
Summary

This paper addresses the challenge of enabling drones to autonomously navigate and map

unknown environments, specifically targeting the identification and localization of pumps within

a room. This research aims to enhance the efficiency of current manual scanning methods

performed by technicians. The study is particularly relevant to industrial applications, such

as those needed by Grundfos, a global pump manufacturer. Grundfos has therefore directly

contributed to this study, by presenting the case study and making a pump-detection neutral

network available.

The system employs UPPAAL STRATEGO to model the problem as a Markov Decision Process

(MDP). UPPAAL STRATEGO applies Q-learning to derive a near-optimal policy for the drone.

Safety mechanisms, including a learning and runtime shield, are implemented to prevent col-

lisions. The drone is equipped with LiDAR and IMU sensors, which provide odometry data

crucial for simultaneous localization and mapping (SLAM) through the Robot Operating Sys-

tem (ROS) and the Slam Toolbox framework.

The Stochastic Model Predictive Controller (STOMPC) framework is used to handle uncertain-

ties in the environment by updating the MDP in UPPAAL STRATEGO with real-time state informa-

tion. The proposed approach is validated using the Gazebo Simulator. The RL-based method

requires fewer actions to complete mapping tasks but shows slightly worse time efficiency than

a baseline algorithm using Breadth-First-Search. This is due to the bottleneck of training. The

proposed method is also shown to work in multiple environments of different sizes and shapes.

Tests on a real-world TurtleBot3 robot confirm the method’s robustness and applicability across

different robotic platforms.

To further enhance the system, future work suggests looking into how the map of the environ-

ment represented by a matrix in UPPAAL STRATEGO can be optimized.

In conclusion, this study highlights the feasibility and effectiveness of using reinforcement learn-

ing in collaboration with STOMPC, ROS and Slam Toolbox to automate drone inspections. The

findings found in this paper can contribute to more efficient and reliable automated inspection

systems in the future.
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Abstract—We consider the problem of using autonomous
Unmanned Aerial Vehicles (UAVs), also known as drones, to
explore, map and find points of interest (POIs) in an unknown
room. The paper proposes employing Reinforcement Learning
(RL) to enable the drone to map and explore these unknown
rooms. We propose modelling the problem as a Markov Decision
Process (MDP) in UPPAAL STRATEGO, which utilizes Q-learning
to synthesize a near-optimal policy. This policy will be used to
generate a sequence of actions that will be activated on the
drone. Additionally, we implement the framework STOMPC as
a stochastic model predictive controller, to capture the uncer-
tainties of the room and the dynamics of the drone. STOMPC
achieves this by giving UPPAAL STRATEGO updated information
about the new true state of the drone after activating all the
actions in the sequence. We also employ two different shields,
a learning shield and a runtime shield, used to enforce safety
constraints on the actions the drone can take. The drone used
in this work is equipped with a LiDAR sensor and an IMU
sensor providing odometry data. We employ Robot Operating
System (ROS) to control the drone. ROS also provides us with
a simultaneous localization and mapping (SLAM) framework
called Slam Toolbox, which we use to update the map given to
UPPAAL STRATEGO. To validate our proposed approach, we use
the tool Gazebo Simulator to simulate an X500 drone and the
room that the drone should map and explore. We compare our
approach to a Breadth First Search (BFS) based approach. We
show that our approach manages to fully explore a room and
examine all POIs with 33 fewer actions activated on average
while using marginally more time. Options to further reduce the
completion time for our approach are also presented. We also
show the generality of our approach, by mapping and exploring
rooms of different sizes and shapes. Lastly, we show the proposed
method working on a real-life TurtleBot3 robot.

1. INTRODUCTION

In recent years drones, also called Unmanned Aerial Vehi-
cles (UAVs), have emerged as a new tool, to automate various
tasks in different industries. This can be seen anywhere from
agriculture where drones can be used for crop management [1],
to construction where they can be used for safety management
[2] among many things. Grundfos, a global leader in water
solutions, has begun looking at how UAVs can be used to
automate their tasks. Grundfos has pump installations all
around the world, that require check-ups and maintenance,

Fig. 1: Pump wall with Grundfos products

involving a technician visiting the site to perform inspections.
The technician will use a mobile application to perform a scan
of the installation. The application uses augmented reality,
allowing the technician to place markers that indicate specific
points of interest such as pumps. When finding a pump, or
any other point of interest, the technician must make sure to
capture it from a sufficient amount of angles, to increase the
quality of it. For instance, each pump will have a nameplate
located on it, enabling the technician to identify the pump.
When the scanning has been completed, the mobile application
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will output a 3D map of the installation. The pumps in the 3D
map can be clicked, to show additional information such as
their nameplate. Points of interest such as pumps, can be seen
in fig. 1.

In this paper, we present a case study in collaboration with
Grundfos, where we aim to leverage the use of UAVs to map
and localize pumps in a previously unknown environment.
Rather than having a sales representative or technician sent
to the site to perform this scan, it should be done by a UAV.
Ideally, Grundfos can send a drone to the installation site
and ask the customer to place the drone in the environment
and turn it on. The drone will then take off, and perform
the inspection automatically without any need for human
intervention. The drone must therefore be able to locate all
the pumps in the installation, map the installation, and be
able to do it safely, meaning that the drone must not crash
into anything. Meanwhile, the drone will not have any prior
knowledge about the installation, including the size of it and
how many pumps there are in it.

To solve this problem, we propose using a reinforcement
learning approach to allow the drone to learn how to navigate
and locate pumps in an unknown environment. This will
be done by formulating the drone’s behaviour as a Markov
decision process in UPPAAL STRATEGO [3], and using UP-
PAAL STRATEGO to compute a strategy using reinforcement
learning. We will be using Robot Operating System (ROS)
[4] to control the drone and execute the commands from the
strategy. To map the environment a SLAM-framework called
Slam Toolbox [5] will be integrated into the platform, allowing
for real-time mapping of the environment. We will use the
Gazebo Simulator [6] for drone and environment simulation
[7] and show the proposed method working on a real-world
Turtlebot3 [8] robot as proof of concept. All of this will be
connected using a framework called STOMPC [9]. The idea
is that STOMPC will send the current position of the drone
and the current knowledge of the map, as an initial state to
UPPAAL STRATEGO. UPPAAL STRATEGO will then compute
a strategy based on this initial state, and send it back to
STOMPC. The case study presented by Grundfos will from
now on be denoted as the Grundfos Problem (GP).

2. RELATED WORKS

The task of exploring an unknown environment while find-
ing specific areas of interest, has been researched extensively
in the field of robotics. In recent years, researchers have
introduced learning-based exploration algorithms, dividing ex-
ploration algorithms into two groups: traditional exploration
and learning-based exploration. A particular well-known tra-
ditional exploration algorithm is the one presented by Ya-
mauchi [10]. The paper proposes a frontier-based approach
to exploring an unknown environment. The basic idea of the
frontier-based approach is to place so-called frontiers, at the
boundaries of known and unknown space. The autonomous
vehicle will then move to the nearest frontier, expanding the
map. The algorithm still performs well when compared to
newer learning-based algorithms [11], but it can not always

guarantee safety, since the locations of the frontiers may be
too close to an obstacle.

Lately, researchers have attempted to use reinforcement
learning (RL) to tackle the task of exploration [12], [13].
In RL-based exploration, the algorithm will use the current
state of the environment and sensor data to reason about how
much information is gained by each action. While learning-
based methods are highly adaptive, they can suffer from being
inefficient due to long learning times. Researchers have tried
to combat this limitation with exploration, by having a deep
reinforcement learning-based algorithm learn an exploration
strategy on a partial map. This means that for exploration,
it is only needed to train once and thereafter simply use the
neural network to calculate Q-values from [11]. However, the
experiments from this work are all performed on maps very
similar to the partial map used for training. This may reduce
the learned strategy’s quality in more generic environments.

Work has also gone into utilizing the tool UPPAAL STRAT-
EGO, which uses Q-learning to synthesize plans under learned
policies for a fleet of robots. The researchers explore using
UPPAAL STRATEGO for dynamic route planning with Au-
tonomous Mobile Robots (AMRs), where a fleet of AMRs
perform tasks in a shared and known environment [14]. UP-
PAAL STRATEGO was used to synthesize an individual plan for
each AMR about where a task is picked up and where it should
be delivered in the environment, respecting where all the other
AMRs are. When the AMRs are performing their respective
plans, the AMRs will receive updated information about the
environment and synthesize a new plan based on this. The
research shows promising results using UPPAAL STRATEGO
for model predictive control and planning over a greedy
approach. However, in this work, AMRs are moving along
edges between certain points in the environment, which needs
to be known beforehand, whereas, in our work, both the
environment and where the drone can move is unknown.
UPPAAL STRATEGO have also been used for stochastic model
predictive control in areas such as controlling traffic lights in
an intersection, where stochasticity comes from the number of
cars that approach the intersection. It has also been used for
controlling floor heating in a house where windows can open
and close randomly as well as other factors contributing to
the stochasticity in the environment [9], [15]. These problems
are comparable to the problem in this work, where uncertainty
comes from how the environment is mapped and where pumps
are located.

