
Smelling the Architecture: An Action Research Study on

Improving Practitioners’ Architectural Practices

Theodor Risager, Fatima Osman Aden Mohamed
Department of Computer Science
Aalborg University, Denmark

{trisag19, fmoham19}@student.aau.dk

May 2024

Summary

High-quality software architecture is crucial for modern systems, as emphasized by Martin Fowler. While
a well-defined architecture is essential, excessive upfront design can hinder agility. Conversely, neglecting
architecture leads to Technical Debt (TD), making systems complex and difficult to maintain. TD, a concept
introduced by Cunningham in 1992, accrues when suboptimal decisions are made for short-term gains. This
debt increases over time if left unaddressed, potentially hindering development progress. Architectural Debt
(AD), a significant subcategory of TD, contributes substantially to maintenance efforts. Despite its impact,
studies show that a majority of practitioners lack TD management practices.

This study investigates methods to improve architectural practices and mitigate AD creation. We apply the
Smell of the Week activity, focusing on identifying and discussing architectural smells within the codebase.
An architectural smell is a pattern within the architecture that indicates a potential problem, rather than
being a problem itself. Prior research on TD management has primarily focused on frameworks for the
identification, prioritization, and rectification of TD items. Our study builds upon this work by exploring a
novel approach to AD management and its impact on team communication and architectural competencies.

We employ Action Research (AR) to bridge theory and practice, aiming to both test existing theory in real-
world settings and contribute to the body of knowledge through practical insights. The study is conducted in
collaboration with a team of six developers at the IT services department of a Danish university, who we refer
to as ITS. Our AR study consists of two intervention cycles. The first cycle focuses on diagnosing the team’s
architectural challenges, identifying a need for AD management, and a strong emphasis on maintainability.
To address this, we introduce the Smell of the Week activity, which entails weekly meetings to discuss and
identify specific architectural smells within their codebase. This activity shows initial promise, leading to
a second cycle where we adjust the frequency to align with the team’s three-week sprint cycle. Through
both interventions, we derive three key lessons, that evolving architectures require a team of aligned and
competent developers, that the Smell of the Week activity effectively initiates architectural discussions, and
that architectural smells can be categorized as Sneaky or Fix-it-Once smells.



Motivation

Software architecture is fundamental for high-quality software. Without sound architecture, software can
become difficult to maintain, extend, and upgrade, potentially leading to increased operational costs. A
compelling example of the impact of architectural choices is provided by Amazon [22], where a service
initially implemented as a microservice was later transformed into a monolithic application, resulting in a
90% reduction in running costs.
Inspired by the significance of architecture, our research aims to understand the processes, decision frame-

works, and challenges faced by practitioners in choosing and maintaining effective architectures. This knowl-
edge is sought to enhance our own development capabilities. We have chosen action research as our methodol-
ogy, enabling us to both explore existing literature and apply theoretical concepts in a practical setting. This
approach allows us to evaluate the real-world effectiveness of practices considered ”good” in the literature.
Our research context is the IT service department (ITS) of a Danish University. Initial interviews with

ITS revealed the architecture of their systems, highlighting issues such as technical debt, misalignment,
and maintenance challenges. Given the team’s prioritization of maintainability, our research focuses on
evolving architecture, defined as an architecture that can adapt to changing requirements while remaining
maintainable.
This leads to the following research question:

RQ How can architectural practices be improved in teams that develop and maintain evolving systems with
a high risk of accumulating Architectural Debt?

Our 9th semester concluded that the Smell of the Week practice showed promise and that further in-
vestigation was warranted. We therefore continued investigating it throughout the 10th semester. Initially,
we considered expanding the project to include additional teams from other organizations. However, this
was deemed infeasible due to our focus on the long-term effects of the practice. Onboarding a new team
at this late would have limited our ability to gather comprehensive data on these effects. Furthermore,
incorporating another team would have diluted our attention and potentially compromised the depth of our
observations.



Improving Architectural Practices to Mitigate Architectural Debt

in Evolving Systems: An Action Research Study

Theodor Risager, Fatima Osman Aden Mohamed
Department of Computer Science
Aalborg University, Denmark

{trisag19, fmoham19}@student.aau.dk

May 2024

Abstract

Architectural Debt (AD) is the largest contributor to
Technical Debt (TD), a prevalent issue in most IT or-
ganizations. AD involves short-sighted decisions, of-
ten due to time constraints, that reduce efficiency and
increase maintenance costs over time. If unresolved,
these decisions accumulate until development grinds
to a halt. This Action Research (AR) study exam-
ines the effectiveness of the Smell of the Week prac-
tice in managing AD in a practical context. Smell
of the Week involves selecting a subset of architec-
tural smells to identify and discuss during meetings.
Our findings reveal that this practice is useful for
initiating discussions about architectural smells and
formulating management strategies. Additionally, we
introduce a new categorization of architectural smells
as Sneaky and Fix-it-Once to further the understand-
ing of their management. Furthermore, we empha-
size that evolving architectures require aligned and
competent developers capable of distributed decision-
making.

1 Introduction

High-quality software is a cornerstone to success for
modern systems. As Martin Fowler emphasizes, the
initial investment in high-quality is ultimately justi-

fied by the long-term benefits of a more maintain-
able and scalable system [20]. A critical factor in
achieving this quality is the software’s architecture,
the foundational design decisions that determine its
long-term viability [20].

While a well-defined architecture established early
on in the development lifecycle is crucial [4], an overly
rigorous upfront design process lowers the team’s
agility [45]. Conversely, neglecting architecture al-
together leads to Technical Debt (TD), making the
system increasingly complex and difficult to main-
tain.

Cunningham introduced the concept of TD in 1992
[14], and accumulates throughout the development
lifecycle when suboptimal decisions are made to pri-
oritize short-term gains, such as faster time to pro-
duction. While these decisions may be justifiable at
the moment, they incur a ”cost” in the form of future
complexity and maintenance effort. This cost, like
financial debt, grows over time if left unaddressed.
Unmanageable TD can significantly impede develop-
ment progress, potentially bringing entire organiza-
tions to a standstill.

TD can be divided into subcategories, with Ar-
chitectural Debt (AD) being a significant contribu-
tor to maintenance efforts within software projects
[50, 32, 39, 17, 51]. In [50], they identify five different
types of AD in open source projects. Their findings
indicate that AD accounts for 85% of maintenance ef-

1



fort. This is backed up by [39], which found AD to be
responsible for 54% of the maintenance efforts while
only being present in 14% of the source files. This
underscores the significant impact that AD has on
maintenance. Furthermore, [17] found that 65% of
practitioners do not have any TD management prac-
tices, further underlining the need for improvement.
AD research can be broadly categorized into two

key areas: identification and management. Iden-
tification techniques focus on developing methods
and tools to pinpoint locations within the codebase
that may contain AD. Automated approaches lever-
age code analysis tools to identify files or classes
exhibiting architectural weaknesses [51, 11, 12, 49].
These characteristics may include cyclic dependen-
cies, scattered functionality, or God components [2].
Practitioner-oriented frameworks offer methodologies
and guidance to software engineers for systematically
evaluating their codebase and manually identifying
potential architectural issues [26].
AD management research efforts explore various

strategies to analyze the impact of AD and prioritize
its repayment. One line of research describes different
types of AD and the potential ”interest” (i.e., nega-
tive impact) they incur over time [28, 27, 51]. This
allows development teams to prioritize debt repay-
ment based on its projected future burden on main-
tenance efforts. Another area focuses on frameworks
that facilitate prioritizing debt items based on various
factors such as severity, effort required for repayment,
and potential impact on future development [28].
AD is a practical reality, not a theoretical ideal.

Unlike perfect systems in theory, real-world devel-
opment involves deadlines, resource constraints, and
varying levels of expertise. These factors often neces-
sitate compromises, leading to the accumulation of
AD. Therefore, it is crucial to investigate AD within
a practical context. Action Research (AR) is partic-
ularly well-suited for this purpose. AR fosters collab-
oration between researchers and practitioners, bridg-
ing the gap between theory and practice [41, p. 3].
Within the broad definition of TD, there exists

plenty of research covering various areas. Borup et
al. [8] and Oliveira et al. [33] utilize AR to investi-
gate managing TD within teams. Both papers uti-
lize Guo and Seaman’s TD management framework

[37], focusing on the identification, prioritization and
rectification of TD items. Similarly in [52], an AR is
conducted on a large company to develop processes to
identify, document, and prioritize TD. The IT com-
pany subsequently adopted a prioritized TD back-
log to increase visibility and manageability. However,
the body of AR specifically investigating AD remains
limited, highlighting a significant gap in this area of
research.

Our goal is to contribute to the ongoing AR on
AD, with a focus on practitioner-oriented analysis in
contrast to the prevalent use of automated tools in
the existing literature. We aim to investigate how to
minimize AD creation throughout the development
lifecycle, utilizing AR to intervene and evaluate the
effectiveness of AD management techniques. Effec-
tiveness, in this context, is the ability of the technique
to promote productive architectural discussions, as
this fosters knowledge sharing, team alignment, and
education.

This collaborative effort involves a small team,
of six developers, within the IT service department
of a Danish university responsible for the develop-
ment and maintenance of 10 internal software sys-
tems. These systems undergo frequent requirement
changes, necessitating the continuous evolution of the
software. A well-defined and well-maintained archi-
tecture is crucial in this context, facilitating future
system evolution. More importantly for the team,
it lowers the amount of resources needed to change
and maintain the systems. However, the team has
not been able to achieve this ideal. These systems
have been developed over an extended period by var-
ious developers, including both internal developers
and external contractors. This heterogeneous devel-
opment history has led to an inconsistent and subop-
timal architecture. Furthermore, resource constraints
within the IT department and bureaucracy make
large-scale refactoring initiatives impractical.

Through AR, we aim to: (1) improve the team’s ar-
chitectural practices and (2) contribute valuable em-
pirical evidence on the effectiveness of these archi-
tectural practices. This dual focus is guided by the
following research question:

2



RQ How can architectural practices be improved in
teams that develop and maintain evolving sys-
tems with a high risk of accumulating Architec-
tural Debt?

By answering this question, our research will con-
tribute to the literature in three ways: (1) shedding
light on how these architectural practices can be im-
plemented in practice, (2) evaluating their effective-
ness in fostering productive architectural discussions
within the chosen team, and (3) evaluating its trans-
ferability for future collaborations.

