
A first step to enhance the
robot-patient interaction in a Robot

Assisted Ultrasound system

Master thesis

Laia Vives Benedicto

Aalborg University
Robotics

Copyright © Aalborg University 2024

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

Robotics
Aalborg University

http://www.aau.dk

Title:
A first step to enhance the robot-
patient interaction in a Robot As-
sisted Ultrasound system

Theme:
Master Thesis

Project Period:
Spring Semester 2024

Project Group:
1056

Participant(s):
Laia Vives Benedicto

Supervisor(s):
Thomas B. Moeslund
Galadrielle Humblot-Renaux

Page Numbers: 78

Date of Completion:
May 31, 2024

Abstract:

The physical discomfort when manoeuvring the
transducer in an ultrasound scan device brings
Hera, a Robot Assisted Ultrasound system devel-
oped by Life Science Robotics to aid in obstetric
scans. It consists of a robot arm that holds the
transducer while controlled by the sonographer via
a joystick. No published approach considered the
other side of the human-robot interaction, the robot-
patient interaction to enhance the patient’s comfort.
The project aims to provide a starting point to de-
tect patient movement and provide a robot-patient
interaction. The proposed approach consists of de-
veloping and testing a Kernelized Correlation Fil-
ter that keeps tracking the patient’s abdomen un-
der the presence of the robot in view by correcting
the tracking box with feature-matching techniques.
The approach is on average 9% more accurate than
the default tracker when occlusion is present on the
frame. It can also re-identify the patient in long
tracking sequences after losing the target due to a
big occlusion, reaching an accuracy of 84.5% com-
pared to the default 69,4%. Scanning the upper
part of the abdomen fails in detecting points in the
region of interest. Moreover, textureless clothing
leads to wrong matches since the points are de-
tected at the skin-clothes boundary. In spite, the
approach can potentially track the abdomen to de-
termine the real-time position of the patient and en-
hance the interaction with the robot, but further re-
search is needed to detect more robust features and
handle occluded areas.

http://www.aau.dk

Summary

Ultrasound scans have been used since 1940 to observe internal organs. However, the
repetitive movements to manoeuvre the transducer while applying force lead to work-
related musculoskeletal disorders. To relieve the physical discomfort, Life Science Robotics
developed Hera, a Robot Assisted Ultrasound system for obstetric scans in which a robot
arm holds the transducer, controlled by the sonographer while sitting in a comfortable
position. Despite robot-assisted systems for ultrasound imaging being under research,
no approach considered the other side of the human-robot interaction, the robot-patient
interaction to enhance the patient’s comfort. Life Science Robotics seeks to improve its
system focused on the sonographer-robot interaction by enhancing a sonographer-robot-
patient interaction.

This project aims to contribute to the research of enhancing patient comfort when per-
forming obstetric scans with RAU. The focus is on tracking the patient’s abdomen par-
tially occluded by the robot using classical computer vision approaches. By answering the
question "Is it possible to track a patient’s abdomen with the robot occluding the view
using classical visual tracking techniques?" the project intends to provide a starting point
to detect patient movement. The proposed approach consists of developing and testing a
modified version of the Kernelized Correlation Filter to correct the tracking box under the
appearance of occlusion. This is done by integrating feature matching when an occlusion
is detected and calculating the transformation matrix with respect to a reference frame to
update the box position.

Compared to the default performance of the tracker, the proposed method’s average accu-
racy increased by 9% when occlusion was present on the frame. Despite the low average
improvement, the approach can re-identify the patient in long tracking sequences after
being lost due to a significant occlusion in the abdomen, reaching an accuracy of 84.5%
compared to the 69,4% achieved by the default tracker. The accuracy of the track is depen-
dent on the amount of occlusion in the abdomen. An accuracy of around 90% is achieved
when the robot scans the lower part of the abdomen but it can decrease to less than 50%
when the robot scans the upper part of the abdomen since the algorithm fails in detecting
points on the region of interest. Moreover, the textureless skin area of the abdomen re-

iii

lies on the contrast between the clothes and the skin to detect features, leading to wrong
matches if the clothes are also textureless. Therefore, the approach shows the potential
to accurately track the abdomen with the robot in view to detect patient movement but
further research is needed to detect more robust features and handle large occluded areas.

Preface

Aalborg University May 31, 2024

This thesis completes my studies in the Robotics Master’s Degree at Aalborg University.
The project is in collaboration with Life Science Robotics, with their Robot Assisted Ultra-
sound system.

The provided link contains the tracking performance videos from three of the validation
set videos.

https://drive.google.com/drive/folders/15RZ1JSoLFsY-CVrVU6JnE6JSwaSW7hEc?usp=sharing

Laia Vives Benedicto
<lvives22@student.aau.dk>

v

https://drive.google.com/drive/folders/15RZ1JSoLFsY-CVrVU6JnE6JSwaSW7hEc?usp=sharing

Abbreviations

AGAST Adaptive and Generic Accelerated Segment Test
APCE Average Peak to Correlation Energy
BRISK Binary Robust Invariant Scalable Keypoints
CenSurE Center Surrounded Extrema
CIU Control Interface Unit
CRF Corner Response Function
CVAT Computer Vision Annotation Tool
DCF Discriminative Correlation Filter
DFT Discrete Fourier Transform
DoG Difference of Gradients
ECU External Control Unit
ERS Edge Response Suppression
FAST Features from Accelerated Segment Test
FLANN Fast Library for Approximate Nearest Neighbors
FN False Negative
FP False Positive
HOG Histogram of Oriented Gradients
ICP Iterative Closest Point
IOU Intersection Over Union
KCF Kernelized Correlation Filter
LoG Laplacian of Gaussian
LSH Locality-Sensitive Hashing
LSR Life Science Robotics
NMS Non-Maximum Suppression
ORB Oriented FAST and Rotated BRIEF
RAU Robot Assisted Ultrasound
RGB Red Green Blue
ROI Region Of Interest
SIFT Scale-Invariant Feature Transform

vi

SLAM Simultaneous Localization and Mapping
TP True Positive

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Report outline . 4

2 Problem analysis 5

2.1 The RAU system . 5

2.1.1 What causes the patient movement problem? 7

2.2 Research towards a potential solution . 8

2.2.1 Selection of the sensors and datatype 8

2.2.2 Visual tracking approaches . 9

3 Related works 11

4 Theoretical framework 13

4.1 Discriminative correlation filters . 14

4.2 Kernelized correlation filters . 15

4.2.1 Histogram of Oriented Gradients . 16

4.3 Average Peak to Correlation Energy . 17

4.4 Feature matching . 19

4.4.1 Feature detectors . 19

4.4.2 Feature descriptors . 27

viii

Contents ix

4.4.3 Matchers . 29

4.5 Affine transformation . 30

5 Dataset and performance evaluation criteria 31

5.1 Constraints and assumptions . 31

5.1.1 Patient variables . 31

5.1.2 Environment variables . 32

5.2 Materials . 33

5.3 Setup before recording . 33

5.3.1 Software adaptation . 33

5.3.2 Preparation of the scene . 34

5.4 Recordings . 35

5.5 Ground truth extraction . 35

5.6 Evaluation metrics . 38

5.6.1 Metric for bounding box approaches 38

5.6.2 Metrics keypoints approaches . 39

5.6.3 Robustness study . 39

6 Development of the patient visual tracker 40

6.1 Occlusion handling overview . 40

6.2 Evaluation of feature matching approaches . 42

6.2.1 Evaluation of feature detectors parameters 42

6.2.2 Evaluation and selection matching method 45

6.3 Adapted solution for the RAU system . 53

7 Performance evaluation 55

7.1 Evaluation setup . 56

7.2 Evaluation of the default KCF performance . 57

Contents x

7.2.1 Results of test1: No occlusion . 58

7.2.2 Results of tests 2,3 and 4: Occlusion . 60

7.2.3 Results of test5: Long videos . 61

7.2.4 Summary of the default performance 63

7.2.5 Weaknesses of KCF . 63

7.3 Evaluation of the proposed solution . 64

7.3.1 Summary of the proposed approach performance 64

7.3.2 Test1: No occlusion . 65

7.3.3 Test2: Static occlusion . 65

7.3.4 Test3: Dynamic occlusion, static patient 66

7.3.5 Test4: Dynamic occlusion, dynamic patient 67

7.3.6 Test5: Long videos . 67

8 Final test 69

9 Discussion 71

9.1 Limitations of the approach . 72

9.2 Future work . 72

10 Conclusion 73

Bibliography 75

A Test results 79

A.1 Default KCF testing details . 79

A.1.1 Test2: Static occlusion . 79

A.1.2 Test3: Dynamic occlusion, static patient 81

A.1.3 Test4: Dynamic occlusion, dynamic patient 83

A.2 Improved performance . 85

Contents xi

A.2.1 Test1: No occlusion . 85

A.2.2 Test2: Static occlusion . 86

A.2.3 Test3: Dynamic occlusion, static patient 87

A.2.4 Test4: Dynamic occlusion, dynamic patient 87

A.2.5 Test5: Long videos . 88

B Outfit data 89

Chapter 1

Introduction

Ultrasound scans have been an imaging diagnostic method since the 1940s. Considering
that it is radiation-free and can provide real-time images, ultrasound scans are the least
harmful imaging technique to observe internal organs[1]. Despite its common use, ul-
trasound scans require highly skilled sonographers who apart from properly analysing
and identifying the view, have to manoeuvre the probe with repetitive arm movements
while applying force, leading to work-related musculoskeletal disorders [2]. To relieve
the physical discomfort, Life Science Robotics developed the Robot Assisted Ultrasound
(RAU) system, called Hera, presented in Figure 1.1 [3]. In the RAU system, the transducer
is held by a robot arm. The sonographer controls that arm using a joystick, sitting in a
comfortable position.

Currently, the system has three cameras and it creates a 3D model of the patient. The
model is displayed in the user interface for the sonographer to visualize the location of
the probe. Furthermore, it is used for the system to automatically follow the curvature
of the abdomen when the sonographer moves the probe with the joystick. However, the
3D model is made at the beginning of the scanning session and it does not get updated.
Therefore, if the patient moves from its original position, the system needs to be restarted,
reducing the available time for the ultrasound imaging. For this reason, this project aims to
develop and test a visual tracker that can be used to detect and handle patient movement
with the cameras already integrated into the system, to avoid restarting the system when
movement is detected.

1

1.1. Problem statement 2

Figure 1.1: Hera, the Robot Assisted Ultrasound system from Life Science Robotics.

1.1 Problem statement

Robot-assisted ultrasound systems are in under-research development approaches, barely
used in clinical practices in the last years [4]. When the focus is on obstetric scans, the
sources are quite limited [5, 6]. While solutions have been presented to enhance the com-
fort of the sonographer, in obstetric or other kinds of ultrasound scans, by encouraging
the interaction of the sonographer with the robotic system, no research considered the
other side of the human-robot-interaction, the interaction of the robot with the patient to
enhance the comfort of the patient [4, 5, 6, 7, 8].

During a conventional ultrasound scan, the sonographer freely moves the transducer

1.1. Problem statement 3

around the abdomen. Sometimes the sonographer may request the patient to change po-
sition for a better view of the neonatal or will momentarily stop scanning for the patient’s
need to relocate to a more comfortable position. In an ideal robotic-assisted ultrasound
system the same functionality would be expected despite the use of the robotic arm. Thus,
the robot arm should work as an extension of the sonographer’s arm.

The Robot Assisted Ultrasound (RAU) system from Life Science Robotics (LSR) currently
enhances the sonographer-robot interaction while ensuring the patient’s safety. They im-
plement this by providing the sonographer full control of the robot arm with the user
interface and the joystick. In other words, the robot does not move unless the sonographer
intentionally triggers the movement, getting control of the translation and orientation ap-
plied to the probe. Nonetheless, it is assumed that the patient is static in one position. The
system does not consider the case the patient needs to move to either facilitate the view of
the neonatal or feel more comfortable. A shift in the patient position requires a restart of
the system.

LSR seeks to improve the system and enhance a sonographer-robot-patient interaction.
To handle the patient’s movement, in Figure 1.2 is presented a conceptual pipeline of the
missing part of the system to provide a robot-patient interaction. The device should first
track in real-time the patient. Then, displacement with respect to a reference frame should
be detected in the camera and correlated to the real-world coordinate system in centimetres
for example. Finally, a protocol should be activated to adjust the system to the movement
while ensuring the patient’s safety.

Figure 1.2: Conceptual pipeline to handle patient movement.

This project focuses on the first block in Figure 1.2, tracking the patient, in particular,
the abdomen of the patient. With the RGB frames of one camera and classical visual
tracking techniques, the project prioritizes studying the accuracy of the approach under
the presence of occlusion to ensure the patient’s safety. Even though real-time performance
is another relevant factor when ensuring safety, a high-speed tracker will be considered
when choosing the method but its speed is not analyzed nor prioritized in this project. For
all of this, the main research question is:

"Is it possible to track a patient’s abdomen with the robot occluding the view using classical visual
tracking techniques?"

1.2. Report outline 4

From this main question, the following research sub-questions arise:

• Does the accuracy get affected when increasing the amount of occlusion in the frame?

• Does the colour and texture of the clothes affect the performance?

• Could the approach be used to estimate the displacement and rotation with respect
to a reference frame?

1.2 Report outline

In chapter 2 the RAU system is presented and the problem is explained. This chapter also
exposes the main approach selected to develop. In chapter 3 previous attempts to solve
the problem are presented. chapter 4 contains the theoretical aspects of the methods used
in this project. In chapter 5 the created dataset and the evaluation metrics are exposed.
chapter 6 describes the development of the proposed approach. In chapter 7 is presented
the performance evaluation of the default tracker and the performance of the proposed
improved tracking approach. chapter 8 provides the final test performed on the valida-
tion part of the dataset. In chapter 9 the results and the performance are analyzed and
discussed considering the observed behavior during the performance. chapter 10 ends the
report by concluding the work and giving an answer to the research questions.

Chapter 2

Problem analysis

This chapter provides a more detailed overview of the components and steps to perform
an ultrasound scan using Hera and describes the main challenges the system faces when
intending to track the patient. Furthermore, it exposes the considerations and decisions
made when scoping the project. For instance, the chapter provides the reasons behind
focusing on classical methods or using a single camera. At the end of the chapter, the
chosen method is presented.

2.1 The RAU system

In Figure 2.1 are presented the components of the RAU system. The current RAU system
consists of two main sets of sensors and actuators: the directly controlled by the sonogra-
pher marked in orange, and the internally handled by the system marked in green. The
sonographer manipulates the user interface, a touchscreen used to initialize and control
the scanning session. Furthermore, on the left side, it has the emergency stop button,
which is utilized to stop the robot immediately when an unexpected situation occurs. To
manoeuvre the robot, the haptic control device contains the joystick to control the transla-
tion, rotation and force applied to the probe. Performing an ultrasound scan additionally
implies the use of three RGB-D RealSense cameras to create the 3D model of the patient, a
Kuka robot arm, and an ultrasound transducer.

5

2.1. The RAU system 6

Figure 2.1: Components of the RAU system. In orange are displayed the components that the sonographer
manipulates while in green are shown the sensors and actuators implied for the assisted ultrasound scan.

To perform an ultrasound scan, initially, the robot is placed in a safe position, the patient
lays on the bed. Following the step process in Figure 2.2, the touchscreen displays the top
view of the patient in real-time with the Region of Interest (ROI) overlaid. The sonographer
has to correct the patient’s position to fit the abdomen inside the region since the robot
is only allowed to move within the marked area. In the second step, a 3D model of the
patient is created by combining the view of the three cameras. Then, in the third step, the
3D model is displayed on the touchscreen and the sonographer can click on it to select
the start position, indicated with a virtual probe. The green indicates the surface that the
robot can reach for the scan. In the fourth step, the sonographer uses the touchscreen to
move the robot from a Home position to the Start position. In the last step, the ultrasound
scan can be performed by moving the joystick in the haptic control device of six degrees
of freedom (translation and rotation). When using the joystick, the sonographer controls
the x-y axes, the height is automatically handled by the system, following the curvature
of the scanning surface. The touchscreen shows in real-time the probe position as well as
available settings to be applied to the transducer. For example, it can control the speed of
the robot’s movements or the force applied to the abdomen. Haptic feedback is provided

2.1. The RAU system 7

with the haptic control device to give an idea of the amount of pressure applied to the
abdomen. At any time, the sonographer can press the Stop button to move the robot
upwards and pause direct contact with the patient, for example, when more gel needs to
be applied. When the scanning session is over, the sonographer has to move the robot
back to the Home position before the patient can safely step out of the bed.

Figure 2.2: Step-by-step process to perform an ultrasound scan with the RAU system.

2.1.1 What causes the patient movement problem?

It is important to notice that one of the reasons for creating the 3D model at the beginning
is that the robot is not in the field of view of the cameras. The Home position was inten-
tionally chosen to avoid obstructing the view of the cameras. Contrarily, When the robot
is performing the ultrasound scan, it is partially occluding the ROI, becoming part of the
new scanning area if a new 3D model is taken. Therefore, the 3D model is never updated
in the system.

Not updating the model causes two issues. On the one side, the ROI has a predefined
constant size according to the robot arm reach, meaning that the entire abdomen might
not fit within the ROI in all women’s sizes. Given the case that the sonographer wants
to use the transducer in an area out of the reach of the robot, the current procedure is
to move back to the Home position. Then, the process presented in Figure 2.2 must be
entirely done again to be able to scan the new desired region. This subtracts significant
time from the scheduled scanning session.

On the other side, given the scenario that the patient feels uncomfortable and wants to
reposition, the patient could ask the sonographer to press the Stop button and release the
pressure applied to the abdomen under the patient’s query. Nonetheless, if the patient
moves, the 3D model will not match the real position, risking possible collisions or harder
force applied to undesired parts of the abdomen. If the patient wants to move, the sonog-
rapher has to restart the scan by moving the robot to the Home position and repeating the
scanning steps for safety matters.

