initial investment in familiar-
ization and training may be necessary to fully grasp the possibilities of the platform
and adjust to a low-code environment [90].

4.5. Existing Low/No-Code Development Platforms 48

While there are many benefits to Joget DX as a flexible low-code platform, such as its
rapid application development, ease of use, and extensive feature set, users may run into
issues with subscription-based limitations, app limitations, database access restrictions,
the learning curve that comes with switching platforms, customization complexity, and
customization complexity. Solving these issues could improve the platform’s usability
even further and make it more appealing to a wider range of users.

4.5.3 Mendix

Mendix Inc. developed the Mendix Platform, an all-inclusive low-code development plat-
form that lets companies design, integrate, and deploy large-scale applications with lit-
tle to no code [91]. Its visual development platform allows users to create, build, test,
and deploy programs without requiring extensive programming knowledge. Mendix has
been acknowledged as a leader [91] in the 2023 Gartner Magic Quadrant for Enterprise
Low-Code Application Platforms, demonstrating the widespread praise the company has
received for its broad feature set and capabilities.

Businesses can accelerate their software development process with the features provided
by the Mendix platform. Some of the key features are as follows:

* Web and Native Mobile App Development: Mendix makes it possible to create
native mobile apps based on React Native and completely responsive online appli-
cations that meet a variety of user requirements [92].

* Custom Code Capabilities: Users can upload additional code as needed, allowing
for the building of backend plugins in Java/Kotlin, frontend widgets in React.js, or
updates to mobile apps in Swift/Java/React Native [92].

* Scalability: With options for both vertical and horizontal scalability, the platform can
handle tens of thousands of connections at once, making it suitable for businesses of
all sizes and scaling strategies. [92].

¢ Full Lifecycle Management: Mendix guides clients through every step of the soft-
ware development lifecycle, including idea mapping, app design, deployment, prod-
uct launch, maintenance, and process optimization [92].

¢ Artificial Intelligence and Machine Learning: Mendix utilizes machine learning
and artificial intelligence (AI) technology. One such example is Mendix Assist, an
Al co-developer that expedites design work, lowers error rates, and boosts output
overall [92].

¢ Cloud-Native and On-Premise Infrastructure Support: Mendix seamlessly supports
both cloud-native and on-premise infrastructures, allowing users to choose their pre-
ferred approach [92].

4.5. Existing Low/No-Code Development Platforms 49

* Process Automation: The platform offers a process-first approach, allowing automa-
tion to speed up workflows, increase business results, provide visibility into pro-
cesses, enable the installation of new solutions, and provide complete control over
the IT environment [92].

Platform Architecture: The Mendix platform’s architecture is an advanced and durable
framework created to facilitate the development of high-productivity applications in an
enterprise-grade, low-code, cloud-native environment. Mendix is a platform for building
and deploying applications that is scalable, flexible, and efficient. It does this by utilizing
modern cloud-native principles [93]. Core principles behind Mendix platforms architec-
ture is described below:

* Model-Driven Development: Mendix takes a model-driven approach that allows de-
velopers to focus on application logic rather than traditional code-based development
using visual modeling tools. This methodology improves collaboration, accelerates
development cycles, and reduces coding complexity [93].

* Microservices and Containerization: By leveraging microservices architecture and
containerization, Mendix ensures scalability, agility, and portability in application
delivery. By breaking applications into smaller, independent services, developers
can easily scale components and effectively manage dependencies [93].

e Stateless Server Architecture: The stateless nature of Mendix servers enables seam-
less vertical and horizontal scaling, ensuring high availability and performance across
different workloads. This architecture enables demand-based resource allocation and
efficient use of computing resources [93].

* Openness and Extensibility: Mendix promotes openness and extensibility across
its platform, allowing developers to customize applications, integrate with external
systems via APIs, and use the Model SDK to manage app metadata. This flexibility
allows companies to tailor solutions to their specific needs and integrate seamlessly
into existing infrastructure [93].

¢ Alignment with Twelve-Factor App Principles: Mendix follows the 12-Factor App
methodology and adheres to best practices for developing cloud-native applications.
These principles cover aspects such as codebase management, configuration han-
dling, dependency management, and more, ensuring consistency and efficiency in
application delivery [93].

Mendix Platform is a comprehensive platform-as-a-service (aPaaS) solution for corporate
application design, development, deployment, and administration. Developers and ad-
ministrators may access the platform via the Developer Portal, which provides access to
applications and services for requirements management, development, and deployment
in app and app service operation and administration [94]. To expedite development, the

4.5. Existing Low/No-Code Development Platforms 50

platform offers hundreds of publicly available building blocks through the Mendix Mar-
ketplace and Mendix Studio Pro. Apps and building blocks can be shared amongst or-
ganizations by configuring the Mendix Marketplace for private use. With Mendix Studio
Pro, Mendix apps, and the Developer Portal, users can collaborate online on this platform.
The figure 4.15 below provides an overview of the main aspects of the Mendix Platform..

) S

295 M —>
] Developer Portal
AN

Runtime
O |
= R —
N

Runtime = € H "
Cloud Foundry Team Server = ‘
" o

= =)
222}
Marketplace

Build Server Y

Package PR |
Repository

0

Figure 4.15: Key Components of Mendix Platform [94]

Developer Portal: An interactive platform for app design, development, and deploy-
ment is provided via the Mendix Developer Portal [94]. This web site has features
for online social collaboration (via Buzz), notification services, and a list of people
who are actively involved in your company and who might be asked to participate
in app initiatives and social collaboration.

Mendix Studio Pro: Mendix offers an integrated development environment (IDE) for
multi-user modeling called Mendix Studio Pro. Creating an integrated and unified
modeling environment is the main objective of Mendix Studio Pro, which enables
business analysts and IT developers to work closely together to model the different
application components. For entirely offline work, Mendix Studio Pro features an
integrated build service and runs locally on the developer’s PC [94].

Team Server: Application models are maintained and versioned centrally on the
Team Server. The prominent open-source software configuration management sys-
tem Subversion (SVN) inspired the creation of Team Server. The team server may be
set up locally or hosted on Mendix Cloud [94].

Build Server: On the Team Server, each application artifact is versioned and stored
in a project directory. The Build Server creates deployment packages from artifacts

4.5. Existing Low/No-Code Development Platforms 51

(including models, style sheets, and special Java classes). The build server may be
launched using the Mendix Runtime or developer portal. The build server also does
package validation and determines if the particular build is a deployable package
[94].

MXxID: MxID is a user management and provisioning solution that uses the OpenlD
standard and can be integrated with the Active Directory and Single Sign-On (SSO)
protocols. It acts as the Developer Portal’s login server, which is the main entry point
for Mendix apps [94].

Marketplace: Though it may also be configured as a closed corporate marketplace,
the Mendix Marketplace is a public marketplace for applications and application
modules that lets business leaders and end users know which apps are accessible
inside their organization [94].

Limitations: Like all other low/no-code platforms, Mendix also has some limitations.
Some of the limitations are as follows:

Limited Customization: Customization of the themes on the Mendix platform is
limited. Users don’t have the option to tailor the appearance of their application as
they want. Also, the default UI gadget provided by the platform may not meet the
specific design requirements of complex enterprise applications [95].

Vendor Lock-in: Adopting the Mendix platform ties an organization to the Mendix
ecosystem. Migrating an application built with the Mendix platform is really chal-
lenging and costly, which in a way creates a vendor lock-in situation [95].

Incorporating Advanced SQL Features: When it comes to using complex SQL op-
erations, Mendix could find it difficult to completely integrate the features of SQL,
which could restrict the platform’s potential in comparison to traditional code-based
development [95].

Limited Scalability: Mendix can be difficult to scale, especially in situations involv-
ing large-scale applications or high usage; extra setup and knowledge are needed to
guarantee peak performance [95].

Styling Pages, Forms, etc., Within Mendix: Styling pages, forms, and other elements
inside Mendix is time-consuming, requiring a good CSS foundation and potentially
limiting user interface modification [95].

Limited Control Over Infrastructure Due to Mendix’s Platform-as-a-Service (PaaS)
nature, users’ ability to manipulate the underlying infrastructure is restricted. Orga-
nizations with particular infrastructure preferences or stringent regulatory standards
may find this lack of control concerning [96].

Pricing: With its comparatively higher price tag than other low-code development
platforms, Mendix’s pricing model may pose a problem for smaller budgets [96].

4.6. Generative Al 52

4.6 Generative Al

Generative artificial intelligence (GenAl) has appeared as a game-changing technology that
can transform the way we create and work with digital content. Fundamentally, GenAl
uses machine learning models, mostly unsupervised and semi-supervised, to create new
content out of the existing data. The birth of GenAl can be traced to the development
of artificial neural networks in the 1950s and 1960s [97]. The first algorithm that was
employed to use the computing power to classify the labeled data into categories was the
Perceptron algorithm, which was first used in 1958. Thirty years later, the backpropagation
algorithm was created in 1986, which allowed the multilayer perceptron networks to learn
in non-linear ways; thus, the turning point in the development of the neural networks was
realized [97].

Although it was only in the 2010s that GenAl started to close the gap, The Transformer
architecture that was presented in 2017 solved the problem of the previous recurrent mod-
els of memory limitations, and consequently, the neural networks were able to manage
context and relevance with ease. Efficiency improvement, together with the availability of
large datasets and the growing power of computers, was the main factor in the creation
of highly efficient language models such as GPT (Generative Pre-trained Transformer).
GenAlI has justly shown its importance in the NLP field [98]. The study on OpenAl GPT-3
and ChatGPT proves that these models are able to perform like humans in both the aca-
demic and professional fields, such as the 90th percentile SAT and the bar exam. These
phrases will be the mainstay for the development of the text, which will be like a human
because of the word prediction that is related to the preceding context [98].

The impact of GenAl has gone beyond text generation, and it has also contributed to
other fields. The generative adversarial networks (GANs) have made the synthetic images
very realistic, and the DALL-E and Midjourney models can produce images from the tex-
tual descriptions. RunwayML and Pika, which are video generation tools, can make short
videos from text prompts or still images [98]. The development of GenAl will lead to the
evolution of different industries and, at the same time, the birth of new possibilities in
content creation, problem-solving, and decision-making. On the other hand, the rapid de-
velopment of GenAl has also raised concerns about its misuse, for example, of deepfakes
or other forms of misinformation. The problems that will increase while using GenAl will
be the main reason for the generation and implementation of GenAl after the technology
has developed [98].

Over the years, there has been the evolution of several key milestones and foundational
models in the field of generative Al that have significantly contributed to the advancement
of the technology. Some of them are described below:

* Generative Adversarial Networks (GANSs): The two neural networks that comprise

4.6. Generative Al 53

Generative Adversarial Networks (GANs), which Ian Goodfellow and associates cre-
ated in 2014, are a generator and a discriminator. They are simultaneously taught
inside a zero-sum game framework, in which the discriminator determines the au-
thenticity of the synthetic data produced by the generator [99]. With this competitive
path, the approach enables the construction of supremely realistic outputs, which
has a significant impact on domains like image manufacturing and development.

' Generator
InpLt Dense/Cony Output Generated
Layer [Layer Samples
Discriminator

Input Output
Real La”:r Dense/Conv, Lay';r —| Real or Fake
Samples ¥ Layers

Figure 4.16: Typical Structure of Generative Adversarial Networks Model [99]

* Variational Autoencoders (VAEs): Conversely, VAEs were first proposed in 2013 by
Kingma and Welling, sharing the same foundation as GANs. VAEs are a specific kind
of generative model that recognizes an input code and then generates new pictures or
samples based on that code. They consist of a Decoder function that pulls the output
from the Latent space after the Encoder function maps the input into a Latent space.
VAEs are utilized in numerous areas, including data augmentation, text production,
and image generation [99].

Encoder : Latent Space (z) Decoder

' Ve ™~
Input Data (x) I;J> T ﬁ [Mean Variance Sampling/ + | Output
Lr:;l;r w 1 | Layer Layer \ Layer / | Layer Output Data (y)
: : N)

Figure 4.17: Typical Structure of Variational Autoencoders (VAEs) Model [99]

¢ Transformers and Large Language Models (LLMs): Transformers and Large Lan-
guage Models (LLMs) have driven an astonishing revolution of Natural Language
Processing through the marvelous self-attention mechanisms that allow the long-
range dependencies in the texts to be effectively handled, and make parallel process-
ing and scalability possible. These well-known LLMs that are based on Transformer
architecture, such as the GPT-3 and BERT, display remarkable capability in generat-
ing text that sounds natural, they understand the context and perform such complex
language tasks as proving their application in content creation, customer support,
software development, and healthcare [99]. These models generated a new level of
NLP benchmark challenging the possibilities of innovation and reaching new heights

4.6. Generative Al 54

of research. However, the debate continues, as researchers grapple with the problems
of model interpretability, ethics, and efficient deployment.

Output
Probabilities

| Softmax
Linear |

DECODER
Add & Norm |<—
|

ENCODER Feed Forward |

—* Add & Norm Ny
|

Add &]Nnrm e

‘ Feed Forward Multi-Head

Attention

Nx

(> Add & Norm
Add .I Nerm

Multi-Head
Attention Masked

Multi-Head
ttr e Attontion

Positional |
Encodings
"..
‘Y| Encodings
Input T
Embeddings

Output
Embeddings

he Structure of the Transformer.

Figure 4.18: Typical Structure of Transformers Model [99]

4.6.1 Key Features and Benefits of Generative Al:
Some of the key benefits and features of generative Al technology are described below:

¢ Intelligent Content Generation: Generative intelligence will take the creative pro-
cess to the next level by an imaginative second with the production of content suit-
able for the needs of the user — and it will traverse ways from a captivating market-
ing copy to attractive stories and articles [100]. It creates these human-like sentences
from its extensive collection of teaching materials and utilizes context and the target
audience to generate unique texts.

¢ Accelerated Decision-Making: Among the many advantages generative Al models
have over humans, one of them is that they can quickly scan large amounts of data,
identify patterns to make sense of, and offer the important advice that decision-
makers require to make the right decisions [100]. They are capable of accomplishing
tasks such as market trend analysis, risk assessment promotion, and strategic plan-
ning, which are added advantage that can help the business remain ahead of the
trend.

¢ Enhanced Creativity and Innovation: Only one person or a team can use the gener-
ative Al as a tool to begin to explore their thinking and even generate both ideas and

4.6. Generative Al 55

concepts. The generative Al models would be a framework for thinking and a stim-
ulus for creativity. The artists, the authors, and the designers can be more creative
by knowing and realizing the limits of their works, or they can create new things by
displaying their works [100].

¢ Automation of Repetitive Tasks: Generative Al has the ability to create content,
including content marketing material, reports, and even source code, which in turn
saves time as well as resources. The technology empowers workers to work on tasks
that require high skill and require human creativity and cognition in general [100].

* Personalization and Customization: Al models can blend in generative technolo-
gies to know about what the client wants, which leads to a level of satisfaction and
involvement. Installed AI chatbots and voice assistants that are powered by gener-
ative Al are the sophisticated technologies that are providing personal assistance to
customers.

* Accelerated Product Development: Generative Al can accelerate the product devel-
opment process by generating and iterating on design ideas, finding out potential
risks at an early stage, and optimizing product features. Business stakeholders can
utilize these insights to make informed decisions, optimize their operations, and gain
a lead in the market [101].

¢ Advancements in Healthcare: Generative Al is being applied in the healthcare
industry to expedite drug discovery, enhance illness detection, and customize treat-
ment regimens. These algorithms may find interesting drug candidates, spot early
illness indications, and provide medical practitioners with personalized suggestions
by evaluating enormous volumes of medical data [101].

Although generative Al has many advantages, there are drawbacks as well, including the
possibility of biased results, security issues, and moral dilemmas. It is critical to address
these issues and make sure that generative Al systems are developed and used responsibly
as technology advances.

4.6.2 Current State and Applications

In the last couple of years, generative Al has seen significant development, going from just
a concept to a practical solution with a wide range of use cases across different sectors.
The engineering and technology revolution is also changing the way we are creative, de-
sign and solve complex problems.

Text Generation: Large language models like GPT-3 and its different variants have shown
remarkable capabilities in generating text that is human-like for different kinds of applica-
tions like content creation, storytelling, dialogue systems, and answering questions [102].