Mapping an unknown environment and locating where
the robot is in that environment is one of the most well-
known problems in mobile robotics and autonomous driving.
Since localization sensors will drift over time, it makes them
inaccurate when a robot has been exploring for a while. This
problem is known as simultaneous localization and mapping
(SLAM) [16]. This problem is crucial to solve, to allow robots
to operate autonomously in an unknown environment. State-
of-the-art solutions to this problem use graph-based algorithms
to solve this problem, also known as graph-based SLAM [17]
[5]. In graph-based SLAM the environment is represented as
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a graph. Nodes in the graph can be either locations of where
the robot has been on the map or locations of landmarks that
have been identified. Landmarks are distinctive features in
the environment, which can be used as reference points for
localization and mapping. The edges in the graph represent the
relationship between the nodes. They can, for example, relate
the position of a landmark to the position of the robot when
that landmark was observed. The goal of graph-based SLAM
then becomes to find the configuration of nodes and edges,
that best explain what has been observed by the sensors on
the robot. In other words, the algorithm tries to minimize the
error between the predicted and observed measurements. State-
of-the-art graph-based SLAM solutions like Slam Toolbox [5],
can map rooms larger than 30.000m2 with a normal Intel CPU
that can sit on most robots.

3. REINFORCEMENT LEARNING

In reinforcement learning an agent learns optimal be-
haviours, by interacting with an environment [18, p. 1-5].
Unlike other machine learning paradigms that are centered
around learning on data, reinforcement learning is centered
around the concept of trial and error based on a model of the
environment. Agents learn by taking actions and observing
how those actions influence the environment. This way of
learning is visualised in fig. 2, which shows that the agent in-
teracts with the environment over a series of discrete timesteps.
At every timestep t the agent selects an action at, that moves
the environment from state st to st+1. A state encapsulates
everything the agent knows about the environment at a given
timestep t. The transition from st to st+1, will also result in a
numerical reward rt+1. This reward will indicate whether or
not the action was a good choice.

Fig. 2: The agent-environment interaction process [18]

The goal of reinforcement learning is to learn a policy that
maps states to actions to maximize the expected accumulated
reward [18, p. 1-3]. This section will give a theoretical
overview of the components of reinforcement learning. Sec-
tion 4 will present how these formulations can be used to
describe the case study presented by Grundfos.

A. Markov Decision Process

The learning process shown in fig. 2 can be formulated in
terms of a Markov Decision Process (MDP) [18] [19]. We
first define a probability distribution function, to simplify the
definition of an MDP.

Definition 1 (Probability Distribution Function): A proba-
bility distribution function is a function P : X → [0, 1] such
that

∑
x∈X P (x) = 1 where X is a set of finite size. The set

of all distributions on X is denoted by Distr(X).

Using the probability distribution function in definition 1,
the MDP M can be defined.

Definition 2 (Markov Decision Process): An MDP is a tuple
M = (S, s0,A, T ,R) :

• S is the set of finite states
• s0 is the initial state
• A is the set of finite actions
• T is the probabilistic transition function T : S × A →

Distr(S)
• R is the reward function R : S ×A× S → R

An example of how an MDP can be visualised is shown in
fig. 3.

Fig. 3: Example of an MDP as defined in definition 2. The
annotations on the edges are a tuple where the first element is
the probability of transitioning to a given state, and the second
is the reward for that transition.

Solving an MDP means finding a policy that maximizes
the expected accumulated reward. There are many ways to
solve an MDP, some of which will be outlined in section 3-B.
An important property of an MDP is the Markov property,
which states that the next state only depends on the current
state and the selected action. In other words, the transition
function doesn’t account for the previous history of states,
making solving an MDP easier.

B. Solving an MDP

The solution to an MDP is a policy that maximizes the
expected accumulated reward.

Definition 3 (Expected Accumulated Reward): We define
the expected accumulated reward as Gt ≡

∑∞
k=0 γ

kRt+k+1

s.t. Rt is the reward at the timestep t.

γ ∈ [0, 1) is called a discount factor, specifying how much
the agent should value future rewards. A future reward at some
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timestamp t is thus worth γk−1 times what it would be worth
if received immediately [18, p. 55-59].

Definition 4 (Policy): A policy π is a mapping from states to
actions: π : S → Distr(A) [18, p. 55-59]

This means that the policy π tells the agent with a prob-
ability which actions are best to take, in a given state. We
denote the optimal policy π∗. One way to formally evaluate a
given policy is by using a state value function [18, p. 70-75]:
vπ(s) = Eπ[Gt|St = s]. The function tells us the expectation
of the accumulated reward, given that we are in some state and
follow some policy. We can also evaluate taking a specific
action in a specific state, under some policy, by using the
action value function: qπ(s, a) = Eπ[Gt|St = s,At = a].
Using the state value function, we can more formally define
the optimal policy π∗ as the policy that yields the highest
expected accumulated reward: v∗π(s) ≥ vπ(s) for all s ∈ S,
and any policy π [18, p. 75-79].

If we have complete knowledge of an MDP, meaning that
we have the transition probability p(s′|s, a) for all states
s ∈ S and all actions a ∈ A, we can compute π∗ using
dynamic programming [18, p. 89-98]. In other words, we need
to know the probability of going to state s′ and receiving
reward r, if we are in state s and take action a. An algorithm
that utilizes dynamic programming is policy iteration. Policy
iteration is an iterative algorithm in reinforcement learning that
alternates between policy evaluation, where the value function
of a policy is computed, and policy improvement, where
the policy is updated greedily to the current value function
until it eventually either converges or is close to converging
to π∗. If we don’t have complete knowledge of an MDP,
we can use Monte Carlo Methods or Temporal Difference
learning [18, p. 143-148]. A popular variance of Temporal
Difference learning is Q-learning [18, p. 157-160]. Q-Learning
is also an iterative process, where an action-value function
is updated based on the following update rule: q(st, at) =
q(st, at) + α ∗ (rt+1 + γ ∗maxa q(st+1, a) − q(st, at)). α is
the learning rate, and γ is a discount factor.

4. THE GP AS AN MDP

To properly define the GP as an MDP, we must have
an understanding of which possibilities and restrictions the
problem has. The UAV used for this project is armed with
three important components: A camera, a LiDAR sensor and
an odometry sensor.

• The camera: is used for examining pumps, using a
neutral network provided by Grundfos. This is a contin-
uous feed, where frames are sent to the neural network,
meaning that there is no need for an action that tells the
drone to examine a point of interest. The drone simply
needs to be close enough to a POI, for the neural network
to be able to detect it. In earlier work [20], we tested
this neural network, and results showed that the neural
network had a 100% accuracy when it was between 0.75
meters and 0.55 meters from the pump.

• The LiDAR sensor: is used to map the unknown environ-
ment, and to locate where in that environment the drone
currently is. LiDAR uses laser technology to measure the
distance to any object, the laser hits.

• The odometry sensor: This is used to get information
about how the drone has moved from its start position
(also known as its odometry). This sensor will be used in
collaboration with the LiDAR sensor to help locate the
drone.

Ideally, it should be possible to utilize all three dimensions
that a drone can move in when working with drones. This is
because objects and pumps in a room may not be possible to
detect without having a dimension for height. However, in this
work, we are reducing the problem to a 2D space based on
assumption 1.

Assumption 1: It is possible to project a 3-dimensional space
to a 2-dimensional space, while still guaranteeing safety and
creating a meaningful map. Furthermore, it is possible to
detect every pump in a 2-dimensional space.

In this project, we propose having an algorithm that can
detect patterns in a map, that have some percentage of being
a pump. These patterns can be seen as POI that may or may
not be of value. This algorithm will not be developed in this
project but is assumed to be possible to create.

Assumption 2: It is possible to create an algorithm that given
a matrix can detect patterns based on the values in said matrix.

Fig. 4: Example of a map where an algorithm has detected
different patterns in a map. The grey cells are walls or objects
in the environment, and the white cells are free cells where
the drone can freely fly. A green POI indicates a POI that has
been examined, and a red POI indicates a POI that is yet to
be examined.

A pattern is a coordinate in the map, that has a chance of
being a pump. In terms of this work, a pattern is the same as
a POI.

Definition 5 (Pattern Set): P is a set of tuples P =
{(x, y)|x, y ∈ N0}, where each (x, y) tuple indicates a unique
point of interest for a possible pump.
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A common dilemma in RL is to balance exploration and
exploitation properly. Exploration in this problem is to ex-
plore the environment and exploitation is to examine detected
patterns or POI. The most important part of this project is
to locate and examine all pumps. However, since there is no
way of knowing the number of pumps in a given unknown
environment, the drone must map almost 100% of the room
to guarantee that every pump has been found. This is of cause
unless the amount of pumps in a room is given beforehand,
but in this work, it is assumed that the number of pumps in
an environment is unknown. Another crucial factor is time
since the drone is strictly limited to its battery life. Using a
5000mAh battery it can be expected that the drone can fly for
around 18 minutes [21]. It is, therefore, a requirement that the
drone has finished its task in less than 18 minutes.

The MDP will be given an initial state, with the current
readings from the sensors and the current map. This is the
position of the drone in the map and its current rotation around
the yaw axis. The transitions in the MDP, as we shall see,
will simulate how the components on the drone will act. For
instance, the MDP will assume that moving 1 meter north
always results in moving exactly 1 meter north. How such
assumptions are taken care of will be explained in section 7.