2.2. Research towards a potential solution 8

What is defined as movement?

In an ideal RAU system, the patient should be allowed to move any part of the body as long
as the abdomen stays still. This means that tracking the full human body would potentially
trigger movements accepted in the system. The solution should focus on uniquely tracking
the abdomen.

Main challenge of the project

The restriction of using the abdomen as the target for the tracker highlights the main
challenge of this project, tracking a region that is mostly textureless and partially occluded
during the entire ultrasound scan.

2.2 Research towards a potential solution

By selecting the sensors and datatype that will run the tracker as well as researching
common visual trackers in the literature, in this section the method developed in this
project is chosen.

2.2.1 Selection of the sensors and datatype

When selecting a potential solution for the RAU system, the first decision is on the choice
of the cameras and data that will be used to track the patient. The system has three cameras
integrated as presented in Figure 2.1. Using one or more of the cameras has its advantages
and disadvantages. Multiple-camera approaches are a common approach when accuracy,
efficiency, scalability and reliability are required since one camera would be able to see
parts of the patient that are occluded in another camera. However, the system becomes
complex for the appearance changes and proper data fusion[9]. Despite this, in many
cases, multi-camera approaches track the target independently in each camera but handle
the correlation between the different tracks [10]. Running a tracker in the three cameras
would additionally increase the computational cost. It is considered that using a single
camera can set the focus on finding a simpler but more robust approach for the system.
In the future, the tracker could be implemented in the remaining cameras to increase the
robustness if necessary.

Another relevant factor related to the camera is the data type. Visual tracking can be
performed on RGB or depth images, or a combination of both. Considering that tracking
of depth images requires the additional process of creating first a point cloud, adding

2.2. Research towards a potential solution 9

complexity and computation to the system the RGB image will be used in this project for
its simplicity and a rich number of approaches developed throughout the years [11].

Of the three cameras in the RAU system, the top camera will be used since it provides the
best view of the position of the patient in the bed. The patient is placed perpendicular to
the top camera, perceiving the moment in the xy-axis of the image.

2.2.2 Visual tracking approaches

Visual tracking consists of estimating the position of a target in a sequence of images.
Several approaches in the literature can be considered to track the abdomen of the patient
[11]. They are mainly based on bounding boxes and points. Point approaches include ap-
proaches like joint estimation and motion analysis. Motion analysis consists of estimating
flow vectors between two consecutive frames for each pixel in the image. By segment-
ing the image, in other words grouping the pixels belonging to the abdomen, the patient
could be tracked. Moreover, segmentation could also be applied to the robot and create a
multi-object tracking system. Joint estimation only takes relevant keypoints in the human
body to estimate the motion. The main drawback in point-based estimation is that is not
straightforward to evaluate, but the motion would be accurate, detecting translation and
rotation movements. Many trackers are based on bounding boxes instead [12]. A box is
simple to define and to evaluate since it is defined by two points instead of a group of
pixels. However, a single bounding box can only consider translational movement. To
detect rotation, a secondary box or additional approaches would be necessary.

A study from 2019 compared the classical and deep-learning-based trackers developed
between 2015 and 2019 [13]. The study concluded that Discriminative Correlation Fil-
ters (DCF) approaches achieve the best performance. Furthermore, the paper states that
Kernelized Correlation Filters (KCF) [14] is the fastest DCF tracker among the 24 studied
trackers. However, handcrafted trackers decrease the performance when changes appear
in the environment such as occlusions. Neural networks have been integrated into KCF as
a baseline to improve its drawbacks [13].

A more recent survey published in 2023 reaffirmed DCF as the most outstanding ap-
proach in visual object tracking and relates their popularity to the computationally effi-
cient methodology applied [15]. Within the focal point in handcrafted approaches based on
DCF to handle occlusions, Xin Du, et. al [16] proposed the integration of KCF with feature-
matching. Their approach uses the default KCF tracker and applies feature matching by
detecting points with Oriented FAST and Rotated BRIEF (ORB) to correct the estimated
box position when the target is occluded. Feature-matching techniques are the fundamen-
tals of computer vision to detect salient points in two images and find correspondences
[11]. It is considered that this approach has the potential to overcome the occlusion caused
by the robot arm since at every frame some points will likely be detected within the ab-

2.2. Research towards a potential solution 10

domen, for the target on a single independent point rather than the entire target region.
Furthermore, the approach corrects the box by calculating the transformation matrix of the
matched ORB features, which could be used later to calculate rotational changes. There-
fore, the approach keeps the simplicity of bounding box trackers but rotational movements
could be calculated with the transformation matrix.

Selected method to track the patient

For the potential successful tracking of the target, while the presence of occlusions, the
combination of KCF tracker with feature matching is the approach selected to develop.
In comparison to Xin Du, et. al [16] which focused on ORB and tested the performance
on the OTB-2015 dataset, the main contribution of this project is the implementation and
performance test of the approach in a real-world complex scenario application, the RAU
system. Furthermore, common feature-matching approaches in the literature will be eval-
uated together with ORB to select the most suitable feature detector for the RAU system
[17].

Chapter 3

Related works

Previous attempts intended to research an approach to handle the patient movement in
the LSR’s RAU system. The first shot consisted of updating the 3D model of the patient
during the scan and removing the points in the point cloud that belonged to the robot.
The occluded region by the robot was reconstructed to achieve an updated 3D model.
Movement was detected by studying the point cloud transformation between the reference
position and the new position by using the Iterative Closest Point (ICP) algorithm. The
approach reported a slow computation time that would potentially lead to a late reaction
to the movement. It was reported that the method should run at specific intervals of
time rather than in real time. Moreover, the entire patient’s body was considered a rigid
body [18]. In this report’s proposed approach, computing KCF and feature-matching in
RGB images can provide a faster tracking performance for the natural high speed of the
KCF tracker and the avoidance of additional computational steps such as creating the
point cloud. Furthermore, the new approach focuses on uniquely tracking the abdomen,
becoming closer to the ideal movement detection.

During the last semester, an internship was done at LSR focused on deepening into the
patient movement problem [19]. Different methods were explored to visualize the ad-
vantages and disadvantages between them. Within the wide range of possibilities, two
main approaches were considered. One of the main approaches was to track the robot by
placing a box around its end effector and not consider the pixels in the box when study-
ing patient movement. Even though the box position was highly reliable since the end
effector’s position and orientation were known and the cameras were calibrated, the re-
maining robot’s joints’ positions were not known. Therefore, the box only covered part of
the visible robot in the image. Moreover, the box covered most of the ROI pixels to study
patient movement. Even though tracking the robot can provide a clear distinction between
the patient’s movement and the robot’s movement, the problem increases in complexity
due to the need to track multiple targets and classify the two types of movement that are

11

12

constantly overlapping. Furthermore, a different approach than the bounding box, such
as instant segmentation, would be required to classify the pixels for each target for more
accurate tracking. The newly chosen method could be affected by the robot’s movement,
introducing false positives, but it narrows down the complexity of the track and it does
not require a large dataset to train a classifier that would distinguish the patient from the
robot.

The second approach in the internship considered applying a neural network inference
model to estimate the patient’s joint position from the top camera and study the displace-
ment between a reference frame’s joint position and the current frame. The approach
focused on analyzing the closest joints to the abdomen (the joints placed on the shoul-
ders and hips) and triggering a boolean metric indicating the detection of a shift. It was
observed that the keypoints were visually well estimated in the presence of occlusions
but significant fluctuations were present when estimating the same keypoints over time.
The lack of datasets containing images similar to the ones captured by the RAU cameras
and the black hole in the neural network decision-making process limits the possibility
of improving the method’s performance. The switch to a classical approach requires less
input data to make changes to the output and the internal computed processes can be
step-by-step analyzed to improve and adapt to the system.

Chapter 4

Theoretical framework

This chapter presents the theoretical fundamentals of the methods used in this project. It
starts by exposing the principles of Discriminative Correlation Filters (DCF) delving into
the particularities of Kernelized Correlation Filters (KCF), the baseline approach in this
project.

To improve the performance of KCF when the target is occluded, the focal point is on
the proposal of Xin Du, et. al. [16], which consists of detecting the occlusion and then
applying feature-matching to relocate the target’s position and correct the tracking box.
Thus, it is based on three main parts:

• Calculate the Average Peak to Correlation Energy (APCE) from the response map to
detect the presence of occlusions in the ROI.

• Use Oriented FAST and Rotated BRIEF (ORB) to match the features between two
frames.

• Correct the tracking box based on the transformation matrix and the previous frame
position.

The mathematical concepts behind each of the three added-on to the tracker are explained
in the subsequent sections. As stated in chapter 2, to enhance the accuracy of the tracker
in the RAU system, this chapter also introduces the theoretical aspects of common feature
detectors and descriptors in the literature that will be evaluated together with ORB to select
the approach that best fits the problem [17, 11]. Moreover, the paper does not specify the
matching technique used, so in this project, Brute-Force [20] and FLANN [21] basics will

13

4.1. Discriminative correlation filters 14

also be introduced. In the last section, the calculation of the affine transformation matrix
is also presented to correct the tracking box with respect to the reference frame position.

4.1 Discriminative correlation filters

Discriminative correlation filters (DCF) are based on tracking-by-detection which consists
of identifying the target in the frame for updating the bounding box. To detect the target,
DCF trains a filter by extracting features from the target which creates a peak response
where the target is located. This is achieved by learning the coefficients w of a regulated
linear regression model. The goal is to define the function that minimizes the squared error
of the target’s response f (xi) with respect to the estimated response yi as represented in
Equation 4.1, such that xi ∗ w ≈ yi [15, 14]. Being xi the extracted feature at the pixel
position i from the target. When the filter is applied to another image it will output high
response values at the location in the image with the closest similitude to the target. The
model regularizes the regression by applying the penalty λ.

min
w ∑

i
(f (xi)− yi)

2 + λ∥w∥2 (4.1)

The coefficients or weights of the correlation filter are calculated as shown in Equation 4.2,
where X is a matrix containing the features from the ROI, XT is the transposed X matrix
and y is the matrix of the estimated response. The determinant of XTX is close to zero
when there are correlations between the features, meaning that they are linearly depen-
dent. However, if the determinant is zero the inverse does not exist. Therefore, by adding
λI the determinant increases, reducing the coefficients when doing the inverse. Lower co-
efficients increase the robustness to noise and keep a high response when the target suffers
slight modifications [14].

w = (XTX + λI)−1XTy (4.2)

The key aspect of the computational efficiency of DCF relies on the approximation of a
circulant matrix. Conceptually, in a circulant matrix at each row, the elements are the
same but shifted one position to the right. Assuming that the feature matrix is circulant as
contextually shown in Equation 4.3, the Discrete Fourier Transform (DFT) can be applied
to calculate the weights in the frequency domain.

4.2. Kernelized correlation filters 15

X = C(x) =


x1 x2 x3 · · · xn

xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2
...

...
...

. . .
...

x2 x3 x4 · · · x1

 (4.3)

When applying the Discrete Fourier Transform (DFT) to a circulant matrix, only the first
row of X is taken. The DFT of each element of the first row of X can be placed in the
diagonal of a matrix, reducing the computation cost since it is a matrix of zeros except for
the elements in the diagonal.

In the Fourier domain, Equation 4.2 is expressed as in Equation 4.4, where ◦· represents the
element-wise dot product. To get the weights from the frequency domain ŵ in the spatial
domain w the inverse DFT has to be applied.

ŵ =
x̂∗ ◦· ŷ

x̂∗ ◦· x̂ + λ
(4.4)

4.2 Kernelized correlation filters

The singularity of KCF with respect to the fundamentals of DCF presented in the previous
section is that applies a kernel to the correlation model. The core idea is to transform
a linear problem into a non-linear problem. Linear correlation filters get more complex
when the number of features increases since it is more challenging to fit a hyperplane
within the data, creating a bottleneck that raises the computational time. However, higher
performance will be achieved with a higher amount of features. For this reason, when
solving a non-linear problem, the data is fitted in a higher dimensional surface instead,
being more complex to solve but more adaptive to the samples. The advantage of KCF
is the use of the "kernel trick" which consists of solving a non-linear problem linearly,
handling the complexity but keeping the computational cost down. Applying a kernel to
the features is equivalent to mapping the features into a higher dimensional feature space
(ϕ) and performing the dot product between all features as presented in Equation 4.5,
where k(xi, xj) is the dot product of one pair of features, xi and xj. A kernel K is the
matrix containing the dot product of all pairs of features.

k(xi, xj) = ϕ(xi) ◦· ϕ(xj) (4.5)

The kernel K simplifies the computational cost of mapping the features in a new feature
space and fits a hyperplane by studying the similarity between them. It was proven that

4.2. Kernelized correlation filters 16

kernels such as Radial Basis Function kernel keep the circulant properties that define the
correlation filter and therefore can be integrated into the approach. The kernelized version
of the regression model is presented in the Equation 4.6, where α is the new coefficient to
optimize.

α = (K + λI)−1y (4.6)

When applying the DFT assuming the input data is a circulant matrix, Equation 4.6 is
expressed as in the Equation 4.7 where kxx is the first row of the kernel matrix.

α̂ =
ŷ

k̂xx + λ
(4.7)

This chapter presents the internal parts of the Kernelized Correlation Filter (KCF) tracker,
the mathematical foundation that connects the target with the bounding box following it.
To get in context, a simple conceptual diagram is presented to visualize the workflow. A
deeper mathematical explanation is given to comprehend the internal functionalities of
the tracker based on its developers [14]. This project uses a Python implementation based
on the original paper [22]. Thus, the mathematical foundations are aided by the Python
implementation, exposing a detailed connection of the theoretical part with the algorithm.

4.2.1 Histogram of Oriented Gradients

Kernelized Correlation filters was the first tracker in using the Histogram of Oriented
Gradients (HOG) [23] features for tracking [15].

HOG studies the changes in the colour intensity in the image. For each colour channel,
the algorithm consists of computing the gradients in the x and y directions in each pixel,
returning higher values for higher changes in the intensity. Then, the magnitude and di-
rection of the gradients are calculated per pixel computing Equation 4.8 and Equation 4.9,
where gx and gy are the gradients in the x and y directions.

g =
√

g2
x + g2

y (4.8)

θ = arctan
gy

gx
(4.9)

The largest magnitude and its associated angle are kept from the three magnitudes and
angles in each pixel, one per channel. The image is divided into 8x8 pixel cells. The his-
togram is computed inside each cell representing the frequency of each direction between

4.3. Average Peak to Correlation Energy 17

0 and 180 degrees in bins of 20 degrees, returning the direction with the highest magni-
tude in each cell. To make the features robust to light changes, a block of 16x16 pixels is
slid through the image to normalize the magnitudes by dividing each magnitude by the
l2-norm of the block seen in Equation 4.10, where gk is the magnitude at cell k, within the
block size n.

|g| =
√

n

∑
k=1

|gk|2 (4.10)

The image features are a vector containing the normalized magnitudes of each 8x8 pixel
cell.

4.3 Average Peak to Correlation Energy

To detect when the target is occluded and use feature-matching instead of the default KCF
algorithm it depends on the APCE parameter. The Average Peak to Correlation Energy
is defined as in Equation 4.11, where Fmax and Fmin are the highest and lowest values in
the response map, and Fw,h is the response map value at each pixel position of the image,
representing w the width and h the height of the pixel position [16].

APCE =
(Fmax − Fmin)

2

mean
(
∑w,h(Fw,h − Fmin)2

) (4.11)

The numerator computes the absolute difference between the extreme values of the re-
sponse map while the denominator computes the average absolute difference between
each pixel response value and the minimum. Thus, it calculates the ratio of the peak value
in the image. For instance, in a scenario where the target does not change, the peak value
is high and concentrated in a small region of pixels as seen in Figure 4.1. Most pixels have
a response value close to the minimum while few pixels are close or at the peak. As a
result, the average response value throughout the image will be low but in relation to the
peak will result in a high APCE. Contrarily, when the target does not look the same be-
tween two consecutive frames, the peak value is lower and scattered in the image as seen
in Figure 4.2. In the example, the robot has moved making visible part of the transducer
and a larger part of the skin. In that case, the mean throughout the image will be higher
but closer to the peak value, getting a small APCE.

4.3. Average Peak to Correlation Energy 18

(a) Template frame

(b) Frame i

(c) Response map with high APCE

Figure 4.1: Response map example that results in high APCE. a) and b) show the template and the current
frame respectively.

(a) Template frame

(b) Frame i

(c) Response map with low APCE

Figure 4.2: Response map example that results in low APCE. a) and b) show the template and the current
frame respectively.

4.4. Feature matching 19

4.4 Feature matching

Feature matching consists of corresponding salient points in two images. It is a prerequi-
site step for many applications. Feature matching is used for creating the 3D structure of
a scene seen from different points of view. Furthermore, it is used in Simultaneous Local-
ization and Mapping (SLAM) for estimating the relative camera pose or in visual homing
for estimating the direction of movement of the robot. Moreover, feature matching can be
used to recognize objects in images and estimate their trajectory, being the basis of feature-
based tracking [17]. In this project, feature matching will be used to identify the partially
occluded abdomen by the robot. The diagram in Figure 4.3 shows the main components of
feature matching adapted to the RAU system. On the left side, there is the template which
will be the ROI of the first frame containing the abdomen. On the right side, represented
is a full frame of the video sequence. The approach consists of detecting and describing
points in the template and the frame independently and finding correspondences between
all possible pairs, defined as matching [11].

Figure 4.3: Diagram of feature matching, where the template is the ROI and framei represents the ith full
frame in a video sequence.

