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Unlike in ethics, two wrongs do make a right in mod-2 arithmetic.
-Langford and Hellman [14, page 22]
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Introduction

This thesis explores the domain of lightweight cryptography with a specific focus on the
AEAD Ascon cipher, a state-of-the-art lightweight cryptographic algorithm. The structure
of this thesis is designed to provide a comprehensive understanding of the principles and
practical applications of lightweight cryptography, as well as an in-depth analysis of the
Ascon cipher’s security and efficiency.

The foundation of this thesis is laid in Chapter 1, where we delve into essential cryptographic
functions and concepts. This chapter provides key aspects of cryptanalysis and various types
of attacks, such as semantic security, chosen plaintext, chosen ciphertext, known plaintext,
and known ciphertext attacks. Additionally, we introduce the substitution-permutation
network and a toy cipher to illustrate basic cryptographic principles. The chapter concludes
with a discussion on entropy.

Chapter 2 transitions into the specific domain of lightweight cryptography. Here, we exam-
ine the considerations and requirements that drive the design of lightweight cryptographic
algorithms. This chapter sets the stage for understanding the constraints and design choices
that influence the development of ciphers intended for low-resource environments.

Chapter 3 provides a detailed exploration of the AEAD Ascon cipher, beginning with
an overview of its encryption schemes. We break down the phases of Ascon , analyze
its permutation process, and evaluate its claimed security properties. This chapter also
includes a comparison of Ascon -128 and AES-128-GCM.

In Chapter 4, we delve into advanced cryptanalytic techniques. We provide a generic
description of linear and differential cryptanalysis and explain the ideas of differential-linear
cryptanalysis. An application of these techniques to Ascon , presenting cryptanalytic
results that assess its resilience against these forms of attacks, is also included.

Chapter 5 addresses the critical aspects of confidentiality and authenticity. We comment
on the confidentiality of Ascon in the nonce respecting setting. We also prove that the
key blinding technique used in Ascon is necessary for authenticity under state recovery.

Chapter 6 presents an experimental analysis of the randomness of the permutations used in
Ascon . This chapter details the experimental setup, methodologies, and results, providing
empirical evidence of the randomness.
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Chapter 1 Preliminary readings

1.1 Some functions and how they work

This section presents several logical Boolean functions. Each is equipped with a short ex-
ample, and their truth tables are given at the end. We also define linear and affine functions.

AND
The bitwise Boolean function AND is equivalent to the bitwise multiplication of vectors
over Fn

2 . It only outputs 1 whenever both inputs to the function are 1. For x, y ∈ Fn
2 , we

denote the AND function by x · y or simply xy when there is no chance of ambiguity. The
truth table for the AND function can be found in Table 1.1.

Example 1.1
Let x = (100101) and let y = (001011), then x · y = (00001), as x and y only agree
on a 1 in the last position.

XOR
The bitwise Boolean function XOR stands for exclusive or, and it is equivalent to the
bitwise addition of vectors over Fn

2 . It outputs 1 whenever the inputs to the function are
different. For x, y ∈ Fn

2 , we denote the XOR function by x ⊕ y. The truth table for the
exclusive or function can be found in Table 1.1.

Example 1.2
Let x = (100101) and let y = (001011), then x ⊕ y = (101110), as x and y are
different in entries 1, 3, 4 and 5.

NOT
The bitwise Boolean function NOT function differs from the above function as it does not
take multiple inputs but a single one. For x ∈ Fn

2 we denote the NOT function by ¬x. It
functions by flipping its input: an input of 0 becomes a 1, and an input of 1 becomes a 0.
The truth table for NOT function function can be found in Table 1.1.

Example 1.3
Let x = (100101) then ¬x = (011010).

x y x · y x⊕ y ¬x
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 0 0

Table 1.1: The truth table for the Boolean functions AND, XOR and NOT

We now give the definitions of linear and affine functions.
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Definition 1.4 Linear and affine functions
A linear function is any function f : V →W that fulfills the following conditions:

• For any x, y ∈ V it holds that f(x) + f(y) = f(x+ y)

• For any λ ∈ V it holds that λf(x) = f(λx).

An affine function g is the composition of a linear function with a translation, that is,
f(x) + y is affine for any x, y ∈W

1.2 Cryptanalysis

This section is a preliminary section, introducing, among other things, the attacks used
for cryptanalysis, such as linear cryptanalysis and differential cryptanalysis. The sections
on semantic security, chosen plaintext attack, chosen ciphertext attack, known plaintext
attack, and known ciphertext attack are written based on [10].
We introduce the idea of types of four different cryptographic attacks. But firstly, we need
a measure of security, and one measure that will be used in this thesis is semantic security,
which we will now introduce.

1.2.1 Semantic security

Semantic security is a computational-complexity analog of Shannon’s definition of perfect
privacy, in which the ciphertext should reveal no information about the plaintext. Semantic
security states that what can be effectively computed from the ciphertext can also be
effectively computed by only looking at the length of the plaintext.
An encryption scheme is semantically secure if it is infeasible to derive information other
than information about the length of the plaintext from the ciphertext. In the definition of
semantic security, we define the information relating to the plaintext that the adversary
tries to obtain by the function f , and the preexisting partial information about the plaintext
is denoted by the function h.
The infeasibility of gaining information about the plaintext has to hold for any distribution of
plaintexts, represented by the collection of probability distributions {Xm}m∈N. Finally, we
only look at security for plaintext of polynomial length in a security parameter n, meaning
that |Xn|, Xn ∈ {Xm}m∈N, has to have polynomial length of at most poly(n), where poly(n)
is some polynomial in n of unbounded degree. We cannot provide computational security
of plaintexts of unbounded length or exponential length in a security parameter n, which
we will discuss later.
We also restrict the length of the functions f, h to be polynomially bounded, that is,
|f(Xn)|, |h(Xn)| ≤ poly(|Xn|). When dealing with an asymmetric cipher, the adversary is
given the encryption key, whereas when dealing with a symmetric cipher, it is not. We now
define semantic security in the setting of a symmetric cipher.

Definition 1.5 Semantic security - symmetric cipher
An encryption scheme (G, E ,D), consisting of a key generator G, an encryption
algorithm E and a decryption algorithm D, is said to be semantically secure if for every
probabilistic polynomial-time algorithm A there exists a probabilistic polynomial-time
algorithm A′ such that for every collection of probability distributions {Xm}m∈N with
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Xn ∈ {Xm}m∈N and |Xn| ≤ poly(n), every pair of polynomially bounded functions
f, h : F∗

2 → F∗
2, every positive polynomial p(n) and all sufficiently large n it holds

that

Pr[A(n, EKe(Xn), |Xn|, h(n,Xn) = f(n,Xn)]

< Pr[A′(n, |Xn|, h(n,Xn)) = f(n,Xn)] +
1

p(n)
,

where EKe(Xn) is the ciphertext of Xn given an arbitrary encryption key Ke.

A probabilistic polynomial-time algorithm is an algorithm for which the running time is
bounded by a polynomial in the length of the input.

Example 1.6
Suppose that the definition of semantic security is modified so that no bounds exist
on the length of plaintexts Xn. Let |Xn| be of exponential length in the security
parameter. As the adversary runs in polynomial time of its input length |Xn|, it runs
in poly(exp(n)) which is considerably larger than poly(n). This allows the adversary
to find the key by brute force.

The function h imparts partial information about the plaintext Xn to both algorithms.
Additionally, both algorithms receive the length of Xn. Subsequently, these algorithms
attempt to predict the value of f(n,Xn), aiming to deduce information about the plaintext
Xn. In a semantically secure encryption scheme, loosely speaking, the ciphertext does not
aid in this inference task. Specifically, the success probability of any efficient algorithm
(denoted as A) given the ciphertext can be closely approximated, up to a negligible fraction,
by the success probability of an efficient algorithm (denoted as A′) that operates without
access to the ciphertext at all. Now, having defined what security means, we discuss
different types of attacks.

1.2.2 Chosen plaintext attack

We now present a slightly simplified version of a chosen plaintext attack in the scenario of
a symmetric cipher. For further details, consult [10].

An attack in which the adversary obtains ciphertexts corresponding to plaintexts of their
own choice is called a chosen plaintext attack. One way this can happen is that the adversary
either directly or indirectly gains access to the encryption module. Also, if the cryptosystem
the adversary is attacking is a symmetric cipher, the key used for encryption is the same as
that used for decryption, which may make it more vulnerable to this type of attack. We
define the attack in four steps: key generation by a legitimate party, the adversary’s request
for encryption, generation of a challenge ciphertext, and additional requests for encryption
under the same key. There are two main types of chosen plaintext attacks: batch attacks
and adaptive attacks. In a batch-chosen plaintext attack, the adversary chooses a set of
plaintexts, submits them for encryption, and attempts to identify patterns or correlations
between the plaintexts and ciphertexts to uncover the key. In an adaptive-chosen plaintext
attack, the adversary can select plaintexts sequentially, adjusting their choices based on the
feedback received from previous ciphertexts. This grants the adversary increased flexibility.
We now discuss the four steps of a chosen plaintext attack in more detail.

3



1. Key generation: A key Ke ∈ Fn
2 is generated, and the adversary is only given the

length of the key.

2. Encryption requests: The adversary A requests plaintext Xn of its own choice to
be encrypted, and such a request is answered with the corresponding ciphertexts
EKe(Xn). After many such requests, we move on to the next step.

3. Challenge generation: The adversary A specifies a challenge template and is given
an actual challenge. The challenge template is a triplet (Sm, hm, fm), where Sm

specifies a distribution of plaintexts over Fm
2 and hm, fm : Fm

2 → F∗
2. The actual

challenge pair (EKe(X), h(X)) is generated by the adversary, where X is distributed
according to Sm(Upoly(n)), where Upoly(n) is a uniform distribution of length poly(n).
The adversary then succeeds if A(n, EKe(Xn), |Xn|, h(n,Xn)) = f(n,Xn).

4. Additional encryption requests: The adversary can seek the encryptions of extra
plaintexts at its discretion. These inquiries are managed as outlined when requesting
encryptions. Following multiple such requests, the adversary generates an output and
concludes its actions.

In reality, the adversary’s strategy is split into two parts, corresponding to its actions
before and after the generation of the challenge. Each part will be represented by an oracle
machine, where the oracle is an encryption oracle. Loosely speaking, an oracle machine
is a machine that is enhanced to interact by posing queries to the outside. In our case,
these queries receive consistent responses from a function A : {0, 1}∗ → {0, 1}∗, known
as the oracle. In other words, if the machine poses a query q, the response it receives
is A(q). In this scenario, we say that the oracle machine can access the oracle A. We
will call these our oracle machines A1 and A2, where A1 presents the behavior during
the encryption requests and A2 presents the behavior during the additional encryption
requests. During the encryption requests, A1 is provided with the security parameter, and
the output is a pair consisting of a template (Sm, hm, fm) generated at the beginning of the
challenge generation and some additional information D that is passed on to the second
oracle machine. The second part of the adversary’s strategy A2 is given this pair, from
which it produces the actual output of the adversary. We can now rewrite the steps of the
attack more simply.

1. The key Ke is generated.

2. The first oracle machine AEKe
1 gets the security parameter and generates a challenge

template and some additional information (Sm, hm, fm), D).

3. A challenge is generated with respect to (Sm, hm, fm).

4. The second oracle machine AEKe
2 uses the challenge and the additional information

and outputs a result.

The adversary’s objective is to guess f(X), and semantic security equates to stating that
the adversary’s success probability corresponds to another algorithm that is only provided
h(X) and n. Similar to the adversary, this corresponding algorithm is divided into two
parts: the first A′

1 generates a challenge template, and the second A′
2 solves the challenge

without having access to a ciphertext, but with the information passed from the first part.
This gives us the following definition of semantic security for chosen plaintext attacks in
the case of a symmetric cipher.
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Definition 1.7 Semantic security - chosen plaintext attacks - symmetric
An encryption scheme, (G, E ,D), is said to be semantically secure under chosen
plaintext attacks if for every pair of polynomial-time oracle machines, A1 and A2,
there exists a pair of polynomial-time algorithms, A′

1 and A′
2, such that the following

two conditions hold:

1. every positive polynomial p, and all sufficiently large n and z ∈ {0, 1}poly(n), it
holds that

Pr

(
AEKe

2 (D, (EKe(X), h(X))) = f(X) where X ∈ Sm(Upoly(n)) and where

Ke ∈ Fn
2 and AEKe

1 (n, z) = (Sm, hm, fm), D),

)

is less than

Pr

(
A′

2(D,n, h(X)) = f(X) where X ∈ Sm(Upoly(n)) and where

A′
1(n, z) = ((Sm, hm, fm), D)

)
+

1

p(n)

Recall that (Sm, hm, fm) is the template produced in Step 3 of the above
description and that X is a sample from the distribution induced by Sm.

2. For every n and z, the challenge templates are identically distributed.

Given that the challenge template is not fixed, but rather chosen independently by both
A1 and A′

1, it is important to require that, in both scenarios, the challenge template is
distributed identically. There is no point in comparing the success probability of A1 and
A′

1 unless these probabilities pertain to the same distribution of problems (i.e., challenge
templates).

1.2.3 Chosen ciphertext attack

We now discuss chosen ciphertext attacks, which are similar to chosen plaintext attacks
but differ in that the adversary can now obtain plaintexts corresponding to ciphertexts of
its choice, not the other way around. We hastily discuss two types called a priori chosen
ciphertext attacks and a posteriori chosen ciphertext attacks.

In the former, decryption requests must be made before the challenge ciphertext is generated.
In contrast, in the latter, decryption requests can also be made after the challenge ciphertext
is generated, provided that the request does not pertain to the decryption of the same
challenge ciphertext. In both instances, decryption requests can also be made for strings
that are not valid ciphertexts, and in such cases, the decryption module returns some error
symbol.

We look at the attack in four stages that are almost analogous to those of the chosen
plaintext attack, and thus, we only discuss the differences in which they differ in two
distinct ways. Firstly, in step 2, the adversary does not ask for encryptions but decryptions.
Secondly, in step 4, in the case of an a posteriori chosen ciphertext attack, the adversary
may submit additional decryption requests with the natural restriction that it is prohibited
from requesting the decryption of the challenge ciphertext generated in step 3. A similar
definition of semantic security for chosen ciphertext attacks exists but is omitted.
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1.2.4 Known plaintext attack

We now look into known plaintext attacks. In this scenario, the adversary can acquire
information about one or more plaintext/ciphertext pairs generated using some key in
addition to some extra ciphertexts. The adversary’s objective is to deduce information
about the corresponding plaintext of the extra ciphertexts. This is a special case of the
chosen plaintext attack where the adversary chooses the plaintexts randomly. In this setting,
semantic security refers to the fact that any information that can be efficiently computed
about the unknown plaintexts can also be efficiently computed solely based on the length
of these plaintexts.

1.2.5 Known ciphertext attack

In a known ciphertext attack, also called a ciphertext-only attack, the adversary obtains
multiple ciphertexts and tries to deduce information about the underlying plaintexts only
using the ciphertexts.

1.3 Substitution permutation network

and a toy cipher

In this section, we introduce the notion of a substitution permutation network and a "toy"
cipher, which will be used for examples throughout this thesis. We define the generic
mode of operation of any substitution permutation network. We use the definition of a
substitution permutation network in [2].

Definition 1.8 Round function and Substitution Permutation Network
(SPN)
Let s be the number of S-box entries and m be the number of S-boxes in each layer.
Let S1, . . . ,Sm be s-bit S-boxes. Define

Sm : (Fs
2)

m → (Fs
2)

m

X = (X1, . . . , Xm) 7→ (S1(X1), . . . ,Sm(Xm)).

Let π be a bit permutation, and define the i’th round-function Fi by

Fi(K,X) = (π ◦ Sm)(X ⊕K),

for any round key K ∈ Fsm
2 , and for any message X ∈ Fsm

2 . The key addition is
the operation X 7→ X ⊕ K. The functions Sm and π are respectively called the
substitution layer and the permutation layer of the round function F . An iterated
cipher having F as a round function is called a Substitution Permutation Network.

Our toy cipher is the same as used in [11]. Here, we only present the S-box, the permutation,
and the key addition. For further information, consult [11]. The S-box of our toy cipher
Stoy : F4

2 → F4
2 is given in Table 1.2 in hexadecimal notation. For each round, there are

four S-boxes named Stoy1,Stoy2,Stoy3 and Stoy4. Each of these S-boxes has four input bits
and four output bits. We use Stoy when referring to an arbitrary S-box. The permutation
of our toy cipher is given in Table 1.3 in hexadecimal notation. It takes each of the bits
after the S-box has been applied and sends them to a new location. For example, suppose
the output of the first S-box is 0100, and the output of the rest is all zeros. Then after
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using the permutation, the bits have been moved around such that only the fifth bit is
non-zero, as 2 is permuted to 5. The key addition consists of an XOR between the key bits
k associated with the round i, known as subkeys, and the data block input to that round.
We also assume that all bits of the subkeys are independently generated and unrelated.

s 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(s) e 4 d 1 2 f b 8 3 a 6 c 5 9 0 7

Table 1.2: Toy cipher S-box in hexadecimal.
input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Table 1.3: Toy cipher permutations.
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1.4 Entropy

In this section, we introduce the information-theoretic concept of entropy. Informally,
entropy quantifies the average level of "information" or "surprise" associated with the
possible outcomes of a random variable. We define it using a probability mass function
p(x), which can either be given or found experimentally.

Definition 1.9 Entropy
Given a discrete random variable X with values in X and distributed according to
the probability mass function p : X → [0, 1], the entropy H(X) is defined as:

H(X) = −
∑
x∈X

p(x) log p(x)

One can choose whatever logarithm-base fits their desired case, and in our case, we choose
the binary logarithm log2; subsequently, whenever we refer to entropy, it is the log2 entropy.
In the following example, we calculate the entropy of a 10-character password.

Example 1.10 Entropy of a password
Consider a 10-character password X drawn from a set of 62 possible characters
X (including uppercase letters, lowercase letters, and digits). We assume that the
probability mass function is uniformly distributed with p(x) = 1

6210
for all x ∈ X

(this is rarely the case with passwords, as individuals often choose passwords based
on personal information such as pet names). The entropy of this password can be
calculated as follows:

H(X) = −
6210∑
i=1

1

6210
log2

1

6210
≈ 59.54 bits.

In practical terms, an entropy value of 59.54 bits suggests that if an attacker at-
tempted to guess the password by brute force, they would need to try 258.55 different
combinations on average before successfully guessing the correct password.

We now calculate the entropy value assuming that p(x) follows a discrete uniform distribution
and that the size of X equals 2t.

H(X) = −
2t∑
i=1

1

2t
log2

1

2t

= −2t

2t
log2

1

2t

= − log2
1

2t
= t



Chapter 2 Lightweight cryptography

In recent years, the growing demand for small, resource-constrained devices has increased
the interest in lightweight cryptography. These devices, such as RFID tags, wireless sensors,
and IoT devices, often have limited processing power, memory, and energy resources.
As a result, traditional cryptographic algorithms designed for general-purpose desktop
and server environments may not be suitable for these devices. Lightweight cryptography
focuses on developing cryptographic algorithms and protocols specifically tailored to meet
the constraints of these resource-limited devices. This chapter will explore the challenges
and requirements of lightweight cryptography. We draw upon [16], a report on lightweight
cryptography drawn up by the National Institute of Standards and Technology (NIST), as
the foundation for this chapter.

2.1 Considerations

Small, resource-constrained devices such as RFID tags, wireless sensors, and IoT devices are
the target devices for lightweight cryptography. These devices are often used in application-
specific cases to satisfy stringent conditions.
As an example, let us look at RFID tags that are not battery-powered. Battery-free RFID
sensors can be integrated into many areas of our daily lives. These areas include but are
not limited to, access control systems for security purposes, allowing for keyless entry,
and, in our healthcare system, helping to monitor patients’ conditions. These tags use the
electromagnetic field transmitted by a reader to power their internal circuits. These devices
require cryptographic algorithms with a small implementation footprint, measured in gate
equivalents (GE), that also meet specific timing and power requirements. Those are only a
few constraints, but the example gives a good understanding of the necessity of lightweight
cryptographic algorithms. The following list is not intended to be exhaustive but merely
representative of some common examples.

