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Abstract:

This thesis presents the development and eval-
uation of the VisLED-Querying method for 3D
object detection, with a particular focus on ap-
plications in autonomous driving. By leveraging
Vision-Language Embedding Diversity Querying
(VisLED-Querying), the study aims to achieve
detection performance equivalent to using the full
training set, while using only up to 50 % of the
dataset, hence reducing the need for extensive
labeling. The VisLED-Querying method inte-
grates active learning strategies to select diverse
and informative data samples from an unlabeled
pool, thereby improving the model’s ability to
detect underrepresented or novel objects. This
approach is evaluated in two scenarios: Open-
World Exploring (OWE) and Closed-World Min-
ing (CWM).

Using the nuScenes dataset, the study shows that
VisLED-Querying achieves high performance
with significantly reduced data. The method
reaches performance levels close to a full
dataset, even with only 50 % of the data
pool. This demonstrates VisLED-Querying’s
potential to reduce labeling costs and enhance
model efficiency, making it valuable for real-
world autonomous driving systems. The findings
indicate that diversity-based active learning
methods, like VisLED-Querying, can lead to
more accurate and cost-effective 3D object
detection models, advancing autonomous vehicle
technologies and other domains requiring robust

object detection.
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Summary

This thesis investigates the effectiveness of the VisLED-Querying method for 3D object
detection, particularly in the context of autonomous driving. The main objective is to
achieve equivalent model performance to the utilization of the full dataset, while reducing
the amount of labeled data required, thereby minimizing the associated costs and effort.
The research addresses a critical challenge in the field: the high cost and time consumption
of annotating large datasets, which is necessary for training robust 3D object detection
models.

VisLED-Querying is introduced as an innovative active learning (AL) approach that
leverages feature embeddings of images to select the most informative and diverse samples
for model training. The methodology is designed to maximize learning efficiency and
improve model accuracy with fewer, but more diverse labeled data points. Two specific
scenarios are examined in this study: Open-World Exploring (OWE) and Closed-World
Mining (CWM). Both scenarios utilize the CLIP (Contrastive Language-Image Pre-Training)
model to embed images and uncover patterns within the data, facilitating a more nuanced
understanding of the dataset.

In the Open-World Exploring scenario, the algorithm focuses on identifying diverse and
representative samples from a vast, unlabeled data pool. In the Closed-World Mining
scenario, the algorithm prioritizes refining and enhancing the model’s performance on a
more controlled and predefined set of classes.

Experimental results conducted using the nuScenes dataset, a comprehensive dataset widely
used in autonomous driving research, demonstrated that VisLED-Querying significantly
outperforms traditional Random Sampling methods. Remarkably, with only 50 % of the
data pool, VisLED-Querying achieves performance levels comparable to those obtained
with the full dataset. This finding highlights the efficiency of AL approaches in reducing
labeling costs while maintaining high model performance. The increased diversity of the
sampled data allows the model to learn from unique instances, avoiding the pitfalls of
repetitive examples that can lead to confusion and overfitting.

By demonstrating the potential to achieve high model performance with significantly
reduced labeled data, this thesis contributes to the ongoing efforts to make autonomous
driving technologies more cost-effective and accessible. The findings from this study will
hopefully inspire further research and development in AL methodologies, with the aim
of improving the efficiency and effectiveness of 3D object detection systems in various

real-world applications.
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Introduction

Over the past several years, there has been a substantial increase in the commitment of
automobile manufacturers to the pursuit of autonomous driving. However, despite these
efforts and technological advancements, complete vehicle automation has not yet been
achieved. Instead, a variety of advanced driver assistance systems (ADAS) are offered, to
assist the driver. Making driving safer and alleviating some driver responsibilities.

The progression of vehicle automation has been categorized into six different levels by SAE
International in 2021 [1]:

e Level 0: No Driving Automation - The driver oversees all driving tasks with minimal
automated assistance.

e Level 1: Driver Assistance - The vehicle incorporates isolated automated features,
such as assisted steering or acceleration, but primarily relies on the driver’s control.

e Level 2: Partial Driving Automation - The vehicle can handle a combination of
functions like steering and acceleration simultaneously, yet requires the driver to
remain actively engaged and monitor the surroundings continuously.

e Level 3: Conditional Driving Automation - The vehicle can conduct most driving
tasks, although the driver might need to intervene upon the system’s request.

e Level 4: High Driving Automation - The vehicle can autonomously perform all driving
tasks within specific conditions.

e Level 5: Full Driving Automation - The vehicle can handle all driving operations
under any condition, requiring no human intervention.

The National Highway Traffic Safety Admission (NHTSA) has found that 94% of significant
accidents are caused by human errors, this is a number that potentially can be significantly
decreased by introducing autonomous components into everyday vehicles. Consequently,
developing precise and reliable 3D perception models becomes increasingly important, as
these models form the backbone of autonomous systems, making it possible to navigate
safely in complex environments while creating a better understanding of the obstacles
present [2].

Perception systems are a crucial part of autonomous systems, they are responsible for
accurately understanding and interpreting the vehicle’s surroundings, an important task
for decision-making and safe navigation. These systems highly depend on advanced sensors
and algorithms for detecting and classifying objects, locating potential dangers, and making
informed real-time decisions. As part of the many components of a perception system,
an important aspect is 3D object detection. It locates and identifies objects in a driving
environment in a three-dimensional space, this is important for creating an increased
understanding of the vehicle’s surroundings. 3D object detection can enable autonomous
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vehicles to predict the movement of surrounding vehicles, accurately measure distances,
and understand the spatial relationship of objects. These aspects are crucial when ensuring
reliability and safety in autonomous systems. Therefore, this thesis will focus on the 3D
object detection task, focusing on LiDAR and Camera sensor fusion-based systems and
optimization of data usage techniques [3].

Through recent works, it has been proven that combining the information gathered from
the camera and LiDAR sensors is greatly beneficial in the 3D object detection task and
creates more precise models. However, this is a challenging task as it relies on a high
amount of data sampled and labeled for each sensor [4, 5. The nuScenes dataset, contains
1.4 million images and 400k LiDAR sweeps which contain 1.4 million labeled objects [6].
According to the RGB-D benchmark for labeling 3D bounding boxes, each object takes 100
seconds to annotate 7], meaning that it would take 38.889 hours to label all objects in the
dataset. The annotation of this many objects is both time and cost consuming. This is
supported by a German study on autonomous vehicle data, where the cost of annotating
datasets is estimated to range from 1.16 trillion to 51.8 trillion Euros per year, which is
14,800 times Germany’s gross domestic product [8].

During the annotation phase, a significant challenge emerged due to this annotation
bottleneck. It’s widely accepted that more data typically leads to better performance.
However, a lot of datasets are cluttered with repetitive information, like numerous
images/frames showcasing the same vehicle. In an era where data rapidly accumulates, it’s
vital to reduce redundancy as much as possible before completing the annotation process.
The efficiency and effectiveness of annotating data can be greatly enhanced by incorporating
a learning algorithm, with active learning (AL) playing a crucial role in this context. AL
introduces a proactive method for selecting which data to annotate and utilize for training
purposes.

AL is a subset of machine learning where the algorithm selectively queries the user or an
oracle to annotate data points with the highest expected utility. This method stands in
contrast to the traditional passive learning paradigms, where the learning algorithm is
trained on a randomly selected subset of data without any input on the utility of different
data points. The fundamental premise of AL is that an algorithm can achieve higher
accuracy with fewer training samples if it is allowed to choose the data from which it learns.
This not only optimizes resource utilization but also accelerates the path to model maturity
by focusing on the diversity of data rather than its volume [9].

Among the various strategies that underpin AL, diversity-based methods and uncertainty-
based methods have emerged as the most prevalent and impactful. These methodologies
play a pivotal role in optimizing the learning process, ensuring that the selected data for
annotation offer the maximum value to the learning algorithm [9].

Uncertainty-based methods prioritize data points for which the model has the lowest
confidence in its predictions. These methods leverage the model’s own uncertainty to identify
the most informative samples. The intuition behind this approach is that by learning
from instances where it is least certain, the model can achieve significant improvements in
performance with fewer labeled examples. Uncertainty can be measured in various ways,
such as the margin between the first and second most probable predictions or the entropy
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across all possible outcomes. This approach ensures that the learning algorithm focuses
on the most challenging and informative parts of the data, thus accelerating the learning
process and enhancing model accuracy in a more targeted manner [9].

While, diversity-based methods focus on selecting a set of data points that are representative
of the entire dataset’s variability. The core premise is to capture the broad spectrum of
data diversity, ensuring that the learning model is exposed to the wide range of examples
found within the dataset. This approach helps in building a more generalizable model
capable of performing well across diverse scenarios. By prioritizing diversity, these methods
aim to reduce the redundancy in the training data, which is especially crucial in datasets
with a high degree of similarity among data points. Diversity-based AL is particularly
beneficial in scenarios where the goal is to achieve broad coverage of the input space with
as few labeled instances as possible, thus maximizing the efficiency of the annotation effort

[9]-

This research will focus on diversity-based methods due to their lower computational
demands compared to uncertainty-based methods, and their significant potential when
integrated with new and innovative learning approaches.
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Related Works

3.1 3D Object Detection

3D object detection is a critical technology with wide-ranging applications, especially
in the realm of autonomous driving. Accurately perceiving the environment in three
dimensions is fundamental for the safety and navigation capabilities of autonomous vehicles.
The evolution of sensor technologies and advancements in machine learning have greatly
advanced this field, offering increasingly sophisticated tools for interpreting complex spatial
data.

Despite these advancements, the field faces ongoing challenges, particularly in the efficient
acquisition and annotation of 3D data, which are essential for training and refining detection
algorithms. Moreover, the integration of multi-modal models, which leverage multiple types
of sensory data, has proven to enhance the robustness and accuracy of 3D object detection
systems. These models can more effectively interpret the rich and varied data types typical
in real-world environments, leading to improved detection performance.

This section will explore various architectures that have been developed to address these
challenges in 3D object detection. By examining different approaches and their applications,
particularly in scenarios demanding high accuracy and reliability, we can better understand
the current landscape and future directions of this essential technology. Figure 3.1 presents
a comparative overview of a 3D object detection pipeline alongside its 2D counterpart,
illustrating the key differences and similarities. [10]
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Figure 3.1. Illustration of the difference between 2D object detection and 3D object detection.
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In the rapidly evolving field of autonomous driving, effectively integrating data from
diverse sensor modalities is crucial for developing reliable and safe navigation systems.
Traditional fusion techniques, such as projecting LiDAR data onto camera images or vice
versa, encounter significant challenges. These methods often lead to geometric distortion,
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shown in Figure 3.2a or semantic dilution, seen in Figure 3.2b, undermining the utility of
the fused data for essential tasks like 3D object detection and environmental segmentation.
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Figure 3.2. Camera-to-LiDAR(a) and LiDAR-to-Camera(b) loss illustration. [4]

3.1.1 Multi-Modal Models

Autonomous vehicles operate in complex environments that require rapid and precise
decision-making based on a comprehensive perception of the surroundings. This necessitates
the integration of data from multiple sensory inputs, as no single sensor type is adequate
in all scenarios. Cameras provide rich, high-resolution color and texture information but
are limited by poor performance in low-light conditions and do not provide direct distance
measurements. Conversely, LIDAR sensors excel in precise depth sensing and are unaffected
by lighting variations but do not capture the semantic details present in visual images [4, 5|.

Therefore, the fusion of camera and LiDAR data emerges as a potent solution, merging
the strengths of each sensor type to foster a more detailed and resilient understanding of
the vehicle’s environment. This multi-modal approach enhances the vehicle’s ability to
detect and interpret objects and obstacles accurately, supporting more robust decision-
making processes essential for safe autonomous driving. By combining the high-resolution
textural information from cameras with the accurate depth data from LiDAR, autonomous
systems can achieve superior object detection capabilities that are crucial in diverse driving
conditions.

A prominent architecture is the multi-modal TransFusion architecture [5|, the paper
introduces a robust framework, seen in Figure 3.3 for LIDAR and camera fusion tailored
for 3D object detection. This method operates on a two-stage pipeline: the first stage
generates proposals using LiDAR features, and the second stage refines these proposals by
fusing them with camera features through transformer-based technology. This approach
leverages the complementary strengths of both sensor types to enhance detection accuracy.
TransFusion excels in its ability to enhance LiDAR-based proposals with detailed semantic
information from camera data, resulting in highly accurate 3D object detection. This fusion
strategy significantly improves the precision of object localization and classification by
incorporating rich texture and contextual details from camera images into the predominantly
geometric data from LiDAR. The method demonstrates substantial improvements in
benchmark performance, particularly in complex urban environments where diverse object
interactions and varied lighting conditions are common. While TransFusion achieves high
accuracy, its two-stage fusion process can introduce additional computational complexity
and latency, potentially affecting real-time performance in autonomous driving applications.
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Furthermore, the dependency on initial LiDAR-based proposals means that the overall
system efficacy might degrade in scenarios where LiDAR data quality is compromised
(e.g., adverse weather conditions). Also, the method requires careful alignment and
synchronization between LiDAR and camera data, which can be challenging to maintain
consistently across different operational conditions.

> | Transformer | —>» | Transformer —> |
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Figure 3.3. Transfusion simple architecture.

The Cross Modal Transformer (CMT) [11], which introduces a novel approach to 3D object
detection by directly integrating image and point cloud data without traditional view
transformations. Utilizing a transformer-based architecture, CMT enhances the interaction
between different modal tokens, achieving impressive performance improvements. CMT’s
main strength lies in its simple yet effective end-to-end design, seen in Figure 3.4, which
facilitates fast and robust 3D object detection. By encoding 3D positional information into
multi-modal tokens, it avoids the biases introduced by explicit cross-view feature alignment,
simplifying the model architecture.

Figure 3.4. Cross Modal Transformer simple architecture.

BEVFusion proposed by Zhijian Liu et al. [4], proposes an efficient and generic multi-task
multi-sensor fusion framework, seen in Figure 3.5, which uniquely integrates camera and
LiDAR data in a shared bird’s-eye view (BEV) representation space. This method maintains
both the geometric structure from LiDAR and the semantic density from camera features,
effectively supporting various 3D perception tasks including object detection and BEV map
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segmentation. BEVFusion significantly enhances the state of the art in 3D object detection,
achieving top leaderboard positions on the nuScenes benchmark with improvements in
both mAP and NDS metrics [12]. It also demonstrates major advancements in BEV
map segmentation, outperforming existing camera-only and LiDAR-only models. The
unified BEV approach not only preserves the integrity of input modalities but also reduces
computational costs by over 40 times, thanks to optimized BEV pooling operations. The
framework, while powerful, requires careful tuning and integration of sensor inputs to
maintain performance across varied operational conditions.

/ N
\
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: il e
I Image |
| Y = |
\ /’

Figure 3.5. Birds-Eye-View (BEV) Fusion simple architecture.