4.4.1 Feature detectors

A feature is a distinctive element in an image that can easily be identified in different
frames. There are different sizes of features, from keypoints to regions. However, for its
simplicity, keypoints are the easiest to detect and define. Furthermore, they are stable in
the presence of occlusion or scale and orientation changes. When detecting keypoints, the
light intensity changes of a grayscale image is studied. A small patch around the point
is taken to determine its robustness. For a feature to be reliable, it has to be consistent
in the presence of transformations that the target can experience in an image [11]. These
are constrained to translation and rotation in the 2D plane for this project. Common
characteristics required for a feature to be reliable are presented below based on [11]:

4.4. Feature matching 20

• Stability: For a feature to be robust it has to stand out compared to its nearest pixel
neighbours.

• Repeatibility: A feature is significant when it is found in a transformed image. The
transformation can be in terms of rotation, scale or light intensity. If the same feature
is detected in several image transformations it is repeated, meaning it is robust.

• Scale invariance: The feature shall still be found when the distance from the camera
to the feature or the resolution of the images is different. Performing the same oper-
ations at multiple image resolutions and matching the features through the levels is
an approach used by feature detectors to ensure scale invariance.

• Rotation invariance: When looking for rotation invariance, it is important to con-
sider that a feature that is invariant to rotation could match different features that
share the same rotation, leading to false positives. For this reason, to ensure that a
feature is unique and rotation invariant, looked for is the dominant orientation of a
local patch. This is done by calculating the gradients in each pixel of the patch and
computing the average direction.

• Affine invariance Apart from the scale and rotation invariance, for a feature to be
robust it has to handle affine transformations. Affine transformations include shifts
in scale and rotation but also any other geometric transformation that preserves
points, lines and planes[11].

Apart from ORB, the chosen approach by Xin Du, et. al. to handle occlusions with
KCF[16], many other algorithms have been developed to detect robust keypoints which
could adapt better, or not, to the characteristics of the RAU’s target. Common detectors
in the literature that will be studied together with ORB are Features from Accelerated
Segment Test (FAST), Adaptive and Generic Accelerated Segment Test (AGAST), Binary
Robust Invariant Scalable Keypoints (BRISK), Scale-Invariant Feature Transform (SIFT)
and Center Surrounded Extrema (CenSurE) [11, 17]. However, since many detectors are
related to the Harris Corner Detector, a brief introduction is given to comprehend the
functionalities of the studied detectors.

Harris corner detector

The Harris Corner detector is the benchmark of the studied detectors in this project. Its
basic functionalities are introduced to understand the functionalities of some of the later
evaluated methods.

The detector studies the stability of a keypoint by comparing it against itself. The point
is slightly slid towards both directions (x and y) to be compared with the original point

4.4. Feature matching 21

and study the degree of similitude. By computing the squared differences between corre-
sponding pixel values, weighted by a kernel function, the Equation 4.12 shows the auto-
correlation function [11].

EAC(δu) = ∑
i

w(xi)[I0(xi + δu)− I0(xi)]
2 (4.12)

In the equation, δu represents the displacement in the image patch. w(xi) is a weight to
give more importance to central pixels. I0(xi) and I0(xi + δu) indicate the intensity of the
original and shifted patch respectively. The auto-correlation function returns a small value
when the patches are similar, indicating that is stable over small shifting, being a potential
feature or point of interest. To ensure rotation and illumination invariance it expands the
function using Taylor to consider multiple angles of rotation, getting the moment matrix
in Equation 4.13. Ix and Iy are the partial derivatives of the light intensity in the x and y
directions [11].

M = w

[
I2
x Ix Iy

Ix Iy I2
y

]
(4.13)

At each pixel the response of the moment matrix is studied by computing Equation 4.14.
With the eigenvalues of the matrix λ1 and λ2, Det(M) is defined as the product of the
eigenvalues and Tr(M) is defined as the sum of the eigenvalues. k it is a free parameter.
When both eigenvalues have similar values and they are large, it indicates that the region
is a corner. If one eigenvalue is considerably larger than the other it is an edge, otherwise,
it is a flat region [24].

R = Det(M)− kTr(M)2 (4.14)

Features from Accelerated Segment Test

FAST is a high-speed intensity-based corner detector. It is a variation of Harris Corner
Detector that provides the same accuracy but at a lower computational cost. Its high
speed is due to efficiently rejecting points with low-intensity variations [25].

Given an image, FAST computes the intensity gradients at each pixel and discards the
gradients that are lower than a threshold. This removes around 80-90 % of the pixels. In
each of the remaining points, a digital circle is taken centred in the candidate point as seen
in Figure 4.4, which displays the default circle taken by OpenCV [26]. The circle is divided
into pairs of points that are connected and pass through the candidate pixel, creating a
line. First, the main axes, horizontal and vertical, are computed. In the image, the main
axes are highlighted in blue, represented by A and B lines. The intensity differences in

4.4. Feature matching 22

each line are calculated as seen in Equation 4.16, where I represents the pixel intensity
in each point, being P the central or candidate point. This is integrated into the Corner
Response Function (CRF) in Equation 4.15, where A belongs to α = 0 and B is α = π/2.
The CRF is used to determine whether the point is a corner or not by comparing it with
a given threshold. If CRF is lower than the threshold the point is discarded, otherwise,
the intensity difference in the remaining lines is integrated into CRF. The remaining lines
are computed as an interpolation of the main axes calculated as seen in the example in
Equation 4.17 for line C. With all computed points NMS is used to keep only the main
points [25].

Figure 4.4: Default digital circle when using FAST in OpenCV. The black cell represents the candidate keypoint
while the blue cells indicate the two main pairs of points.

CRF = min(rαi, rαi+1, ..., rαi+n) (4.15)

rA = (fA − fC)
2 + (fA′ − fC)

2

rB = (fB − fC)
2 + (fB′ − fC)

2 (4.16)

fC − fP = (fA − fP) · cos α + (fB − fP) · sin α

fC′ − fP = (fA′ − fP) · cos α + (fB′ − fP) · sin α
(4.17)

Oriented FAST and Rotated BRIEF

ORB uses FAST to detect keypoints but scores them and filters out possible detected edges
by computing the response of the moment matrix from Harris Corner detector (Equa-

4.4. Feature matching 23

tion 4.14). It also integrates a feature descriptor which is rotated BRIEF. It was created
to achieve real-time performance while keeping the accuracy and being less affected by
noise, but it cannot handle well scale changes[27].

Adaptive and Generic Accelerated Segment Test

AGAST is an improvement of FAST which consists of detecting keypoints faster and with
an adaptive threshold. It uses the first step of FAST, it computes the image gradients to
filter out the majority of the pixels and keep a few candidates. It also takes a digital circle
of 16 points around the candidate point to compare the intensities to those neighbours,
but it uses an adaptive threshold instead and a decision tree with 6 possible answers for
the current state of the point Sn→x, depending on the previous state S′

n→x(Equation 4.18)
[28].

Sn→x =



d, In→x < In − t

d, In→x ≁ In − t ∧ S′
n→x = u

s, In→x ≁ In − t ∧ S′
n→x = b

s, In→x ≁ In + t ∧ S′
n→x = d

b, In→x ≁ In + t ∧ S′
n→x = u

b, In→x > In + t

(4.18)

For each possible response, a probability is assigned to quantify the certainty for the candi-
date point to be a corner as seen in Equation 4.19. Depending on the probability response
it computes a decision tree optimal homogenous (textureless regions) or heterogeneous
regions.

pX =
N

∏
i=1

pi with pi =


1 if Sn→i = u

ps if Sn→i = s

pbd if Sn→i = d or b

pbd + ps if Sn→i = d or b (previous state)

(4.19)

The decision tree finishes when the corner criteria is met or is no longer met. The corner
criteria states that from the 16 neighbour points, at least 9 classify the candidate as a corner
by agreeing on being darker or brighter.

4.4. Feature matching 24

Figure 4.5: Keypoint detection with brisk. On the left are seen the octave and intra-octave layers. On the right
side is the parabola fitting to determine the real size of the keypoint. Source: [29].

Binary Robust Invariant Scalable Keypoints

This feature detector also integrates its own descriptor. In this section, the detector is
introduced. In the feature descriptor section, its descriptor will be explained.

BRISK downsamples the image to create a pyramid of resolutions and detect keyppoints
at different scales. The downsampling consists of reducing the size by half per octave.
Moreover, between each octave, it creates an intra-octave that downsamples by 1.5 the first
time and by half the remaining layers as seen on the left side of Figure 4.5. In each of
the layers, FAST is used to detect keypoints. It applies NMS in the 3x3x3 neighbouring
pixel space to remove repeated detected corners. Furthermore, it computes a sub-pixel
refinement to determine the real scale of the keypoint and how the scale affects the feature.
It consists of fitting a parabola within the same keypoint detected in the current level and
the two adjacent levels as shown on the right side of Figure 4.5. The vertex of the parabola
belongs to the real scale of the feature[29].

4.4. Feature matching 25

Differrence of Gaussians

SIFT is a feature detector and descriptor algorithm. In this section, the focus is on the
detection part which consists of computing the Difference of Gaussians (DoG). The de-
scription part is left for the feature descriptors section.

Difference of Gradients (DoG) is a gradient-based detector that seeks to robustly detect
keypoints by focusing on scale invariance. The algorithm applies Gaussian blur kernels to
create a scale space L (Equation 4.20). Given the Gaussian kernel in Equation 4.21, multiple
levels of Gaussian blur are achieved by multiplying σ with a constant factor k [30].

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (4.20)

G(x, y, σ) =
1

2πσ2 e−
x2+y2

2σ2 (4.21)

At the last level of the scale space, the image resolution is down-sampled in half, initiating
a new octave with twice the initial σ. An octave encloses the multiple scale spaces of the
same resolution image. In Figure 4.6 a visual representation of the octaves and the scale
space is seen on the left side. The Difference of Gaussian levels is created by subtracting
two adjacent scale spaces (L(x, y, kσ)− L(x, y, σ)), getting N-1 levels per octave as repre-
sented in the right side of the image, being N the number of levels. For each of the octaves,
the algorithm compares every pixel of one DoG level with the 8 closest neighbours in that
level and the 18 neighbours in the adjacent levels (9 in the level above and 9 in the level
below) as seen in Figure 4.7. With this analysis the minimum and maximum pixels are
detected in each octave, being candidate keypoints. A pixel that is detected in multiple
levels and octaves is, therefore, a robust point in scale changes [30]. The algorithm also
applies Non-Maximum Suppression (NMS) and Edge Response Suppression (ERS) to re-
move redundancies or unstable keypoints. NMS checks if the neighbours have smaller
values, ensuring that it is a local maximum, removing the detected points that do not fulfil
the requirement. ERS computes the intensity gradients in the point to detect if it is part of
an edge and remove it [31].

4.4. Feature matching 26

Figure 4.6: Graphical representation of the scale space creation from the original image and the resultant
Difference of Gaussian levels. Source: [30]

Figure 4.7: Keypoint analysis between the DoG levels. Source: [30]

Center Surrounded Extrema

CenSurE is a curvature-based detector. It is based on center-surrounded filters. These
filters are equivalent to computing the second derivatives in the image to detect the lo-
cal maximums and minimums by improving the Laplacian of Gaussian (LoG) filter. LoG
applies Gaussian blur at different scales and then computes the second derivative of the

4.4. Feature matching 27

intensity pixels to extract local maximums and minimums. However, this process is com-
putationally expensive. CenSurE detector simplifies it using a bi-level filter with values
-1 and 1. It consists of a kernel where the -1 and 1 values are placed equivalently to LoG
filter, becoming more efficient. A 3x3x3 neighbourhood in a pyramid of Gaussian blurred
images is taken to detect potential corners. To keep only the most relevant corners it also
runs the Harris response moment matrix [32].

4.4.2 Feature descriptors

Once the keypoints of an image have been detected, their appearance has to be described to
be uniquely identified in other images. Even if the detector gets just single points, a small
patch is used to analyse the appearance of its surroundings. The descriptors robustly
transform the relevant local information into a high-dimensional vector.

The descriptor is created following three steps. First, the low-level information, which
comes from the intensity and gradient values of the patch, is extracted. Then the patch
is divided into smaller groups of pixels and pooling techniques are applied to extract the
relevant information in each part. Finally, the results after pooling are normalized and
introduced into a vector.

Rotated Binary Robust Independent Elementary Features

In ORB, the detected keypoints using FAST are described with the binary descriptor ro-
tated Binary Robust Independent Elementary Features (rBRIEF). BRIEF by default is not
invariant to rotation. The descriptor takes a patch around the image and applies Gaussian
noise. Random points spread in the patch are selected to compare their intensity values
and create an array of binary responses, being 1 if the first point has a higher intensity than
the second, and 0 the other way around. BRIEF has the characteristic that the variance in
the bin array is high while the mean is close to 0,5. High variance means that the response
at different keypoints will be different, getting a unique binary where the mean between
0 and 1 is about 0.5. Rotated BRIEF takes the main orientation of the keypoint and rotates
the tested pixel locations, getting a different response that does not keep the high variance
and mean of 0.5. Therefore, rBRIEF uses a learning algorithm such as PCA that selects the
best points to be evaluated that will not be affected for the rotation [27].

Binary Robust Invariant Scalable Keypoints descriptor

BRISK creates a pattern of a pair of concentric circles around the keypoint, increasing in
size when getting away from the keypoint as represented in Figure 4.8. The blue circles

4.4. Feature matching 28

select the pixels in the patch that will be analyzed to compute the descriptor. The red circle
denotes the σ of the Gaussian blur kernel applied to the circle. For each pair of circles is
calculated the intensity gradient between two adjacent circles. The intensity gradient at
two circles at a further distance is also computed to estimate the dominant orientation
of the patch. The BRISK descriptor is constructed by rotating the circular pattern in the
dominant direction and comparing the intensity gradients between two points. If the
intensity of the first point is higher than the second is annotated as 1, otherwise it is 0 [29].

Figure 4.8: Concentric circles representation to select the keypoints that will create the descriptor. Source:
[29].

Scale- Invariant Feature Transform

In the previous section, it was seen that SIFT detects keypoints that are robust to scale
changes. When creating the descriptor, SIFT focuses on the orientation of the patch around
the keypoint. A 16x16 patch is taken to calculate the main orientation and magnitude of
each pixel in the patch. In Figure 4.9 an example is shown on the left side for an 8x8
patch instead. A Gaussian weight is applied on top to give higher importance to the pixels
closer to the centre of the patch (the detected keypoint). Afterwards, the patch is divided
into 4x4 non-overlapping quadrants (2x2 non-overlapping quadrants on the right side of
the Figure 4.9) and HOG is calculated. Each quadrant becomes an eight-bin histogram of
angles, creating a descriptor of 128 angles due to the 4x4 quadrants times 8 bins each [30].

4.4. Feature matching 29

Figure 4.9: Example of the creation of the SIFT descriptor by taking an 8x8 patch around the keypoint and
computing a descriptor of 2x2. In this example, the descriptor would have 32 angles. Source: [30].

4.4.3 Matchers

Matching is the process of finding the same features in two different images. Common
approaches in OpenCV are the Brute-Force and the Fast Library for Approximate Nearest
Neighbors (FLANN) matcher [26].

Brute-Force

Brute-Force is known for its simplicity and high accuracy in finding matches. For each
keypoint in the first image, it systematically computes the Euclidean distance to every
keypoint in the second image, looking to find the nearest neighbour. The point in the
second image with the lowest distance becomes a potential match. The two keypoints will
be matched if the distance between them is lower than an internal threshold [11, 20].

Fast Library for Approximate Nearest Neighbors

Fast Library for Approximate Nearest Neighbors (FLANN) is a library available in OpenCV
that provides different algorithms to match features faster for high-dimensional data based
on the nearest neighbour approach. FLANN speeds up the process by finding points that
are approximately similar. It guesses what points fit well together even if they are not an
exact match. One of the main algorithms is the use of kd-trees. It consists of creating a
tree structure where in each node, similar features are put together, for instance, similar
intensity values. the descriptors are split into the 5 highest variance components. The
algorithm starts the search in the node where the source keypoint would be grouped, and
the user specifies the number of nodes that should be explored to find the nearest match
[21].

Another method is to use k-means tree. It takes K descriptor points as centres and clusters
the remaining points to the closest centre. A tree is created by splitting the cluster into
smaller ones. To match keypoints, the branch with the smallest distance to the source

4.5. Affine transformation 30

point is used to search for the nearest neighbour [21].

When the descriptors are binary such as in ORB or BRISK, in OpenCV is recommended
to use Locality-Sensitive Hashing (LSH) [26]. LSH consists of applying hash functions to
the descriptors. These functions create a code that defines the descriptor. The code is
similar when two descriptors are similar. Each descriptor is put into a container which is
accessible by the code, forming a table of containers. Feature matching is performed by
creating the hash code in the source keypoint and looking through the table to match the
same or most similar code [33].

4.5 Affine transformation

An affine transformation is a linear 6 degrees of freedom transformation followed by a
translation that can be computed from at least three-point correspondences. When calcu-
lating the transformation, the affine transformation keeps the parallel lines, the ratio of
the line length, and the ratio of the area. Therefore, the transformation between two sets
of points depends on the initial orientation. Still, their position on the plane provides a
stable transformation when the points are concentrated in a region of the image [34]. In
Equation 4.22, the transformation matrix between two sets of points is presented, where tx

and ty is the translation applied and the ai,j elements represent a combination of rotation
and scaling transformation.

x′

y′

1

 =

[
a11 a12 tx

a21 a22 ty

]x
y
1

 (4.22)

Chapter 5

Dataset and performance evaluation cri-
teria

The RAU system is a product in development for a unique application. The data required
for development and testing are not available from existing datasets. For this reason, a
dataset has been created. The dataset is an essential part of the development and testing
of this project since on the one hand, it will aid in anticipating failures, making corrections
and improving the solution. On the other hand, it will be used to evaluate the performance
of the proposed algorithm.

5.1 Constraints and assumptions

To create the dataset, the variables that affect daily scans have been considered. They were
classified into patient variables, referring to all the factors in the patient itself that change
from person to person, and environmental variables, being the factors in the field of view
of the cameras that can change and are not related to the patient.