4.6. Generative Al 56

These models use self-attention and transformer architectures to extract long-range rela-
tionships from textual input [103].

Image Generation: Nowadays, generative adversarial networks (GANs) and diffusion
models can produce photo-realistic pictures with the same quality as a real image [104].
For example, StyleGAN produces top-grade face images, while DALL-E is capable of
generating various images using text descriptions as inputs [105]. These models have a
prospect for use in design and creative fields, advertising, and multimedia content gener-
ation.

Audio and Video Generation: Although still at an early stage, generative models show
that they have the potential to produce audio waveforms for text-to-speech conversion,
music creation, and audio editing applications by their performance [106]. Another aspect
that is being investigated in video generation is video-to-video synthesis or generative ad-
versarial video generation which are two approaches that can be applied in various fields
such as virtual reality and animation [107].

Music and Art: Generative Als compose music and create visual art through the fea-
tures with which to demonstrate their working abilities on the different platforms used by
people for expression.

Software Development: Some of the Al tools like GitHub Copilot are helping develop-
ers achieve this by generating code snippets, suggesting, improvements, and automating
repetitive tasks, which are assisting in the delivery of next-generation cutting-edge tech-
nology even at a significant speed [108].

Challenges: Indeed, generative Al technology can transform our lives for the better, but
in addition to generating significant opportunities, it also brings important challenges that
must be solved. The following are key challenges to of using this revolutionary technol-

ogy:.

¢ Fairness and Bias:therefore, The basis of generative Al lies in the ambiguity of con-
tent creation and therefore fairness checking is quite a challenging task. While large
language models cannot be assessed for fairness; traditional machine learning mod-
els can [109]. Disentangling and quantifying nuances, such as a slightly more ir-
ritated tone when making materials aimed at women than men, is a tough one to
handle.

® Privacy Concerns: The broad features of generative Al create challenges not only
for conventional data breaches but also for unidentified data training, which vio-
lates privacy in some cases [109]. Mitigating these risks by managing training data
to steal personal information and applying strategies for detection and preventing

4.6. Generative Al 57

duplication of sensitive content is highly crucial.

¢ Toxicity and Inappropriate Content: The technology of generative Al can produce
designs that are offensive, heartbreaking, or inappropriate. To solve this issue, the
‘guardrail’ models should be developed to filter out not-allowable information, train-
ing data, and produced outputs, including using human-annotated training data to
help these models [109].

¢ Hallucinations and Factual Inaccuracies: Generative Al might have the ability of
imitating content in a convincing manner but likewise might be the case with inac-
curate information which is called hallucinations. In order to address this issue there
is need for information that educates the users about the abilities as well as the limits
of generative Al [109]. Integrate LLMs with databases that are verifiable and sources
that can be used for fact-checking. And provide clear disclosures that tell the user
on the capabilities the Al possesses so the user can make an informed choice.

¢ Intellectual Property and Creativity Issues: Intellectual property right is the pri-
mary concern because of the uncertain line between inspiration and imitation when
generative Al reproduces content and styles [109]. Applying techniques to avoid or
minimize using protected materials in creative products, along with an integration of
technical, regulatory, and legal procedures, will be useful to overcome this problem.

¢ Plagiarism and Academic Integrity: When generative Al is used for writing essays
and other academic or professional tasks, worries about plagiarism and originality
come up. If models for the detection are designed for distinguishing between the
human created content and material generated by Al in the future, the generative
models and the detection methods may find themselves in an arms race [109].

* Disruption to Traditional Work: The efficiency of generative Al in automating jobs
and producing content has generated questions concerning job loss while under-
scoring the importance of workforce adaptability [109]. Retraining, upskilling, and
continuous learning are required if human intelligence is to harmonize with that of
machines.

Addressing these challenges is really crucial, and it requires a multi-disciplinary strategy
that involves high-quality training data, implementing robust ethical frameworks, collabo-
rations between researchers, policymakers, industry stakeholders, and civil society, as well
as educating users about the capabilities and limitations of this transformative technol-
ogy. By properly handling these challenges, it is possible to utilize this groundbreaking
technology for responsible development and deployment.

4.7. Generative Al and Low/No-Code Development 58

4.7 Generative Al and Low/No-Code Development

The domain of generative artificial intelligence (Al) is advancing quickly, offering fresh
capabilities for the progress and revolution of application development, particularly in the
context of low-code/no-code (LCNC) platforms [110]. By enabling users to construct pro-
grams using visual interfaces and pre-built components, even those with little to no coding
knowledge, LCNC platforms aim to democratize software creation. Traditional systems,
however, were limited in terms of more automation and context-aware help.

These difficulties may be resolved and the LCNC platforms might be further enhanced
via generative Al, which entails teaching machine learning models to produce new ma-
terial such as text, graphics, audio, and even code [111]. The power of large language
models, computer vision models, and multimodal models can be employed by the LCNC
platforms to provide natural and expressive interactions with users, automate parts of the
development process, and also give intelligent recommendations [105].

LCNC platform integration with generative Al has the potential to change the way app
development is performed, as it would make it more accessible, efficient, and customized
to user needs. The integration comes with several problems, such as trust and reliability
of the code or components that have been produced by the Al, addressing biases or limi-
tations in the developed models, and developing suitable metrics for evaluation and user
experience associated with this process of Al-assisted development [112].

As the field of generative Al is evolving rapidly, it is essential to delve into the possible
applications, advantages, and risks related to integrating these technologies into LCNC
systems.

4.7.1 Benefits and Features of Integrating Generative Al

GenAl with LCNC platforms has numerous features and capabilities that change the very
nature of software development.Some of the core benefits and features of integrating genAl
into low /no-code platforms are:

* Automated Code Generation: One of the most advantageous use cases for genAl
with low /no-code platforms is code creation based on natural language or user in-
put. These platforms might be dependent on large language models like GPT-3
and/or multimodal models like DALL-E, which allow the user to define the desired
application as an outline, from which the Al system would generate and execute
the necessary code or configure the necessary components[101]. This can make the
software development process easy for non-technical users.

¢ Enhanced User Experience: Generative Als can be applied as a method for UX/UI
design for LCNC platforms to save time needed for generation of a predictive model

4.7. Generative Al and Low/No-Code Development 59

and components. Design tools can also be used to identify the right structure, color,
and elements that need to be used in an application, and such applications are also
differentiated from their use of Al and are also usable [101]. This leads to useful, and
applications being user-friendly.

¢ Multimodal Application Development: As generative Al has the ability to handle
multiple modalities like text, images, and audio, they can enable users to explain
their desired requirements and applications in natural language, visual inputs which
makes the development process more natural, expressive and intuitive for the users
[101].

* Personalization and Customization: With the implementation of generative Al tech-
nology into low /no-code platforms, it is possible to enhance the personalization fea-
tures of these platforms. Al can help to meet specific user requirements and needs
by analyzing the user’s data and behavior which can enhance user satisfaction and
engagement. These features are particularly useful for creating personalized mar-
keting campaigns, customer service chatbots, and e-commerce solutions that meet
user’s preferences [101].

¢ Real-Time Error Detection and Correction: Another important feature is the auto-
mated reporting and correcting errors in real time with the help of AI [101]. Genera-
tive Al applications can highlight any errors that are made while the user constructs
the application and suggest potential ways to solve the problem. This saves a lot of
time on developing and testing programs and correcting observed errors.

¢ Accelerated Development Cycles: Generative Al allows developers to perform repet-
itive and complex tasks much faster. Coding and debugging are two time-consuming,
repetitive processes that Al can automate. This frees up the developer to concentrate
on the higher-level aspects and decision-making process of software development.
[101]. This allows businesses to develop their applications much quicker and in turn
they can respond better and faster to the changing market needs.

¢ Improved Accessibility and Inclusivity: When GenAl is integrated with LCNC plat-
forms, non-technical users may actively participate in application creation, which
enhances accessibility [101]. This democratization of software development allows
a larger number of people to create creative apps without significant coding experi-
ence.

Overall, the integration of generative Al into LCNC platforms has the potential to signifi-
cantly enhance the capabilities and user experience of these platforms, making application
development more efficient, intuitive, and accessible to a broader range of users.

4.7. Generative Al and Low/No-Code Development 60

4.7.2 Current Scenario:

Some of the major technology companies and startup has already began to integrate gen-
erative Al technology into their low /no-code development platforms. Some of them are:

* Microsoft has integrated Large Language Models and code generation capabilities
into its Power Apps platform [113].

¢ Google and Amazon have also taken similar initiatives for their platforms App Maker
and Honeycode, respectively [114].

* Startup companies including Appian and Mendix have investigated genAl for auto-
matic UI design and component recommendation [115].

¢ Salesforce’s Einstein platform also integrated Al so that it can offer predictive ana-
lytics, natural language processing(NLP), and automated recommendations. It helps
users build apps that are smarter by automating data analysis and providing ac-
tionable insights, thus enhancing the decision-making process and user experience
[116].

¢ Github Copilot also integrated generative Al for code generation. It suggests the user
with the code and automating the repetitive tasks in the development cycle [117].

However, integration of generative Al into these low/no-code developments is still at
an early stage but with the features and possibilities this technology can bring, all the
companies and platforms are working on the implementation of this technology in their
platform to provide their consumers more satisfactory user experience.

4.7.3 Key Challenges and Issues

Integrating generative Al into LCNC platforms has a lot of potential benefits, but it also
comes with its fair share of challenges that need to be addressed

® Privacy Concerns and Data Security: Keeping data safe and protecting privacy
when feeding information into generative Al models are big challenges when it
comes to incorporating GenAl into LCNC systems [118]. When using GenAl for
tasks like generating code and developing applications, it's super important to pay
close attention to data privacy and security [110].

* Varying Outcomes and Reliability: Because generative Al is inherently unpre-
dictable, it can produce different results, so it’s important to carefully consider spe-
cific use cases to ensure accurate outcomes. While GenAl can automate tasks and
offer code snippets, it can be challenging to consistently guarantee correct results in
various situations due to the unpredictable nature of Al-generated code [119].

4.7. Generative Al and Low/No-Code Development 61

¢ Balancing Automation and Human Expertise: Another key issue is striking a bal-
ance between automation and human expertise in software development [119]. While
GenAl can help create code and automate tasks, it can’t completely replace the need
for human developers, especially Al in designing complex applications

¢ Learning Curve and Adoption: Natural language-driven implementation of Al tools
on low-code/no-code platforms may require users to adapt to new ways of inter-
acting with software development tools. For widespread adoption and successful
implementation of this technology, it is important to overcome the learning curve
associated with using GenAl for code generation and application development [110].

¢ Compliance and Governance: Establishing appropriate governance policies and
guaranteeing compliance with data protection requirements are important factors
when integrating GenAl into LCNC systems. In order to mitigate risk and ensure
safe ethical use of Generative Al in the software development process it is impor-
tant to pay attention to issues related to compliance, data security, and governance
requirements [119].

* Scalability and Computational Requirements: Training and automating an Al
model on a large scale can be computationally challenging, consuming large amounts
of energy and computational resources. Because LCNC systems are designed to
serve a wide variety of users, it is important to ensure flexibility and manage re-
sources [109].

Addressing these fundamental challenges and issues of integrating generative Al into
low /no-code platforms is essential to leveraging the full potential of Al technologies, as
well as data security, reliability, and compliance, and these new tools” effective use in
software development guarantees

Chapter 5

Analysis

This chapter explores both the buisnesss and technical aspect of low code and gen Al
In the first sub section, the mechanisms behind Low code development platforms will
be explained. The life cycle of LCD will be defined in order to understand where the
implementation of gen Al is most appropriate. In the second subsection, the business and
strategic impact of low/no-code platforms and generative Al is explored. We conducted
a study of the market, SWOT analysis, and Porter’s Five Forces framework to evaluate
the competitive environment and identify potential possibilities and difficulties with these
technologies. We discuss technical elements of low/no-code platforms and generative
Al We explored the structures, development life cycles, and integration capabilities of
generative Al identifying optimal stages for its implementation. The section will end with
the specification of the requirements.

5.1 Technical Analysis

5.1.1 Low code platform Architecture

Low code platforms are typically deployed either through a cloud-based delivery model,
known as Platform-as-a-Service (PaaS), or as on-premises solutions[120]. Architecturally,
they generally consists of several distinct layers (see figure 5.1), below they are listed and
explained:

¢ Application Layer: This layer houses a user-friendly graphical environment which
contain among other things toolboxes and widgets tailored for defining user inter-
faces. Additionally, it hosts mechanisms for user authentication and authorization.
Users interact with this layer to leverage its modeling tools and abstractions, facilitat-
ing the development of applications and the specification of their functionalities[120].

¢ Service Integration Layer: This layer serves to facilitate seamless integration with and
utilization of diverse services, including application programming interfaces (APIs)

62

5.1. Technical Analysis 63

Application Layer

Y

Service Integration Layer

Y

Data Integration Layer

Y

Deployment Layer

Figure 5.1: Layered Architecture based on [121]

and authentication mechanisms. It acts as a bridge between the platform and external
services, enabling efficient communication and data exchange[120].

¢ Data Integration Layer: This layer is responsible for facilitating the integration, man-
agement, and manipulation of data sourced from several origins, this layer plays a
crucial role in ensuring data consistency and accessibility. It provides the necessary
infrastructure for harmonizing data from disparate sources and making it available
for use within the platform[120].

¢ Deployment Layer: Responsible for orchestrating the deployment of developed ap-
plications, this layer ensures their smooth transition into a dedicated cloud or on-
premise environment. Working in cooperation with the service integration layer,
it manages the containerization and orchestration of applications, optimizing their
performance and scalability[120].

Together these layers form the foundational infrastructure of low code platforms, enabling
users to seamlessly develop, integrate, manage, and deploy applications with ease and
efficiency.

5.1. Technical Analysis 64

To further deepen our comprehension of Low code platforms, let us look at the different
components that make up these platforms. Figure 5.2 showcases the different entities and
their interactions. We can see 2 lines dividing the figure, making it consist of three sections:

¢ Application Modeler (bottom section):

This tier comprises the graphical environment that enables users to design applica-
tions using various modeling constructs and abstractions (drag drop). When the
application model is finalized, it is transmitted to the platform’s back-end for fur-
ther processing. This includes the generation of a fully functional application that is
tested and prepared for deployment on the cloud[121].

e Server-Side Infrastructure (middle section) This tier handles the server-side func-
tionalities essential for the platform’s operation. This includes model management
operations such as code generation and optimization. It also involves managing
interactions with various services like database systems (both SQL and NoSQL),
microservices, API connectors, model repositories of reusable artifacts, and collabo-
ration tools. The platform ensures that all necessary microservices are created, or-
chestrated, and managed without user intervention, relieving developers from the re-
sponsibility of handling technical details such as authentication, load balancing, busi-
ness logic consistency, data integrity, and {ajeethrabalamurugan_2023_auditing},
\cite {a2020_scihub}.

¢ External Services (top section) The third tier encompasses the external services in-
tegrated with the platform. These include APIs and other external systems that the
platform interacts with through specific connectors designed to handle the consump-
tion and management of these services on the back-end[121].

5.1.2 Low code development life cycle

The life cycle of low code development is like that of the traditional software development,
however, one can say it is built on a shorter and a more efficient foundation[122]. In a
generalized manner, below are the stages of the low code development life cycle:

* Requirements Gathering: In this stage, requirements related to the user experience,
the functionality of the program, and business needs are gathered [122].

* Design: This stage involves the development of the program’s architecture, user
interface, and other design elements. Wireframing and prototyping may also be
done [122].

¢ Development: This stage focuses on the actual development of the application. Vi-
sual editors and drag-and-drop tools are frequently used in low-code systems to
make programming easier [122].

5.1. Technical Analysis 65

Extiing daroces “M"\?'w'm Collbomson glafrom

Dwiabiass Sarar

S & B= &

=

e
Platfoam sarsar S,

& Lapging of srors and evmens
+ Deplaymenr eanices

+ Perfamancs asdifisg

+ Varsion eznirsl

_
Optimizer J cald;il_lr-u-rabor
#

81

Figure 5.2: What a low code platform is made of [121]

¢ Testing: The program is tested to find and fix bugs, problems, and usability concerns.
To facilitate this process, low-code systems usually provide automated testing tools
[122].