A state in the GP should encapsulate the position of the
drone in the map, as well as the map the drone is in.

Definition 6 (Map): A map is a tuple M = (m,P, g, e, c) :

• m is a h × w matrix where h,w ∈
N0. Each cell in m has a value from
{unkown, free, occupied, POI, examined}.

• P to specify which cells contain a possible pump, such
that for all (x, y) ∈ P , mxy ∈ {POI, examined}.

• g is the granularity of the map, i.e. g = 0.05 means that
there are 20 cells in m for each meter.

• e is the number of cells in m with the value examined.
• c, where c ∈ {True, False} indicates whether or not the

map has been fully explored.

As a shorthand, we write m to access m in M . Similarly,
we use the same notation to access the other elements of the
given map. We denote the set of all maps M as M. At any
timestep t the drone is in a state s ∈ S where S is the set
of all states. We define the set of all possible yaw directions
the drone can be in as Y = {−π

2 , 0,
π
2 , π}. A state s ∈ S is

defined as in definition 7.

Definition 7 (State): A state is a tuple s = (M,x, y, yaw, t) :

• M is the current map
• x, y ∈ N0 are row and column indexes, denoting which

cell in m the drone is in.
• yaw ∈ Y , indicating the direction the drone is currently

facing.
• t is the current time

We define the finite set of actions A as:

A ={movex,d | d ∈ {−0.5,−1, 0.5, 1}}∪
{movey,d | d ∈ {−0.5,−1, 0.5, 1}}∪

{turn∆ |∆ ∈ {−
π

2
,
π

2
}}

where the move actions are for moving the drone along
either the row or column of a map and the turn action is for
turning the drone to face a specific yaw. With this definition
of A, the drone can take 8 actions. The d value denotes the
distance that the drone should move in the map in meters, so
0.5 is half a meter and 1 is one meter. These values are used
to move the drone in m. For the turn action, ∆ denotes the
change to the drone’s yaw.

The transition function T is deterministic, meaning there is
no uncertainty about which state the drone will be in after
taking an action. To help provide an understanding of the
transition functions, we explain the side conditions and why
they are needed. The agent’s action will change the drone’s
position and update the map. The map is updated by an update
map function Γ on the form:

Γ : M× N0 × N0 × Y →M (1)

The exact implementation of Γ can vary depending on the
assumptions on how the map changes during exploration, as
will be discussed in section 5. For now, it is enough to know
that such a function is present. To formally define T , we
denote a transition function as s

a−→
Γ

s′, s.t. the result of the
transition is dependent on a given map update function Γ. a is
the action taken, Γ is the given map update function, and s and
s′ are the states before and after the transition, respectively.
This allows us to investigate how different assumptions of the
environment affect the final solution. The possibility of taking
a move transition depends upon cells being free. Since the
drone overlaps several cells (because of small granularity),
most of the side conditions define the range of cells to validate
are free. First, e is needed because even though we are saying
the drone is in a single cell in m, the drone is larger than that.
We use e to denote how many cells the drone covers. k denotes
how many cells we are moving the drone, i.e. if the drone is
to move 1 meter, k will be the number of cells 1 meter will
cover. Both e and k are floored because the rows and columns
in m start from 0. λ and γ are based on e and are used to
give us the bounds of how large the drone is. Intuitively, λ, γ
and k give us the bounds of cells that need to be free for a
transition to be possible, meaning that all the cells the drone
covers should be free for the whole movement. The transition
function for the move and turn actions can then be defined:
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(M,x, y,yaw, t)
movex,d−−−−−→

Γ
(M ′, x′, y, yaw, t′) if

e =

⌊
drone radius

g

⌋
and

k =

⌊
d

g

⌋
and

λ = y − e and
γ = y + e and
∀j ∈ [λ...γ],∀i ∈ [0...k] then mj,x+i = free and
M ′ = Γ(M,x′, y, yaw) and
x′ = x+ k and
t′ = t+ 1

(M,x, y,yaw, t)
movey,d−−−−−→

Γ
(M ′, x, y′, yaw, t′) if

e =

⌊
drone radius

g

⌋
and

k =

⌊
d

g

⌋
and

λ = x− e and
γ = x+ e and
∀j ∈ [λ...γ],∀i ∈ [0...k] then my+j,i = free and
M ′ = Γ(M,x, y′, yaw) and
y′ = y + k and
t′ = t+ 1

(M,x, y,yaw, t)
turnyaw,∆−−−−−−−→

Γ
(M ′, x, y, yaw′, t′) if

yaw′ = yaw +∆ and
M ′ = Γ(M,x, y, yaw′) and
t′ = t+ 1

With d being the distance to move in meters, and ∆ is how
much to turn in radians.

We can now define the reward function R as:

R(s, a, s′) = rc ∗ µ(s, s′) + rpoi ∗ ρ(s′)− t′ (2)

where
• rc is the reward for changing a cell in m from unkown.
• rpoi is the reward for examining a POI.
• µ : M×M→ Z, is a function that given two maps M and

M ′, compares the cells in m and m′ such that it returns
the total number of cells changed from unknown in m
to either free or occupied in m′.

• ρ : S → {0, 1}, is a function that checks if a POI is in
range and can be seen by the drone in the given state.
Returns 1 if a POI is in range, 0 otherwise.

• t is the current time step.

Lastly, to know when the drone has completed its job we
define a goal state. Intuitively, an optimal policy π∗ will reach
the goal state in the shortest time possible.

Definition 8 (Goal States): The set of goal states is
{(M, , , , ) ∈ S |M = ( , P, , e, T rue)∧ |P | = e}. Then
the set of goals states are those states where the map is fully
explored and the number of POIs is equal to the number of
examined points.

5. UPPAAL STRATEGO

UPPAAL STRATEGO is a solver for Stochastic Priced Timed
Games (SPTG) and we are using such SPTG to encode our
MDP M [3]. UPPAAL STRATEGO utilizes Q-learning to find
near-optimal solutions to given strategy queries [22]. A synthe-
sized strategy, or policy, can be simulated in UPPAAL STRAT-
EGO, where UPPAAL STRATEGO will simulate an MDP under
a learned strategy until a goal state or stop condition has
been reached. UPPAAL STRATEGO offers a rich language for
defining SPTGs, which can be used to define extended timed
automatas. Timed automatas add the complexity of being
able to set and test clocks. This can be beneficial because
taking a transition should not be instant, since the drone can’t
move or turn instantly. In UPPAAL STRATEGO such extended
timed automatas are called templates. They are called extended
because they can communicate and rely on each other and have
a C-like language to define functions. A template consists of
locations and edges. Locations can be seen as vertices in a
directed graph, and edges are the connections between the
locations. An edge can be either controllable or uncontrol-
lable. Controllable edges are those that the agent can choose
from, while uncontrollable edges represent effects beyond the
agents’ control. In UPPAAL STRATEGO controllable edges are
represented by solid edges and uncontrollable by dashed edges.
An edge can have four different annotations that are all used
in this work:

• Select: Select annotations are a way of creating copies
of an edge with different values. If an edge is annotated
with x : int[1, 2], there will be a total of 2 versions of
that edge: one where x is 1 and one where x is 2. In
UPPAAL STRATEGO select annotations are written in a
yellow color.

• Guard: A guard is a side-effect-free expression, that al-
ways evaluates to a boolean value. If an edge is annotated
with a guard, the guard must evaluate to true for the
agent to take that edge. In UPPAAL STRATEGO guard
annotations are written in a green color.

• Sync: Sync annotations are used to allow for communi-
cation between templates. An edge can either listen to a
broadcast channel or send to a broadcast channel using
this annotation. a? means that an edge is listening to the
broadcast channel a and a! means that the edge will send
to the broadcast channel a. An edge that is listening to
a broadcast channel will be taken if something is sent to
that broadcast channel, and it is possible to take it. In
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Fig. 5: Example of how a grid in the Frozen Lake problem
might look. The cells annotated by F are the cells that are
frozen, that the agent can safely move on, but might risk
slipping. The cells annotated by H are the cells that the
agent must avoid, to not fall through the ice. Lastly, the cell
annotated by G is the goal cell, that the agent must reach.

UPPAAL STRATEGO sync, annotations are written in a
light-blue color.

• Update: An update annotation is a side-effect that will
be evaluated if that edge is taken. If there is a syn-
chronization between processes, the sender’s updates are
evaluated first. In UPPAAL STRATEGO update annotations
are written in a dark-blue color.

To illustrate the capabilities of UPPAAL STRATEGO, we
shall model the Frozen Lake problem [23]. The Frozen Lake
problem involves a grid representing a frozen lake, where each
cell can be frozen, a hole, or the goal. The agent starts at some
position in the grid and must navigate to the goal cell while
avoiding the hole cells. While the frozen cells might be safe in
an immediate sense, the frozen cells introduce uncertainty to
the agents’ movement given the slippery nature of the frozen
cells. This means that moving from one frozen cell to another
has a probability of moving two cells if the agent slips. For
example, moving one cell to the right has some probability
of moving two cells to the right. There is a total of 4 actions
in this problem: move left, move right, move up and move
down. An illustration of the grid that we will be modelling in
UPPAAL STRATEGO can be seen in fig. 5.