• Limited Processing Power: Constrained devices often have low computational
capabilities, making it difficult to handle complex cryptographic algorithms. While
8-bit, 16-bit, and 32-bit microcontrollers are widely used, 4-bit microcontrollers are
also used in specific ultra-low-cost applications.

• Low Memory Capacity: These devices typically have very limited RAM and
storage, requiring cryptographic algorithms to efficiently use memory. In particular,
the RAM of some microcontrollers goes all the way down to 16 bytes.

• Energy Availability: As depicted earlier, some devices rely on "transferable energy."
These devices have a maximum energy consumption for each interaction, which
must be considered when designing the cryptographic methods. More importantly,
though, are the devices that rely on battery power. Replacing the batteries once
deployed might be difficult or even impossible in some applications. This necessitates
cryptographic methods that consume minimal energy.

• Size: Physical size limitations can restrict the hardware available for cryptographic
functions. The area is measured in µm2 and is often stated in GEs. For some
application-specific implementations, one GE is defined as the area required by the
two input NAND gate (the opposite of an AND gate). The number of GEs is obtained
by dividing the area in µm2 by the area of the NAND gate. This makes it impossible
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to compare the number of GEs across different technologies. Some low-cost RFID
tags might have a total of 1.000-10.000 GE, where only 20% may be used for security
purposes.

• Latency and Throughput: Latency is the measure of time between the initial
request of an operation and producing the output. Throughput is the speed at
which the encryption algorithm is able to consume input and generate output. Some
applications require fast encryption and decryption processes to maintain performance.
For instance, components like steering, airbags, or brakes in automotive applications
require extremely fast response times and the processing of large amounts of data.

• Interoperability Needs: Cryptographic solutions must be compatible with other
devices and systems. While lightweight cryptography primarily concerns resource-
constrained devices, it is important to note that these algorithms might also need to
be implemented on devices such as smartphones and desktops. These devices often
are on the receiving end of the information sent by resource-constrained devices.

• Scalability Requirements: Solutions need to be scalable to support a large number
of devices without significant performance degradation. It is insufficient to make a
solution that works well on specific devices but not on others.

• Security Requirements: Despite the constraints, the cryptographic algorithm must
still provide adequate security against various threats and attacks. The minimum key
size required is 128 bits.

• Flexibility: It’s desirable to have tunable algorithms that use parameters to select
properties like state size and key size, as they can support multiple options using
fewer resources, thus enabling a wider range of applications.

2.2 Requirements

Since the report’s publication, NIST has published a "call for algorithms"[20] that describes
the requirements, selection process, and evaluation criteria. More than 50 submissions
were considered during three rounds, and finally, in February 2023, a finalist was selected.
The following only considers Authenticated Encryption with Associated Data (AEAD)
algorithms and presents some of these requirements. Many of the terms will not be explained
here, but they will be clarified later.

An AEAD algorithm takes four byte-string inputs and two byte-string outputs. The four
inputs are a variable-length plaintext, variable-length associated data, a fixed-length nonce,
and a fixed-length key, and the outputs are a variable-length ciphertext and a fixed-length
tag. All byte-string inputs that satisfy the input length requirements must be accepted.
The nonce must have a length of at least 96 bits, and the tag must have a length of at least
64 bits.
Authenticated decryption must also be supported. If associated data, nonce, and key are
given, it must be possible to decrypt a ciphertext into its corresponding plaintext. The
decryption-verification process shall not return plaintext if the ciphertext is invalid.
AEAD algorithms must guarantee the confidentiality of the plaintexts and the integrity
of the ciphertexts. AEAD algorithms are expected to be secure as long as the nonce is
not repeated under the same key. Key lengths are not allowed to be smaller than 128 bits.
Cryptanalytic attacks on the AEAD algorithm must require at least 2112 computations in a
single key setting.



Chapter 3 The Ascon Cipher

This chapter introduces the Ascon v1.2 cipher suite as submitted to NIST. We look into
its phases and the encryption and decryption method, analyzing and commenting on them.

3.1 Ascon

We chose to study Ascon for various reasons, but most importantly, it has gathered much
attention by being selected as the primary choice for lightweight applications in the final
portfolio of the "CAESAR" competition ([19]) and being chosen for standardization by the
NIST Lightweight Cryptography Team in the "Lightweight Cryptography Standardization
Process" competition ([6]).

This section and subsequent subsections draw inspiration from [8]. The Ascon cipher suite
consists of many schemes for authenticated encryption with associated data (AEAD) and
hashing functionality. With regards to authenticated ciphers, the suite consists of Ascon
-128, Ascon -128a, and Ascon -80pq, and with respect to hashing functionality, the suite
consists of Ascon -HASH, Ascon -HASHA, Ascon -XOF and Ascon -XOFA. We choose
to focus on the AEAD cipher Ascon -128. Common to all schemes is the underlying
transformation defined on five 64-bit words only using the bitwise Boolean functions "AND,
NOT, XOR" and rotations within the words. We now create an overview of Ascon , then
we discuss the phases of Ascon , and finally, we discuss the permutations during the
intermediate processes.

3.1.1 Overview: Ascon’s authenticated encryption schemes

The authenticated encryption with associated data schemes are parameterized by the key
length 0 ≤ k ≤ 160 bits, the rate (data block size) 0 ≤ r ≤ 255, and the internal round
numbers for the transformations 1 ≤ a, b ≤ 255 where a ≥ b. Each of the schemes defines an
underlying encryption- and decryption algorithm respectively denoted Ek,r,a,b and Dk,r,a,b.
As input, the authenticated encryption procedure Ek,r,a,b takes the secret key K ∈ Fk

2, a
nonce (public message number) N ∈ F128

2 , an associated data vector A of arbitrary length
over F2 and a plaintext vector P also of arbitrary length over F2. It produces an output
consisting of a ciphertext vector C of the same length as the plaintext vector P together
with a tag T ∈ Fmin{128,k}

2 , which is used for authentication of both the associated data
and the encrypted message C:

Ek,r,a,b(K,N,A, P ) = (C, T ).

Remark 3.1
It is important not to reuse the same nonce N for multiple encryptions under the
same key. If this happens, the security of the schemes cannot be assured. We
comment more on this later.

The decryption and verification procedure Dk,r,a,b takes the same secret key K, nonce N
and associated data A as the encryption procedure, together with the ciphertext vector
C and the produced tag T from the encryption procedure as input. It outputs either the
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plaintext vector P if the tag is verified or ⊥ if the tag verification fails:

Dk,r,a,b(K,N,A,C, T ) ∈ {P,⊥}.

Many size parameters depend on the choice k of key size. It is recommended that the key
size be at least 128 bits long, the rate between 64 and 128, and the round numbers a and b
between 6 and 16. In table 3.1 the size parameters for Ascon is summed up.

Name Size parameters Guideline size parameters
Key 0 ≤ k ≤ 160 128 ≤ k ≤ 160

Initialization vector 32 ≤ |IVk,r,a,b| ≤ 192− k 32 ≤ |IVk,r,a,b| ≤ 192− k
Tag min{k, 128} 128

Data block/rate 0 ≤ r ≤ 255 64 ≤ r ≤ 128
Round numbers a and b 0 ≤ a, b ≤ 255 6 ≤ a, b ≤ 16

Nonce 128 128

Table 3.1: The allowed and guideline sizes of parameters for the different variables in the
AEAD Ascon cipher scheme.

Common to Ascon -80pq, Ascon -128 and Ascon -128a are the fixed nonce N and tag T
sizes each of 128 bits, and common to both Ascon -128 and Ascon -128a are the key size
k of 128 bits. Ascon -128 and Ascon -128a differ in the size of the data blocks r and the
round numbers a and b, where Ascon -128 uses 64 bits for the size of the data blocks and
a = 12, b = 6 for the round numbers, while Ascon -128a uses 128 bits for the size of the
data blocks and a = 12, b = 8 for the round numbers. Ascon -80pq has an increased key
size of 160 bits, but the rest of the parameters are equal to that of Ascon -128. This is
summed up in Table 3.2 We state the recommended parameters of Ascon , which were
found experimentally to suit the cipher well.

Name key nonce tag data block a b

Ascon -128 128 128 128 64 12 6
Ascon -128a 128 128 128 128 12 8
Ascon -80pq 160 128 128 64 12 6

Table 3.2: The proposed size parameters for the Ascon AEAD cipher suite.

We now offer insight into the state S ∈ F320
2 , which is the part of the cryptosystem that

is transformed during encryption and decryption. The state can be updated in two ways:
transforming the existing state using the predetermined transformations τ i or adding
additional data consisting of either plaintext/ciphertext or associated data to the first r
entries. When transforming the state using τ i, we do not repeat the transformation τ i
times, but instead, we repeat slightly different transformations a number of times a or b
dependent on which phase is currently being processed. We make it clear that

τ i ̸= τ ◦ . . . ◦ τ︸ ︷︷ ︸
i times

.

We will discuss this later and give a concrete definition when explaining the permutations.
We call the integers a and b the round numbers of the algorithm, where a represents the
number of rounds in the initialization and finalization phases, and b represents the number
of rounds of the intermediate rounds processing associated data, plaintext, and ciphertext.
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The recommended values of these integers are guidelines, and in any real-world scenario,
one can choose these values secretly.

We introduce notations needed to describe the Ascon cipher suite.

Definition 3.2 Most and least significant entries
Let D be a vector over F2. We call the first k entries of D the most significant k
entries of D and denote D truncated to its k most significant entries by:

⌊D⌋κ.

Likewise we call the last k entries of D the least significant k entries of D and denote
D truncated to its k least significant entries by:

⌈D⌉κ.

When discussing any vector over F2, we often call it a bit-string and refer to its entries as
bits. Also, 8 bits is called a byte, so the first 8 entries of a vector D ∈ Fn

2 for n ≥ 8 would
be called the first 8 bits of D or simply the first byte of D. For simplicity, we often refer to
the "XOR" operation over Fn

2 as addition.

The state is split into two parts ⌊S⌋r consisting of the first r bits of S and ⌈S⌉c consisting
of the last c = 320 − r bits of S. The rate r varies depending on the Ascon variant. If
r = 64 and the state has not been altered, then ⌊S⌋r corresponds to the initialization vector
IV ∈ Fr

2, and ⌈S⌉c ∈ Fc
2 is equivalent to the secret key K concatenated with the nonce N .

When examining the permutations, it becomes convenient to split the state into five 64 bit
words:

S = ⌊S⌋r||⌈S⌉c = s1||s2||s3||s4||s5.

The symbol || is called concatenation and refers to joining two or more numbers to create a
new, longer number. As r often equals 64 we shall sometimes refer to ⌊S⌋r as s1 and ⌈S⌉c
as s2||s3||s4||s5

The Ascon encryption and decryption process each consists of four distinct phases: the
initialization phase, the associated data phase, the plaintext/ciphertext phase, and the
finalization phase. In each of these, the scheme adds data to the current state and transforms
it, thus altering the state and making it computationally expensive for an adversary to
backtrack changes to get previous states. Another integral part of the Ascon schemes
is the duplex-like construction ([4]), where data can both be injected into the state and
extracted from the state during the intermediate steps.

3.1.2 The phases of Ascon

We now describe the four phases of the AEAD Ascon cipher suite in depth. Below are the
mode of operation of Ascon .

13



τa

c last bits
K||N

IV

r first bits τ b τ b τ b τ b τa

K

T

128 first bits

CtC1
A1 As P1 Pt−1 PtCt−1

0∗||K 0∗||1 K||0∗

Initialization Associated data Plaintext Finalization

Encryption

τa

c last bits
K||N

IV

r first bits τ b τ b τ b τ b τa

K

T

128 first bits

PtP1
A1 As C1 Ct−1 CtPt−1

0∗||K 0∗||1 K||0∗

Initialization Associated data Plaintext Finalization

Decryption

Initialization
The 320 bit initial state consists of a secret key K of k bits, nonce of 128 bits, and an
initialization vector IV ∈ F192−k

2 . The exact value of the initialization vector is given as
follows:

IVk,r,a,b = k||r||a||b||0160−k.

The key size k, the rate r, and the round numbers a and b are all written as 8 bit binary
numbers, and the exponent of 0 in the above expression is the number of zeros. The initial
state is defined as

S ← IVk,r,a,b||K||N.

We use the ← to denote when a variable is updated. This becomes convenient as we often
update the state, and alternative notation would become cumbersome.
During the initialization phase, the state S is permuted a times using the permutation τ
followed by an addition of the secret key K to the least significant k bits of the state:

S ← τa(S)⊕ (0320−k||K).

We add the key to the state twice, once during the initialization process and once during
the finalization process. This ensures that adversaries cannot forge messages, which will
be made clear in Theorem 5.8 introduced later. The part of the state to which the key is
added changes for which the reason will be clarified later. After the initialization phase,
one can view the state as split into two parts: the first r bits and the last c bits.

Associated data
Associated data is non-confidential data added to a cipher scheme. It is data that must
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be presented to both the encrypter and the decryptor. If the decryptor is presented with
the wrong data, the decryption fails. It is useful for "encryption context"; it can include
metadata, timestamps, identifiers, and other information that is not part of the primary
data but is essential for proper interpretation.

When associated data A is introduced to the scheme, it is padded and divided into blocks
of size r bits. We always pad the associated data with a single one and enough zeros to
make the padded length a multiple of r. Suppose associated data of length |A|, where |A|
is divisible by r, is left unpadded. In that case, we might confuse it with another piece of
associated data string A′ whose length is not divisible by r but is identical to A in all but
the least significant ℓ entries.

Example 3.3
Say that |A| = nr and A = a1 . . . anr−3100. If left unpadded, we would not be able
to distinguish between A and another piece of associated data A′, whose length
is nr − 3 and whose entries are identical to A in the first nr − 3 indices, that is
⌊A⌋nr−3 = A′ = a1 . . . anr−3, as we would have to pad A′ as its length is not divisible
by r.

By always padding the associated data we know to remove everything after encountering
the last 1.

Definition 3.4 Padded data
Let D be any binary string, then if D is padded with a single one and κ many zeros,
it is denoted by

D||1||0κ.

The resulting division gives us s blocks A1, . . . , As each of length r. In the case when there
is no associated data, no padding is needed, and we let s = 0:

A||1||0κ = A1, . . . , As =

{
r-bit blocks of A||1||0r−1−(|A| mod r) if |A| > 0

∅ if |A| = 0.

We add each block Ai for i = 1, . . . , s to the most significant r bits ⌊S⌋r of the state S
using the function σr, which is given as follows:

σr(D) :F320
2 × Fr

2 → F320
2 , (3.1)

(S,D) 7→ (⌊S⌋r ⊕D)||⌈S⌉320−r, (3.2)

where D is some r-dimensional data and S is the most recent updated state. The function
σr adds data D to the most significant r bits of the state and concatenates the remaining c
bits, thus updating the state. The application of σr is followed by an application of the
transformation τ b, and we obtain the new state:

S ← τ b(σr(Ai)), 1 ≤ i ≤ s.

After processing all of the associated data, we add a 1-bit domain separation constant to
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the state:

S ← S ⊕ (0319||1).

This is done to prevent attacks that switch the role of plaintext and associated data blocks
([12]).

Plaintext/ciphertext
The Ascon AEAD cipher suite processes plaintext of any length during the encryption
process, and it processes ciphertext during the decryption process. When plaintext P is
introduced to the scheme, it is padded and divided into blocks of r bits using the same
padding rule used for associated data. The resulting division gives us t blocks P1, . . . , Pt

each of length r:

P ||1||0r−1−(|P | mod(r)) = P1|| . . . ||Pt.

Encryption. The encryption process consists of multiple iterations. During each iteration,
we add a single padded plaintext block Pi, for i = 1, . . . , t, to the most significant r bits of
the state ⌊S⌋r followed by an extraction of a ciphertext block Ci. For each iteration, except
the last, the state S is transformed using the transformation τ b:

Ci ← ⌊σr(Pi)⌋r

S ←

{
τ b(σr(Pi)) if 1 ≤ i < t

σr(Pi) if i = t.

When extracting the last ciphertext block Ct, we truncate it to the length of the last
unpadded plaintext block-fragment, such that its length is between 1 and r − 1 bits, and
such that the total length of the ciphertext C = C1|| . . . ||C̃t is exactly the same as original
plaintext message P :

C̃t = ⌊Ct⌋|P | mod r.

Decryption. Like the encryption process, the decryption process also consists of multiple
iterations. During each iteration, a single padded plaintext block Pi is computed by adding
the most significant r bits of the state ⌊S⌋r with the ciphertext Ci:

⌊σr(Pi)⌋r = Ci ⇔ ⌊σr(Ci)⌋r = Pi.

This works since the initialization and associated data process of both the encryption function
Ek,r,a,b and the decryption function Dk,r,a,b are equivalent and since a⊕ b = c⇔ c⊕ a = b
as shown in the following proposition.

Proposition 3.5
Let a, b, c ∈ Fn

2 , then

a⊕ b = c⇔ c⊕ a = b.

Proof. Assume that a⊕ b = c. We add a on both sides and using that each element is its
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own inverse, a⊕ a = 0, the commutativity and associativity of ⊕ we get

a⊕ b = c⇔ a⊕ a⊕ b = a⊕ c⇔ b = a⊕ c.

In each iteration, except the last, after recovering the plaintext, we replace the most
significant r bits of S by Ci

S ← Ci||⌈S⌉c for 1 ≤ i < t.

Moreover, for each ciphertext block except the last, the state is transformed using the
transformation τ b:

S ← τ b(S).

For the last truncated ciphertext block C̃t with 0 ≤ ℓ < r bits, the process differs, as we
now only add the most significant ℓ bits of the state with the last ciphertext block to obtain
the last plaintext block

P̃t = ⌊S⌋ℓ ⊕ C̃t.

After getting back the last plaintext block P̃t, we need to make sure the last ciphertext
block C̃t is included in the state, just like the other ciphertexts have been in the previous
iterations. As the length of C̃t is not r, we alter the state slightly relative to before:

S ← σr(P̃t||1||0r−1−ℓ))

where ⌊σr(P̃t||1||0r−1−ℓ))⌋r is the padded ciphertext of length r. The term P̃t||1||0r−1−ℓ

can be rewritten as P̃t||0r−ℓ ⊕ 0ℓ||1||0r−ℓ−1, and when applying σ to both terms we include
the unpadded ciphertext C̃t = ⌊σℓ(P̃t)⌋ℓ:

= σℓ(P̃t)⊕ σr(0
ℓ||1||0r−1−ℓ)⊕ ⌈S⌉c

= C̃t||⌈σr(0ℓ||1||0r−1−ℓ)⌉c−ℓ

For the first equality to hold ⌈S⌉c is added one additional time to combat the cancellation
of it.

Finalization. During the finalization phase, we add the key to the state in the fol-
lowing way:

S ← S ⊕ 0r||K||0c−k.

This ensures that the key additions do not cancel each other out. This could happen in
the rare case when there is no associated data and only one incomplete plaintext block
of length 1 ≤ ℓ < r. In this case, no transformations between the initialization and the
finalization phase would occur, and if we added the key to the same part of the state, they
would cancel each other out, as they are their own inverse. After adding the key, the state
is transformed using the permutation τa:

S ← τa(S).
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The finalization phase also produces the verification tag T , which consists of the addition
of the last 128 bits of the state and the last 128 bits of the key:

T = ⌈S⌉128 ⊕ ⌈K⌉128.

When the guideline size of the key of at least 128 bits is not followed, one can use a
truncated tag of length k. During encryption Ek,r,a,b, the finalization phase always returns
the tag T and the ciphertext C, but during decryption Dk,r,a,b, the finalization phase only
returns the plaintext P if the calculated tag value matches the received tag value. If the
decryptor receives an errorful ciphertext, it computes a different tag than the tag received,
and thus, the plaintext is not extracted. This is done to ensure the messages’ authenticity,
as an adversary could have interfered and sent the errorful ciphertext.

3.1.3 Permutation

We now look into the permutation of the Ascon cipher suite.The permutation applies a
substitution permutation-based round-like transformation τ repeated a number of times. It
consists of three underlying steps: an addition of constants τci that changes each round, a
substitution layer τS , and a linear diffusion layer τπ. Round i+ 1 takes the state of round i
as input

τa =
a
⃝
i=1

τπ ◦ τS ◦ τci .