2 Theory

To ensure a shared understanding, this section draws
upon existing research to define the key terms: soft-
ware architecture, Architectural Debt (AD), archi-
tecture smells, and the architect’s role in managing
this.

2.1 Software Architecture

Architecture, as Martin Fowler puts it, embodies ”the
decisions that you wish you could get right early in
a project.” representing the important decisions that
require focus in the early stages of development [18].
As Fowler also states, architecture deals with ”the
important stuff”, namely the components and mod-
ules that would be costly to change. As defined by
Bass et al, software architecture also refers to the ar-
rangement of elements in a system that are needed to
understand and reason about the system [3]. Philippe
Krutchen adds that ”Architecture is what remains
when you remove everything unnecessary from the
system, leaving only what’s essential to describe the
system’s functionality”[24].
Architecture operates across multiple abstraction

levels. For instance, at a macro level, a system may
consist of numerous subsystems, each serving a dis-
tinct specialized functionality. Alternatively, the sys-
tem might use a microservices architecture, where
it is split into separate services. The architecture
then defines how these services are organized and how
they interact with each other. Furthermore, architec-
ture also extends to not only the relationship between

classes but also the underlying structure of each class.
However, the level most appropriate for the architec-
ture is the level understood by all the developers [18].

Software architecture serves as a design blueprint,
providing an abstraction to manage the system’s
complexity. It describes how system elements in-
teract, fit together, and fulfill requirements, defin-
ing each element’s responsibilities and their interac-
tions with the system and its environment. Acting
as a bridge between system requirements and imple-
mentation, it addresses nonfunctional requirements
or quality attributes, anticipating necessary adapta-
tions for the system’s evolution [21, p. 4-6].

Software architecture quality is evaluated through
the measurement of various attributes. A key deter-
minant of high-quality architecture lies in attributes
like maintainability and evolvability. Maintainability
involves the ease of identifying and rectifying system
defects, or addressing bugs efficiently [29]. Evolv-
ability, on the other hand, refers to the ease of inte-
grating new requirements [26]. These attributes are
important in defining what constitutes high-quality
architecture, as they directly contribute to the sys-
tem’s long-term sustainability, flexibility, and ability
to meet evolving demands. These system quality at-
tributes are often sacrificed to fulfill immediate busi-
ness demands such as time-to-market and develop-
ment costs [25].

2.2 Role of the Architect

Architects are often stereotyped as high-level ’astro-
nauts’ with overly abstract designs, ’techno-geeks’
who disregard stakeholder needs and business con-
cerns, or detail-oriented ’dwarfs’ focused on minute
details [10]. In contrast to limiting archetypes, the
pragmatic architect, as introduced by Buschmann
[10], embodies a versatile blend of skills. They bal-
ance abstract vision with technical expertise and pos-
sess strong communication skills to bridge the gap
between stakeholders and developers. This includes
mentoring developers, effectively communicating ar-
chitectural concepts, creating balanced architectural
documentation, and understanding the pros and cons
of different architectural choices.

Fowler follows this idea by emphasizing a shift

3



in architectural focus away from top-down decision-
making and towards empowering development teams
[18]. A core function of the architect becomes men-
toring, ensuring that developers are equipped to
make informed architectural choices aligned with the
system’s requirements. This fosters an environment
where ”hands-on architects” work directly with the
codebase, reducing bugs and promoting architectural
best practices [35].
In this collaborative model, we propose that a

project’s architectural responsibilities encompass sev-
eral key aspects. Architects guide developers, shar-
ing architectural knowledge and principles, and ne-
gotiating new requirements while ensuring they are
fully understood and reflected in the architecture.
They facilitate clear and consistent communication
between stakeholders and developers. Further, they
strive for a balanced architecture that is neither
overly abstract nor excessively granular. Most impor-
tantly, architects prioritize maintainability and evolv-
ability, ensuring the system can easily accommodate
future changes and bug fixes.
This definition is complemented by Boehm and

Turner in [7] where they present the five dimensions
affecting method selection (agile vs disciplined), two
of which are criticality and dynamism. Criticality is
defined as ”Loss due to the impact of defects” and in
order to be agile this should be as little as possible.
Dynamism is the percentage change in requirements,
where a large percentage of changes requires an agile
method. In order to manage these changes the team
needs to have a culture, where they are comfortable
with this chaos. This further necessitates a profes-
sional and experienced team, consisting primarily of
what Boehm [7] describes as level 2 and 3 develop-
ers. These developers are ”able to [tailor or] revise a
method (break its rules) to fit an unprecedented new
situation”.
In teams with constrained resources, like the one

we are collaborating with, the concept of a dedicated
architect might be impractical. By adopting a col-
lective responsibility model, everyone on the team
shares ownership of the architecture. This distributes
architectural knowledge, reduces single-person de-
pendencies, and promotes a more sustainable ap-
proach in the event of personnel changes.

2.3 Architectural Debt & Architec-
ture Smells

Ernst et al. states that architectural issues are the
most significant source of TD [17]. Consequently,
managing AD becomes a paramount responsibility
for architects. Unlike other forms of TD, AD fo-
cuses on structural deficiencies within the system’s
architecture, impacting internal quality and remain-
ing invisible to end-users [23]. AD often stems from
developers implementing sub-optimal solutions due
to time constraints, particularly tight deadlines.

The intended lifespan of a system directly influ-
ences the effort that should be dedicated to managing
AD. Short-lived systems may not manifest the nega-
tive consequences of AD, whereas long-lived systems
will inevitably face these challenges [44]. For long-
lived systems, the management of AD is an ongoing
process, as even after resolving existing debt, new
architectural shortcomings may be introduced over
time.

Architectural smells serve as a means to identify
potential areas where AD may reside. These indica-
tors highlight opportunities for improvement; how-
ever, their presence does not inherently signify sub-
optimal architectural decisions [19]. Context is es-
sential, as specific structural choices may have been
implemented deliberately due to external constraints
or requirements.

Architectural smells can impact different quality
attributes. For instance, the Empty Semi Trucks
smell, characterized by an excessive number of re-
quests to complete a task, negatively affects perfor-
mance. Similarly, the Too Many Standards smell,
where different languages, protocols, and frameworks
are used, hinders comprehensibility and subsequently
impacts maintainability [31].

Given that architectural smells serve as indicators
of potential improvement areas, we will leverage them
to enhance architectural practices at ITS.

3 Action Research Method

To understand and improve architectural practices,
we employ Action Research (AR), a collaborative

4



P
ro
je
ct

P
ro
p
os
al

13
/9

In
tr
o
d
u
ct
io
n
to

IT
S
25
/9

In
te
rv
ie
w

w
it
h
S
te
ve

4/
10

P
re
se
n
ta
ti
on

of
T
D

24
/1
0

In
te
rv
ie
w

w
it
h
E
lo
n
9/
11

P
re
se
n
t
A
ct
iv
it
ie
s
21
/1
1

C
o
d
e
R
ev
ie
w

22
/1
1

C
o
d
e
R
ev
ie
w

29
/1
1

E
va
lu
at
io
n
6/
12

1s
t
S
p
ri
n
t
R
ev
ie
w

29
/2

2n
d
S
p
ri
n
t
R
ev
ie
w

21
/3

3r
d
S
p
ri
n
t
R
ev
ie
w

17
/4

F
ee
d
b
ac
k
M
ee
ti
n
g
2/
5

Diagnosis First Cycle Second Cycle

September October November December February March April May

Figure 1: Action Research study timeline

methodology rooted in social science that aims to
effect change while conducting research [47]. AR
bridges research with action through cyclical phases
of diagnosing, planning, acting, evaluating, and
learning [41]. In our study, this involved investigating
practitioners’ architectural practices to identify areas
of improvement using architectural smells, while also
providing feedback to the literature on the practical
utility of these techniques.

This collaborative study involves ITS, an IT de-
partment with 150 employees serving an organization
of 3,500+ employees and 20,000+ users, where one of
the authors is employed. This is a well-established IT
organisation that manages many different evolving
systems, therefore making it an interesting context
for this research. We collaborate with a small de-
velopment team within ITS, consisting of one team
lead and six developers working on 10 distinct sys-
tems, separate from the author’s team. To maintain
participant anonymity, all developers will be identi-
fied using pseudonyms throughout this study. The
members of the team have reviewed and approved
this paper for accuracy and the absence of miscon-
ceptions. Subsequent references to ITS refer to this
specific team.

Interviews with the ITS development team fol-
lowed a semi-structured format [5, p. 143], also
known as an interview guide [34, p. 438], combin-
ing pre-determined questions and research goals with
opportunities for open-ended discussion. This ap-

proach facilitated the exploration of both the primary
research topics and supplementary insights. All in-
terviews were audio-recorded and transcribed using
Goodtape1. The resulting recordings and transcripts,
a total of 150 pages, served as primary data sources
throughout the project. Immediately after each in-
terview, the recordings underwent multiple reviews
to extract relevant information. Additionally, at the
end of each research cycle, all interview data was
re-examined. This iterative review process allowed
for the refinement of interpretations based on evolv-
ing understandings and the acquisition of new knowl-
edge.

The following sections detail two cycles of action
research, following the diagnose, plan, act, evaluate,
and learn phases outlined in [41]. Each act cycle in-
cludes sub-cycles adhering to these phases.

3.1 Weekly Architecture Reviews

In this initial cycle, we focused on diagnosing the
problematic situation at ITS through a series of five
meetings over two months. This first cycle included
just the team lead and three of the six developers.
Initial interactions involved an introductory meeting,
an interview with a developer, and a presentation
highlighting the system’s shortcomings and propos-
ing three project focuses: technical debt, mainte-

1https://goodtape.io

5

https://goodtape.io


nance, and misalignment. Based on the feedback we
gained from the meeting, and the team’s emphasis
on maintainability, we changed the direction of the
project towards evolutionary architecture.
To understand their practices, we conducted an in-

terview with a developer, revealing the need for a
common understanding of architecture and the ar-
chitect’s role. We then presented our literature-based
definition, presented in Section 2, to the team.
The action plan involved integrating the Smell of

the Week intervention into their weekly code review.
This activity was chosen because of its relevance to
evolutionary architecture and the team’s perceived
excitement for it. It includes selecting a subset of ar-
chitectural smells from Appendix A for the develop-
ers to identify in their codebase and discuss. We par-
ticipated as participant observers [38] in three one-
hour code reviews over the following month, which
concluded with half of the last review allocated for
feedback. Continuous refinements were made to the
structure of the activity to enhance its effectiveness.
The evaluation phase involved recording, transcrib-

ing, and revisiting interviews for insights, as pre-
sented in Section 4. Following each review, the
researchers discussed its effectiveness in facilitating
productive architectural discussions.
All findings for this cycle were first formalized in

preparation for our semester evaluation, which in-
cludes our supervisor and an external censor, and
again for our final thesis exam. The primary find-
ing was the Smell of the Week activity’s potential to
promote architectural discussions and shared respon-
sibility within the team. Section 4.1 and Section 4.2
detail our findings.