5.1.1 Patient variables

The RAU system was designed to perform antenatal scans. The patients will be pregnant
women, however, the following aspects will differ:

• Skin tone

• Height

31

5.1. Constraints and assumptions 32

• Body shape

• Size of the abdomen

• Clothes colour and texture

• Additional components and circumstances such as jewellery, tattoos, malformations
or diseases.

Since the product is still in development, for safety matters, the patients composing the
dataset were not pregnant women, it was a pregnant doll used for the company to de-
velop and test. Consequently, it is assumed that the skin tone, height and body shape are
constant and that additional components or circumstances are not present. In summary,
on the patient side, the dataset will be made from the same subject considering different
clothes colours and textures.

5.1.2 Environment variables

The following factors can change during the day while performing different scans:

• Light changes

• Shadows

• Distance of the bed to the camera

• External people such as the sonograph or attendants can also be in the frame.

Light changes and shadows could be considered the same factor since both change pixel
intensities over time. However, in this case, light changes refer to the source of illumina-
tion, so given the case where light is constant, human movements can produce different
shadows throughout the scan.

It is important to consider that the product is expected to be placed in a clinic room with
constant lighting. Nevertheless, for the recording of the dataset, the system was located at
the LSR office next to a window, thus, the dataset will have light changes due to the sun’s
movement. On the environment side, it is assumed that the bed will always be at the same
distance to the camera since only 2D movements are considered and that there will be a
maximum of one external person in the view to control the system and the doll.

5.2. Materials 33

5.2 Materials

For the recording of the dataset, it was needed the RAU system presented in Figure 2.1
with the three cameras calibrated, the doll, a variety of clothes, and a rope to apply move-
ments to the doll without a person being on the frames.

5.3 Setup before recording

This section presents the development to set up and record the dataset. Overall, the pro-
cesses can be divided into the software adaptation to be able to record videos while the
RAU system was running and the preparation of the scene.

5.3.1 Software adaptation

The current RAU system is composed of two units: The External Control Unit (ECU) and
the Control Interface Unit (CIU). The ECU is the main unit which controls the communi-
cation and operations between all inputs and outputs of the system to ensure integration
between all system components. The CIU controls the user interface, displaying different
views depending on the sonographer’s inputs and the robot’s behaviour. Both units are
composed of ROS nodes mainly programmed with C++. In the ECU it was integrated an
additional ROS node programmed in Python to record data.

Following the diagram in Figure 5.1, the ECU starts the cameras when the user has pressed
the "Start" button in the interface. Each camera frame is published through a Compressed-
Image message. At every iteration, the ECU sends a new frame per camera while handling
all the other processes until the user presses the "Stop" button. Furthermore, an extra but-
ton was added to the interface called "AutoMove". When "AutoMove" is enabled, the
haptic device is stopped and commands are automatically sent to the robot to move from
its current position towards the left at the speed the user had set. The user has to press
the "AutoMove" button again to stop the automatic motion and use the haptic device to
control the robot’s motion. This additional feature facilitated moving the doll while the
robot was also moving. The node created to record the dataset "Dataset Node" listens
to the CompressedImage messages and stores each frame into a video file created with
VideoWriter from OpenCV [26].

5.3. Setup before recording 34

Figure 5.1: Diagram of the main software components to record the dataset.

5.3.2 Preparation of the scene

To simulate the doll as a different patient in each video, four tops and four bottoms were
bought at a second-hand store. They all had different colours, textures, patterns and sizes
to have a variety of data. Together with the clothes the doll wears by default, there were
a total of 25 possible combinations. The doll was initially dressed and placed on the bed,

5.4. Recordings 35

always at the same distance from the camera. A rope was attached to each of the wrists to
be able to move it while not being on the frame. The doll was moved at different speeds
pushing and pulling from the feet and by using the ropes.

5.4 Recordings

A total of 54 videos were recorded from each camera with a total of 22 different clothes
combinations. Even though the project focuses on a single-camera approach, the dataset
provides equivalent recordings of each of the cameras that could be used in future work,
avoiding the need to record a new entire dataset.

The recorded videos have three categories. First, the robot moves but the doll stays still.
Then the "AutoMove" button was pressed to move the doll while the robot moved. Fi-
nally, the "AutoMove" button was pressed to stop the robot and move only the doll. It
is important to note that some recordings were done independently, so there is a short
video per category. But others were done subsequently, getting a single long video for all
three scenarios. Moreover, the robot was sent to the Home position and some videos of
doll movement without obstacles were recorded to study the influence of occlusion in the
algorithm performance.

The dataset was divided into development data and verification data. This means that
to develop the proposed solution, about 80% of the recording videos were used. The
remaining 20% of the videos were stored and only used for final test purposes. The
selected verification data are videos that present a singularity compared to the whole
dataset. For example, the doll does a specific pose throughout the video, the ropes are not
used or someone external appears in the frame to relocate the doll due to an error.

5.5 Ground truth extraction

The creation of the dataset provides a closer result to the real-world performance. How-
ever, there is the absence of an existing baseline information that can be used as a ground
truth. Baseline annotations play an important role since they will help determine the accu-
racy and robustness of the different algorithms. To address this issue, the Computer Vision
Annotation Tool (CVAT) [35] was employed to manually create a ground truth. CVAT cre-
ates an XML file of all the annotations in the video that can later be loaded and interpreted
in Python. Furthermore, it provides tools to enhance the accuracy of the annotations such
as indicating the size in pixels or the degrees of rotation of a rectangle.

Since the proposed method is based on bounding boxes and keypoints, boxes and points
were annotated using CVAT, see the examples in Figure 5.2. Considering that it is not

5.5. Ground truth extraction 36

efficient to manually annotate the position of every pixel in the image, ten points within
the region of interest were chosen, looking for potential features (Figure 5.2a). However, it
was challenging to keep the accuracy when each point had to be placed independently due
to rotational movements. For this reason, in the remaining videos, four triangles were used
to store their three vertices, getting 12 points instead (Figure 5.2b). The use of triangles
helped increase the accuracy of the annotations due to the focus on smaller regions rather
than the entire abdomen. In the case of occlusion, it was aimed to guess the position of the
occluded points as seen in Figure 5.2c. For the bounding box approaches, a box of 180x180
pixels was used to enclose the abdomen. Since single-bounding box approaches cannot
consider rotation, the annotations were done with a box always with the same orientation,
and a box that rotated according to the patient rotation to evaluate the rotational effect on
the performance Figure 5.2d.

(a) 10 point selection ground truth example. (b) 12 point selection ground truth example.

(c) Occlusion scenario ground truth example. (d) Bounding boxes ground truth example.

Figure 5.2: Examples of use of CVAT to annotate the ground truth.

Annotated videos with keypoints

Since the annotation of single points is a tedious task and the guess of potential detected
features will affect the performance results since the detectors could not detect that spe-
cific point, the videos where the robot and the patient move simultaneously, classified as
AutoMove, were not considered. The reason is that feature matching does not depend
on a time variable, it finds correspondences between two frames. Therefore, the amount
of occlusion caused by moving the robot is equivalent to the occlusion caused by moving

5.5. Ground truth extraction 37

the patient or the occlusion caused by moving both. Furthermore, the videos where the
patient was static and the robot moved were also not annotated. In this particular scenario
is more reliable to take as reference points the first frame detected points since it is known
that their location will not move.

For the remaining scenarios, annotations were made every 5 seconds to only two outfits of
the development set, presented in Figure 5.3 and Figure 5.4. Seen in the images is a sce-
nario where the clothes have similar colours to the background, which can be challenging
to distinguish the patient, and a scenario where the clothes have high colour contrast with
the background. This selection can provide details on how the clothes can affect the per-
formance of the algorithms. Overall, the keypoints annotated ground truth is composed
of four videos: patient movement without occlusion and patient movement with static
occlusion for each clothing.

Figure 5.3: Outfit with low colour contrast be-
tween the clothes and the background.

Figure 5.4: Outfit with high colour contrast be-
tween the clothes and the background.

Annotated videos with boxes

For the bounding box approach all videos in both, the development and the verification
set, were annotated. In the short videos of the development set, 10 annotations were
made every 5 seconds (every 75 frames) starting on the first frame. Thus, the videos
were annotated until the second 45, unless the video was shorter than 45 seconds, the
annotations were done every 5 seconds until the end of the video. For the long videos
of the development set, the annotations were split through the three parts of the video,
robot movement, Automove and patient movement. At roughly the beginning, the middle
and the end of the video, between 5 and 10 annotations were made every 5 seconds. The
number of annotations was dependent on the length of each of the scenarios.

The bounding boxes were also annotated in the verification set. In these videos, the anno-
tations were made every second, every 5 seconds or every 10 seconds depending on the
length of the video. The length of the video can vary from 30 seconds to 4 minutes.

5.6. Evaluation metrics 38

5.6 Evaluation metrics

To fairly compare the applied approaches to the dataset different metrics have been used
depending on the approach under evaluation, which can mainly be divided into bounding
boxes and keypoint approaches. The chosen metrics seek to study the accuracy of the
tracking, stability and robustness to occlusion of all algorithms.

5.6.1 Metric for bounding box approaches

The Intersection over Union (IoU) is a widely used metric to quantify the accuracy of the
tracking algorithm [36]. Here RG

t is the ground truth region at frame t and RP
t is the area

of the predicted box at frame t, the IoU measures the overlap between both regions with
respect to the union of the two boxes. Since the regions are composed of pixels, the IoU
can be calculated by the Equation 5.1. The true positive (TP) parameter represents the
pixels matching the ground truth region. The false positive (FP) parameter is defined by
the pixels within the predicted box that are not part of the overlap area. The false negative
(FN) parameter represents the pixels part of the ground truth that are not in the overlap.
A tracking algorithm will be accurate when the majority of the pixels correspond to the
TP parameters, giving an IoU value close to 1 [37]. Examples of the region overlap and its
parameters are illustrated in Figure 5.5.

IoU =
|RG

t ∩ RP
t |

|RG
t ∪ RP

t |
=

TP
TP + FN + FP

(5.1)

Figure 5.5: Examples of overlap between the ground truth and the predicted box. Source: [37]

5.6. Evaluation metrics 39

5.6.2 Metrics keypoints approaches

When working with keypoints, the main metric used to measure the accuracy is the Eu-
clidean distance [16, 38]. The Euclidean distance is a metric to measure the accuracy of an
algorithm, which is calculated as in Equation 5.2,

d(pixels) =
√
(x2 − x1)2 + (y2 − y1)2 (5.2)

where x1 and y1 represent the ground truth keypoint position, while x2 and y2 represent
the predicted keypoint position by the algorithm. A small distance, d indicates that the
ground truth and estimated points are similar, implying a high-accuracy approach.

Apart from the Euclidean distance, the repeatability and the percentage of correct points/-
matches were also considered to study the precision.

On the one hand, repeatability refers to the number of frames where the same keypoint is
detected when there is no occlusion [38], defined as in Equation 5.3. On the other hand,
the percentage of correct points/matches refers to the number of detected points/matches
that correspond to the ground truth as described in Equation 5.4 [31]. In this project, if the
Euclidian distance between the ground truth and the detected point is higher than 2 pixels
it will be considered a wrong match as Steffen Gauglitz et. al. [31] did in their study.

% repeated points =
number of detected points in all frames

number of detected points in the reference frame
∗ 100 (5.3)

% correct points/matches =
number of correct points/matches

total matches
∗ 100 (5.4)

5.6.3 Robustness study

The previously presented metrics were evaluated in different challenging scenarios to mea-
sure the robustness of the algorithms in gradually challenging situations. For example, the
first level considers patient movement with no robot occlusion. In this scenario, the algo-
rithms should ideally result in high accuracy and precision performances. In the second
level, a static occlusion scenario is presented by having the robot in a static position of the
frame. The next level would consider a dynamic occlusion by having the robot move on
the frame.

Chapter 6

Development of the patient visual tracker

Kernelized correlation filter (KCF) trackers stand out for their high-speed computation
while reaching accurate tracking performance. The use of the frequency domain and the
integration of the ’kernel trick’ explained in chapter 4, efficiently reduce the computational
cost, making KCF suitable for real-time tracking. Nonetheless, the performance drops
when occlusions appear in the view. Since the template model updates at every frame to
incorporate appearance changes of the target over time, when the target is progressively
occluded, the model gradually contains more features belonging to the occlusion, starting
to track the occlusion instead. This chapter presents the development of a KCF tracker that
integrates occlusion handling to improve its performance by integrating feature matching
techniques [16]. An overview of the incorporation of the occlusion handling approach
into the default KCF tracker pipeline is first introduced. To enhance the accuracy of the
performance in the RAU system, the feature-matching methods presented in chapter 4
will be evaluated in the dataset videos to select the most suitable detector, descriptor
and matcher for the RAU system. The chapter concludes with the adapted proposed
solution developed in this project, considering the modifications and discrepancies with
the reference approach [16].

6.1 Occlusion handling overview

In Figure 6.1 the integration of the occlusion handling approach in the default KCF track-
ing pipeline can be observed. The tracking consists of two main parts: the initialization
phase, highlighted in green, and the tracking phase, highlighted in red. By default (Fig-
ure 6.1a), in the initialization phase, the target to follow is selected by enclosing it within
a bounding box. The image pixels within the bounding box are known as the Region Of
Interest (ROI). In this project, the target will be the abdomen of the patient. A template

40

6.1. Occlusion handling overview 41

is created by extracting HOG features from the ROI and training a correlation filter that
provides a high response at the target’s position. The tracking phase consists of looping
detecting the target in a new frame and updating the position of the ROI. The tracking
is achieved by applying the trained filter to the next frame to find the location in the im-
age with the highest response and update the box to that position. A new template is
created by extracting features of the updated position to update changes in the target’s
appearance.

To handle the presence of occlusions (Figure 6.1b), the approach consists of computing
a feature detector in the initialization phase to identify salient points inside the ROI and
store them as a matching template. During the tracking phase, the resultant response map
when applying the trained filter to a new image is used to calculate the Average Peak to
Correlation Energy (APCE) parameter and detect the presence of occlusions. If occlusions
are detected, features will be extracted from the new frame. Matching will be performed
between the matching template and the new frame. The transformation matrix will be
used to map the reference box into the new frame. The bounding box of the tracker will
be overwritten to update the template model.

(a) Default KCF workflow
(b) Integration of feature-matching with SIFT into the
KCF workflow

Figure 6.1: Comparative workflow diagrams between the original KCF approach [14] and the proposed
method to increase its robustness to occlsuions [16].

6.2. Evaluation of feature matching approaches 42

6.2 Evaluation of feature matching approaches

6.2.1 Evaluation of feature detectors parameters

When using a keypoint detector in OpenCV, a set of parameters can be customized to adapt
the detector to the system. The goal of this test is to find the most suitable parameters for
the RAU system when detecting a region containing the abdomen. The detectors that do
not detect a minimum of three keypoints will be discarded since three keypoints are the
minimum to compute the transformation matrix between two frames.

Inspired by Andres Marmol et. al study [31], AGAST, BRISK, CenSurE, FAST, ORB, and
SIFT feature detectors were computed using OpenCV. Andres’s study focuses on knee
arthroscopy images, which challenge smooth and unstructured images. This condition is
also presented when looking for features in the abdomen since it is also a smooth and
unstructured region. Therefore, the parameters used in the knee approach could apply
to the RAU system. These parameters were compared to the default parameters used by
OpenCV and self-tuned parameters. when self-tunning parameters it was looked to detect
more keypoints by dropping the restrictions caused by contrast thresholds, for example.
In Table 6.1 are shown the changed parameters in the paper and the self-tunning with
respect to the default values in each method.

Method Parameters Default Paper Custom

AGAST threshold 10 10 8
BRISK thresh 30 17 10

CenSurE

maxSize 45 45 30
responseThreshold 30 5 5
lineThresholdProjected 0 10 5
lineThresholdBinarized 8 8 8
suppressNonmaxSize 5 6 5

FAST threshold 10 12 8

ORB
scaleFactor 1.2 1.3 1.3
edgeThreshold 31 30 15
fastThreshold 20 16 10

SIFT

nOctaveLayers 3 3 2
contrastThreshold 0.04 0.01 0.01
edgeThreshold 10 10 5
sigma 1.6 1.6 1.2

Table 6.1: Used parameters for each of the methods. The parameters that are not specified are the default
ones from OpenCV.

To evaluate the different parameters and methods a single Python code was made. First,

6.2. Evaluation of feature matching approaches 43

the region of interest was manually selected. In all cases, it consisted of a 180x180 pixels
region containing the abdomen and a bit of the surroundings as seen in Figure 6.10. Then,
a loop was created where each of the detectors was computed by applying the different
parameters and storing the number of detected keypoints in an Excel file. Once the three
parameters had been computed, the repeatability metric was calculated for every pair,
including the result in the Excel file. Five videos were tested on frames 1, 150 and 450. The
frames are equivalent to the first frame, at the second 10 and the second 30 of the video.
In Figure 6.3, the first frame of the five tested videos is presented. As seen in the images,
the doll was wearing different clothes to study the overall performance instead of basing
the results on a unique case scenario. It is important to mention that for this evaluation
there was no occlusion caused by the robot. The test focuses on detecting keypoints on the
ROI, if there is occlusion it is expected to detect fewer keypoints belonging to the patient.

Figure 6.2: Example of the 180x180 region

(a) First frame of video1 (b) First frame of video2

6.2. Evaluation of feature matching approaches 44

(c) First frame of video3 (d) First frame of video4 (e) First frame of video5

Figure 6.3: First frame of the videos used to evaluate the AGAST, BRISK, CenSurE, FAST, ORB and SIFT
detectors.