To represent the grid from fig. 5 in UPPAAL STRATEGO,
we construct it as a 2-dimensional array. We can then model
the dynamics of the problems in UPPAAL STRATEGO as in
fig. 6.

As we can see in fig. 6 the agent has a total of 4 controllable
edges to choose from, which represents the 4 actions of
moving. Taking any of these actions calls a function called
move, which is responsible for moving the agent in the grid,

Fig. 6: The Frozen Lake problem modelled in UPPAAL STRAT-
EGO.

as well as checking if the agent has reached the goal state
or fallen into a hole. Once the agent has chosen any of the
4 edges, it is the environment’s turn to choose an edge (the
uncontrollable edges). The environment can choose to simply
do nothing or to make the agent slip and as a result, move
the agent one extra cell. There is a 20% chance of slipping,
denoted by the yellow 2 in fig. 6.

Now that the dynamics of the Frozen Lake problem have
been modelled in UPPAAL STRATEGO, we can use UP-
PAAL STRATEGO to compute strategies, verify properties, and
simulate strategies. This is done through UPPAAL STRATEGO
query syntax. To guarantee that the agent never is going to
fall into a hole, we can compute a control strategy that makes
sure that this constraint is always satisfied:

strategy Safe = control: A[]

is_dead == false

In the above control strategy, called Safe, we compute a
strategy where the variable is dead is always false, no matter
what the environment chooses to do. This means that even if
the agent is very unlucky, and slips on every move, the agent
is guaranteed not to fall into any holes. This control strategy
acts as a shield on the actions the agent can take. In just
a millisecond UPPAAL STRATEGO has managed to compute
such a strategy. However, this strategy is quite easy to achieve,
since it doesn’t say anything about reaching the goal. This
means that the agent can simply go up and down, and still
satisfy this safety constraint. To make the agent move to the
goal cell, we can compute a strategy that makes the agent
move to the goal in the minimum amount of time, while still
satisfying the safety constraint. A strategy query consists of
three important elements:

• Minimize or maximize: The first part of the strategy is
used to tell UPPAAL STRATEGO what value to minimize
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or maximize. In this case, we want to minimize the time
taken to reach the goal.

• Discrete and continuous variables: To tell the agent
which variables are observable we use the {...} → {...}
syntax. The discrete variables are placed in the first
bracket. Discrete variables are variables of discrete types
such as int and boolean. Discrete variables are observed
as they are, i.e. the value 10 is observed as 10. However,
continuous variables (variables of continuous types such
as float), are not observed as they are, since they can
be infinitely precise. Instead, they are discretized using
online partition refinement [3]. This means that instead
of observing some variable x as being exactly 12.6, it
might be observed as falling within a certain interval,
such as being within the interval [12.6, 12.7].

• Stop condition: The stop condition tells UPPAAL STRAT-
EGO when to stop a specific simulation in the train-
ing session. In our case, a specific simulation stops
after reaching the goal state, meaning that the variable
has reached goal is true.

We can now construct the learning query:

strategy SafeFast =

minE(time) [<=100]

{agent_x, agent_y} -> {} :

<> has_reached_goal

under Safe

What the above query means, is that we try to find a strategy
where has reached goal is true in the minimum amount of
time, under the control strategy Safe. This strategy can be
computed in around 5 seconds. There are different ways of
evaluating these strategies, we can, for instance, use a simulate
query to see the number of times we reach the goal state:

simulate[<=10; 100000]

{agent_x, agent_y}:
has_reached_goal

under SafeFast

The above simulate query tells us that out of 100.000 runs,
we reach the goal state 100% of the time in less than 10 time
units. We can also evaluate the safety:

A[] is_dead == false under Safe

The above query checks that it is always satisfied that the
is dead variable is false, given the control strategy Safe. This
query tells us that this is indeed satisfied.

6. THE GP IN UPPAAL STRATEGO

The GP can be encoded as an SPTG using UPPAAL STRAT-
EGO, in a similar way that the frozen lake problem was en-
coded as an SPTG using UPPAAL STRATEGO. Just like in the
frozen lake problem, we can define the map as a 2-dimensional

Algorithm 1 Updating M

1: Input: st = (M,x, y, yaw, t) ∈ S,
laser range, laser diameter, upper range detection,
lower range detection.

2: Output: An updated map M .

3: forward cells← floor(laser range/g)
4: diameter cells← floor(laser diameter/g)

5: if forward cells mod 2 = 0 then
6: foward cells+ = 1
7: end if
8: if diameter cells mod 2 = 0 then
9: diameter cells+ = 1

10: end if

11: // DRONE IS FACING POSITIVE Y-DIRECTION
12: if −π

2 − 0.2 < yaw & yaw < −π
2 + 0.2 then

13: lower bound x← x− (diameter cells/2)
14: upper bound x← x+ (diameter cells/2)
15: upper bound y ← y + (foward cells/2)
16: if lower bound x < 0 then
17: lower bound x← 0
18: end if
19: if upper bound x > map width then
20: upper bound x← map width
21: end if
22: if upper bound y > map height then
23: upper bound y ← map height
24: end if
25: for i in range(lower bound x, upper bound x) do
26: for j in range (y + 1, upper bound y) do
27: if mj,i = free then
28: j ← upper bound y
29: end if
30: if (j, i) ∈ P & drone is nearby then
31: n← n+ 1
32: end if
33: if mj,i = unkown then
34: if open = False then
35: mj,i ← occupied
36: end if
37: if open = True then
38: mj,i ← free
39: end if
40: end if
41: end for
42: end for
43: end if
44: // There are 3 more if statements, like the one on line 12

for the other directions that the drone can be facing.
45: return M
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Fig. 7: UPPAAL STRATEGO Controller Template

matrix, only this time, the cells can have a total of 5 dif-
ferent values (unkown, free, occupied, POI, examined) as
defined in definition 6. As we shall see in this section, the GP
problems also introduce more complexities such as updating
the map when moving and guaranteeing safety.

In this work, we have formulated a total of 3 templates in
UPPAAL STRATEGO: A controller, a template for moving, and
a template for turning. The reason for having three templates
and not only one, is to make the system more modular. For
instance, we can modify the moving template if we want to
modify the moving functionality, without having to modify
anything else. The controller template, which can be seen in
fig. 7, is the only template with controllable edges. When
the agent is in the location ”DescisionState”, it can choose
between the 10 actions that were outlined in section 4. The turn
edges are always available for the agent, but the move edges
may be blocked by a guard. The guards that call a function
can move, check if it is safe to take that action with respect
to the current map M . These guards can also be seen as a
form of shield [24]. A shield is a system, that will correct any
action given to it, that does not satisfy a safety constraint. Of
course guards in UPPAAL STRATEGO won’t correct actions,
they will simply not allow the agent to take those actions. In
this paper we formally define our only safety specification ϕ,
using Linear Temporal Logic.

Definition 9 (Safety Specification): We define our safety
specification as ϕ = G(d > ϵ), where G means invariant, d is
the distance to the closest object and ϵ is a value, indicating
how close the drone is allowed to be in meters. A safe action
is thus any action where after it has been executed, d is still
greater than ϵ.

The moving actions are the only actions that can change the

distance d, thus they are the only actions with the can move
guard annotation. can move is thus a function that evaluates
to true if ϕ is satisfied after the agent has taken some action.
Looking at fig. 7 it can be seen how every controllable edge,
eventually will result in sending a message to a broadcast
channel. This will make the other templates evaluate that
action, just like the transition functions outlined in section 4.
The moving and turning templates are shown in appendix A
and appendix B, respectively. After sending a message to
some broadcast channel, the controller template will wait
for one of the other templates to send a message to the
broadcast channel action completed. This message will be
sent once the other template is done evaluating the action. The
moving template and the turning template will call a function
called calculate reward that adds a value to the accumulated
reward, based on the reward function outlined in section 4.

Algorithm 1 is called after each action, and will update the
map M . This algorithm is the algorithm we use for Γ in our
transition functions. The algorithm is an attempt to simulate
how the map M would normally change, using an LiDAR
sensor. The algorithm takes a total of 6 parameters:

• st the current state.
• laser range the range of the LiDAR sensor in meters.
• laser diameter the diameter of the LiDAR sensor in

meters.
• upper range detection the max distance a drone can

be from a POI to examine it.
• lower range detection the min distance a drone can

from a POI to examine it.
The algorithm looks at the cells in m that are in the range
and radius of the laser and are in the direction the drone is
facing. Depending on the value of the cell the algorithm will
act differently. If the cell is occupied, the algorithm will stop
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Fig. 8: Example of how the map updates after taking the action
”turn 90 degrees” twice, with the respective mapping modes
”open” and ”closed”. Grey cells symbolise walls or unsafe
cells, and cells with a question mark indicate unknown cells.
The consequence of using the open mapping mode, is that the
reward increases.

looking at that row. If the cell is unknown, it will change it to
either free or occupied, based on a configuration called open or
closed. This configuration is made so that we can test different
approaches for UPPAAL STRATEGO to try and predict how
the map changes. If the algorithm is configured to be open it
will change the unknown cell to a free cell, otherwise, it will
change it to an occupied cell. A visualisation of the differences
between the two configurations can be seen in fig. 8. If a cell
is in the range for detection and has the value POI , the value
of the cell will change to examined and e will be incremented
by 1.

