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Summary

Quantum circuit equivalence checking is a central problem in the quantum computing field. As each
quantum computer uses different gate sets and logical to physical qubit mappings, quantum circuits
must be compiled individually for each such quantum computer architecture. The initial logical quantum
circuits may be transformed drastically by compilation. While these transformations should preserve
the functionality of initial circuit, checking it is non-trivial. Verifying the equivalence of circuits
before and after completion is, therefore, crucial to utilise quantum computing resources effectively.

Quantum circuits and their gates rely on mathematical representations when simulated on a classical com-
puter. Each gate is defined as a complex-valued unitary matrix. The matrices can be combined to represent
entire circuits, which is a central part of most quantum computations performed on classical computers,
including quantum circuit equivalence checking. As the size of the matrix representation of a circuit is
exponential in the number of qubits, using matrices is infeasible for even moderately sized quantum circuits.

From the classical domain, it is well-known that decision diagram structures can for some problems avoid
an exponential blow-up. Similarly, for the quantum domain, decision diagrams allow for a more efficient
representation of both quantum gates and circuits by exploiting redundancies. The Tensor Decision
Diagram is one such data structure, often allowing for a more compact representation than its matrix
counterpart. Tensor Decision Diagrams are based on tensors which generalise matrices and allow connected
gates to be combined in any order. Combining tensors or Tensor Decision Diagrams is called contraction.

The order gates are contracted in, called the contraction plan, has a big impact on the sizes of
intermediate representations. Finding better contraction plans both makes equivalence checking faster
and also makes it possible to contract bigger and more complicated circuits. Some heuristics already
exist for creating contraction plans. However, these heuristics only consider the tensor representations
of gates and do not factor in the more efficient representation of the Tensor Decision Diagram.

To include the Tensor Decision Diagrams in a contraction plan heuristic, this thesis considers
a neural network model that learns to predict the sizes of Tensor Decision Diagrams. For
this, a dataset is made from contracting on random circuits with existing heuristics. Different
partitions of the dataset are made to train variations of the model with different biases.

The neural network model is used in two different heuristics: a heuristic made to plan and contract
in discrete windows and a heuristic based on Monte Carlo tree search. The tree search heuristics
is limited by the ability to pick the best plan between several. We find that having discrete
windows, which allow the actual sizes of intermediate products to be used, has no significant
effect on the performance of the heuristic compared to making the entire plan before contraction.

Two handcrafted heuristics are made. The Lookahead heuristic does all the available contractions
and continuously proceeds with the one that yields the smallest result until the entire circuit
has been contracted. The EMIT heuristic is designed so that new TDDs are not immediately
used for other contractions. It is found that EMIT is the best performing of the considered heuristic.

When comparing to existing heuristics it is found that our model-based and handcrafted
heuristics are faster. The EMIT heuristic combined with a new C++ implementation has
vastly improved the equivalence checking method and made it competitive compared to
alternative equivalence checking tools that utilise different decision diagram structures.
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Abstract—Quantum circuit equivalence checking inherently
depends on how quantum circuits are represented on a classical
computer. Tensor Decision Diagrams (TDDs) efficiently represent
quantum gates and quantum circuits. TDDs allow the equivalence
checking process to be done in multiple possible orderings, called
contraction plans. Current contraction plan heuristics do not
consider the sizes of TDDs but only the tensors they are based on.
This leaves unexplored potential in the heuristics for constructing
efficient contraction plans. This unexplored potential is the focus
of this thesis.

A way of estimating the size of a TDD resulting from a
contraction is devised to create new heuristics. To predict such
sizes, we train a neural network model on a custom dataset. The
prediction model is then used to create two different heuristics:
a heuristic that plans and contracts in discrete windows and a
heuristic based on Monte Carlo tree search.

Two handcrafted heuristics are also evaluated. The first,
Lookahead, does the actual contractions as opposed to estimating
them. The second, called EMIT, emulates the Lookahead heuristic
by contracting the TDDs that have been contracted the least.

All the contraction planning heuristics are evaluated on
benchmark circuits. We conclude that using the neural network
model has advantages over existing heuristics on select circuits.
The Lookahead heuristic outperforms existing heuristics as it
requires no initial planning time. The EMIT heuristic is the fastest
overall on most circuits as it neither has an elaborate planning
step nor additional expensive contractions. We outperform state-
of-the-art contraction planning tools on equivalence checking
using TDDs, and we achieve results comparable in time with
state-of-the-art equivalence checking tools.