To evaluate this test the number of keypoints and the repeatability metric were considered.
With the number of keypoints it can be determined if the detector has enough keypoints
to compute the transformation matrix. The ratio of repeatability between two sets of
parameters gives information about the percentage of detected points that are common
when using different parameters. In feature detection, it matters the number of features
but it also relevant the stability and reliability of those features. Detecting the same points
across multiple parameters ensures the robustness of the chosen parameters.

In Figure 6.4 the results are presented as a graphical representation. For each video, the
sum of the detected keypoints and the sum of the repeated points per pair of parameters
of the three tested frames is shown according to the tested parameters and method. In
Table 6.2 is seen the average detected keypoints and average repeatability in %. In all
tested videos, AGAST, FAST and SIFT detect the largest amount of keypoints. However,
the repeatability percentage in AGAST and SIFT when using the custom parameters is low,
at 30,3% and 0,0% respectively, which drops the reliability in detecting robust features since
the repeatability between the default parameters and the paper is at 100,0%. Contrarily,
BRISK, FAST and ORB have a high percentage of repeatability when using the custom
parameters while detecting more points. Regarding CenSurE, it can be observed that with
any of the three tested parameters, the average number of detected keypoints reaches 4, so
it is discarded from a possible detector to perform feature matching.

As a result, AGAST with the default parameters, BRISK with the custom parameters,
FAST with custom parameters, ORB with custom parameters and SIFT with the paper’s
parameters will be used in the next test to study the feature matching performance.

6.2. Evaluation of feature matching approaches 45

(a) Results of video 1 (b) Results of video 1

(c) Results of video 1 (d) Results of video 1 (e) video5

Figure 6.4: Results of the evaluation of the different parameters applied to SIFT, ORB, AGAST, FAST, CenSurE
and BRISK detectors in five different videos

Table 6.2: Average test1 results per method

Method
Average detected keypoints Repeatability average [%]

Default Paper Custom Default-
Paper

Default-
Custom

Paper-
Custom

AGAST 457.5 457.5 620.7 100.0 30.3 30.3
BRISK 30.1 75.6 147.5 86.4 86.4 99.9
CenSurE 0 0.2 2.9 0.0 0.0 10.0
FAST 438.9 368.5 528.9 100.0 100.0 100.0
ORB 13.6 21.9 214.7 66.8 54.4 80.9
SIFT 107.8 219.1 168.9 100.0 0.0 0.0

6.2.2 Evaluation and selection matching method

To evaluate and compare the performance of the introduced feature-matching approaches,
a total of three tests were performed. The tests seek to study the performance of each
of the components in feature matching. Therefore, the first test focuses on evaluating the
parameters that define the detectors. The second test evaluates the performance of each
detector with the selected parameters. The third test analyzes the matching performance
of the different feature detectors and descriptors using the brute-force versus the Flann
matcher in the three levels of complexity.

6.2. Evaluation of feature matching approaches 46

Test2: Evaluation of the feature matching performance with respect to annotated ground
truth

With the remaining detectors, it was evaluated the matching performance in the videos
with annotations made with CVAT. First of all, the detected keypoints were described. In
the case of BRISK, ORB and SIFT, were used the descriptors integrated in the detectors. For
AGAST and FAST, in which OpenCV does not integrate descriptors, were described with
BRISK and ORB since they have the same data type. Therefore, the matching performance
was analyzed for AGAST described with BRISK and AGAST described with ORB. The
equivalent was done for the FAST detector.

Frames 1, 150 and 450 from the four annotated videos were taken to analyze the perfor-
mance. In the first frame, the detectors were run in the ROI alike Figure 6.10. The Eu-
clidean distance was computed between each detected point and the ground truth points
to find the best representation of the ground truth between all candidates. The detected
points that were not selected as ground truth were discarded. In Figure 6.5 are presented
examples of the selected points to be matched according to the smallest Euclidean dis-
tance to the ground truth. The manually annotated ground truth keypoints are shown in
Figure 6.5a. Twelve points were manually selected by guessing where could be relevant
features. It was expected that not all of them would be detected as it happened in Fig-
ure 6.5b, where some of them were not detected, or two ground truth points were assigned
to the same detected keypoint, such as yellow and pink points.

(a) Annotated ground truth (b) Best ground truth representation for AGAST+ORB

6.2. Evaluation of feature matching approaches 47

(c) Best ground truth representation for FAST+BRISK (d) Best ground truth representation for SIFT

Figure 6.5: Examples of the selected keypoints to match in frames 150 and 450 according to the ground truth.

In frames 150 and 450 the detectors and descriptors were run in the entire image. Sub-
sequently, Brute-Force and FLANN were computed to match the first frame selected key-
points to the detected points in frames 150 and 450. The Euclidean distance was calculated
between every matched point in frames 150 and 450 to the annotated ground truth of the
same frames. In Figure 6.6, the Euclidean distance between the annotated points and the
detected or matched points for one video file with static occlusion is presented. The left
group represents the points in the first frame. The middle and right groups represent the
average matched points in frames 150 and 450 when using Brute-Force and when using
FLANN respectively. Each colour in the graphics belongs to a point, according to Fig-
ure 6.5a. It is important to mention that on the one hand, a low Euclidean distance in
the first frame but a high distance in the matches imply a wrong match since the point
was properly detected in the first frame, but was not close to the annotated ground truth
in the matched frames. On the other hand, a high Euclidean distance in the first frame
and a high distance in the matched frames do not directly reflect a wrong match. It can
be that none detected points were placed in the annotated location, so the closest one was
taken and that one was correctly matched in the subsequent frames. For this reason, visual
inspection was also applied to verify the results by storing the frames of all matches. If the
Euclidean distance is 0 (with no bars visible), it means that there were no detected points.
It does not mean that it was perfect.

From the graphics is seen what keypoints were matched in frames 150 and/or 450 and
how accurate was the match. It is highlighted that for this video no match was found for
AGAST+BRISK and FAST+BRISK. Furthermore, it can be seen that in ORB (Figure 6.6d)
the Euclidean distances in the first frame are relatively small. However, there is a match
with an Euclidean distance higher than 100 pixels, which belongs to a wrong match.
Therefore, in this video, ORB also did not have any match. Contrary, all the detected
and matched points using SIFT had an Euclidean distance of a maximum of 10 pixels
with respect to their ground truth. Particularly, the first point (blue, (0,0,255) in RGB) was
matched and had an Euclidean distance of less than 2 pixels for either Brute-Force and
FLANN Figure 6.6g.

6.2. Evaluation of feature matching approaches 48

(a) Average Euclidean distance per point for AGAST+BRISK.

(b) Average Euclidean distance per point for AGAST+ORB

(c) Average Euclidean distance per point for BRISK

6.2. Evaluation of feature matching approaches 49

(d) Average Euclidean distance per point for FAST+BRISK.

(e) Average Euclidean distance per point for FAST+ORB.

(f) Average Euclidean distance per point for ORB

(g) Average Euclidean distance per point for SIFT

Figure 6.6: Average Euclidean distance per detected point for each tested method when using Brute-Force
and FLANN. Results of one of the four evaluated videos.

Since the points are not directly comparable throughout the evaluated videos due to being

6.2. Evaluation of feature matching approaches 50

placed in different positions or belonging to different patients, the percentage of correct
matches and the percentage of repeatability metrics were used to evaluate the perfor-
mance. Taking into account the human error when annotating the detected points in the
first frame, as well as verification via visual inspection, it is considered a wrong match
when the Euclidian distance is higher than 30 pixels. Thus, if from twelve selected points,
two are matched in frame 150 and one has an Euclidean distance higher than 30 pixels,
the method in that frame will score 50% of correct matches. The repeatability in this case
is considered a boolean metric. To highlight the methods that found the same keypoint in
frame 150 and frame 450, for each point, the method scored 100 if the point was correctly
matched in frame 150 and frame 450, otherwise, it scored 0. In Table 6.3 are presented the
average results of each tested method. From the results, AGAST+BRISK and FAST+BRISK
are discarded since any point got matched. It is also observed that ORB got the lowest per-
centage of correct matches with 66.7% for Brute-Force and 62.5% for FLANN, but higher
repeatability than BRISK, which has a 100 % correct match but any point was repeated.

Table 6.3: Average test2 results per method

Method
Average of Good Matches [%] Repeatability Average [%]
Brute-Force FLANN Brute-Force FLANN

AGAST+BRISK 0.0 0.0 0.0 0.0
AGAST+ORB 80.0 66.7 2.1 2.1

BRISK 100.0 100.0 0.0 0.0
FAST+BRISK 0.0 0.0 0.0 0.0
FAST+ORB 83.3 91.7 2.1 4.2

ORB 66.7 62.5 2.1 2.1
SIFT 91.1 80.0 2.1 2.1

Overall, a high percentage of correct matches is required to get an accurate transformation
matrix. The repeatability metric is also relevant since it indicates that a point is stable
and robust throughout the frames, giving higher reliability when computing the trans-
formation matrix, but it can be affected by occlusions. For all of this, AGAST+BRISK,
FAST+BRISK and ORB were discarded. The remaining methods moved to the last test to
select the best feature-matching approach for the RAU system. However, it is remarkable
that in this test FAST+ORB achieved the best performance in terms of percentage of correct
matches and repeatability.

Test3: Evaluation of the feature matching performance in dynamic occlusion scenarios

Given the ambiguity of the results in test 2 due to the human error when annotating
the ground truth and the restriction of matching a specific set of points, it was necessary

6.2. Evaluation of feature matching approaches 51

to conduct a last test to choose the feature-matching approach. The test was performed
in dynamic occlusion scenarios where the patient had a static position. Therefore, the
first frame detected keypoints were the ground truth. Five videos from the dataset were
selected for the test as seen in Figure 6.7. For each video, the ROI was selected in the first
frame and a mask was applied on top of the robot to only consider points belonging to the
patient. The previous test was performed but this time the detectors were not constrained
to detect specific keypoints.

(a) First frame of video1 (b) First frame of video2

(c) First frame of video3 (d) First frame of video4 (e) First frame of video5

Figure 6.7: First frame of the videos used to evaluate the AGAST+ORB, BRISK, FAST+ORB and SIFT detectors
and descriptors with Brute-Force and FLANN matchers.

To evaluate the performance of the feature matching approaches, the average number of
matches, the average Euclidean distance between each matched point and the ground
truth, the percentage of correct matches and the repeatability were considered. As ex-
plained earlier, to be able to compute the transformation matrix at least for matches is
necessary. As it is observed in Figure 6.8, AGAST+ORB and BRISK when using the Brute-
Force matcher are below 4 matches, not being suited for this solution. Furthermore, it is
noticeable that SIFT gets an average of about 24 matches more than the other approaches.

In Table 6.4 are presented further details of the matching performance. Ideally, the Eu-
clidean distance shall be zero if a point is matching the ground truth. In this case,
FAST+ORB when using Brute-Force presents the worse accuracy with an error of 1.24 pix-
els. Omitting the discarded methods for not reaching the minimum amount of matches,
AGAST+ORB and BRISK with FLANN achieve the highest accuracy with 0.77 pixels of
average error. However, AGAST+ORB with FLANN has the lowest percentage of good

6.2. Evaluation of feature matching approaches 52

Figure 6.8: Average number of matches per method.

matches at 92.68 % and BRISK has the lowest repeatability percentage of 9.1%. According
to the Euclidean distance error, the average of good matches and the average of repeata-
bility, SIFT with FLANN matcher is the method that has a good balance between accuracy,
percentage of good matches and repeatability. Moreover, analyzing the results for each
video individually, SIFT with either of the matches was the only method that got more
than four matches in all frames and videos, which correlates with the outstanding average
of matches seen in Figure 6.8. To summarise, SIFT with Brute-Force was the feature-
matching approach chosen to correct the KCF box.

Table 6.4: Average test3 results per method

Method
Euclidean dis-
tance [pixels]

Average of Good
Matches [%]

Repeatability
Average [%]

Brute-
Force

FLANN
Brute-
Force

FLANN
Brute-
Force

FLANN

AGAST+ORB 0.72 0.77 100.0 92.68 5.7 27.88
BRISK 0.56 0.77 100.0 98.4 2.6 9.1

FAST+ORB 1.24 0.95 97.9 98.6 7.7 16.4
SIFT 0.83 0.86 98.2 98.2 16.2 11.7

6.3. Adapted solution for the RAU system 53

6.3 Adapted solution for the RAU system

The pipeline presented in Figure 6.1b has been updated by incorporating SIFT as a detector
and descriptor method, and Brute Force is used to match features as seen in Figure 6.9.

Figure 6.9: Diagram of the occlusion handling approach integrated into the default KCF pipeline.

Since the abdomen appearance is mostly textureless, the selected ROI includes part of the
surroundings to enhance the detection of features. The visible contrast between the shirt
and the abdomen and between the trousers and the abdomen can aid in detecting more
reliable features to match. For consistency, in this project, the ROI is a box of 180x180
pixels centred on the abdomen as seen in Figure 6.10.

6.3. Adapted solution for the RAU system 54

Figure 6.10: Example of the 180x180 region

The proposed solution is programmed in Python taking a handcrafted implementation of
KCF as a baseline [22]. The tracker has three parameters to initialize, the types of features
extracted which can be the grayscale pixel value or three-channel HoG, the fixed window
bool which always has the same box size if true, and the multi-scale bool which adapts
to scale changes in the target if true. The authors of KCF highlighted its robustness and
high accuracy for the use of HoG, thus HoG features were chosen [14]. Since in a real scan
is not expected the patient to move significantly from its reference position, even though
the top camera in the RAU system is a bit tilted, the fixed window bool is set to True.
Therefore, the multi-scale parameter is false.

Feature matching is integrated using the libraries from OpenCV [26]. When feature match-
ing is required to correct the box, the affine transformation will apply rotation changes in
the bounding box points. Since the KCF tracker does not consider rotated boxes, the cen-
tre of the corrected box is calculated to redefine the corrected box without any rotation
applied.

The developed algorithm assumes the displacement between two consecutive frames is
small. Therefore, if when correcting the box, the difference between the previous box
centre and the current centre is higher than 50 pixels, the correction is discarded. It takes
the position of the previous frame.

Chapter 7

Performance evaluation

The proposed approach, a tracker to follow the patient’s movements while the robot is
carrying out an ultrasound scan, is evaluated in this chapter. To fairly analyze the im-
provement of the proposed approach under the presence of occlusion, the default KCF
tracker algorithm [22] was first evaluated. The evaluation provides an overview of the
default tracker performance and a study of its main drawbacks when used in the RAU
system. With the baseline performance of the tracker, the testing was repeated for the
proposed solution.

The test setup was common for both approaches and consisted of five gradually more
complex tests, using various different outfits. The outfits are presented in Appendix B.
For each test, the Intersection over Union (IoU) metric was used to provide the percentage
of similarity between the returned box by the tracker and the ground truth box. All videos
from the development set were used, divided into the five tests according to their content.
The first test evaluated the performance when there was no occlusion, the robot was not in
the view and the patient moved. It consisted of 8 videos between 30 and 45 seconds. The
second test studied the impact of a static occlusion. The robot was present in the view in
a static position and the patient moved. It contained 9 videos of 45 seconds. In the third
test, the impact of having a dynamic occlusion was studied while the target was static, so
the patient was static but the robot moved. This test had 10 videos of 45 seconds as well.
In the fourth test, the dynamic occlusion was also analyzed when both, the patient and the
robot moved. There were 11 videos of 45 seconds. The last test focused on studying the
performance in longer videos. Five videos between 2.40 minutes and 4 minutes were used
with the robot always on view and with a mix of robot and patient movements. For further
details on the ground truth annotations or the content of the videos, it is recommended to
read chapter 5.

55

7.1. Evaluation setup 56

7.1 Evaluation setup

For the performance evaluation, a Python script was developed to compute the IoU and
store the results while running the tracker for later analysis. At the beginning of the
script was introduced the video path and the XML file associated with the annotations.
Following the flowchart in Figure 7.1, when executing the code the XML file is read in the
first place to store in a dictionary, straight_rectangle, the top left and right bottom vertices
of the annotated rectangle for each of the frames. In another dictionary, rotated_rectangle,
the corresponding vertices and the angle of the rotated rectangle per frame are stored.
Each frame had a straight and rotated box but only ten of them were correctly placed. For
this reason, after getting the annotations per frame, the video is initialized and the frame
numbers with correct annotations are specified. While the video has frames, each of them
is read. If it is the first frame, the ROI is selected by providing the straight_rectangle box
associated with the first frame. Therefore, the first frame was not evaluated since it was
used to initialize the tracker.

The tracker contains three initialization parameters, the type of features extracted, the
use of a fix box and the use of a multi-scale bounding box. Both approaches use HOG
features. However, the default tracker is analyzed triggering the multi-scale bounding
box besides the proposed solution which is evaluated by setting the fixed-scale box. It
was considered that even though the top camera is a bit tilted, the size of the abdomen
will not significantly change, so having the multi-scale parameter active can help visualize
drawbacks and comprehend the behaviour of the algorithm. In the proposed solution,
the box size is fixed to smooth the integration of correcting the bounding box since the
corrected box is constrained to a fixed size.

After the first frame, it is checked whether the current frame is in the list to evaluate
or not. In case it is in the list, the IoU is calculated between the estimated box and the
straight_rectanglei, being i the current frame. The IoU is also calculated between the esti-
mated box and the rotated_rectanglei. The video file name, the frame number, the IoU re-
spect to the straight rectangle and the IoU respect to the rotated rectangle were appended
to an Excel file. After running the code in all videos, a unique Excel file was generated to
analyze the results.

7.2. Evaluation of the default KCF performance 57

Figure 7.1: Flowchart of the developed Python script to evaluate the default performance of KCF tracker.
The script takes the annotations from the XML file and runs the KCF tracker. A list is provided with the
frames that shall be evaluated. While running the tracker, the IoU for the straight box and the rotated box are
calculated for each frame under evaluation and the results are stored in an Excel file.