* Deployment: After the application has been approved and tested, it is deployed into
production environment [122].

The low code life cycle can follow various development methodologies, however, low code
software development aligns well with agile development methodologies, as both priori-
tize customer satisfaction and the continuous delivery of incremental improvements [123].
The fundamental motivation behind LCSD is to build applications, gather user feedback,
and quickly incorporate changes [124]. This approach naturally complements agile princi-
ples, which emphasize iterative development and frequent stakeholder involvement [123].

The delivery of software through a low-code methodology involves multiple phases of
software development. While low-code development can integrate various software de-
velopment approaches, fast delivery practices are commonly used due to the streamlined
nature of low-code platforms[120].

The research discusses the application of several frameworks in low-code development.
For example, the integration of low code within Scrum and Kanban methodology[121],
[125], [126]. Furthermore, several sources have mentioned the application of Rapid Ap-
plication Development (RAD) in relation to low-code development [127], [128], [124]. The
reason being RAD appears to be effective for low-code development in terms of quick

5.1. Technical Analysis 66

reviews, feedback, and adapting to constant requirements change. Nevertheless, it might
not be the best choice for projects with big teams, lengthy development timelines, or a
shortage of highly qualified engineers[129]. In addition, these papers fail to go in depth
and provide a detailed descriptions of the development life cycle steps specific to RAD
within low-code development[120].

Despite the diversity of methodological approaches focused on low-code development,
many are often limited to the functionalities of specific platforms. A more comprehensive
methodological framework is required to support development processes across various
low-code platforms[122]. Although, it is evident that, despite variations in the naming and
focus of different phases, all approaches consistently include phases dedicated to require-
ments, testing, and post-deployment activities[120]. Given the various research papers
linking agile methodology to low-code development [123], and the fact that multiple low-
code development platforms are equipped with features that support agile development
[121], [130], [131], this approach will be adopted and discussed in the upcoming section.

The figure 5.3 showcases the stages involved in the agile development process in both
traditional (outer cycle) and low code software development (inside cycle). As seen in
the figure the low-code development life cycle includes phases similar to those in agile
methodologies. This iterative process ensures that applications are developed and refined
quickly, incorporating user feedback at every stage. Monitoring and maintenance features,
such as automatic error reporting are often built into low-code platforms[122], further
enhancing their efficiency and reliability.

Requirements
Analysis

Maintenance_ Sy [L > Planning
R ¥ B = = =

- N

- \

b N

N

N
t‘ '

f
Y 4

Data
modelling X

\

definition of

A

additiona N \\
features W
LB
Definition of a| \ Application

i

user interface

(U1 Design) | I | Design
\ Spec nd /] ﬂ

fe=ed

[/|
application b Yohiod J /
deployment and workflows \\f‘\\ _A

~ Ay \
Integration of ALY
external Wir iy
. 480
services o G L A4HF
Wiss P N A

Deployment

Testimg and

AT
= o
4 e

= Development

e

Testing

Agile development stages Low-code software development stages

Figure 5.3: LCD life cycle stages[131]

5.1. Technical Analysis 67

The phases in the diagram are listed and explained below [121], [123], [122] are estab-
lished:

¢ Data Modeling

In the initial stage of data modeling, the developer utilizes the requirements collected
by the business analyst or gathered during meetings with end-users. These require-
ments are then validated and transformed into a comprehensive data model. This
model serves as the foundation for the application’s functionalities and informs the
subsequent design of the user interface.

¢ User Interface Design

Following the establishment of the data model, the process advances to the second
stage: user interface development. In this phase, the Ul is crafted based on the pre-
defined data model, ensuring that the interface aligns with the application’s data
structures and user needs.

¢ Business Logic Implementation

The third stage involves the implementation of business logic. Here, the developer
defines the rules and behaviors for each data entity and outlines the application’s
workflow. This ensures that the application operates according to the specified re-
quirements and business rules.

¢ Integration of External Services

In the fourth stage, the focus shifts to integrating external services by the use APIs.
This integration is crucial for enhancing the functionality of the low-code application
and ensuring seamless interaction with other systems.

¢ Testing and deployment
The fifth stage encompasses testing and deployment. The developed application
undergoes testing to identify and resolve any issues and then deployed.

* Customer feedback and definition of additional features

Finally, it is essential to collect user feedback to identify areas for future improve-
ment or additional features that may arise. This ongoing process of updating the
application ensures that it continues to meet user needs and adapts to any changes
in requirements.

5.1. Technical Analysis 68

5.1.3 Stages where gen Al can come to play

Having identified the various stages of the low code development, the next step is to inves-
tigate where generative Al can be used. the question is, in what stages of the development
life cycle would genAl be helpful? Ideally we would have liked to get first hand answers
by interviewing experts from a company specialized in low code developed solutions, that
plan unfortunately failed as the company refused our request. Consequently, we will rely
on research papers with similar agenda as ours, as this is a recent topic, research is rather
limited. To understand where gen Al can be used, we will first attempt to identify the
challenges or limitations of low code platforms at each each stage to better understand the
potential of gen AI[132],[133] at the various stages of the development life cycle. Our focus
will on the challenges experienced by the end user (Low code developer) rather than the
limitations of the platforms themselves.

Domain Modelling

In this early stage of the development process, the developer could experience difficul-
ties in correctly translating the gathered requirements into the low code platform. Here,
determining the data structure, relationships, constraints, data storage and more fall on
the user[134]. In addition, changing requirements are to some extent another challenge
faced by the developer [131]. The possible improvements that gen Al can bring to these
challenges is by automatically generating draft models based on the gathered require-
ments[122].

Limitations and Challenges Generative AI Improvements
¢ Complexity in defining * Gen Al can generate domain
accurate domain models. models from natural

language descriptions and
existing templates, reducing
complexity.

¢ Ensuring relationships and
constraints are correctly
represented.

* Gen Al can validate
relationships and constraints
to ensure accuracy.

¢ Adapting models to evolving
requirements.

* Gen Al can suggest model
adjustments to accommodate
requirement changes.

5.1. Technical Analysis 69

User Interface Definition

In this phase, the developer could face challenges related to the friendliness of the in-
terface[135]. Another already mentioned issue is customization since low code platforms
tend to have pre-built components limiting the options the developer have. This can be
mitigated by having gen AI generate Ul components based on the developer’s textual
input.

Limitations and Challenges Generative AI Improvements

* Balancing user-friendly
design with functionality.

¢ Gen Al can generate user
interface prototypes based

o o on user requirements.
¢ Limited customization

options in low code
platforms.

¢ Gen Al can recommend
design customization.

Business Logic Specification

In this phase of the development stage, developers can face challenges with implementa-
tion of business logic, and require programming knowledge[123]. Gen AI can help with
workflow generation and optimization[134], in addition to code generation that can help

citizen developer and reduce development time[3].

Limitations and Challenges

Generative AI Improvements

¢ Complexity in defining
intricate workflows and
rules.

* Ensuring business logic

aligns with requirements.

* Gen Al can analyze and
optimize workflows for
efficiency and performance.

* Gen Al can verify business
logic against specified
requirements and suggest
corrections.

5.1. Technical Analysis

Integration with External Services

70

As for the integration with external services, developers can face difficulties with 3rd party
services integration and compatibility. In some cases, knowledge in software development

can be needed [131]. Gen AI can help with

Limitations and Challenges

Generative AI Improvements

external systems.

API connections.

¢ Ensuring compatibility with

¢ Managing and maintaining

* Programming knowledge.

¢ Gen Al can automate the
generation and management
of APIs, simplifying the
integration process.

* Gen Al can verify
compatibility and suggest
necessary adjustments.

¢ Automatic code generation

Testing and Deployment

In the testing phase issues ranging from running automated testing and 3rd party testing
methods[123]. Gen Al can relate In general there seem to be lack of documentation that
causes confusion in several stages. Gen Al can help with writing text cases, help the

developer interpret error messages[122].

Limitations and Challenges

Generative AI Improvements

coverage.

deployment issues.

¢ Ensuring thorough testing

¢ Identifying and resolving

* Gen Al can generate and
execute test cases to ensure
thorough testing coverage.

* Gen Al can help
interpret/resolve error
messages.

5.1. Technical Analysis 71

As we have seen, gen Al can beneficial in all stages of the development process, how-
ever, depending on the context of its application, it is crucial not to rely on generative Al
as a standalone tool in any phase of the development process in its current state. The opti-
mal approach is to integrate generative Al with developers to validate all outputs. Despite
its immense usefulness, there have been instances where generative Al has produced in-
correct results ([136], [137]). Therefore, involving developers alongside generative AI5.4 is
essential for achieving optimal results and enhancing the low-code software development
process.

Data Modeling

Maintenance Ul Definition

Gen Al + Human
& Specification of business
logic rules

Testing & Deployment

Integration with external
services

Figure 5.4: Gen Al in the low code life cycle

Many of the suggested gen Al improvements can take form as a ChatGPT-based chat-
bot, integrating it directly into the low-code platform. This chatbot can assist developers at
the various stages of the development process, providing support and guidance based on
textual input. By leveraging the capabilities of ChatGPT, developers can receive real-time
suggestions, troubleshooting assistance, and conceptual clarifications, enhancing the over-
all efficiency and effectiveness of the development workflow. This integration ensures that
developers have continuous access to Al-driven support, helping to address and overcome
the mentioned challenges and limitations.

Considering the layered architecture we have already introduced earlier 5.1, the low code
platforms are built to seamlessly integrate with external services. The integration of the

5.2. Business Analysis 72

GPT model into the chat bot would happen through the use of the OpenAl API[138].

5.2 Business Analysis

5.2.1 Stakeholder Analysis

Stakeholder analysis is an essential process that builds the framework for successful project
execution by identifying and engaging key individuals or groups having a vested interest
in the project’s outcome. Understanding stakeholders” needs, expectations, and influ-
ence is essential for gaining support, managing expectations, and aligning initiatives with
company objectives. Stakeholders might include a wide range of individuals, including
investors, team members, clients, partners, and end users, each with their own perspective
and contribution to the project.

The stakeholder analysis section of the report seeks to offer a complete assessment of the
important stakeholders engaged in the project, including their level of influence and in-
terest in the project’s success. Prioritizing communication tactics, engagement techniques,
and decision-making processes is made easier by classifying stakeholders based on their
power and interests.

Key Stakeholders of the Idea: For our idea of integrating Generative Al in low/no-code
platforms, we identified the key stakeholders associated with this. Their individual impact
and contribution to the idea is described below:

¢ End Users: For our conceptual low/no-code development platform integrated with
Generative Al, end users are pivotal stakeholders. Their active engagement will
significantly influence the proposed platforms design, functionality and market suc-
cess. They participate in direct user feedback, beta testing, and the promotion of the
platform through the creation of advocates and the documentation of successful use
cases. User feedback is essential for fine-tuning platform functionality, proving its
applicability, and directing development efforts in a way that reflects real-world use.
Additionally, end-user interaction data is critical for training and improving the Al
models that enable the platform’s unique functionality. Furthermore, their content-
ment and recommendation can bring more users, create a long-term user base, and
raise fresh revenue through subscriber growth and sales. This way, users not only
get the product but at the same time contribute to its completion, which is the core
of the platform’s evolution and success.

¢ Software Developers and IT Staff: Another important stakeholder group for this
conceptual idea are software engineers and IT professionals. They not only keep the
system running well, but they also initiate innovations and guarantee that the plat-
form remains active and serves the needs of its users. Such experts in technology are

5.2. Business Analysis 73

in charge of system installation, software upgrades, security checks, and making im-
provements to improve the user experience. They also help bridge the gap between
non-technical users and complicated technology solutions by offering training and
support services to ensure that everyone can fully utilize the platform’s capabilities.
And their position is vital not just in terms of the platform’s technical integrity, but
also in its evolution to fulfill both present and future demands, making it a relevant
and powerful tool.

¢ Project Managers: Project managers are also very important stakeholders in the idea.
They are the ones who do the behind-the-scenes tasks to make sure that the projects
stay within budget as well as to maintain strategic objectives. Through coordination
among development and marketing teams, the project managers manage every step
of platform development and deployment so that these steps are aligned. They are
effective in timelines, resource allocation, and people management, and can tackle
any problems that could arise and finish the work smoothly. They serve as an im-
portant channel of communication for keeping the stakeholders informed and up to
date about any changes or new developments. Their monitoring capability is critical
not only in this regard but also in terms of accommodating feedback and market
dynamics, thus the project remains flexible and tuned to the users” demands.

* Business Analysts: Business analysts are one of the crucial stakeholders in the
building of platforms wherein the Generative Al technology is integrated with the
low /no-code capabilities. They are the link between the possibilities of technology
and business goals, whereby they decode the complex data and also the feedback
from the users into actionable information. They are supposed to really understand
both the market conditions and customer needs for creating functionalities that re-
ally work for the users. Through detailed market research and feasibility studies,
business analysts guarantee that the platform does not only satisfy present market
requirements but also provide for the future. They help to prioritize feature devel-
opment following strategic importance and ROI that, at the end of the day, ensure
the platform’s commercial success. The analytical skills of business analysts en-
ables them to serve the role of providing solid data-driven foundation that helps in
decision-making process; this makes them vital players in the process of aligning
business strategies with technological advancements.

* Quality Assurance/Testers: QA (Quality Assurance) testers are another critical stake-
holder in the platform idea. They make sure that the software is not only operational
but also aligned with the design specifications, taking into account the users’ re-
quirements for usability, functionality, and reliability. Through repetitive testing of
every aspect of the platform, QA testers track down bugs and issues before they af-
fect end-users, ensuring smooth functionality. They perform rigorous testing, which
helps keep standards high and, in the bargain, prevents expensive errors that could

5.2. Business Analysis 74

spoil the platform’s reputation and user satisfaction. In addition, QA testers also con-
tribute to the platform’s development by giving feedback that can be used to make
the platform more innovative and efficient. Their work guarantees that new releases
are highly stable and boast superior functionality, creating a pleasant experience for
users and increasing the credibility of the platform in the face of strong competition.

* AI Researchers and Data Scientists: Al researchers and data scientists are also es-
sential stakeholders in developing the platform. They are the driving force of the
system given that they develop and adjust the AI models that automate and improve
certain features. Through the use of advanced machine learning algorithms as well as
data analysis methods, they verify that the Al parts are not only innovative but also
practical and efficient enough for their end users. Their work consists of constant ex-
perimenting and iterating to harvest Al precision and intelligence, which makes the
system more cognitive and interactive as time passes. Additionally, Al researchers
and data scientists scrutinize users data to get insight for the development of new
features or improvements which are based on the real world usage of the platform
and affect the evolution of the platform. Their efforts play a key role in promoting
technological advancement and market competitiveness, which ultimately leads to
an elevated user experience and gratification.

* Regulatory and Compliance Officers: Regulatory and Compliance Officers are also
very important stakeholder for the development of the conceptual platform. They en-
sure that the platform maintains industry regulations, data protection laws, and eth-
ical guidelines, which are crucial for maintaining trust and legal compliance. Their
involvement is essential for identifying risk factors and taking efficient measures to
mitigate them to safeguard the platform from legal issues and its reputation. They
also play a vital role in keeping the platform up-to-date with changes in legislation,
which is a challenging task as the technological and regulatory evolution of Al is
happening rapidly. They not only protect the organization but similarly, they make
the users confident that their data is dealt with carefully and securely through the
whole process of development and deployment by guaranteeing compliance.

After determining the stakeholders for our idea, we categorized them based on their in-
fluence, interest, and levels of participation using the power-interest grid. There are four
categories for the power-interest grid mapping and they are [139]:

¢ High Power, High Interest: "Manage Closely"
* High Power, Low Interest: "Keep Satisfied"
* Low Power, High Interest: "Keep Informed"

¢ Low Power, Low Interest: "Monitor"

5.2.

Business Analysis 75

High 1
Keep satisfied

+ Al Researchers and
Data Scientists.