Overall, sensor fusion not only compensates for the individual weaknesses of each sensing
modality but also collectively enhances the vehicle’s perceptual accuracy, leading to improved
navigation and safety outcomes.

3.2 Datasets

The development and testing of autonomous driving technologies depend heavily on
diverse and comprehensive datasets. This section reviews several key datasets, noting
their contributions and limitations within the context of urban navigation and broader
autonomous vehicle research.

3.2.1 KITTI

The KITTI dataset by Geiger et al. [13] is foundational in the field, supporting a variety
of tasks such as stereo vision, optical flow, visual odometry, and 3D object detection. Its
strengths lie in its diverse real-world driving scenarios and comprehensive sensor suite.
However, its primary limitation is the scope of its environments, primarily captured in
rural and highway settings, which may not fully represent the complexity of more dynamic
urban landscapes.
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Figure 3.6. KITTI example, showing the ground truth 3D bounding box labels. [13]

3.2.2 TUM Traffic Intersection Dataset

TUM Traffic Intersection dataset (TUMTraf-I) focuses on urban traffic, especially at
intersections, capturing the dynamics of complex urban scenes. Its use of both camera and
LiDAR sensors allows for detailed perception studies. A notable weakness is its relatively
smaller scale and lesser diversity in weather and lighting conditions compared to larger
datasets, which may limit the generalizability of the findings derived from it [14].

Figure 3.7. TUM Traffic Interstate Examples from the two interstate angles, Left: showing the
3D bounding boxes and pointcloud groundtruth labels, Right: illustrating the ground truth 3D
bounding boxes and tracking pattern of each labeled vehicle. [15]

3.2.3 Lyft

The Lyft dataset provides high-resolution 3D annotations across multiple cities, making
it valuable for urban navigation tasks such as 3D object detection and prediction. While
it offers detailed annotations and a multi-sensor setup, the dataset is less known for its
temporal coverage, possibly affecting research in areas requiring time-series data, such as
object tracking or behavior prediction [16].
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Figure 3.8. Lyft L5 dataset Example from ego vehicle, Left: original image without labels Right:
The image and point cloud data collected. [17]

3.2.4 nuScenes

Developed by Caesar et al. 6], the nuScenes dataset offers extensive multi-modal sensor
data across various urban locations and conditions, supporting a wide range of tasks from
detection to segmentation. Its comprehensive urban coverage is a significant strength.
However, its LIDAR point clouds are sparser compared to newer datasets like Waymo,
which might affect the performance of perception algorithms that rely on high-density point
data.

Figure 3.9. nuScenes Example from ego vehicle, Left: Birds-eye-view LiDAR image with labeled
ground truth 3D bounding boxes Right: View from the Back camera with the labeled ground
truth 3D bounding boxes. [1§]

3.2.5 Waymo Open Dataset

The Waymo Open Dataset is renowned for its large-scale and high-resolution sensor data. It
addresses some limitations of previous datasets by including more diverse driving conditions
and geographic areas. Nevertheless, while it provides a vast amount of data, the challenges
of processing and extracting useful insights due to its sheer size and complexity can be a
limiting factor for some research groups without substantial computational resources [19].
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Figure 3.10. Waymo Example from ego vehicle, Left: Birds-eye-view LiDAR image with labeled
ground truth 3D bounding boxes Right: View from front, front left and front right cameras with
the labeled ground truth 2D bounding boxes. [20]

Dataset Name Size Scenes 3D Labels Map Annotations Task
KITTY [13] 6h 50 80k None 3D  bound- Perception
ing boxes
TUMTraf-I [14]  0.305h 57.4k None 3D bound- Perception
ing boxes
Lyft [16] 2.5h 366 Rasterised 3D bound- Perception
road ge- ing boxes
ometry
nuScenes [6] 6h 1000  1.4M Rasterised 3D bound- Perception,
road ge- ing boxes, Prediction
ometry trajectories
Waymo [19] 10h 1000  12.6M None 3D bound- Perception
ing boxes

Table 3.1. Details from datasets.

These datasets collectively advance the field of autonomous driving by providing diverse,
high-quality data that enable the development of robust perception systems. They address
different aspects of autonomous driving, such as urban navigation, intersection handling,
and sensor integration, facilitating advancements in both academic research and practical
applications. The continuous expansion of these datasets reflects the evolving challenges in
autonomous driving, pushing forward the boundaries in machine learning and computer
vision technologies, an overview of the datasets can be seen in Table 3.1.

3.3 Active Learning

Within various contexts, the key element of AL lies in the development of appropriate
query formulations that are well-suited to the problem at hand. There are primarily two
types of query formations: Query synthesis and sampling, where sampling is subdivided
into stream-based sampling and pool-based sampling.
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Figure 3.11. Membership Query Synthesis AL Scenario.

As depicted in Figure 3.11, the process known as membership query synthesis involves the
model generating new synthetic data samples from its existing knowledge base. In this
example initially, this knowledge base consists of the 10 % labeled data used for training.
The model assesses areas within the data space where its predictions are uncertain, guiding
the identification of where additional data would be most beneficial. Based on these
uncertainties, the model—or a designated synthesizer—creates new data points aimed at
resolving these ambiguities. This may involve modifying existing data points or crafting
entirely new examples from the model’s understanding of the feature space. While this
method can efficiently generate numerous queries, its effectiveness is limited for complex
tasks like natural language processing (NLP) or 3D detection, where synthetic samples may
be challenging for human experts to interpret.

Unlabeled
Data Stream

Select one sample

ajdwes p.eosiq

Inference

Model
Training

10% of data

Labeled
Data

lege| Alanp

New Data

* Labeled sample @

Figure 3.12. Stream-based sampling AL scenario.

As shown in Figure 3.12, the stream-based selective sampling involves presenting unlabeled
data samples in a sequential, continuous flow. The model decides in real-time whether each
sample should be labeled, employing an AL querying technique. Samples that meet the
querying criteria are selected for further inquiry by the oracle, while others are discarded
as the model moves on to assess subsequent samples.
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Figure 3.13. Pool-based sampling AL scenario.

A commonly used AL scenario, known as pool-based sampling and depicted in Figure 3.13,
the model starts with a large pool of unlabeled data samples. The learner selects samples
for inquiry based on a hypothesis model constructed from initially labeled samples. Each
sample, once labeled by an oracle, augments the labeled data pool, prompting re-training of
the model. This approach is well-suited for scenarios equipped with ample computational
and storage capabilities, enabling an iterative process of training, querying, and model
refinement. The process persists until labeling resources are fully utilized or a specific
performance threshold is reached.

As pool-based sampling is the most used strategy, this section will continue elaborating on
the specific approaches of the strategy. Based on the sample selection criteria, Pool-based
AL can be further split into three categories, often referred to as the query strategy or the
acquisition function.

The first category, known as uncertainty sampling, is a foundational approach in AL. In
this method, the model selects instances where its predictive confidence is notably low,
aiming to enhance the accuracy of its learning by focusing on the most ambiguous data
points. Several techniques fall under this method. [9]

One such approach, Bayesian Active Learning by Disagreement (BALD) [21], implements
Bayesian neural networks to perform approximate variational inference. The core idea
behind BALD is to select data points that are likely to maximize the mutual information
between the model’s predictions and its parameters. Essentially, these are data points
that, when learned, are expected to contribute the most to the informational content of the
model parameters.

As a visting gratuate student at the LISA laboratory [22], I contributed to the development
of new methodologies in the field. Specifically, I played a pivotal role in creating the
ActiveAnno3D method [23], which applies uncertainty techniques to optimize the AL process
in multi-modal 3D object detection. This method focuses on selecting highly informative
samples for labeling using an entropy querying approach. The ActiveAnno3D framework
also incorporates continuous training methods to effectively balance computational demands
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with detection performance. Notably, this approach has demonstrated that it can achieve
near-optimal performance using only half the typically required training data, substantially
lowering both annotation effort and costs.

Additionally, I was part of an analytical study [24] aimed at addressing the challenge of
unbalanced datasets. This research explored the use of entropy querying to significantly
diminish the performance disparities between majority and minority classes. The findings
highlight the superiority of entropy querying over random sampling, proving its efficacy
in optimizing resource allocation during model training, particularly in scenarios with
limited data availability. This study further underscores the effectiveness of this method in
balancing class representation and enhancing detection accuracy in a variety of complex
and demanding driving scenarios.

The second category, diversity sampling, adopts a comprehensive approach to query strategy
by aiming to explore the data space as extensively as possible. This method selects instances
that are diverse or uncommon within the existing training set, to broaden the model’s
comprehension of the entire data landscape [9].

CoreSet [25], is a diversity-based AL method which is redefined as a core-set selection
problem. This approach aims to select a subset of data such that a model trained on
this subset is competitive over the entire dataset. Their method addresses the limitations
of traditional AL heuristics when applied to convolutional neural networks (CNNs) in
batch settings, where correlations between samples can diminish the effectiveness of these
heuristics. By redefining the problem around core-set selection and providing a geometric
bound to guide sample selection.

Hybrid sampling combines elements from both uncertainty and diversity sampling strategies,
aiming to balance the trade-off between exploiting the model’s current knowledge
(exploitation) and exploring new, informative data points (exploration). This approach
selects instances that are both uncertain and diverse, potentially offering a more balanced
improvement in model performance across different dimensions of the data space. This
combined strategy can be particularly effective in complex learning scenarios where neither
uncertainty nor diversity sampling alone would be sufficient to improve model performance
comprehensively. By integrating these strategies, hybrid sampling leverages the strengths
of both to enhance the learning process more robustly [9].

One such notable approach is the Batch Active Learning by Diverse Gradient Embeddings
(BADGE), developed by Jordan T. Ash et al. [26]. This method effectively integrates both
predictive uncertainty and sample diversity within its operational framework. BADGE
employs the concept of hallucinated gradients, which estimate the potential impact of each
data point’s label on the model parameters. These calculated gradients are instrumental
in forming a batch of query points that are both uncertain and diverse. Additionally, the
implementation of the k-MEANS++ initialization for selecting these points helps to ensure
that the algorithm not only avoids redundant selections but also enhances the model’s
performance without the need for manual adjustments of hyperparameters.
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Hypothesis

Throughout the Related Works section, several critical issues have been identified within

the existing methodologies. The most prominent of these include:

e Dataset creation cost.

e (lass imbalance within the datasets, which can skew the training process and model
performance.

e Issues of class underfitting and overfitting, which hinder the model’s ability to
generalize effectively.

e The inadequacy of single-sensor modalities to provide the necessary accuracy for this

domain in many cases.

In response to these challenges, the focus of this thesis will be on the development and
evaluation of AL querying methods tailored to the diversity-based sampling strategy. This
approach aims to address and mitigate the identified issues, particularly the limitations
posed by class imbalance and under/overfitting, while a multi-modal model will be used in
order to alleviate the sensor modality constraints.

The primary hypothesis of this research is that:

Utilizing a diversity-based sampling method for data selection will yield higher
model accuracy compared to a random sampling method. This improvement s
expected because the diversity-based approach selects samples based on specific
criteria that enhance the representational completeness of the training set, unlike
random sampling which lacks such a targeted selection mechanism.
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Technical Analysis

In this section, a detailed examination will be conducted of the selected architecture and
the dataset that will be utilized for this project. The specific features, capabilities, and
potential limitations of each architectural choice will be delved into, exploring how they
align with the project’s objectives. Additionally, the dataset’s suitability will be assessed,
including its composition, diversity, and relevance to the scenarios anticipated in practical
applications. This analysis aims to provide a thorough understanding of the foundational
elements that will drive the success of the project.

5.1 Model

As discussed in the related works section, there is a growing trend towards employing
multi-modal model architectures for 3D object detection, with various approaches to
constructing these architectures. For this project, collaborative partners have expressed a
particular interest in the BEVFusion model. This model has consistently demonstrated a
robust architecture that performs effectively across multiple datasets and offers significant
advantages over other models.

5.1.1 BEVFusion

At the core of BEVFusion’s methodology is the adoption of bird’s-eye view (BEV) as the
unifying representation space. This choice is instrumental in preserving the full semantic
density of camera features alongside the precise geometric structure of LiDAR data, a
combination that has been difficult to achieve with previous methods.

The process begins with distinct neural network encoders that extract features from
camera and LiDAR data separately. This initial step is crucial, as it leverages the
unique characteristics of each sensor modality, ensuring that the most relevant and critical
information is captured efficiently.

Unlike traditional methods that force one sensor’s data into the frame of reference of
another, BEVFusion maps both camera and LiDAR features into a shared BEV space. This
is achieved for the images through an optimized view transformation mechanism, while the
LiDAR data is flattened.
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Figure 5.1. BEVFusion Architecture [4].

A critical bottleneck in prior sensor fusion approaches has been the computationally intensive
process required to transform and pool features into a new representation. Addressing
this challenge, BEVFusion introduces a specialized kernel for efficient BEV pooling of the
images, which significantly accelerates this process without compromising accuracy.

The BEV pooling kernel employs two main strategies: precomputation and interval reduction.
These strategies are designed to optimize the process of associating camera feature pixels
with corresponding locations in the BEV space and aggregating these features efficiently.

The pre-computation step leverages the static nature of the camera’s position relative to
the vehicle, allowing the spatial relationship between camera pixels and their corresponding
BEV grid locations to be calculated in advance. Since the camera intrinsics (focal length,
principal point, etc.) and extrinsic (position and orientation relative to the vehicle body)
remain constant, the mapping from the camera’s perspective view to the BEV grid does
not change dynamically. By pre-computing this mapping, the system can bypass the
computationally intensive process of calculating the BEV grid location for each pixel during
runtime. This results in a significant reduction in latency, as the pre-computed mappings
can be quickly looked up and applied to the incoming camera data. [4]

Interval reduction optimizes the aggregation phase, where features within each BEV grid
cell are combined (e.g., by averaging). Traditional approaches might compute aggregations
such as sum or mean across all features in a grid cell by iterating through each feature
or using prefix sum operations, which are inefficient at scale [27]. The interval reduction
technique, however, assigns a dedicated GPU thread to each BEV grid cell, parallelizing the
aggregation operation. Each thread computes the aggregate feature value for its respective
cell independently, significantly reducing the computational overhead associated with tree
reductions and memory access in conventional approaches.