3.2 Sprint Architecture Reviews

Building on the learnings from Cycle 1, we refined the
intervention for Cycle 2. The frequency was adjusted
to align with the team’s three-week sprint review cy-
cle, and participation was expanded to include the
entire development team. Given the limited time per
review (30 minutes), we prioritized a single architec-
tural smell per session, leveraging the framework in
[6] to identify smells with the highest potential nega-
tive impact on maintainability, a key concern identi-

fied in Cycle 1. Additionally, to avoid overwhelming
the team, the analysis was restricted to code devel-
oped within the sprint.

Over three months, three 30-minute sprint archi-
tecture reviews were conducted. A final 30-minute
feedback session with all six developers concluded
the cycle. As in Cycle 1, all reviews were recorded,
transcribed, and revisited for insights presented in
Section 4. After each review, the researchers again
discussed its effectiveness in facilitating productive
architectural discussions.

All findings for this cycle were formalized in prepa-
ration for our thesis exam, which includes our super-
visor and the external censor from our semester eval-
uation following the first cycle. The primary finding
from Cycle 2 was that the Smell of the Week activ-
ity, while valuable, required a significant time invest-
ment relative to its perceived value. Integrating the
activity into existing code reviews emerged as a more
practical approach. Section 4.3 details these findings.

4 Findings

In this section, we present our findings from the prob-
lematic situation and our two interventions.

4.1 The Problematic Situation

The five interviews with the developers at ITS re-
vealed the accumulation of significant TD and AD
within their Gateway. This debt impedes mainte-
nance efforts and hinders their ability to accommo-
date new development as their team manages a grow-
ing portfolio of systems.

The development team attributed the rise in tech-
nical and architectural debt within the Gateway
project to several specific causes. Each cause is ex-
plored in the subsections below.

4.1.1 Unclear Feature Requirements

Within the organization, there exist many different
departments, such as study administration, finance,
and the various faculties. Whenever stakeholders
from these departments request a new feature, the

6



requirements often lack clarity. There tends to be a
gap in considering the feature’s complete lifecycle, in-
cluding its creation, maintenance, and eventual dele-
tion. Consequently, developers must invest consider-
able time and resources in uncovering the full scope
of the requirements. Additionally, the feature might
impact or be relevant to other departments, neces-
sitating broader discussions to identify any further
implications.
As Elon with seven years of experience expressed:

“ I could wonder why there isn’t anyone
[...] who, across all teams, says, ’Now,
those people over in student services want
to do this branch thing. Maybe we should
[...] ask these stakeholders, or talk to them.’
Something new is coming in student ser-
vices, branches are coming in education pro-
grams. It works like this and that. You can
have something like this. Legally, it works
like this. What does it mean for you? And
then you go back and implement [the sys-

tem]. ”
− Elon

The development team highlights the lack of an en-
terprise architect at ITS, a gap that hinders their
ability to obtain a holistic organizational perspective.
This absence impedes the comprehensive definition of
features, as it limits the consultation of all relevant
stakeholders.

4.1.2 Requirements Always Change

The development team also highlighted the chal-
lenge presented by frequent and sometimes sweep-
ing changes in requirements. These changes could
stem from new regulations imposed by policymakers,
to which the team is legally obligated to adhere, or
from evolving stakeholder needs.
As Elon noted:

“ So, we are unfortunately bound by legis-
lation. And there are no politicians sitting
and thinking, ’What if we mess with this?
How will it affect the flow of various IT sys-
tems at universities? ”

− Elon

This external imposition of requirements can lead
to situations where fundamental assumptions about
the system are altered. This necessitates significant
rework, often involving suboptimal architectural de-
cisions due to incomplete or unclear requirements and
limited time or resources.

Elon goes on to describe this challenge:

“ So now you take a system with several
thousand lines of code. It has a lot of vali-
dation and logic to ensure that you are not
allowed to tamper with things. And then you
say, ’Now we would like to be able to tamper
with things.’ ”

− Elon

The team further expressed concern about the
marginalization of their input and opinions regarding
such requirement changes, even when these decisions
significantly impact their work.

4.1.3 Too Specific Requirements

The development team expressed concern over the
challenge of non-technical stakeholders sometimes
dictating specific implementation details. This can
hinder their ability to design a coherent system ar-
chitecture, as decisions should be driven by a holistic
understanding of requirements rather than isolated
preferences.

As Elon stated:

“ ... some people have just heard that mi-
croservices are really smart. So can’t you
just make it? ... some people are getting
involved in how [it should be done], who
shouldn’t be involved because then you can’t
have this coherent architecture. ”

− Elon

While pushing back on unsuitable requirements is
a potential solution, the team acknowledges limita-
tions in exercising this control. Their ultimate re-
sponsibility lies in implementation, not requirement
definition.

7



“ But that’s where the responsibility for
[the gateway] isn’t necessarily something we
determine. Someone could come along and
say, ’It would be bloody brilliant if this gate-
way could just make my coffee.’ And then
there should be someone saying, ’No, that’s
not the specification for the gateway.’ ”

− Elon

This problem extends to the broader system land-
scape. Elon described a situation where an architect,
despite advocating for the streamlining of ID usage
across systems, lacked the authority to implement the
change due to not being the product owner.

“ Well, couldn’t we just decide that wher-
ever the most complete set of IDs is, that’s
the system? They’re on nine characters or
whatever. Can’t we just say that’s the ID
now? Then fix the other systems. ... So
it’s the ID. But the architect couldn’t decide
that, because he’s not the product owner of
these things. ”

− Elon

The ability to challenge or shape requirements is
constrained by a lack of ownership over their defi-
nition, potentially leading to architectural compro-
mises. This highlights a potential disconnect be-
tween technical expertise and decision-making au-
thority within the organization.

4.1.4 Limited Resources

The development team faces a significant challenge
in securing stakeholder support for addressing TD.
Since these improvements will not yield immediate,
tangible benefits like new features or enhanced per-
formance, stakeholders tend to deprioritize them in
favor of projects with more visible outcomes.
As explained by Elon:

“ But it’s also about selling it, because how
do we sell it? You get exactly the same piece
of software as you had before. It looks a little
different. It costs just half a year. So we’d
rather have some new features. And that’s

difficult because then you have to sell it with
[other features]. ”

− Elon

Consequently, the team resorts to addressing main-
tenance issues by strategically integrating them into
the development of new features. This allows them to
undertake essential upkeep while still delivering the
additions stakeholders request.

However, this approach has a significant drawback:
its limited ability to thoroughly address the existing
debt. This results in the ongoing accumulation of
technical and architectural debt, a problem that has
now reached a point where implementing even minor
new features takes days rather than hours, highlight-
ing the consequences of this neglect.

4.1.5 Primary Findings from the Problem-
atic Situation

The development team faces the ongoing challenge of
frequent and sometimes sweeping changes in require-
ments, while not having the authority to challenge
these requirements, which over time have resulted in
the accumulation of large amounts of TD.

To effectively accommodate these changes, the ar-
chitecture must be highly evolvable, as outlined in
Section 2.1. This evolvability necessitates highly
competent architects who can implement new re-
quirements while maintaining overall quality, as em-
phasized in Section 2.2.

Based on this we will employ the Smell of the
Week activity introduced by Martin Fowler [19] for
our first intervention. This activity involves selecting
a specific architectural smell for weekly architecture
reviews. The team will collaboratively analyze the
codebase for the selected smells and discuss potential
solutions.

The activity will foster a shared architectural vo-
cabulary while strengthening the team’s architectural
competencies, leading to proactive codebase improve-
ments and reduced the likelihood of introducing fu-
ture debt.

8



4.2 The Intervention - Weekly Archi-
tecture Review

We implemented the Smell of the Week activity into
the team’s existing weekly code review meetings, par-
ticipating in three reviews. For the first review,
we selected 15 relevant code smells from [31] (re-
represented in Appendix A). The goal of this first
review was to introduce the concept of smells to the
team. During the first review, we collaboratively
searched the codebase for these smells together with
the development team. While discussions initially de-
viated from the selected smell, they proved valuable.
We analysed various code issues, linking them to rel-
evant architectural smells. This exposure to the con-
cept of smells sparked a meaningful discussion. As a
result, the team gained greater awareness of existing
AD present in the codebase.

In the second review, we shifted to a checklist-
based approach, where one of the developers was
responsible for sequentially going through the list.
Each of the smells was then discussed in depth by
all developers, with the aim of identifying problems
and discussing corresponding solutions. This proved
significantly more effective, allowing for focused anal-
ysis of individual smells.

In the third review, a single smell was selected,
and the team was prompted to document the prob-
lem, how they would fix it if they were to start over,
and how they would reach that goal. This documen-
tation process ensured a shared understanding of the
problem and its potential resolutions. Additionally,
it improved discussion focus and helped the team stay
on track.

We concluded the third review by soliciting devel-
oper feedback on the intervention. The following sub-
sections will detail this feedback.

4.2.1 Discovering Hidden Parts of the Sys-
tem

Feedback highlighted the effectiveness of the Smell of
the Week activity in exploring various system com-
ponents that might otherwise have been overlooked.
Helping to raise awareness of the system’s current
state and associated concerns.

“ It’s a very interesting way, trying in
some logical manner to go through [the sys-
tem] . . .One might end up in some cor-
ners of the system that one normally doesn’t
touch or hasn’t thought about. ”

− Elon

As Elon remarked, the process provided a logi-
cal method for delving into potential areas of im-
provement, even those typically overlooked or not
previously considered. This holistic examination
prompted the team to engage in collaborative dis-
cussions about addressing identified issues and brain-
storming potential solutions.