To learn a strategy, we use the queries outlined in table
I. We want to maximize the accumulated reward subtracted
by the time taken. The h in this case is the horizon. That
is the maximum amount of actions we are calculating. For
instance if h = 20, we want to find the sequence of the next
20 actions, that maximizes the reward. The reason for doing
this, and not simply calculating the strategy for reaching the
goal state, is that due to the size of the state space, the learning
time would be too great. As an example, given a granularity
of 0.05 and a 100m2 room, the map will have a total of
40.000 cells when fully explored. The only state variable is
DroneController.DescissionState, which is the state in which
the agent can chose an action. The point variables are x, y
and yaw, which are the position of the drone and it’s rotation.
Once a strategy has been learned it can be simulated directly
by using the simulate query shown in table I, or it can be
saved as a JSON file. In our work, we will be simulating the

Fig. 9: Model-Predictive Control conceptual sketch [9]

query, to compute a plan from UPPAAL STRATEGO instead of
saving the strategy as a JSON file.

7. STOCHASTIC MODEL PREDICTIVE CONTROL

When UPPAAL STRATEGO is synthesizing plans for the
drone, everything during learning is deterministic. There is no
stochasticity in which state the drone will be in after taking an
action or following a plan. However, stochasticity is introduced
into the system when the drone executes the actions in a
simulation or the real world. The reason for this is the drone’s
behaviour, such as hovering in place which is not a static
motion, or other parameters that can affect the drone, such
as wind. An example of this stochasticity is telling the drone
to move 1 meter north, where this might result in the drone
moving 1.2 meters north, 0.8 meters north, or not north at all.
Furthermore, updating map m in UPPAAL STRATEGO is done
in what can be called a naive manner, since UPPAAL STRAT-
EGO can not see which cells are unoccupied or occupied. We
attempt to handle this stochastic behaviour by implementing
a Stochastic Model Predictive Control scheme [25]. While
such schemes fit well into UPPAAL STRATEGO it is currently
not possible to actively update the current state, and learn
a new strategy. Because of this the framework STOMPC
[9] has been integrated into the pipeline, to form a learning
loop. The architecture of STOMPC consists of three main
components: A simulator, the model predictive controller, and
UPPAAL STRATEGO.

Figure 9 shows a conceptual overview of how STOMPC
works. Up to timestep t = k observations of the true state x
are made, and which control inputs u affected the state. Within
some horizon, we try to predict the future state x̂. The future
state x̂ depends on the applied control input û, that is applied
in every period p. In our work, a period is the time it takes
for the drone to complete an action, and the control input is
the action itself.

The goal of STOMPC is to have strategies ready for
the many different states the system can be in after having
executed an action. The authors of STOMPC propose that
when UPPAAL STRATEGO has determined the optimal control
sequence, based on the observed true state, we only execute
the first control input in that sequence. While the action is
being executed, UPPAAL STRATEGO should compute a new
optimal control sequence based on the new observed true state.
However, because the map is continuously updating and ex-
panding while the drone is executing actions, this is potentially
not the best approach. This is because UPPAAL STRATEGO has
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Purpose Query

Learn a strategy that maximizes accumulated reward
strategy opt = maxE(accum reward - time)
[<=1000] {DroneController.DescissionState) ->
{x, y, yaw} : <>(time >= h)

Simulate the first h actions of the learned strategy opt simulate [≤1000;1] {action} : (time ≥ h) under opt

TABLE I: The main queries that can be run either through the UPPAAL STRATEGO user interface, or through the command
line using UPPAAL STRATEGO verifyta.

Fig. 10: Where the two shields are deployed in the system.

no way to predict this expansion and can only naively make
predictions about the cell updates. This expansion is described
in section 9-C. Instead, we execute every action in the control
sequence or all actions until an unsafe action is reached.
After executing all safe actions in the control sequence, a new
control sequence from UPPAAL STRATEGO is requested based
on the observed new true state. We can define the control
sequence as in definition 10.

Definition 10 (Control Sequence): A control sequence θ =
{ai|ai ∈ A ∧ 0 ≤ i < h} is the set of actions i from i = 0
up to i = h, where h is the number of actions to get from the
simulate query and i, h ∈ N0.

8. SHIELDING

In this work, we propose having two different shields,
which fundamentally have the same functionality but are
placed differently and, therefore, act at different points in
time. The shield in UPPAAL STRATEGO will be called the
learning shield, while the shield in STOMPC will be called
the runtime shield. The learning shield is active during learning
in UPPAAL STRATEGO, so that UPPAAL STRATEGO can’t
execute any action that is unsafe w.r.t to its abstract state.
However, since UPPAAL STRATEGO can only guess how

the map evolves, it can never guarantee safety. Thus the
runtime shield is deployed in STOMPC, to make sure that
the action is also safe w.r.t to the true state of how the map
has evolved. The benefit of having two shields is that we can
execute several actions from the action sequence θ given by
UPPAAL STRATEGO. STOMPC will execute each action a ∈ θ
one at a time. The first action at from UPPAAL STRATEGO
is guaranteed to be safe, given that UPPAAL STRATEGO in
timestep 0 has the true state of the map m. When the action
is done executing, STOMPC will get the new true state of
the map m, and shield the next action at+1. STOMPC will
keep doing this until it has either executed every action in θ,
or the shield blocks an action. If the shield blocks an action,
STOMPC will send the new true state to UPPAAL STRATEGO
and request a new strategy.

9. PIPELINE ARCHITECTURE

To realise the plan computed by UPPAAL STRATEGO, we
must be able to execute the actions on an actual drone. Fur-
thermore, the true state sent to UPPAAL STRATEGO through
the STOMPC framework must be retrieved from the sensors
on the drone. We propose the pipeline visualised in fig. 11,
that combines the use of UPPAAL STRATEGO, STOMPC,
ROS, Slam Toolbox and the middleware needed to control
the drone. In this section, we will first give an overview of
the components that are yet to be explained (Slam Toolbox,
ROS, Middleware, Environment) and then in section 10 give
an example of how the entire pipeline works.

A. Robot Operating System (ROS)

ROS is a flexible and open-source framework for building
software for robots [4]. The framework provides a set of tools
and libraries to simplify the process of creating complex robot
software. The flexibility of ROS makes it easy to switch out
different components and reuse them on different robots.

Two fundamental concepts in ROS, are nodes and topics
respectively. A node in ROS is a specific process, that is
responsible for a specific task. A task could be processing
data from a sensor, or making the drone move. Topics are one
way that nodes can communicate with each other. A node can
either subscribe or publish to a topic. If a topic publishes data
to a topic, any node that subscribes to that topic will receive
the data. In fig. 11 topics are visualised as yellow circles.

B. Middleware

In terms of this work, middleware is the software that sits
between the low-level firmware on the robot and ROS. The
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Fig. 11: Overview of the proposed architecture. Yellow circles are ROS topics, that are published or subscribed to by ROS
nodes.

specific middleware is not important and can be changed, as
long as it exposes three types of topics: a LiDAR topic for
LiDAR data, a position topic for odometry data (position and
yaw of the robot) and a controller topic for controlling the
robot. As we shall see in the experiments we will be using
two different middleware, one for controlling a drone in a
simulation environment and one for controlling a robot in real
life.

C. Slam Toolbox

Slam Toolbox [5] is used to build m. The reason for choos-
ing this framework is that it is compatible with ROS2, well-
documented, and shown to produce great results in similar
cases. Slam Toolbox needs LiDAR data to create the map. The
benefit of using SLAM is that not only does it provide us with
a map, but also tells us where in the map the drone currently
is. This is crucial since solely relying on the odometry data, is
known to be inaccurate due to the drift of the drone and will
worsen the longer the drone operates. Such inaccuracy will
not only make it difficult to build an accurate map but also to
guarantee safety constraints. When using Slam Toolbox, the
map will increase in size over time. An example of this can
be seen in fig. 12 where the amount of cells is increased by
8 after 2 turning actions. It is important to note that the map
in the MDP that is encoded in UPPAAL STRATEGO, can not
increase in size. In that map, it is only possible to change
the value of a cell. However, after executing the plan from
UPPAAL STRATEGO, STOMPC will create a new instance of
the MDP with the larger map.

Fig. 12: Example of how the map might evolve after taking
the action ”turn 90 degrees” twice. Grey cells symbolise walls
or occupied cells, and cells with a question mark indicate
unknown cells. The lines from the camera on the drone are
the laser scans from the LiDAR.

In this work, patterns will not be in P before the cells they
occupy are in m, meaning that the drone should have explored
enough of the room and theoretically have seen the location
of the POI. This is done so that only information the drone
has gathered is used for training and no outside knowledge is
affecting it.

D. Environment

The environment is the physical space that the agent op-
erates in. As we shall see in the experiments we will be
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showcasing the pipeline in both a simulated environment
(using Gazebo) and a real-life environment. The sensors on
the agent are directly influenced by the environment and are
read by the middleware which finally publishes this data as
ROS topics.

10. SHOWCASING THE PIPELINE

In the following section, we will be giving an example of
how the pipeline works, using a 3D environment simulated in
Gazebo.