+ Software Developers and
IT Staff

« Business Analysit

« Project Managers

Power

Monitor
+ End Users

« Quality Assurance/Testers

Low

Interest g
Low High

Figure 5.5: Power Interest Grid

For our idea of the platform, stakeholders like Al researchers and data scientists, de-

velopers and IT staff, business analysts, and project managers fall under the high-power,
high-interest grid. Then comes the high-power, low-interest grid, where we placed regula-
tory and compliance officers as we had to keep them satisfied. Lastly, we placed end users
and quality assurance/testers in the low-power, high-interest grid, and we have to keep
them informed. An explanation of the position in the grid is described below:

¢ High Power, High Interest:- Manage Closely : These are the people who has the

highest power and interest in the project so it is required to manage them closely. For
our idea of the Generative Al integrated platform, stakeholders like Al researchers
and data scientists, software developers and IT staff, business analysts, and project
managers were placed in this group based on their influence and interest in the idea.
Their technical expertise will be crucial for the success of implementing the idea.
They play a crucial role in decision-making, so they are required to be managed
closely. Al researchers and scientists will innovate, which will shape the platform’s
core functionalities; software developers and IT staff will ensure the platform’s ro-
bustness and integration capabilities, business analysts will play the role of translat-
ing the user’s needs into actionable plans; and project managers will need to look
at the project resources and timelines. It is essential to keep them engaged through
regular updates, strategic involvement, and robust feedback. As they hold an influ-

5.2. Business Analysis 76

ential role as well as high interest in the idea and are required to manage closely, we
placed them in this grid.

* High Power, Low Interest:- Keep Satisfied: In this section, we need to place the
stakeholders who are required to keep in loop, as they need to be kept satisfied even
though they have a lower interest in the project idea but hold high power. They need
to be handled carefully, and their power can be used in an undesirable way if they
are not kept satisfied. For this reason, we placed regulatory and compliance officers
into this grid. For successful implementation and the future, we need to keep them
satisfied by fulfilling all the existing rules and regulations. Their role is crucial for
ensuring that the platform meets legal standards. We need to focus on keeping them
well-informed and compliant, ensuring their needs are met through periodic updates
and streamlined communications.

¢ Low Power, High Interest:- Last comes the low-power, high-interest quardant for
our idea. We placed the end users, such as business users, developers, and quality
assurance/testers, in this, as we need to keep them adequately informed and com-
municate with them to ensure that their is no issue arising. They are deeply invested
in how the platform performs and functions because it will directly affect their work
or the quality of the product they are making using the platform. They need to be
kept well-informed and involved. Regular communications, updates, and feedback
sessions are required to handle these stakeholders, as their feedback greatly helps
to enhance the platform’s features and functionalities. Quality assurance/testers are
also required to be regularly updated and informed, as they need to be well aligned
with the upcoming features, detailed changelogs, and development plans so that
they can properly plan their testing needs and requirements.

5.2.2 Market Analysis

In this section, we will dive into a comprehensive analysis of the low-code/no-code devel-
opment platform industry, especially focusing on the integration of generative Al into this
platform’s code generation and design tasks. We will try to provide a detailed overview
of the current market landscape, growth trends, key players, adoption patterns, and fu-
ture prospects for this market segment. By analyzing the market segment, competitive
landscape, and future opportunities, we will shed light on the market potential and impli-
cations for the successful implementation of the idea.

Market Size and Growth Rates: The LCNC development platforms and generative Al
industry are currently evolving and expanding rapidly because of the increasing demand
of fast and effective application development solutions and integration of Al into applica-
tion generation processes.

5.2. Business Analysis 77

It is expected that the low-code development platforms market will expand globally from
USD 28.75 billion in 2024 to USD 264.40 billion by 2032, with a growth rate (CAGR) of
30.90% [140]. Gartner predicts that sales of low-code development solutions globally will
reach around USD 31 billion by 2024, indicating growth over previous years. [141]. As a

North America Low Code Development Platform Market Size, 2019-2032 (USD Billion)

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

www fortunebusinessinsights.com

Figure 5.6: Low Code Market Size [140]

result of the development of generative Al technologies, the cloud computing industry is
expected to grow from USD 0.58 trillion in 2023 to USD 1.24 trillion, according to Gartner’s
forecast [142]. The adoption of code intelligence is predicted to drive market growth as
companies invest in this platform for benefits such, as enhanced data analytics, improved
user experience, cost efficiency, and faster development processes.

Historical Data and Future Projections: It is anticipated that the low-code market would
expand by around 40% due to anticipated increases in investment [142]. By 2025, 70% of
apps created by businesses will use low /no-code technologies, according to Gartner [142].
This is a significant increase over prior years.

The adoption of Generative Al models and tools has surged rapidly, with major cloud
providers enhancing their infrastructure and capabilities to support clients in leveraging
Generative Al for business purposes [118]. The increasing embrace of low-code Al is an-
ticipated to drive market expansion as organizations invest in platforms that offer data
analytics improved user experiences and expedited development processes.

Integration of Generative AI and Low/No-Code Platforms: The integration of genera-
tive Al and low-code platforms enables users to change how the program will behave
without the need to handle underlying intricate information [118]. It can be input in the
form of suggestions such as “Can I have a code snippet for changing the format of dates?”
or “Can you design a flow that updates inventory automatically?” This way, it brings effi-
ciency to coding and fosters creativity.

5.2. Business Analysis 78

This fusion re-creates the efficiency of the software interface, because tasks that once re-
quired tedious configuration, or programming, can now be done with commands. Through
natural language prompts, users can dictate the behavior of software without necessarily
having advanced technical knowledge, and thus innovation has been made easier [118].

Challenges and Considerations: Although the design of generative Al and integration
with low/no-code platforms is promising, there are issues to be discussed and overcome.
At this stage, privacy is a very important issue when dealing with data that is fed to gen-
erative Al models and finding the right balance between the provision of useful insights
and protection of data entering the model is often a difficult task [142].

Since generative Al algorithms are stochastic in their nature, the application may pro-
duce different results at different times, so one needs to be vigilant when choosing an Al
solution for a particular task [118]. Leaders need to be attentive to the development of the
governance layer as ensuring data integrity and security remain vital.

5.2.3 SWOT Analysis

To strategically evaluate our idea of integrating Generative Al into low /no-code develop-
ment platforms, it was important to conduct a SWOT analysis. This helped us identify the
internal strengths and weaknesses of our proposed idea as well as the external opportuni-
ties and threats it can face in the long run. It allowed us to identify the core advantages that
our idea holds, such as increased accessibility and innovation in software development,
while also identifying potential challenges like technical complexity or market acceptance
issues.

¢ Strengths: In this section of the analysis, we identified the main advantages and
strengths we have for our idea of integrating generative Al into low/no-code plat-
forms to enhance their capabilities. Based on our analysis, we have identified the
core strengths associated with the idea, like that it is an innovative integration that
enhances the capabilities of traditional low /no-code platforms, making it more pow-
erful, efficient, and attractive to users. It also has the potential to make software
development accessible to a larger audience, including non-technical users, by sim-
plifying the software development process. Another strength of the idea is rapid pro-
totyping, as low/no-code development platform makes it easy to build applications
without starting from scratch, rather using drag-and-drop features and built-in tools.
and with the integration of generative Al technology, users can create applications
using natural language commands/text. It can automate the repetitive workload by
automatic code generation, testing, etc. This kind of platform also reduces the time
consumption of the development process as well as the development cost, which are
also strengths of the idea.

5.2. Business Analysis 79

SWOT ANALYSIS

STRENGTHS WEAKNESSES

Innovative Integration « Complexity of Technology

Accessibility & « Data Security and Privacy
Democratization Concerns

Rapid Prototyping * Biasin Al Models

Cost Efﬂ;iency * Integration and Customization
Automation Challenges
Development time reduction * Scalability and Performance

* Learning Curve for New Users

OPPORTUNITIES

Continuous Innovation
Expansion of Features
Expanding Market
Technological Advancements

THREATS

Technological Obsolescence
Intense Competition
User Acceptance and Trust

Domain-Specific Customization CybeLrsecuritydesks i
Cross-Platform and Multi- Regulatory and Compliance
Challenges

Modal Applications

Figure 5.7: SWOT Analysis

e Weakness: We also identified the weaknesses related to the idea, and one of the

main weaknesses is the complexity of technology. It requires high-level expertise in
the sectors of Al, data science, and machine learning, and as the field is advancing
rapidly, it is also difficult to keep up with the regular updates and grasp new things.
Also, the platform’s dependency on user-provided data for GenAl training has po-
tential security and privacy concerns. Biases in the AI model are another weakness
of the idea, as we have to train the AI model with the data for generating output,
but if it is trained on biased data, then the output of the system will also be biased,
which is a concerning factor. It is also a difficult task to integrate generative Al tech-
nology and maintain the platform with regular updates and functionalities. As the
technology is new, the learning curve of new users can also be a weakness.

Opportunities: The rapid advancement of the technological sector brings new op-
portunities to explore and work on. For our idea, we also identified the opportunities
that lie in the integration of GenAl technology into these platforms. It is a field of
continuous innovation, as new things and ideas are coming regularly with better
aims and goals to achieve. It provides an opportunity to expand the market with
the expansion of new features and capabilities in the platform. As the low/no-code
and generative Al market is continuously growing and expanding it provides more

5.2. Business Analysis 80

and more opportunities to work on. The combination of GenAl and low/no-code
platforms enables faster development and innovation. It also enables opportunities
for new use cases as well as domain-specific customization.

¢ Threats: The low/no-code market is evolving rapidly, with many new companies
or existing large companies working with similar integration, which poses a threat
in the long run for the market, which is crowded with various options for users.
Technological limitations are also another threat to the idea, as generative Al is con-
tinuously evolving and might lead to uncertainties in its long-term viability and
integration challenges. The increase in accessibility, also increases the possibility of
misuse, as people can make applications that might violate privacy or spread false
information or scams. Newer advancements in the evolving technological world also
pose concerns about the idea becoming obsolete. There are also threats to cyberse-
curity. Intense competition in the existing market is another big threat and requires
continued innovation to stay ahead in the market. On top of these, another threat
lies in user acceptance and trust of the platform. It is difficult to gain the trust and
acceptance of users. Also, there are regulatory and compliance challenges that need
to be properly followed so that the solution always fulfills the legal requirements.
These regulations and compliances also evolve timely, which can be a threat in the
long run as well.

5.2.4 Porter’s 5 Forces

Through Porter’s Five Forces analysis, we can get a good idea of the nature of the compet-
itive forces that will be imposed on the implementation of an idea. It assists companies in
learning the competitive situation of their industry and detecting opportunities for expan-
sion and innovation. It is relevant for our thesis idea to have a better understanding of the
current market trends for the successful implementation of the idea. From the analysis of
the power of a new entrant, the bargaining of a supplier side and a buyer side, competi-
tive rivalry, and substitutes, we will be able to learn what is proper in the market situation
and where there are opportunities and risks. It helped us to investigate the feasibility and
possible effect of the combination of generative Al with low/no-code development plat-
forms and to come up with a strategy that considers the competition and market trends.
A detailed description of the analysis is described below:

¢ Threat of New Entrants: In this section of the analysis, we need to find the possibility
of new entrants in the market, which also integrates generative Al into low/no-code
development platforms. Due to the rapid advancement of Al technology, the increas-
ing availability of development tools and services and the potential of low /no-code
platforms can attract new entrants with innovative solutions. But integrating gener-
ative Al into these low /no-code platforms required significant technical knowledge,
expertise in Al, data science, and development costs. With access to proprietary data

5.2. Business Analysis

« Threat of New Entrants: (Moderate)
= Rapid Al advancement aftract new

enfrants

Technical expertise and Al

knowledge are essential

Existing players in the market

poses competition

Significant development costs

Gaining trust and reliability poses

5 a

s a

81

« Competitive Rivalry: (High)

« Intense competition in the
generative Al technology and
LCNC market

» Differentiation based on
performance, features, and pricing.

= Confinuous investment and
research are crucial for staying
competitive

challenges Threat of New = Rapid advancement in both
Entrants sectors
Bargaining Power of Bargaining Power of
Suppliers Buyers
« Supplier Power: (Moderate) « Buyer Power: (High)
= Multiple suppliers offer competitive o Diverse user base
pricing o Individual buyer have low power
= Suppliers with unigue Al due to smaller scale
capabilities have more bargaining _ « Enterprises have higher power due
power Threat of Substitutes to specific needs and negotiation
- Generative Al model providers leverage
emerging o Avallability of multiple options

o

Availability of multiple options

« Threat of Substitution: (Moderate) o Low switching costs

« Traditional coding, non-Al low/no
code platforms, and open-source
alternatives

Al technology is often the best
solution for complex problems
Lower switching costs

Mew, more efficient technologies
might emerge in the long run.

s a

Figure 5.8: Porters 5 forces Analysis

and unique capabilities, new entrants can quickly enter the market with their unique
features and compete with the existing players. However, gaining the trust and relia-
bility of the user as a new entrant is also a challenge. But existing market competitors
like OpenAl, Google, etc. who are already working with generative Al technology
can pose a threat to the idea in the future. So comparing all of the factors, it can be
expected that the threat of new entrants in the market is moderate or medium.

Bargaining Power of Suppliers: As technology is rapidly evolving and more and
more suppliers are already available on the market, users have multiple options in
their hands to choose from based on their requirements and capabilities. For this
reason, the bargaining power of suppliers in the Al technology field is also moderate.
High competition among the suppliers helps to keep the prices of the products or
services down and gives users more bargaining power. However, suppliers can have
more bargaining power with unique Al capabilities, features, and proprietary data.

5.2. Business Analysis 82

¢ Bargaining Power of Buyers: The bargaining powers of buyers can vary from mod-
erate to high due to the diverse user base. As there are different user bases, like
individuals, small or medium enterprises, and large enterprises, the power of bar-
gaining also varies. Individual users have a lower level of bargaining power due
to the smaller scale, and small or medium enterprises and large enterprises have a
higher level of bargaining power with their specific needs and requirements and can
negotiate on price or customization. Also, to keep the customer base happy and
loyal to the platform, businesses need to fulfill buyer demands and offer competitive
pricing to maintain their market share. Moreover, due to the availability of multiple
options to choose from, they have the power to switch to a new one with relatively
lower switching costs.

¢ Competitive Rivalry: Rivalry among the competitors in this market also ranges from
moderate to high. Competition is intense in the generative Al technology market, as
it is currently blooming everywhere with its capabilities and features. Many star-
tups and big companies are implementing this technology into their relevant field
to increase their efficiency and productivity. Moreover, the existing LCNC platform
market is already competitive. However, the main factors that will differentiate the
competitors will be their performance, unique features, and capabilities. Also, pric-
ing and business models will be important competitive factors. To be in the com-
petitive market, it is essential to keep up with the rapid advancement in this field
and provide customers with better service and more reasonable pricing options than
the available competitors. Continuous investment and research are required to stay
ahead of competitors in the competitive landscape.

¢ Threat of Substitutes: The threat of substitutes for our idea is moderate or medium.
There are some substitutes available in the market, like traditional software develop-
ment, existing low/no-code platforms without generative Al integration, and some
open-source platforms with basic generative Al functionalities. User can shift to any
of these based on their needs or scenarios. But most often, Al technology is the best
solution for complex problems rather than the traditional development process. As
technology evolves, new, efficient technologies might appear on the market in the
long run.

5.2.5 Value Proposition Canvas

It is essential to understand how the proposed idea’s solutions fit with the demands of
the consumer. For this reason, we created a value proposition canvas for our idea, which
helped us visualize and define the value that our proposed innovative platform intends to
provide to its users. This framework is particularly important for our analysis, as it helped
us to systematically break down the features and offerings of the platforms against the
real demands and challenges faced by the potential users.