4.2.2 Continuous Maintenance

The team sees this activity as a valuable tool for on-
going maintenance of both legacy systems and sys-
tems under active development. This stems from its
ability to systematically uncover architectural issues
that can be addressed in subsequent sprints.

As Bill, a developer with 12 years of experience,
stated:

“ We are thinking that maybe we could
use this as a tool to trigger some ongoing
maintenance tasks. ”

− Bill

By identifying architectural weaknesses, the ac-
tivity prompts the creation of specific maintenance
tasks that can be integrated into future development
sprints. This proactive approach ensures that archi-
tectural issues are not overlooked.

While the team recognized the benefits of continu-
ous maintenance, Elon raised a valid concern:

“ Could it be demotivating because you’re
discussing something you can’t do anything
about? Because existing systems, it’s kind
of like they work, but... ”

− Elon

Their concern highlights the potential for demotiva-
tion when confronted with overwhelming AD or not
enough resources for its management.

9



However, the team still recognizes the value of
Smell of the Week as a tool for identifying and man-
aging AD.

“ If someone from above said that you have
x amount of time each month for mainte-
nance, then it could have been a good tool to
grab some things, [...], something needs to

be done here. ”
− Bill

As the developer noted, if they were allocated re-
sources for the management of their AD, the Smell
of the Week activity would be a tool they would use.

4.2.3 Primary Findings From Cycle 1

The team suggests two primary use cases for Smell
of the Week : the evaluation of legacy systems and
the assessment of newly created code within actively
developed systems.
For the continuous development of systems, they

suggest using it for the evaluation of newly created
components. A suitable time for this could be dur-
ing, e.g. sprint reviews for SCRUM teams. This eval-
uation would examine how well the new component
integrates with the existing architecture, whether it
has introduced any new architectural smells, and if
broader refactoring is needed to maintain a high-
quality architecture of the system. This proactive
approach promotes ongoing architectural awareness
throughout the development process, preventing sub-
optimal patterns from becoming entrenched and en-
suring timely refactoring to maintain the quality of
the architecture.
Based on this, our next intervention will apply

Smell of the Week in the context of continuous de-
velopment, by implementing it into their triweekly
sprints as an addition to their sprint review.

4.3 The Intervention - Sprint Archi-
tecture Review

We implemented the Smell of the Week activity into
the team’s triweekly sprint review. All the sprint
reviews followed the same structure. We began by
presenting the selected smells and their descriptions.

We did not provide our interpretation of the descrip-
tions, we left this for the team to discuss. When they
had come to a common understanding of the smell,
we went on analysing the code for it.

During the second and third reviews, by request of
the team, we sent the selected smells one week prior
to the review. This ensured that each developer had
time to find relevant code snippets for our review.
This increased the effectiveness of the review, as we
spent less time on analysing the code, and more on
discussing it. From this intervention, we gained the
following findings.

4.3.1 Categorizing Smells

During the feedback session, a distinction emerged
between two different categories of architectural
smells:

“ Seriously. It’s typically something that
sneaks in after the application is built, where
a strange requirement might come up. It’s a
kind of sneaky land. ”

− Elon

Sneaky smells, as noted by Elon, these smells often
manifest gradually over time due to evolving require-
ments or incremental changes. God classes, for in-
stance, do not emerge suddenly but typically grow
in size and complexity as responsibilities are added.
Contrary to this, we have Fix-it-Once smells, such
as Too Many Standards, that often can be addressed
with a single concentrated intervention and subse-
quently maintained with relative ease.

“ I would say that Separation of Concerns,
Bloated Service, and Circuitous Treasure
Hunt are probably the most relevant. Be-
cause we have pretty good control over our
standards regarding which languages, tools,
frameworks, and so on we use. ”

− Alan

Their SCRUM master with four years at ITS, Alan,
added that the Sneaky smells are more relevant
throughout the evolution of the system, whereas the
Fix-it-Once smells only need attention once in a
while.

10



4.3.2 Improving Code Review

Alan mentions that a dedicated Smell of the Week
activity might be excessive, as its benefits could be
covered by implementing it as part of their weekly
code review.

“ I might see it more as something we
could do in connection with Code Reviews,
for example. It’s probably not necessary to
have it as a recurring activity beyond Code
Reviews if it’s already being done there. ”

− Alan

He suggests that rotating the selected smell for each
code review would help address more potential issues.
Bill further highlights the potential of utilizing

smells during code reviews to elevate the analysis
from granular code details to a broader architectural
perspective.

“ Doing a Code Review, you often end up
diving deep into some functions. You can
use these as cues to take a step back and get
a higher-level perspective, I think. I believe
it can be used for that. So we get a more
helicopter view of what we’re doing. ”

− Bill

This, he suggests, would enhance the code review
process by preventing reviewers from getting bogged
down in minute details.

4.3.3 Resource Management

The Cloud Developer Steve with more than 20 years
of experience, highlights the perceived lack of value
as a key barrier to adopting Smell of the Week as a
regular practice. He suggests that the time invested
in identifying and addressing smells may not be per-
ceived as generating sufficient value for stakeholders,
potentially leading to resistance from management.

“ Because it costs too much. And then we
become unpopular with the bosses. [. . . ] It
also tends to become an academic exercise.
Where the value does not outweigh the time
spent on it. ”

− Steve

Bill offers a counterpoint, proposing that the Smell
of the Week activity could serve as a valuable tool
for identifying areas of interest, with regard to refac-
toring efforts:

“ So it can be used to figure out, okay,
where should we intervene? ”

− Bill

He suggests that regular smell detection could in-
form prioritization and resource allocation for archi-
tectural improvements.

4.3.4 Quality Attributes

The team acknowledged that while their team lead
might be receptive to the idea of allocating resources
for debt management, broader stakeholder under-
standing and support posed a challenge. As they
expressed, stakeholders might struggle to grasp the
long-term benefits of AD management and its impact
on the system.

Elon further elaborated on this perception gap,
highlighting that stakeholders’ priorities tend to shift
towards maintenance concerns only when develop-
ment grinds to a halt:

“ So when it gets so bad that it becomes
unmaintainable, then people start to be re-
ceptive to it. But when it’s just something
like... Ah, it might take maybe 40% less
time to do things in the future if we did this.
And it would be much nicer to work with,
it’s a bit hard to sell. ”

− Elon

He emphasizes that stringent requirements, such
as 99.99% uptime, would create a strong incentive to
proactively address AD.

“ If the requirement was for 99.99% up-
time, and we needed to be able to deliver
such and such and respond to request-service
and so on, then there was a business case for
getting these things in order. But when we

11



don’t actually have very stringent uptime re-
quirements and such, then it’s more of a
wish for us perhaps, that it would be nicer,
that it would be easier to maintain this. ”

− Elon

However, the current lack of such performance re-
quirements results in stakeholders tolerating system
failures, provided they are resolved within a reason-
able time.

4.3.5 Shared Vocabulary

During the reviews and last feedback session, we ob-
served that they started using different smells dur-
ing our discussions. While team members expressed
reservations about whether their architectural com-
petencies have improved, they acknowledged that
this practice had expanded their vocabulary for ar-
ticulating architectural concerns.
Alan highlights the effectiveness of the smell

metaphor for communicating architectural issues.

“ Yeah, I actually think it’s a good
metaphor. Also because we are used to us-
ing the metaphor of code smell from a static
analysis tool we use, which can come and
tell us something like, hey, it looks like
there’s a code smell here. There are a lot
of code smells, they are probably a bit more
code-centric than architects. ”

− Alan

He notes that the team’s existing familiarity with the
concept of code smells facilitated their adoption and
understanding of architectural smells.

4.4 Lessons Learned

As highlighted in Section 2, the successful implemen-
tation of an evolving architecture, capable of adapt-
ing to changing requirements, necessitates skilled de-
velopers at levels two and three, as defined by Boehm
[7]. These developers possess the expertise to nav-
igate unforeseen challenges and construct systems
that accommodate change.
A unified team can effectively challenge unfeasi-

ble stakeholder requirements, leading to enhanced

requirement quality and streamlined management
of the evolving architecture. Furthermore, team
alignment enables the distribution of architectural
decision-making, empowering individual developers
with the necessary skills to make informed choices,
outlined in Lesson 1:

Lesson 1 An evolving architecture distributes archi-
tectural decision-making, necessitating aligned
and competent developers.

As discussed in Section 4.3.1, the final feedback
session of Cycle 2 established a classification of ar-
chitectural smells into two categories, as articulated
in Lesson 2. This categorization differentiates be-
tween Fix-it-Once smells, which only require periodic
reevaluation, and Sneaky smells, which necessitate
ongoing management due to their tendency to grad-
ually sneak into the codebase during its evolution.

Lesson 2 Architectural smells can be categorized as
either: Fix-it-Once or Sneaky smells.

During Cycle 1, we found that, if the team was
allocated time for AD management, then Smell of
the Week would be a useful tool to identify areas of
improvement, as captured by Lesson 3. This could be
implemented either as part of ongoing development
or dedicated refactoring efforts.

Lesson 3 Smell of the week can be utilized for team-
based Architectural Debt management.

In the context of ongoing development, the team
expressed, in Cycle 2, a desire to allocate a few
minutes during their weekly code reviews to dis-
cuss a subset of smells, keeping these smells in mind
throughout the review process. For dedicated refac-
toring efforts, the team suggested that dedicated
Smell of the Week sessions could systematically iden-
tify areas for improvement by focusing on one smell
at a time.

5 Discussion

In this section, we address the research question as
presented in Section 1.

12



Lessons Examples Related Research

Lesson 1: An evolving
architecture distributes
architectural decision-
making, necessitating
aligned and competent
developers.

During development, a developer
faces different architectural deci-
sions, e.g. whether to keep a class
or divide it, to eliminate God Ob-
jects.

Supports decentralizing architectural re-
sponsibilities [16]. And extends agile
methods, with an increased focus on ar-
chitecture [4, 46].

Lesson 2: Architectural
smells can be categorized
as either: Fix-it-Once or
Sneaky smells.

A Golden Hammer can be resolved
once and not need attention for
a long time, whereas God Objects
sneak into the codebase over time.