The substitution permutation-based round-like transformation in Ascon differs from a
substitution permutation-based round transformation by the fact that it does not involve a
key schedule (an algorithm that determines the round keys using the original key); instead,
it uses predetermined fixed round key values. The number parameters a and b can be tuned,
and larger values offer greater security but also higher computational costs.
As mentioned earlier, it is favorable to express the state S as five 64-bit register vectors to
describe the underlying steps. One can imagine this as a 5× 64 matrix, where each of the
entries consists of a single bit:

S = s1||s2||s3||s4||s5 =


s1
s2
s3
s4
s5

 .

Hexadecimal notation becomes convenient for conserving space and facilitating a human-
readable representation of binary values. Therefore, we introduced it. Hexadecimal notation
is a positional numeral system used for base-16 numbers. In this system, each digit represents
a four-bit binary sequence. Hexadecimal notation employs the digits 0-9 and the letters a-f
to symbolize values from 0 to 15, providing a compact representation of binary data. We
introduce the notation in Table 3.3.

N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . . 26
F16 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 . . . 1a

Table 3.3: Conversion table between integers and hexadecimal.
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We now go into detail with each of the three underlying steps.

Addition of constants
The constant addition step τci : F

320
2 → F320

2 adds a round constant value (round key) ci to
the third register vector s3 of the state in round i. One can think of this as the matrix

s1
s2
s3
s4
s5

⊕

0
0
ci
0
0

 ,

where the XOR of matrices works entrywise. The round constants ci can be found in Table
3.4 and are given in hexadecimal notation to conserve space (each constant has length 64
in binary, the first 56 being all zeros). While unconventional, we choose to write the first
14 zeros of the hexadecimal number as 014||. Again, this is done to conserve space. The
values of the round constants are chosen such that there is an increasing and decreasing
counter for the two halves of the affected 8 bits. This can easily be extended to 16 rounds if
a higher security margin is needed, but such constants are not specified for round numbers
exceeding 16.

Round numbers for different values of a or b
a ∨ b=12 a ∨ b =8 a ∨ b =6 a ∨ b =12 a ∨ b =8 a ∨ b =6

Round numbers constant ci Round numbers constant ci
1 014||f0 7 3 1 014||96
2 014||e1 8 4 2 014||87
3 014||d2 9 5 3 014||78
4 014||c3 10 6 4 014||69
5 1 014||b4 11 7 5 014||5a
6 2 014||a5 12 8 6 014||4b

Table 3.4: The round constants used in each round i of τa and τ b.

We use the following rule to specify the round constant ci used in round i of the transfor-
mations τa and τ b

ci = ci for τa

ci = ci+a−b for τ b.

The constant is added to the third register vector, as whenever r ≤ 128, the addition can
be done in parallel with the addition of associated data, plaintext, or ciphertext to the
state. Let D ∈ Fr

2 be any data added to the state, then

S ←(D ⊕ ⌊S⌋r)||⌈⌊S⌋128⌉128−r||(ci ⊕ ⌊⌈S⌉192⌋64)||⌈S⌉128

=⌊σr(D)⌋128||(ci ⊕ s3)||s4||s5.

Notice that although we in Section 3.1.2 explain the addition of data and the addition
of round constants as two distinct steps, there is no mathematical need to do these steps
separately. Hence, we do them in parallel whenever r ≤ 128. When r > 128, the steps
can not be done in parallel, as we would simultaneously add multiple values to the same entry.
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Substitution layer
We start by introducing the notion of an S-box.

Definition 3.6 S-box
Let m,n ∈ N. An S-box is a function

S : Fn
2 → Fm

2

that performs substitutions.

An n ×m S-box can be implemented as a lookup table. The S-box SAscon : F5
2 → F5

2

updates the columns sj for 1 ≤ j ≤ 64 of the state S with 64 simultaneous applications of
the 5-bit S-box SAscon(s

j) as defined in Table 3.5.

SAscon : F5
2 → F5

2.

The substitution layer τS is a function that applies 64 simultaneous applications of the
5-bit S-box SAscon.

τSAscon : (F5
2)

64 → (F5
2)

64

Each application of the 5-bit S-box conceptually works by viewing each column sj of
the 5 × 64 "matrix" as a 5-bit string, then converting it to its corresponding value in
hexadecimal, finding its value SAscon(s

j) in the lookup table Table 3.5, and then converting
it to binary replacing the column with the new column:

sj ← [SAscon([s
j ]bin→hex)]hex→bin,

for 1 ≤ j ≤ 64, and where the functions [s]bin→hex and [s]hex→bin respectively refers to
the transformation from binary numbers to hexadecimal and from hexadecimal to binary
numbers. In reality, we would not perform these translations; instead, we would translate
the lookup table once, but that would make the table more difficult to read. To illustrate
how this works, we have the following example.

Example 3.7
We use the same S-box as for the Ascon cipher suite on the following bit-string of
length 30:

100100011011010100011110101100.

Splitting this into five words of length six yields:

100100||011011||010100||011110||101100,

and rewritten to look like the state of Ascon when describing the transformations
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(matrix form):

(
s1, s2, s3, s4, s5, s6

)
=


100100
011011
010100
011110
101100

 .

We now read the values vertically, such that the first value is 10001, which translates
to 11 in hexadecimal. We now find the s value 11 in the S-box lookup table and see
that it becomes 13, which translates to 10011 in binary. We do this for all the values
and get:

(
s1, s2, s3, s4, s5, s6

)
←


101101
000111
010000
111001
100001

 =
[
SAscon

([(
sj
)]

bin→hex

)]
hex→bin

, for 1 ≤ j ≤ 6

which is the updated state after using the S-box.

s 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
SAscon(s) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

Table 3.5: Ascon’s 5-bit S-box S as a lookup table. The values of s and S(s) should be
translated to binary, but they have been written as hexadecimal to conserve space.

One can also illustrate the S-box as the diagram in Figure 3.1 or algebraically in the
following equations:

y0,i = s5,is2,i ⊕ s4,i ⊕ s3,is2,i ⊕ s3,i ⊕ s2,is1,i ⊕ s2,i ⊕ s1,i

y1,i = s5,i ⊕ s4,is3,i ⊕ s4,is2,i ⊕ s4,i ⊕ s3,is2,i ⊕ s3,i ⊕ s2,i ⊕ s1,i

y2,i = s5,is4,i ⊕ s5,i ⊕ s3,i ⊕ s2,i ⊕ 1

y3,i = s5,is1,i ⊕ s5,i ⊕ s4,is1,i ⊕ s4,i ⊕ s3,i ⊕ s2,i ⊕ s1,i

y4,i = s5,is2,i ⊕ s5,i ⊕ s4,i ⊕ s2,is1,i ⊕ s2,i,


for all 1 ≤ i ≤ 64.

This layer is a non-linear part of the round transformation.

Proposition 3.8
The Ascon S-box is neither linear nor affine.

Proof. The S-box cannot be linear since SAscon(0) = 4 ̸= 0, further it cannot be affine as
4 = SAscon(0) ̸= SAscon(0) + SAscon(0) = 8

The S-box is also designed to fulfill important properties, such as invertibility, containing
no fix-points, and each output depending on at least four input bits. The containment of no
fix-points and the dependence on at least four input bits are clear, so we only need to argue
why it is invertible. We notice that SAscon : F32 → F32 and every s is uniquely mapped to
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Figure 3.1: An illustration of the Ascon S-box using logic gates XOR and AND.

an element of F32 and therefore it is both injective and surjective and thereby bijective.

Linear diffusion layer/permutation layer
The linear diffusion layer π : (F64

2 )5 → (F64
2 )5 adds different rotated copies of each register

word to themselves. It provides this rotation by applying functions πi(si) to each register
word. These functions differ for each register word and have been chosen experimentally to
achieve a good diffusion within each register word. They are defined entrywise for each
register word as follows:

π0(s1) = y0,i = s1,i ⊕ s1,i+19 ⊕ s1,i+28

π1(s2) = y1,i = s2,i ⊕ s2,i+61 ⊕ s2,i+39

π2(s3) = y2,i = s3,i ⊕ s3,i+1 ⊕ s3,i+6

π3(s4) = y3,i = s4,i ⊕ s4,i+10 ⊕ s4,i+17

π4(s5) = y4,i = s5,i ⊕ s5,i+7 ⊕ s5,i+41


for all 1 ≤ i ≤ 64

The functions πi are found to be linear by application of Proposition 3.5. Table 3.6 shows
some diffusion properties of up to 3 rounds of the Ascon permutation. After three rounds,
almost all input bits appear in the algebraic equations of each output bit due to the mixing.

round 1 2 3
τS τπ τS τπ τS τπ

s1,i 5 15 51 125 219 313
s2,i 5 15 51 115 219 308
s3,i 4 12 41 107 218 316
s4,i 5 15 51 130 219 305
s5,i 4 12 43 107 193 306

Table 3.6: The number of different variables in algebraic equation of sw,i

3.2 Claimed security properties of Ascon

This section comments on some of the claimed security properties of Ascon . We use [8,
Chapter 3] as a reference point and focus on Ascon -128.

The Ascon cipher suite provides 128−bit security for nonce-based AEAD. That is, the
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confidentiality of the plaintext, besides its length, and the integrity of ciphertext, including
the associated data, is protected and has a complexity of 2128. Users should add extra
padding if the plaintext length needs to remain confidential. The encrypter and the
decrypter should agree on this padding.
To fulfill the security claim, we require implementations to ensure that nonce is not repeated
for two different encryptions under the same key. Also, we require decrypted plaintexts
plaintexts only to be released after successful tag verification.
We also limit the amount of processed plaintext and associated data blocks protected by
the encryption algorithm to 264 blocks per key. As a data block has size 64 and one byte
consists of 8 bits, this corresponds to a total of 267 bytes for Ascon -128 and Ascon -80pq
and a total of 268 bytes for Ascon -128a (see table 3.2). The authors consider this as
more than sufficient for lightweight applications in practice. We summarize these and other
claims in table 3.7.

Requirement Security in bits
Ascon -128 Ascon -128a Ascon -80pq

Confidentiality of plaintext 128 128 128
Integrity of plaintext 128 128 128
Integrity of associated data 128 128 128
Integrity of public message number 128 128 128
Maximum number of bytes encrypted 267 268 267

Key recovery and forgery complexity
in the case of a leaked inner state 2128 296 2128

Table 3.7: Security claims for recommended parameter configurations of Ascon .

It is also claimed that even if specific accidental implementation errors, such as the nonce
being repeated a few times, the security claims stated in table 3.7 can still be fulfilled. Here,
we only require the combination of nonce and associated data to be unique. Also, even if
a single inner state is leaked during data processing, this does NOT imply the possibility
of a global attack, such as key recovery or trivial forgeries. In the case of a leaked state,
forgeries and key recoveries can be obtained with a complexity of 2c/2.

"We do not expect that key recovery attacks for Ascon -128a and Ascon -128 can be
found with complexity significantly below 296 and 2128 even if a few internal states can be

recovered. In fact, it is easy to see that the product of data and time complexity for a
key-recovery attack remains above 2128."[8, page 15-16]

Apart from the single-use requirement, there are no further constraints on the nonce; one
may even choose a practical and simple counter.

When implementing the algorithm, one should also consider implementing a procedure that
monitors and counts the number of failed verification attempts and, if necessary, limits
this number such that if exceeded, the decryption algorithm rejects all tags, including the
correct one.

3.3 Comparison of AES-128-GCM and Ascon -128

This section compares Ascon -128 to the current encryption standard, Advanced Encryption
Standard (AES). We compare Ascon-128 to AES-128 because they have the same key size.
We will not explain AES-128’s mode of operation; instead, we will compare the parameters
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and metrics. For many years, AES has been the dominant algorithm for symmetric
encryptions. AES can be fast but also costly in terms of memory and implementation
area. Secure communication involves more than just encryption; it also requires ensuring
authenticity and confidentiality. Thus, comparing Ascon to AES directly would be like
comparing apples to oranges. Therefore, we transform AES into an AEAD cipher utilizing
the Galois/Counter Mode (GCM) algorithm, which uses a block cipher with a block size of
128 bits. We want to emphasize that GCM commonly utilizes AES-128 as its block cipher
[21]. We will not discuss the GCM algorithm but merely use its ability to view AES-128 as
an AEAD cipher. We call this "new" algorithm AES-128-GCM.
In table 3.8, we remind ourselves of the parameters of Ascon and give the parameters of
AES-128-GCM.

key nonce tag data block round numbers
Ascon -128 128 128 128 64 12 and 6
AES-128-GCM 128 96 128 128 10

Table 3.8: Parameters of Ascon -128 and AES-128

The following presentation on implementations of the algorithms is based on [17] and [1]. We
consider throughput (measured in encrypted bits per clock cycle), area, energy (measured
in joules per encrypted bit), and energy times area. The measure of the area is not given in
GE as per usual but rather as the "average scaled area". For a definition of the average
scaled area, see [1, Section 2.5]. Both area and energy are "smaller-is-better" metrics, and
their product helps simplify the comparison of different cryptographic algorithms. We refer
to Table 3.9 for results.

Area Throughput Energy Energy×Area
Ascon -128 1.56 16.00 0.44 0.76
AES-128-GCM 2.75 11.63 0.71 2.05

Table 3.9: Results on comparison of Ascon -128 and AES-128-GCM

We see that Ascon -128 outperforms AES-128-GCM in all metrics.
We also consider the implementation in specific technologies and the code size in these. We
refer to Tables 3.10 and 3.11 for the results.

F1 ESP F7 R5
Ascon -128 76.7 22.3 13.8 8.5
AES-128-GCM 332.8 67.2 35.8 23.7

Table 3.10: Time to process NIST testvectors in µs

F1 ESP F7 R5
Ascon -128 2157 1120 1180 1792
AES-128-GCM 9908 14832 9836 14272

Table 3.11: Code size in bytes

We will not comment on the technologies, but once again, we see that Ascon outperforms
AES-128-GCM in processing time and code size.



Chapter 4 Linear and differential cryptanalysis

Mainly using [11], [8], [7] and the original paper on linear cryptanalysis [15], this chapter
will discuss the theory of linear and differential cryptanalysis.

4.1 A generic description of linear cryptanalysis

In this section, we aim to describe a generic version of linear cryptanalysis with an emphasis
on the structure of the attack and the use of the method in general.
Linear cryptanalysis is a type of known plaintext attack where the adversary examines the
probabilistic linear relationship, also referred to as linear approximations, among the parity
bits1 of the plaintext P , the cipher text C and the encryption key K inside the cipher. Given
a linear approximation with high or low probability, the adversary can estimate the secret
key’s parity bit by examining the parity bits of the plaintext and the ciphertext. Then,
using supplementary methods, the attack can be extended to find more bits of the secret key.

We now explain the above in more detail. We let A ∈ Fn
2 and let Ai denote the ith entry

of A. We denote the parity bit of A, Ai1 ⊕ . . . ⊕ Ain , by
⊕n

m=1Aim . Let P, α ∈ F|P |
2 ,

C, β ∈ F|C|
2 and K, γ ∈ F|K|

2 . The purpose of linear cryptanalysis is to approximate an
expression of the form:

|P |⊕
m=1

αmPm ⊕
|C|⊕
m=1

βmCm =

|K|⊕
m=1

γmKm. (4.1)

Definition 4.1 Masks
Define

|P |⊕
m=1

αmPm ⊕
|C|⊕
m=1

βmCm =

|K|⊕
m=1

γmKm.

We refer to α, β, and γ as the masks of the equation and say that P,C, and K are
masked by α, β, and γ, respectively. We call α the input mask, β the output mask,
and γ the key mask of the equation.

For simple linear functions, such as ⊕ and permutations, uncomplicated linear expressions
can be expressed such that Equation 4.1 holds with probability one. Also, when examining
affine functions, we can arrive at uncomplicated linear expressions by adding one to the
function if it does not pass through the origin. For non-linear operations, such as S-boxes,
we try to find linear approximations that hold with probability pL, that maximizes |pL−1/2|.

Definition 4.2 Linear probability bias
We set |pL − 1/2| = ε and call this the linear probability bias.

Whenever there is no chance of confusion, we denote the linear probability bias as the bias.

1The parity bit of any string is the sum of all its entries modulus 2.
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The approximation in Equation 4.1 is interesting only if pL ̸= 1/2 as if we independently
and uniformly selected random elements from F2 and placed them into Equation 4.1 the
probability of the expression holding would be exactly 1/2.

In linear cryptanalysis, we exploit and examine the deviation or bias from the probability
of 1/2 for the expression to hold. We refer to the linear approximation when (pL − 1/2)
reaches its max as the best approximation and the probability pL as the best probability.

4.1.1 The linear approximation table

The S-box is often the only non-affine part of a cipher; therefore, we need to find good
linear approximations of it to attack it.
In the following, we draw inspiration from the lecture [13]. We have the following linear
equation associated with the S-box S : Fn

2 → Fm
2 with α ∈ Fn

2 and β ∈ Fm
2 :

αTx⊕ βTS(x) = 0. (4.2)

We now define the solution space and the solution space cardinality of Equation 4.2.

Definition 4.3 Solution space of S-box associated linear equation
Let S be an S-box and let Equation 4.2 be its associated linear equation. Fix the

masks of the equation. We denote the solution space of the equation by

Σα,β = {x ∈ Fn
2 : αTx⊕ βTS(x) = 0},

and denote the number of solutions by

eα,β = |Σα,β|.

As Σα,β ⊆ Fn
2 get the following simple bounds on the number of solutions

0 ≤ eα,β ≤ 2n. (4.3)

We calculate the probability of Equation 4.2 holding for a random x given α and β as

pα,β =
|Σα,β|
|Fn

2 |
=

eα,β
2n

.

The bias can be calculated as

εα,β = pα,β −
1

2

=
eα,β
2n
− 1

2

=
eα,β − 2n−1

2n
.

We let e′α,β = eα,β − 2n−1 and we refer it as the bias integer. In the following simple way,
we express the bias using the bias integer

εα,β =
e′α,β
2n
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By subtracting 2n−1 in Equation 4.3 we get the following bounds of the bias integer

0− 2n−1 ≤eα,β − 2n−1 ≤ 2n − 2n−1

−2n−1 ≤e′α,β ≤ 2 · 2n−1 − 2n−1

−2n−1 ≤e′α,β ≤ 2n−1.

(4.4)

The table that for any given values of α and β displays the value of the bias integer e′α,β is
called the linear approximation table (LAT).

Definition 4.4 Linear approximation table (LAT)
Let S : Fn

2 → Fm
2 by any S-box. The LAT of S is a table of integers with 2n rows

indexed by the elements of Fn
2 and 2m columns indexed by the elements of Fm

2 . The
entry at row α and column β is given as the bias integer e′α,β :

LS = (e′α,β).

One can view the LAT of an S-box as a 2n × 2m matrix of all possible bias integers e′α,β.
Regarding the computational complexity of the LAT of an S-box, we see that there are 2n

possible choices for α and 2m possible choices for β totaling in a combined 2n · 2m = 2n+m

possible equations of the form αTx ⊕ βTS(x) = 0. There are an additional 2n possible
inputs x ∈ Fn

2 , so calculating the LAT of an S-box requires a total of 2n · 2n+m = 22n+m

calculations. We now give an example wherein we calculate some of the entries of our toy
cipher.

Example 4.5
In this example, we calculate some of the entries of the linear approximation table.
The entire table can be found in Table 4.1.
We start by calculating the first entry, corresponding to e′0,0 From the above discussed,
we know that e′α,β = eα,β − 2n−1, and that eα,β = |Σα,β| = |{x ∈ Fn

2 : αTx ⊕
βTStoy(x) = 0}|. We note that for all x ∈ F4

2 it holds that

0Tx⊕ 0TStoy(x) = 0.