5.2. Business Analysis 83

The value proposition and the customer profile are the two primary parts of the value
proposition canvas. By analyzing the jobs that need to be done by the users, the pains
they currently face and wish to avoid, and the gains they want to achieve, the customer
profile helped us to understand the user segment and the requirements they have deeply.
On the other hand, the value proposition segment helped us identify the user pains our
proposed platform with generative Al integrated should resolve and also create the gains
to fulfill their needs and requirements. A detailed description of the two sections of the
value proposition canvas is described below:

‘Value Proposition: ‘Customer Profile:

E."h '";. bility Drive Innovation 5
‘mpowering
o Increased Productivity Faster time to

Enhance guality and mar

consistency Gain creators Gains

Al enhancad
development
platform

and
Rapid Applicatio

Accalerate software /\,u User-friendly interface
Agility Development

development

of Ci

Continuous Updates
and

Democratization of
application development

Products
and services

g g Automated Code Generation &
£ E Application Design
8% Automated Code

O< Generation

Inwnmﬁpn of cutting-edge

s e, Al schnologies Handling complex requirements

‘without extensive coding

Lack of coding knowledge

Complexity of Traditional High Cost of
Development process Development
Natural Language

Automated Design - ~ based developmant Design
o Il::sfhlpplwcuﬁu" Pain capability Time-Consuming pajng c.,m%|m
B relievers
Use: frlendly = Reduce Com| B
i uce plexity
e Cost reduction N 2 GMannl.n mﬁ’ﬂn
Simplify
Development Lessino coding Less time Limited customization and
knowledge flexbility

Figure 5.9: Value Proposition Canvas

* Customer Profile: In this section of the canvas, we identified the customer jobs that
need to be done, the pains they face while performing the jobs, and also the gains
they want to achieve from using the generative Al integrated platform.

— Customer Jobs: One of the main things that need to be done is to simplify the
software development process so that both technical and non-technical users
can participate in the development process. Businesses want to speed up their
development cycle so that they can reach the market faster. They need to have
features for designing and customizing applications. Another important job
is development with minimal coding, which reflects the aim of automation.
Another customer job that needs to be done is having the opportunity to col-
laborate with others for the development process effectively.

- Pains: In this part, we identified the pains or issues they face in completing the
jobs that are required to be done. One of the main pains for the users is their
lack of programming knowledge, which separates them from the development

5.2. Business Analysis 84

of software. Traditional development is a complex process that is also time-
consuming. Due to a lack of coding/development knowledge, the development
of applications can be costly, and customers need to depend on professional
developers. Moreover, designing an application and building it with manual
coding is complex and has many challenges.

— Gains: Though there are several pains associated with jobs that require to be
done by the users, there is still an opportunity for gains in the idea of inte-
grating generative Al into low/no-code platforms. One of the main gains is
making software development accessible to a broader audience. As program-
ming or coding knowledge is not required to develop applications using these
platforms, it creates opportunities for non-technical users to participate in the
development process, which also democratizes software development. With
the features of low/no-code platforms with generative Al capabilities, applica-
tion development becomes faster, businesses can reach the market with their
product very quickly, and it can improve code quality and enhance the user
experience through Al-driven automation. Users can handle complex require-
ments without extensive coding. In a nutshell, productivity and efficiency can
increase. This kind of platform can also reduce the cost of development.

* Value Proposition: In this section of the canvas, we tried to identify how our gen-
erative Al-integrated platform aligns with the offerings that meet the needs and ex-
ceed the expectations of the users. This segment mainly focuses on the benefits and
features that make the platform attractive to users. Each element of this segment
highlights how the platform not only addresses the challenges faced by the users but
also adds value by enhancing the user experience and outcomes.

— Product and Services: In this part of the segment, we outline the core features
and offerings of our proposed platform. It will be a development environ-
ment enhanced by Al that enables users to create applications with little to no
coding. The platform will automatically generate code based on simple user
inputs, making the design task more easy for them. It will have a user-friendly
interface so that user can comfortably use the platform for their application
creation. It will ensure that the application created with the platform meets
user requirements. The platform needs to be continuously updated with the
newest features and improvements so that it has the newest facilities available
for its users.

— Pain Relievers: Here, the main focus was to identify how our platform with
generative Al capabilities can address specific user pains with the software de-
velopment process.For instance, the complexity and time needed for develop-
ment may be greatly decreased with the use of generative artificial intelligence.

5.2. Business Analysis 85

Users can use simple natural language to communicate with the system and
provide their requirements and the system will automatically generate code
and design for them, which reduces the complexities of the design task and
manual coding as well as their knowledge of programming. The platform’s au-
tomated code generation and intuitive design tool features may remove techni-
cal hurdles and learning curves from the development process, making it more
accessible and less challenging for new users. It will also relieve the pain of
depending on developers for developing applications and the cost associated
with that.

— Gain Creators: This element of the value proposition segment emphasizes the
additional benefits that our proposed platform can offer to our users. The plat-
form will not only simplify the development process but also enhance user pro-
ductivity and enable rapid prototyping. user can develop applications without
extensive coding skills, rather in their natural language. This capability em-
powers non-technical users to participate in the development process. Users
can quickly test and iterate on their ideas, which will accelerate the innovation
process and bring applications to market faster. Additionally, organizations
utilizing the platform may get a competitive edge by optimizing apps for per-
formance and user experience thanks to its Al-driven insights.

5.2.6 Business Model Canvas

To ensure the long-term success and viability of our proposed low/no-code platform in-
tegrated with generative Al capabilities, we need to have a well-defined business model.
For this reason, we made a business model canvas for our idea that serves as a roadmap.
It outlines the key elements that will enable us to deliver value to our target users of the
platform and achieve sustainable growth. It helped us define our customer segments, the
value proposition we could offer, the channels through which we will reach the users, the
cost required to implement and maintain the idea, the key resources and activities related
to the idea, as well as the revenue stream that will fuel our operations. By carefully consid-
ering these elements and continuously updating our business model based on the market
feed, we can serve a platform that will empower users of all skill levels to build innovative
applications and participate in the software development process. A detailed description
of all the elements of the business model canvas is given below:

¢ Customer Segments: In this element of the canvas, we outline the customer/user
segment that we can work with our proposed platform. Basically, the users who
will be using the platform for the developments. For our proposed platform, the
customer segment includes enterprises that are looking to accelerate digital transfor-
mation, professional developers seeking to increase their productivity, citizen devel-
opers or non-technical users who lack coding knowledge, and independent software

5.2. Business Analysis 86

Business Model Canvas

m Key Value Proposition m
' Activities I
Lowino Code Marketing and Rapid Enterprises looking
Platform Development & Sales Prototyping and User-friendly Technical Personalized e
Vendors Maintenance Deployment Interface Support ‘Support Eemsonsion
contnuous A1 Vi
Model Increased
Improvement Productivity &
Cloud innovation Community oniine Professional
Infrastructure Engagement. Documentation developers
Providers Community Compliance and and Tutorials A o T
Management Security Avassisted Ky
‘Management Design Tools Ly i d
Automated
Code
Generation
A Technology Chizen developers
Providers Democratization Channels e el
of Development business users
Process
Lowino code Direct Sales and Webinars and
Generative Al Development o e
Model Platform Simplified Distribution
Development Customization & Independent
Process Scalabilty software vendors
il (1SVS) buikding
roviders
Financial Cl=IEm
Resources. Cost Reduction Online
& Lower Marketplace

Development
Development Cost
and Data for Model

Maintenance Training

Team

Cost Structure

Cloud Customer Research and Subscription Pay-Per-Use Enterprise
Itrastructure Support Model Fees Model Licensing
Development
Plattorm Marketing and Custom
Maintenance Advertisement

Freemium Model Development
and Hosting Expenses

Figure 5.10: Business Model Canvas

vendors for building applications. Identifying and targeting these customer seg-
ments is crucial for the successful adoption and implementation of Generative Al
integration.

¢ Customer Relationships: Here we identified the ways through which we can main-
tain the connectivity and relationship with the user of the platform. For our idea,
we will try to give the user the required technical support as well as personalized
support to navigate and build applications on the platform. Moreover, community
engagement initiatives can also help to build a collaborative user base.

¢ Channels: In these elements of the canvas, we need to identify the channels through
which users will receive the value proposition of the proposed platform. The plat-
form can be accessed online, providing a central hub for development activities.
Direct sales to enterprises, partnerships with platform vendors, and an online mar-
ketplace for individual developers can work as channels as well. Webinars and work-
shops can also be arranged to reach and engage with the target users effectively.

5.2. Business Analysis 87

* Value Proposition: Here, we identified the value that the proposed integrated plat-
form can provide to its users. These value propositions include accelerating software
development by automating code generation and design tasks, simplifying the de-
velopment process, empowering non-technical users to build applications efficiently,
enhancing the quality and consistency of software output, and providing an intu-
itive, user-friendly interface so that users can seamlessly develop applications. With
the availability of Al-assisted tools, productivity, and innovation opportunities can
also be increased, which will enable rapid application development and reach to the
market faster. This kind of platform will also reduce the time and cost required
to develop an application in traditional ways. These value propositions intend to
address the needs and desires of the target customer segment effectively.

* Key Activities: Key activities for the successful implementation of the idea include
developing AI models for code generation and design, integrating Al capabilities
into the platform, providing user training and support, and continuous update and
improvement of the Al model based on user feedback. Marketing and sales of the
product efficiently also fall under the key activities. Moreover, managing the com-
pliance and security aspects as well as community management falls under the key
activities. These activities are essential for ensuring seamless integration of the idea.

¢ Key Resources: Key resources for the proposed platform include a generative Al
model, low /no-code development platform, data for training the model, and a devel-
opment and management team that will work to develop and maintain the function-
alities and features of the platform. Financial resources like investment and funding
on research and development for new and updated Al technology or models also fall
under the key resources.

¢ Key Partners: Key partners include low/no-code platform vendors, cloud infras-
tructure providers, Al technology providers, and third-party API providers for other
features and functionalities to include in the platform. It is crucial to collaborate with
these partners to effectively leverage their expertise and resources for the integration
of generative Al into the development platform.

* Cost Structure: The cost structure includes the expenses required for the devel-
opment of the AI model, cloud infrastructure, research for new innovations and
development, customer support and success, platform maintenance, hosting, and
marketing and advertisement-related expenses. It is really crucial to understand and
manage the cost structure to ensure the financial sustainability of the idea.

* Revenue Streams: Revenue streams can be generated from subscription fees based
on usage and features, a freemium model that allows users to try basic functionalities
for free before committing to a subscription; and and custom development services
for enterprises that require tailored solutions. The key to increasing sustainability
and profitability is income stream diversification.

5.3. Requirements 38

5.3 Requirements

The following section will specify the requirements of the various tasks that can be car-
ried out by integrating a GPT-based chatbot into low-code platforms. Requirements are
generalized and based on the previous sections—state-of-the-art, business, and technical
analysis.

5.3. Requirements

89

Requirement Description Rationale
Assistance and | The GPT-based chatbot should | To further enhance democrati-
Guidance provide help and guidance | zation of software development

when developers encounter dif-
ficulties based on a conversa-
tional manner.

and support developers in over-
coming obstacles quickly.

Enhanced Code
Automation

The GPT-based chatbot should
automate the generation of
complex code structures that
adapt to user needs and project
contexts.

To reduce manual coding re-
quirements and speed up de-
velopment processes, making
the platform more efficient and
accessible.

Dynamic UI/UX
Suggestions

The GPT-based chatbot will
provide actionable recommen-
dations for UI/UX designs
based on user behavior and in-
dustry standards.

To assist developers in creating
user-friendly interfaces that en-
hance user satisfaction and en-
gagement.

Customization

The GPT-based chatbot should
provide features that enhance
the flexibility of low-code plat-
forms, allowing developers to
adapt and extend pre-built
components and templates to
meet unique project require-
ments.

To ensure that the Al-generated
content aligns with the unique
requirements of different
projects, enhancing the flex-
ibility and wusability of the
low-code platform.

Al-Enhanced In-
tegration Tools

Develop Al tools that simplify
the process of integrating the
LCNDP with other systems and
technologies.

To enhance the capability of
LCNDPs to handle complex in-
tegrations smoothly, thus ex-
tending their applicability.

Automated Test-
ing and Quality

Al should automatically gener-
ate and execute test cases to

To maintain high quality stan-
dards with reduced manual in-

Assurance ensure application functional- | tervention, increasing the relia-

ity and reliability. bility of deployed applications.
Intelligent Error | Implement Al-driven mecha- | Enhances productivity by re-
Handling and | nisms to identify, analyze, and | ducing downtime and man-
Debugging rectify errors in real-time. ual debugging efforts, thus im-

proving code quality and relia-
bility.

Table 5.6: Functional Requirements

Chapter 6

Discussion & Future Work

In this discussion chapter, we will reflect on the decisions made throughout the thesis and
discuss the process of conducting a technical and business analysis for our thesis report.
Furthermore, we will explore potential future directions and aspects of this research.

In our background chapter, we explored the evolution of software development method-
ologies by highlighting how traditional methods like the waterfall model and iterative
methods like the spiral model provided a structure for software development but lacked
flexibility. Agile methodology emerged to handle the lack of traditional methodologies
and introduced more adaptability and user-centric approaches to software development.
However, even these methodologies had issues, such as the dependency on skilled devel-
opers and extensive coding, which highlighted the need for more accessible and efficient
methodologies for software development. This need paved the way for the rise for low /no-
code development and generative Al

Then in our state-of-the-art chapter, we explored the current state of low /no-code devel-
opment and generative Al technologies that helped us to understand how these platforms
can democratize software development by allowing users with limited or no coding knowl-
edge to the software development processes. We got to understand their functionalities
such as visual development environments and pre-built components, model-driven devel-
opment approach which makes the development process faster and less costly. In addition
to this, the exploration of generative Al technologies and their capabilities, we could grasp
a better understanding of how they can enhance the capabilities of low /no-code platforms.
Together, these technologies can make software development more accessible and efficient,
promoting innovation and enabling larger number of people to participate in the develop-
ment process.

The stakeholder analysis helped us to identify the relevant stakeholders associated with
the possible integration of low/no-code development platforms and generative Al. Our

90

91

business analysis provided us insights of the possible business opportunities and chal-
lenges associated with the possible collaboration of these two technologies. We could
understand the strengths, weaknesses, opportunities, and threats of the integration by
performing the swot analysis. We also performed porter’s five forces framework to under-
stand the competitive market scenario and possible challenges. In our value proposition
canvas, we identified the key challenges and issues that the users or businesses face now
regarding software development and how these two technologies can come as a remedy to
these issues and create value for the users. To analyze the business potential of integrat-
ing generative Al with low/no-code platforms, we created a business model canvas and
identified its nine components.

In the technical analysis, we explored the workings of low-code platforms, which are built
on a layered architecture where each layer handles specific operations. The key layers
include the application layer, service integration layer, data integration layer, and deploy-
ment layer. We then defined the low-code development life cycle to understand how and
where generative Al can be optimally integrated into the software development process.
This lifecycle mirrors traditional software development but is designed to enhance devel-
opment speed and efficiency.

We identified six stages based on the agile methodology and pinpointed potential limi-
tations and challenges developers might encounter. After defining these challenges, we
outlined how generative Al can provide solutions, concluding that generative Al can be
beneficial throughout the entire development process, from requirement specification to
deployment. We suggest that integrating a GPT-based chatbot as an Al assistant within
the low-code platform could address many of these limitations.

However, several issues arose during our research. Ideally, we would have collected pri-
mary data from both experts (to identify the potential of generative Al) and end users
(citizen developers) to understand the challenges from their perspective. Although we
received a response from one company, we were unable to secure their collaboration for
an interview. Additionally, due to time constraints, we did not conduct end-user testing
of low-code platforms, leading us to rely on limited research given the novelty of the topic.

While we concluded that generative Al is essential throughout the development stages
and identified its potential benefits, further research is needed to draw more concrete con-
clusions on the use of generative Al as a GPT-based chatbot, particularly concerning the
validity and accuracy of its responses. Additionally, more exploration is needed to identify
other implementation methods for generative Al and to offer additional recommendations
on how it can enhance low-code platforms.

Another important area of research involves optimizing the way developers prompt the

92

chatbot, as this will be the developer direct interaction with the platform and this is crucial
for effectively using the platform. Proper prompting techniques can significantly enhance
the developer’s experience and the overall efficiency of the low-code development process.

Moreover, our research lacks a detailed explanation of the technical implementation of
generative Al within low-code platforms. Therefore, a key area for future research is to
explore the technical aspects of integrating the GPT-based chat bot into low-code develop-
ment environments.