Once the camera and LiDAR data have been transformed into BEV features, these features
are integrated. Fusion is typically achieved through concatenation. However, this method
may not fully address the occasional misalignment observed between LiDAR derived BEV
features and Camera derived BEV features, attributed largely to the variable accuracy in the
unsupervised depth estimation of the camera-BEV features. To rectify such discrepancies
and ensure coherent alignment, a convolution-based BEV encoder is employed as a final
step. This encoder effectively compensates for any local misalignment’s between the feature
sets. The architecture illustrating this process can be seen in Figure 5.1.
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There are many benefits of adopting BEVFusion for sensor fusion. By maintaining
the integrity of both geometric and semantic information, BEVFusion achieves superior
performance in 3D object detection and BEV map segmentation. Additionally, the optimized
BEV pooling and view transformation processes significantly reduce the computational
demand. This efficiency does not come at the expense of accuracy or detail, making
BEVFusion a highly effective solution for autonomous driving systems. Moreover, the
versatility of the BEV representation space allows BEVFusion to adapt across different
3D perception challenges, offering a comprehensive solution that enhances the robustness
of autonomous systems in a variety of environmental conditions, including low-light and

adverse weather scenarios. [4]

5.2 Dataset

When selecting a dataset, numerous factors must be considered. This project requires a
dataset that contains real-world data, including extensive LiDAR and camera data. It
is also crucial that the dataset features a wide variety of data, encompassing a diverse
range of object classes, weather conditions, and other environmental variables. Given these
requirements, the ideal choices would be either the nuScenes [6] dataset or the Waymo [19]
dataset, as both meet these criteria. However, given that the Waymo dataset includes less
LiDAR data compared to nuScenes, the nuScenes dataset has been selected for use in this
project.

5.2.1 nuScenes

The nuScenes dataset, addresses the critical need for a comprehensive multi-modal dataset
to advance autonomous driving technologies. nuScenes includes a full suite of autonomous
vehicle sensors, offering a full view of the vehicle’s surroundings through six cameras, five
radars, and one LiDAR, with 360-degree coverage, as seen in Figure 5.2. This diverse sensor
setup caters to the complexity of autonomous driving tasks by providing rich data for
training and evaluating machine learning models on detection, tracking, and segmentation
tasks under varied environmental conditions.

nuScenes comprises of data collected from Boston and Singapore, chosen for their challenging
driving environments. The dataset includes 1,000 scenes, each 20 seconds long, annotated
with 3D bounding boxes for 23 classes across more than 1.4 million images, 400k LiDAR
sweeps, and 1.3 million radar sweeps. The LiDAR provides dense point clouds with accurate
3D localization, while the cameras capture detailed semantic information, and the radars
offer long-range detection capabilities with velocity measurements. This rich sensor fusion
enables a nuanced understanding and perception of dynamic environments essential for
autonomous vehicles.
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il Sensor Details

6x Camera RGB. 12Hz capture frequency, 1/1.8” CMOS sensor,
1600 = 900 resolution, auto exposure, JPEG com-
pressed

Ix Lidar Spinning, 32 beams, 20Hz capture frequency, 360°
horizontal FOV, —30° to 10° vertical FOV, < T0m
range, +2cm accuracy, up to 1.4 M points per second.

5x Radar < 250m range, 77GHz, FMCW, 13Hz capture fre-
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Downward Yeaxis GPS & IMU GPS, IMU, AHRS. 0.2° heading, 0.1° roll/pitch,
® Upward  — Zxdds 20mm RTK positioning, 1000Hz update rate
(a) (b)

Figure 5.2. Sensor setup for NuScenes data collection platform [6].

The annotation process in nuScenes is meticulously designed to ensure high-quality, reliable
data for training and validating autonomous driving systems. Each of the 1,000 scenes in the
dataset is fully annotated with 3D bounding boxes for 23 different classes, including a variety
of vehicles, pedestrians, and environmental objects, providing a detailed understanding of
the scene dynamics. Annotations also include eight attributes per object, such as visibility,
pose, and activity, offering additional context that is crucial for nuanced perception and
decision-making tasks in autonomous driving.

Annotators used a combination of manual and semi-automated methods to label the data,
ensuring both accuracy and consistency across the dataset. The extensive annotation
process results in a dataset that is not only large in volume but also rich in information,
with 7 times as many annotations and 100 times as many images as the pioneering KITTI
dataset. This amount of annotated data makes nuScenes a valuable resource for developing
advanced detection and tracking algorithms.

Figure 5.3. Front camera images collected from clear weather (col 1), nighttime (col 2), rain (col
3) and construction zones (col 4) [6].

The nuScenes dataset is structured to facilitate easy access and manipulation of its rich
multi-modal data. Annotations and metadata are stored in a relational database, avoiding
redundancy and enabling efficient querying. The dataset includes detailed calibration data
for all sensors, timestamps for synchronization, and precise vehicle localization, allowing
researchers to reconstruct scenes accurately and analyze the data effectively.

Access to the dataset is further simplified by the nuScenes development kit (devkit), which
provides tools for loading, visualizing, and evaluating data. The devkit includes APIs
for Python, simplifying the integration of nuScenes into existing research workflows. The
dataset is made available under a CC BY-NC-SA 4.0 license, encouraging widespread use in
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the non-commercial research community. This approach to data accessibility ensures that
nuScenes can be a valuable tool for a broad spectrum of research in autonomous driving.

(6]

Since its release, nuScenes has facilitated a range of studies, contributing to advancements
in 3D object detection and tracking under various weather conditions [5, 4]. The dataset
has also spurred innovation in radar and sensor fusion research, areas that are critical for
the reliability and robustness of autonomous systems [28, 29|. By providing a standardized
benchmark with novel metrics for evaluation, nuScenes has not only pushed the state-of-the-
art forward but also helped unify the research community’s efforts toward solving common
challenges in autonomous driving [6].

5.2.2 nuScenes Metrics

The nuScenes dataset introduces a comprehensive metric, the nuScenes Detection Score
(NDS), designed to holistically evaluate the performance of autonomous driving systems in
object detection tasks. This metric reflects the complex nature of real-world autonomous
driving scenarios by incorporating various factors essential for accurate and reliable object
detection.

The NDS is a scalar score that combines the mean Average Precision (mAP) with five
metrics, seen in Table 5.1.

mAP Mean Average Precision

mATE | Mean Average Translation Error
mASE | Mean Average Scale Error
mAOFE | Mean Average Orientation Error
mAV E | Mean Average Velocity Error
mAAFE | Mean Average Attribute Error

Table 5.1. NuScenes metrics used to create the NDS score.

Each metric addresses a specific aspect of detection quality, such as the precision in object
localization (ATE), the accuracy in estimating object size and shape (ASE), the correctness
in determining object orientation (AOE), the accuracy in predicting object velocity (AVE),
and the precision in recognizing object attributes (AAE).

NDS is calculated as a weighted sum, where half of the score is based on mAP, reflecting
the detector’s ability to correctly identify and localize objects across different classes and
scenarios. The other half is derived from the inverse of the mean errors of the metrics,
emphasizing the importance of not just detecting objects but also accurately characterizing
their state and dynamics. This dual focus ensures that the NDS provides a balanced measure
of a detection system’s overall performance, capturing both its detection capabilities and
its precision in object characterization.

By integrating multiple dimensions of detection performance into a single metric, the NDS
offers several advantages for benchmarking in autonomous driving research. It encourages
the development of detection systems that are not only accurate in identifying objects but
also precise in capturing their attributes and states, which are crucial for safe and effective
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autonomous navigation. Furthermore, the NDS facilitates direct comparisons between
different detection approaches, promoting transparency and progress in the field. [6]

5.3 3D Annotation

In this section, an in-depth explanation will be given of concepts like 3D labeling of objects,
based on the ASAM OpenLABEL [30] standard and the nuScenes Labeling Scheme [31].

5.3.1 Coordinate Systems

A data stream formatted in OpenLABEL can carry sensor data from diverse sources
alongside a wide range of associated labeling information. It is important to clearly define
the connections across a varied dataset, these could be the interplay between different
sensor outputs, the linkage between label data and sensor data, and how sensor data
corresponds to real-world scenarios. This clarity is achieved through the application of
multiple coordinate systems and transitions between them, ensuring the integrity of these
relationships. For example, such a data stream might feature imagery from six cameras
and point cloud outputs from one LiDAR sensor, as is the case with the nuScenes dataset
[6]. The sensors can either be egocentric (mounted on a vehicle) or integrated into traffic
infrastructure |6, 14, 19].

For this, the key concepts are:

e Coordinate system: Utilized to accurately specify point locations within a space,
ranging from the two-dimensional positioning of a pixel in an image to the three-
dimensional placement of a LIDAR point relative to a designated global origin. This
origin might be defined as the vehicle’s center-of-gravity (CoG), the rear axle, or the
position of the LiDAR sensor itself. Commonly, these frameworks adopt the form of
3D right-handed Cartesian systems, as illustrated in Figure 5.4.

z Z Z
A A A
X X X
Y Y f Y
B B
Pitch Roll

Figure 5.4. 3D right-handed Cartesian System.

e Transformation: These are crucial mathematical operations that enable the
translation of points between different coordinate systems, ensuring the spatial
integrity of these points remains intact across various representations. This capability
is fundamental in accurately representing the same physical location in multiple
spatial models. Primarily, two types of transformations are of importance:
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1. Camera Transform: A projective transformation that facilitates the mapping
of a three-dimensional point in the real world onto a two-dimensional pixel on a
camera sensor. In order to succeed in this process it is vital to consider several
factors, these being:

— Intrinsics: These are parameters intrinsic to the camera that influence how
light is projected onto the sensor. Key intrinsic factors include the focal
length, which determines the zoom level and perspective effect, and the
optical center, indicating the sensor point directly in line with the lens’ line

of sight.
— Distortion Coefficients: Necessary to correct lens distortions that warp

images, particularly at the edges, due to imperfections in the lens shape or

material.
— Extrinsics: Describe the camera’s physical orientation and position in

space, enabling the accurate depiction of objects on the sensor based on

their real-world locations.
2. Cartesian Transform: This transformation is applied to convert coordinates

from a 3D Cartesian system—used commonly for local spatial measurements—to
an ellipsoidal coordinate system as utilized by Global Navigation Satellite
Systems (GNSS). The 3D Cartesian system describes points in X, Y, and Z
dimensions from a reference point, simplifying calculations. In contrast, the
ellipsoidal system, accounting for the Earth’s curvature, specifies locations
in terms of latitude, longitude, and sometimes elevation. This conversion is
essential for accurately representing positions on the Earth’s surface, especially
over distances where the planet’s curvature significantly impacts measurements.

These transformations play a pivotal role in a variety of applications, such as sensor fusion,
accurately creating maps from satellite imagery, and enabling autonomous vehicles to
navigate by understanding their environment. By facilitating precise conversions and
comparisons of spatial data, they ensure coherence across measurements from different
sources or formats, crucial for tasks requiring high levels of spatial accuracy. [30]

5.3.2 General Geometry of Labels

Assigning labels to objects in datasets involves adopting geometric strategies that align
with the nature of the sensor in question. Depending on whether the sensor data is two-
dimensional or three-dimensional, appropriate geometric methods must be applied. The
OpenLABEL Standard provides an array of geometric primitives designed to facilitate the
labeling of objects and areas within these sensor streams. In this context, this analysis is
centered on the application of both 2D and 3D bounding boxes for labeling purposes.

In Figure 5.5 a 2D bounding box can be seen. It is defined as a rectangle, with an array of
four or five floating points, this definition depends on whether a rotation is specified or not.
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— X (pXx)

Y (px)

Figure 5.5. 2D Bounding Box definition.

X x-coordinate of the center of the rectangle. [Pixel]
Y y-coordinate of the center of the rectangle. [Pixel|
w Width of the rectangle in the x/y-coordinate system. [Pixel]
H Height of the rectangle in the x/y-coordinate system. [Pixel]

Alpha | Rotation of bounding box as a right-handed rotation, implies a positive
rotation from x-axis to y-axis. The point of origin of the rotation point
is the center of the bounding box (optional). [Radians|

A 3D bounding box is defined as a cuboid within a three-dimensional Euclidean space,
distinguished by its position, rotation, and dimensions. The box’s position and dimensions
are denoted by three-dimensional vectors as seen in Figure 5.6. Rotation can be represented
in one of two ways, either through a four-vector quaternion or by using a three-vector Euler

approach. When using Euler angles, the sequence of ZYX is preferred, aligning with the
order of yaw-pitch-roll. [30]

Position x, y and z coordinates of the 3D position of the center of the cuboid. [meters|
Rotation (Four-vectors) Quarterion in non-unit form (x, y, z and w). []
Rotation (three-vectors) Euler angles yaw, pitch and roll as rz, ry and rx respectively. []
Dimension | x, y and z dimensions of the cuboid or the x-coordinate. [meters]
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Figure 5.6. 3D Bounding Box definition.

5.3.3 nuScenes Annotation Scheme

As mentioned earlier in section 5.2.1, the nuScenes dataset contains 1.4 million annotated
objects across 23 distinct classes. Of these, 10 classes are specifically utilized within the
BEVFusion model [4]. This section will delve into the annotation guidelines for these 10

classes. For details on annotating the remaining classes, readers are directed to |31].

The dataset employs cuboid 3D bounding boxes for annotations, illustrated in Figure 5.3.
Given that the annotations occur over data from three different sensors(Camera, LiDAR,
Radar), achieving a high level of precision in drawing these boxes is crucial. This ensures
that no information is overlooked or excluded from other data formats.

However, to clearly demonstrate the categorization of each object type, green 2D bounding
boxes will be utilized to identify example objects that fit within each class. While, red 2D
bounding boxes will indicate objects that should not be annotated as part of a specific
class.

The criteria for class annotations are outlined as follows:
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e Car/Van/SUV: Vehicle designed pri-
marily for personal use, e.g. sedans,
hatch-backs, wagons, vans, mini-vans, p
SUVs and jeeps.

e Truck: Vehicles primarily designed to |
haul cargo including pick-ups, lorrys,
trucks and semi-tractors. Trailers
hauled after a semi-tractor should be
labeled as "Trailer".

— Pickup Truck: A pickup truck
is a light duty truck with an
enclosed cab and an open or closed
cargo area. A pickup truck can
be intended primarily for hauling

cargo or for personal use.
— Front or Semi Truck: Trac-

tor part of a semi trailer truck.
Trailers hauled after a semi-tractor
should be labeled as a trailer.

e Bus:

— Bendy Bus: Buses and shuttles
designed to carry more than 10
people and comprises two or more
rigid sections linked by a pivoting
joint. Annotate each section of the

bendy bus individually.
— Rigid Bus: Rigid buses and

shuttles designed to carry more
than 10 people.
e Construction Vehicle: Vehicles pri- Pedestrian

marily designed for construction. Typ-
ically very slow moving or stationary.

Cranes and extremities of construction
vehicles are only included in annotations Traffic Cone
if they interfere with traffic. Trucks used
to hauling rocks or building materials

are considered trucks rather than con-

g :
Temporary Traffic Barrier

struction vehicles. [31]

e Motorcycle: Gasoline or electric powered 2-wheeled vehicle designed to move rapidly
(at the speed of standard cars) on the road surface. This category includes all
motorcycles, vespas and scooters. It also includes light 3-wheel vehicles, often with a
light plastic roof and open on the sides, that tend to be common in Asia. If there is
a rider and/or passenger, include them in the box.

e Bicycle: Human or electric powered 2-wheeled vehicle designed to travel at lower
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speeds either on road surface, sidewalks or bicycle paths. If there is a rider and/or
passenger, include them in the box.
e Trailer: Any vehicle trailer, both for trucks, cars and motorcycles (regardless of
whether currently being towed or not). For semi-trailers (containers) label the truck
itself as "Truck".
Pedestrian:

— Adult: An adult pedestrian moving around the cityscape. Mannequins should

also be annotated as Adult Pedestrian.
— Child: A child pedestrian moving around the cityscape.