Thus we get that |Σ0,0| = 25 and thereby e0,0 = 25 − 24 = 8. Calculating the entire
first column can be done by using Lemma 4.10, and the first row can be calculated
using Lemma 4.11, which we will state and prove later. We now move on to calculating
a random entry, say an input sum of 7 and an output sum of c. That is, we have to
find the values of x for which the expression (0111)x⊕ (1100)Stoy(x) = 0 holds true.
To do this, we check all possible values of x. We now use hexadecimal notation

• 7T · 0⊕ cT · Stoy(0) = 0⊕ 0 = 0

• 7T · 1⊕ cT · Stoy(1) = 1⊕ 1 = 0

• 7T · 2⊕ cT · Stoy(2) = 1⊕ 1 = 1

• 7T · 3⊕ cT · Stoy(3) = 0⊕ 0 = 0

• 7T · 4⊕ cT · Stoy(4) = 1⊕ 0 = 1

• 7T · 5⊕ cT · Stoy(5) = 0⊕ 0 = 0
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• 7T · 6⊕ cT · Stoy(6) = 0⊕ 1 = 1

• 7T · 7⊕ cT · Stoy(7) = 1⊕ 1 = 0

• 7T · 8⊕ cT · Stoy(8) = 0⊕ 0 = 0

• 7T · 9⊕ cT · Stoy(9) = 1⊕ 1 = 0

• 7T · a⊕ cT · Stoy(a) = 1⊕ 1 = 0

• 7T · b⊕ cT · Stoy(b) = 1⊕ 1 = 0

• 7T · c⊕ cT · Stoy(c) = 1⊕ 1 = 0

• 7T · d⊕ cT · Stoy(d) = 0⊕ 1 = 1

• 7T · e⊕ cT · Stoy(e) = 0⊕ 0 = 0

• 7T · f ⊕ cT · Stoy(f) = 1⊕ 1 = 0

We see that the expressions hold for 12 values of x and thus the entry LS = (e′7,c) =
12− 8 = 4. We calculate all the entries, and the table can be found in Table 4.1.

Output sum
0 1 2 3 4 5 6 7 8 9 a b c d e f

In
pu

t
su

m

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 -2 -2 0 0 -2 6 2 2 0 0 2 2 0 0
2 0 0 -2 -2 0 0 -2 -2 0 0 2 2 0 0 -6 2
3 0 0 0 0 0 0 0 0 2 -6 -2 -2 2 2 -2 -2
4 0 2 0 -2 -2 -4 -2 0 0 -2 0 2 2 -4 2 0
5 0 -2 -2 0 -2 0 4 2 -2 0 -4 2 0 -2 -2 0
6 0 2 -2 4 2 0 0 2 0 -2 2 4 -2 0 0 -2
7 0 -2 0 2 2 -4 2 0 -2 0 2 0 4 2 0 2
8 0 0 0 0 0 0 0 0 -2 2 2 -2 2 -2 -2 -6
9 0 0 -2 -2 0 0 -2 -2 -4 0 -2 2 0 4 2 -2
a 0 4 -2 2 -4 0 2 -2 2 2 0 0 2 2 0 0
b 0 4 0 -4 4 0 4 0 0 0 0 0 0 0 0 0
c 0 -2 4 -2 -2 0 2 0 2 0 2 4 0 2 0 -2
d 0 2 2 0 -2 4 0 2 -4 -2 2 0 2 0 0 2
e 0 2 2 0 -2 -4 0 2 -2 0 0 -2 -4 2 -2 0
f 0 -2 -4 -2 -2 0 2 0 0 -2 4 -2 -2 0 2 0

Table 4.1: The linear approximation table of the toy cipher.

The LAT can be used to compute the bias of a single S-box of a cipher, and if this were
all we needed, we would be done. Unfortunately for the adversary, this is not the case.
A cipher often consists of multiple rounds with multiple S-boxes in each round. Brute
force can be used to find the most biased linear approximation on a component such as
an S-box, but several problems arise when using this method on a full-sized cipher. The
adversary would have to compute all possible linear approximations throughout the full
cipher and then compute their biases using all possible plaintexts. This clearly is infeasible
for any practical cipher. We solve this problem by making several assumptions and thereby
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approximate the probability. We approximate the bias integers for multiple S-boxes using
the Piling-up Lemma.

4.1.2 Piling-up lemma

We aim to find an effective way to approximate the bias integers e′α,β , equivalent to finding
effective approximations. Alternatively, one can demonstrate that effective approximations
do not exist, but this is often much more difficult, as it would often require checking all
possible approximations. Finding approximations has to be done explicitly for each different
cipher one wishes to attack, as different ciphers should not share their inner structures. We
introduce the Piling-up Lemma after a brief discussion.

Consider two random variables X1, X2 ∈ F2, and begin by noting that the relationship
X1 ⊕X2 = 0 is a linear expression and equivalent to X1 = X2, while X1 ⊕X2 = 1 is an
affine expression and equivalent to X1 ̸= X2. We assume that the probability is distributed
as in the following:

Pr(X1 = i) =

{
p1, i = 0

1− p1, i = 1

and

Pr(X2 = j) =

{
p2, j = 0

1− p2, j = 1.

If we further assume that the variables are independent, we get the following probability
distribution:

Pr(X1 = i,X2 = j)


p1p2, i = 0, j = 0

p1(1− p2), i = 0, j = 1

(1− p1)p2, i = 1, j = 0

(1− p1)(1− p2), i = 1, j = 1.

We now examine the probability that X1 ⊕X2 = 0:

Pr(X1 ⊕X2 = 0) = Pr(X1 = X2)

= Pr(X1 = 0, X2 = 0) + Pr(X1 = 1, X2 = 1)

and by independence we get

= Pr(X1 = 0)Pr(X2 = 0) + Pr(X1 = 1)Pr(X2 = 1)

= p1p2 + (1− p1)(1− p2).

Let p1 = 1/2 + ε1 and p2 = 1/2 + ε2, where ε1 and ε2 are the probability baises and
−1/2 ≤ ε1, ε2 ≤ 1/2 we get:

Pr(X1 ⊕X2 = 0) = (1/2 + ε1)(1/2 + ε2) + (1/2− ε1)(1/2− ε2)

= 1/4 + ε1ε2 + 1/2ε1 + 1/2ε2 + 1/4− 1/2ε1 − 1/2ε2 + ε1ε2

= 1/2 + 2ε1ε2.
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Letting ε1,2 denote the bias of the linear expression X1 ⊕X2 = 0 we get

ε1,2 = 2ε1ε2.

We can further extend this to n random independent variables X1, . . . , Xn ∈ F2, with
probabilities pi = 1/2+εi for 1 ≤ i ≤ n. To calculate the probability that X1⊕ . . .⊕Xn = 0,
we use the following Lemma.

Lemma 4.6 Piling-up Lemma
For n independent random variables X1, . . . , Xn over F2 we have the following

relation:

Pr(X1 ⊕ . . .⊕Xn = 0) = 1/2 + 2n−1
n∏

i=1

εi,

or equivalently the bias ε1,...,n of X1 ⊕ . . .⊕Xn = 0

ε1,...,n = 2n−1
n∏

i=1

εi.

Proof. We will prove the Lemma using induction over k. Let k = 2, and note that the
Lemma holds based on the above discussion. Assuming that the Lemma holds for k = n−1,
we will now prove it holds for k = n. We have the following:

Pr

(
n−1⊕
i=1

Xi ⊕Xn = 0

)
= Pr

(
n−1⊕
i=1

Xi = 0, Xn = 0

)
+ Pr

(
n−1⊕
i=1

Xi = 1, Xn = 1

)

and by assuming independence, we get

= Pr

(
n−1⊕
i=1

Xi = 0

)
Pr(Xn = 0) + Pr

(
n−1⊕
i=1

Xi = 1

)
Pr(Xn = 1)

=

(
1

2
+ 2n−2

n−1∏
i=1

εi

)
(
1

2
+ εn) +

(
1

2
− 2n−2

n−1∏
i=1

εi

)
(
1

2
− εn)

=
1

4
+

1

2
εn +

1

2
2n−2

n−1∏
i=1

εi + εn2
n−2

n−1∏
i=1

εi +
1

4
− 1

2
εn −

1

2
2n−2

n−1∏
i=1

εi + εn2
n−2

n−1∏
i=1

εi

=
1

2
+ 2εn2

n−2
n−1∏
i=1

εi

=
1

2
+ 2n−1

n∏
i=1

εi.

The bias can be calculated as the amount Pr(
⊕n

i=1Xi = 0) differs from 1/2, and we get:

ε1,...,n = 2n−1
n∏

i=1

εi,

which concludes the proof.
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To estimate the probability of a linear approximation using the Piling-up Lemma, we
write the approximation as a chain of connected linear approximations, each spanning a
small part of the cipher. We call such a chain a linear characteristic of a cipher. Under
the assumption that each of the biases of the partial approximations is independent, the
total bias can be computed using the Piling-up Lemma. We demonstrate the above in the
following simple example using three random variables.

Example 4.7
Consider three independent and random variables X1, X2, X3 ∈ F2, and let Pr(X1 ⊕
X2 = 0) = 1/2 + ε1,2 and Pr(X2 ⊕ X3 = 0) = 1/2 + ε2,3. Consider the result of
X1 ⊕X3 to be derived by adding together X1 ⊕X2 and X2 ⊕X3, we get:

Pr(X1 ⊕X3 = 0) = Pr([X1 ⊕X2]⊕ [X2 ⊕X3] = 0).

By combining linear expressions, we get a new linear expression, and as we can
consider the random variables X1 ⊕X2 and X2 ⊕X3 independent, we can calculate
Pr(X1 ⊕X3 = 0) as:

Pr(X1 ⊕X3 = 0) = 1/2 + 2ε1,2ε2,3.

It should be noted that the biases calculated using the Piling-up Lemma are only estimates of
the real biases and only hold when the assumption of independence is fulfilled. Unexpected
effects may occur when the variables are not independent, and in general, the biases in
these cases can both be smaller and larger than predicted by the Piling-up Lemma.

4.1.3 Properties of the LAT

We prove several properties of the LAT, ending with all entries of the LAT are even. In the
following, let S be an S-box with range Fn

2 and domain Fm
2 and let LS be its corresponding

LAT.

Lemma 4.8
The first entry of LS is given as (e′0,0) = (2n−1)

Proof. By Equation 4.4 the bias integers are bounded by

−2n−1 ≤ e′α,β ≤ 2n−1.

Let both α and β be equal to 0. Then every x ∈ Fn
2 solves

0Tx⊕ 0TS(x) = 0,

and hence Σ0,0 = Fn
2 , which implies that the number of solution are

|Σ0,0| = |Fn
2 | = 2n = e0,0.

By definition, the bias integer is given as

e′0,0 = e0,0 − 2n−1 = 2 · 2n−1 − 2n−1 = 2n−1,

which completes the proof.
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We now prove a lemma concerning the number of solutions to the first term of Equation
4.2 whenever α ̸= 0.

Lemma 4.9
Let α ∈ Fn

2 be non-zero and let n > 1. Define W = {x ∈ Fn
2 : αTx = 0}. The

cardinality of W is equal to 2n−1.

Proof. As α = (α1, . . . , αn) ̸= 0, there exists some i0 such that αi0 = 1. For the sake of
argument let α1 = 1 and write α = (1, α′) ∈ Fn

2 where α′ ∈ Fn−1
2 , and define the following

map

φ : F−1
2 →W
x 7→ (α′Tx, x).

The map φ is well defined as

αTφ(x) = αT (α′Tx, x) = α′Tx⊕ α′Tx = 0,

where the second equality follows as α = (1, α′) and the third equality follows as any element
of Fn

2 is its own additive inverse. We now prove that φ is a bijection, which implies that W
and Fn−1

2 have the same cardinality. We start by proving that φ is injective (one-to-one),
and since we are working over a finite field, the function must be a bijection. Assume that
φ(x) = φ(y), then

φ(x) = (α′Tx, x) = φ(y) = (α′T y, y),

and we see that x = y.

The next Lemma concerns the first column of the LAT.

Lemma 4.10
The last 2n − 1 entries of the first column of LS are zeros.

Proof. Let α ̸= 0 and β = 0, then Equation 4.2 is equivalent to

αTx = 0.

By Lemma 4.9, we know that |W| = 2n−1, and that this is the number of solutions to the
above equation, hence

eα,0 = 2n−1

which implies that

e′α,0 = eα,0 − 2n−1 = 0.

This is true for all 0 < α ≤ 2n, and thus the last 2n − 1 entries of the first column of LS
are all zeros.

The case whenever β = 0 is not interesting since it does not involve the S-box. The next
Lemma concerns bijective S-boxes.
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Lemma 4.11
Let S be a bijection, then the LAT related to S−1 is given as the transpose of S:

LS−1 = (LS)T .

Proof. Let S be a bijection, this implies that m = n and

S : Fn
2 → Fn

2

S−1 : Fn
2 → Fn

2 .

Let x ∈ Fn
2 and let S(x) = y, then x = S−1(y). Consider the equation

αTx⊕ βTS(x) = 0,

and replace x with S−1(y) and S(x) with y, we get

αTx⊕ βTS(x) = βT y ⊕ αTS−1(y) = 0.

Notice that α and β have "switched" places. By definition 4.3 we get eSα,β = eS
−1

β,α and after
calculating the bias integers e′Sα,β and e′S

−1

β,α we get

e′Sα,β = e′S
−1

β,α ,

which is equivalent to LS−1 = (LS)T .

In addition to the fact that LS−1 = (LS)T we also get that the first row and column of
any LAT which has a bijective S-box are equal, which by Lemma 4.8 and Lemma 4.10 is a
vector of the form (2n−1||02n−1).
We now have everything we need to prove that all the entries of any LAT are even.

Proposition 4.12
Let S : Fn

2 → Fn
2 be a bijection and let n > 1. Then all the entries of LS are even.

Proof. The first entry is 2n−1, which is even whenever n > 1. The other values of the first
column and the first row are all zero. Let α, β ̸= 0, and define the following sets

A0 = {x ∈ Fn
2 : αTx = 0}, B0 = {x ∈ Fn

2 : βTS(x) = 0}
A1 = {x ∈ Fn

2 : αTx = 1}, B1 = {x ∈ Fn
2 : βTS(x) = 1}.

The sets are partitions of Fn
2 and A0 ∪A1 = Fn

2 and likewise B0 ∪B1 = Fn
2 . By Lemma 4.9

|A0| = 2n−1 and hence |A1| = |Fn
2 | − 2n−1 = 2n−1 = |A0|. As S is a bijection we get that

|B0| = |B1| = 2n−1 by using the same "αTx⊕ βTS(x) is equivalent to βT y ⊕ αTS−1(y)"
argument as in Lemma 4.11. We now have that

|A0| = |A1| = |B0| = |B1| = 2n−1,

which are all of even cardinality. For i, j ∈ {0, 1} define ki,j = |Ai ∩Bj |.
Notice that
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• A0 ∩B0 and A0 ∩B1 is a partition of A0, which implies that k0,0 ≡ k0,1 mod 2

• A1 ∩B0 and A1 ∩B1 is a partition of A1, which implies that k1,0 ≡ k1,1 mod 2

• A0 ∩B0 and A1 ∩B0 is a partition of B0, which implies that k0,0 ≡ k1,0 mod 2

• A0 ∩B1 and A1 ∩B1 is a partition of B1, which implies that k0,1 ≡ k1,1 mod 2.

By equivalence, we have that

k0,0 ≡ k0,1 ≡ k1,0 ≡ k1,1 mod 2,

which implies that they are all even or odd. The solutions to αTx⊕βTS(x) can be expressed
as the disjoint unions

Σα,β = (A0 ∩B0) ∪ (A1 ∩B1).

The number of solutions eα,β then must be the number of elements of A0 ∩B0 and A1 ∩B1:

eα,β = k0,0 + k1,1 ≡ 0 mod 2,

which implies that eα,β is an even integer. Thus, the entries of the LAT e′α,β = eα,β − 2n−1

are even as they are differences of even integers.

4.1.4 Recovering key bits

We look into how the attacker can recover bits of the key if they have found a good linear
approximation. We define the correlation of an approximation as this will be used later.

Definition 4.13 Correlation
The correlation corF (α, β) of an approximation (α, β) of a function F : Fn

2 → Fm
2

can be represented as:

corF (α, β) = 2

(
Pr(αTP ⊕ βTC = 0)− 1

2

)
= Pr(αTx⊕ βTF (x) = 0)− Pr(αTx⊕ βTF (x) = 1)

= 2ε

The correlation takes values between −1 and 1. Also, if the correlation is positive, it implies
that the bias of the masked pair (α, β) is greater than 0. Likewise, if the correlation is
negative, it implies that the bias of the masked pair (α, β) is less than 0. We conclude that
it is more probable that αTP ⊕ βTC equals 0 than it equals 1, whenever corF (α, β) > 0.
Likewise, we conclude that it is more probable that αTP ⊕ βTC equals 1 than it equals 0,
whenever corF (α, β) < 0. If we consider Equation 4.1

n⊕
m=1

(αmPm ⊕ βmCm) =

n⊕
m=1

γmKm,

we can predict the sum
⊕n

m=1 γmKm by looking at the correlation of (α, β). In other words,
once we arrive at an effective approximation, we can determine

⊕w
m=1K[km] using the

following maximum likelihood-based algorithm.
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Algorithm 4.14
Given a pool of N random plaintexts, initialize two counters T0 and T1. Then, for
each plaintext/ciphertext pair (Pi, Ci):

if αTPi ⊕ βTCi = 0 increase T0 by 1

if αTPi ⊕ βTCi = 1 increase T1 by 1.

We get the following 1-bit information about the key:

If T0 > T1 ⇒ γTK = 0

If T0 < T1 ⇒ γTK = 1.

The above algorithm has its advantages and disadvantages. It requires an approximation
for all rounds of the cipher, which is computationally challenging for any practical cipher.
Also, we only learn about one bit of key information and need several approximations for
more key information. If we learn enough key information, we can guess the key.

4.2 A generic description of

differential cryptanalysis

In this section, we aim to describe a generic version of differential cryptanalysis, emphasizing
the structure of the attack. Differential cryptanalysis was originally presented to attack
DES, whose underlying architecture differs from that of Ascon . It was later revisited and
adapted to the architecture of substitution permutation networks, which is the architecture
Ascon relies on. We adopt part of the notation found in [2], from which we also draw
inspiration.

Differential cryptanalysis is a type of chosen plaintext attack, meaning that the attacker
can select specific inputs and examine outputs in an attempt to get information about the
key. In differential cryptanalysis, the attacker examines the probabilistic occurrences of
plaintext differences and differences in the later rounds of the cipher.
Let P and P ′ be plaintexts, and let C and C ′ be their corresponding ciphertexts. The main
idea is to predict the effect of plaintext differences α = P ⊕ P ′ on ciphertext differences
β = C ⊕ C ′ without knowledge of the key K by tracing the effect of the difference α
throughout the cipher. We explore the construction of a differential involving plaintext
bits and the input to the later rounds of the cipher. We accomplish this by investigating
highly probable differential characteristics.

We now explain the above in more detail. For now, we assume that we are working with an
SPN. We now define the notion of a difference and a differential.

Definition 4.15 Difference and differential
Let P, P ′ ∈ Fn

2 be plaintext into the i’th round and let C,C ′ ∈ Fn
2 be their corre-

sponding ciphertexts from the i’th round. We define the difference of the plaintexts
and the ciphertexts as

αi = P ⊕ P ′ and βi = C ⊕ C ′
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and they are respectively called the input difference and the output difference of the
system, and (αi, βi) is called a differential.

We write α and β whenever the round number is unimportant. A differential is used to
predict that if plaintexts P and P ′ have a difference α, then the corresponding ciphertexts
C and C ′ have a difference β with a certain probability. We denote the probability of an
input difference having a certain output difference by

Pr(α→ β).

For any intermediate data x and x′ that occurs during encryption, we denote the difference
of these using equivalent notation

α = x⊕ x′.

By xit and x′it , we respectively mean the input and output of the t′th S-box in the i′th
round. Whenever the round is unimportant, we omit the subscript i; whenever the S-box
number is unimportant, we omit the superscript t. Whenever it is not important whether
a difference is an input or output difference, we denote it by γ. Differences from the i’th
round is referred to as αi = (ai1, . . . , a

i
m), βi = (bi1, . . . b

1
m) and γ = (ci1, . . . , c

i
m). The index

refers to the S-box. We now provide a theorem regarding the effect of linear and affine
functions on differences.

Theorem 4.16
Linear and affine operations either do not affect the differences or affect the differences
predictably.