• Step 1 - Getting the initial state: STOMPC sends the
initial true state into UPPAAL STRATEGO. This includes
the current knowledge of how the environment looks, the
drone’s position in that map and its current yaw. This data
is gathered from Slam Toolbox and the published topics
from the middleware.

• Step 2 - Computing an action sequence: UP-
PAAL STRATEGO calculates an action sequence, given the
current true state. Often, the first action sequence from
UPPAAL STRATEGO is to keep turning, in order to get
more information about how the environment looks.

• Step 3 - Actuating the action sequence: STOMPC
actuates each action in the given sequence one at a
time. Between each action, the true state of the system
will be updated, such as an increased knowledge of the
environment. Because of this, STOMPC will deploy the
runtime shield, between each action, making sure that the
action is still safe concerning the updated knowledge. If
at any time the runtime shield blocks an action, STOMPC
will actuate a 360-turn on the drone, and then check if the
runtime shield is still blocking the action. If the runtime
shield still blocks the action, STOMPC will send the
current true state to UPPAAL STRATEGO and wait for
a new sequence.

• Step 4 - Repeat until goal state: The final step is to
keep repeating steps 2 and 3 until eventually all pumps
are found and the map is fully explored.

11. EXPERIMENTS

To evaluate the proposed method, we are using the Gazebo
Simulator [7] as the simulator for STOMPC, which allows us
to simulate a physical environment. Additionally, it will enable
us to simulate a physical real-world drone with stochastic
behaviour. For instance, hovering in place is not a static
position and moving the drone from a start position multi-
ple times with the same velocity does not entail the drone
moving to a deterministic position. This means that while
our UPPAAL STRATEGO model is deterministic w.r.t how the
drone moves while synthesizing a plan, Gazebo introduces
stochasticity into our proposed method, given the stochastic
nature of how a drone behaves in real life. The experiments
done for comparison are all using the room model shown in
fig. 13. From this point, we will use room to denote the 3D
model in Gazebo.

For comparison, we have implemented as a baseline a
Breadth-first-search (BFS) approach in Python. This approach

Fig. 13: The model used for all the experiments. The two
squares represent POIs. The blue square indicates a potential
POI which ultimately is not a pump, and the green square
indicates another POI, which is an actual pump. The green
pillar at the green square is used to show a pattern in the
map generated by Slam Toolbox, even though they are not
technically used. The black circle shows the drone’s starting
position before takeoff. With a granularity of 0.05 the room
consist of a total of 24.480 cells.

tries to solve the problem of exploration and finding POIs by
using BFS to find the closest unknown cell in the map with
a safe path to it, based on the current map. If there is a POI
in the map it will compute a safe path to that instead. This
approach does not use any RL and relies solely on the BFS
algorithm. However, it still utilizes everything in the pipeline
in fig. 11, including the run-time shield. If the run-time shield
ever corrects the algorithm, it will make a 360-degree turn and
then compute a new path using the new map.

For all experiments, the drone has the same initial starting
position. When a test is begun, the drone will perform takeoff,
turning to an initial yaw value, then turning 4 times before
reaching the initial yaw again. This is done to create an initial
view of the room. After takeoff, both approaches will begin
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Setup Completed Task Suspected Crashes Avg. Completion Time(minutes) Avg. Number of Times Trained Avg. training time(seconds) Avg. Number of actions
UC-M1-H20 97.89% 5 5.48 (±2.74) 13.13 (±7.73) 3.96 (±0.25) 111.03 (±67.59)
UC-M3-H10 97.89% 6 5.59 (±3.24) 11.57 (±7.40) 6.02 (±0.41) 94.11 (±65.04)
UC-M3-H20 98.96% 4 6.02 (±2.17) 10.83 (±4.56) 11.55 (±0.75) 86.48 (±35.24)
UC-M3-H30 95.55% 10 7.13 (±3.04) 10.49 (±4.70) 17.02 (±0.88) 82.29 (±37.37)
UO-M3-H10 87.50% 12 8.34 (±4.96) 20.10 (±14.28) 6.21 (±0.59) 168.24 (±129.20)
UO-M3-H20 79.55% 12 10.51 (±4.99) 19.5 (±10.94) 12.26 (±0.88) 163.73 (±96.90)
BFS-SPA 96.84% 6 4.13 (±2.72) 30.61 (±51.77) 0.04 (±0.01) 87.37 (±88.90)

TABLE II: The results from individual experiments. The data is shown with the suspected crashes removed, meaning if there
are 10 suspected crashes, and out of the 90 runs left, there were 45 completed, the results would be 50%. The avg. completion
time is shown in minutes, with avg. training time in seconds. The number in the parentheses is the standard deviation.

the process of exploring the room and trying to find the POIs.
For each test configuration, we collect 100 runs. The goal of
a run is to find all POIs in the room, of which there are two
(though this number is not known to the drone controller),
and have the map fully explored. To say that a map is fully
explored, the map produced by Slam Toolbox must have no
more than 20 consecutive unknown cells adjacent to a free
cell. Intuitively, this means there must not be an opening in the
map larger than 1 meter along any wall. We are subsequently
calling the act of attempting to reach this goal the drone task.
In the experiments, we define a suspected crash, as the room
coverage being greater than some threshold. This is because
when the drone flies into a wall, the SLAM map tends to
explode in size. This is why the crash is only suspected, since
there can be other reasons for the SLAM map to be larger than
expected, such as failures in the LiDAR readings. We say that
we suspect a crash if the coverage of the run is above 105%.
We measure coverage by counting how many cells in m are
free and compare them to how many cells we expect there
to be in the room.

We compare the different experiment configurations on
several different variables:

1) Total number of successful runs: a run is successful
when the drone has completed its task and is not a
suspected crash. If the task is not finished after 18
minutes have passed, we say that the task has failed.

2) Average Completion time: the average time taken for the
drone to complete the task, in minutes. This is capped at
18 minutes, due to the battery restrictions of the drone
described earlier.

3) Average number of times trained: the average number
of times UPPAAL STRATEGO has synthesized a plan or
the BFS approach has to find a new path.

4) Average training time in UPPAAL STRATEGO: the aver-
age time taken for UPPAAL STRATEGO to synthesize a
new plan for the drone in seconds or how long the BFS
approach took to find a safe path.

5) Average number of actions activated: the average num-
ber of actions activated by the drone from when the
experiment began to the task is either completed or 18
minutes have passed.

6) Total number of suspected crashes: the number of runs
that we suspect have had a crash.

Our experiments are divided into three parts. For the first
part, we aim to study how different combinations of open

and closed mapping configurations, as shown in fig. 8, and
different horizons in UPPAAL STRATEGO are impacting the
results. These results are compared to the BFS approach. Then
we show that the method proposed can be used for various
models with varying sizes and shapes. Lastly, we show as a
proof of concept the proposed method working on a real-world
Turtlebot3 robot, where it maps a small room based on fig. 13.
All experiments were done on a machine running Ubuntu
22.04 LTS with an Intel I9 9900K CPU, RTX 2700 GPU
and 16GB of memory. For the proof of concept showcase,
a Thinkpad T14s with an AMD Ryzen 7 PRO 4750U CPU
and 32GB of memory was used.

We want to make it clear for the reader, that the
experiments in section 11-A were all done with a bug in
the UPPAAL STRATEGO model. We have left our findings
in because those are what led us to discover the bug. We
invite the reader to go to section 11-B for experiments
without the bug.

An example of the drone finding all the pumps using the
pipeline can be seen on YouTubea.
A video of the TurtleBot3 experiment can be seen on
YouTubeb.

ahttps://www.youtube.com/watch?v=9oKTYK9Lk-s
bhttps://www.youtube.com/watch?v=zwRT9ZsrhSI

A. Testing different configurations

To get a better understanding of how the different configura-
tions are affecting the different comparison variables presented
previously, we conduct experiments on different setups for
mapping configurations and horizons. This is done to evaluate
the impact of having an open or closed mapping configuration
and to empirically determine if there are any bounds on the
horizon UPPAAL STRATEGO uses to synthesize a plan, where
no further gain is achievable. Finally, we will compare the
results to the BFS approach explained earlier. All experiments
are done in the Gazebo simulator, using the X500 drone
[21] from Holybro, shown in fig. 14 with PX4 [26] as the
middleware to control the drone via ROS.

All of the experiments done in this section are conducted the
same way. We collect 100 runs from each of the configurations.
For all the comparison variables where we compare the runs,
we have removed the runs that we suspect have had crashes.
All experiments are done in the environment shown in fig. 13
and we have calculated that 24.480 cells are expected to
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Fig. 14: The X500 drone from Holybro [21].

be free. We are using the default learning parameters in
UPPAAL STRATEGO except for max-iterations. Max-iterations
is the total number of iterations UPPAAL STRATEGO uses
in Q-learning. To denote different experiment setups using
our proposed method, we use the following notation: say the
experiment is done with a open mapping configuration in
UPPAAL STRATEGO, using a max-iterations of 1 and a horizon
of 20, this will be denoted as UO-M1-H20. If the experiment
were using a closed mapping configuration, with the same
max-iterations and horizon, it would be UC-M1-H20. We are
calling the BFS approach for Breadth-First-Search Safe Path
Approach (BFS-SPA). The results from our experiments can
be seen in table II.