Traffic Cone: All types of traffic cones.

Temporary Traffic Barrier: Any metal, concrete or water barrier temporarily
placed in the scene in order to re-direct vehicle or pedestrian traffic. In particular,
includes barriers used at construction zones. If there are multiple barriers either
connected or just placed next to each other, they should be annotated separately. [31]

Although the nuScenes dataset represents a significant advancement with an entire sensor
suite implementation and extensive annotations of various data types, it faces the common
issue of class imbalance that plagues many autonomous vehicle datasets. This imbalance
arises because certain objects, such as cars and pedestrians, are more frequently encountered
on the roads compared to others like bicycles(in Boston and Singapore) and construction
vehicles. The skewed distribution of these classes is evident in Table 5.2.

Category ‘ NuScenes Cuboids ‘ Cuboid Ratio ‘ LiDARseg Points ‘ Point Ratio
Car 493,322 42.30% 38,104,219 48.27%
Truck 88,519 7.59% 15,841,384 20.07%
Bus 16,321 1.4% 4,604,760 5.83%
Construction Vehicle 14,671 1.26% 1,514,414 1.92%
Motorcycle 12,617 1.08% 427,391 0.54%
Bicycle 11,859 1.02% 141,351 0.18%
Trailer 24,860 2.13% 4,907,511 6.22%
Pedestrian 222,164 19.05% 2,344,427 2.73%
Traffic Cone 97,959 8.40% 736,239 0.93%
Temporary Traffic Barrier 152,087 13.04% 9,305,106 11.79%
Full Dataset Total 1,166,187 100.00% 78,942,623 100.00%
BEVFusion Classes Total 1,134,379 97.27% 77,926,802 98.48%

Table 5.2. The distribution of the 10 classes used by BEVFusion compared to a total of 23 classes.
[12]

Table 5.2 clearly illustrates the disparity in annotation volume across different classes. This
imbalance presents two major issues. The first issue is the potential difficulty in accurately
identifying objects from sparsely annotated classes. The second issue is the increased
likelihood of the model overfitting to classes that are heavily annotated.

5.4 Algorithm Architectures

There are many compelling implementations of AL diversity-based methods, as explored
in Section 3.3. While these existing methods demonstrate significant benefits and
hold considerable promise, there is also merit in investigating new and unconventional
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technologies. Exploring these avenues can further advance understanding of these methods
and potentially direct new research toward innovative directions.

As part of this incentive, this thesis will focus on creating a diversity-based AL method
which utilizes hierarchical clustering and vision-language models (VLMSs) to effectively
query new samples.

VLMs have become prominent, after the success of Language Models (LMs) which are the
foundation of modern natural language processing (NLP). These models are designed to
understand, generate, and interpret human language based on the statistical properties
of text data. By leveraging vast amounts of text, language models learn the intricacies of
language—from syntax and semantics to context and colloquialisms. Traditional models,
such as n-gram models [32, 33|, have evolved into more sophisticated neural network
architectures like recurrent neural networks (RNNs) [34| and, more recently, transformers
[35]. These advanced models, exemplified by GPT (Generative Pre-trained Transformer)
[36, 37|, excel in tasks ranging from text completion to complex question answering,
demonstrating a nuanced grasp of language patterns and usage. The general architecture
of one such model can be viewed in Figure 5.7.

Text Output
|
7|
Text Input
[
] Latge LamaiEge
] Model Numeric Representation

of Text

Figure 5.7. Overview of a Large Language Model.

VLMs are a type of model where visual data and language are jointly interpreted. These
models integrate the modalities of vision and language, aiming to understand and generate
descriptions of visual content, answer questions about images, and even engage in dialogue
about visual scenes, one such architecture is seen in Figure 5.8. This integration allows
the models to perform tasks such as image captioning, visual question answering, and
cross-modal retrieval. A prominent example is the CLIP (Contrastive Language-Image Pre-
Training) model, which learns visual concepts from natural language descriptions, enabling
it to understand images in a way that mirrors human visual and linguistic capabilities. By
training on a diverse range of images paired with textual descriptions, VLMs like CLIP
develop a robust understanding that supports both high-level reasoning and detailed image
analysis [38].
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Figure 5.8. Overview of a Vision-Language Model.

Therefore, the Contrastive Language-Image Pre-Training (CLIP) Model is selected as the
VLM architecture for this problem. The model is chosen because of its proven capability
to classify objects accurately without the necessity for additional training.

5.4.1 Contrastive Language-Image Pre-Training (CLIP) Model

Traditional computer vision systems, despite their effectiveness, are often limited by
their reliance on fixed, predetermined object categories. This limitation necessitates
additional labeled data for new visual concepts, thereby constraining their generalizability
and applicability. CLIP emerges as a promising solution to these challenges by learning
visual concepts directly from natural language descriptions, leveraging the vast amount of
text available on the internet.

The evolution of computer vision systems has predominantly been driven by models trained
to recognize a fixed set of predetermined object categories. This approach, while effective
for specific tasks, inherently limits the system’s applicability and adaptability to new or
unforeseen visual concepts. Traditionally, extending the capabilities of these systems to
new categories or tasks requires gathering and labeling a new dataset, a process that is
both time-consuming and resource-intensive.

The advent of natural language processing (NLP) technologies, particularly advanced
pre-training methods, has unveiled the potential of using the vast corpus of text available on
the internet as a rich source of supervision. This shift in perspective suggests an alternative
paradigm for computer vision: learning directly from raw text descriptions of images. This
method not only circumvents the need for task-specific dataset creation, but also enables
models to learn a broader range of visual concepts in a more flexible and scalable manner.

CLIP represents a novel approach to bridging the gap between visual understanding and
natural language processing. At its core, CLIP is designed to learn visual concepts from
natural language descriptions, allowing it to generalize across a wide range of visual tasks
without task-specific training. The model architecture is built upon two main components:
a visual model that processes images and a language model that interprets text descriptions.
These components are trained simultaneously using a contrastive learning objective that
aligns the image and text embeddings in a shared multidimensional space.

The primary innovation behind CLIP lies in its pre-training task: predicting the most
probable pairing of a batch of images and text descriptions from a dataset. This task
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leverages a dataset of 400 million (image, text) pairs, enabling CLIP to learn a vast array of
visual concepts directly from natural language supervision. The result is a model that can
perform zero-shot transfer to a variety of downstream tasks, demonstrating state-of-the-art
image representations learned entirely from scratch.

To enable the contrastive pre-training approach, there are three key elements, these are:

Data Collection: To support the approach, the authors behind the CLIP model create
the WebImageText (WIT) dataset, a collection of 400 million (image, text) pairs curated
from a diverse amount of publicly available sources on the internet. This is done to cover as
broad a set of visual concepts as possible. To gather data points, the authors use 500.000
predetermined queries, where each query will contain up to 20.000 (image, text) pairs.
This vast and diverse dataset is the foundation for CLIP’s flexible and scalable learning
capabilities.

Model Training: In the pre-training phase, the primary objective is to predict whether a
given image and text pair are associated. This is accomplished by jointly training an image
encoder and a text encoder using a contrastive learning approach, as seen in Figure 5.9. The
large-scale dataset is crucial in this as it provides diverse and extensive supervision. During
contrastive learning, the image encoder processes the image to produce a feature embedding,
and the text encoder processes the text to produce a corresponding feature embedding. The
core idea is to maximize the cosine similarity between the feature embeddings of correct
(image, text) pairs and minimize it for incorrect pairs. The similarity score is scaled by a
temperature parameter and normalized using a softmax function.
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T, T, Ty TN
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Figure 5.9. Contrastive Pre-training.

This approach allows CLIP to efficiently learn from natural language supervision, scaling
effectively with the size of the pre-training dataset. The simplicity of this objective,
combined with the model’s ability to learn from a large and diverse dataset, underpins
CLIP’s exceptional performance across a range of visual tasks.

Evaluation (Zero-Shot Learning): After pre-training, the model can be used for zero-
shot classification. For a given dataset, the names of all classes are used as text inputs, and
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each class name is encoded into a feature embedding using the pre-trained text encoder.
An image from the dataset is processed by the pre-trained image encoder to generate its
feature embedding. The cosine similarity between the image embedding and each class
name embedding is computed, this process can be viewed in Figure 5.10. These similarity
scores are then scaled and transformed into probabilities using softmax. The class with the
highest probability is selected as the predicted label for the image. [38]

w| Anpicture ofa Text
Ll )
Encoder
T, T, T3 TN
Image
—_— Enco%ier — 1 AT, | LT, | 15T | .. | 1Ty

Figure 5.10. Zero-Shot learning on learned text embeddings and an unknown image.

5.4.2 Hierarchical Clustering

In order to calculate how diverse each sample is, a clustering method will be used called
hierarchical clustering. It is a widely used unsupervised technique, which groups objects
into clusters based on similarity. Within this method, each cluster is composed of data
that shares characteristics, distinctly separating it from other established clusters.

A significant advantage of hierarchical clustering is its flexibility, it does not require the
number of clusters to be specified in advance. Additionally, the method organizes the
samples from the dataset into dendrograms, which simplifies the analysis and examination
of the resulting clusters.

Hierarchical clustering can be implemented via two primary strategies:

e Agglomerative: This bottom-up approach begins with each sample as an individual
cluster and merges them step-wise until one comprehensive cluster remains.

e Divisive: In contrast, this top-down approach starts with a single cluster that
encompasses all samples, which is then divided step-by-step until every sample is
isolated into its own cluster.

Figure 5.11 illustrates that the two clustering methods are essentially similar, differing
only in their starting points. Given this similarity, this thesis will concentrate on just one
approach. The Agglomerative method, being the most commonly used, will be the primary
hierarchical clustering technique employed.
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__________________

Mmam

Divisive

Figure 5.11. Hierarchical clustering diagram showing the bottom-up (Agglomerative) approach
and top-down (Divisive) approach. The gray dashed line indicates a possible threshold, where the
data would be split into three clusters in this case.

To successfully implement Agglomerative clustering on a dataset, certain procedural steps

are required. Initially, a distance matrix must be constructed for all the clusters. Following

this, a linkage operation is applied to the clusters. This operation relies on specific criteria

that are tailored to address the problem at hand. Using two clusters as an example, the

criteria include:

e Single Linkage: Determines the distance as the shortest distance between any two

points within these clusters, seen in Figure 5.12.
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Figure 5.12. Single Linkage.

e Average Linkage: The distance is calculated as the average distance between all

points in the first cluster and all points in the second cluster, shown in Figure 5.13.
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Figure 5.13. Average Linkage.

e Complete Linkage: Calculates the distance based on the maximum distance between
any two points in the clusters, illustrated in Figure 5.14.
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Figure 5.14. Complete Linkage.

These linkage techniques are implemented based on a specific threshold set for the problem.
A lower threshold ensures higher similarity among the samples within each cluster, but
setting it too low may result in false negatives. Conversely, a higher threshold might
simplify cluster formation but increase the risk of false positives. Thus, it is crucial to
establish an optimal threshold to balance these outcomes effectively. [39, 40|
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Algorithm Development

When examining the selected architecture, as discussed in Chapter 4, it becomes evident
that the hypothesis, which is derived from the related works outlined in Chapter 3, applies
to several of the most effective and recent methods analyzed in Chapter 5.

Therefore, this thesis presents a new diversity-based AL algorithm that utilizes clustering
techniques alongside language models to enhance the learning process. By selecting a
diverse array of samples, this approach aims to balance the disparities in class sizes. This
strategy seeks to improve accuracy among less-represented classes without oversampling the
more prevalent ones, hence addressing the potential issues of overfitting and underfitting.

6.1 Input: Dataset Pre-Processing

Numerous pre-processing techniques can be applied to images to prepare them for further
analysis. Among these methods, recent research highlights the effectiveness of vision-
language representations, particularly feature embeddings, in identifying unusual patterns
and novelties within datasets [41]. Motivated by these findings, this thesis adopts such
feature embeddings as the central pre-processing strategy for the nuScenes dataset.

To generate these feature embeddings, the CLIP model will be utilized. This model produces
feature embeddings by converting images into dense matrices that capture a wide array of
visual features. These matrices effectively encode the visual information in a format that is
compatible with linguistic data, allowing for a multi-modal approach to understanding the
content of the images. Each matrix represents the features of an individual image sample
and is designed to facilitate the detection of nuanced patterns and anomalies.

These matrices will serve as the inputs for the novel algorithm developed in this thesis,
ensuring that it benefits from a rich, feature-dense representation of each image. This
approach enhances the algorithm’s ability to make accurate identifications based on visual
data.

6.2 Active VisLED-Querying Algorithm

The nuScenes dataset encompasses a diverse array of scenarios. Hence, it is crucial to
approach the patterns identified by annotators with an open mind. A machine learning
model, with its unique analytical capabilities, may uncover new patterns that are not
immediately apparent to human observers. Such insights can provide a deeper understanding
of the data, highlighting the potential of advanced analytics in revealing complex, unseen
relationships within the input embeddings.
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Therefore, the Active Vision-Language Enbedded Diversity Querying (VisLED-Querying)
Algorithm is created with two scenarios in mind, the Open-World Exploring Scenario and
the Closed-World Mining Scenario.

6.2.1 Open-World Exploring

The Open-World Exploring VisLED-Querying Scenario employs a novel approach by
conducting hierarchical clustering directly on feature embeddings, as illustrated in Figure
6.1, bypassing the conventional method of categorizing them into predefined dataset classes.
This technique enables a comprehensive analysis of the entire dataset, facilitating the
identification of both broad patterns in the data and diverse samples, that transcend the
limitations of existing class definitions.

| Embeddi
Algorithm 1: Open-World Exploring mage =mbe mgs}

VisLED-Querying

Input: Unlabeled pool of egocentric
driving scene images

Output: Updated training set

Hierarchical Clustering

1 Embed each egocentric driving scene OOO
image from the unlabeled pool E OO / s
using CLIP; :: Cluster 1 | Py
2 Use hierarchical clustering to I sk >
separate the embeddings; ® OOO !
3 Sample new data points from the .OOOO dekioos
unclustered set for addition to the O Cluster 3

Uniques
training set;

Figure 6.1. A representation of the Open-World Exploring algorithm, showing its pseudo code
and architecture.