Chapter 7

Conclusion

This thesis explored the transformative potential of low/no-code development enhanced
by generative Al technology, addressing the main statement:

"How will the offering of low/no-code solutions, enhanced by generative Al technology,
affect the future of software development?”

Following the main problem statement, some research sub-questions were also formu-
lated to break it down into smaller parts so that we can effectively approach the problem
statement. The first sub-question is as follows:

"How have the limitations of traditional and modern software development methodologies influ-
enced the rise of low/no-code platforms?”

Our research began by exploring the evolution of different software development method-
ologies in the background chapter where we highlighted the transition from traditional
methodologies like waterfall and spiral models to modern methods like agile. This pro-
vided us with a better understanding of these models and how they often lacked flexibility
and adaptability, which emphasized the need for more accessible and efficient way of de-
veloping software. Hence, the rise of low/no code development began, which aim to sim-
plify and democratize the development process by making it accessible to non-technical
users.

Then for the second sub-question:

"What are the core components and key features that define a development approach as "low/no-
code” development?”

In our state-of-the-art chapter, we explored the functionalities and characteristics of low /no

93

94

code development platforms. We identified the core components of these low/no code
platforms that include visual development environments, pre-built components, and drag-
and-drop interfaces that make these platforms accessible to users with minimal coding and
software development knowledge. We understood about the features of these platforms,
how they make the development process easy with their functionalities as well as the chal-
lenges and limitation they currently face.

Our third research sub-question is:

"How can the integration of generative Al across the stages of the low code development process
enhance its capabilities?”

To address this sub-question regarding the integration of generative Al, our initial fo-
cus was on defining the low-code development process. Thus, we examined the current
landscape of software development methodologies within the low-code context. Our in-
vestigation revealed that low-code development aligns with agile principles but operates
within condensed and more efficient phases. Building upon this understanding, we estab-
lished six key stages: data modeling, user interface design, business logic implementation,
integration of external services, testing and deployment, and maintenance.

Subsequently, we sought to pinpoint challenges encountered by developers to assess whether
gen Al could alleviate these obstacles. Our analysis concluded with that gen Al integra-
tion can span the entirety of the development cycle. Through outlining the various tasks
of generative Al within this process, it became evident that one viable implementation
would be through a GPT-based chatbot. This approach offers users both a visual low-code
environment and a textual interface via the GPT bot. Such integration has the potential to
significantly enhance and democratize software development

The last research sub-question is as follows:

"How does integrating generative Al enhance the business value and competitive market posi-
tioning of low/no-code development platforms?”

To address this sub-question, we evaluated the market scenario and strategic implications
of integrating generative Al with low/no-code platforms in our business analysis section.
We conducted a market analysis, SWOT analysis, Porter’s Five Forces Analysis and used
the value proposition and business model canvas to understand the business impact. Our
exploration revealed that generative Al integration into low/no-code development plat-
forms can enhance the business value of these platforms by accelerating the development
process, reducing costs, and improving software quality. This integration also positions
these platforms competitively in the market by offering unique value propositions such

95

as enhanced productivity, greater innovation potential, and accessibility for non-technical
users. These benefits create substantial opportunities for businesses to leverage these tech-
nologies for digital transformation and competitive advantage.

The integration of generative Al into low/no-code platforms represents a significant ad-
vancement in the field of software development. This combination has the potential to
overcome current limitations, enhance productivity, and further democratize software
development reshaping the future of software development. While the research shows
promise, future studies should focus on the technical implementation of generative Al
within low-code environments and gather primary data from industry experts and end-
users to validate these findings.

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

K. P, Revolutionizing software development: The convergence of generative ai,
no-code/low-code, and agile methodologies,
https://www.linkedin.com/pulse/revolutionizing-software-development-
convergence-generative-patel-epwwc/, Accessed: 03-03-2024, Feb 14, 2024.

N. Byers, Empowering innovation: The rise of low-code and no-code development,
https://medium.com/@nathanbyers13/empowering-innovation-the-rise-of-
low-code-and-no-code-development-e4d1d82abead, Accessed: 03-03-2024,
Feb 19, 2024.

P. Gomes and M. Brito, “Low-code development platforms: A descriptive study,”
Jun. 2022, pp. 1-4. por: 10.23919/CISTI54924.2022.9820354.

G. V. Research, Gor report cover low-code development platform market size, share
trends report low-code development platform market size, share trends analysis report by
application type (web-based, mobile-based), by deployment type (cloud, on-premise), by
organization size, by end-use, by region, and segment forecasts, 2023 - 2030,
https://www.grandviewresearch.com/industry-analysis/low-code-
development-platform-market-report#, Accessed: 03-03-2024, 2023.

N. Sabharwal, How low-code development helps enterprises,
https://www.forbes.com/sites/forbestechcouncil/2022/10/11/how-1low-code-
development-helps-enterprises/, Accessed: 03-03-2024, Oct 11, 2022.

Cyntexa, How low code or no code revolutionize the future of software development,
https://cyntexa.com/blog/low-code-no-code-the-future-of-software-
development/, Accessed: 03-03-2024, January 23, 2024.

M. Brundage, S. Avin, J. Clark, et al., “The malicious use of artificial intelligence:
Forecasting, prevention, and mitigation,” arXiv preprint arXiv:1802.07228, 2018.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané,
“Concrete problems in ai safety,” arXiv preprint arXiv:1606.06565, 2016.

R. Ulfsnes, N. Moe, V. Stray, and M. Skarpen, “Transforming software
development with generative ai: Empirical insights on collaboration and
workflow,” Feb. 2024.

96

https://www.linkedin.com/pulse/revolutionizing-software-development-convergence-generative-patel-epwwc/
https://www.linkedin.com/pulse/revolutionizing-software-development-convergence-generative-patel-epwwc/
https://medium.com/@nathanbyers13/empowering-innovation-the-rise-of-low-code-and-no-code-development-e4d1d82a5ead
https://medium.com/@nathanbyers13/empowering-innovation-the-rise-of-low-code-and-no-code-development-e4d1d82a5ead
https://doi.org/10.23919/CISTI54924.2022.9820354
https://www.grandviewresearch.com/industry-analysis/low-code-development-platform-market-report##
https://www.grandviewresearch.com/industry-analysis/low-code-development-platform-market-report##
https://www.forbes.com/sites/forbestechcouncil/2022/10/11/how-low-code-development-helps-enterprises/
https://www.forbes.com/sites/forbestechcouncil/2022/10/11/how-low-code-development-helps-enterprises/
https://cyntexa.com/blog/low-code-no-code-the-future-of-software-development/
https://cyntexa.com/blog/low-code-no-code-the-future-of-software-development/

Bibliography

[10]

[20]

[21]

krishna philips, The future of software development trends innovations,
https://medium. com/@philips202308/the-future-of-software-development-
trends-innovations-a27b3fac9902, Accessed: 03-03-2024, Feb 19, 2024.

P. Naur and B. Randell, Software engineering: Report on a conference.
NATO Science Committee, 1969.

W. Royce, “Managing the development of large software systems,”
in Proceedings of IEEE WESCON, IEEE, 1970, pp. 1-9.

H. Benington, “Production of large computer programs,”
IEEE Annals of the History of Computing, vol. 5, no. 4, pp. 350-361, 1983.

B. Boehm, “A spiral model of software development and enhancement,”
ACM SIGSOFT Software Engineering Notes, vol. 11, no. 4, pp. 14-24, 1986.

J. Martin, Rapid Application Development. Macmillan Publishing Co., Inc., 1991.

K. Beck et al., Manifesto for agile software development,
https://agilemanifesto.org/, 2001.

T. Dingsoyr, S. Nerur, V. Balijepally, and N. Moe, “A decade of agile
methodologies: Towards explaining agile software development,”
Journal of Systems and Software, vol. 85, no. 6, pp. 1213-1221, 2012.

L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspective.
Addison-Wesley Professional, 2015.

M. Brambilla, J. Cabot, and M. Wimmer,
Model-driven software engineering in practice. Morgan & Claypool Publishers, 2017,
vol. 2.

J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 2010.

S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau, “Serverless computation with openlambda,”

in Proceedings of the 8th USENIX Conference on Hot Topics in Cloud Computing
(HotCloud ’16), 2016.

J. Saltz and K. Crowston,

“Exploring the challenges of low /no-code development for non-it users,”

in Proceedings of the 53rd Hawaii International Conference on System Sciences, 2020,
pp- 5984-5993.

M. Bano, D. Zowghi, N. Sarkissian, W. Lowe, and K. De Salas, “Ai-assisted
software development: A systematic literature review,”
Journal of Systems and Software, vol. 182, p. 111075, 2021.

Wikipedia, Software development process,

https://en.wikipedia.org/wiki/Software_development_process,
Accessed: 08-03-2024.

97

https://medium.com/@philips202308/the-future-of-software-development-trends-innovations-a27b3fac9902
https://medium.com/@philips202308/the-future-of-software-development-trends-innovations-a27b3fac9902
https://agilemanifesto.org/
https://en.wikipedia.org/wiki/Software_development_process

Bibliography 98

[25]

[31]

[32]

L. Sherrell, “Waterfall model,” in Encyclopedia of Sciences and Religions,

A. L. C. Runehov and L. Oviedo, Eds. Dordrecht: Springer Netherlands, 2013,

pp- 2343-2344, 1sBN: 978-1-4020-8265-8. po1: 10.1007/978-1-4020-8265-8_200285
[Online]. Available: https://doi.org/10.1007/978-1-4020-8265-8_200285

J. Adam, What is the waterfall software development methodology and is it still relevant?
https://kruschecompany.com/waterfall-software-development-methodology/,
Accessed: 22-05-2024, MARCH 29, 2024.

M. Cohn, S. Sim, and C. Lee, “What counts as software process? negotiating the
boundary of software work through artifacts and conversation,”

Computer Supported Cooperative Work, vol. 18, pp. 401-443, Dec. 2009.

DpoI: 10.1007/s10606-009-9100-4.

K. Petersen, C. Wohlin, and D. Baca,

“The waterfall model in large-scale development,”

in Product-Focused Software Process Improvement: 10th International Conference,
PROFES 2009, Oulu, Finland, June 15-17, 2009. Proceedings 10, Springer, 2009,
pp- 386—400.

B. W. Boehm, “A spiral model of software development and enhancement,”
Computer, vol. 21, no. 5, pp. 61-72, 1988.

GeeksForGeeks, What is spiral model in software engineering?
https://www.geeksforgeeks.org/software-engineering-spiral-model/,
Accessed: 24-05-2024, 16 May, 2024.

Javapoint, V-model,
https://www. javatpoint.com/software-engineering-v-model,

Accessed: 25-05-2024.

O. Moravcik, T. Skripcak, D. Petrik, and P. Schreiber, “Approaches of the modern
software development,”
International Journal of Machine Learning and Computing, vol. 1, no. 5, p. 479, 2011.

A. I. Wasserman, “Modern software development methodologies and their
environments,” Computer Physics Communications, vol. 38, no. 2, pp. 119-134, 1985,
1ssN: 0010-4655.

DOL: https://doi.org/10.1016/0010-4655(85)90079-7. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0010465585900797.

A. Moniruzzaman and D. S. A. Hossain, “Comparative study on agile software
development methodologies,” arXiv preprint arXiv:1307.3356, 2013.

Wikipedia, Rational unified process,
https://en.wikipedia.org/wiki/Rational_unified_process,

Accessed: 27-05-2024.

https://doi.org/10.1007/978-1-4020-8265-8_200285
https://doi.org/10.1007/978-1-4020-8265-8_200285
https://kruschecompany.com/waterfall-software-development-methodology/
https://doi.org/10.1007/s10606-009-9100-4
https://www.geeksforgeeks.org/software-engineering-spiral-model/
https://www.javatpoint.com/software-engineering-v-model
https://doi.org/https://doi.org/10.1016/0010-4655(85)90079-7
https://www.sciencedirect.com/science/article/pii/0010465585900797
https://en.wikipedia.org/wiki/Rational_unified_process

Bibliography 99

[36] I Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process.
Addison-Wesley, 1999.

[37] P. Kruchten, The Rational Unified Process: An Introduction, 3rd.
Addison-Wesley Professional, 2003.

[38] B. Boehm, “A spiral model of software development and enhancement,”
ACM SIGSOFT Software Engineering Notes, vol. 11, no. 4, pp. 14-24, 1988.

[39] A. Manifesto, “Manifesto for agile software development,” 2001.

[40] A. Alliance, The 12 principles behind the agile manifesto,
https://www.agilealliance.org/agilel01/12-principles-behind-the-agile-
manifesto/, Accessed: 28-05-2024.

[41] M. Clesham, 5 stages of the agile system development life cycle,
https://www.brightwork.com/blog/5-stages-of-the-agile-system-
development-life-cycle, Accessed: 28-05-2024, November 9, 2023.

[42] N. Sekulic, 6 stages of the agile software development lifecycle,
https://www.gitkraken.com/blog/6-stages-of-agile-development,
Accessed: 28-05-2024, April 28, 2023.

[43] FE Capital, The most common and popular agile development frameworks, such as scrum,
kanban, xp, and lean,
https://fastercapital.com/topics/the-most-common-and-popular-agile-
development-frameworks, -such-as-scrum, -kanban, -xp, -and-lean.html,

Accessed: 28-05-2024.

[44] P. Serrador and J. K. Pinto, “Does agile work? a quantitative analysis of agile
project success,”
International Journal of Project Management, vol. 33, no. 5, pp. 1040-1051, 2015.

[45] T. Dingseyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile
methodologies: Towards explaining agile software development,”
Journal of Systems and Software, vol. 85, no. 6, pp. 1213-1221, 2012.

[46] K. Beck, Extreme Programming Explained: Embrace Change, 2nd.
Addison-Wesley Professional, 2004.

[47]]. Holvikivi, “Agile and lean business development frameworks,”
Journal of Software: Evolution and Process, vol. 28, no. 11, pp. 935-946, 2016.

[48] M. Laanti, O. Salo, and P. Abrahamsson, “Agile methods rapidly replacing
traditional methods at nokia: A survey of opinions on agile transformation,”
Information and Software Technology, vol. 53, no. 3, pp. 276-290, 2011.

[49] B. Fitzgerald, G. Hartnett, and K. Conboy, “Customising agile methods to
software practices at intel shannon,”
European Journal of Information Systems, vol. 15, no. 2, pp. 200-213, 2006.

https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.brightwork.com/blog/5-stages-of-the-agile-system-development-life-cycle
https://www.brightwork.com/blog/5-stages-of-the-agile-system-development-life-cycle
https://www.gitkraken.com/blog/6-stages-of-agile-development
https://fastercapital.com/topics/the-most-common-and-popular-agile-development-frameworks,-such-as-scrum,-kanban,-xp,-and-lean.html
https://fastercapital.com/topics/the-most-common-and-popular-agile-development-frameworks,-such-as-scrum,-kanban,-xp,-and-lean.html

Bibliography 100

[50]

[51]

[55]

M. Paasivaara, B. Behm, C. Lassenius, and M. Hallikainen, “Large-scale agile
transformation at ericsson: A case study,”
Empirical Software Engineering, vol. 23, no. 1, pp. 255-289, 2018.

M. Fowler, “The new methodology,”
Wuhan University Journal of Natural Sciences, vol. 6, pp. 12-24, 2001.
[Online]. Available: https://api.semanticscholar.org/CorpusID:20754389.

D. C. Schmidt et al., “Model-driven engineering,”
Computer-IEEE Computer Society-, vol. 39, no. 2, p. 25, 2006.

EZOFIS, The evolution of low-code platforms,
https://www.linkedin.com/pulse/evolution-low-code-platforms-ezofis/,

Accessed: 25-03-2024, September 11, 2023.

C. R. John Rymer, The forrester wave™: Low-code development platforms, q2 2016,
https://www.forrester.com/report/The-Forrester-Wave-LowCode-
Development-Platforms-Q2-2016/RES117623, Accessed: 28-03-2024,

April 14th, 2016.

S. Dipanshu, Navigating the future: Predictions for low code and generative ai redefining
technology in 2024, https://medium. com/@shekhar.dipanshu6/navigating-the-
future-predictions-for-low-code-and-generative-ai-redefining-
technology-in-2024-da5f5fb7b7£9, Accessed: 28-03-2024, Jan 5, 2024.