We expand on the existing categorization
of architectural smells [2] by introducing
an additional temporal classification.

Lesson 3: Smell of the
week can be utilized for
team-based Architectural
Debt management.

When a developer wants to improve
the architecture, looking for God
Objects will help guide their refac-
toring efforts.

Supports that smells can be used to iden-
tify refactoring opportunities [40].

Table 1: Key lessons of the study

RQ How can architectural practices be improved in
teams that develop and maintain evolving sys-
tems with a high risk of accumulating Architec-
tural Debt?

We first outline our contributions to the literature
both in theory and practice. Additionally, we address
the potential limitations of the project and suggest
ways to mitigate them. Finally, we conclude by dis-
cussing areas of improvement for future research.

5.1 Contribution

Section 4.4 present our primary findings, which are
discussed below. Table 1 summarizes these lessons
and provides an example for each.
The evolvable architecture outlined in Section 2.1

necessitates skilled developers, as described in Sec-
tion 2.2, capable of adapting to changing require-
ments. Lesson 1 encapsulates this, extending the
concept of shared code ownership in Extreme Pro-
gramming [46] to include shared architectural respon-
sibility, aligning with decentralized decision-making
proposed by [16].
Existing classifications of architectural smells are

categorised based on their impact on modularity, hi-

erarchy, and dependency structures [2] or compo-
nents and non-functional requirements [31]. Lesson 2
introduces a temporal categorization, differentiating
between Sneaky and Fix-it-Once smells. This dis-
tinction has practical implications for prioritization
and scheduling of remediation efforts: Sneaky smells
require ongoing vigilance, while Fix-it-Once smells
can be addressed early or periodically in a project.
The Too Many Standards, for instance, a Fix-it-Once
smell, can be resolved early on for known technology
stacks while addressing the issue in a prototype can
be postponed to a later time.

Lesson 3 underscores the utility of combining Smell
of the Week with architectural smells to facilitate ar-
chitectural improvement. Smells act as indicators of
potential issues [2, 19], and different patterns aid in
identifying refactoring opportunities [40] and moti-
vate architectural improvements. Regular practice
expands architectural vocabulary and enhances recall
through spaced repetition [9], ultimately improving
team effectiveness.

This Smell of the Week practice, introduced as
a recurring activity, where a subset of architectural
smells selected from a predefined list Appendix A are
discussed, followed by code analysis to identify their

13



presence. This adaptable approach can be adjusted
to fit various contexts, with time allocation depen-
dent on available resources.
Our objective was to enhance the team’s architec-

tural vocabulary and competencies, as written in Sec-
tion 4.1.5. We observed the development of a shared
vocabulary, facilitating discussions about AD and so-
lutions, as well as increased alignment on the sys-
tem’s architectural deficiencies. These observations
suggest improved competencies, despite the team’s
self-reported lack of significant change.
However, concerns about the practice’s potentially

demotivating effects, particularly when addressing is-
sues without the necessary resources for resolution,
were raised. This is likely influenced by the organiza-
tional context at ITS, where non-functional require-
ments are not prioritized, hindering support for AD
management. The team’s perceived lack of value sug-
gests that a different organizational environment, one
that prioritizes such requirements, might perceive the
benefits of the practice differently.

5.2 Limitations

As earlier mentioned one of the authors’ employment
at ITS introduces potential bias, stemming from im-
plicit knowledge about the organization, potentially
leading to unconscious projections onto the studied
team. Additionally, the AR methodology employed
in this study, while valuable for its dual focus on aid-
ing practitioners and contributing to academia [1, 30],
is inherently susceptible to researcher bias during re-
sult interpretation [48]. To mitigate this, we have
ensured transparency by explicitly stating the ratio-
nale behind our conclusions and using direct quotes
where possible.
To distinguish this work from mere consultancy

[1, 30], we highlight the dual purpose of AR: provid-
ing practical solutions for the ITS team while con-
tributing to broader research on architectural debt
management. Our three lessons learned demonstrate
this commitment to generating new knowledge that
can benefit both practitioners and the research com-
munity. Finally, we argue that the Smell of the Week
intervention is transferable as it could be beneficial
in other organizations due to the widespread nature

of suboptimal architecture [20] and the intervention’s
relative ease of implementation.

5.3 Future Research

The team’s interest in incorporating the Smell of the
Week practice as a minor part of their existing code
reviews warrants further investigation as a logical
next step in evaluating the practice’s effectiveness.

The practice was identified to help systematically
explore various system components and could facili-
tate knowledge transfer when a new team takes over
a project. A focused smell identification session could
prompt original developers to share their design ra-
tionale and help the new team quickly understand
the existing architecture, including any intentional
smells.

Given the inverse relationship between team size
and agility [7], further research could investigate the
practice’s applicability in larger organizations. We
propose creating smaller review groups across teams
to facilitate knowledge sharing and inter-team com-
munication. Conversely, studying the practice in
small, agile organizations could illuminate its ef-
fectiveness in environments where rapid decision-
making and close collaboration are possible.

6 Conclusion

Our AR study investigated how a small IT team
within a Danish university could improve its architec-
tural practices. Over eight months, we conducted in-
terviews, participant observations, and implemented
the Smell of the Week activity, focusing on its in-
tegration into existing code reviews. This practice
facilitated productive discussions on architectural is-
sues and fostered a shared vocabulary for addressing
architectural debt.

Key contributions include recognizing the need for
aligned and competent developers in evolving archi-
tectures, where the architect role is a shared team
responsibility. Additionally, we identified a new cate-
gorization of smells: Sneaky (requiring ongoing atten-
tion) and Fix-it-Once (addressable at specific times),
extending existing classifications.

14



Acknowledgements

The authors would like to thank John Stouby Persson
for his excellent supervision and insightful guidance
throughout this research. We also acknowledge the
invaluable collaboration of the ITS team and express
our gratitude for their openness and willingness to
share their expertise and perspectives, which have
been instrumental in shaping this research.

References

[1] Avison, D., Davison, R., Malaurent, J.: In-
formation systems action research: Debunking
myths and overcoming barriers. Informa-
tion & Management 55(2), 177–187 (2018).
https://doi.org/10.1016/j.im.2017.05.004,
https://www.sciencedirect.com/science/

article/pii/S0378720617300605

[2] Azadi, U., Fontana, F.A., Taibi, D.: Ar-
chitectural smells detected by tools: a
catalogue proposal. In: 2019 IEEE/ACM
International Conference on Techni-
cal Debt (TechDebt). pp. 88–97 (2019).
https://doi.org/10.1109/TechDebt.2019.00027

[3] Bass, L., Clements, P., Kazman, R.: Software
Architecture In Practice. Pearson, New York
(2013)

[4] Beck, K., Beedle, M., van Bennekum, A.,
Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jef-
fries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland,
J., Thomas, D.: Principles behind the Ag-
ile Manifesto. https://agilemanifesto.org/

principles.html (2001), accessed: 17-01-2024

[5] Benyon, D.: Designing Interactive Systems. No.
ISBN: 978-1 -4479-2011 -3 in Paper, PEARSON
(2005)

[6] Besker, T., Martini, A., Bosch, J.: Managing
architectural technical debt: A unified model
and systematic literature review. Journal

of Systems and Software 135, 1–16 (2018).
https://doi.org/10.1016/j.jss.2017.09.025,
https://www.sciencedirect.com/science/

article/pii/S0164121217302121

[7] Boehm, B., Turner, R.: Observations on
balancing discipline and agility. In: Pro-
ceedings of the Agile Development Confer-
ence, 2003. ADC 2003. pp. 32–39 (2003).
https://doi.org/10.1109/ADC.2003.1231450

[8] Borup, N., Christiansen, A., Tovgaard, S., Pers-
son, J.: Deliberative Technical Debt Manage-
ment: An Action Research Study, pp. 50–
65. International Conference on Software Busi-
ness (11 2021). https://doi.org/10.1007/978-3-
030-91983-2 5

[9] Branwen, G.: Spaced repetition. https:

//gwern.net/spaced-repetition (2019), ac-
cessed: 14/5-2024)

[10] Buschmann, F.: Introducing the pragmatic ar-
chitect. IEEE Software 26(5), 10–11 (2009).
https://doi.org/10.1109/MS.2009.130

[11] Cai, Y., Kazman, R.: Software architec-
ture health monitor. In: 2016 IEEE/ACM
1st International Workshop on Bringing Ar-
chitectural Design Thinking Into Developers’
Daily Activities (BRIDGE). pp. 18–21 (2016).
https://doi.org/10.1145/2896935.2896940

[12] Cai, Y., Xiao, L., Kazman, R., Mo, R.,
Feng, Q.: Design rule spaces: A new
model for representing and analyzing soft-
ware architecture. IEEE Transactions on Soft-
ware Engineering 45(7), 657–682 (2019).
https://doi.org/10.1109/TSE.2018.2797899

[13] Canfora, G., Mancini, L., Tortorella,
M.: A workbench for program compre-
hension during software maintenance.
In: WPC ’96. 4th Workshop on Pro-
gram Comprehension. pp. 30–39 (1996).
https://doi.org/10.1109/WPC.1996.501118

15

https://www.sciencedirect.com/science/article/pii/S0378720617300605
https://www.sciencedirect.com/science/article/pii/S0378720617300605
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://www.sciencedirect.com/science/article/pii/S0164121217302121
https://www.sciencedirect.com/science/article/pii/S0164121217302121
https://gwern.net/spaced-repetition
https://gwern.net/spaced-repetition


[14] Cunningham, W.: The wycash portfolio man-
agement system. In: Addendum to the Proceed-
ings on Object-Oriented Programming Systems,
Languages, and Applications (Addendum). p.
29–30. OOPSLA ’92, Association for Comput-
ing Machinery, New York, NY, USA (1992).
https://doi.org/10.1145/157709.157715, https:
//doi.org/10.1145/157709.157715

[15] De Lucia, A., Fasolino, A., Munro, M.: Un-
derstanding function behaviors through pro-
gram slicing. In: WPC ’96. 4th Workshop
on Program Comprehension. pp. 9–18 (1996).
https://doi.org/10.1109/WPC.1996.501116

[16] Erder, M., Pureur, P.: What’s the ar-
chitect’s role in an agile, cloud-centric
world? IEEE Software 33(5), 30–33 (2016).
https://doi.org/10.1109/MS.2016.119

[17] Ernst, N.A., Bellomo, S., Ozkaya, I., Nord,
R.L., Gorton, I.: Measure it? manage it? ignore
it? software practitioners and technical debt.
In: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. p.
50–60. ESEC/FSE 2015, Association for Com-
puting Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2786805.2786848,
https://doi-org.zorac.aub.aau.dk/10.