The authors of KCF used the position of the centre of the box instead to evaluate the perfor-
mance. They considered a correct track when the centre was within 20 pixels. They argued
that the box overlap penalizes the tracker when the size changes [14]. In this project, it was
considered that the IoU is a more suitable metric for bounding box approaches. Consider-
ing that the ground truth box has a size of 180x180 pixels, taking the 20 pixels threshold
as a 20-pixel shift in one direction, it would be equivalent to a minimum IoU of 80% to be
considered a good track.

7.2 Evaluation of the default KCF performance

This evaluation of the default performance seeks to analyze and comprehend the be-
haviour of the tracker. In this section, the performance results of each of the five tests are
analyzed. Due to the equivalent performance, the results of tests 2, 3 and 4 are presented
together to avoid redundant explanations. However, the results of each test individually
are provided in section A.1. Therefore, the following sections analyzed the performance
when there was no occlusion when the robot was present in the view either static or
dynamically and for the set of long videos. At the end of the section, a summary of the
performance in all tests is provided and the main drawbacks of the tracker are highlighted.

7.2. Evaluation of the default KCF performance 58

7.2.1 Results of test1: No occlusion

In the first test, all the videos in the dataset that do not have the robot in view were
used to study the default performance of the tracker. In this case, there were a total of
8 videos between 30 a 45 seconds with one frame annotated every 5 seconds, every 75
frames. Considering that the first frame was not evaluated, between 5 and 9 frames were
evaluated per video. In the end, a total of 54 evaluated frames were evaluated in this test.
Since there is no occlusion, the abdomen shall be visible throughout the video, therefore a
high accuracy is expected. However, the tracker uses HoG to extract features which contain
gradient and orientation information making the features rotation invariant. Thus, if the
patient rotates it could lose track even though the robot is not in the view.

In Figure 7.2 are presented examples of the IoU metric in remarkable situations seen in the
videos. In Figure 7.2a and Figure 7.2b the same frame of the same video is presented when
taking the straight rectangle versus the rotated rectangle as a ground truth. Considering
that the tracker was not designed to rotate the bounding box, it was expected that it would
not overlap perfectly, it achieved an IoU of 89.0%. However, it is remarkable that the
IoU concerning the straight box is 95.7%, which also indicates that even though HoG is
not rotation invariant it can handle some rotational movements on the bed. Highlighted
in Figure 7.2c is the fact that the tracker decreased the size of the box. This example
shows that the multi-scale parameter is working properly and as explained in the previous
section, it can be seen that the abdomen’s size does not significantly change. Apart from
human error, it should also be considered that some errors will also be due to the tracker
adapting to the size. Nonetheless, visual inspection is always applied to the analysis to
help determine to what extent a low IoU is due to human error or tracking failures. In
Figure 7.2d, an example is presented of many of the evaluated frames. As it was expected,
the tracker follows the target with a high IoU of 96.8% in this particular example.

(a) IoU metric example with the straight ground truth
rectangle where the patient rotated (Outfit 10).

(b) IoU metric example with the rotated ground truth
rectangle where the patient rotated (Outfit 10).

7.2. Evaluation of the default KCF performance 59

(c) IoU metric example when the patient significantly
moved downwards (Outfit 18).

(d) IoU metric example of the performance of the
tracker in many other frames (Outfit 12).

Figure 7.2: Examples of the IoU metric in three different tested videos. The cyan and yellow rectangles are the
ground truth and estimated rectangles respectively. In green is displayed the overlap region or true positive
part (TP), and in red is displayed the union region. (Since the green is on top it cannot be appreciated that the
red takes the area of both rectangles). a) and b) show the same frame of the same video but a) presents the
IoU metric with respect to the rotated box and b) represents the IoU metric with respect to the straight box.
In c) it is observable that the tracking box decreased in size, while in d) a high overlap between the estimated
and the ground truth boxes is observed.

Overall, as was expected the performance for the straight box is better than the rotated
box. In the straight box IoU column of Table 7.1, it is seen that the performance is not
lower than 90.9 %. The 9.1% of error could be attributed to human error when annotating
the videos and the size changes of the box aforementioned. Furthermore, the accuracy is
higher than the minimum 80% considered as a good track. As a result, the default KCF
does not present weaknesses when there is no occlusion.

Table 7.1: Average test1 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video
N evaluated
frames

Mean IoU [%]
Straight Box Rotated Box

Outfit 10 7 95.0 93.5
Outfit 12 5 95.1 95.6
Outfit 14 9 90.9 85.7
Outfit 15 8 93.9 92.5
Outfit 16 5 95.8 95.5
Outfit 18 6 92.1 91.9
Outfit 19 7 96.8 96.5
Outfit 20 7 92.7 92.6

Total 54 93.8 94.0

7.2. Evaluation of the default KCF performance 60

7.2.2 Results of tests 2,3 and 4: Occlusion

In these tests, the robot was in view considering three different scenarios. In test two
the robot was static while in tests 3 and 4 it was dynamic. The tracker’s performance in
those scenarios was equivalent. It is important to consider that the initial robot’s position
was different for each of the videos and that the robot was already in view in the first
frame. With the robot already in the first frame, the template filter will contain a part of
the robot that can affect negatively when looking for the highest correlation in the next
frame. Furthermore, the tracker slightly updates the template at every frame. This is done
by interpolating the very first reference frame’s features with the new frame’s features,
adapting to appearance changes. For that reason, it is expected that the performance
will depend on the percentage of visible robot versus visible abdomen in the ROI. If the
abdomen is more visible is expected to track towards the correct target, otherwise, it could
track the robot instead. It is also important to mention that the videos have a variety
of movements, in some of them the patient moves a lot while in others the patient does
small shifts. The speed of movement and direction are also influential in the performance
since they will affect the appearance of the abdomen between two consecutive frames. In
Table 7.2 the number of videos and frames evaluated in each test as well as the average
results are presented. As it is observed, the average accuracy is still higher than 80% which
would classify the test as a good tracking.

Table 7.2: Caption

Test N videos
N evaluated
frames

Mean IoU [%]
Straight Box Rotated Box

Test 2 9 77 85.2 85.7
Test 3 9 81 86.2 86.1
Test 4 11 108 84.3 84.1

Despite the good performance on average, the introduction of the robot in the frame pre-
sented significant changes in the tracking. The Outfit13 video of test 4 has been chosen
to visualize the performance chronologically. In Figure 7.3 it can be seen that the robot
gradually occludes the abdomen in Figure 7.3a and Figure 7.3b but the performance did
not decrease. A possible reason could be that the robot does not translate, it rotates instead
during those 5 seconds of motion. Probably the most reliable features in Figure 7.3a are
located in the probe and the division between the abdomen skin and the clothes, due to the
hard contrast with the skin. However, since the probe does not move, possible features on
the left side of the abdomen were robust enough to keep the high response while slowly
integrating the robot’s features in the template. Despite this, there is a moment where the
abdomen is barely visible, probably getting the highest response towards the robot which
is also part of the template. In Figure 7.3c and Figure 7.3d the robot moves to make visible

7.2. Evaluation of the default KCF performance 61

the abdomen again but it is seen that the tracker starts following the robot instead, drop-
ping the accuracy to 18% at the second 45 as it was expected that could happen when the
robot covers most of the abdomen. Even though the template gets slightly updated every
new frame, being the new target the robot’s end effector it is not expected that it will get
back to track the abdomen since the robot is always in the view.

(a) IoU metric at second 25. (b) IoU metric at second 30.

(c) IoU metric at second 35. (d) IoU metric at second 45.

Figure 7.3: Example of the IoU metric in one video (Outfit 13) where the robot and the patient move chrono-
logically. The cyan and yellow rectangles are the ground truth and estimated rectangles respectively. In green
is displayed the overlap region or true positive part (TP), and in red is displayed the union region. (Since the
green is on top it cannot be appreciated that the red takes the area of both rectangles).

7.2.3 Results of test5: Long videos

In the results of tests 2,3 and 4, an example was shown where the tracker started following
the robot. This test seeks to visualize how the tracker behaves after losing the patient
and starts tracking the robot. It is expected that the target will not be recovered since the
robot is always on the view. Five videos were tested with a length between 2.40 and 4
minutes. The videos are structured such that in the first part the robot and the patient
move simultaneously, then the robot moves but the patient is still and finally the patient
moves but the robot stays still. Between 5 and 10 frames were extracted for each of the
cases getting samples at the beginning, middle and end of the video. Sometimes the video
length of one particular type was not long enough to get 10 frames, so the largest amount

7.2. Evaluation of the default KCF performance 62

of frames was taken, being 5 the minimum. In this test, 117 frames were evaluated.

In Figure 7.4, a relevant behaviour of the tracker was observed in the video Outfit12. The
tracker lost the target and started following the robot in Figure 7.4a, but part of the patient
is back in the tracking box sometime later in Figure 7.4b. This could indicate that the
tracker can recover the tracker, however, of how the code is structured, it does not store
multiple templates. What makes KCF seem that it recovered the track are two factors.
First, in the RAU system, the robot always operates on top of the abdomen. Even if KCF
starts tracking the robot, part of the bounding box will match the ground truth since
they are overlapping. The second factor is that the appearance of the robot also changes
from the camera perspective. As soon as the robot’s appearance changes, the tracker will
explore larger box sizes to try to find the best correlation. Probably the box will grow a
little to adapt to the changes in appearance and part of the patient will be back on the ROI.
Features of the patient will be considered again which will slowly lead to Figure 7.4b. In
the RAU system, it could be considered that the track can be recovered since depending
on the robot’s movements it could slowly focus again on the abdomen and lose the robot.
However, if the robot had freedom of movement and moved out of the abdomen area, the
appearance changes would probably set the focus on another area in the image, making it
evident that lost the track.

(a) IoU metric at the last frame of the second set of sam-
ples. (b) IoU metric at the first frame of the last set of samples

Figure 7.4: Example of the IoU metric in video Outfit12 4 minutes long. The cyan and yellow rectangles
are the ground truth and estimated rectangles respectively. In green is displayed the overlap region or true
positive part (TP), and in red is displayed the union region. (Since the green is on top it cannot be appreciated
that the red takes the area of both rectangles).

In Table 7.3 the results are shown. In this test, it can be observed that the performance
considerably decreased from an average of around 85% in tests 2,3 and 4 to 69.4% in
the case of the straight ground truth rectangle, classifying the test as a wrong track. Even
though the performance accuracy is highly dependent on the robot’s movement, the results
ensure that KCF cannot handle occlusions.

7.2. Evaluation of the default KCF performance 63

Table 7.3: Average test4 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video
N evaluated
frames

Mean IoU [%]
Straight Box Rotated Box

Outfit 12 29 40.0 40.1
Outfit 16 20 75.7 76.1
Outfit 17 27 90.7 90.7
Outfit 18 19 69.7 70.0
Outfit 19 22 74.6 73.2

Total 117 69.4 69.2

7.2.4 Summary of the default performance

After presenting the results for each test, this section summarises the overall performance.
In Table 7.4 it is observed that the accuracy decreased when the robot was part of the view
(tests 2 to 5) compared to the accuracy when there was no robot (test1).

Table 7.4: Average accuracy per test in the default tracker. The total amount of videos, frames and the average
IoU per test are presented

Test N videos
N evaluated
frames

Mean IoU [%]
Straight Box Rotated Box

Test 1 8 54 93.8 94.0
Test 2 9 77 85.2 85.7
Test 3 9 81 86.2 86.1
Test 4 11 108 84.3 84.1
Test 5 5 117 69.4 69.2

7.2.5 Weaknesses of KCF

The default testing was done to analyze the accuracy of the performance of the tracker but
also to comprehend its behaviour in different scenarios. In this section, the weaknesses of
the tracker are stated to improve them with the proposed solution.

Multi-scale parameter

This parameter is an advantage to improve the accuracy of the track since the camera
is slightly tilted, so the distance to the belly is not the same in all positions in the bed.
However, when the appearance in the ROI changes, the box size tends to adapt to those

7.3. Evaluation of the proposed solution 64

changes, increasing or decreasing in size, to contain the pixels with the highest response
which are probably not concentrated in one specific point, leading to the loss of the target.
During the ultrasound scan, the patient’s appearance will change from the camera view
due to the robot. Using a fixed box size could improve the performance in this scenario.

Occlusion handling

The default algorithm cannot handle large occlusions. The created template model keeps
updating every frame which makes the occlusions slowly become part of the model when
they gradually increase the appearance in the view. The main proposed solution relies on
the use of feature-matching techniques to re-identify the patient and correct the tracking
box.

7.3 Evaluation of the proposed solution

In the following sections, the results of the new algorithm are presented and deeply ana-
lyzed by repeating the testing done with the default tracker. Apart from the IoU metric to
quantify the track’s accuracy, the default tracker’s results were considered to analyze the
potential improvement. For further details on the evaluation setup, reading section 7.1 is
recommended. The evaluation starts by providing a summary of the performance in all
tests. Detailed analysis is provided afterwards for each of the tests.

7.3.1 Summary of the proposed approach performance

The average IoU for the straight box of the default tracker and the potential improve-
ment for each test is presented in Table 7.5. Overall, the proposed solution increased the
accuracy of the tracker when the robot was in view (tests 2-5), specifically in test 5 the per-
formance was significantly improved. However, the accuracy dropped when there was no
occlusion (test1). The decrease in accuracy in test1 is given for the use of feature matching
since the videos did not have the robot in view.

Feature matching is used when the APCE of the current frame is 5% lower than the mean
of the previous tracked frames. The threshold was chosen via trial and error, focused on
restricting the tracker from following the robot. However, the restrictive condition triggers
feature matching in the videos where there are no occlusions. The changes in the APCE
values in videos with no occlusion could be due to noise in the videos and rotational
movements since HOG is not a rotation-invariant feature.

The elements that can drop the accuracy when using feature matching rely on the number
and robustness of detected keypoints, the matching performance and the calculation of the
transformation matrix. Further details from the testing are needed to determine possible

7.3. Evaluation of the proposed solution 65

causes of the accuracy performance, presented in the following sections.

Table 7.5: Average IoU for the straight box of the default tracker versus the proposed approach in each test

Test N videos
N evaluated
frames

Mean IoU [%]
Default approach Proposed solution

Test 1 8 60 93.8 84.8
Test 2 9 77 85.2 87.4
Test 3 9 81 86.2 97.4
Test 4 11 108 84.3 87.5
Test 5 5 116 69.4 84.5

7.3.2 Test1: No occlusion

As presented in the summary, the accuracy of this test decreased compared to the default
tracker. In Figure 7.5 the performance of each video in the test over time is presented.
As it is observed, in general, all of them achieve a lower accuracy, however, the videos
with outfits 12,14 and 16 contain the lowest accuracy, dropping to around 60%. Since the
outfits in 12,14,16 do not seem to follow a pattern, the reduction in performance could
be attributed to not detecting robust enough keypoints or a large amount of keypoint to
calculate a reliable transformation.

(a) Performance of the default KFC tracker (b) Performance of the proposed solution

Figure 7.5: Comparison of the performance between the proposed solution and the default tracker. The
accuracy of each evaluated frame (highlighted with a point) for all tested videos in test1 is presented.

7.3.3 Test2: Static occlusion

The accuracy performance seen in Figure 7.6 shows a similar performance to the default
tracker. However, it is noticeable that the video with Outfit 5 gradually drops its accuracy
over time reaching 30%. This indicates that the tracker lost the target. The reason for the

7.3. Evaluation of the proposed solution 66

failure could rely on the clothes used. In this video, the doll was dressed in a texture-less
purple blouse and white trousers that could potentially lead to miss matches. Particularly
it is known that in 3 of the 9 evaluated points, feature matching was used and classified
as a wrong match. The wrong match is a bool that is true when the distance between
the previous centre of the box and the current one exceeds 50 pixels. This brings the
hypothesis that the clothes affect the performance by dropping the number and reliability
of the detected keypoints.

(a) Performance of the default KFC tracker (b) Performance of the proposed solution

Figure 7.6: Comparison of the performance between the proposed solution and the default tracker. The
accuracy of each evaluated frame (highlighted with a point) for all tested videos in test 2 is presented.

7.3.4 Test3: Dynamic occlusion, static patient

The third test, in a more challenging scenario than test 2 since the robot moves increasing
the probability of the tracker to start tracking the robot instead, got an outstanding per-
formance in all tested videos as observed in Figure 7.7. The success of this test could be
attributed to having the robot mostly moving on the bottom part of the abdomen. Despite
this, the frames where the robot was considerably occluding the abdomen did also not
present a decline in the accuracy.

7.3. Evaluation of the proposed solution 67

(a) Performance of the default KFC tracker (b) Performance of the proposed solution

Figure 7.7: Comparison of the performance between the proposed solution and the default tracker. The
accuracy of each evaluated frame (highlighted with a point) for all tested videos in test 3 is presented.

7.3.5 Test4: Dynamic occlusion, dynamic patient

The results presented in Figure 7.8 show that the proposed approach was able to correct
the tracking box in outfit 13 but achieved an unacceptable performance in outfit 8. In
Outfit 8 the doll was wearing the purple blouse which already showed a drop in accuracy
in previous frames. In this case, 5 of the 9 evaluated keypoints triggered the wrong match
bool when computing feature matching. It suggests that the contrast between the skin and
the blouse is not high enough to get reliable features due to its texture-less textile.

(a) Performance of the default KFC tracker (b) Performance of the proposed solution

Figure 7.8: Comparison of the performance between the proposed solution and the default tracker. The
accuracy of each evaluated frame (highlighted with a point) for all tested videos in test4 is presented.

7.3.6 Test5: Long videos

The long videos indicated a significant improvement in the accuracy of the tracker. It
is observed that the tracking in the video Outfit 12 significantly improved but it could

7.3. Evaluation of the proposed solution 68

not improve the Outfit 18 video. Apart from the clothes, the main difference between
both videos is that in Outfit 18 the robot completely occludes the abdomen at second
67, drastically dropping the performance from there. At second 67 it could be that no
points were detected. However, the algorithm did not correct the box when the robot
made visible the abdomen again. This indicates that the issue might be that the feature
detector performance is affected by the clothes since it is not able to detect robust features
classifying them in the wrong matches.