T. Kissflow, The history of low-code platforms : How development changed, https:

//kissflow.com/low-code/history-of-low-code-development-platforms/,
Accessed: 07-03-2024, 23 Feb 2024.

IBM, What is low-code? https://www.ibm.com/topics/low-code,
Accessed: 19-03-2024.

M. DiCesare, Model-driven development: The foundation of low-code, https:
//www.mendix.com/blog/low-code-principle-1-model-driven-development/,

Accessed: 31-03-2024, March 1, 2024.

E. Alexander, State of app development report results: The future looks bright,
https://www.outsystems.com/blog/posts/state-app-dev-highlights/,
Accessed: 18-03-2024, October 19, 2023.

R. K. John Rymer,

The forrester wave™: Low-code development platforms for add professionals, g1 2019,
https://www.forrester.com/report/the-forrester-wave-low-code-
development-platforms-for-add-professionals-q1-2019/RES144387,
Accessed: 19-03-2024, March 13th, 2019.

R. Ellis, Why 83% of it leaders are banking on low-code,
https://www.salesforce.com/news/stories/why-it-leaders-are-banking-on-

low-code/, Accessed: 19-03-2024, JUNE 15, 2021.

https://api.semanticscholar.org/CorpusID:20754389
https://www.linkedin.com/pulse/evolution-low-code-platforms-ezofis/
https://www.forrester.com/report/The-Forrester-Wave-LowCode-Development-Platforms-Q2-2016/RES117623
https://www.forrester.com/report/The-Forrester-Wave-LowCode-Development-Platforms-Q2-2016/RES117623
https://medium.com/@shekhar.dipanshu6/navigating-the-future-predictions-for-low-code-and-generative-ai-redefining-technology-in-2024-da5f5fb7b7f9
https://medium.com/@shekhar.dipanshu6/navigating-the-future-predictions-for-low-code-and-generative-ai-redefining-technology-in-2024-da5f5fb7b7f9
https://medium.com/@shekhar.dipanshu6/navigating-the-future-predictions-for-low-code-and-generative-ai-redefining-technology-in-2024-da5f5fb7b7f9
https://kissflow.com/low-code/history-of-low-code-development-platforms/
https://kissflow.com/low-code/history-of-low-code-development-platforms/
https://www.ibm.com/topics/low-code
https://www.mendix.com/blog/low-code-principle-1-model-driven-development/
https://www.mendix.com/blog/low-code-principle-1-model-driven-development/
https://www.outsystems.com/blog/posts/state-app-dev-highlights/
https://www.forrester.com/report/the-forrester-wave-low-code-development-platforms-for-add-professionals-q1-2019/RES144387
https://www.forrester.com/report/the-forrester-wave-low-code-development-platforms-for-add-professionals-q1-2019/RES144387
https://www.salesforce.com/news/stories/why-it-leaders-are-banking-on-low-code/
https://www.salesforce.com/news/stories/why-it-leaders-are-banking-on-low-code/

Bibliography 101

[62]

[63]

[64]

[69]

[70]

[71]

KPMG, Shaping digital transformation with low-code platforms,
https://kpmg.com/xx/en/home/insights/2023/02/shaping-digital-
transformation-with-low-code-platforms.html, Accessed: 19-03-2024.

S. D. C. Misra, Understanding low-code no-code (Icnc) platforms, https:
//www.nic.in/blogs/understanding-low-code-no-code-lcnc-platforms/,
Accessed: 19-03-2024, February 15th, 2024.

M. Clausse, How artificial intelligence is impacting low-code and no-code platforms,
https://www.planetcrust.com/how-artificial-intelligence-is-impacting-
low-code-and-no-code-platforms?utm_campaign=blog, Accessed: 19-03-2024,
November 6, 2023.

DEVOPSdigest, Differences between low-code and no-code development,
https://wuw.geeksforgeeks.org/low-code-vs-no-code-development/,

Accessed: 06-04-2024, 24 Jan, 2023.

OutSystems, The transformative power of low-code apps, https:
//www.outsystems.com/tech-hub/low-code/apps/#common-low-code-use-cases,

Accessed: 15-04-2024.

Q. E. Team, 10+ low-code use cases: When to use low-code development approach?
https://quixy.com/blog/low-code-use-cases/, Accessed: 15-04-2024,
October 11, 2023.

D. S4, T. Guimardes, A. Abelha, and M. F. Santos, “Low code approach for
business analytics,”

Procedia Computer Science, vol. 231, pp. 421-426, 2024, 14th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks / 13th
International Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (EUSPN/ICTH 2023), 1ssn: 1877-0509.
DOL: https://doi.org/10.1016/j.procs.2023.12.228. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050923022408.

outsystems, What is no-code and when should you use it,
https://www.outsystems.com/tech-hub/no-code/#how-does-it-work,
Accessed: 19-04-2024.

Low /Code, Capabilities and limitations of no-code/low-code development platforms,
https://www.lowcode.agency/blog/capabilities-and-limitations-of-no-
code-low-code-development-platforms, Accessed: 20-04-2024.

N. E. Education, 5 pros and cons of no-code development,
https://northwest.education/insights/careers/5-pros-and-cons-of-no-
code-development/, Accessed: 20-04-2024, September 21, 2023.

M. S. Matt Sadowski, No code / low code vs. custom traditional development,
https://themobilereality.com/blog/no-code-low-code-vs-traditional-
development, Accessed: 20-04-2024, 14.03.2024.

https://kpmg.com/xx/en/home/insights/2023/02/shaping-digital-transformation-with-low-code-platforms.html
https://kpmg.com/xx/en/home/insights/2023/02/shaping-digital-transformation-with-low-code-platforms.html
https://www.nic.in/blogs/understanding-low-code-no-code-lcnc-platforms/
https://www.nic.in/blogs/understanding-low-code-no-code-lcnc-platforms/
https://www.planetcrust.com/how-artificial-intelligence-is-impacting-low-code-and-no-code-platforms?utm_campaign=blog
https://www.planetcrust.com/how-artificial-intelligence-is-impacting-low-code-and-no-code-platforms?utm_campaign=blog
https://www.geeksforgeeks.org/low-code-vs-no-code-development/
https://www.outsystems.com/tech-hub/low-code/apps/##common-low-code-use-cases
https://www.outsystems.com/tech-hub/low-code/apps/##common-low-code-use-cases
https://quixy.com/blog/low-code-use-cases/
https://doi.org/https://doi.org/10.1016/j.procs.2023.12.228
https://www.sciencedirect.com/science/article/pii/S1877050923022408
https://www.outsystems.com/tech-hub/no-code/##how-does-it-work
https://www.lowcode.agency/blog/capabilities-and-limitations-of-no-code-low-code-development-platforms
https://www.lowcode.agency/blog/capabilities-and-limitations-of-no-code-low-code-development-platforms
https://northwest.education/insights/careers/5-pros-and-cons-of-no-code-development/
https://northwest.education/insights/careers/5-pros-and-cons-of-no-code-development/
https://themobilereality.com/blog/no-code-low-code-vs-traditional-development
https://themobilereality.com/blog/no-code-low-code-vs-traditional-development

Bibliography 102

[73]

[74]

SAP, What is low-code/no-code application development?
https://www.sap.com/products/technology-platform/low-code/what-is-low-
code-no-code.html, Accessed: 30-03-2024.

OutSystems, Demystifying visual programming,
https://www.outsystems.com/tech-hub/app-dev/understanding-visual-
programming-language/#role-of-visual-programming, Accessed: 31-03-2024.

DEVOPSdigest, 2024 low-code/no-code predictions, https://shorturl.at/esvDW,
Accessed: 31-03-2024, January 04, 2024.

D. Partida, Trends in low-code/no-code,
https://www.datamation.com/trends/trends-in-low-code-no-code/,
Accessed: 20-04-2024, May 8, 2023.

G. Brisk, 10 no-code and low-code trends to look out for,
https://baserow.io/blog/low-code-no-code-trends, Accessed: 20-04-2024,
January 18, 2024.

D. A. James Oluwaleye, Low-code and no-code development tools,
https://semaphoreci.com/blog/low-code-no-code-development-tools,

Accessed: 20-04-2024, 7 Jun 2023.

J. McKendrick,

Low-code and no-code development gets a makeover as priorities shift to ai,
https://www.zdnet.com/article/low-code-and-no-code-development-gets-a-
makeover-as-priorities-shift-to-ai/, Accessed: 20-04-2024, Feb. 13, 2024.

A. Ribeiro and A. R. da Silva,

“Survey on cross-platforms and languages for mobile apps,” in 2012 Eighth
International Conference on the Quality of Information and Communications Technology,
Ieee, 2012, pp. 255-260.

outsystems, Deploying outsystems - overview,
https://www.outsystems.com/evaluation-guide/deploying-outsystems/,

Accessed: 02-05-2024.

——, The outsystems enterprise security posture,
https://www.outsystems.com/evaluation-guide/security/enterprise/,

Accessed: 02-05-2024.

——, Outsystems developer community,
https://www.outsystems.com/our-community/, Accessed: 02-05-2024.

, Release notes, https://success.outsystems.com/support/release_notes/,
Accessed: 02-05-2024, Dec 21, 2023.

, Platform architecture overview,
https://www.outsystems.com/evaluation-guide/architecture/,

Accessed: 07-05-2024.

https://www.sap.com/products/technology-platform/low-code/what-is-low-code-no-code.html
https://www.sap.com/products/technology-platform/low-code/what-is-low-code-no-code.html
https://www.outsystems.com/tech-hub/app-dev/understanding-visual-programming-language/##role-of-visual-programming
https://www.outsystems.com/tech-hub/app-dev/understanding-visual-programming-language/##role-of-visual-programming
https://shorturl.at/esvDW
https://www.datamation.com/trends/trends-in-low-code-no-code/
https://baserow.io/blog/low-code-no-code-trends
https://semaphoreci.com/blog/low-code-no-code-development-tools
https://www.zdnet.com/article/low-code-and-no-code-development-gets-a-makeover-as-priorities-shift-to-ai/
https://www.zdnet.com/article/low-code-and-no-code-development-gets-a-makeover-as-priorities-shift-to-ai/
https://www.outsystems.com/evaluation-guide/deploying-outsystems/
https://www.outsystems.com/evaluation-guide/security/enterprise/
https://www.outsystems.com/our-community/
https://success.outsystems.com/support/release_notes/
https://www.outsystems.com/evaluation-guide/architecture/

Bibliography 103

[86] outsystems community, What are the disadvantages of outsystems?
https://www.outsystems.com/forums/discussion/62038/what-are-the-
disadvantages-of-outsystems/, Accessed: 02-05-2024, Dec 21, 2023.

[87] Joget, Joget dx introduction, https://wwu.joget.org/product/joget-dx/,
Accessed: 04-05-2024.

[88] Julian,
Introducing joget dx, the next generation open source digital transformation platform,
https://blog.joget.org/2018/12/introducing- joget-dx-next-
generation.html?m=1, Accessed: 04-05-2024, December 07, 2018.

[89]]. Cloud, Frequently asked questions, https://wuw.jogetcloud.com/faq.html,
Accessed: 04-05-2024, December 07, 2018.

[90] I. technology, Joget dx 8 and its new feature,
https://iqratechnology.com/joget-dx-8-and-its-new-feature/,
Accessed: 04-05-2024, December 07, 2018.

[91] mendix, 2023 magic quadrant™ for enterprise low-code application platforms by
gartner® recognizes mendix as a leader for fourth consecutive time,
https://www.mendix.com/press/2023-magic-quadrant-for-enterprise-low-
code-application-platforms-by-gartner-recognizes-mendix-as-a-leader-
for-fourth-consecutive-time/, Accessed: 05-05-2024.

[92]]. Pietsch, Discover top 15 mendix low-code platform features,
https://www.netguru.com/blog/mendix-features, Accessed: 05-05-2024,
Apr 30, 2024.

[93] Mendix, Architecture principles, https://www.mendix.com/evaluation-
guide/enterprise-capabilities/architecture-principles/#key-principles,

Accessed: 07-05-2024.

[94] , Platform architecture, https://www.mendix.com/evaluation-
guide/enterprise-capabilities/platform-architecture/,
Accessed: 07-05-2024.

[95] M. Community, Challenges and limitations of mendix, https:
//community.mendix.com/link/space/app-development/questions/110047,
Accessed: 07-05-2024.

[96] Mendix, Mendix review,
https://www.trustradius.com/products/mendix/reviews?qs=pros-and-
cons#overview, Accessed: 07-05-2024.

[97] B. Basgen, A generative ai primer,
https://er.educause.edu/articles/2023/8/a-generative-ai-primer,

Accessed: 17-05-2024, August 15, 2023.

https://www.outsystems.com/forums/discussion/62038/what-are-the-disadvantages-of-outsystems/
https://www.outsystems.com/forums/discussion/62038/what-are-the-disadvantages-of-outsystems/
https://www.joget.org/product/joget-dx/
https://blog.joget.org/2018/12/introducing-joget-dx-next-generation.html?m=1
https://blog.joget.org/2018/12/introducing-joget-dx-next-generation.html?m=1
https://www.jogetcloud.com/faq.html
https://iqratechnology.com/joget-dx-8-and-its-new-feature/
https://www.mendix.com/press/2023-magic-quadrant-for-enterprise-low-code-application-platforms-by-gartner-recognizes-mendix-as-a-leader-for-fourth-consecutive-time/
https://www.mendix.com/press/2023-magic-quadrant-for-enterprise-low-code-application-platforms-by-gartner-recognizes-mendix-as-a-leader-for-fourth-consecutive-time/
https://www.mendix.com/press/2023-magic-quadrant-for-enterprise-low-code-application-platforms-by-gartner-recognizes-mendix-as-a-leader-for-fourth-consecutive-time/
https://www.netguru.com/blog/mendix-features
https://www.mendix.com/evaluation-guide/enterprise-capabilities/architecture-principles/##key-principles
https://www.mendix.com/evaluation-guide/enterprise-capabilities/architecture-principles/##key-principles
https://www.mendix.com/evaluation-guide/enterprise-capabilities/platform-architecture/
https://www.mendix.com/evaluation-guide/enterprise-capabilities/platform-architecture/
https://community.mendix.com/link/space/app-development/questions/110047
https://community.mendix.com/link/space/app-development/questions/110047
https://www.trustradius.com/products/mendix/reviews?qs=pros-and-cons##overview
https://www.trustradius.com/products/mendix/reviews?qs=pros-and-cons##overview
https://er.educause.edu/articles/2023/8/a-generative-ai-primer

Bibliography 104

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

M. Webb, A generative ai primer,
https://nationalcentreforai.jiscinvolve.org/wp/2024/03/04/generative-
ai-primer/, Accessed: 17-05-2024, 4 March 2024.

A.Bandi, P. V. S. R. Adapa, and Y. E. V. P. K. Kuchi, “The power of generative ai: A
review of requirements, models, input-output formats, evaluation metrics, and
challenges,” Future Internet, vol. 15, no. 8, p. 260, 2023.

T. U. Team, 10 benefits of generative ai: Increase productivity and creativity,
https://www.upwork.com/resources/generative-ai-benefits,

Accessed: 17-05-2024, Sep 20, 2023.

Dive, Generative ai: Benefits, use cases, and examples, https:

//www.letsdive.io/blog/generative-ai-benefits-use-cases-and-examples,
Accessed: 17-05-2024.

T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,”
Advances in neural information processing systems, vol. 33, pp. 1877-1901, 2020.

L. Ouyang, J. Wu, X. Jiang, et al., “Training language models to follow instructions
with human feedback,”
Advances in neural information processing systems, vol. 35, pp. 27 730-27 744, 2022.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

A. Ramesh, M. Pavlov, G. Goh, et al., “Zero-shot text-to-image generation,”
in International conference on machine learning, Pmlr, 2021, pp. 8821-8831.

P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever, “Jukebox: A
generative model for music,” arXiv preprint arXiv:2005.00341, 2020.

C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene
dynamics,” Advances in neural information processing systems, vol. 29, 2016.