Index Terms—Quantum Circuits, Tensor Decision Diagram,
Neural Network, Contraction Plan

I. INTRODUCTION

Quantum computation has seen a rapid increase in interest
from both the scientific community as well as the industrial
area. Quantum computers promise to speed up certain types
of algorithms to a potentially exponential degree [4]. While
quantum computers are currently impractical for industrial use,
the rate of improvement is similar to that of classical computers,
and it is expected that in the near future, practically usable
quantum computers will exist. To ensure that there are ample
tools and methods to support quantum computation once the
hardware matures, there is a need to adapt methods from the
classical domain or develop new methods and tools specifically
designed for the quantum domain.

A central task in quantum computing is designing and
improving quantum algorithms, also called quantum circuits.
A related task is to compile quantum circuits [20] between
different abstraction levels [6] to bridge the gap between
design and implementation on a specific quantum computer.
Compilation algorithms may also perform optimisations in

the circuits, such as removing redundant gates or using a
specific qubit ordering to reduce the use of SWAP gates [21].
Since compilation to lower abstraction levels also depend on
the hardware architecture, including the allowed gates, the
resulting compiled algorithm may vary greatly both in what
gates it is composed of and how many [19]. As such, when
developing compilation methods, it is imperative to ascertain
that the functionality of an algorithm is not changed. Checking
quantum circuit equivalence is used to verify that two circuits
are functionally equivalent even if they differ significantly in
their appearance [3].

For a quantum circuit, being functionally equivalent means
that for any input state, the two circuits should agree on
the resulting output state. While quantum circuit equivalence
checking is as simple as checking whether two matrices are
equal, the practicality of such an approach is limited as the
sizes of matrix representations grow exponentially with the
number of qubits in a quantum circuit. As such, there is a
need for more efficient methods for verifying the equivalence
of two circuits [13]. While being exponential in the worst case,
performing equivalence checking within practical time limits
may still be possible.

This thesis is based on a previous work by the same
authors [15]. The previous work investigated the feasibility of
combining a quantum circuit equivalence checking method by
Burgholzer et al. [3] with the decision diagram structure, called
Tensor Decision Diagrams (TDDs), defined by Hong et al. [12].
The equivalence checking method used contraction plans
describing how to combine representations of quantum gates.
TDDs represent quantum gates and can be contracted together
to represent entire circuits. It was shown that equivalence
checking may be performed using contraction plans on TDDs,
and several contraction plan heuristics were evaluated.

The previous work lacked contraction plan heuristics that
could utilise information about the contracted TDDs. Such
information may improve the method by allowing the data
structure to be better exploited. This thesis further investigates
the use of contraction planning heuristics to improve the
equivalence checking method regarding scaling and time
consumption.

A. Related Works

To reduce the resource requirements of representing quantum
circuits, research has been conducted in adapting decision
diagrams from the classical domain to the quantum domain.
In the classical domain, decision diagrams have been applied
to exponentially large expressions with great success. One
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decision diagram structure adapted to the quantum domain is
the Quantum Decision Diagram, QDD [24]. QDDs have shown
much potential in exploiting redundancies in the matrices and
can often represent exponentially large matrices in polynomial
space [1][24][12][3].

Another decision diagram structure applicable to quantum
circuits is the Tensor Decision Diagram (TDD) structure [12],
with several applications in quantum computation [10][11][9].
TDDs are designed to represent tensors in tensor networks.
Since circuits can be interpreted as tensor networks, TDDs can
be used to represent the gates of the circuits. Hong et al. [12]
show that TDDs, while feasible for representing quantum
circuits, are slower than QDDs when performing operations
on them. However, as mentioned by Burgholzer et al. [2], the
added flexibility of TDDs using tensor contraction as opposed
to the matrix multiplication of QDDs, may allow for practically
faster applications.

Another representation of circuits is ZX-calculus, which
revolves around rewriting circuits such that redundancies are
removed [5]. ZX-calculus has also been used for equivalence
checking of quantum circuits [17] and has been implemented
as part of the state-of-the-art Quantum Circuit Equivalence
Checker from the Munich Quantum Toolkit (QCEC) [3]. QCEC
also makes use of QDDs to do equivalence checking.

Burgholzer et al. [3] explore an equivalence checking setup
from Viamontes et al. [22] in which two circuits are combined
in such a manner that their combined representation is identity
if they are equivalent. In such a setup, the order in which
one combines the gates to reach the final representation of
the entire circuit may affect the intermediate results. Using
this setup, Burgholzer et al. investigate some simple heuristics
to determine such orderings of combining gates. Burgholzer
et al. use QDDs and find that exploiting the construction of
the combined circuits produces the fastest contractions, as the
intermediate products are often close to or equal to the identity.
Burgholzer et al. [2] further investigate the effects of simulation
paths for simulating quantum circuits using QDDs. Burgholzer
et al. use a contraction planning tool meant for contractions in
tensor networks. The setup is heavily constrained by the use
of the QDD data structure. It is shown that using contraction
plans improves the time consumption from the linear plans,
but is worse than an optimal proportional heuristic.