Proof. Let α = x⊕ x′.
Linear functions:
A linear function in Fn

2 is represented as L(x) = Ax, where A ∈ Fn×n
2 and x ∈ Fn

2 . Consider
α = x⊕ x′. Applying the linear function to α, we get:

L(α) = A(α) = A(x⊕ x′) = Ax⊕Ax′ = L(x)⊕ L(x′)

Thus, the linear function L does not affect the difference x⊕ x′ = α.
Affine Functions:
An affine function in Fn

2 is of the form A(x)⊕ b, where A ∈ Fn×n
2 and x, b ∈ Fn

2 . Applying
the affine function to α, we get

A(α)⊕ b = A(x⊕ x′)⊕ b = Ax⊕Ax′ ⊕ b = A(x)⊕ b⊕A(x′)

The effect of the affine function on the difference x⊕ x′ is predictable and is given by the
constant term b.

We give a few, but relevant, examples to illustrate the effect of linear or affine operations:
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• Bit permutations, such as in the linear diffusion layer of Ascon , affects the
differences by reordering them in the same way. To see this, let π be a permutation
and define

π :Fn
2 → Fn

2

x 7→ π(x).

Now see that π(α) = π(x)⊕ π(x′), as permutations are linear maps.

• Additions of two values α ⊕ β, also adds the differences of the values to α ⊕ β =
(x⊕ y)⊕ (x′ ⊕ y′).

• Intermediate additions can be ignored by means of differences. If data D is added
to intermediate data x such that y = x⊕D, and also the second intermediate data
x′, we get y′ = x′⊕D. The output differences β = x⊕D⊕ x′⊕D = x⊕ x′ = α does
not depend on D.

When looking at non-affine operations, such as some S-boxes, we study how the differences
evolve throughout the cipher. Of course, whenever there is an input difference of 0, that
is, whenever the inputs are equal, then the outputs must also be equal, and the output
difference must be 0. The output difference cannot always be predicted for non-zero input
differences as there can exist many different output differences for each input difference.
We illustrate this in the following example.

Example 4.17
Let S be the S-box of the toy cipher introduced in the preliminary readings section.
The S-box table can be found in Table 1.2. For an input difference of 5, we have
many input pairs, such as 0 and 5, 1 and 6, and so on. For ease of understanding,
we rewrite these from hexadecimal to binary in the following. For the input pair
(0000, 0101), the output pair is (1110, 1111) with an output difference of 0001. The
input pair (0001, 0110) has an output pair (0100, 1011) with an output difference of
1111. Even though the input differences are equal, the output differences are not.

While we cannot predict the exact output difference, it is possible to predict some statistical
information on the output difference given the input difference. This is summed up in a
differential distribution table (DDT). In the following, we introduce relevant notation to
define the DDT.

Let R be the total number of rounds, and let k1, . . . , kR denote round keys used for
encryption. For each round i, 1 ≤ i ≤ R, we define the input value of the i+ 1’th round as

xi+1 = Fi(ki, xi)

x′i+1 = Fi(ki, x
′
i).

We also define the difference αi = xi⊕x′i as the input difference to the i’th round. Next, let

yi = Sm(xi ⊕ ki)

y′i = Sm(x′i ⊕ ki),

and define the output difference of the i′th substitution layer as βi = yi ⊕ y′i. To sum up,
yi and y′i are the output of the i’th substitution layer, while xi and x′i are the inputs of the
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i’th round. The following relation is due to the linearity of the permutation layer π

αi+1 = xi+1 ⊕ x′i+1 = π(yi)⊕ π(y′i) = π(yi ⊕ y′i) = π(βi).

From this, we see that the input difference of round i + 1 only depends on the output
difference of round i. Assuming that the round keys are independent and uniformly
distributed, the probability that a difference ai ∈ Fs

2 produces bi ∈ Fs
2 by the i’th S-box is

given by

Pr(ai → bi) =
|{x ∈ Fs

2|Si(x)⊕ Si(x⊕ ai) = bi}|
2s

.

Calculating the above for all possible a’s and b’s results in a 2s × 2s matrix of probabilities,
called the differential table of the i′th S-box. The 2s × 2s matrix consisting only of the
numerators

|{x ∈ Fs
2|Si(x)⊕ Si(x⊕ a) = b}|

is called the differential distribution table, abbreviated as DDT.

Definition 4.18 Differential distribution table
The DDT of an S-box S is the table that lists the number of elements x ∈ Fs

2 such
that

S(x)⊕ S(x⊕ a) = b

holds. The rows denote all the possible input differences a, and the columns denote
all the possible output differences b.

We stress that

Pri(0→ 0) = 1,

as Si(x)⊕ Si(x⊕ 0) = 0.

Example 4.19
In this example, we calculate some of the entries of the differential distribution table.
The full table can be found in Table 4.2. Our calculations are done in hexadecimal.
We start by calculating the first entry, that is, we have to find the number of elements
x ∈ F4

2 that fulfill

Stoy(x)⊕ Stoy(x+ 0) = 0.

Clearly, all 16 elements fulfill this requirement, as Stoy(x+ 0) = Stoy(x) and as every
element in F4

2 is its additive inverse. We can also quickly calculate the entire first
row of the differential distribution table, as whenever the input difference is 0 and
the output difference is non-zero, we have that

Stoy(x)⊕ Stoy(x+ 0) = 0.

We can also calculate the first column using a similar argumentation. Whenever the
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output difference is zero, but the input difference is non-zero, we require that

Stoy(x)⊕ Stoy(x+ a) = 0,

which cannot be the case, as Stoy is injective. This will, in general, be true for any
injective S-box. We often cannot argue as above; rather, we have to compute all
possible combinations. We give a single example of this, namely whenever we have
an input difference of 9 and an output difference of 7. We get the following

• Stoy(0)⊕ Stoy(0 + 9) = Stoy(0)⊕ Stoy(9) = e+ a = 4

• Stoy(1)⊕ Stoy(1 + 9) = Stoy(1)⊕ Stoy(8) = 4 + 3 = 7

• Stoy(2)⊕ Stoy(2 + 9) = Stoy(2)⊕ Stoy(b) = d+ c = 1

• Stoy(3)⊕ Stoy(3 + 9) = Stoy(3)⊕ Stoy(a) = 1 + 6 = 7

• Stoy(4)⊕ Stoy(4 + 9) = Stoy(4)⊕ Stoy(d) = 2 + 9 = b

• Stoy(5)⊕ Stoy(5 + 9) = Stoy(5)⊕ Stoy(c) = f + 5 = a

• Stoy(6)⊕ Stoy(6 + 9) = Stoy(6)⊕ Stoy(f) = b+ 7 = c

• Stoy(7)⊕ Stoy(7 + 9) = Stoy(7)⊕ Stoy(e) = 8 + 0 = 8

• Stoy(8)⊕ Stoy(8 + 9) = Stoy(8)⊕ Stoy(1) = 3 + 4 = 7

• Stoy(9)⊕ Stoy(9 + 9) = Stoy(9)⊕ Stoy(0) = a+ e = 4

• Stoy(a)⊕ Stoy(a+ 9) = Stoy(a)⊕ Stoy(3) = 6 + 1 = 7

• Stoy(b)⊕ Stoy(b+ 9) = Stoy(b)⊕ Stoy(2) = c+ d = 1

• Stoy(c)⊕ Stoy(c+ 9) = Stoy(c)⊕ Stoy(5) = 5 + f = a

• Stoy(d)⊕ Stoy(d+ 9) = Stoy(d)⊕ Stoy(4) = 9 + 2 = b

• Stoy(e)⊕ Stoy(e+ 9) = Stoy(e)⊕ Stoy(7) = 0 + 8 = 8

• Stoy(f)⊕ Stoy(f + 9) = Stoy(f)⊕ Stoy(6) = 7 + b = c

From this, we find that whenever the input difference is 9, the elements 1, 3, 8, a yield
an output difference of 7. Since there are 4 such elements the entry of the differential
distribution table corresponding to an input difference of 9 and an output difference
of 7 is 4, as can be verified in Table 4.2.

Under the assumption that the S-boxes are independent, the probability that a difference
α ∈ (Fs

2)
m produces a difference β ∈ (Fs

2)
m by the substitution layer is the product of the

probabilities of each of S-boxes producing the corresponding difference bi given input ai.

Pr(α→ β) =
m∏
i=1

Pr(ai → bi).

We now define the notion of an active S-box.
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Output difference
0 1 2 3 4 5 6 7 8 9 a b c d e f

In
pu

t
di

ffe
re

nc
e

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0
2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0
3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4
4 0 0 0 2 0 0 6 0 0 2 0 4 2 0 0 0
5 0 4 0 0 0 2 2 0 0 0 4 0 2 0 0 2
6 0 0 0 4 0 4 0 0 0 0 0 0 2 2 2 2
7 0 0 2 2 2 0 2 0 0 2 2 0 0 0 0 4
8 0 0 0 0 0 0 2 2 0 0 0 4 0 4 2 2
9 0 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0
a 0 2 2 0 0 0 0 0 6 0 0 2 0 0 4 0
b 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2
c 0 2 0 0 2 2 2 0 0 0 0 2 0 6 0 0
d 0 4 0 0 0 0 0 4 2 0 2 0 2 0 2 0
e 0 0 2 4 2 0 0 0 6 0 0 0 0 0 2 0
f 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0

Table 4.2: The differential distribution table of the toy cipher.

Definition 4.20 Active S-box
Let γ = (c1, . . . , cm) be any difference. The i’th S-box is said to be activated by γ if
ci ̸= 0. The function

#SB :(Fs
2)

m → J1,mK
γ 7→ |{i ∈ J1,mK|ci ̸= 0}|

relates a difference γ to the number of S-boxes it activates.

We say an output difference β is a candidate for an input difference α if Pr(α→ β) ̸= 0.
The following Lemma connects the idea of a candidate with an active S-box.

Lemma 4.21
If β is a candidate for α, then bi = 0 if and only if ai = 0 for each 1 ≤ i ≤ m, that is,
they activate the same S-boxes. In this case,

Pr(α→ β) =
∏
i

Pr(ai → bi).

Proof. Let β be a candidate for α, and let 1 ≤ i ≤ m. As S-boxes are one-to-one, and as the
probability Pr(α→ β) ̸= 0 there exists some i for which the probability Pr(xi → bi) ̸= 0.
This corresponds to a non-zero input difference in the i’th S-box having a non-zero output
difference. Also, if for some 1 ≤ i′ ≤ m the probability Pr(ai′ → 0) ̸= 0 holds, then ai′ = 0,
must hold and likewise Pr(0 → bi′) ̸= 0 holds, then bi′ = 0 must hold, and the result
follows.
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In an ideal cipher, the probability of any candidate β for the input difference α should
be 1/2n, where n is the length of the x. In differential cryptanalysis, we seek to exploit a
scenario where a particular β occurs given a particular input difference α with a very high
probability pD much larger than 1/2n. To find this probability, we look at a differential
characteristic.

Definition 4.22 Differential characteristic
Let R be a non-negative integer. A R-round differential characteristic is an element
T = ((α1, β1), . . . , (αR, βR)) ∈ ((Fsm

2 )2)R, satisfying αi+1 = π(βi) for all 1 ≤ i < R.
The 0-round differential characteristic is denoted (). For each 0 ≤ i ≤ j ≤ R let T[i,j]
denote the characteristic ((αi, βi), . . . , (αj , βj)).

As the round keys are assumed independently and uniformly distributed, a R-round
differential characteristic can be computed as

Pr(T ) =
R∏
i=1

Pr(αi → βi) =
R∏
i=1

 m∏
j=1

Pr(aij → bij)


We call the differential characteristic with the highest probability after R-rounds the
best R-round characteristic, and its probability is denoted pbest(R). We can also extend
characteristics to further rounds.

Definition 4.23 Extension
Let r, r′ be integers such that 0 ≤ r ≤ r′, and let T and T ′ respectively be r and
r′-round characteristic. The characteristic T ′ extends T if the r first input and output
differences are equal

T ′
[1,r] = T .

We give a simplified example of a 3-round differential characteristic of the toy S-box under
the assumption that there are no permutations and no constant addition layer, that is, each
entry of an S-box is sent directly into the next S-box

Example 4.24
Let S be the S-box of the toy cipher as depicted in Table 1.2. Let the input difference
to Stoy be 1011, then the output difference of the first round is 0010 with probability
8/16 = 1/2. This can be seen in the DDT of the toy cipher Table 4.2. This then
becomes the input difference to the second round. The output difference of the second
round then becomes 0101 with a probability of 6/16, and the output difference of the
third round then becomes 0001 with a probability of 4/16 = 1/4. The differential
characteristic here is [(1011), (0010), (0101), (0001)] with a total probability of 0001
being the difference after the third round of 1/2 · 6/16 · 1/4 = 3/64.

We now look into how to find the best characteristic using Matsui’s algorithm for "The
Search for the Best Probability" rewritten and optimized to target SPN ciphers [2]. This
algorithm is called OptTrailEst.

Let R̃ denote the actual number of rounds. The algorithm presented will compute an optimal
R̃−round characteristic without requiring any a priori knowledge. As input, it accepts
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any integer R ≥ 2, the probabilities (pbest(i))1≤i<R, and an estimate pest of pbest(R). The
estimate is chosen such that pest ≤ pbest(R). It returns an optimal R−round characteristic
with its probability pbest(R). Of course, the better the estimates are, the faster the algorithm
is.

Algorithm 4.25 OptTrailEst
Let E be the set of saved characteristics.
Algorithm OptTrailEst
For each non-zero output difference β1

- go to "Round 1"
If a characteristic has been found (E is not empty), return E and pest

End algorithm

Function Round 1
pround 1 ← maxα Pr(α→ β1)
α1 ← α such that Pr(α→ β1) = pround 1

T ← (α1, β1)
α2 ← π(β1)
if R > 2, go to "Round 2", else go to "Last round"

End of function (continue main loop)

Function Round i (2 ≤ i < R)
For each candidate βi for αi

-pround i ← Pr(αi → βi)
-T ← ((α1, β1), . . . , (αi, βi))
- if
∏i

j=1 pround j ≥ pest
pbest(R−i)

(i.e. it does not exceed the rank-i bound), then
-αi+1 ← π(βi)
- if i+ 1 < R go to round i+ 1
- else, go to "Last round"

End of function (continue Round (i− 1) or Round 1() if r = 2)

Function Last round
pround R ← maxβ Pr(αR → β)
βR ← β such that Pr(αR → β) = pround R

If
∏R

j=1 pround j ≥ pest, then
- T ← ((α1, β1), . . . , (αR, βR))
- E ← T (the characteristics is saved)
- pest =

∏R
j=1 pj = Pr(E)

End of function (continue "Round (R− 1)" or "Round 1()" if R = 2)

We now explain the ideas of the OptTrailEst algorithm.
Let us suppose that the condition on the rank-i bound in round i holds. Under this
assumption, the algorithm goes through the tree of all round-R characteristics and saves
the one with the highest probability in E . When the program reaches the function "Round
(i)" the current characteristic is T = ((α1, β1), . . . , (αi−1, βi−1)) and its probability is

Pr(T ) =
i−1∏
j=1

(αj → βj) =

i−1∏
j=1

pround (j).
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The input difference αi for this round is equal to π(βi−1) and for each candidate βi for αi,
we extend T by (αi, βi) and we go to round (i+ 1). When we reach the "Last round", it is
easy to compute the output βR that maximizes the probability of the last round. We save
the characteristic only if it is better than E . Let us now define what is meant by exceeding
the rank-i bound.

Definition 4.26 Exceeding the bound
Let T be an i round characteristic with i < R. The probability Pr(T ) of the
characteristic exceeds the rank-i bound if

Pr(T ) < pest

pbest(R−i)

Rewriting "exceeding the bound" as Pr(T ) · pbest(R−i) < pest shows that even if the
characteristic T is extended by an optimal (R − i)−round characteristic, its probability
will still be lower than the estimate. This both shows the importance of the estimate
and the pruning ability of the algorithm. If the estimate is chosen larger than the largest
probability characteristic, pest > pbest(R), a characteristic expandable to an optimal R-round
characteristic could be cut, but more importantly, no characteristic would be saved in "Last
round". While we do not want to choose it larger than pbest (R), choosing it too small allows
for many characteristics to exceed the bound, making the algorithm noticeably slower.
We want to choose it close to pbest (R), allowing only a few characteristics to exceed the
bound, lowering the computational complexity of the algorithm. With regard to pruning,
we remove characteristics without removing any optimal characteristic. We now prove that
the characteristic returned by the algorithm are optimal.

Lemma 4.27
Let R ∈ N and r ∈ N<R. Let T be a r-round characteristic whose probability exceeds
the rank-r bound. Then there does not exist any R-round characteristic extension T ′

of T of probability greater than or equal to pest.

Proof. Assume that T ′ extends T such that Pr(T ′) ≥ pest. Then, the probability of the
(R− r)-round characteristic T ′

[r+1,R] is

Pr(T ′
[r+1,R]) =

Pr(T )Pr(T ′
[r+1,R])

Pr(T )

=
Pr(T ||T ′

[r+1,R])

Pr(T )

=
Pr(T ′)

Pr(T )
,

where the second equality follows by the assumption of independence of the S-boxes. By
assumption Pr(T ) < pest/pbest (R−r) holds, and the strict inequality implies that pest > 0.
It now follows that

Pr(T ′)

Pr(T )
≥ pest

Pr(T )
>

pest

pest/pbest (R−r)
= pbest (R−r).

As by definition pbest (R−r) is the highest probability any (R− r)-round characteristic can
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achieve, we end up with a contradiction.

We now prove the validity of the algorithm.

Theorem 4.28
The algorithm OptTrailsEst returns a characteristic E such that Pr(E) = pbest (R)

if there exists an R-round characteristic of probability greater than pest. In other
words, if

pest ≤ pbest (R)

the algorithm returns an optimal characteristic, and if

pest > pbest (R)

the algorithm does not return anything.

Proof. Suppose that the condition on the bound is removed, that is, Pr(T ) < pest/pbest (R)

does not have to hold. If pest < pbest (R), an optimal characteristic is saved in E in "Last
Round", else E remains empty. The previous Lemma ensures that the pruning condition
avoids only characteristics with probability strictly lower than pest. The result still holds.

There are further optimizations for the OptTrailsEst algorithm, these are described in [2],
and we will now touch on one of them, namely the complexity of "Round 1".
The first step in "Round 1" requires that the algorithm goes through all non-zero output
differences β1, for which there are 2sm−1 possible. For Ascon , the lower bound complexity
of the whole algorithm would then be 25·64−1 = 2320−1, which is slower than just checking
all the 2128 possible keys. To solve this problem, we define a partition of the set of all
non-zero differences and provide an effective way to test whether no difference in one part
can be the beginning of an optimal characteristic.

Definition 4.29 Partitioned maximum S-box probabilities
The maximum probability of the n’th S-box is given as

pSB(n) = max
a,b

Pr(a→ b),

for a, b ∈ Fs
2 \ {0}. For every n ∈ N≤m sort the maximal probabilities of the S-boxes

in decreasing order, equivalent to using a permutation ρ of J1,mK such that

pSB(ρ(n)) ≥ pSB(ρ(n+1)).

We omit the cases whenever a or b equals 0, as by Lemma 4.21 we have that Pr(0→ 0) = 1
and these would "cut in queue". We define the maximum probability of a one-round
characteristic activating i S-boxes.
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Definition 4.30
Let p[n]-SB denote the maximum probability of a one-round characteristic activating
n S-boxes

p[n]-SB = max
α,β

Pr(α→ β),

for #SB(α) = n and α, β ∈ Fsm
2 \ {0}.

These definitions invite the following proposition.

Proposition 4.31
Let n ∈ N≤m, then

p[n]-SB =
n∏
i=i

pSB(ρ(i)).

Proof. Let α be an input difference that activates n S-boxes, and let β be an output
difference. We will prove that Pr(α → β) ≤

∏n
i=i pSB(ρ(i)). For each i in J1,mK define

qi = Pr(ai → bi). By definition, we have

Pr(α→ β) =
m∏
i=1

Pr(ai → bi) =
m∏
i=1

qi.

Let ρ′ be a permutation of J1,mK such that

qρ′(i) ≥ qρ′(i+1).