By avoiding the segmentation of data into predetermined classes, this method allows for a
more comprehensive understanding of the dataset. It provides an opportunity to discover
relationships and structures that might otherwise remain hidden within the confines of the
predetermined classes. This approach is particularly advantageous in complex datasets like
nuScenes, where diverse scenarios and interactions can manifest in ways that are not neatly
aligned with established class categories.

6.2.2 Closed-World Mining

The Closed-World Mining VisLED-Querying algorithm adopts a similar framework to that
of its counterpart, the Open-World Exploring VisLED-Querying algorithm, but introduces
a critical modification: the initial segmentation of the dataset into predefined classes.
This classification is achieved using the CLIP model, mirroring the approach taken in the
open-world scenario but tailored to a more structured analysis environment.

In this closed-world setting, the algorithm employs zero-shot learning, a technique that
enables the classification of data that the CLIP model has not explicitly encountered
during training. Specifically, the algorithm will categorize each image sample based on the
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most prominent object identified within the image. This categorization process involves
comparing the visual features of the image with the textual descriptions of various classes,
ultimately assigning the image to the class that exhibits the highest similarity score.

Once the initial classification is complete, an equal number of samples will be selected from
each class. The method can be seen in Figure 6.2 where it is possible to view the pseudo
code and structure of the algorithm.

Algorithm 2: Closed-World Mining
VisLED-Querying
Input: Unlabeled pool of egocentric
driving scene images
Output: Updated training set
1 Embed each egocentric driving scene
image from the unlabeled pool
using CLIP;
2 Encode each class label using a text
encoding;
3 Applying zero-shot learning by
maximizing the product of the

‘ Image Embeddings J

. coder Zero-Shot L i
embeddings, sort the embedded TBmeoder | SHOTHOSEATIRE
images by class; YYV"Y
. . Image Encoder T, T T;)... Ty Truck
4 For each class, apply hierarchical i - ;
clustering;

Hierarchical Clustering

5 Sample new data points from the . )@
O/ 1 Ciwster2

unclustered set associated with the "
desired class, and add to the "_‘,:-'-'-'-’-‘-'
training set; =

Figure 6.2. A representation of the Closed-World Mining algorithm, showing its pseudo code and
architecture.

6.3 Output

Although the methods employed by the two algorithms differ, they ultimately generate
identical types of output. The algorithm is executed multiple times, each corresponding
to a different training split, corresponding to the chosen criteria. This process is designed
to create distinct training subsets for each designated data split, thereby enhancing the
robustness and diversity of the training regime.

In the course of operation, the algorithms focus on identifying and selecting the most
diverse samples. This selection is achieved by prioritizing samples that exhibit unique
characteristics which do not align closely with any existing cluster. Once the diverse sample
has been chosen, the scene name of the sample will be saved, if a scene name has already
been included in a chosen subset, that particular sample is bypassed to avoid redundancy.
Instead, another unique sample is selected. This process continues iteratively until the
desired number of unique scenes, as specified, has been successfully compiled.
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This section details the implementation of 3D object detection using the BEVFusion model
combined with a novel AL method, Active VisLED-Querying. The primary objective is to
enhance detection performance by integrating diversity-based querying in an AL framework
and comparing its efficacy against a baseline random querying method.

7.1 nuScenes Pre-processing

7.1.1 nuScenes Development Kit and File Setup Adjustments

The nuScenes dataset is sophisticated, encompassing a wide array of scenarios that make it
ideal for 3D Object Detection applications. However, a notable limitation is the inflexibility
of its underlying codebase, as it is hardcoded to work with all the scenes present, making it
hard to use it with AL frameworks where not all scenes are required.

Consequently, the initial phase in adapting AL to the nuScenes dataset involved investigating
the nuScenes development kit (nuScenes-devkit) [42], the primary codebase associated
with the dataset. It was essential to identify and modify the specific code segments that
restricted usage to the full dataset, enabling the use of dataset subsets instead. This
modification was made in the ’splits.py’ file, where it was possible to comment out an
assertion line that specified the number of scenes required for the training, validation, and
test splits individually. Subsequently, the hardcoded splits which contain the scene names
of the available scenes, were disabled and replaced with empty lists.

To populate these empty lists, it was necessary to modify the JSON files located in the
dataset folder structure. The nuScenes dataset organizes its JSON files into two directories:
‘trainval’, which contains all information pertaining to the training and validation sets, and
'test’, which includes all information related to the test set. Notably, the test set lacks
annotations because it is used exclusively for submissions to the nuScenes server, where
results contribute to the nuScenes leaderboard rankings. Given that the ’test’ split is not
utilized in this implementation, it will be excluded from subsequent discussions.

As a diversity-based AL method that selects samples according to the diversity of image
embeddings discussed in Section 6.1, there is no need to perform inference on the unused
samples to identify the most diverse ones for subsequent rounds. This simplifies the
file restructuring process, as no additional folders or files need to be created for these
unused /unlabeled samples. Since all relevant information is tied to the scene names included
in each split, the only necessary modification is to exclude the unused scenes from the file
listing the scene names used in the training split.
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These files will subsequently be linked to the splits.py script, and the scenes listed in the
scene name files for each split will be added to the previously empty lists.

7.1.2 Image Embeddings

Pre-process Images Using a Vision-
Language Model

CLIP Indexing —>

Image Embeddings

Figure 7.1. Creation of feature embeddings from the image inputs.

With the dataset now prepared for AL applications, the next step entails selecting the most
diverse samples. To accomplish this, we will generate image embeddings through the image
indexing function provided by the CLIP model, as shown in Figure 7.1. This will result in
a matrix for each sample, which is then stored in a ".npy’ file for clustering purposes. For
Open-World scenarios, this procedure is performed once, while for Closed-World scenarios,
it is conducted for each class individually.
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7.2 Active VisLED-Querying

In the Closed-World application of
the VisLED-Querying method, zero-shot Diversity Sampling
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classes. During this process, feature em- Hierarchical Clustering
beddings derived from the class names )

serve as language inputs, while feature - OOO >®
embeddings derived from the sample im- -Q ! ChEE 2
ages are utilized as image inputs. The Cluster l
classification of each image is then deter- N >,
mined by calculating the cosine similarity

between the image embeddings and the i
language embeddings. Each sample is

S8

-
’
1

’
-

Cluster 3

Uniques
classified into a single class, even if it con-
tains multiple objects because the CLIP Closed-World Mining
model only assigns high scores to the im- TexBncoder  Zero-Shot Learning ’ )
age’s most prominent object. The objects ! TV TV TV
achieving smaller scores are not consid- Image Encoder 112123 N
ered, as the scores tend to be very close to gy o E1 EAENEAPSEN

each other percentage vise, this choice is
made to avoid introducing false positives
into the datasets.

While for both the Open-World Exploring
and The Closed-World Mining methods
the embeddings will be utilized as input
to perform hierarchical clustering.

Hierarchical Clustering

000 _)@
. () 4
O , Cluster2
L}

Cluster 1,

/
Clusfer 3 Uniques < Se oo - Scooooo -

Figure 7.2. A representation of both Open-World
and Closed-World VisLED-Querying.

The chosen method for clustering is the Agglomerative (bottom-up) approach, employing
an average linkage technique. The number of clusters formed is variable and determined
by a threshold specifically selected to optimally represent the data. Upon selecting the
clusters, the images associated with each matrix will be organized into a new folder, each
folder representing one cluster, with the exception of the unique samples which do not fit

into any cluster, they will be gathered into a single folder.

In the Open-World Exploring approach, clustering is performed on the entire dataset at
once, whereas in the Closed-World Mining approach, clustering is carried out independently
for each class generated by the zero-shot learning phase.

The algorithm will then proceed to select samples based on the steps outlined in Section
6.3. The Open-World Exploring technique, will choose from a singular 'unique’ directory
containing all of the most diverse samples in the training set. In contrast, the Closed-World
Mining technique will involve sampling an equal amount of diverse samples from 'unique’
directories established for each class during the clustering phase.

7.3 BEVFusion

When implementing BEVFusion, the configuration file required modifications to fit the
constraints of the existing hardware. For this project, only one Nvidia RTX 4090 GPU was

CE-1045g May 30, 2024 Page 38 of 75



7.3. BEVFusion Aalborg University

available, unlike the original authors of the study, who suggested using eight GPUs [43].
This necessitated changes to both the batch size and the learning rate. Given the memory
limitations of the single GPU, which has 24 GB of graphics RAM [44], the batch size was
reduced to 1 to avoid depleting GPU memory with larger batch sizes.

The comprehensive architecture of the entire system is depicted in Figure 7.3. This
configuration is achieved by integrating various components of the setup into a single script
that automates the process. This script enables the setup of the dataset, as well as its
training and testing using the train and test scripts supplied by the developers of the
BEVFusion model, for each specified dataset split.

Diversity Sampling

Pre-process Images Using a Vision-

Open-World Exploring
Hierarchical Clustering

: Language Model 3 )
! : ¢ OO /
d . I '
Unlabeled _>. CLIP Indexing ' ) Cllistior 2
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Data | Image Embeddings A T . A e ‘)
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Labeled
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Figure 7.3. Training pipeline. (Created for the paper seen in Appendix B)
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To effectively save and manage the output results generated by the scripts, we utilize the
Weights & Biases platform. This platform provides robust tracking and visualization tools,
enabling seamless logging of metrics, system parameters, and model outputs. By integrating
Weights & Biases, we ensure that all experimental data is stored in an organized manner,
facilitating easy access and analysis [45].
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The testing chapter serves to evaluate the effectiveness and robustness of the proposed
VisLED-Querying method for 3D object detection. This section is dedicated to outlining
the setup and results of the experimental testing conducted to validate the performance of
the developed algorithms.

In the subsequent sections, the specifics of the experimental setup will be delved into, while
presenting quantitative results derived from various performance metrics, and offering a
qualitative analysis of the findings. The aim is to demonstrate the efficacy of VisLED-
Querying in achieving high performance with reduced data, thereby underscoring the
potential benefits of AL approaches in the realm of 3D object detection.

8.1 Experimental Setup

Initially, only 10 % of the dataset will be utilized in the first iteration, with each subsequent
iteration incorporating an incremental 10 % of the data, meaning that 100 scenes are added
each iteration until 50 % of the dataset is employed. This incremental training approach will
yield five distinct models for each sampling technique, with each model undergoing training
across six epochs. Since training five models with six epochs takes approximately six days,
a higher number of epochs, although potentially yielding better results, was not chosen.
This decision ensures sufficient time to conduct all tests. This progression from the initial
10 % to the final phase using 50 % of the dataset allows for a comprehensive assessment
of the model’s learning capabilities and the effectiveness of each sampling method under
different data volumes.

The VisLED-Querying technique will be executed five times for each dataset split to
establish that the algorithm delivers consistently strong performance. This repeated testing
is crucial to statistically validate the reliability and effectiveness of the VisLED-Querying
method. However, due to time constraints, the experiment using the Random Sampling
method will be conducted only once. As a result, the outcomes presented for the VisLED-
Querying method will consistently include both the mean and the standard deviation,
providing a more detailed insight into its performance. Where on the other hand, the
results from the Random Sampling method will be less comprehensive.

For the VisLED-Querying Closed-World Mining method, a decision was made to exclude
the three most frequently occurring classes (car, pedestrian, and temporary traffic barrier)
from the zero-shot learning sampling, focusing instead on the remaining seven classes. This
decision was made due to the disproportionately large amount of data available for these
classes. Since each image is classified into a single class to identify the most prominent
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object, most samples would otherwise be classified into one of these common classes, even

if they contain objects from the rarer classes.

8.1.1 Architecture Limitations

The availability of only one GPU for this project imposed certain restrictions on both the
algorithm and the model.

Due to an insufficient GPU size, the computer was unable to execute hierarchical clustering
on all image embeddings simultaneously. Consequently, the Open-World exploring method
is restricted to handling only 19,000 images. These images are selected randomly from
the dataset. This specific number was determined through a process of elimination, which
established that clustering 19,000 images consistently proceeds without errors. However,
attempting to cluster more often leads to frequent ’out of memory’ errors during the process.
The reason is that the GPU memory required surpasses the amount of data the GPU can
accommodate simultaneously, as many complex calculations are happening, for the clusters
to be accurate.

For this project, it was crucial to consider that the original implementation of the BEVFusion
architecture utilized 8 GPUs, a setup that significantly exceeds our hardware capabilities. To
adapt the architecture to the single GPU available for this project, various hyperparameters
required adjustments. The most critical changes were made to the learning rate and the
batch size to accommodate the reduced computational power. Additionally, the 'workers’
parameter had to be modified, as processing attempts consistently failed when attempting
to handle more than 40 % of the dataset. This issue arose from BEVFusion’s limitations in
managing multiprocessing tasks with limited GPU resources. The adjustments to these
parameters were necessary to ensure the model’s operational stability and performance
on the limited hardware. A comparison between the original hyperparameters and those

applied in this project is detailed in Table 8.1.

Hyperparameters ‘ Original ‘ Changes

Learning Rate 2.0e-4 2.0e-5
Batch size 6 1
Workers 4 1
Epochs 6 10

Table 8.1. Overview of changes made to the hyperparameters of the model.

8.1.2 Hierarchical Clustering Threshold Placement Test
Method:

To determine the appropriate threshold for hierarchical clustering, it is essential to test
various thresholds. This experiment involves examining the individual clusters formed and
assessing their sizes. Additionally, the unique folder will be inspected to identify any images
that should be included in a cluster.

The process begins by selecting a low threshold value and gradually increasing it until false
positives start to appear in the clusters. The final threshold will be the value just before
false positives are observed.
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Results:

The initial threshold chosen was 0.2. Upon observation, it was found that this threshold
was too low, as there were barely any images in the clusters, with the majority of images
being located in the 'unique’ folder.

The next threshold tested was 0.3, which resulted in better cluster formation. A pattern
began to emerge, with e.g. images taken in the dark with no objects present often clustered
together and street corners that the vehicle had passed multiple times, showing different
lighting conditions, were also grouped together. However, many images that should have
been part of clusters remained in the 'unique’ folder. This was easily observable due to
the ego vehicle stopping at crossings and red lights, resulting in many similar samples that
were easily identifiable while located in the 'unique’ folder.

The same pattern persisted when testing thresholds of 0.4 and 0.45. Consequently, smaller
increments were chosen as the 'unique’ folder started to become more diverse but was still
not sufficiently accurate. Testing the 0.5 threshold improved the diversity of the *unique’
folder without introducing false positives into the clusters. Higher thresholds were also

tested, but the clusters began to include false positives.

Therefore, a threshold of 0.5 was selected for all further experiments.

8.1.3 Zero-Shot Learning Test
Method:

To conduct this test, all classes will first be converted into language embeddings. Then, the
cosine similarity will be calculated for each sample’s image embedding, and the sample will
be assigned to a class. Once this process is completed for the entire dataset, observations
will be made on the number of images fitting into each class and the quality of the selections
for each class. This will involve checking the images to determine if an object from the
chosen class is present.