A. JANSAUSKIS,

How Al tools impact the way we develop software: our GitHub Copilot journey,
https://www.emergn.com/insights/how-ai-tools-impact-the-way-we-
develop-software-our-github-copilot-journey/,

[Online; accessed 18-May-2024].

A. Lee, 8 Ethical Challenges For Generative Al,
https://www.forbes.com/sites/amazon-web-services-asean/2024/05/17/8-
ethical-challenges-for-generative-ai/, [Online; accessed 18-May-2024],
May 17, 2024.

E. Cetin, How is the growth in GenAl changing low-code and no-code development?
https://www.ciklum.com/resources/blog/how-is-the-growth-in-genai-
changing-low-code-and-no-code-development, [Online; accessed 20-May-2024],
March 4th 2024.

https://nationalcentreforai.jiscinvolve.org/wp/2024/03/04/generative-ai-primer/
https://nationalcentreforai.jiscinvolve.org/wp/2024/03/04/generative-ai-primer/
https://www.upwork.com/resources/generative-ai-benefits
https://www.letsdive.io/blog/generative-ai-benefits-use-cases-and-examples
https://www.letsdive.io/blog/generative-ai-benefits-use-cases-and-examples
https://www.emergn.com/insights/how-ai-tools-impact-the-way-we-develop-software-our-github-copilot-journey/
https://www.emergn.com/insights/how-ai-tools-impact-the-way-we-develop-software-our-github-copilot-journey/
https://www.forbes.com/sites/amazon-web-services-asean/2024/05/17/8-ethical-challenges-for-generative-ai/
https://www.forbes.com/sites/amazon-web-services-asean/2024/05/17/8-ethical-challenges-for-generative-ai/
https://www.ciklum.com/resources/blog/how-is-the-growth-in-genai-changing-low-code-and-no-code-development
https://www.ciklum.com/resources/blog/how-is-the-growth-in-genai-changing-low-code-and-no-code-development

Bibliography 105

[111] M. Chen, J. Tworek, H. Jun, et al., “Evaluating large language models trained on
code,” arXiv preprint arXiv:2107.03374, 2021.

[112] N. Mehrabi, E. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on
bias and fairness in machine learning,”
ACM computing surveys (CSUR), vol. 54, no. 6, pp. 1-35, 2021.

[113] R. Cunningham, Power Apps is empowering coders with next-generation Al capabilities,
https://powerapps.microsoft.com/en-gb/blog/power-apps-is-empowering-
coders-with-next-generation-ai-capabilities/,

[Online; accessed 20-May-2024], 23 May 2023.

[114]]J. Barr,
Introducing Amazon Honeycode — Build Web Mobile Apps Without Writing Code,
https://aws.amazon.com/blogs/aws/introducing-amazon-honeycode-build-
web-mobile-apps-without-writing-code/, [Online; accessed 20-May-2024],
24 TUN 2020.

[115] BOSTON, Mendix Adds Powerful New Al and Machine Learning Capabilities to its
Market and Technology-Leading Enterprise Low-Code Platform,
https://www.mendix.com/press/mendix-adds-powerful-new-ai-and-machine-
learning-capabilities-to-its-market-and-technology-leading-enterprise-

low-code-platform/, [Online; accessed 20-May-2024], June 22, 2023.

[116] Salesforce, Salesforce Artificial Intelligence,
https://www.salesforce.com/eu/artificial-intelligence/,

[Online; accessed 20-May-2024].

[117] GitHub, The world’s most widely adopted Al developer tool.
https://github.com/features/copilot, [Online; accessed 20-May-2024].

[118] A.LOZINSKI,
The Growing Impact of Generative Al on Low-Code/No-Code Development,
https://devops.com/the-growing-impact-of-generative-ai-on-low-code-no-

code-development/, [Online; accessed 21-May-2024], OCTOBER 17, 2023.

[119] A. Ghoshal, Why generative Al will turbocharge low-code and no-code development,
https://www.infoworld.com/article/3694173/why-generative-ai-will-
turbocharge-low-code-and-no-code-development.html,

[Online; accessed 20-May-2024], APR 21, 2023.

[120] K. Rokis and M. Kirikova, “Exploring low-code development: A comprehensive
literature review,”
Complex Systems Informatics and Modeling Quarterly, vol. 0, pp. 68-86, 2023.
[Online]. Available:
https://csimg-journals.rtu.lv/article/view/csimq.2023-36.04/3345 (visited
on 05/21/2024).

https://powerapps.microsoft.com/en-gb/blog/power-apps-is-empowering-coders-with-next-generation-ai-capabilities/
https://powerapps.microsoft.com/en-gb/blog/power-apps-is-empowering-coders-with-next-generation-ai-capabilities/
https://aws.amazon.com/blogs/aws/introducing-amazon-honeycode-build-web-mobile-apps-without-writing-code/
https://aws.amazon.com/blogs/aws/introducing-amazon-honeycode-build-web-mobile-apps-without-writing-code/
https://www.mendix.com/press/mendix-adds-powerful-new-ai-and-machine-learning-capabilities-to-its-market-and-technology-leading-enterprise-low-code-platform/
https://www.mendix.com/press/mendix-adds-powerful-new-ai-and-machine-learning-capabilities-to-its-market-and-technology-leading-enterprise-low-code-platform/
https://www.mendix.com/press/mendix-adds-powerful-new-ai-and-machine-learning-capabilities-to-its-market-and-technology-leading-enterprise-low-code-platform/
https://www.salesforce.com/eu/artificial-intelligence/
https://github.com/features/copilot
https://devops.com/the-growing-impact-of-generative-ai-on-low-code-no-code-development/
https://devops.com/the-growing-impact-of-generative-ai-on-low-code-no-code-development/
https://www.infoworld.com/article/3694173/why-generative-ai-will-turbocharge-low-code-and-no-code-development.html
https://www.infoworld.com/article/3694173/why-generative-ai-will-turbocharge-low-code-and-no-code-development.html
https://csimq-journals.rtu.lv/article/view/csimq.2023-36.04/3345

Bibliography 106

[121] A.S. A. L D. D. Ruscio, Supporting the understanding and comparison of low-code
development platforms. 2020 46th euromicro conference on software engineering and
advanced applications (seaa) | 10.1109/sean51224.2020.00036,

[Online; accessed 21-May-2024], 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9226356 (visited on 05/20/2024).

[122]]J. Martins, F. Branco, and H. Mamede, “Combining low-code development with
chatgpt to novel no-code approaches: A focus-group study,”
Intelligent Systems with Applications, vol. 20, p. 200289, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S266730532300114X
(visited on 05/21/2024).

[123] A. A. Alamin, S. Malakar, G. Uddin, S. Afroz, T. B. Haider, and A. Igbal, “An
empirical study of developer discussions on low-code software development
challenges,” arXiv (Cornell University), May 2021.

DOI: 10.1109/msr52588.2021.00018. [Online]. Available:
https://ieeexplore.ieee.org/document/9463132 (visited on 05/21/2024).

[124] R. Waszkowski, “Low-code platform for automating business processes in
manufacturing,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 376-381, 2019.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896319309152
(visited on 05/21/2024).

[125] R. Arora, N. Ghosh, and T. Mondal,
“Sagitec software studio (s3) - a low code application development platform,”
in 2020 International Conference on Industry 4.0 Technology (14Tech), 2020.
DOIL: 10.1109/I4Tech48345.2020.9102703.

[126] N. Jesse, “Agility eats legacy—the long good-bye,” in Proc. of 19th IFAC Conference
on Technology, Culture and International Stability, North Holland: Elsevier, Elsevier,
2019.

[127] A. Jacinto, M. Lourenco, and C. Ferreira,
“Test mocks for low-code applications built with outsystems,” 2020.
DOI: 10.1145/3417990.3420209. [Online]. Available:
https://doi.org/10.1145/3417990.3420209.

[128] C. Di Sipio, D. Di Ruscio, and P. T. Nguyen, “Democratizing the development of
recommender systems by means of low-code platforms,” 2020.
DOI: 10.1145/3417990.3420202. [Online]. Available:
https://doi.org/10.1145/3417990.3420202

[129] K. Rokis and M. Kirikova, “An archimate-based thematic knowledge graph for
low-code software development domain,”
in European Conference on Advances in Databases and Information Systems, Springer,

https://ieeexplore.ieee.org/document/9226356
https://www.sciencedirect.com/science/article/pii/S266730532300114X
https://doi.org/10.1109/msr52588.2021.00018
https://ieeexplore.ieee.org/document/9463132
https://www.sciencedirect.com/science/article/pii/S2405896319309152
https://doi.org/10.1109/I4Tech48345.2020.9102703
https://doi.org/10.1145/3417990.3420209
https://doi.org/10.1145/3417990.3420209
https://doi.org/10.1145/3417990.3420202
https://doi.org/10.1145/3417990.3420202

Bibliography 107

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

2023, pp. 465-476. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-031-42941-5_40.

R. Martins, F. Caldeira, F. Sa, M. Abbasi, and P. Martins,

“An overview on how to develop a low-code application using outsystems,”

in 2020 International Conference on Smart Technologies in Computing, Electrical and
Electronics (ICSTCEE), IEEE, 2020, pp. 395-401.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/92774047
casa_token=axuaTBr637YAAAAA:H8_NViHAkmOTImJisvKV-B3ka82ocgkR7zwAj34_W-
6tP5-85-19fP-M7HYOtm- -RTpLQvMs1TE (visited on 05/21/2024).

K. Rokis and M. Kirikova,
“Challenges of low-code/no-code software development: A literature review,”
in International Conference on Business Informatics Research, Springer, 2022, pp. 3-17.

A. Esposito, M. Calvano, A. Curci, et al.,

“End-user development for artificial intelligence: A systematic literature review,”
2023, pp. 19-34. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-031-34433-6_2.

Y. K. Dwivedi, N. Kshetri, L. Hughes, et al., ““so what if chatgpt wrote it?”
multidisciplinary perspectives on opportunities, challenges and implications of
generative conversational ai for research, practice and policy,”

International Journal of Information Management, vol. 71, p. 102 642, 2023.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0268401223000233.

J. Osman, Understanding the lifecycle of a low-code project, @appmaster;o, Jul. 2023.
[Online]. Available:
https://appmaster.io/blog/lifecycle-of-a-low-code-project (visited on
05/30/2024).

Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and challenges
of low-code development: The practitioners” perspective,” Oct. 2021.

DOI: 10.1145/3475716.3475782. [Online]. Available:
http://dx.doi.org/10.1145/3475716.3475782.

jogetworkflow,

Generative ai and no-code — a match made in heaven - jogetworkflow - medium,
Medium, Oct. 2023.

[Online]. Available: https://jogetworkflow.medium.com/generative-ai-and-
no-code-a-match-made-in-heaven-ca6e5684d474 (visited on 05/30/2024).

Z.Ji, N. Lee, R. Frieske, et al., “Survey of hallucination in natural language
generation,” 2023.
DOI: 10.1145/3571730. [Online]. Available: https://doi.org/10.1145/3571730.

https://link.springer.com/chapter/10.1007/978-3-031-42941-5_40
https://ieeexplore.ieee.org/abstract/document/9277404?casa_token=axuaTBr637YAAAAA:H8_NViHAkm0TImJisvKV-B3ka82ocgkR7zwAj34_W-6tP5-85-19fP-M7HYOtm--RTpLQvMslTE
https://ieeexplore.ieee.org/abstract/document/9277404?casa_token=axuaTBr637YAAAAA:H8_NViHAkm0TImJisvKV-B3ka82ocgkR7zwAj34_W-6tP5-85-19fP-M7HYOtm--RTpLQvMslTE
https://ieeexplore.ieee.org/abstract/document/9277404?casa_token=axuaTBr637YAAAAA:H8_NViHAkm0TImJisvKV-B3ka82ocgkR7zwAj34_W-6tP5-85-19fP-M7HYOtm--RTpLQvMslTE
https://link.springer.com/chapter/10.1007/978-3-031-34433-6_2
https://www.sciencedirect.com/science/article/pii/S0268401223000233
https://appmaster.io/blog/lifecycle-of-a-low-code-project
https://doi.org/10.1145/3475716.3475782
http://dx.doi.org/10.1145/3475716.3475782
https://jogetworkflow.medium.com/generative-ai-and-no-code-a-match-made-in-heaven-ca6e5684d474
https://jogetworkflow.medium.com/generative-ai-and-no-code-a-match-made-in-heaven-ca6e5684d474
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730

Bibliography 108

[138] Introducing chatgpt and whisper apis, Openai.com, 2024. [Online]. Available:
https://openai.com/index/introducing-chatgpt-and-whisper-apis/ (visited
on 05/31/2024).

[139] ProductPlan, Stakeholder Analysis,
https://www.productplan.com/glossary/stakeholder-analysis/,
[Online; accessed 10-May-2024], 2022.

[140] fortunebusinessinsights, Low Code Development Platform Market Size, Share Industry
Analysis, By Component (Platform and Services), By Deployment (Cloud and
On-premises), By By Enterprise Size (Large Enterprises and SMES), Application Type
(Web Cloud Based, Mobile Based, and Desktop Based), By Industry (BFSI, Healthcare,
Education, IT and Telecommunication, Media Entertainment, Manufacturing,
Government, Retail, and Others), and Regional Forecast, 2024-2032,
https://www.fortunebusinessinsights.com/low-code-development-platform-
market-102972, [Online; accessed 21-May-2024], May 13, 2024.

[141] C. Dilmegani, Low-Code No-Code: Difference, Benefits Challenges in 2024,
https://research.aimultiple.com/low-code-no-code/,

[Online; accessed 21-May-2024], Mar 18, 2024.

[142] 1. Sacolick, How generative Al will change low-code development,
https://www.infoworld.com/article/3713500/how-generative-ai-impacts-
low-code-development.html, [Online; accessed 21-May-2024], MAR 11, 2024.

https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://www.productplan.com/glossary/stakeholder-analysis/
https://www.fortunebusinessinsights.com/low-code-development-platform-market-102972
https://www.fortunebusinessinsights.com/low-code-development-platform-market-102972
https://research.aimultiple.com/low-code-no-code/
https://www.infoworld.com/article/3713500/how-generative-ai-impacts-low-code-development.html
https://www.infoworld.com/article/3713500/how-generative-ai-impacts-low-code-development.html

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Research Motivation
	1.2 Problem Statement
	1.2.1 Research Sub-questions:

	1.3 Delimitation

	2 Methodology
	2.1 Project Approach
	2.1.1 Background
	2.1.2 State of the Art
	2.1.3 Business Analysis
	2.1.4 Technical Analysis

	3 Background
	3.1 History of Software Development Practices
	3.2 Tranditional Software Development Methodologies
	3.3 Modern Software Development Methodologies
	3.4 Evolution of low/no-code Development

	4 State of the Art
	4.1 Low/No Code Development
	4.2 Low Code Vs No Code
	4.2.1 Low Code Development:
	4.2.2 Use Cases:
	4.2.3 Challenges and Limitations:
	4.2.4 No Code Development
	4.2.5 Use Cases:
	4.2.6 Challenges and Limitations:
	4.2.7 Difference between low code and no code development

	4.3 Core Principles of Low/No-Code Development Platforms
	4.4 Current State & Trends of low/no-code Development
	4.5 Existing Low/No-Code Development Platforms
	4.5.1 OutSystems
	4.5.2 Joget DX
	4.5.3 Mendix

	4.6 Generative AI
	4.6.1 Key Features and Benefits of Generative AI:
	4.6.2 Current State and Applications

	4.7 Generative AI and Low/No-Code Development
	4.7.1 Benefits and Features of Integrating Generative AI
	4.7.2 Current Scenario:
	4.7.3 Key Challenges and Issues

	5 Analysis
	5.1 Technical Analysis
	5.1.1 Low code platform Architecture
	5.1.2 Low code development life cycle
	5.1.3 Stages where gen AI can come to play

	5.2 Business Analysis
	5.2.1 Stakeholder Analysis
	5.2.2 Market Analysis
	5.2.3 SWOT Analysis
	5.2.4 Porter's 5 Forces
	5.2.5 Value Proposition Canvas
	5.2.6 Business Model Canvas

	5.3 Requirements

	6 Discussion & Future Work
	7 Conclusion
	Bibliography