As α activates n S-boxes, it must hold that qρ′(i) = 0 for all i > n, we have the following
relation

Pr(α→ β) =
m∏
i=1

qi =
m∏
i=1

qρ′(i) =
n∏

i=1

qρ′(i).

We have that
n∏

i=1

pSB(ρ(i)) ≥
n∏

i=1

pSB(ρ′(i)),

as
∏n

i=1 pSB(ρ(i)) is the product of the n best probabilities for any α ∈ F(sm)
2 \ {0}, whereas∏n

i=1 pSB(ρ′(i)) relates to the specific α chosen. Also, using the same permutation ρ′, we
have that

n∏
i=1

pSB(ρ′(i)) ≥
n∏

i=1

qρ′(i),

as pSB(i) ≥ qi for all i ∈ J1,mK. The result follows as have proven that
∏n

i=1 pSB(ρ(i)) ≥
Pr(α → β), which holds for arbitrary α whenever #SB(α) = n, so it must hold for
maxα,β Pr(α → β) whenever #SB(α) = n. But as the maximum must have the highest
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probability, it holds that

n∏
i=1

pSB(ρ(i)) = max
α,β

Pr(α→ β) = p[n]-SB.

The inequalities p[n]-SB ≤ . . . ≤ p[1]-SB, clearly holds, and the probability of an optimal
one-round characteristic is given as

pbest(1) = max
α,β

Pr(α→ β) = p[1]-SB = pSB(ρ(1)).

We precompute the probabilities pSB(i) and p[n]-SB to optimize the search. The following
theorem states that whenever p[n]-SB exceeds the rank-one bound, we only have to test the
output differences β1 for at most n− 1 S-boxes. Before stating and proving the theorem, we
argue the number of elements to be checked. Assuming the theorem is true and as p[n]-SB
exceeds the rank-one bound, the output difference can activate any number from 1 to n− 1
of m S-boxes. There are

(
m
i

)
ways to choose i S-boxes and a total of

∑n−1
i=1

(
m
i

)
ways to

choose any number less than n S-boxes. For each S-box, there are 2s − 1 possible elements
to choose from. In total, there are

n−1∑
i=1

(
m

i

)
(2s − 1)i,

such differences, compared to the 2sm − 1 otherwise.

Theorem 4.32
Let n and n′ be integers such that 1 ≤ n ≤ n′ ≤ m. If p[n]-SB exceeds the rank-one
bound, then there exists no R-round characteristic activating n′ S-boxes in the first
round with probability greater than or equal to pest.

Proof. Assume that p[n]-SB exceeds the rank-one bound. Let T be a one-round characteristic
activating n′ S-boxes. By definition, we have that

Pr(T ) ≤ p[n′]-SB.

By definition of n and n′ and by the discussion following proposition 4.31 it follows that
p[n′]-SB ≤ p[n]-SB, and hence

Pr(T ) ≤ p[n]-SB.

Then, if Pr(T ) exceeds the rank-one bound, Lemma 4.27 ensures that there exists no
R-round characteristic extending T , with probability greater than or equal to pest.

By choosing n′ = n, the result of the output difference activating at most n− 1 S-boxes
follows. The authors of [2] have run the improved algorithm for several SPNs, having a
bit permutation as its linear layer. They have found that for m = 16 and s = 4, p[4]-SB
always exceeds the bound. Also, they have found that, at most, only 221 differences are to
be tested compared to 264 differences. We now present the optimized algorithm.
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Algorithm 4.33 Optimized OptTrailEst
For n form 1 to m

- if p[n]-SB exceeds the rank-one bound, then exit the loop
- else

- for each output difference β1 activating n S-boxes
- Go to "Round 1"

If a characteristic has been found (E is not empty), return E and pest
End algorithm

We have not yet explored how to find the pest, and we now give a naive, and in no way
optimal way to find pest. The idea is to find the best r−round probability conditioned on
the best (r − 1)−round probability. It is easy to find the best 1−round probability. With
this naive estimate, we can run the algorithm.

4.3 Recovering key bits

We quickly touch on how to recover bits of the key. Assume that we have found a good
differential characteristic for almost all of the rounds, say r − 1 out of r rounds

Pr(α→ β) = p much greater than 2−n.

We can now encrypt many plaintext pairs with difference α, which in turn also gives us
many ciphertext pairs. We guess part of the key for each ciphertext pair and compute
backward from round r using this key. Then, we check whether the ciphertext pairs produce
a pair of intermediate values with the predicted difference β. We give the key candidate a
"thumbs up" if it has the predicted difference value. As this is repeated for many of the
messages, the different key candidates get different numbers of "thumbs up". This happens
as the intermediate results can happen either because it was the correct key, and we were
looking at the actual intermediate value corresponding to the high probability difference,
or because we randomly observed the correct difference. That is, we have a "good" and a
"bad" scenario, one where we accidentally choose the wrong key and one where we choose
the correct key. We choose the key with the most "thumbs ups". It turns out that the
correct amount of pairs to check is approximately 1/p. We have to run through all key
candidates for each pair. This also means that we have to have a very good differential
characteristic.

4.4 Differential-linear cryptanalysis

In this section, we touch on the subject of differential-linear cryptanalysis, a closely related
attack to those of both differential cryptanalysis and linear cryptanalysis. While differential
cryptanalysis examines the development of differences between two encrypted plaintexts
through the encryption process and linear cryptanalysis examines the development of
parities of subsets of the state bits through the encryption process of a single plaintext,
differential-linear cryptanalysis combines these ideas. This holds under some randomness
assumptions to be discussed later. We present the main ideas and leave the intricacies to
the reader. We make use of the original paper on the subject [14] and a newer paper on
the subject [3].
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The idea of the attack is as follows. We exploit a differential characteristic with a high
probability over a portion of the cipher (this probability would, of course, be significantly
lower for the entire cipher). In the subsequent rounds, a linear approximation is applied, and
it is expected that for each chosen plaintext pair, the probability of the linear approximation
being valid for one plaintext but not the other will decrease for the correct key.

In less broad terms, it works as follows. Assuming we have a cipher E that can be
decomposed into E0 and E1, then a high-probability differential for E0 and a high-bias
linear approximation for E1 can be merged to form an effective distinguisher for the complete
cipher E. Also, assume we have a differential Pr(αdiff → βdiff) = p for E0 and a linear
approximation

|P |⊕
m=1

αlin
m Pm =

|C|⊕
m=1

βlin
m Cm

with bias q for E1. We remark that this notation is different from that used earlier when
describing linear cryptanalysis, but the rewriting is easy to explain: rather than looking
at how the masked plaintext and ciphertext influence the masked key, we look at how the
masked plaintext directly influences the ciphertext.
Denote plaintexts by P, P ′, ciphertexts by C,C ′, and the values inbetween E0 and E1 by
X,X ′. Three approximations are combined for the differential-linear attack. The values
Cβlin and C ′βlin correlates to Xαlin and X ′αlin by the linear approximation of E1 and the
values Xαlin and X ′αlin are correlated as consequence of the differential for E0. This render
Cβlin correlated to C ′βlin.

We now state and discuss the earlier-mentioned randomness assumptions.

• In the cases where the differential is not satisfied, Xαlin = X ′αlin holds in half of
these (the cipher behaves randomly).

• The parts of the decomposed cipher, E0 and E1, are independent, and the bias of the
linear approximations in E1 is not affected by the fact that they are applied to two
intermediate values that correspond to plaintexts with a fixed difference.

The first assumption often fails, so it is suggested that the bias of the whole approximation
be checked experimentally whenever possible. There exist methods to express the exact
bias of the approximation under the sole assumption that the two parts of the decomposed
cipher are independent. We omit it here and refer the reader to [5].
Nonetheless, under these randomness assumptions, we can calculate the bias of Cβlin =
C ′βlin as follows. As Xαlin = X ′αlin holds in half of the cases, this holds with a probability
of 2p. By the independence of the parts E0 and E1 and the Piling up Lemma 4.6, we end
up with a bias of 2pq2.

Without going into any detail about the DES cipher or the exact method, we quickly
account for the effectiveness of differential-linear cryptanalysis on a round-reduced version
(8 rounds) of the DES cipher.
In their original paper [14] on differential-linear cryptanalysis, Langford and Hellman
presented a method to recover 10-bits of the secret key using only 512 chosen plaintexts
with a success probability of 80%. This success rate increases to 95% when using 768 chosen
plaintexts.
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4.5 Linear, differential and differential-linear cryptanalytic results of

Ascon

This section presents the linear cryptanalysis, differential cryptanalysis, and differential-
linear cryptanalysis results of the Ascon cipher. We comment on the results of [7] and [8].
Both the LAT and the DDT of Ascon can be found in [8].

4.5.1 Linear cryptanalysis and differential cryptanalysis

Firstly, they describe how to minimize the number of active S-boxes in differential charac-
teristics for round-reduced versions of the Ascon permutation and argue that the model
for linear cryptanalysis is "(...) essentially identical" [7, page 381]. Different models are
made, and using these, they prove that the 3−round Ascon permutation has at least 15
differentially active S-boxes with a probability of ≤ 2−30 and at least 13 linearly active
S-boxes with bias ≤ 2−14. The bounds on the number of active S-boxes are tight, but not
necessarily those on probabilities. Using this, we can easily argue that the full 12−round
initialization or finalization has at least 60 differentially active S-boxes with a probability of
≤ 2−120 and at least 52 linearly active S-boxes with bias ≤ 2−53. These bounds are almost
certainly NOT tight, but it was not possible to derive bounds for more than 3 rounds
applying the methods used.

"We could not find any differential and linear characteristics for more than 4 rounds with
less than 64 active S-boxes." [8, page 31]

The non-tightness is also apparent in table 4.3 where the, at the time, best-known differential
and linear characteristics for different round numbers are presented. When comparing
the differential and linear results in table 4.3, we notice that for more than 2 rounds of
the Ascon permutation, there are fewer linearly active S-boxes than differentially active
S-boxes. This might infer that Ascon is more susceptible to linear cryptanalysis. Even
so, the best 5−round linear characteristic found has more than 64 active S-boxes, and
assuming the best possible bias of 2−2 for all active S-boxes, the attack complexity is
already larger than 2128. The differing methods in examining the cipher’s behavior, one
through differences and the other through linear approximations, result in varying numbers
of activated S-boxes.
We refer to the paper for further clarification and the models used.

result rounds differential linear

proof
1
2
3

1
4
15

1
4
13

heuristic 4
≥ 5

≤ 44
≤ 78

≤ 43
≤ 67

Table 4.3: Minimum number of active S-boxes for the Ascon permutation.
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4.5.2 Differential-linear cryptanalysis

When using differential-linear cryptanalysis for Ascon -128, we focus on the initialization
phase, why the differences are only allowed in the nonce (s4, s5). Since the linear active bits
must be observable, they have to appear in (s0). We look at a round-reduced initialization
phase (4 rounds).

Differential part
For the differential part, two differences are placed in the same S-box of round 1. With
a probability of 2−2, we have one active bit at the output of this S-box, and the linear
layer ensures that 3 S-boxes are active in the second round. The differences in these three
S-boxes occur at the same bit position in their inputs. In round 2, all three active S-boxes
have the same output pattern, with two active bits, with a probability of 2−3. After the
linear layer, this leads to differences in 11 S-boxes in round 3.

Linear part
For the linear characteristic, we use a characteristic with one active S-box in round 4 and
five active S-boxes in round 3. The bias of this linear characteristic is 2−8. Additionally,
we arrange the S-boxes so that the active S-boxes in round 3 do not overlap with the 11
S-boxes that have input differences. The resulting bias of the combined differential-linear
characteristic is 2pq2 = 2−20.

In practice, we are only interested in the bias of the output bit for the specific differences at
the input. Due to the vast amount of possible combinations of differential and linear

characteristics that achieve these requirements, we expect a much better bias.
[7, page 383-384]



Chapter 5 Confidentiality and authenticity under state
recovery of Ascon

In this chapter, we state, analyze, and discuss results regarding the confidentiality and
authenticity of Ascon in different settings. These results, as well as their proofs, can be
found in [18]. Also, to underline the importance of the multiple key additions, we will state
and prove the BAD Ascon theorem.
We start by defining the security model that will be used for this analysis.

5.1 Security model

We investigate the security of Ascon in a model where the transformations τa and τ b are
to be considered random permutations, that is τa, τ b ∈ perm(n).

"This is, as a matter of fact, the most crucial difference between our description and that
of the actual Ascon : our analysis will demonstrate only resistance against generic attacks;
actual attacks on Ascon may use internal properties of p,q and these are not captured by

our security analysis."
[18, Page 6]

(Note: p and q are the notation used for the permutations in the paper.)

We consider a multi-user setting of Ascon ; that is, an adversary can query up to µ ≥ 1
versions of the scheme simultaneously. We limit the adversary’s ability, such that it cannot
make a decryption query on any input of any result of any earlier encryption query.
We bound the complexity of the adversary, limiting it to QE encryption queries to encryption
oracles, with a total amount of ξE blocks, QD decryption queries to decryption oracles, with
a total amount of ξD blocks, Qτa primitive queries to τ±a and Qτb primitive queries to τ±b

Definition 5.1 Construction queries and primitive queries
Construction queries involve interactions with the actual implementation of the
cryptographic scheme, typically through oracles provided by the scheme.
Primitive queries involve the adversary interacting with the underlying cryptographic
primitives directly, often modeled as ideal objects (like random oracles) in theoretical
analysis.

Construction queries, such as encryption/decryption queries, rely on real-time responses
("online") from the oracles representing the cryptographic scheme. In these cases, the
adversary sends a query and waits for an immediate response.
On the other hand, primitive queries do not require real-time interaction ("offline") with
an oracle. The adversary can perform these queries independently, often assuming they can
access the primitives as idealized objects (e.g., random functions or permutations).
The symbol ± refers to the bidirectional query access.

Definition 5.2 Bidirectional query access
By bidirectional query access, we refer to the ability to obtain a state of the cipher
either through an inverse query τ−a, obtaining the state before the permutation, or
through a forward query τa, obtaining the state after the permutation.
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A block is counted as the number of τ b evaluations that would be induced in the real
world. This might be confusing at first, as a single evaluation request consisting of empty
associated data and a single padded plaintext block P1||1||0κ has zero τ b evaluations, but
for use in security proofs, this is the most logical definition.
For two randomized oracles O and P, we define the advantage ∆A(O;P) of an adversary
A to distinguish between them as

∆A(O;P) = |Pr(AO → 1)− Pr(AP → 1)|,

where Pr(AP → 1) means that the adversary succeeds.

Definition 5.3 Multi user security of Ascon
We define the multi-user security of Ascon against an adversary A as

Advµ−ae
Ascon(A) = ∆A

(
(Eτ

a,τb

Kj
,Dτa,τb

Kj
)µj=1, τ

±a, τ±b; ($j ,⊥)µj=1, τ
±a, τ±b)

)
,

where keys K1, . . . ,Kµ ∈ Fk
2 and $1, . . . , $µ are random function that for each new

tuple (N,A, P ) generates a random string of size |P |+ |N |. The function ⊥ returns
a failure symbol ⊥ for each query.

In the multi-user security of Ascon the two oracles are the encryption/decryption oracle(
(Eτ

a,τb

Kj
,Dτa,τb

Kj
)µj=1, τ

±a, τ±b
)

and the random oracle
(
($j ,⊥)µj=1, τ

±a, τ±b
)

consisting of
random functions $j .
As commented on before, the nonce also plays a part in the security of Ascon , and if the
nonce is repeated, security cannot be guaranteed.

Definition 5.4 Nonce-respecting
We say that an adversary A is nonce-respecting if every encryption query is made for
a nonce N different from all nonces used in earlier encryption queries under the same
key.

Note that the adversary is allowed to reuse a nonce in a decryption query or to reuse a
nonce in an encryption query that was used in an earlier decryption query. We say that a
scheme that is not nonce-respecting is nonce-misusing.
To analyze authenticity against both nonce-respecting and nonce-misusing adversaries, we
separate the multi-user security into confidentiality and authenticity.

Definition 5.5 Seperated multi-user security of Ascon
We define the separated multi-user security of Ascon as

Advµ−conf
Ascon (A) = ∆A

(
(Eτ

a,τb

Kj
)µj=1, τ

±a, τ±b; ($j)
µ
j=1, τ

±a, τ±b)
)
,

Advµ−auth
Ascon (A) = Pr

(
A

(Eτa,τb

Kj
,Dτa,τb

Kj
)µj=1,τ

±a,τ±b

forges

)
.

The adversary forges if it ever makes a query to one of its learning decryption oracles
that is successful and that is not the result of an earlier encryption query.
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5.2 Confidentiality of Ascon

We now present the results on the confidentiality of Ascon in the nonce-based setting,
where the adversary cannot reuse nonce for different calls to a single encryption oracle, but
it can reuse nonce under different keys.

Theorem 5.6
Let a, b, k,m, c, r, µ ∈ N with c + r = n, k + m ≤ n and m ≤ k, and consider the
mode Ascon = (E ,D). For any nonce-respecting adversary A making at most QE
encryption queries with a total amount of ξE blocks, Qτa primitive queries to τa, and
Qτb primitive queries to τ b, such that Qτa ≤ min{2k−1, 2c−1} and Qτb ≤ 2c−1,

Advµ-conf
Ascon (A) ≤

(
µ

2

)
1

2k
+

2µQτa

2k
+

2µQE
2n−m

+
(6m+ 8)Qτa

2n−m

+
(ξE + 2QE)

2

2n
+

12Qτb(QE + ξE)

2n
+

(2QE +Qτa)
2

2n

+
(ξE +Qτb)

2

2n
+

16QτaQE
2n

+
(6r + 8)Qτb

2c
+

(12r + 16)Qτa

2c
.

The proof of this theorem is long and cumbersome; therefore, we choose to explain some of
the ideas of the proof, and we refer the reader to [18] Theorem 1, Lemma 2, and Lemma 3
for a comprehensive proof.
Idea of the proof.
The structure of the proof is as follows:

• Assumptions

• Replacement of permutations

• Definition of worlds

• Definition of transcript

• Definition of BAD events

• Indistinguishability of the ideal world and the real world

• Upper bounding the probability that any BAD event happens in the real world

We now explain the ideas of each of these.

Assumptions:
We start by making assumptions about the key, the permutations, and the adversary. Let
K1, . . . ,Kµ be µ randomly selected keys from Fk

2, and let τa, τ b be randomly selected permu-
tations from perm(n), the set of all permutations on {0, 1}n. Also, let $1, . . . , $µ ∈ func(n),
the set of all functions from {0, 1}n to {0, 1}n and let A be a nonce-respecting adversary.

Replacement of permutations:
The permutations τa and τ b are replaced with random functions f±

τa and f±
τb

. This is done
by considering them as lists of pairs of plaintexts and ciphertexts (X,Y ). Whenever there
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is a forward query X the response is Y if (X,Y ) appears in any of the lists. If (X,Y ) does
not appear, some Y is randomly selected form {0, 1}n. The functions operate equivalently
for inverse queries. It is then argued that if no collisions appear in these lists, that is, if
there are not multiple answers for forward or inverse queries, then the permutations and
the random functions are indistinguishable. To make this replacement there are 2Qε +Qτa

queries to fτa and ξε +Qτb queries to fτb resulting in

Advconf
Ascon(A) ≤ ∆A

(
(E

f±
τa ,f

±
τb

Kj
)µj=1, f

±
τa , f

±
τb
; ($j)

µ
j=1, f

±
τa , f

±
τb

)
+

(2Qε +Qτa)
2

2n
+

(ξε +Qτb)
2

2n
.

Definition of worlds:
We denote the real world WR =

(
(E

f±
τa ,f

±
τb

Kj
)µj=1, f

±
τa , f

±
τb

)
, consisting of the encryption

structure associated with Ascon and the ideal world WI =
(
($j)

µ
j=1, f

±
τa , f

±
τb

)
where the

encryption function is random.
Transcript:
We define a transcript T which can be viewed as a log, saving the evaluations of f±

τa and
f±
τb

.

Bad events:
We define the event BAD over the transcript T . BAD splits into two separate events
GUESS and COL which later are split further into multiple sub-events. We refrain from
explicitly defining these events; instead, we explain their purpose. The exact definitions of
the events can be found in [18] in the proof of Theorem 1.