1145/2786805.2786848

[18] Fowler, M.: Who needs an architect? Tech. rep.,
Institute of Electrical and Electronics Engineers
(2003)

[19] Fowler, M.: Code Smell. https:

//martinfowler.com/bliki/CodeSmell.html

(2006), accessed on 29/01-2024

[20] Fowler, M.: Is High Quality Software Worth the
Cost? (2019), https://martinfowler.com/

articles/is-quality-worth-cost.html, ac-
cessed on 12/10-2023

[21] Hofmeister, C., Nord, R., Soni, D.: Applied
software architecture. Addison-Wesley Longman
Publishing Co., Inc., USA (1999)

[22] Kolny, M.: Scaling up the prime video moni-
toring service and reducing costs by 90%. Tech.
rep., TECH (2023)

[23] Kruchten, P., Nord, R.L., Ozkaya, I.: Tech-
nical debt: From metaphor to theory and
practice. IEEE Software 29(6), 18–21 (2012).
https://doi.org/10.1109/MS.2012.167

[24] Leffingwell, D.: Principles of Agile Archi-
tecture. https://scalingsoftwareagility.

files.wordpress.com/2008/08/principles_

agile_architecture.pdf (2006), accessed on
29/01-2024

[25] Li, Z., Liang, P., Avgeriou, P.: Architectural
Debt Management in Value-Oriented Architect-
ing (01 2013). https://doi.org/10.1016/B978-0-
12-410464-8.00009-X

[26] Li, Z., Liang, P., Avgeriou, P.: Architec-
tural technical debt identification based on
architecture decisions and change scenarios.
In: 2015 12th Working IEEE/IFIP Confer-
ence on Software Architecture. pp. 65–74 (2015).
https://doi.org/10.1109/WICSA.2015.19

[27] Martini, A., Bosch, J.: The danger
of architectural technical debt: Conta-
gious debt and vicious circles. In: 2015
12th Working IEEE/IFIP Conference on
Software Architecture. pp. 1–10 (2015).
https://doi.org/10.1109/WICSA.2015.31

[28] Martini, A., Bosch, J.: An empirically developed
method to aid decisions on architectural tech-
nical debt refactoring: Anacondebt. In: 2016
IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C). pp.
31–40 (2016)

[29] Mathiassen, L., Munk-Madsen, A., Nielsen,
P.A., Stage, J.: Object Oriented Analysis & De-
sign. No. ISBN: 978-87-970693-0-1 in Paperback,
Metodica ApS (2018)

[30] Mckay, J., Marshall, P.: The dual imper-
atives of action research. Information Tech-
nology and People 14, 46–59 (02 2001).
https://doi.org/10.1108/09593840110384771

16

https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715
https://doi-org.zorac.aub.aau.dk/10.1145/2786805.2786848
https://doi-org.zorac.aub.aau.dk/10.1145/2786805.2786848
https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/articles/is-quality-worth-cost.html
https://martinfowler.com/articles/is-quality-worth-cost.html
https://scalingsoftwareagility.files.wordpress.com/2008/08/principles_agile_architecture.pdf
https://scalingsoftwareagility.files.wordpress.com/2008/08/principles_agile_architecture.pdf
https://scalingsoftwareagility.files.wordpress.com/2008/08/principles_agile_architecture.pdf


[31] Mumtaz, H., Singh, P., Blincoe, K.: A
systematic mapping study on architec-
tural smells detection. Journal of Sys-
tems and Software 173, 110885 (2021).
https://doi.org/10.1016/j.jss.2020.110885,
https://www.sciencedirect.com/science/

article/pii/S0164121220302752

[32] Nayebi, M., Cai, Y., Kazman, R., Ruhe, G.,
Feng, Q., Carlson, C., Chew, F.: A longitu-
dinal study of identifying and paying down
architecture debt. In: 2019 IEEE/ACM
41st International Conference on Soft-
ware Engineering: Software Engineering in
Practice (ICSE-SEIP). pp. 171–180 (2019).
https://doi.org/10.1109/ICSE-SEIP.2019.00026

[33] Oliveira, F., Goldman, A., Santos, V.: Man-
aging technical debt in software projects
using scrum: An action research. In:
2015 Agile Conference. pp. 50–59 (2015).
https://doi.org/10.1109/Agile.2015.7

[34] Patton, M.Q.: Qualitative Research & Evalu-
ation Methods. Fourth Edition. Sage Publica-
tions. Thousands Oaks, California. (2015)

[35] Rehman, I., Mirakhorli, M., Nagappan, M.,
Aralbay Uulu, A., Thornton, M.: Roles and
impacts of hands-on software architects in five
industrial case studies. In: 2018 IEEE/ACM
40th International Conference on Software
Engineering (ICSE). pp. 117–127 (2018).
https://doi.org/10.1145/3180155.3180234

[36] Risager, T., Mohamed, F.O.A.: Mitigating ar-
chitectural debt in evolving systems: An action
research study

[37] Seaman, C., Guo, Y.: Chapter 2 - Measur-
ing and Monitoring Technical Debt (2011).
https://doi.org/https://doi.org/10.1016/B978-
0-12-385512-1.00002-5, https://www.

sciencedirect.com/science/article/pii/

B9780123855121000025

[38] Sharpe, D.: Participant Observant.
https://research.utoronto.ca/

participant-observation, accessed on
21/02-2024

[39] Snipes, W., Karlekar, S., Mo, R.: A case study
of the effects of architecture debt on software
evolution effort. In: 2018 44th Euromicro Con-
ference on Software Engineering and Advanced
Applications (SEAA). pp. 400–403 (2018).
https://doi.org/10.1109/SEAA.2018.00071

[40] Sousa, L., Oizumi, W., Garcia, A., Oliveira,
A., Cedrim, D., Lucena, C.: When are smells
indicators of architectural refactoring oppor-
tunities: A study of 50 software projects.
In: Proceedings of the 28th International
Conference on Program Comprehension. p.
354–365. ICPC ’20, Association for Comput-
ing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3387904.3389276,
https://doi.org/10.1145/3387904.3389276

[41] Staron, M.: Action Research in Software Engi-
neering (01 2020). https://doi.org/10.1007/978-
3-030-32610-4

[42] Storey, M.A., Fracchia, F., Müller, H.:
Cognitive design elements to support
the construction of a mental model dur-
ing software exploration. Journal of Sys-
tems and Software 44(3), 171–185 (1999).
https://doi.org/https://doi.org/10.1016/S0164-
1212(98)10055-9, https://www.

sciencedirect.com/science/article/pii/

S0164121298100559

[43] Taibi, D., Janes, A., Lenarduzzi, V.: How
developers perceive smells in source code:
A replicated study. Information and Soft-
ware Technology 92, 223–235 (2017).
https://doi.org/10.1016/j.infsof.2017.08.008,
https://www.sciencedirect.com/science/

article/pii/S0950584916304128

[44] Verdecchia, R., Kruchten, P., Lago, P.: Archi-
tectural technical debt: A grounded theory. In:
Jansen, A., Malavolta, I., Muccini, H., Ozkaya,
I., Zimmermann, O. (eds.) Software Architec-
ture. pp. 202–219. Springer International Pub-
lishing, Cham (2020)

17

https://www.sciencedirect.com/science/article/pii/S0164121220302752
https://www.sciencedirect.com/science/article/pii/S0164121220302752
https://www.sciencedirect.com/science/article/pii/B9780123855121000025
https://www.sciencedirect.com/science/article/pii/B9780123855121000025
https://www.sciencedirect.com/science/article/pii/B9780123855121000025
https://research.utoronto.ca/participant-observation
https://research.utoronto.ca/participant-observation
https://doi.org/10.1145/3387904.3389276
https://www.sciencedirect.com/science/article/pii/S0164121298100559
https://www.sciencedirect.com/science/article/pii/S0164121298100559
https://www.sciencedirect.com/science/article/pii/S0164121298100559
https://www.sciencedirect.com/science/article/pii/S0950584916304128
https://www.sciencedirect.com/science/article/pii/S0950584916304128


[45] Waterman, Michael: Agility, risk, and un-
certainty, part 1: Designing an agile archi-
tecture. IEEE Software 35(2), 99–101 (2018).
https://doi.org/10.1109/MS.2018.1661335

[46] Wells, D.: Extreme Programming. http://www.
extremeprogramming.org (2013), accessed on
14-05-2025

[47] Wohlin, C., Runeson, P.: Guiding the selection
of research methodology in industry–academia
collaboration in software engineering. Tech. rep.,
Information and Software Technology (2021)

[48] Wynekoop, J.L., Conger, S.A.: A review of com-
puter aided software engineering research meth-
ods. The Information Systems Research Area Of
The 90’s I, p. 130–154 (1990)

[49] Xiao, L., Cai, Y., Kazman, R.: Design rule
spaces: a new form of architecture insight. In-
ternational Conference on Software Engineering
36, 967–977 (2014). https://doi.org/M 978-1-
4503-2756-5/14/05

[50] Xiao, L., Cai, Y., Kazman, R., Mo, R., Feng,
Q.: Identifying and quantifying architectural
debt. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering. p.
488–498. ICSE ’16, Association for Comput-
ing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2884781.2884822,
https://doi.org/10.1145/2884781.2884822

[51] Xiao, L., Cai, Y., Kazman, R., Mo, R.,
Feng, Q.: Detecting the locations and pre-
dicting the maintenance costs of compound ar-
chitectural debts. IEEE Transactions on Soft-
ware Engineering 48(9), 3686–3715 (2022).
https://doi.org/10.1109/TSE.2021.3102221

[52] Yli-Huumo, J., Maglyas, A., Smolander, K.,
Haller, J., Törnroos, H.: Developing processes
to increase technical debt visibility and manage-
ability – an action research study in industry. In:
Abrahamsson, P., Jedlitschka, A., Nguyen Duc,
A., Felderer, M., Amasaki, S., Mikkonen, T.