In regards to which mapping configuration seems to be
performing best, it seems there is a clear gain in having a
closed mapping configuration. On all comparison variables,
closed outperforms the open mapping configuration, from
having fewer crashes, fewer times trained, and faster com-
pletion time while also having a better completion rate. The
worst performing setup with closed mapping, UC-M3-H30,
still has over 8% better completion rate compared to the
best performing open mapping setup, UO-M3-H10. However,
the room used for the experiments is comprised of narrow
corridors, where one can suspect the open configuration can
not be utilized to its fullest. This thought requires more
experiments to be fully explored, but we suspect this might
be the case, with open configuration being more suited to
wide and open-spaced rooms.

Additionally, it seems that having a longer and longer
horizon in UPPAAL STRATEGO does not yield better and better
results. We can see that between UC-M3-H10 to UC-M3-
H20, there is a completion rate gain of about 1%. Contrarily,
between UC-M3-H20 and UC-M3-H30, there is a loss in com-
pletion rate of about 3.41%. This is interesting and indicates
there is an upper bound on how far UPPAAL STRATEGO can
predict the map. Again, one has to remember the narrowness
of the room. One can also imagine that if the room is fully ex-
plored, having a larger horizon might perform better, because
the map does not change anymore. Additional experiments
could go into implementing a dynamic horizon, based on how
much of the map has been explored. The results also show
that there is a significant gain in average training time if we
are using a max-iteration of 1. If we compare UC-M1-H20 to
the rest of the setups using closed, we can see that it is at
least 2 seconds faster at synthesizing a new plan. However,
this comes at the cost of taking at least 16 more actions

compared to UC-M3-H10 setups, which is the setup taking
the second most actions. We can also see that UC-M1-H20
trains at least 2 more times than the setup with the next most
actions activated. These observations make for an interesting
follow-up experiment, to try and examine the effect training
and activating actions have on the battery consumption [27].

If we compare our approach to the baseline BFS-SPA, we
see that it performs better on almost all parameters, with our
approach being marginally better on the number of actions
activated. This led us to question why the strategy synthesised
in our approach was not performing better, given the long
training times, than the data suggested. Based on these results
and that question, we investigate our approach’s possible
optimizations, potential bugs and solutions to these, which will
be presented in section 11-B.

B. Follow-up experiments

Our investigation into possible optimizations to our
approach revealed that the strategy calculated by UP-
PAAL STRATEGO would give us odd control sequences, such
as going back and forth repeatedly or only activate turning
actions. This led us to discover a bug in the way we simulated
the LiDAR sensor in UPPAAL STRATEGO. The bug caused
UPPAAL STRATEGO to be able to see through walls when
calculating rewards, thus being able to get a reward for remov-
ing unknown cells it should not be able to. This explains the
odd control sequences, because UPPAAL STRATEGO thought
it was updating cells, but in the simulator, it was not updating
anything. This bug has been fixed in the new experiments but is
present in all experiments using our approach in section 11-A.
Another thing we noticed with the control sequences is that
it looked to be prioritizing the shorter move actions, even
though the longer move action would be better. For example,
it was not uncommon for UPPAAL STRATEGO to make a
control sequence where the drone moved 2 meters by using
four shorter move actions, instead of using two longer move
actions. In an attempt to combat this, we are giving a penalty
for using the shorter actions, thus trying to limit their usage.
We conduct two new experiments to try and understand the
effect of the bug fix and the penalty to shorter moving actions.
For the first, we are running configurations UC-M3-H20 and
UO-M3-H20 again, with the only changes being the bug fix
and penalty. We are calling these UC-M3-H20-FIX and UO-
M3-H20-FIX respectively. This is done because we want to
understand if the ability to see through walls had an impact
on the open mapping configuration since it had to change
more cells. For the second experiment, we are testing with
different UPPAAL STRATEGO learning parameters, to see if
there is a gain to making training time faster, at the cost of
making a worse strategy. We are calling this run UO-M2-H20-
ND. In this test, we are reducing the values of the following
learning parameters by half of the default values: reset-no-
better, good-runs, total-runs. We collect 10 runs for each of
the configurations. Results are shown in table III.

If we compare the results of configurations UC-M3-H20-
FIX and UO-M3-H20-FIX to their respective configurations
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Setup Completed Task Suspected Crashes Avg. Completion Time(minutes) Avg. Number of Times Trained Avg. training time(seconds) Avg. Number of actions
UC-M3-H20-FIX 88.89% 1 4.94 (±2.0) 8 (±3.80) 13.46 (±0.74) 69.66 (±36.48)
UO-M3-H20-FIX 100% 0 4.60 (±0.91) 7.1 (±1.66) 14.44 (±0.37) 54.4 (±13.92)
UO-M2-H20-ND 100% 0 4.33 (±0.90) 9.10 (±2.55) 6.22 (±0.22) 75.6 (±24.56)
BFS-SPA 96.84% 6 4.13 (±2.72) 30.61 (±51.77) 0.04 (±0.01) 87.37 (±88.90)

TABLE III: The results from individual experiments. The data is shown with the suspected crashes removed, meaning if there
are 10 suspected crashes, and out of the 90 runs left, there were 45 completed, the results would be 50%. The avg. completion
time is shown in minutes, with avg. training time in seconds. The number in the parentheses is the standard deviation.

from the first results, we see significant improvements. Com-
pletion time is improved by over a minute from UC-M3-H20
to UC-M3-H20-FIX, with UO-M3-H20-FIX being almost a
full 6 minutes faster. This result seems to imply that the open
mapping configuration is the best but got severely punished
by the bug in the UPPAAL STRATEGO model present in
the previous experiments. The results also show significant
improvements in the number of actions activated. UC-M3-
H20-FIX took on average 18 fewer actions than UC-M3-H20,
with UO-M3-H20-FIX taking 113.84 fewer actions than UO-
M3-H20. We can also see that both UC-M3-H20-FIX and UO-
M3-H20-FIX now activates fewer actions than the baseline.
The number of times both configurations had to train for a
new strategy is also lower than their counterparts from the
first results, with the training time being marginally longer. If
training time was not a factor, we can see that our approach is
significantly better than BFS-SPA, with for example UO-M3-
H20-FIX being on average 1.24 minutes faster.

We also conducted a small experiment on how the size of
the map affects the training time. As fig. 15 shows, the size of
the map increases the training time by upwards of 7 seconds
in the room from fig. 13. This is an important factor since all
of our experiments show that training time is a big part of
the overall completion time. If it is possible to optimize the
UPPAAL STRATEGO model to make training faster, it seems
probable that our approach is competitive to the baseline. UO-
M3-H20-ND in table III shows a small experiment to reduce
training time by giving UPPAAL STRATEGO less time to syn-
thesize strategies. We see that UO-M3-H20-ND is synthesizing
a new strategy 8 seconds faster on average, compared to
UO-M3-H20-FIX. However, this only results in an improved
average completion time of 0.27 minutes. The reason for this
is that the strategy produced with UO-M3-H20-ND is so much
worse that it has to activate on average 21 more actions
compared to UO-M3-H20-FIX. This highlights the importance
of optimizing the UPPAAL STRATEGO model to improve
training time, instead of lowering learning parameters to make
UPPAAL STRATEGO faster. Section 12-A outlines potential
work that can reduce the training time by optimization.

During the experiments, we also discovered that the drone
sometimes had trouble finding the POIs in fig. 13. We believe
this is because the drone is having trouble getting in the range
of where it can see the POI. As presented earlier, the drone is
only able to examine a POI if it is within 0.75 meters of it. The
reason it is having trouble getting into this range, we assume
is because of the strict move actions we have combined with
the fact that the drone is not hovering in a static position. We

Fig. 15: Plot showing how the training time increases, as the
number of cells in the map increases. The best-fitting line is
calculated using linear regression.

observed that when a drone reaches this kind of limbo of being
close to the POI, but never able to see it, it produces runs with
a large number of times trained, actions activated and hitting
the maximum time allowed for a run. This problem appeared
in all experiments, both our approach and the baseline, and
we believe this problem is reflected in the sometimes large
standard deviation for the experiments. Possible solutions to
this problem are presented in section 12-A.

C. Testing on different maps

To test the flexibility of the proposed solution, we test
on a total of three different room setups, besides the one
used for the previous experiments. These three rooms can be
visualised in fig. 16, with room A used previously for the
other experiments. The configuration of the solution that has
been used for these experiments is UC-M1-H20 from table II.
The rooms have a different number of POIs, various sizes and
different layouts. For instance, room D in fig. 16 is a circular
room, made for testing the capabilities of the solution in a
room with curved walls. These experiments are not meant to
find or show the best configuration setup for individual rooms,
but merely that our proposed method can function in various
environments. We present the results in the same way as the
previous results, with suspected crashes being removed from
the data. For each of the rooms, we collect 34 runs. It is
important to note that the experiments for rooms B and D
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Fig. 16: The different rooms that we run experiments on. The scale of the rooms in this figure is incorrect. With a granularity
of 0.05 room A has a total of 24.480 cells, room B has a total of 26.928 cells, room C has a total of 144.400 cells and room
D has a total of 31.415 cells. The cell numbers are calculated as if the walls were not in the room. Room C is thus the largest
room by a significant amount. The light blue cells are POI that are not pumps, while the green cells are POI that are pumps.
The red cells are the location of the drone in its initial state.

both have the bug in UPPAAL STRATEGO presented earlier,
while room C was done later with the bug fixed. The results
can be seen in table IV.