We split GUESS into GUESS= GUESSkey ∨ GUESSτa ∨ GUESSτb . The purpose of
the event GUESS is to capture the case where the adversary guesses an intermediate state
that was generated during a construction query. Event GUESSkey corresponds to guessing
the key, while for the other bad events, the subscript indicates if this guess is a guess for
the outer primitive τa or the inner primitive τ b.

COL handles collisions between the keys or between intermediate states in construction
queries. It guarantees that permutation queries in the real world are unique and have not
been previously seen or interacted with in the system (provided that no such state is guessed
in a primitive query). Col is further split into sub-events COL= COLkey ∨ COLaux

∨ COLst. COLkey ensures that no collisions between two initial states IV ||Kj ||N and
IV ||Kj′ ||N ′ occurs, COLaux prevents collisions between an initial state and a state before
the last fτa-evaluation, and COLst handles the remaining collisions.

Indistinguishability of worlds:
We have the following statement:

As long as BAD does not occur WR and WI are indistinguishable.

We formally describe this as

∆A(WR;WI) ≤ Pr(AWR sets BAD).

The proof of this can be found in [18] Lemma 2.
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Upper bound on the probability that a BAD event happens in the real world:
In this portion of the proof, each BAD event discussed above is upper bounded separately.
We notice that each event, besides COLkey, can happen at any point during any of the
Qτa + 2Qε + Qτb + ξε fτa and fτb evaluations. It is necessary to condition each of the
probabilities on the fact that any BAD event has not happened before. We will only argue
some of the upper bounds and refer to [18] Lemma 3 for the rest.

Upper bounding COLkey:
For each of the µ versions of the scheme queried if 2 of the keys are the same, COLkey

happens. There are
(
µ
2

)
ways this can happen and there are 2k different keys, this gives us

a probability of COLkey happening of

Pr(COLkey) =

(
µ

2

)
1

2k
.

Upper bounding GUESSkey:
The second term 2µQτa

2k
corresponds to GUESSkey. This event can only happen during an

fτ±a query. In the forward direction, this happens whenever the adversary guesses one of
the µ random keys during any of the Qτa queries. Each failed guess eliminates one state of
the set of possible candidates. This results in a probability of

µ

2k −Qτa
.

In the inverse direction, hitting IV ||Kj on its left most n − m bits "sets" BAD, this
happens with probability at most µ

2n−m . As there is a maximum of Qτa primitive queries
to fτa , the probability that the BAD event GUESSkey happens is:

Qτa

(
µ

2n−m
+

µ

2k −Qτa

)
≤ Qτa

2µ

2k
.

Here, we use the fact that Qτa ≤ 2k−1 and that k+m ≤ n, such that the case of the inverse
direction is also taken care of.

≈

We now discuss the upper bound of Advµ-conf
Ascon (A) by examining some of the terms of the

upper bound. Examining all the terms does not seem relevant to our discussion. We expect
the upper bound to be close to zero, as our model of Ascon should appear random. The
first term corresponds to the bound on COLkey. While there are no restrictions on µ, it
does not seem to matter as 2k grows much faster than

(
µ
2

)
. In particular, a quick calculation

shows that for
(
µ
2

)
to equal 2128, we would have to query more than 3.4 · 1038 different

schemes. We can safely imagine that we query nowhere near that many schemes.
For the second term 2µQτa

2k
we have the restriction Qτa ≤ min{2k−1, 2c−1}. For the Ascon

-128 scheme 2k−1 ≤ 2c−1 (c = 256 and k = 128). At first glance, this might seem worrying
as if Qτa = 2k−1 the second term equals µ. However, this scenario is mitigated by several
factors.

• Practical Limits on Queries:
In practical cryptographic applications, the number of queries Qτa is much smaller
than 2k−1. This means that in realistic scenarios, the value of Qτa is unlikely to
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approach 2k−1, thereby keeping the term 2µQτa

2k
much smaller than µ.

• Adversary Resources:
For an adversary to reach Qτa = 2k−1, they would require an infeasible amount of
computational resources and time, which makes it impractical for the adversary to
achieve such a high number of queries.

We could discuss the terms of the upper bound for a long time, but we choose to stop and
state that the remaining terms are all close to zero.

5.3 Authenticity in different nonce settings

We note that there exist results on the authenticity of Ascon in the nonce-misuse and
nonce-respecting settings, but we choose to omit these for brevity. However, interested
readers can refer to [18] Theorems 2 and 3 and their related Lemmas.

5.4 Authenticity Under State Recovery

A claim made by the Ascon architects is that even if an inner state of Ascon is leaked
(the adversary recovers a state), mounting forgeries or recovering the key will still be hard.
The idea is that whenever an inner state S is leaked to the adversary A, it may evaluate it
in a forward/inverse direction using evaluations of τ b. Still, it cannot go beyond the outer
permutation evaluations due to the key addition mechanism. The secret values, i.e., the
key and the tag, lie outside of these permutation evaluations, and hence, the architects’
claim is valid. Authenticity is a weaker property than key recovery security as if an attacker
can successfully recover the secret key, they can also forge messages. Therefore, to define
security under state recovery, we aim for authenticity. Aside from oracle access, we assume
that the adversary also has access to a leaky version of the scheme, where it not only gets
the actual inputs but also some leakage function of each permutation call. The adversary
succeeds if it can forge the challenge version of the scheme.
Leakages can only happen for the permutations τ b, and the leakage function leaks the entire
input and output of those permutations. Firstly, the fact that leakage only happens for
permutations τ b is supported by the observation that the permutations τa are stronger
than the inner ones due to them being masked by the key additions. Secondly, the fact
that the function leaks the entire input and output of the permutations is given out of
generosity; that is, the adversary learns all the state information contrary to only part of
it. We now define authenticity under state recovery using learning oracles LE and LD,
which respectively is an encryption oracle and a decryption oracle that additionally leak all
input/output values of the evaluations of permutation τ b.

Definition 5.7 Authenticity under state recovery
Let A be an adversary and let LE and LD be its leaky encryption and decryption
learning oracles. The adversary forges if it ever makes a query to one of its learning
decryption oracles that is successful and that is not the result of an earlier encryption
query.

Advµ−sr−auth
Ascon (A) = Pr

(
A

(LEτa,τb

Kj
,LDτa,τb

Kj
)µj=1,τ

±a,τ±b

forges

)
.
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5.5 Authenticity under state recovery of BAD Ascon

BAD Ascon refers to a modified version of Ascon that, among other things, omits all key
additions except the first one (the addition of K to the state when adding the initialization
vector IV ). We will prove that this construction fails to achieve authenticity under state
recovery.

Theorem 5.8
Let a, b, k,m, c, r, µ ∈ N with c+ r = n, k +m ≤ n and m ≤ k and consider BAD

Ascon as described earlier. There exists an adversary A making QE = 1 encryption
query with a total amount of ξE = 0 blocks, QD = 1 decryption query with a total
amount of ξD = 0, Qτa = 0 primitive queries to τa, and Qτb = 3 primitive queries to
τ b, such that

Advµ−sr−auth
BAD Ascon(A) = 1.

Through a single learning query, one can obtain the key, and once the key is obtained, it
becomes possible to execute a forgery. We include the proof below.

Proof. Consider an adversary A that recovers the key K1 and uses it to forge a tag using
this key. It operates as follows

1. A makes any encryption learning query with empty associated data and with a single
padded plaintext block LEτ

a,τb

K1
(N,P ). It obtains (C, T ) and the state S right after

absorption of the plaintext P and before applying permutation τa.

2. The adversary queries τ−a(S ⊕ (P ||0c−1||1)) to obtain IV ||K1||N and extracts K1

from it.

3. It then selects any tuple (N ′, P ′) ̸= (N,P ), and computes Eτ
a,τb

K1
(N ′, P ′) = (C ′;T ′)

offline with two calls to τa.

4. It outputs forgery (N ′, C ′, T ′).

The forgery succeeds with probability 1.

This theorem shows the importance of the additional key additions. Without these, it would
be possible for an adversary to forge messages, breaking the authenticity of the scheme.

5.6 Authenticity under state recovery of Ascon

The main difference between the security of Ascon and BAD Ascon , concerning achieving
authenticity under state recovery, is that the calls to the outer permutation τa are masked
by the key K on both sides. Thus, even if an adversary learns all intermediate states, they
cannot "pass through" the outer permutations τa. We now present the security of Ascon
under state recovery.
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Theorem 5.9
Let a, b, k,m, c, r, µ ∈ N with c + r = n, k + m ≤ n and m ≤ k, and consider the
mode Ascon = (E ,D). For any possibly nonce-misusing adversary A making at most
QE encryption queries with a total amount of ξE blocks, QD decryption queries with
a total amount of ξD blocks, Qτa primitive queries to τa, and Qτb primitive queries
to τ b such that 2QE + 2QD +Qτa ≤ 2c−1, ξE + ξD +Qτa ≤ 2c−1 and Qτa ≤ 2k−1,

Advµ-sr-auth
Ascon (A) ≤2QD

2m
+

(
µ

2

)
1

2k
+

2µ(Qτa +QE +QD)

2k

+
(12(c− k) + 16)Qτa

2k

+
Qτa(6m+ 8)

2n−m
+

4Qτa(QE +QD)

2n

+
8(2QE + 2QD + 8Qτb + E +D)2

2c

+
12Qτa(8QE + 8QD +Qτb + E +D)

2c
.

As for Theorem 5.6, this theorem is also long and cumbersome, but the ideas and the
structure of the proof are much like that for Theorem 5.6. Therefore, we ignore discussing
this and refer the reader to [18] Theorem 4 for a comprehensive proof.
The discussion of the upper bound is much like that for Theorem 5.6, so we omit it here.



Chapter 6 Experiment - the randomness of the permutations

This chapter consists of an experiment on the Ascon -128 permutations, checking whether
they appear random.

To check randomness, we encrypt the same plaintext under several different keys. We
choose these keys in a very specific way: we ONLY alter the first t bits of the key and go
through all possible 2t different keys. We then check whether changing the key changes the
first t bits of the ciphertext. We do this by calculating the entropy of the distribution of
the first t bits of the ciphertexts.
This gives us a number 0 ≤ H(X) ≤ t, according to equation 3.1, which we can use to
measure the uncertainty or randomness of the permutations. The experiment code has
been written in Python 3.11 and can be found in Appendix A. The majority of the code
consists of implementing the Ascon -128 cryptosystem. The implementation is based on
[9], but multiple functions have been altered, and several functionalities have been added.
The original work done in [9] was for several of the Ascon schemes, but the code included
here has been altered to consider Ascon -128 only.

6.1 The experiment

This section explains the code and can be omitted.

The first section of the experiment defines "helper functions," which are used to shorten the
code. Next, the Ascon -128 scheme is added, together with a function "demo_aead". The
"demo_aead" function creates a random key and a random nonce, for which it encrypts
the plaintext "ascon" with associated data "ASCON". It then prints, in byte from, the
key, the nonce, the plaintext, the associated data, the ciphertext, the tag and the recieved
message and also the byte-length of each of them. This function is added for convenience,
making it easy to check whether the implementation works when altering the code.

The function "experiment(key_random,testlength,variant):"

Next, the function "experiment" is added. It takes as input a key, the amount of bits t
which are to be altered during the key-altering process, and a variant of Ascon . It outputs
the key, the ciphertext truncated to the first t bits, a list of the frequency of each ciphertext,
the percentage of the amount of the 2t possible ciphertexts that appear when trying all the
2t different keys, and the entropy.

When writing the code, an issue converting different number bases arose, for which no
solution has been found. This issue results in t having to be a multiple of 8 (the binary
length of a byte). If this issue were solved, we would be able to calculate the entropy and
the percentage of elements appearing for any number t less than or equal to the key length.
As t has to be a multiple of 8, the largest value tested is 16, this, of course, is quite the
limitation, but as it stands now, it is the largest possible number.

We now comment on what exactly happens in the function "experiment". We start by as-
signing the nonce a randomly generated value, which is kept constant during the experiment,
such that we only check for one variable, which is the amount of bits of the key that we are
altering. We choose to encrypt a single plaintext block and assign it the ASCII (American
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Standard Code for Information Interchange) value "b′\x0eP\xe3\x8b; \xd5\x86′". The
plaintext is padded accordingly.
Next, the key, which is given as a byte object written in ASCII, is converted to a binary string
using two functions key_random_hex, which converts the key from ASCII to hexadecimal,
and then key_random_bin, converts the key from hexadecimal to its binary representation.
An ordered list of all binary numbers "binary_numbers" less than 2t is created together
with an empty list "ciphertext_list", which will be used to store the ciphertexts.
In a loop of length 2t, in round i, we replace the first t bits of the key with a corresponding
binary number from "binary_list". The new key is converted back into bytes and used for
encryption to calculate a ciphertext. Only the first t bits are considered and appended to
the list "ciphertext_list". We use the function "ascon_encrypt_experiment" which differs
from the ordinary encryption model by not calculating the tag, as this does not influence
the ciphertext. This is done to reduce runtime.
After iterating over all possible 2t keys, we find the frequency of each element in "cipher-
text_list" and calculate the percentage of elements that appear. For this purpose, we
convert the elements in "ciphertext_list" to integers and create a zero-list "frequency"
of length 2t. In a loop over "ciphertext_list", in iteration i we add one the i′th entry
of "frequency". This leaves us with a list of the number of occurrences of each element
in "ciphertext_list". Now, in a loop of length 2t, whenever the entry of "frequency" is
not equal to zero, we add one to a counter "amount_hit", and we find the percentage of
elements hit by dividing this by 2t. We then print the values established earlier and finally
calculate the entropy in the function "entropy", which works by using the frequency list as
its probability distribution.

We also define a function called "iterated_experiment", which, as the name suggests, is
just the experiment iterated a number of times for multiple random keys.

6.2 Results

We now look at the results and analyze them. We test several things and add the results to
tables for an easy overview.
First, we test for t = 8 and t = 16, keeping the key (the last 128− t bit), the nonce, and
the plaintext the same.

Unaltered key (16 bytes) b′\xe50\x00\xdd\x1ee\x15_K\x91 < I\x0e\xa5\xa2&′

Nonce (16 bytes) b′\xff\x1b\xe0\xb1\xc1L\x03;NI, ; ˆ\\\x00\x17′
Plaintext (7 bytes) b′\x96 ∼ \x16!\x8ey\x9e′

Percentage elements hit t = 8
64.453125%

t = 16
63.200378%

Entropy t = 8
7.206259

t = 16
15.171805

We notice that for both t = 8 and t = 16, the entropies do not attain theoretical value, and
thus, we can conclude that the permutations are not truly random. If one would have to
guess the key using a brute force method, they would still have to check about 27.206259

and 215.171805 different keys for t = 8 and t = 16 respectively. As the values are close to the
theoretical value, it seems fair to conclude that the permutations appear random.
Next, we look at the percentage of elements hit, which is about 63%− 64% for both. At
first glance, this might seem worrisome, but there is a logical explanation. Indeed, different
keys generate different ciphertexts, but if you only look at the first portion, you should
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expect to see the same sometimes. Let us look at the theoretical value with t = 8. One can
view this as throwing 28 balls at 28 boxes under the assumption that the probability of
hitting any two boxes is equal. We have the following problem

For a given box, what is the probability of hitting it?

When throwing a ball at the boxes, we have a 28−1
28

of NOT hitting the desired box.
Repeating this experiment 28 total times, we end up with(

28 − 1

28

)28

,

which is the total probability of NOT hitting any box. In turn, due to the law of total
probability, the probability of hitting the box then becomes

1−
(
28 − 1

28

)28

≈ 0.633.

As this holds for all boxes, we should assume to hit about 63% of the boxes when throwing
28 balls at 28 boxes. For t = 16 we have

1−
(
216 − 1

216

)216

≈ 0.632.

These theoretical values lie close to those we observe. The following example also highlights
this.

Example 6.1
In this example, we look at the first 2 bits of a bit-string. The first 2 bits can attain
four different values: 00, 01, 10, and 11. Comparing this to the experiment, here we
have four boxes and four balls. We have the following different possible distributions;

• Each box is hit once (1).

• One box is hit twice, and two boxes are hit once (12).

• Two boxes are hit twice (6).

• One box is hit thrice, and one box is hit once (12).

• One box is hit four times (4).

The number in parenthesis is the total number of different possible outcomes the
scenario has. For example, in the scenario with two boxes hit twice, we can hit box
number one and box number three twice, but we can also hit box number two and
box number three twice, and so on. In the table below, we calculated the entropy for
each scenario.

Scenario Number of possibilities Entropy
Each box is hit once 1 2
One box is hit twice, and two boxes are hit once 12 1.5
Two boxes are hit twice 6 ≈ 0.8112
One box is hit thrice, and one box is hit once 12 1
One box is hit four times 4 0
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One of the most probable scenarios also has the (next) highest entropy, namely, one
box being hit twice and two boxes being hit once, with an entropy of 1.5.
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Appendix A Ascon -128 code

This chapter consists of the code used in Chapter 6 for experiments.

# === helper functions ===

def get_random_bytes(num):
import os
return to_bytes(os.urandom(num))

def zero_bytes(n):
return n * b"\x00"

def to_bytes(l): # where l is a list or bytearray or bytes
return bytes(bytearray(l))

def bytes_to_int(bytes):
return sum([bi << ((len(bytes) - 1 - i)*8) for i, bi in enumerate(to_bytes(

bytes))])

def bytes_to_state(bytes):
return [bytes_to_int(bytes[8*w:8*(w+1)]) for w in range(5)]

def int_to_bytes(integer, nbytes):
return to_bytes([(integer >> ((nbytes - 1 - i) * 8)) % 256 for i in range(

nbytes)])

def rotr(val, r):
return (val >> r) | ((val & (1<<r)-1) << (64-r))

def bytes_to_hex(b):
return b.hex()

def entropy(frequency,testlength):
import math
entropy=0
for i in range (2**testlength):

if frequency[i] != 0:
entropy += frequency[i]/2**testlength*math.log2(frequency[i]/2**

testlength)
print("Entropy: ", -entropy)
# return entropy

# === Ascon AEAD encryption and decryption ===

def ascon_encrypt(key, nonce, associateddata, plaintext, variant="Ascon-128"):
"""
Ascon encryption.
key: a bytes object of size 16 (for Ascon-128)
nonce: a bytes object of size 16 (must not repeat for the same key!)
associateddata: a bytes object of arbitrary length
plaintext: a bytes object of arbitrary length
variant: "Ascon-128" (specifies key size, rate and number of rounds)
returns a bytes object of length len(plaintext)+16 containing the

ciphertext and tag
"""
S = [0, 0, 0, 0, 0]
k = len(key) * 8 # bits
a = 12 # rounds
b = 6 # rounds
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rate = 8 # bytes

ascon_initialize(S, k, rate, a, b, key, nonce)
ascon_process_associated_data(S, b, rate, associateddata)
ciphertext = ascon_process_plaintext(S, b, rate, plaintext)
tag = ascon_finalize(S, rate, a, key)
return ciphertext + tag

def ascon_encrypt_experiment(key, nonce, associateddata, plaintext, variant="
Ascon-128"):
"""
Ascon encryption.
key: a bytes object of size 16 (for Ascon-128)
nonce: a bytes object of size 16 (must not repeat for the same key!)
associateddata: a bytes object of arbitrary length
plaintext: a bytes object of arbitrary length
variant: "Ascon-128" (specifies key size, rate and number of rounds)
"""
S = [0, 0, 0, 0, 0]
k = len(key) * 8 # bits
a = 12 # rounds
b = 6 # rounds
rate = 8 # bytes

ascon_initialize(S, k, rate, a, b, key, nonce)
# ascon_process_associated_data(S, b, rate, associateddata)
ciphertext = ascon_process_plaintext(S, b, rate, plaintext)
#tag = ascon_finalize(S, rate, a, key)
return ciphertext

def ascon_decrypt(key, nonce, associateddata, ciphertext, variant="Ascon-128"):
"""
Ascon decryption.
key: a bytes object of size 16 (for Ascon-128y)
nonce: a bytes object of size 16 (must not repeat for the same key!)
associateddata: a bytes object of arbitrary length
ciphertext: a bytes object of arbitrary length (also contains tag)
variant: "Ascon-128"(specifies key size, rate and number of rounds)
returns a bytes object containing the plaintext or None if verification

fails
"""