(a) Performance of the default KFC tracker (b) Performance of the proposed solution

Figure 7.9: Comparison of the performance between the proposed solution and the default tracker. The
accuracy of each evaluated frame (highlighted with a point) for all tested videos in test5 is presented.

Chapter 8

Final test

A final test was conducted by evaluating the performance in the verification set of the
dataset. The verification set contains ground truth annotations every 1, 5 or 10 seconds in
the entire video. It is expected to see more details of the performance to identify the main
drawbacks of the proposed approach. Apart from calculating the accuracy of the track with
the IoU metric, it is provided the number of frames that used feature matching to correct
the box and the number of frames that were classified as a wrong match. It is important
to notice that the count of the frames that used feature matching and the frames that
feature matching was triggered as a wrong match was made at every frame, considering
the frames that were not annotated as well. In Table 8.1 the results are presented. It is seen
that the accuracy of the model is above 80 % except for one of the videos, outfit 7 which
has the largest amount of wrong matches.

The results indicate that the approach successfully corrects the bounding box numerous
times in each video. This suggests that the matching approach and the calculation of the
transformation matrix are well computed. Therefore, the issues rely on the detector ap-
proach. It is noticeable that the clothes and the position of the robot significantly affect
the performance since a high IoU is not directly related to a lower use of feature match-
ing. Therefore, the clothes affect the detection of reliable keypoints since again, the worst
performance is attributed to an outfit where the top part was the purple blouse.

In Figure 8.1 a visual representation of the tracking performance is seen. In the images is
observed that the performance can drop throughout a video but the proposed algorithm
can recover and continue the track.

69

70

Table 8.1: Validation set results. The number of times the box was corrected and the wrong matches is
provided. Notice that if the match was wrong the box was not corrected. The frame interval indicates the gap
between evaluated frames. The IoU is provided for the straight and rotated box

Video
N box
corrections

N wrong
matches

Frame
interval

Mean IoU [%]
Straight
Box

Rotated
Box

Outfit7
AutoMove

19 62 15 50.4 49.6

Outfit7 Patient 61 24 15 88.5 88.5
Outfit7 Robot 147 5 15 94.8 94.3
Outfit10
Singularity

23 0 15 83.3 84.1

Outfit11
Everything

222 2 150 92.8 92.6

Outfit13
Singularity

105 0 150 87.2 87.3

Outfit14
Everything

111 0 15 86.9 86.6

Outfit15
Everything

231 0 150 91.1 91.0

Outfit20
Robot+Patient

107 4 15 83.8 83.5

Outfit21
NoRobot

36 0 15 84.9 85.0

Outfit22
NoRobot

54 0 15 91.5 91.3

(a) Performance of the short videos (b) Performance of the long videos

Figure 8.1: Final test performance results

Chapter 9

Discussion

This chapter focuses on discussing the results of the proposed approach, its limitations
and future work based on the results analyzed in chapter 7 and chapter 8.

The integration of feature matching into KCF tracker improved the general performance of
the default KCF tracker when the robot was in the view by 8%. However, the performance
in the videos with no occlusion decreased by 9%. This indicates that feature matching was
triggered when testing the videos with no occlusion. Even though the APCE parameter
could be fine-tuned to avoid triggering feature matching when there are no occlusions,
it is required that its performance is robust and consistent to provide reliable tracks. The
main drawback of the proposed solution relies on the point detector, SIFT. SIFT was the ap-
proach selected due to detecting four times more points in comparison to other considered
approaches such as ORB. However, in some videos, the points are wrongly matched. This
could be due to detect points in the entire frame. Most of the detected points will fall out of
the ROI. Applying feature detection in a slightly bigger region around the estimated ROI
could increase the number of detected points. Nonetheless, the detection in cases where
the clothes are textureless such as the purple blouse could potentiate the wrong matches
instead. Thus, for the RAU system more robust feature detectors are needed to be invari-
ant to clothes. For instance, HOG features could be used instead since the performance
kept stable throughout the videos without occlusions with an average IoU of 93.4%.

In contrast, in the videos with occlusion, the proposed approach showed a non-consistent
improvement. Most of the tested videos reached an IoU above 80% which classifies the
video as a successful track. However, in some other videos, the accuracy dropped below
30%. It was also observed that inconsistency is given within the same video. For example,
in the verification set, the performance can fluctuate between 50 and 100 % in the same
video. On the one side, this indicates that the system can recover after losing track of the
patient. On the other side, it would constantly detect movement triggering false positives,

71

9.1. Limitations of the approach 72

not ensuring the safety of the patient. These fluctuations are probably given by the gradual
increase and decrease of the robot’s presence in the ROI. If the robot occludes most of the
abdomen there is no room for detection. The cause of the fluctuations is probably due to
the requirement of detecting at least three points to run feature matching, otherwise, the
box is updated with the default tracker. If in consecutive frames less than three points are
detected, KCF tracker will start tracking the robot as seen in the performance evaluation of
the default tracker. The algorithm could be constrained so if feature matching is required
but not enough points are detected, the previous box position could be taken instead.

9.1 Limitations of the approach

The algorithm also presents limitations if intending to be integrated into the RAU system.
First of all, the ROI has a fixed size and is set manually. An approach should be considered
to adapt the size of the ROI to the size of the patient’s abdomen since it will not be constant.
Furthermore, the current output of the track is the pixel position of the bounding box. In
order to detect movement the displacement between two frames should be considered. The
displacement will represent translation in the x and y direction but it will not consider the
patient’s rotation. For this reason, the transformation matrix could be used to extract
the rotation between the set of detected points. With this, the first block of the patient
movement handling pipeline would be fulfilled.

9.2 Future work

This research delved into solely tracking the abdomen of the patient in the RAU system.
No previous research focused on the limited area of movement, the abdomen. The current
proposed solution showed potential in tracking the abdomen when it is occluded by the
robot using classical approaches. The algorithm was able to correct the box position but
further research is needed to keep the accuracy approximately constant during the track-
ing. Future research should focus on studying a more robust method to detect features to
reduce the number of wrong matches and be consistent with different clothes textures and
colours. Moreover, the computational cost should be considered to be implemented as a
real-time tracker in the RAU system.

Chapter 10

Conclusion

This project seeks to contribute to the research of enhancing patient comfort when per-
forming obstetric scans with RAU. The focus is on tracking the patient’s abdomen par-
tially occluded by the robot. with the focus on classical computer vision approaches it is
intended to provide a starting point to detect patient movement by answering the ques-
tion: "Is it possible to track a patient’s abdomen with the robot occluding the view using
classical visual tracking techniques?".

The proposed solution consists of integrating feature matching into KCF tracker to improve
the tracker’s performance in the presence of occlusion. Compared to the default KCF
tracker, the method achieved an average accuracy of 9% higher than the default KCF
tracker when there were occlusions. However, the accuracy decreased by 8 % in videos
without occlusions. Despite the low average improvement, the approach can re-identify
the patient, reaching an accuracy of 84.5% in long videos compared to the 69,4% achieved
by the default tracker.

The accuracy of the track is affected by the amount of occlusion. An accuracy of around
90% is achieved when the robot moves on the lower part of the abdomen but it can drop
up to less than 50% when the robot scans the upper part of the abdomen, due to the
failure of the feature detector since it does not detect enough points to update the box.
This originates a fluctuating response in the same video that also is affected by the clothes
of the patient. Since the abdomen is a textureless region, the clothes play an important
role in detecting points in the contrast part with the skin, leading to wrong matches when
no texture is found even though having a distinctive colour to the skin tone.

Overall, the approach shows the potential to accurately track the abdomen with the robot
in view to detect patient movement. The translation of the patient could be calculated
with the centre of the tracking box. The rotation cannot directly be extracted but since the
method integrates the transformation matrix between two sets of points, the rotation could

73

74

derive from there. Further research is needed to detect more robust features and handle
large occlusions to reduce wrong matches and keep the accuracy stable.

Bibliography

[1] M. Rahim Sobhani et al. “Portable low cost ultrasound imaging system”. In: 2016
IEEE International Ultrasonics Symposium (IUS). 2016, pp. 1–4. doi: 10.1109/ULTSYM.
2016.7728837.

[2] Gill Harrison and Allison Harris. “Work-related musculoskeletal disorders in ul-
trasound: Can you reduce risk?” eng. In: Ultrasound 23.4 (2015), pp. 224–230. issn:
1742-271X.

[3] Life Science Robotics. Life Science Robotics home page. https://www.lifescience-
robotics.com/.

[4] Qinghua Huang, Jiakang Zhou, and ZhiJun Li. “Review of robot-assisted medical
ultrasound imaging systems: Technology and clinical applications”. In: Neurocom-
puting 559 (2023), p. 126790. issn: 0925-2312. doi: https://doi.org/10.1016/j.
neucom.2023.126790. url: https://www.sciencedirect.com/science/article/
pii/S092523122300913X.

[5] A. Shyam et al. “Immersive Virtual Reality Platform for Robot-Assisted Antena-
tal Ultrasound Scanning”. English. Autonomous capability;Health care profession-
als;Health services;Immersive virtual reality;Maternal healths;Stream-based;Teleoperation
systems;Ultrasound examination;Ultrasound scanning;Ultrasound system; 2023. url:
http://dx.doi.org/10.48550/arXiv.2309.03725.

[6] Shuangyi Wang et al. “Robotic-Assisted Ultrasound for Fetal Imaging: Evolution
from Single-Arm to Dual-Arm System”. In: Towards Autonomous Robotic Systems. Ed.
by Kaspar Althoefer, Jelizaveta Konstantinova, and Ketao Zhang. Cham: Springer
International Publishing, 2019, pp. 27–38. isbn: 978-3-030-25332-5.

[7] Maria Bamaarouf et al. “Development of a Robotic Ultrasound System to Assist Ul-
trasound Examination of Pregnant Women”. In: IEEE Transactions on Medical Robotics
and Bionics (2024), pp. 1–1. doi: 10.1109/TMRB.2024.3387047.

[8] Yongqing Fu et al. “Robot-Assisted Teleoperation Ultrasound System Based on Fu-
sion of Augmented Reality and Predictive Force”. In: IEEE Transactions on Industrial
Electronics 70.7 (2023), pp. 7449–7456. doi: 10.1109/TIE.2022.3201322.

75

https://doi.org/10.1109/ULTSYM.2016.7728837
https://doi.org/10.1109/ULTSYM.2016.7728837
https://www.lifescience-robotics.com/
https://www.lifescience-robotics.com/
https://doi.org/https://doi.org/10.1016/j.neucom.2023.126790
https://doi.org/https://doi.org/10.1016/j.neucom.2023.126790
https://www.sciencedirect.com/science/article/pii/S092523122300913X
https://www.sciencedirect.com/science/article/pii/S092523122300913X
http://dx.doi.org/10.48550/arXiv.2309.03725
https://doi.org/10.1109/TMRB.2024.3387047
https://doi.org/10.1109/TIE.2022.3201322

Bibliography 76

[9] Temitope Ibrahim Amosa et al. “Multi-camera multi-object tracking: A review of
current trends and future advances”. eng. In: Neurocomputing (Amsterdam) 552 (2023),
pp. 126558–. issn: 0925-2312.

[10] Rabah Iguernaissi et al. “People tracking in multi-camera systems: a review”. eng.
In: Multimedia tools and applications 78.8 (2019), pp. 10773–10793. issn: 1380-7501.

[11] Richard Szeliski. Computer Vision Algorithms and Applications. eng. 2nd ed. 2022.
Texts in Computer Science. Cham: Springer International Publishing, 2022. isbn:
9783030343729.

[12] Arnold W. M. Smeulders et al. “Visual Tracking: An Experimental Survey”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 36.7 (2014), pp. 1442–1468.
doi: 10.1109/TPAMI.2013.230.

[13] Mustansar Fiaz et al. “Handcrafted and Deep Trackers: A Review of Recent Object
Tracking Approaches”. In: CoRR abs/1812.07368 (2018). arXiv: 1812 . 07368. url:
http://arxiv.org/abs/1812.07368.

[14] João F. Henriques et al. “High-Speed Tracking with Kernelized Correlation Filters”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 37.3 (2015), pp. 583–
596. doi: 10.1109/TPAMI.2014.2345390.

[15] Sajid Javed et al. “Visual Object Tracking With Discriminative Filters and Siamese
Networks: A Survey and Outlook”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 45.5 (2023), pp. 6552–6574. doi: 10.1109/TPAMI.2022.3212594.

[16] Xin Du et al. “An Anti-occlusion Object Tracking Algorithm Using KCF and ORB
Feature Detector”. In: 2023 5th International Conference on Robotics and Computer Vision
(ICRCV). 2023, pp. 1–6. doi: 10.1109/ICRCV59470.2023.10329036.

[17] Jiayi Ma et al. “Image Matching from Handcrafted to Deep Features: A Survey”. In:
International Journal of Computer Vision 129.1 (2021), pp. 23–79. issn: 1573-1405. doi:
10.1007/s11263-020-01359-2. url: https://doi.org/10.1007/s11263-020-
01359-2.

[18] Mathias Klæstrup Mikkelsen. Aspects of Robot Assisted Ultrasound. eng. 2023.

[19] Laia Vives Benedicto. Real-Time Patient Movement Detection for Enhanced Accuracy in
Robotic Assisted Ultrasound System at Life Science Robotics. eng. 2024.

[20] Amila Jakubović and Jasmin Velagić. “Image Feature Matching and Object Detection
Using Brute-Force Matchers”. In: 2018 International Symposium ELMAR. 2018, pp. 83–
86. doi: 10.23919/ELMAR.2018.8534641.

[21] Marius Muja and David G. Lowe. “Scalable Nearest Neighbor Algorithms for High
Dimensional Data”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
36.11 (2014), pp. 2227–2240. doi: 10.1109/TPAMI.2014.2321376.

[22] LCorleone. KCF_py3. https://github.com/LCorleone/KCF_py3. 218.

https://doi.org/10.1109/TPAMI.2013.230
https://arxiv.org/abs/1812.07368
http://arxiv.org/abs/1812.07368
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/TPAMI.2022.3212594
https://doi.org/10.1109/ICRCV59470.2023.10329036
https://doi.org/10.1007/s11263-020-01359-2
https://doi.org/10.1007/s11263-020-01359-2
https://doi.org/10.1007/s11263-020-01359-2
https://doi.org/10.23919/ELMAR.2018.8534641
https://doi.org/10.1109/TPAMI.2014.2321376
https://github.com/LCorleone/KCF_py3

Bibliography 77

[23] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection”.
In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). Vol. 1. 2005, 886–893 vol. 1. doi: 10.1109/CVPR.2005.177.

[24] Christopher G. Harris and M. J. Stephens. “A Combined Corner and Edge Detec-
tor”. In: Alvey Vision Conference. 1988. url: https://api.semanticscholar.org/
CorpusID:1694378.

[25] Miroslav Trajković and Mark Hedley. “Fast corner detection”. In: Image and Vision
Computing 16.2 (1998), pp. 75–87. issn: 0262-8856. doi: https://doi.org/10.1016/
S0262-8856(97)00056-5. url: https://www.sciencedirect.com/science/article/
pii/S0262885697000565.

[26] Open Source Computer Vision. OpenCV-Python Tutorials. https://docs.opencv.
org/3.4/d6/d00/tutorial_py_root.html. Online, accessed 15/02/2024.

[27] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011 Interna-
tional Conference on Computer Vision. 2011, pp. 2564–2571. doi: 10.1109/ICCV.2011.
6126544.

[28] Elmar Mair et al. “Adaptive and Generic Corner Detection Based on the Accelerated
Segment Test”. eng. In: Computer Vision – ECCV 2010. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 183–196. isbn: 9783642155512.

[29] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. “BRISK: Binary Robust
invariant scalable keypoints”. In: 2011 International Conference on Computer Vision.
2011, pp. 2548–2555. doi: 10.1109/ICCV.2011.6126542.

[30] David G. Lowe. “Distinctive image features from scale-invariant keypoints”. eng. In:
International journal of computer vision 60.2 (2004), pp. 91–110. issn: 0920-5691.

[31] Steffen Gauglitz, Tobias Höllerer, and Matthew Turk. “Evaluation of Interest Point
Detectors and Feature Descriptors for Visual Tracking”. eng. In: International journal
of computer vision 94.3 (2011), pp. 335–360. issn: 0920-5691.

[32] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. “CenSurE: Center Surround
Extremas for Realtime Feature Detection and Matching”. In: Computer Vision – ECCV
2008. Ed. by David Forsyth, Philip Torr, and Andrew Zisserman. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 102–115. isbn: 978-3-540-88693-8.

[33] Alexandr Andoni and Piotr Indyk. “Near-Optimal Hashing Algorithms for Approx-
imate Nearest Neighbor in High Dimensions”. In: 2006 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’06). 2006, pp. 459–468. doi: 10.1109/FOCS.
2006.49.

[34] Richard. Hartley and Andrew. Zisserman. Multiple view geometry in computer vision.
eng. 2. ed. Cambridge: Cambridge University Press, 2003. isbn: 9780521540513.

[35] Computer Vision Annotation Tool. Computer Vision Annotation Tool. https://www.
cvat.ai/.

https://doi.org/10.1109/CVPR.2005.177
https://api.semanticscholar.org/CorpusID:1694378
https://api.semanticscholar.org/CorpusID:1694378
https://doi.org/https://doi.org/10.1016/S0262-8856(97)00056-5
https://doi.org/https://doi.org/10.1016/S0262-8856(97)00056-5
https://www.sciencedirect.com/science/article/pii/S0262885697000565
https://www.sciencedirect.com/science/article/pii/S0262885697000565
https://docs.opencv.org/3.4/d6/d00/tutorial_py_root.html
https://docs.opencv.org/3.4/d6/d00/tutorial_py_root.html
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/FOCS.2006.49
https://doi.org/10.1109/FOCS.2006.49
https://www.cvat.ai/
https://www.cvat.ai/

Bibliography 78

[36] Tran Thien Dat Nguyen et al. “How Trustworthy are Performance Evaluations for
Basic Vision Tasks?” In: IEEE Transactions on Pattern Analysis and Machine Intelligence
45.7 (2023), pp. 8538–8552. doi: 10.1109/TPAMI.2022.3227571.