(eds.) Product-Focused Software Process Im-
provement. pp. 368–378. Springer International
Publishing, Cham (2016)

18

http://www.extremeprogramming.org
http://www.extremeprogramming.org
https://doi.org/10.1145/2884781.2884822


Agile

Stable

Known Unknown

”Our architecture can adapt to
all changes.”

”Our architecture can adapt to
all changes and we know all the
requirements.”

”Our architecture is prepared for
all the potential requirements we
could think of.”

”Our architecture is optimized
to meet the requirements.”

Figure 2: Agile Architecture Quadrant: The x-axis represents known/unknown Architectural Significant
Requirements, the y-axis represents the agility of the architecture. (Re-representation from 9th semester
[36])

7 Further Findings

This section outlines additional findings that, while relevant to the research, were not explored in depth.

7.1 Skinny Repository

During Cycle 1, the team encountered a specific instance of AR that deviated from the expected pattern.
While the Fat Repository smell, characterized by repositories responsible for too many entities, was included
in our initial list, the team identified the opposite issue in their codebase: Skinny Repositories, which manage
too few entities. To address this, they proposed merging multiple skinny repositories into one, potentially
simplifying the system’s architecture. This finding presents a novel contribution to the existing body of
knowledge on AD and expands the potential range of recognized smells.

We consider this a minor finding that is not directly relevant to the primary research objective of improving
the team’s architectural practices. The discovery of these additional smells occurred during the Smell of the
Week reviews and reflects the practitioners’ own perception of architectural issues, which did not always
align with the predefined lists of smells found in the literature. This observation aligns with previous research
highlighting the divergence between smells in theory and smells in practice [43].

7.2 Agile Architecture Quadrant

To analyze system agility, we propose a conceptual framework, depicted in Figure 2, consisting of two axes:
system architectural agility and requirements stability. Architectural agility refers to the ability of the
architecture to adapt to evolving requirements. Requirements can be classified as either known or unknown,
depending on their degree of change over time.

Figure 2 illustrates the relationship between requirement stability and architectural agility. In environ-
ments with highly dynamic requirements, a team capable of managing change can adapt the architecture
accordingly. Conversely, less agile teams may need to invest in highly flexible architectures upfront to
accommodate future changes.

19



This framework was presented to ITS during the third review of Cycle 1, prompting a discussion about
their Gateway system’s current and desired position within the quadrant. Interestingly, the team noted that
the system’s position could vary depending on the level of abstraction considered.
While the team unanimously agreed that practical experience is necessary to fully assess the quadrant’s

utility, they acknowledged its potential to help identify the frequency and nature of requirement changes,
leading to discussions on how to address them, as described by Bill.

“ . . . one is somewhat forced to take a position on how the requirements will evolve in the future.
[. . . ] What do we think will happen? What will they come up with? What might they come up
with? And should we think about it now? [. . . ] how will we handle requirement changes in the

future? ”
− Bill

Ultimately, the team recognized that this framework could assist in managing requirement changes and
guiding future system evolution.
As our primary research objective is to enhance practitioners’ architectural practices, this finding was not

included in the main body of the paper. The proposed framework, while useful for describing a system’s
nature and requirements, does not directly offer actionable strategies for architectural improvement. There-
fore, it was deemed less relevant to our central research focus, which centers on practical techniques that
practitioners can employ to enhance their architectural decision-making and processes.

7.3 Impact on Non-Functional Requirements

Following Besker et al.’s [6] unified model for architectural debt, we investigate the negative impact of
architectural smells on a system’s non-functional requirements, also known as quality attributes. Using
the 12 attributes outlined in [29], a systematic evaluation of each smell reveals a predominant impact on
comprehensibility and maintainability, with some affecting efficiency, testability, and flexibility.
Interestingly, 40% of smells impacting comprehensibility also indirectly affected maintainability, a corre-

lation supported by existing research [42, 15, 13]. This suggests that these attributes should be considered
correlated rather than distinct. Furthermore, the strong emphasis on comprehensibility underscores its
importance in software architecture.
To maximize the value of our limited time with ITS, we sought to prioritize architectural smells relevant to

their focus on maintainability. Therefore, we undertook an exercise to classify smells based on their impact
on non-functional requirements, anticipating that this would help narrow our selection. Instead, we found
that 60% of the smells had a direct impact on maintainability, 55% on comprehensibility, and those having
an impact on the latter also had an impact on the former. While this analysis provided the relationship
between architectural smells and quality attributes, it did not significantly reduce the number of smells to
consider for the Smell of the Week practice. Because of this and the low relevance to our research goal, as
also mentioned in Section 7.2, this finding was removed from the main paper.

8 Additional Areas for Potential Investigation

This section will outline some of the directions we could have taken after investigating the initial problem
situation of Cycle 1.
While our primary focus centered on architectural smells and debt, our collaboration with ITS revealed

several additional areas warranting further exploration. Maintaining their expanding system portfolio poses

20



a significant challenge for the small team, particularly due to the lack of uniformity and diverse technology
stacks across gateways, leading to knowledge fragmentation and complex maintenance. Cascading changes,
where modifications in one area necessitate changes elsewhere, further compound this issue.
Beyond architecture, ITS faces TD manifested in insufficient test coverage, unimplemented requirements,

and code complexity with potential code smells. Additionally, organizational misalignment stemming from
differing interpretations of master data and technical terms, as well as varying technology choices across
teams, creates knowledge silos that impede collaboration. Incorrect domain separation and cyclic dependen-
cies also pose challenges, necessitating careful API versioning and management to avoid livelocks. Finally,
infrastructure challenges, such as ensuring system availability while adapting to cloud platform updates
and complying with data privacy regulations e.g. GDPR, highlight the need for a flexible and compliant
architecture.

9 Interview Guide

The following sections detail the interviews conducted with ITS, outlining the questions posed to provide
insights into our research methodology. Initially, given the exploratory nature of the project’s early stages,
interviews were open-ended to gain familiarity with ITS systems and challenges. As the research progressed
and a specific focus emerged, questions became more targeted, aiming to evaluate the effectiveness of our
intervention.

9.1 Meeting with Steve

1. Present architecture

(a) What is your architecture called?

2. Present problems

(a) Relevance

(b) Are there other problems

(c) Ask about azure cloud

3. Ask about hosting (only if there is time)

4. Flexibility, comprehensible, interoperable

9.2 Meeting with Elon

1. Who defines requirements?

2. What do you do when requirements change/new requirements arise?

3. Who creates the design/architecture?

4. How are decisions made?

5. When are decisions made?

6. Architecture vs. Requirements

7. When are decisions made about refactoring?

21



9.3 Code Reviews

The initial review consisted of a discussion between researchers and developers, aimed at increasing the
researchers’ understanding of the Gateway system and introducing the concept of architectural smells to the
developers.

Subsequent code reviews were conducted by providing developers with a list of selected architectural
smells, which they were tasked with identifying and discussing within the system’s codebase. The second
review contained 15 smells and the third contained a single smell.

9.4 Code Review Feedback

1. Document a single Smell and its solution

2. What is the problem?

3. How would you solve it if you could start over?

4. How/can you get there today?

(a) Draw the solution (optional)

(b) Write it down

5. Interest

(a) Probability

(b) Amount

(c) Principal (Cost to fix)

6. Present Agile Architecture Quadrant

(a) Where are you?

(b) Where do you want to be?

(c) Review the usefulness

7. Smell of the week

(a) Pros/Cons

(b) Why/Why not

8. Will you use this in the future? If not, how would you handle TD?

9. Agile Architecture Quadrant

(a) Is it a good way to think about the problem?

22



9.5 Sprint Reviews

All the sprint reviews followed the same structure. We began by presenting the selected smells and their
descriptions. We did not provide our interpretation of the descriptions, which we left for the team to discuss.
When they had come to a common understanding of the smell, we went on to analyse the code for it. In some
instances, a developer was tasked with documenting these identified smells, utilizing the following reference
points:

1. Filename and Line number

2. What is the problem?

3. Why has it been introduced?

4. What is its severity (Low/High)?

5. How do we manage/resolve it?

6. How do we make sure this does not happen again?

During the second and third reviews, by request of the team, we sent the selected smells one week before
the review. This ensured that each developer had time to find relevant code snippets for our review. This
increased the effectiveness of the review, as we spent less time on analysing the code, and more on discussing
it.

9.6 Sprint Review Feedback

1. How much of the code should be reviewed?

2. How many Smells can we look at at a time?

3. What about the smells that are not so relevant (you don’t have any of)?

4. How often should the activity be performed?

5. Which smells should be looked at?

6. Has it made you as a team better at working with architecture?

7. What long-term pros/cons can you see with the activity?

8. Are you producing better architecture?

9. Does it help to write your thoughts down?

10. Is this something you would like to use?

11. Why/Why not?

12. Have you changed the way you interact with your stakeholders?

13. Are you more aligned around what can and cannot be done?

23



14. Do you put the requirements up for discussion?

15. Is AD on the agenda?

16. Is the smell concept a good metaphor for talking about technical debt?

17. Are some smells more relevant than others?

18. How have you looked for smells?

19. How much time have you spent on it?

20. Would you have liked more time?

21. Have you fixed/prioritized any of the shortcomings we found during the reviews?

22. Have you created any sprint items for your backlog?

23. Have you fixed any of them in your sprints?

24. What have you gained from this process?

25. Have you gained a better understanding of TD/AD?

24



A Architectural Smells

Architectural Smell Description

Abstraction without decoupling
This smell occurs where a client class uses a service represented
as an abstract type, but also a concrete implementation of this
service, represented as a non-abstract subtype of the abstract
type.

Ambiguous interface This smell occurs when an abstraction (interface) is over-
engineered by adding methods intended to accommodate poten-
tial future requirements but never used.

Ambiguous name This smell occurs when developers use ambiguous or meaningless
names for interfaces.

Anchor submission This smell occurs when each file structurally depends on the an-
chor file, but each member historically dominates the anchor.

Anchor dominant This smell occurs when each file structurally depends on the an-
chor file, and the anchor file historically dominates each member
file.