S = [0, 0, 0, 0, 0]
k = len(key) * 8 # bits
a = 12 # rounds
b = 6 # # rounds
rate = 8 # bytes

ascon_initialize(S, k, rate, a, b, key, nonce)
ascon_process_associated_data(S, b, rate, associateddata)
plaintext = ascon_process_ciphertext(S, b, rate, ciphertext[:-16])
tag = ascon_finalize(S, rate, a, key)
if tag == ciphertext[-16:]:

return plaintext
else:

return None

def ascon_initialize(S, k, rate, a, b, key, nonce):
"""
Ascon initialization phase - internal helper function.
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S: Ascon state, a list of 5 64-bit integers
k: key size (bits)
rate: block size (bytes) (8 for Ascon-128)
a: number of initialization/finalization rounds for permutation
b: number of intermediate rounds for permutation
key: a bytes object of size 16 (for Ascon-128)
nonce: a bytes object of size 16
returns nothing, updates S
"""
iv_zero_key_nonce = to_bytes([k, rate * 8, a, b]) + zero_bytes(20-len(key))

+ key + nonce
S[0], S[1], S[2], S[3], S[4] = bytes_to_state(iv_zero_key_nonce)

ascon_permutation(S, a)

zero_key = bytes_to_state(zero_bytes(40-len(key)) + key)
S[0] ^= zero_key[0]
S[1] ^= zero_key[1]
S[2] ^= zero_key[2]
S[3] ^= zero_key[3]
S[4] ^= zero_key[4]

def ascon_process_associated_data(S, b, rate, associateddata):
"""
Ascon associated data processing phase - internal helper function.
S: Ascon state, a list of 5 64-bit integers
b: number of intermediate rounds for permutation
rate: block size in bytes (8 for Ascon-128, 16 for Ascon-128a)
associateddata: a bytes object of arbitrary length
returns nothing, updates S
"""
if len(associateddata) > 0:

a_padding = to_bytes([0x80]) + zero_bytes(rate - (len(associateddata) %
rate) - 1)

a_padded = associateddata + a_padding

for block in range(0, len(a_padded), rate):
S[0] ^= bytes_to_int(a_padded[block:block+8])
ascon_permutation(S, b)

S[4] ^= 1

def ascon_process_plaintext(S, b, rate, plaintext):
"""
Ascon plaintext processing phase (during encryption) - internal helper

function.
S: Ascon state, a list of 5 64-bit integers
b: number of intermediate rounds for permutation
rate: block size in bytes (8 for Ascon-128)
plaintext: a bytes object of arbitrary length
returns the ciphertext (without tag), updates S
"""
p_lastlen = len(plaintext) % rate
p_padding = to_bytes([0x80]) + zero_bytes(rate-p_lastlen-1)
p_padded = plaintext + p_padding

# first t-1 blocks
ciphertext = to_bytes([])
for block in range(0, len(p_padded) - rate, rate):
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if rate == 8:
S[0] ^= bytes_to_int(p_padded[block:block+8])
ciphertext += int_to_bytes(S[0], 8)

ascon_permutation(S, b)

# last block t
block = len(p_padded) - rate
if rate == 8:

S[0] ^= bytes_to_int(p_padded[block:block+8])
ciphertext += int_to_bytes(S[0], 8)[:p_lastlen]

return ciphertext

def ascon_process_ciphertext(S, b, rate, ciphertext):
"""
Ascon ciphertext processing phase (during decryption) - internal helper

function.
S: Ascon state, a list of 5 64-bit integers
b: number of intermediate rounds for permutation
rate: block size in bytes (8 for Ascon-128)
ciphertext: a bytes object of arbitrary length
returns the plaintext, updates S
"""
c_lastlen = len(ciphertext) % rate
c_padded = ciphertext + zero_bytes(rate - c_lastlen) #zeropadding ot make

sizes fit

# first t-1 blocks
plaintext = to_bytes([])
for block in range(0, len(c_padded) - rate, rate):

if rate == 8:
Ci = bytes_to_int(c_padded[block:block+8])
plaintext += int_to_bytes(S[0] ^ Ci, 8)
S[0] = Ci

ascon_permutation(S, b)

# last block t
block = len(c_padded) - rate
if rate == 8:

c_padding1 = (0x80 << (rate-c_lastlen-1)*8)
c_mask = (0xFFFFFFFFFFFFFFFF >> (c_lastlen*8))
Ci = bytes_to_int(c_padded[block:block+8])
plaintext += int_to_bytes(Ci ^ S[0], 8)[:c_lastlen]
S[0] = Ci ^ (S[0] & c_mask) ^ c_padding1

return plaintext

def ascon_finalize(S, rate, a, key):
"""
Ascon finalization phase - internal helper function.
S: Ascon state, a list of 5 64-bit integers
rate: block size in bytes (8 for Ascon-128)
a: number of initialization/finalization rounds for permutation
key: a bytes object of size 16 (for Ascon-128)
returns the tag, updates S
"""
S[rate//8+0] ^= bytes_to_int(key[0:8])
S[rate//8+1] ^= bytes_to_int(key[8:16])
S[rate//8+2] ^= bytes_to_int(key[16:] + zero_bytes(24-len(key)))
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ascon_permutation(S, a)

S[3] ^= bytes_to_int(key[-16:-8])
S[4] ^= bytes_to_int(key[-8:])
tag = int_to_bytes(S[3], 8) + int_to_bytes(S[4], 8)
return tag

def ascon_permutation(S, rounds=1):
"""
Ascon core permutation for the sponge construction - internal helper

function.
S: Ascon state, a list of 5 64-bit integers
rounds: number of rounds to perform
returns nothing, updates S
"""
for r in range(12-rounds, 12):

# --- add round constants ---
S[2] ^= (0xf0 - r*0x10 + r*0x1)
# --- substitution layer (according to figure 4 (a))---
S[0] ^= S[4]
S[4] ^= S[3]
S[2] ^= S[1]
T = [(S[i] ^ 0xFFFFFFFFFFFFFFFF) & S[(i+1)%5] for i in range(5)]
for i in range(5):

S[i] ^= T[(i+1)%5]
S[1] ^= S[0]
S[0] ^= S[4]
S[3] ^= S[2]
S[2] ^= 0XFFFFFFFFFFFFFFFF
# --- linear diffusion layer ---
S[0] ^= rotr(S[0], 19) ^ rotr(S[0], 28)
S[1] ^= rotr(S[1], 61) ^ rotr(S[1], 39)
S[2] ^= rotr(S[2], 1) ^ rotr(S[2], 6)
S[3] ^= rotr(S[3], 10) ^ rotr(S[3], 17)
S[4] ^= rotr(S[4], 7) ^ rotr(S[4], 41)

# === some demo if called directly ===

def demo_print(data):
maxlen = max([len(text) for (text, val) in data])
for text, val in data:

print("{text}:{align} 0x{val} ({length} bytes)".format(text=text, align
=((maxlen - len(text)) * " "), val=bytes_to_hex(val), length=len(
val)))

def demo_aead(variant):
keysize = 16
print("=== demo encryption using {variant} ===".format(variant=variant))

# choose a cryptographically strong random key and a nonce that never
repeats for the same key:

key = get_random_bytes(keysize) # zero_bytes(keysize)
nonce = get_random_bytes(16) # zero_bytes(16)

associateddata = b"ASCON"
plaintext = b"ascon"
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ciphertext = ascon_encrypt(key, nonce, associateddata, plaintext,
variant)

receivedplaintext = ascon_decrypt(key, nonce, associateddata, ciphertext,
variant)

#if receivedplaintext == None: print("verification failed!")

demo_print([("key", key),
("nonce", nonce),
("plaintext", plaintext),
("ass.data", associateddata),
("ciphertext", ciphertext[:-16]),
("tag", ciphertext[-16:]),
("received", receivedplaintext),
])

def experiment(key_random,testlength,variant):
assert testlength % 8 == 0, "testlength must be divisible by 8"

nonce = b’\xff\x1b\xe0\xb1\xc1L\x03;NI,;^\\\x00\x17’ #get_random_bytes(16)
associateddata = b’’ #get_random_bytes(16)
plaintext = b’\x96~\x16!\x8ey\x9e’ #get_random_bytes(7) #plaintext to

be encrypted

import binascii
key_orginal=key_random
key_random_hex = binascii.hexlify(key_random).decode(’utf-8’)#converte the

key_random from ASCII to hex
key_random_bin = bin(int(key_random_hex, 16))[2:].zfill(len(key_random) *

8)#transforms the key_random_hex from hex to bin

binary_numbers = [format(i, ’0{}b’.format(testlength)) for i in range(2**
testlength)]#creates all binary numbers from 0 to 2**testlength

ciphertext_list = []#list to store the ciphertexts
for i in range(2**testlength):

key_random_bin=binary_numbers[i]+key_random_bin[testlength:]#replaces
the first testlength bits of the key_random_bin with the i’th
binary number of length testlength

key = b’’.join([int(key_random_bin[i:i+8], 2).to_bytes(1, ’big’) for i
in range(0, len(key_random_bin), 8)])#transforms it to bytes to be
used in ascon_encrypt

ciphertext=ascon_encrypt_experiment(key, nonce, associateddata,
plaintext, variant)#encrypts the plaintext with the key

ciphertext_list.append(ciphertext[:(testlength)//8])#appends the
ciphertext to the list (only the first testlength bits are taken
into account)

#frequency of elements and percentage of elements hit
ciphertext_list_int = [int.from_bytes(ciphertext, ’big’) for ciphertext in

ciphertext_list]
frequency = [0] * 2**testlength
for num in ciphertext_list_int:

frequency[num] += 1 # Accumulate the counts instead of replacing

amount_hit = 0
for i in range(2**testlength):

if frequency[i] != 0:
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amount_hit += 1

amount_hit_percentage=amount_hit/2**testlength

#Printing the values
print("Key: ",key_orginal)
print("Ciphertext in bytes: ",ciphertext_list)
print("Ciphertext in bytes sorted: ",sorted(ciphertext_list))
print("Frequencies of elements sorted: ",frequency)
print("Percentage of elements hit: ",amount_hit_percentage)

#calculating and printing the entropy
entropy(frequency,testlength)

def experiment_iterated(testlength,variant):
for i in range(testlength):

i=get_random_bytes(16)
experiment(i,testlength,variant)

# demo_aead(’Ascon-128’)
experiment(b’\xe50\x00\xdd\x1ee\x15_K\x91<I\x0e\xa5\xa2&’,8,’Ascon-128’)
# experiment_iterated(8,’Ascon-128’)

This code outputs
Key: b’\xe50\x00\xdd\x1ee\x15_K\x91<I\x0e\xa5\xa2&’
Ciphertext in bytes: [b’\x1c’, b’W’, b’\xdf’, b’\x9a’, b"’", b’,’, b’c’, b’>’,

b’\x8b’, b’N’, b’+’, b’\xcb’, b’\x0c’, b’n’, b’O’, b’)’, b’6’, b’\x14’, b’
\xba’, b’\xd9’, b’\xd4’, b’\x8f’, b’K’, b’\xc8’, b’I’, b’d’, b’\x86’, b’C’,
b’\x03’, b’\x07’, b’~’, b’J’, b’\xe2’, b’\xe4’, b’\xd5’, b’\x9b’, b’a’, b’
\xc2’, b’@’, b’L’, b’\xc5’, b’\x9a’, b’c’, b’)’, b’\xb5’, b’p’, b’B’, b’\
x1a’, b’\xa4’, b’R’, b’\xfa’, b’\x00’, b’\xde’, b’+’, b’\x9b’, b’\xa3’, b’q
’, b’\x18’, b’k’, b’\xc4’, b’\xd1’, b’\x1b’, b’W’, b’ ’, b’V’, b’\xc4’, b’\
xfb’, b’\xe8’, b’\xe3’, b’l’, b’\xf6’, b’$’, b’?’, b’\xf1’, b’I’, b’\xe9’,
b’e’, b’i’, b’\x13’, b’\xe5’, b’\x9f’, b’B’, b’8’, b’n’, b’\xdc’, b’\xa2’,
b’>’, b’\xff’, b’\\’, b’7’, b’\x8b’, b’F’, b’\x1a’, b’W’, b’E’, b’\xd9’, b’
\xca’, b’s’, b’\x00’, b’\xde’, b’\x1e’, b’\\’, b’\xd5’, b’J’, b’s’, b’\xf8’
, b’\x01’, b’!’, b’\x98’, b’\xe1’, b’^’, b’\x8f’, b’\xbb’, b’\x89’, b’\xdd’
, b’\xd9’, b’\x84’, b’\x96’, b’U’, b’\x01’, b’\x15’, b’4’, b’\x8e’, b’\x80’
, b’m’, b’^’, b’\x90’, b’\x15’, b’(’, b’P’, b’\xeb’, b’\xdd’, b’\xfa’, b’\
xbf’, b’\xbb’, b’(’, b’\xb3’, b’a’, b’\x04’, b’u’, b’_’, b’|’, b’\xf3’, b’\
xdf’, b’,’, b’p’, b’\xd6’, b’\x15’, b’\x83’, b’c’, b’\x04’, b’\xc0’, b’\xee
’, b’f’, b’\xd8’, b’\xf9’, b’K’, b’\x95’, b’ ’, b’^’, b’\x8d’, b’\x15’, b"’
", b’\xf5’, b’?’, b’M’, b’C’, b’\x91’, b’\xcf’, b’\x07’, b’\xa8’, b’\x01’,
b’\x0b’, b"’", b’c’, b’\xac’, b’\x1a’, b’\xd0’, b’5’, b’\x15’, b’\x87’, b’\
x88’, b’\x13’, b’\x96’, b’\xf9’, b’_’, b’R’, b’\xa0’, b’T’, b’\xcf’, b’$’,
b’T’, b’\xb9’, b’s’, b’\xc7’, b’\xe1’, b’\x8a’, b’\xe2’, b’\xd1’, b’\x0f’,
b’\x11’, b’\x88’, b’|’, b’\xc3’, b’\xce’, b’\x08’, b’M’, b’\x16’, b’-’, b’q
’, b’\xed’, b’\x1d’, b’#’, b’\xd3’, b’\x13’, b’\xb8’, b’\r’, b’\xa4’, b’\
x95’, b’W’, b’K’, b’\xb6’, b’(’, b’,’, b’\xcd’, b’\x10’, b’I’, b’\xde’, b’)
’, b’\xb8’, b’\x8f’, b’p’, b’}’, b’\x98’, b’\x1b’, b’\xed’, b’\xd8’, b’\x02
’, b’\xb7’, b’.’, b’\xe0’, b’\xca’, b’_’, b’\x03’, b’\xf6’, b’\xbe’, b’\x91
’, b’S’, b’\t’, b’>’, b’\xa1’, b’\xd6’, b’Q’, b’\x9b’, b’w’, b’v’]

Ciphertext in bytes sorted: [b’\x00’, b’\x00’, b’\x01’, b’\x01’, b’\x01’, b’\
x02’, b’\x03’, b’\x03’, b’\x04’, b’\x04’, b’\x07’, b’\x07’, b’\x08’, b’\t’,
b’\x0b’, b’\x0c’, b’\r’, b’\x0f’, b’\x10’, b’\x11’, b’\x13’, b’\x13’, b’\
x13’, b’\x14’, b’\x15’, b’\x15’, b’\x15’, b’\x15’, b’\x15’, b’\x16’, b’\x18
’, b’\x1a’, b’\x1a’, b’\x1a’, b’\x1b’, b’\x1b’, b’\x1c’, b’\x1d’, b’\x1e’,
b’ ’, b’ ’, b’!’, b’#’, b’$’, b’$’, b"’", b"’", b"’", b’(’, b’(’, b’(’, b’)
’, b’)’, b’)’, b’+’, b’+’, b’,’, b’,’, b’,’, b’-’, b’.’, b’4’, b’5’, b’6’,
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b’7’, b’8’, b’>’, b’>’, b’>’, b’?’, b’?’, b’@’, b’B’, b’B’, b’C’, b’C’, b’E
’, b’F’, b’I’, b’I’, b’I’, b’J’, b’J’, b’K’, b’K’, b’K’, b’L’, b’M’, b’M’,
b’N’, b’O’, b’P’, b’Q’, b’R’, b’R’, b’S’, b’T’, b’T’, b’U’, b’V’, b’W’, b’W
’, b’W’, b’W’, b’\\’, b’\\’, b’^’, b’^’, b’^’, b’_’, b’_’, b’_’, b’a’, b’a’
, b’c’, b’c’, b’c’, b’c’, b’d’, b’e’, b’f’, b’i’, b’k’, b’l’, b’m’, b’n’, b
’n’, b’p’, b’p’, b’p’, b’q’, b’q’, b’s’, b’s’, b’s’, b’u’, b’v’, b’w’, b’|’
, b’|’, b’}’, b’~’, b’\x80’, b’\x83’, b’\x84’, b’\x86’, b’\x87’, b’\x88’, b
’\x88’, b’\x89’, b’\x8a’, b’\x8b’, b’\x8b’, b’\x8d’, b’\x8e’, b’\x8f’, b’\
x8f’, b’\x8f’, b’\x90’, b’\x91’, b’\x91’, b’\x95’, b’\x95’, b’\x96’, b’\x96
’, b’\x98’, b’\x98’, b’\x9a’, b’\x9a’, b’\x9b’, b’\x9b’, b’\x9b’, b’\x9f’,
b’\xa0’, b’\xa1’, b’\xa2’, b’\xa3’, b’\xa4’, b’\xa4’, b’\xa8’, b’\xac’, b’\
xb3’, b’\xb5’, b’\xb6’, b’\xb7’, b’\xb8’, b’\xb8’, b’\xb9’, b’\xba’, b’\xbb
’, b’\xbb’, b’\xbe’, b’\xbf’, b’\xc0’, b’\xc2’, b’\xc3’, b’\xc4’, b’\xc4’,
b’\xc5’, b’\xc7’, b’\xc8’, b’\xca’, b’\xca’, b’\xcb’, b’\xcd’, b’\xce’, b’\
xcf’, b’\xcf’, b’\xd0’, b’\xd1’, b’\xd1’, b’\xd3’, b’\xd4’, b’\xd5’, b’\xd5
’, b’\xd6’, b’\xd6’, b’\xd8’, b’\xd8’, b’\xd9’, b’\xd9’, b’\xd9’, b’\xdc’,
b’\xdd’, b’\xdd’, b’\xde’, b’\xde’, b’\xde’, b’\xdf’, b’\xdf’, b’\xe0’, b’\
xe1’, b’\xe1’, b’\xe2’, b’\xe2’, b’\xe3’, b’\xe4’, b’\xe5’, b’\xe8’, b’\xe9
’, b’\xeb’, b’\xed’, b’\xed’, b’\xee’, b’\xf1’, b’\xf3’, b’\xf5’, b’\xf6’,
b’\xf6’, b’\xf8’, b’\xf9’, b’\xf9’, b’\xfa’, b’\xfa’, b’\xfb’, b’\xff’]

Frequencies of elements sorted: [2, 3, 1, 2, 2, 0, 0, 2, 1, 1, 0, 1, 1, 1, 0,
1, 1, 1, 0, 3, 1, 5, 1, 0, 1, 0, 3, 2, 1, 1, 1, 0, 2, 1, 0, 1, 2, 0, 0, 3,
3, 3, 0, 2, 3, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 3, 2, 1,
0, 2, 2, 0, 1, 1, 0, 0, 3, 2, 3, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 4, 0, 0,
0, 0, 2, 0, 3, 3, 0, 2, 0, 4, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 0, 3, 2, 0,
3, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2,
0, 1, 1, 3, 1, 2, 0, 0, 0, 2, 2, 0, 2, 0, 2, 3, 0, 0, 0, 1, 1, 1, 1, 1, 2,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 1, 2, 0, 0,
1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 2,
0, 2, 3, 0, 0, 1, 2, 3, 2, 1, 2, 2, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0,
0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 2, 1, 0, 0, 0, 1]

Percentage of elements hit: 0.64453125
Entropy: 7.206259314400863
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