We can see that the experiments for rooms B and D with the
UC-M1-H20 configuration setup are showing similar results
to the experiments for room A with the same setup. This is a
sign that our proposed method is not limited to strictly square
rooms but also functions reasonably well on other shapes.
These three rooms are also roughly the same size. However,
the data for room B shows that it had trouble fully exploring
the map. This is also what led the experiment for room B to
have a lower Completed Task compared to rooms A and D.
In all runs it was able to examine all POIs, but in some cases,
it was not able to fully explore it. We suspect this is because
of the obstacle in the middle of the room causing both shields
to block actions that would cause the drone to fully explore
the room. We didn’t notice any such drawbacks for room A or
room D. The results from the experiment done in room C show
our proposed method beginning to struggle with the large size
of the room. Particularly we see completed tasks significantly
lower than their counterparts, more crashes, longer completion
times, it had to train more and a large number of actions
activated. For this experiment, we also had to give the drone
longer steps, meaning the drone can move 3 meters with one
action instead of 1. The drone was still able to move half a
meter. This was done as an attempt to not raise the horizon
from 20, causing longer training time. The results from the
room C experiment show that our method might begin to reach
its limit when the rooms are getting very large. However, this
might also show that the UC-M1-H20 configuration setup is
not suited for rooms of this size, supporting our belief that
having an open mapping configuration is the better choice
for large open-spaced rooms. The number of crashes is also
significantly greater in Room C. This may be because the
drone can move up to 3 meters in this map, increasing the

acceleration of the drone. Thus the safety constraint may need
to be more strict, as the movement length increases.

D. Using the pipeline on a Turtlebot3

To fully prove the capabilities of the proposed pipeline, we
attempt to use it on a Turtlebot3 [8] robot that can be seen
in fig. 17. While the Turtlebot3 moves using wheels, it still
shares many similarities with the X500 drone that we simulate
in Gazebo. Just like the X500 drone, Turtlebot3 features both
an odometry sensor and a LiDAR. However, the LiDAR on
the Turtlebot has 360 vision, meaning that the Turtlebot can
see everything around it. As mentioned in section 9-B, as
long as the middleware publishes a LiDAR, Position and
Controller topic, it fits into the pipeline, and the Turtlebot3
middleware does exactly that. The only thing that needs to
be changed for the pipeline to work with the Turtlebot3, is
how movement is handled in UPPAAL STRATEGO. Where
a drone can move in certain directions without facing those
directions, the Turtlebot3 can not. Therefore we have created
a new UPPAAL STRATEGO model for the Turtlebot3, with the
addition that the movement edges are only available if the
robot is facing the way that the movement edge takes it.

The room that the Turtlebot3 will navigate in is a real-life
creation of the model shown in fig. 13. For practical purposes,
the model has been scaled down so that the width of the room
is 240cm and the height is 360cm. The real-life room can be
seen in fig. 18.

The experiment showed that the Turtlebot3 was successful
at mapping the room, as well as locating the pump in the
room. The experiment showed that the robot was able to map
and find the POI in 3 minutes. While the experiment showed
that the pipeline worked in real life, it did showcase several
problems:

• The odometry: After driving for a short while the
odometry data of the robot got very inaccurate, even
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Setup Completed Task Suspected Crashes Avg. Completion Time(minutes) Avg. Number of Times Trained Avg. training time(seconds) Avg. Number of actions
Room B, 26.928 cells 87.10% 3 6.13 (±5.18) 13.29 (±13.07) 5.14 (±0.26) 113.45 (±116.91)
Room C, 144.400 cells 59.26% 7 15.32 (±3.17) 26.96 (±6.02) 10.34 (±0.24) 256.48 (±59.36)
Room D, 31.415 cells 96.77% 3 5.85 (±3.56) 11.03 (±7.57) 5.50 (±0.40) 96.03 (±65.82)

TABLE IV: The results from experiments with our proposed method on different rooms. The data is shown with the suspected
crashes removed, meaning if there are 10 suspected crashes, and out of the 90 runs left, there were 45 completed, the results
would be 50%. The avg. completion time is shown in minutes, with avg. training time in seconds. The number in the
parentheses is the standard deviation.

Fig. 17: The Turtlebot3 robot [8].

Fig. 18: The real-life room that Turtlebot3 will navigate and
map in. The box in the green circle is the one and only POI
in this room, and the Turtlebot3 is in the black circle.

while using SLAM. This resulted in the robot not driving
straight. This drift in the odometry data, should not
be this significant, and should not have happened this
fast. A reason for this drift could be that the wheels
on the Turtlebot3 were dirty when the experiment was
conducted.

• The LiDAR sensor: When conducting the experiment,
we found that the LiDAR sensor could not detect all kinds
of materials. Particularly it had a hard time detecting
the trash cans seen in the video (which is why there
are placed another kind of material next to the trash
cans). This may be due to the laser being reflected off the
material. It is therefore important that the LiDAR sensor
on the drone, that Grundfos will be using is of sufficient
quality.

12. CONCLUSION & FUTURE WORKS

As drones are increasingly being used to automate tasks,
Grundfos seeks to find a way of using drones to automate
pump inspections. In this paper, we have proposed a solution
on how to automate these drone inspections. We propose
a pipeline consisting of UPPAAL STRATEGO to compute a
reinforcement learning strategy, STOMPC as a controller, ROS
to send and receive sensor data, Slam Toolbox to build a map
of the environment and middleware to control the drone.

Throughout the experiments, we show that this pipeline
works both in a simulated environment using Gazebo and
in a real physical environment using a Turtlebot3 robot.
Furthermore, we also show how the pipeline works in different
environments such as large-scale rooms and rooms with curved
walls.

All of the results from the experiments have been compared
to a baseline algorithm, that uses Breadth-First-Search to
compute a path for the drone. The first set of experiments
showed that the baseline algorithm performed better on almost
all recorded parameters, and on the ones where it didn’t, it
was marginally worse. These findings led us to discover bugs
in the UPPAAL STRATEGO model, as well as ideas on how
to improve the reward function. The results after the improve-
ments showed that UPPAAL STRATEGO was now significantly
better in some of the recorded parameters. For instance, using
UPPAAL STRATEGO the drone could on average reach the goal
state using 33 fewer actions compared to using the baseline
algorithm. In addition to these findings, we found that if one
removed the training time, UPPAAL STRATEGO was more than
1 minute faster than the baseline algorithm. These findings
show the potential of UPPAAL STRATEGO, if one manages to
improve the learning time.

These findings illustrate the potential of UPPAAL STRAT-
EGO, provided that the learning time can be further opti-
mized. Overall, this study highlights the feasibility and ef-
fectiveness of using reinforcement learning in collaboration
with STOMPC, ROS and Slam Toolbox to automate drone
inspections. The findings found in this paper can contribute
to more efficient and reliable automated inspection systems in
the future.

A. Future Works

With the pipeline being fully made, it makes sense to inves-
tigate how it can be optimized. For instance, one might look
into how the map represented by a matrix in UPPAAL STRAT-
EGO can be optimized. One way is to partition the map, so
that the parts of it that have already been fully explored are
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not a part of the map being trained on. Another way could
be to make the matrix in UPPAAL STRATEGO a constant so
it is not copied between states. Another idea is to ”shrink”
the map, meaning that the map in UPPAAL STRATEGO has a
higher granularity than the actual map. The granularity of 0.05
was picked so that the pumps could be detected as patterns
in the map. However, it might not be necessary to have such
a small granularity in the map in UPPAAL STRATEGO, if we
can properly ”shrink” the map without losing obstacles and
POIs. Other optimizations might be found by conducting ex-
periments on UPPAAL STRATEGO learning parameters, reward
engineering, and general code optimizations.

An addition that could reduce the impact of learning time,
which has already been coded, but not tested, is beginning
training before the control sequence has finished. The idea
is that when there are a certain number of actions left in
the control sequence, we predict where the drone will be
after taking the remaining actions, and send that state to
UPPAAL STRATEGO. Once the remaining actions have been
taken, UPPAAL STRATEGO will already have calculated a new
control sequence, or at least be close to it.

Another problem that must be investigated, is the problem
of the drone not being able to get close enough to the pumps.
To detect the pump, the drone must be within 0.75 meters of
it, and it can only move 0.5 or 1 meter at a time. Meanwhile,
it must also satisfy its safety constraint, which can be hard
since pumps are often close to other objects. To reduce this
problem, we can introduce a larger set of movement actions,
such as being able to move 0.25 meters, or we can introduce
a dynamic set of actions. For example, instead of telling the
drone to move 1 meter north, UPPAAL STRATEGO should be
able to tell the drone to move to a certain point in the map.
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APPENDIX

APPENDIX A
UPPAAL STRATEGO MOVING TEMPLATE

The UPPAAL STRATEGO Moving Template can be seen in
fig. 19.

APPENDIX B
UPPAAL STRATEGO TURNING TEMPLATE

The UPPAAL STRATEGO Turning Template can be seen in
fig. 20.
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Fig. 19: UPPAAL STRATEGO Moving Actions Template
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Fig. 20: UPPAAL STRATEGO Turning Actions Template

22


	Contents