[37] Luka Čehovin, Aleš Leonardis, and Matej Kristan. “Visual Object Tracking Perfor-
mance Measures Revisited”. In: IEEE Transactions on Image Processing 25.3 (2016),
pp. 1261–1274. doi: 10.1109/TIP.2016.2520370.

[38] Shaharyar Ahmed Khan Tareen and Rana Hammad Raza. “Potential of SIFT, SURF,
KAZE, AKAZE, ORB, BRISK, AGAST, and 7 More Algorithms for Matching Ex-
tremely Variant Image Pairs”. In: 2023 4th International Conference on Computing,
Mathematics and Engineering Technologies (iCoMET). 2023, pp. 1–6. doi: 10 . 1109 /
iCoMET57998.2023.10099250.

https://doi.org/10.1109/TPAMI.2022.3227571
https://doi.org/10.1109/TIP.2016.2520370
https://doi.org/10.1109/iCoMET57998.2023.10099250
https://doi.org/10.1109/iCoMET57998.2023.10099250

Appendix A

Test results

A.1 Default KCF testing details

A.1.1 Test2: Static occlusion

In this second test, the robot is in the view but in a static position. The robot’s position is
different for each of the videos. It evaluated the effect of the occlusion when the robot was
present. In this test and the following ones, the robot was already in view in the first frame.
Therefore, the template filter will contain a part of the robot that can affect negatively when
looking for the highest correlation in the next frame. Furthermore, the tracker updates the
template at every frame, so the performance will depend on the percentage of visible robot
versus visible abdomen in the ROI. If the abdomen is more visible is expected to track
towards the right target, otherwise, it could track the robot instead. It is also important to
mention that the videos have a variety of movements, in some of them the patient moves
a lot while in others the patient does small shifts. The speed of movement and direction
are also influential in the performance since they will affect the visibility of the abdomen
between two consecutive frames. Nine videos were evaluated in this test, 45 seconds long
each except one of them that was 26 seconds, getting a total of 77 evaluated frames.

In Figure A.1, the chronological performance in one video is shown. Figure A.1a indicates
the first frame of the video where it is observed that initially, the robot was partially
covering the lower part of the abdomen. First, some rotation and downward translation
were applied to the patient. It is seen in the performance that the tracker is centred on
the robot’s end effector. Considering that in the first frame, most of the salient features
were probably in the robot’s end effector and the division between the abdomen skin
and the shirt since the HoG studies the gradients in the three colour channels. Thus, it
makes sense that the highest correlation was found in the upper part of the abdomen

79

A.1. Default KCF testing details 80

together with the robot. In Figure A.1c, the patient moved upwards and that originated
a response of increasing the size of the bounding box. Here is shown again an answer to
the previous hypothesis. Since the skin is textureless for reliable features, it was probably
interpreted that the target grew in size due to the increase in pixel distance between the
robot’s end effector and the shirt. Finally, the patient moved downwards. In this case, the
pixel distance between the hypothetical main features is lower, so the bounding box size
decreases.

(a) First frame of the evaluated outfit3.
(b) IoU metric after applying some rotation and trans-
lation.

(c) IoU metric after moving the patient upwards (d) IoU metric after moving the patient downwards.

Figure A.1: Example of the IoU metric in one of the tested videos chronologically. The cyan and yellow
rectangles are the ground truth and estimated rectangles respectively. In green is displayed the overlap region
or true positive part (TP), and in red is displayed the union region. (Since the green is on top it cannot be
appreciated that the red takes the area of both rectangles). a) shows the first frame patient position. b), c), d)
presents the patient movement chronologically at second 20,30 and 45.

In the example, it has been seen that the robot has a clear influence on the performance.
The hard contrast of the black tool with the skin probably makes the end effector one
of the main reliable features of the ROI. In Table A.1 are presented the results for each
of the videos as well as the overall performance. Although some of them kept a high
accuracy, in comparison to the first test the performance has decreased to 85.2% for the
straight box ground truth. According to the threshold of a minimum of 80% IoU to be
considered a good track, the test succeeded for 7 of the 9 tested videos. It is noticeable
that in this case the performance compared to the rotated rectangle is higher. After the

A.1. Default KCF testing details 81

analysis in Figure A.1, the high accuracy achieved in outfit 2 and 4 can greatly be attributed
to the fact that the patient did not considerably moved, whether in outfit 5 and 9 larger
displacements probably occurred, getting performances similar to Figure A.1c.

Table A.1: Average test2 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video N evaluated frames
Mean IoU [%]

Straight Box Rotated Box

Outfit 1 9 86.3 89.5
Outfit 2 9 92.9 92.6
Outfit 3 9 80.3 83.0
Outfit 4 5 97.2 96.4
Outfit 5 9 74.6 74.3
Outfit 6 9 89.7 91.9
Outfit 8 9 83.5 82.4
Outfit 9 9 75.5 74.4
Outfit 10 9 87.1 96.9

Total 77 85.2 85.7

A.1.2 Test3: Dynamic occlusion, static patient

The third test consists of moving the robot with the joystick while the patient is static at
one position. Considering that the robot is visible in the first frame, it is expected that the
tracker will follow its movements after seeing the influence of the end effector’s presence
in the ROI in the previous test. It will be analyzed if an increase in occlusion by the robot
covering larger parts of the belly decreases the accuracy when tracking the abdomen. For
this test 9 videos of 45 seconds were used, having a total of 81 evaluated frames per video.
In all the videos the robot is initially placed with the transducer on top of the belly button
(this belongs to the first frame). Afterwards, the robot is moved around the abdomen.
Each video focuses the movement in particular areas. For example, in some videos the
robot only moves on the lower part of the abdomen, some of them focus on the right side,
or some others focus on the top side of the abdomen.

In Figure A.2 are shown two selected videos to analyze the performance. In the first ex-
ample (Figure A.2a and Figure A.2b), the robot moves on the lowest part of the belly. In
this scenario it can be seen that the robot movement does not negatively affect the perfor-
mance. Comparing the visibility of the abdomen between both images it is noticeable that
probably the majority of the pixels lie on the patient, on the division between the shirt
and the skin, and the division between the skin and the trousers most likely. Probably

A.1. Default KCF testing details 82

some of the features are also on the belly button. When moving the robot, all those fea-
tures are still visible. Even though the ones attributed to the robot moved, the majority of
them kept in place, attributing the highest correlation between the previous and the new
frame. Contrary, in the second example (Figure A.2c and Figure A.2d) the robot moved
towards the upper part of the abdomen, covering most of it. In this example it is seen that
the tracker tends to track the transducer instead. Considering that the template of KCF
is updated at every frame, progressively the inclusion of the robot in the ROI will add
features attributed to the robot into the template and remove some that were attributed to
the patient. Therefore, the highest correlation is found where the robot is located.

(a) IoU metric when the robot is at the lower part of the
abdomen (Outfit8).

(b) IoU metric after a displacement in the lower part of
the belly (Outfit8).

(c) IoU metric when the robot moves upwards (Outfit1).
(d) IoU metric after moving the robot towards the right
on the top part of the belly (Outfit1).

Figure A.2: Example of the IoU metric in two tested videos where the robot moves. The cyan and yellow
rectangles are the ground truth and estimated rectangles respectively. In green is displayed the overlap region
or true positive part (TP), and in red is displayed the union region. (Since the green is on top it cannot be
appreciated that the red takes the area of both rectangles). a) and b) show the influence when the robot moves
on the lower part of the abdomen. c) and d) present the robot influence when working on the higher part of
the abdomen

The results for all tested videos are shown in Table A.2. It can be observed that the
total average accuracy is higher than in the previous test. Eight of the nine tested videos
outperformed the minimum threshold of 80% which was not expected. Having the starting
position in the lower part of the belly might have helped with the performance since the

A.1. Default KCF testing details 83

first template had a lot of features belonging to the patient. If the start position was in
the upper part instead, the result could have been a lot different. In any case, the tracker
shall track the patient with high accuracy regardless of the robot movements and that has
clearly seen affected in the presented examples.

Table A.2: Average test3 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video N evaluated frames
Mean IoU [%]

Straight Box Rotated Box

Outfit 1 9 82.5 82.8
Outfit 2 9 84.3 83.9
Outfit 3 9 89.4 89.5
Outfit 4 9 89.8 90.0
Outfit 5 9 84.5 84.8
Outfit 6 9 78.8 79.4
Outfit 8 9 92.4 91.8
Outfit 9 9 84.7 83.1
Outfit 10 9 89.5 89.4

Total 81 86.2 86.1

A.1.3 Test4: Dynamic occlusion, dynamic patient

In this fourth test the complexity increases by having movement on the patient and the
robot. The tracker should be able to distinguish the two moving parts and track only the
patient. Twelve videos of 45 seconds were part of this test, evaluating a total of 108 frames.

The Outfit13 video has been chosen to visualize the performance chronologically. In Fig-
ure A.3 it can be seen that the robot gradually occludes the abdomen in Figure A.3a and
Figure A.3b. There is a moment when the abdomen is barely visible, therefore the tem-
plate is made of features belonging to the robot. In Figure A.3c and Figure A.3d the robot
moves to make visible the abdomen again but it is seen that the tracker starts following the
robot instead, dropping the accuracy to 18% at the second 45. Even though the template
gets updated with every new frame, being the new target the robot’s end effector it is not
expected that will get back to track the abdomen since the robot is always in the view.

A.1. Default KCF testing details 84

(a) IoU metric at second 25. (b) IoU metric at second 30.

(c) IoU metric at second 35. (d) IoU metric at second 45.

Figure A.3: Example of the IoU metric in one video (Outfit 13) where the robot and the patient move chrono-
logically. The cyan and yellow rectangles are the ground truth and estimated rectangles respectively. In green
is displayed the overlap region or true positive part (TP), and in red is displayed the union region. (Since the
green is on top it cannot be appreciated that the red takes the area of both rectangles).

In Table A.3 is presented the mean per video of the IoU metric. Overall, the average
performance is higher than 80% but the accuracy of some videos decreased by around
10%.

A.2. Improved performance 85

Table A.3: Average test4 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video N evaluated frames
Mean IoU [%]

Straight Box Rotated Box

Outfit 1 9 85.5 85.1
Outfit 2 9 91.0 90.8
Outfit 3 9 93.5 93.1
Outfit 4 9 89.2 89.0
Outfit 5 9 82.2 81.6
Outfit 6 9 91.5 91.1
Outfit 8 9 68.7 68.2
Outfit 9 9 78.1 78.3
Outfit 10 9 89.4 89.3
Outfit 13 9 71.1 71.4
Outfit 20 9 87.5 87.4

Total 108 84.3 84.1

A.2 Improved performance

A.2.1 Test1: No occlusion

In this test, it was seen in the default KCF that the abdomen was tracked for all tested
videos with an average accuracy of 93.8% and 94.0% when compared to the straight and
rotated rectangle respectively. It is expected that the performance will remain the same
since the tracker was already able to handle this scenario. A total of 54 frames spread over
8 videos of 30-40 seconds were evaluated in this test.

A.2. Improved performance 86

Table A.4: Average test1 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video N evaluated frames
Mean IoU [%]

Straight Box Rotated Box

Outfit 10 8 86.8 86.6
Outfit 12 6 80.4 80.4
Outfit 14 9 78.5 78.0
Outfit 15 8 82.5 81.9
Outfit 16 6 85.4 85.2
Outfit 18 * 8 86.8 86.7
Outfit 19 8 88.6 88.7
Outfit 20 7 89.4 88.9

Total 60 84.8 84.6

A.2.2 Test2: Static occlusion

Table A.5: Average test2 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video N evaluated frames
Mean IoU [%]

Straight Box Rotated Box

Outfit 1 * 9 88.3 92.1
Outfit 2 9 90.7 90.7
Outfit 3 * 9 77.8 91.9
Outfit 4 5 97.4 96.6
Outfit 5 9 72.6 72.5
Outfit 6 9 87.5 88.2
Outfit 8 9 90.5 90.3
Outfit 9 9 90.0 89.7
Outfit 10 9 91.5 91.6

Total 77 87.4 89.3

A.2. Improved performance 87

A.2.3 Test3: Dynamic occlusion, static patient

Table A.6: Average test3 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video N evaluated frames
Mean IoU [%]

Straight Box Rotated Box

Outfit 1 9 98.1 98.4
Outfit 2 9 98.2 97.3
Outfit 3 9 97.9 97.3
Outfit 4 9 98.2 97.7
Outfit 5 9 95.1 95.0
Outfit 6 9 96.1 95.1
Outfit 8 9 97.5 97.3
Outfit 9 9 98.3 94.5
Outfit 10 9 97.5 97.7

Total 81 97.4 96.7

A.2.4 Test4: Dynamic occlusion, dynamic patient

Table A.7: Average test4 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video N evaluated frames
Mean IoU [%]

Straight Box Rotated Box

Outfit 1 9 93.0 91.7
Outfit 2 9 92.0 92.2
Outfit 3 9 94.8 94.9
Outfit 4 9 86.1 86.2
Outfit 5 9 97.0 95.2
Outfit 6 9 95.9 96.2
Outfit 8 9 46.6 46.6
Outfit 9 * 9 85.4 85.3
Outfit 10 * 9 90.0 90.3
Outfit 13 9 91.1 90.9
Outfit 20 * 9 90.6 90.6

Total 108 87.5 87.3

A.2. Improved performance 88

A.2.5 Test5: Long videos

Table A.8: Average test4 results per video, where is indicated the video, the number of evaluated frames and
the mean IoU for the video using the straight and the rotated ground truth box. The last row presents the
total number of frames with the average IoU values considering all videos together.

Video N evaluated frames
Mean IoU [%]

Straight Box Rotated Box

Outfit 12 26 90.0 90.2
Outfit 16 20 90.1 89.8
Outfit 17 27 85.9 86.3
Outfit 18 19 67.7 67.1
Outfit 19 22 88.7 86.8

Total 116 84.5 84.1

Appendix B

Outfit data

This appendix presents all the outfits used during the project. Figure B.1 presents all the
22 outfits analysed

(a) Outfit 1 (b) Outfit 2 (c) Outfit 3

(d) Outfit 4 (e) Outfit 5 (f) Outfit 7

89

90

(g) Outfit 7 (h) Outfit 8 (i) Outfit 9

(j) Outfit 10 (k) Outfit 11 (l) Outfit 12

(m) Outfit 13 (n) Outfit 14 (o) Outfit 15

91

(p) Outfit 16 (q) Outfit 17 (r) Outfit 18

(s) Outfit 19 (t) Outfit 20 (u) Outfit 21

(v) Outfit 22

Figure B.1: All outfits used during the project

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Report outline

	2 Problem analysis
	2.1 The RAU system
	2.1.1 What causes the patient movement problem?

	2.2 Research towards a potential solution
	2.2.1 Selection of the sensors and datatype
	2.2.2 Visual tracking approaches

	3 Related works
	4 Theoretical framework
	4.1 Discriminative correlation filters
	4.2 Kernelized correlation filters
	4.2.1 Histogram of Oriented Gradients

	4.3 Average Peak to Correlation Energy
	4.4 Feature matching
	4.4.1 Feature detectors
	4.4.2 Feature descriptors
	4.4.3 Matchers

	4.5 Affine transformation

	5 Dataset and performance evaluation criteria
	5.1 Constraints and assumptions
	5.1.1 Patient variables
	5.1.2 Environment variables

	5.2 Materials
	5.3 Setup before recording
	5.3.1 Software adaptation
	5.3.2 Preparation of the scene

	5.4 Recordings
	5.5 Ground truth extraction
	5.6 Evaluation metrics
	5.6.1 Metric for bounding box approaches
	5.6.2 Metrics keypoints approaches
	5.6.3 Robustness study

	6 Development of the patient visual tracker
	6.1 Occlusion handling overview
	6.2 Evaluation of feature matching approaches
	6.2.1 Evaluation of feature detectors parameters
	6.2.2 Evaluation and selection matching method

	6.3 Adapted solution for the RAU system

	7 Performance evaluation
	7.1 Evaluation setup
	7.2 Evaluation of the default KCF performance
	7.2.1 Results of test1: No occlusion
	7.2.2 Results of tests 2,3 and 4: Occlusion
	7.2.3 Results of test5: Long videos
	7.2.4 Summary of the default performance
	7.2.5 Weaknesses of KCF

	7.3 Evaluation of the proposed solution
	7.3.1 Summary of the proposed approach performance
	7.3.2 Test1: No occlusion
	7.3.3 Test2: Static occlusion
	7.3.4 Test3: Dynamic occlusion, static patient
	7.3.5 Test4: Dynamic occlusion, dynamic patient
	7.3.6 Test5: Long videos

	8 Final test
	9 Discussion
	9.1 Limitations of the approach
	9.2 Future work

	10 Conclusion
	Bibliography
	A Test results
	A.1 Default KCF testing details
	A.1.1 Test2: Static occlusion
	A.1.2 Test3: Dynamic occlusion, static patient
	A.1.3 Test4: Dynamic occlusion, dynamic patient

	A.2 Improved performance
	A.2.1 Test1: No occlusion
	A.2.2 Test2: Static occlusion
	A.2.3 Test3: Dynamic occlusion, static patient
	A.2.4 Test4: Dynamic occlusion, dynamic patient
	A.2.5 Test5: Long videos

	B Outfit data