Results:

Initially, language feature embeddings were created for all 10 classes. However, when
categorizing the images based on all classes, it was noticed that the majority of images
ended up in the Car, Pedestrian, or Temporary Traffic Barrier classes. This is because
Cars and Pedestrians are common on most roads, often resulting in the highest accuracy
for these classes. Additionally, the CLIP model, trained on highly diverse data, tends to
classify any type of barrier under the Temporary Traffic Barrier class if it has the highest
accuracy in the sample. Observations of the Temporary Traffic Barrier class revealed the
inclusion of fences, walls, and even some hills.

Since the algorithm is designed to facilitate the identification of less represented classes,
and given the high number of false positives in the Temporary Traffic Barrier class, these
classes were omitted from further testing.

When testing the seven remaining classes, it was found that the categorization of images
better represented the objects present in each image. However, there were still false positives
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included in the classes. e.g, in the bicycle class, some images included only bicycle racks
without bicycles. Similarly, in the bus class, bus stops without buses were included. This is
again due to the diversity of the data on which the CLIP model is trained and the broader
associations of the words used in categorization.

Despite these issues, it was decided to keep these classes because they are underrepresented
in the dataset and therefore important to include in the sampling process.

8.2 Quantitative Results

8.2.1 VisLED-Querying vs. Random Sampling
Method:

The experimental results presented here correspond to the procedures outlined in Section
8.1.

The results will be displayed for the random sampling method alongside the two VisLED
methods, which are compared to the outcomes obtained from the full dataset run without
AL.

Result:

Table 8.2 reveals that both VisLED-Querying scenarios yield higher accuracies than Random
Sampling. Furthermore, the Open-World Exploring scenario surpasses the Closed-World
Mining scenario in accuracy, although the Closed-World Mining scenario shows a lower

standard deviation, indicating more consistent performance.

Additionally, it can be seen that the standard deviation for the Closed-World Mining scenario
generally decreases with each iteration as the labeled training set expands. However, no
consistent pattern is observed in the standard deviation fluctuations for the Open-World

Exploring scenario.

When examining the mAP score, the Open-World Exploring and Closed-World Mining
scenarios show a reduction in accuracy of 1.28 % and 1.93 %, respectively, compared to
training on the complete dataset without AL. Meanwhile, Random Sampling leads to a
2.98 % lower accuracy.

In terms of the NDS score, the Open-World Exploring and Closed-World Mining scenarios
have accuracies that are 2.1 % and 2.37 % lower, respectively, compared to the NDS score
of the full training set without AL. Meanwhile, the Random Sampling method results in a
3.09 % lower accuracy.
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Labeled Pool mAP NDS
Rounds ‘ % Random | VisLED (CWM) | VisLED (OWE) | Random | VisLED (CWM) | VisLED (OWE)
Mean ‘ STD Mean ‘ STD Mean ‘ STD Mean ‘ STD
1 10% 30.95 28.98 0.34 32.02 0.71 33.53 32.54 0.31 34.76 0.65
2 20% 38.00 40.92 1.09 41.68 0.82 40.14 41.54 0.65 42.78 1.13
3 30% 44.94 45.44 0.89 46.81 0.37 48.41 48.93 0.79 50.99 1.05
4 40% 47.73 49.35 0.51 49.52 0.59 53.10 53.54 0.35 54.89 0.52
5 50% 49.90 50.95 0.14 51.60 0.98 55.64 56.36 0.36 56.63 0.94

[ 100% | 52.88 H 58.73

Table 8.2. This table shows the mean average precision (mAP) and nuScenes detection score
(NDS) metrics for the random sampling, and VisLED-querying (Closed-World Mining (CWM) and
Open-World Exploring (OWE)) in every round. It also shows the mAP and NDS scores for the full
training split when trained using one GPU.

8.2.2 Class Distribution Comparison
Method:

To visualize the efficiency of the VisLED-Querying Method, the class distribution of all
objects included in the training will be extracted from the wandb log files generated during
each run.

Results:

Figure A.1 demonstrates that the VisLED-Querying method effectively samples more
diverse data across most splits. For classes with limited data, the VisLED-Querying method
tends to sample more data in these instances. Additionally, the Closed-World algorithm
specifically manages to sample less data from the more prevalent classes, such as pedestrian,
temporary traffic barrier, truck, and traffic cone. Plots comparing the class distribution to
the full training set can be seen in Appendix A.
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Figure 8.1. Class distribution between Random Sampling, VisLED-Querying Open-World
Exploring (OWE) and Closed-World Mining (CWM).
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8.2.3 Class Comparison: VisLED-Querying Closed-World Mining vs.
Random Sampling

Method:

In this analysis of the conducted experiment, the mean Average Precision (mAP) for each
class will be derived from the models. Following this, a detailed examination of the classes
will be conducted to assess whether VisLED-querying achieves its intended effect. Initially,
a summary of class performances will be presented, which will facilitate an individual
analysis of each class. This analysis will determine which classes underperformed and
whether they exhibited improved performance via VisLED querying compared to random
sampling.

Furthermore, an evaluation of the graphical data will be complemented by an analysis of
the sample distribution per class, as indicated in Tables 3.6 and 3.7. These tables provide
a clearer picture of the incremental samples added in each sampling round. Should the test
prove successful, there will be an increase in the data for classes demonstrating the lowest
accuracy, as depicted in the tables and illustrated in the figures. It is important to note,
however, that while sampling occurs at the scene level, all classes will see an increase in
data with each round. Nonetheless, the data augmentation should be more pronounced in
classes with fewer samples as these are most likely to contain diverse samples.

Results

The results presented in Tables 8.3 and 8.4 indicate that VisLED-Querying outperforms
Random Sampling for most classes, as also illustrated in Figure 8.2. Additionally, it is
evident that for the majority of classes, using 50 % of the data yields accuracy levels close
to when using 100 % of the data. An exception is the Truck class, seen in Figure 8.4d
which significantly exceeds the accuracy achieved with the full data set and the Cicycle
class, seen in Figure 8.4b which yields lower accuracies. To thoroughly examine each class,
Figure 8.2 is divided to allow for detailed analysis of individual classes.

Labeled Pool Car Truck Bus Const. Vehicle Motorcycle

Rounds | % | Random | VisLED | Random [ VisLED | Random | VisLED | Random | VisLED | Random | VisLED
1 10% | 7454 [ 71.88 | 2956 | 2504 [ 2301 | 21.79 6.97 5.24 21.45 17.08
2 20% | 7841 7872 | 3383 | 3554 | 36.95 | 38.00 8.32 11.97 | 2292 | 36.98
3 30% | 8172 | 81.29 [ 3140 [ 40.20 | 4641 | 42.69 16.43 1395 | 37.99 | 4542
4 40% | 8357 | 8344 | 36.87 | 39.93 | 49.66 | 51.20 1544 | 19.08 | 4822 | 5220
5 50% | 84.00 | 84.46 | 37.49 | 46.48 | 55.26 | 52.29 | 18.46 | 20.89 | 52.33 | 53.21

| 100% | 85.24 | 39.27 \ 54.45 \ 22.25 \ 56.30

Table 8.3. The mAP score for the classes are shown, for Random Sampling and VisLED (Closed-
World Mining) where the VisLED results represent a mean value of five runs, while the results for
the Random Sampling method only represent one run.

CE-1045g May 30, 2024 Page 45 of 75



8.2. Quantitative Results Aalborg University

Labeled Pool Bicycle Trailer Pedest. Traff. Cone Traff. Barrier

Rounds | % | Random | VisLED | Random [ VisLED | Random | VisLED | Random | VisLED | Random | VisLED
1 10% | 742 2.71 2.02 5.07 58.34 | 5522 | 53.62 | 50.08 | 32.14 [ 35.63
2 20% | 1041 18.07 8.13 1152 | 6800 | 6295 | 6110 | 60.04 | 51.93 | 55.04
3 30% | 1847 | 19.10 1557 | 15.08 | 77.04 | 77.01 6595 | 6384 | 58.47 | 5577
4 40% | 2150 | 26.18 [ 17.52 [ 18.93 | 7955 | 80.17 | 66.90 | 66.03 | 58.06 | 56.15
5 50% | 26.28 | 2460 | 18.91 | 18.92 | 80.08 | 81.64 | 68.75 | 69.07 | 5749 | 57.92

100% | 32.67 \ 23.17 \ 83.54 \ 70.32 \ 66.04

Table 8.4. The mAP score for the classes are shown, for Random Sampling and VisLED (Closed-
World Mining) where the VisLED results represent a mean value of five runs, while the results for
the Random Sampling method only represent one run.

As illustrated in Figure 8.2, the three classes excluded from the zero-shot learning component
(Car, Pedestrian, and Temporary Traffic Barrier), exhibit nearly identical performance
curves for both Random Sampling and VisLED-Querying, as further explored in Figure 8.3.
Additionally, Tables 8.3 and 8.4 show that the accuracy for the Car and Pedestrian classes
as being 0.78 % and 1.9 % lower, respectively compared to the results from the full dataset.
In contrast, the accuracy for the Temporary Traffic Barrier class is 8.12 % lower than the
full dataset results but still higher than the accuracy achieved through Random Sampling.

Additionally, Figure 8.2 and Table 8.4 show that the Traffic Cone class achieves high
accuracy, despite representing only 8.40 % of the full dataset, as indicated in Table 5.2.
therefore, it was not taken into consideration when choosing which class to exclude from
the zero-shot learning classifications.

Random Sampling VisLED-Querying

80

mAP]

!

40

mean Average Precision Score [mAP]

mean Average Precision Score

10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Persentage of Data [%] Persentage of Data [%]

Figure 8.2. Results for all classes split into Random sampling and VisLED-Querying (Closed-
World Mining).

Furthermore, Figure 8.2 reveals that the accuracy of the remaining classes varies significantly.
Some classes, such as Truck, Motorcycle, and Bus, maintain good accuracy, although not
as good as the classes with a lot of data present, while others, like Bicycle, Trailer, and
Construction Vehicle, perform poorly. Although there is variation, most classes perform
better with VisLED-Querying than with Random Sampling. Some classes show only slight
improvement, while others maintain significantly higher accuracy, thereby reinforcing the
credibility of the developed AL method.
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Figure 8.3. Representation of the stability of the most frequently occurring classes.

One particularly interesting class to highlight is the Truck class. When using 50 % of the
data, this class exceeds the accuracy achieved with the full training set by 7.21 % and
outperforms Random Sampling by 8.99 %, as shown in Table 8.3. These results can also be
observed in Figure 8.4d.

Several classes do not achieve high accuracies even with the full training set, as seen in
Tables 8.3 and 8.4, with the Motorcycle class being one example. Nevertheless, a significant
achievement is noted in the Motorcycle class. Figure 8.4e shows that the VisLED-Querying
method consistently maintains significantly higher accuracy compared to the Random
Sampling method, although the accuracy gap narrows by the final iteration.

Another such class is the Construction Vehicle class, as illustrated in Figure 8.4f. Where
the VisLED-Querying method generally outperforms the Random Sampling method, with
the only exception being the 30 % data split.
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Figure 8.4. mAP score of other classes.

8.2.4 Class Comparison: VisLED-Querying Open-World Exploring vs.
Random Sampling

Method:

This analysis follows the same principles as the prior class comparison analysis seen in
Section 8.2.3 for VisLED-querying Closed-World Mining.
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Results:

Tables 8.5 and 8.6 show that the accuracies for each class in the Open-World Exploring
scenario are generally higher compared to those from Random Sampling. This trend holds
for all classes except for the Motorcycle, Bicycle and Bus classes, which achieve lower
accuracies with the Open-World Exploring method than with Random Sampling.

Additionally, it is noted that three classes (Truck, Construction Vehicle, and Traffic Cone)
outperform the accuracy achieved when using the full dataset without AL for training.

Labeled Pool Car Truck Bus Const. Vehicle Motorcycle

Rounds | % | Random | VisLED | Random | VisLED | Random | VisLED | Random | VisLED | Random | VisLED
1 10% | 7454 | 7433 | 2956 | 2885 | 23.01 27.45 6.97 5.22 2145 | 23.16
2 20% | 7841 79.64 | 3383 | 3536 | 36.95 | 40.32 8.32 1533 | 2292 | 3547
3 30% | 8172 | 81.97 | 3140 | 4211 | 4641 | 4711 16.43 1769 | 37.99 | 4753
4 40% | 8357 | 8374 [ 36.87 | 4144 | 49.66 | 5164 | 1544 | 2207 | 4822 | 46.00
5 50% | 84.00 | 84.55 | 37.49 | 42.36 | 55.26 | 53.68 | 18.46 | 22.36 | 52.33 | 50.91

| 100% | 85.24 | 39.27 \ 54.45 \ 22.25 \ 56.30

Table 8.5. The mAP score for the classes are shown, for Random Sampling and VisLED (Open-
World Exploring) where the VisLED results represent a mean value of five runs, while the results
for the Random Sampling method only represent one run.

Labeled Pool Bicycle Trailer Pedest. Traff. Cone Traff. Barrier

Rounds | % | Random | VisLED | Random | VisLED | Random | VisLED | Random | VisLED | Random | VisLED
1 10% 7.42 1.58 2.02 9.10 58.34 57.82 53.62 51.34 32.14 41.29
2 20% 10.41 12.51 8.13 17.95 68.00 64.77 61.10 65.01 51.93 50.49
3 30% 18.47 18.68 15.57 14.20 77.04 77.50 65.95 66.75 58.47 54.55
4 40% 21.50 20.38 17.52 19.93 79.55 78.84 66.90 68.12 58.06 63.04
5 50% 26.28 24.54 18.91 22.25 80.08 81.56 68.75 70.63 57.49 63.20

| 100% | 32.67 \ 23.17 \ 83.54 \ 70.32 \ 66.04

Table 8.6. The mAP score for the classes are shown, for Random Sampling and VisLED (Open-
World Exploring) where the VisLED results represent a mean value of five runs, while the results
for the Random Sampling method only represent one run.

Figure 8.5 illustrates that the distribution of classes across the mAP score is similar to the

distribution observed in Section 8.2.3. In both cases, classes with more data achieve higher
accuracies than those with less data.
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Figure 8.5. Results for all classes split into Random sampling and VisLED-Querying (Open-World
Exploring).
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This pattern is also evident in Figure 8.6, where the graphs follow a similar curve to
the previous experiment. However, the VisLED-Querying method attains the highest
accuracy for all classes. Furthermore, for the Traffic Cone class, as seen in Figure 8.3d,

VisLED-Querying achieves a higher accuracy than the full dataset, as presented in Table
8.6.
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Figure 8.6. Representation of the stability of the most frequently occurring classes.

The classes show varying results with this method. Random Sampling achieves better
performance than the VisLED-Querying Open-World Exploring method for the Bus class
(Figure 8.7a), Bicycle class (Figure 8.7b), and Motorcycle class (Figure 8.7¢). Conversely,
the VisLED-Querying method excels in seven classes, three of which also surpass the
accuracy of the fully trained dataset.