API versioning This smell occurs when APIs are not semantically versioned.
Architecture violation This smell occurs when an intended architecture is different from

its actual implementation.
Big bang This smell occurs when an entire system is built at once.
Bottleneck service This smell occurs when a service is highly used (high incoming

and outgoing coupling) by other services.
Bloated service This smell occurs when a service becomes a blob with one large

interface and/or lots of parameters.
Blob or God object/component This smell occurs when a component implements an excessive

number of concerns.
Brain controller This smell occurs when controllers have too much flow control.
Brain repository This smell occurs when a complex logic is developed in the repos-

itory.
Circuitous treasure hunt This smell occurs when an object looks in several places to find

the information that it needs.
Chatty service This smell occurs when a service has a high number of connections

with other services.
Clique This smell occurs when a group of files are tightly coupled by

dependency cycles.
Co-change coupling This smell occurs when changes to a component require changes

in another component.
Concern overload This smell occurs when a component implements an excessive

number of concerns.
Connector envy This smell occurs when components cover too much functionality

with respect to connections.

25



Architectural Smell Description
Crudy interface This smell occurs when services show an RPC-like behavior by

declaring CRUD-type operations.
Crudy URI This smell occurs when crudy verbs (e.g., create, read, update,

or delete) are used in the APIs.
Cyclic dependency This smell occurs when two or more architecture components

depend on each other directly or indirectly.
Cyclic hierarchy This smell occurs when a direct referencing of a subtype from a

supertype is created.
Cycles between namespaces This smell occurs when two or more namespaces depend on each

other directly or indirectly.
Data service This smell occurs when a service has only accessor operations

(getters and setters).
Degenerated inheritance This smell occurs when there are multiple inheritance paths con-

necting subtypes with their supertypes or a concrete class with
their abstractions (abstract classes or interfaces).

Dense structure This smell occurs when an abstraction or a concrete class has
(outgoing and ingoing) dependencies with a large number of other
abstractions or concrete classes.

Duplicated service This smell occurs when a set of highly similar services exists.
Empty semi-trucks This smell occurs when an excessive number of requests is re-

quired to perform a task.
ESB usage This smell occurs when micro-services communicate via an ESB

(enterprise service bus)—it adds complexities for registering and
de-registering services on it.

Excessive dynamic allocation This smell occurs when an application unnecessarily creates and
destroys large numbers of objects during its execution.

Extensive processing This smell occurs when extensive processing impedes overall re-
sponse time.

Fat repository This smell occurs when a repository is managing too many enti-
ties.

Feature concentration This smell occurs when different functionalities are implemented
in a single design construct.

Forgetting hypermedia This smell occurs when there is a lack of hypermedia (i.e., not
linking resources).

Golden hammer This smell occurs when familiar technologies are used as solutions
to every problem.

Hard-coded endpoints This smell occurs when micro-services are connected with hard-
coded endpoints, making the change in their locations problem-
atic.

26



Architectural Smell Description
Hub-like dependency This smell occurs when an abstraction or a concrete class has

(outgoing and ingoing) dependencies with a large number of other
abstractions or concrete classes.

Ignoring MIME types This smell occurs when resources do not support multiple formats
(e.g., XML, JSON, etc.).

Ignoring Caching This smell occurs when developers avoid to implement the
caching capability in the web applications.

Implicit cross-module depen-
dency

This smell occurs when two or more architecture components
depend on each other directly or indirectly.

Improper inheritance This smell occurs when a parent class depends on its derived class
or where a client depends on both the parent and derived classes.

Incomplete service This smell occurs when the client is given the responsibility to
complete the service.

Incomplete abstraction This smell occurs when an abstraction does not support interre-
lated methods completely.

Interface violation This smell occurs when components in an architecture communi-
cate without their interfaces.

Knot service This smell occurs when a set of very low cohesive services are
tightly coupled.

Laborious repository method This smell occurs when a repository method has multiple
database actions.

Leaky encapsulation This smell occurs when a class leaks implementation details be-
cause of its public implementation.

Link overload This smell occurs when an abstraction or a concrete class has
(outgoing and ingoing) dependencies with a large number of other
abstractions or concrete classes.

Low cohesive operations This smell occurs when developers place very low cohesive oper-
ations (not semantically related) in a single portType.

Maybe it is not RPC This smell occurs when a service mainly provides CRUD-type
(create, read, update, and delete) operations.

Meddling service This smell occurs when services directly query the database.
Micro-service greedy This smell generates an explosion of the number of micro-services

composing a system.
Missing abstraction This smell occurs when clumps of data are used instead of creat-

ing classes or interfaces.
Missing encapsulation This smell occurs when classes are not encapsulated.
Misplaced component This smell occurs when an architecture component is placed

somewhere else other than the one it was intended for, result-
ing in undesired dependencies.

27



Architectural Smell Description
More is less This smell occurs when a system spends more time thrashing than

accomplishing real work because there are too many processes
relative to available resources.

Modularity violation This smell occurs when an architecture violates the modularity
principles.

Multi-service This smell occurs when a service implements a multitude of meth-
ods related to different abstractions.

Multipath hierarchy This smell occurs when there are multiple inheritance paths con-
necting subtypes with their supertypes or a concrete class with
their abstractions.

Not having an API gateway This smell occurs when service-consumers communicate directly
with each micro-service.

Nobody home This smell occurs when a service is defined but never used.
Non-transfer communication This smell occurs when communication between components is

not accomplished using transfer objects.
Nothing new This smell occurs when inappropriate practices in object-oriented

practices are attempted to apply in service-oriented.
No legacy This smell occurs when a service provides limited standardized

support of data types and interactions.
No subsystems This smell occurs when a system has no subsystems.
One-lane bridge This smell occurs when only one or a few processes can be exe-

cuted concurrently.
Overgeneralized subsystems This smell occurs when the generalization of the subsystems is

overdone.
Overstandardized SOA This smell occurs when all aspects and dimensions of SOA are

overstandardized.
Package cycle This smell occurs when two or more packages depend on each

other directly or indirectly.
Package instability This smell occurs when a package has many dependencies that

frequently changes with other packages.
Missing package abstractness This smell occurs when a package has unnecessary or missing

abstraction.
Pipe and filter This smell occurs when the slowest filter in the architecture re-

sults in low throughput.
Promiscuous controller This smell occurs when controllers are offering too many actions.
Redundant portTypes This smell occurs when multiple portTypes are duplicated with

a similar set of operations.
Sand pile This smell occurs when a service is composed of multiple smaller

services sharing common data.
Scattered functionality This smell occurs when a high-level concern is realized across

multiple components.

28



Architectural Smell Description
Security flaws This smell occurs when critical information is disclosed or tam-

pered, when confidentiality and integrity are not ensured in the
architecture.

Separation of concerns This smell occurs when the responsibilities of the components of
an architecture are not appropriately separated.

Service Chain This smell occurs when consecutive service invocations happen.
Shared libraries This smell occurs when shared libraries between different micro-

services are used.
Shared persistency This smell occurs when different micro-services access the same

relational database, reducing the service independence.
Shiny nickel This smell occurs due to inflexibility to incorporate new technolo-

gies within service architecture.
Silver bullet This smell occurs when unknown technologies are implemented

where they are not required.
Sloppy delegation This smell occurs when a component delegates the functionality

to other components, which should be performed internally by
that component.

Speculative hierarchy This smell occurs when a hierarchy is created speculatively.
Subtype knowledge This smell occurs when a direct referencing of a subtype from a

supertype is created.
Tiny/nano/fine-grained service This smell occurs when a service has only a few operations.
Ramp This smell occurs when processing time increases as the system

is used.
Too many standards This smell occurs when different development languages, proto-

cols, frameworks are used in micro-services.
Too small package This smell occurs when a package has only one or two classes.
Too many subsystems This smell occurs when a system consists of many subsystems.
Tower of babel This smell occurs when processes excessively convert, parse, and

translate internal data into a common exchange format.
Traffic jam This smell occurs when one problem causes a backlog of jobs.
Unbalanced processing This smell occurs when processing cannot make use of available

processors.
Unauthorized dependency This smell occurs when an unauthorized dependency exists be-

tween the components.
Unstable dependency This smell occurs when a component depends on other compo-

nents that are less stable than itself.
Unused package This smell occurs when a package is no longer in use.
Unclear package name This smell occurs when developers use ambiguous or meaningless

names for packages.
Unbalanced package hierarchy This smell occurs when the package structure is unbalanced.
Unauthorized call This smell occurs when a calling component is not connected to

the called component.

29



Architectural Smell Description
Undercover transfer object This smell occurs when transfer objects serve as data containers

for the communication between components.
Unhealthy inheritance hierarchy This smell occurs when a direct referencing of a subtype from a

supertype is created.
Unstable interface This smell occurs when an interface depends on other interfaces

that are less stable than itself.
Unused interface This smell occurs when an abstraction (interface) is over-

engineered by adding methods intended to accommodate poten-
tial future requirements but never used.

Unutilized abstraction This smell occurs when a direct referencing of a concrete class
is created, instead of referencing one of its supertypes, from an
abstract class.

Unnecessary hierarchy This smell occurs when the inheritance hierarchy is unnecessarily
created.

Wrong cuts This smell occurs when micro-services are split based on technical
layers instead of business capabilities .

Table 2: This table lists 108 architecture smells and is a re-presentation of table A.1 from [31]

30


	Introduction
	Theory
	Software Architecture
	Role of the Architect
	Architectural Debt & Architecture Smells

	Action Research Method
	Weekly Architecture Reviews
	Sprint Architecture Reviews

	Findings
	The Problematic Situation
	Unclear Feature Requirements
	Requirements Always Change
	Too Specific Requirements
	Limited Resources
	Primary Findings from the Problematic Situation

	The Intervention - Weekly Architecture Review
	Discovering Hidden Parts of the System
	Continuous Maintenance
	Primary Findings From Cycle 1

	The Intervention - Sprint Architecture Review
	Categorizing Smells
	Improving Code Review
	Resource Management
	Quality Attributes
	Shared Vocabulary

	Lessons Learned

	Discussion
	Contribution
	Limitations
	Future Research

	Conclusion
	Further Findings
	Skinny Repository
	Agile Architecture Quadrant
	Impact on Non-Functional Requirements

	Additional Areas for Potential Investigation
	Interview Guide
	Meeting with Steve
	Meeting with Elon
	Code Reviews
	Code Review Feedback
	Sprint Reviews
	Sprint Review Feedback

	Architectural Smells