Notably, two classes that outperform the fully trained dataset without AL have relatively
few data points present in the labeled dataset. These are the Truck and Construction
Vehicle classes, as shown in Figures 8.7d and 8.7f, respectively, and in Table 8.5.

CE-1045g May 30, 2024 Page 50 of 75



8.2. Quantitative Results

Aalborg University

551 —— VisLED-Querying .l
—=— Random Sampling

w IS IS o
G 3 a 3

mean Average Precision Score [mAP]
o .
3

)
a

10 15 20 25 30 35 40 45 50
Persentage of Data [%]

(a)

Trailer

2251 —e— VisLED-Querying
~—=— Random Sampling

20.0

o3
B

mean Average Precision Score [mAP]
IS
n

10.0
/
|
75 A
/
/
/
50 A
/
/
2.5 e
10 15 20 25 30 35 40 45 50
Persentage of Data [%]
()
Motorcycle
—e— VisLED-Querying ot
501 —=— Random Sampling -

w w IS &
<3 o S a

mean Average Precision Score [mAP]

N
a

20

10 15 20 25 30 35 40 45 50
Persentage of Data [%]

(e)

Bicycle
—— VisLED-Querying
251 —=— Random Sampling
a
<
Eo0
2
g
S
@
g
7 15
s}
2
~
©
£l
10
4
<
=
g
3
=
5
10 15 20 25 30 35 40 45 50
Persentage of Data %]
Truck
4| —* VisLED-Querying

—=— Random Sampling

10 15 20 25 30 35 40 45 50
Persentage of Data [%]

(d)

Construction Vehicle

22.5{ —s— VisLED-Querying
—=— Random Sampling
P A
&
125
=3
§
2
< 10.0
=
§
=
75
5.0
10 15 20 25 30 35 40 45 50

Persenlagé of Data [%]

(f)

Figure 8.7. mAP score of other classes.
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8.3 Qualitative Analysis

8.3.1 Sample Evaluation
Method:

For this qualitative analysis, 10 different images will be
randomly chosen to represent a diverse range of objects
and weather conditions, highlighting the effectiveness of
each VisLED method. The results will be shown for 50
% VisLED-Querying Closed-World Mining, 50 % VisLED-
Querying Open-World Exploring, and compared with 50 %
Random Sampling, the full training set without AL, and
the ground truth for each image.

This approach aims to provide a comprehensive evaluation
of the VisLED-Querying methods under varied conditions.
By making this comparison, the analysis will demonstrate
the strengths and limitations of each method. The inclusion

@ Car
Truck
@ Trailer

Motorcycle
Bus
Pedestrian
Bicycle
@ Construction Vehicle
Traffic Cone

of diverse weather conditions and objects in the selected
images will ensure that the evaluation covers a broad
spectrum of real-world scenarios, providing insights into the
practical applicability of the VisLED-Querying methods.

@ Barrier

Figure 8.8. Colors of each
class in the visualization of the
classes.

In each sample, the bounding boxes will be visible in different colors, representing the
individual classes. The colors corresponding to each class can be seen in Figure 8.8.

Results:

In the first sample selected, objects such as cars, a pedestrian, a motorcycle, and a bicycle
are visible in cloudy weather conditions. These are all highlighted in Figure 8.9a. It is
evident that all the algorithms can detect the three closest cars and the pedestrian, but
they struggle to detect the cars that are furthest away and the bicycle.

Figure 8.9b shows that the Random Sampling method incorrectly classifies the motorcycle
as a car, while the full training set, seen in Figure 8.9e fails to detect the motorcycle
altogether. In contrast, both VisLED-Querying methods, illustrated in Figures 8.9c and
8.9d, accurately classify the motorcycle. This demonstrates the enhanced capability of
VisLED-Querying methods in recognizing and correctly classifying objects, particularly in
complex scenes with multiple object types.
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(a) Ground Truth

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.9. A sample with objects including Car, Pedestrian, Motorcycle, and Bicycle.

In the sample provided in Figure 8.10a, various objects are labeled, including a car, a
bicycle, pedestrians, a bus, temporary traffic barriers, a construction vehicle, and a truck
in cloudy weather conditions. All methods correctly label the car, bicycle, and barriers.
They also accurately classify the bus and construction vehicle, albeit with varying levels of
precision, as indicated by the differences in bounding box accuracies.

The methods demonstrate proficiency in identifying different pedestrians, although none
can detect all of them. Notably, the VisLED-Querying Open-World Exploring method, as
shown in Figure 8.10d, and the full training set, as seen in Figure 8.10e, manage to identify
the truck in the right corner of the image, despite only a small portion of it being visible.

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.10. A sample with objects including Car, Pedestrian, Bicycle, Barrier, Construction
Vehicle, Truck and Bus.

In the sample shown in Figure 8.11a, the objects visible include, cars, temporary traffic
barriers, traffic cones, trucks, and a construction vehicle, all in a cloudy environment. It
is observed that the temporary traffic barriers and easily identifiable cars are correctly
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labeled by all methods. However, the car that is barely visible is not identified by any of
the methods. The construction vehicle is correctly identified by all methods, but Random
Sampling, shown in Figure 8.11b, has an incorrect bounding box rotation.

Although not all traffic cones are annotated in Figure 8.11a, the methods still correctly
identify the unannotated traffic cone, albeit with varying precision.

The two trucks seen furthest away in the sample, are not accurately identified by any of the
methods. In Figure 8.11b, the Random Sampling method incorrectly classifies the trucks as
cars. Figure 8.11c shows that the VisLED-Querying Closed-World Mining method correctly
identifies the truck furthest away but misclassifies the closer truck as a car. Similarly, in
Figure 8.11d, the VisLED-Querying Open-World Exploring method makes the same mistake
but also includes an additional bounding box, likely misidentifying a third vehicle in the
area. The results for the full training set, seen in Figure 8.11e, show only one identified
object, which is misclassified as a construction vehicle instead of a truck, and the bounding
box orientation does not align with the actual object.

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.11. A sample with objects including Car, Truck, Construction Vehicle, Traffic Cone and
Barrier.

In the next sample, observed in Figure 8.12a, objects such as a car, temporary traffic
barriers, a truck, a pedestrian, and traffic cones are visible in cloudy conditions with the sun
shining in from the side. All methods correctly identify the construction vehicle. However,
the Random Sampling method, seen in Figure 8.12b, and the full training set, observed in
Figure 8.12¢, produce bounding boxes that are incorrectly oriented and too small.

The truck is accurately identified only by the full training set, but it also includes an
additional bounding box misclassifying the truck as a car. The car in the distance and the
pedestrian are not correctly identified by any of the methods.

All methods, except Random Sampling, correctly identify the temporary traffic barriers.
The Random Sampling method is clearly confused by the sun. Additionally, the traffic
cones are correctly labeled by the methods. However, both the Random Sampling method
and the VisLED-Querying Closed-World Mining method, seen in Figure 8.12¢, wrongly
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identify a traffic cone where the sun hits the temporary traffic barriers. This likely occurs
because the objects are similar in color, and the drastic color change created by the part
of the temporary traffic barrier that is in shadow and the part that is in the sun, creates
an object with two different lighting conditions. This makes it appear as if there are two
distinct objects, increasing the likelihood that the algorithms will misidentify part of the
temporary traffic barrier as a traffic cone.

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.12. A sample with objects including Car, Pedestrian, Truck, Barrier, Traffic Cone and
Construction Vehicle.

In the sample, seen in Figure 8.13a, only truck and trailer objects are present. The lighting
conditions are quite challenging, as the image is dark due to cloudy weather with light
shining through intermittently. It is evident that none of the methods correctly identify
the truck furthest away. Additionally, the full training set, seen in Figure 8.13e, fails to
identify the truck located in the right corner of the sample.

It can be observed that all methods face different challenges in identifying the trailers. None
of the methods can identify the trailer furthest away, while the Random Sampling method,
shown in Figure 8.13b, and the VisLED-Querying Closed-World Mining method, shown in
Figure 8.13c, correctly identify one trailer each; however, the Random Sampling method
has an incorrectly oriented bounding box. The VisLED-Querying Open-World Exploring
method, seen in Figure 8.13d, can identify two trailers. Similarly, the full training set can
also identify two trailers, but it is very confused, including a third bounding box that is
incorrectly placed.
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(a) Ground Truth (b) Random

4 N

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.13. A sample with objects including Truck and Trailer.

In the sample observable in Figure 8.14a, a truck, traffic cones, and temporary traffic
barriers are visible under rainy conditions. The rain makes it challenging for the methods to
accurately identify the temporary traffic barriers and traffic cones, as the barriers especially
almost blend into the grey background of the sample. Among all the methods, only the
Random Sampling method, shown in Figure 8.14b, is capable of detecting a few barriers.
All the traffic cones, being small and far from the ego vehicle, are not accurately identified
by any method, however the labeled once seen in the ground truth in Figure 8.14 are
accurately labeled by all methods. The truck is also correctly identified by all methods.

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.14. A sample with objects including Truck, Barrier and Traffic Cone.

In Figure 8.15a, a sample can be observed containing a car and temporary traffic barriers
under dark conditions, with a wet road resulting in bright reflections. It can be seen that
all methods accurately identify the car and the barriers in the center of the image. However,
the accuracy of the placement of the bounding boxes for the barriers varies among the
methods. Additionally, the barrier on the right side of the image and the traffic cone are
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not identified by any of the methods, most likely because of the lack of light in that area of

the sample.

(a)

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.15. A sample with objects including Car, Barrier and Traffic Cone.

In the sample seen in Figure 8.16a, car and motorcycle objects are visible in a nighttime
environment. It can be observed that none of the methods successfully capture the car
object. In Figure 8.16b, it is evident that the Random Sampling method fails to identify the
motorcycle as well. Conversely, Figure 8.16¢ shows that the motorcycle is correctly identified
by the VisLED-Querying Closed-World Mining method. However, the VisLED-Querying
Open-World Exploring method and the full training set, seen in Figures 8.16d and 8.16e
respectively, identify an object but wrongly classify it as a car instead of a motorcycle.

(b) Random (c) Closed-World Mining

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.16. A sample with objects including Car, and Motorcycle.

In the sample seen in Figure 8.17a, objects such as a bicycle, pedestrians, cars, and a trailer
are annotated under cloudy weather conditions. It is possible to observe that all algorithms
can correctly identify the cars, while they fail to identify the bicycle and pedestrians in the
distance.
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An interesting observation is that the full training set, seen in Figure 8.17e, cannot identify
the trailer, whereas all the AL methods can. Additionally, it is evident that the VisLED-
Querying Closed-World Mining method is the most precise, as its bounding box fully
encompasses the trailer object. This level of precision is not achieved by the Random
Sampling and VisLED-Querying Open-World Exploring methods, seen in Figures 8.17b

and 8.17d, respectively.

(c) Closed-World Mining

(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.17. A sample with objects including Car, Pedestrian, Bicycle and Trailer.

In the sample illustrated in Figure 8.18a, the objects include a bus, a motorcycle, and
cars in the dark. It is possible to observe that the two closest cars and the motorcycle are
correctly labeled by all methods. However, the car that is furthest away is only accurately
identified by the full training set and the VisLED-Querying Closed-World Mining method,
seen in Figures 8.18e and 8.18c, respectively.

It can be observed that all the methods identify the bus. However, only the VisLED-
Querying Open-World Exploring method correctly identifies it as a bus, whereas the other
methods mistakenly classify the bus as a car.

A weakness seen in both VisLED-Querying methods for this sample is the presence of false
positives for the pedestrian and car classes. Despite this, the algorithms are the only ones
to correctly identify the more challenging objects, indicating that the methods are still
valuable.
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(d) Open-World Exploring (e) Full Training set (No AL)

Figure 8.18. A sample with objects including Car, Motorcycle and Bus.
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Discussion

The results of this study clearly demonstrate the advantages of the VisLED-Querying
method over Random Sampling, particularly in terms of data diversity and accuracy.
Despite the fact that VisLED-Querying also samples more frequently occurring classes
sometimes to the same level as Random Sampling or more, the data remains more diverse.
This diversity is crucial as it provides a broader representation of the environment, leading to
a more robust model that performs better across various scenarios. The higher performance
metrics observed with VisLED-Querying can be attributed to this increased diversity, which
enables the model to learn from a wider range of instances and thus generalize better.

Several improvements could be made to the Closed-World Mining (CWM) method to
enhance its effectiveness. One significant area of improvement involves allowing one sample
to belong to multiple classes. Typically, multiple objects are present in a single sample,
and accommodating this would provide a more nuanced understanding of each sample,
leading to more accurate class representation. This approach would not only enable the
accurate classification of the most prominent objects but also allow for the identification
and categorization of partially obscured objects within the sample, potentially leading to a
more diverse and comprehensive training set. This adjustment would also resolve issues
that arise when including classes like Car and Pedestrian since there are so many objects
present from these classes that they would dominate the class distribution.

In further development, it may be beneficial to modify the CLIP model to ensure that the
accuracy of one object is not dependent on the accuracy of others within the same sample,
as is currently the case. This independence would enhance the model’s ability to accurately
identify and classify each object individually, without interference from surrounding objects.
Alternatively, retraining the CLIP model on data similar to the data seen in the nuScenes
dataset, could help specialize it for this specific context. By doing so, the likelihood of
false positives in classes such as Temporary Traffic Barrier, Bus, and Bicycle would be
significantly reduced.

Exploring open-world practices could further enhance the effectiveness of the VisLED-
Querying method. One potential improvement is to set higher thresholds to filter out the
most common objects, even if they are rare within their class. For instance, a unique-looking
car might be better placed in a cluster rather than in the unique folder if the threshold is
appropriately set. This adjustment would ensure that even within rare classes, the most
representative samples are selected, thereby improving the model’s ability to learn from
diverse instances.

Another challenge during this project was the significant impact of time constraints, which
limited the number of tests that could be conducted to determine the optimal hyper-
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parameters for the model. As a result, the focus was primarily on identifying suitable
parameters for the algorithm, which may have influenced the overall performance. Future
research should allocate more time for extensive testing to fine-tune the hyper-parameters,
thereby enhancing the model’s accuracy and efficiency.

One consideration not explored in this thesis is the potential benefit of using an even
smaller subset of the nuScenes dataset, as this would reduce training time by decreasing the
amount of data processed in each iteration. However, studies have shown that techniques
like entropy querying become less effective with smaller subsets, and random sampling
tends to perform better when using a subset of up to 4800 samples from the nuScenes
dataset [46]. My previous research indicated that when using up to half of the nuScenes
dataset with the BEVFusion model, entropy querying outperforms both random sampling
and the full training set. Conversely, for the smaller TUMTraf-I dataset, random sampling
outperforms entropy querying for the LiDAR model [23]. Given this pattern with both a
smaller nuScenes subset and another smaller dataset, the decision was made to use a larger
portion of the dataset to achieve better results. Prioritizing a higher possibility of good
performance over balancing dataset size and resource utilization, as it was deemed more
important.
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Conclusion

In this thesis, the efficacy of the VisLED-Querying method was explored and compared
against Random Sampling for 3D object detection using the nuScenes dataset. The research
aimed to enhance the accuracy and diversity of the training data while minimizing the
labeled data required. The results demonstrated that VisLED-Querying outperforms
Random Sampling, providing higher accuracies and more diverse data representations
across various scenarios.

VisLED-Querying, in both the Open-World Exploring and Closed-World Mining scenarios,
consistently achieved higher accuracies compared to Random Sampling. This improvement
was evident in both the mean average precision (mAP) and nuScenes detection score (NDS),
where it outperformed Random Sampling across different training set sizes.

The study demonstrated that using VisLED-Querying achieves high performance with
significantly reduced data. At 50 % of the data pool, VisSLED-Querying methods reached
performance levels close to those obtained with 100 % of the data, thus highlighting the
efficiency of active learning approaches in reducing labeling costs while maintaining high
model performance. This is primarily due to the diversity of the sampled data, which allows
the model to learn from unique instances rather than being overwhelmed by repetitive
examples, which can sometimes lead to confusion. Additionally, some individual classes
even surpassed the results of the 100 % training set classes. Closed-World Mining achieved
this for the Truck class, while the Open-World Exploring method achieved a higher accuracy
for the Truck, Traffic Cone, and Construction Vehicle classes.

This success was possible, despite the data distributions of the three methods being quite
similar. This is because, even though the classes in the VisLED-Querying methods and
Random Sampling are nearly equally represented in many cases, the data sampled for
VisLED-Querying is still more diverse, resulting in greater benefits during the training
phase.

In conclusion, this thesis has demonstrated that VisLED-Querying is a potent method
for active learning in 3D object detection. By leveraging this approach, it is possible to
create more accurate and diverse training datasets, ultimately leading to improved model
performance while possibly reducing the cost of creating the datasets. The insights gained
from this research pave the way for future advancements in active learning strategies and
their application in autonomous vehicle systems and other fields requiring robust object

detection capabilities.
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CVPR Paper Accepted
Based on Initial Results

This paper was accepted to the Vision and Language for Autonomous Driving and Robotics
(VLADR) workshop at the Conference on Computer Vision and Pattern Recognition
(CVPR) 2024. The submission is founded on the results obtained from the initial full run
of the VisLED-Querying Closed-World Mining method.
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Abstract

Object detection is crucial for ensuring safe autonomous
driving. However, data-driven approaches face challenges
when encountering minority or novel objects in the 3D driv-
ing scene. In this paper, we propose VisLED, a language-
driven active learning framework for diverse open-set 3D
Object Detection. Our method leverages active learn-
ing techniques to query diverse and informative data sam-
ples from an unlabeled pool, enhancing the model’s abil-
ity to detect underrepresented or novel objects. Specifi-
cally, we introduce the Vision-Language Embedding Diver-
sity Querying (VisLED-Querying) algorithm, which oper-
ates in both open-world exploring and closed-world mining
settings. In open-world exploring, VisLED-Querying se-
lects data points most novel relative to existing data, while
in closed-world mining, it mines new instances of known
classes. We evaluate our approach on the nuScenes dataset
and demonstrate its effectiveness compared to random sam-
pling and entropy-querying methods. QOur results show
that VisLED-Querying consistently outperforms random
sampling and offers competitive performance compared
to entropy-querying despite the latter’s model-optimality,
highlighting the potential of VisLED for improving object
detection in autonomous driving scenarios. We make our
code publicly available at https://github.com/
Bjork—crypto/VisLED-Querying

1. Introduction

Object detection is critical for safe autonomous driving.
Data-driven approaches currently provide the best perfor-
mance in detecting and localizing objects in the 3D driv-
ing scene. Detection models perform best on objects which
are most represented in driving datasets. This creates chal-
lenges when some objects are less represented (minority
classes), or unrepresented within the annotation scheme
(“novel” objects [1], relevant for “open-set” learning [2]),
and becomes especially important when minority objects
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are most salient to driving decisions [3—0]. Further, from
a pragmatic standpoint, the collection, curation, and anno-
tation of such datasets can be extremely expensive [7, §],
motivating the use of heuristics and algorithms which limit
annotation efforts while maximizing model learning.

2. Related Research

Active learning methods are driven by a query func-
tion which selects relevant data from an unlabeled pool to
be annotated and joined to the training set. These meth-
ods broadly divide into two classes: uncertainty-based and
diversity-based methods [?]. In uncertainty-based methods,
data is selected by the query function’s assessment of how
confusing the datum is to the existing model. On the other
hand, in diversity-based methods, data is selected by be-
ing distinct from existing training data by some measure,
and this can be done without consideration of the learning
model.

2.1. The Role of Uncertainty and Diversity-Based
Methods in Closed and Open Set Learning

In closed-set learning, it is assumed that a system should
classify or learn about a fixed set of target classes. By con-
trast, in open-set learning, the system assumes that it may
encounter novel data which belongs to a class unrepresented
by its current target set. Naturally, this brings up many re-
search challenges in recognizing this novelty when it ap-
pears, determining when to define a new set construct, and
integrating new constructs into the learning mechanism.

Here, we suggest that diversity-based methods are par-
ticularly well-suited for these open-set learning tasks. Be-
cause uncertainty-based methods select relative to their ex-
isting world model, there is an inductive bias imposed in
relating new data to existing patterns. On the other hand,
in diversity-based methods, data is compared only to other
data, analogous to unsupervised learning. This does cre-
ate a tradeoff: closed-set learning excels under uncertainty-
driven sampling, since these methods are optimized for the
current world model and target set, but cannot treat the
world as “open” as diversity-driven sampling. But, criti-
cally, we show in this research that diversity-based active
learning still provides a benefit to the learning system (even



if not “optimal” to the particular model and set definition),
and is suitable for open-set data selection.

2.2. Learning from Vision-Language Representa-
tions

Prior research has shown that vision-language repre-
sentations such as embeddings from contrastive language-
image pretraining (CLIP) [10] can be used to identify nov-
elty of an image relative to a set (and, as a bonus, can be
decoded into a verbal explanation of novelty) [11]. In our
research, we utilize this representation and corresponding
ability to select novel images as a proxy for the amount
of useful, previously-unexplored information within a com-
plete multimodal driving scene, allowing for an active
learning query to select diverse samples based on vision-
language encodings of scene images.

3. Algorithm

Here, we present our algorithm named Vision-Language
Embedding Diversity Querying (VisLED-Querying), which
can be viewed in Figure 1. The algorithm can be used in
two different settings:

1. Open-World Exploring: this method imposes no par-
ticular class expectations on the data. It is suitable
for cases when the model seeks to include information
which is most novel relative to data it has seen previ-
ously.

2. Closed-World Mining: this method utilizes a zero-
shot learning [10] step to sort data between a fixed set
of classes before evaluating for novelty, filtering any
points estimated to not belong to one of the closed-set
classes. This method is suitable for mining new and
different instances of existing classes, but may also
filter out the most difficult or unusual instances even
from known classes if the zero-shot method fails to
recognize the object.

Algorithm 1: Open-World Exploring VisLED-
Querying
Input: Unlabeled pool of egocentric driving scene
images
Output: Updated training set
Embed each egocentric driving scene image from
the unlabeled pool using CLIP;
Use hierarchical clustering to separate the
embeddings;
Sample new data points from the unclustered set for
addition to the training set;

When employing CLIP’s [12] zero-shot learning tech-
nique for classification, the algorithm examines each sam-
ple image to identify objects, that are most likely to belong
to predefined classes. As a result, each sample is assigned
to a single class, as the zero-shot learning method predom-
inantly identifies one class with high accuracy. In instances
where other classes may also be identified, their confidence
scores are typically low enough to risk false positives, ren-
dering them inadequate for threshold-based classification.
Therefore, a single-class assignment is favored for simplic-
ity and accuracy.

Once the samples for each class have been identified,
embeddings will be generated separately for each class, fol-
lowed by hierarchical clustering. Subsequently, a number
of samples will be selected from each class, with a focus on
sampling from clusters with minimal data representation.
Initially, the algorithm will prioritize unique samples (clus-
ters with only one sample present), matching them with cor-
responding scene names until the desired number of unique
scenes is achieved in the training set. Upon inclusion of all
scene-names from unique samples, the algorithm will pro-
ceed to clusters containing pairs of images, and so on, until
the required number of scenes have been sampled for the
training set.

Algorithm 2: Closed-World Mining VisLED-
Querying
Input: Unlabeled pool of egocentric driving scene
images
Output: Updated training set
Embed each egocentric driving scene image from
the unlabeled pool using CLIP;
Encode each class label using a text encoding;
Applying zero-shot learning by maximizing the
product of the embeddings, sort the embedded
images by class;
For each class, apply hierarchical clustering;
Sample new data points from the unclustered set
associated with the desired class, and add to the
training set;

4. Experimental Evaluation
4.1. Dataset

We use the nuScenes object detection dataset [13] for
our experiments. nuScenes contains 1.4M camera images
and 400k LIDAR sweeps of driving data, originally labeled
by expert annotators from an annotation partner. 1.4M ob-
jects are labeled with a 3D bounding box, semantic category
(among 23 classes), and additional attributes. NuScenes
comprises 1000 scenes. In order to maintain complete con-
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Figure 1. VisLED System Overview. For both Open-World Exploring and Closed-World Mining, the system begins with the processing
of the unlabeled data pool into vision-language embedding representations. In Open-World Exploring, these embeddings are clustered and
used as the basis for a query. In Closed-World Mining, the embeddings are first used in zero-shot learning to classify scenes based on
object appearance, and then further clustered per-class, offering a chance to sample from particular classes which are known to be minority

in the labeled training set.

trol over the scenes within the dataset, we modify the funda-
mental database setup slightly, using the method introduced
in [14, 15] to accommodate active learning queries. We use
the trainval split of the dataset for public reproducibility.

4.2. 3D Object Detection Model

We explore the BEVFusion approach to 3D object de-
tection [16], which has demonstrated notable performance,
ranking third in the NuScenes tracking challenge and sev-
enth in the detection challenge. While various methods ex-
ist to integrate image and LiDAR data into a unified repre-
sentation, LiDAR-to-Camera projection methods often in-
troduce geometric distortions, and Camera-to-LiDAR pro-
jections face challenges in semantic-orientation tasks. BEV-
Fusion aims to address these issues by creating a unified
representation that preserves both geometric structure and
semantic density.

In our implementation, we utilize the Swin-Transformer
[17] as the image backbone and VoxelNet [18] as the Li-
DAR backbone. To generate bird’s-eye-view (BEV) fea-
tures for images, we employ a Feature Pyramid Network
(FPN) [19] to fuse multi-scale camera features, resulting in
a feature map one-eighth of the original size. Subsequently,
images are down-sampled to 256x704 pixels, and LiDAR
point clouds are voxelized to 0.075 meters to obtain the

BEV features necessary for object detection. These modal-
ities are integrated using a convolution-based BEV encoder
to mitigate local misalignment between LiDAR-BEV and
camera-BEV features, particularly in scenarios of depth es-
timation uncertainty from the camera mode. For a compre-
hensive overview of the architecture, including its integra-
tion with VisLED-Querying, refer to Figure 1.

4.3. Experiments

We train the BEVFusion model in increasing training
set sizes, using three different acquisition modes: (1) Ran-
dom Sampling, (2) Entropy-Querying, and (3) VisLED-
Querying with Closed-Set Mining setting. As expected, ac-
tive learning strategies outperform the random baseline, and
the entropy-querying method is dominant due to its nature
of optimizing uncertainty with respect to the model, as op-
posed to VisLED’s model-agnostic sampling. Yet, as illus-
trated in Table 1, VisLED still stays consistently ahead of
random sampling, and offers a 1% gain over random sam-
pling mAP at 50% of the data pool, all without requiring
any model training or inference.

5. Discussion and Conclusion

Our presented learning method, VisLED-Querying, sam-
ples without any information about the model. This enables



Labeled Pool mAP NDS
Rounds \ % Random \ Entropy \ VisLED Random \ Entropy \ VisLED
1 10% 30.95 31.06 (+1.06) | 29.14 (-1.81) 33.53 34.09 (+0.56) | 32.16 (-1.37)
2 20% 38.00 40.41 (+2.41y | 40.76 (+2.76) 40.14 41.85 (+1.71) | 41.18 (+1.04)
3 30% 44,94 45.57 (+0.63) | 45.01 (+0.07) 48.41 50.11 (+1.7) | 49.40 (+0.99)
4 40% 47.73 49.24 (+151) | 49.21 (+1.48) 53.10 53.80 (+0.7) | 53.64 (+0.54)
5 50% 49.90 63.88 (+13.98) | 51.05 (+1.15) 55.64 64.85 (+9.21) | 56.45 (+0.81)
‘ 100% | 52.88 | 58.73

Table 1. This table shows the mean average precision (mAP) and nuScenes detection score (NDS) metrics for the random sampling,
entropy-querying, and VisLED-querying (Closed-World Mining) in every round. It also shows the mAP and NDS scores for the full
training split when trained using one GPU. Both the entropy-querying and VisLED methods outperform random sampling consistently,
and reach nearly the same level of performance as 100% of the data at just the 50% data point, showing faster learning than the baseline

method.
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Figure 2. Performance of BEVFusion in 3D Object Detection on nuScenes at different training set sizes, using three different learning
strategies. Simultaneously, we chart the learning of BEVFusion on the full training set, over the course of six epochs (top horizontal axis)
to give an impression of the asymptotic performance limit that may be expected of the model. We observe that the active learning methods
move towards this asymptote sooner than random sampling, and that VisLED maintains a margin over random sampling throughout.

VisLED to select novel, informative data points, to the ex-
tent that novelty is visibly identifiable, for any model. The
benefit this offers is that a data point may need to be an-
notated only once, and can then be used in a variety of
models for additional autonomous driving tasks instead of
sampling and possibly forming an entirely different set for
annotation. While these gains may be marginal in the cur-
rent data setting (< 1000 scenes), at scale, these perfor-
mance gains may translate to serious reductions in anno-
tation costs and safety-critical detection failures. Further,
VisLED offers one key possibility that is otherwise lim-
ited on uncertainty-driven approaches: VisLED will rec-
ommend unique samples without any prior assumptions
on class taxonomy, making it especially suited to open-
set learning, where new classes may be introduced at any
time. This capability, when paired with methods of self-
or semi-supervised learning for object detection by fusing

LiDAR and camera [20], may prove especially beneficial
in identifying and learning from novel encounters. In fu-
ture research, we plan to experiment on the effectiveness of
VisLED in multi-task learning settings [2 1], experiments on
other benchmark datasets [22], and experiments in open-set
and continual learning.
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