Wahl et al. [23] investigate the power of contraction
plans for simulating quantum circuits using tensor network
representations. Using the topology of the quantum circuits,
Wahl et al. achieve significant improvement in the simulation
of quantum circuits compared to other well-known methods,
and comparable to the plans provided by a state-of-the-art
contraction planning tool cotengra [8].

Meirom et al. [16] propose to use a reinforcement learning
(RL) approach to finding fast contraction plans for tensor
network contractions. The gates are represented as tensors
without any data structure for space optimisation. Meirom et
al. formulate the tensor network contraction ordering problem
as a Markov decision process, which opens up the possibility
of an RL-based solution. The tensor network is interpreted
as a graph, such that a graph neural network (GNN) model
using message passing [25] can be applied. The GNN based

on the input graph outputs a probability distribution over the
edges. Using these probabilities, an edge is sampled to be
contracted. Meirom et al. manage to outperform the state-of-
the-art contraction planning tool cotengra using this approach
to contraction planning. Meirom et al. also show that their
method improves simulation on certain quantum circuits by up
to four times.

B. Contributions

This thesis further investigates the effects of contraction plans
with regards to contraction time for quantum circuit equivalence
checking using TDDs from the previous work by the same
authors [15]. Other contraction planning heuristics leverage in-
formation on either the topology of the circuits or the tensors of
the tensor network representations of the circuits [3][2][23][8].
This thesis seeks to leverage the information of the intermediate
TDDs resulting from performing equivalence checking. The
previous work performed contractions in a proof-of-concept
Python implementation with relatively poor performance.
This thesis uses a C++ implementation of TDDs and their
contractions.

The contributions of this thesis are thus: A faster C++
implementation of TDD contractions, which allows results to be
comparable to state-of-the-art equivalence checking methods;
A neural network model capable of predicting the size of a
TDD resulting from a contraction; Several contraction planning
heuristic leveraging predictions or actual sizes of TDDs to
reduce the sizes of the intermediate results. Two heuristics
use neural network models to predict the sizes of possible
contractions. The first contracts in discrete windows allowing
actual values to be used for subsequent planning steps, and
the second is based on Monte Carlo tree search. Two other
handcrafted heuristics are made. The first does all immediately
available contractions before continuing with the smallest
one, and the second orders contractions such that they are
distributed evenly between the TDDs. Additionally, the thesis
provides experiments showing the performance of the developed
heuristics and comparison with the state-of-the-art tool QCEC.

II. BACKGROUND

To understand and utilise the methods described in this
thesis, some background knowledge is required. This includes
some basics of quantum computation as well as the problem
of quantum circuit equivalence checking. It also includes
definitions relating to tensors and tensor networks. Since the
purpose of this thesis is to facilitate different contraction
planning heuristics, contraction planning is defined in relation to
both tensor networks and TDDs. Two heuristics from cotengra
are briefly introduced. Finally, Tensor Decision Diagrams,
TDDs, are introduced formally and visual examples of the
data structure are given.

A. Quantum Computation Basics

The basic unit of all quantum computation is the qubit.
The qubit is to quantum computation as the bit is to classic
computation. All operations in quantum computation revolve



MASTER THESIS COMPUTER SCIENCE AALBORG UNIVERSITY MAY 2024 3

around transforming the states of qubits. While a bit represents
a Boolean value using 0 and 1 for false and true, respectively,
a qubit represents a linear combination of 0 and 1. A qubit may
be either 0 or 1, referred to as basis states, or some combination
of 0 and 1. When a qubit is in a linear combination of 0 and 1
and not a basis state, it is said to be in a state of superposition.
Superposition may be collapsed by measurement. This means
that the qubit becomes a classical bit and probabilistically
assumes either the 0 or 1 basis state. The superposition of a
qubit is defined by two amplitudes, one complex value for
each basis state of the qubit. When the superposition collapses
during measurement, the probability of the qubit to assume
either basis state is determined by the amplitudes.

Assume a qubit |𝑞0⟩ (using the Dirac/BraKet notation [7])
is in a superposition with amplitudes 𝛼, 𝛽 ∈ C. Then, the qubit
is described as:

|𝑞0⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, such that |𝛼 |2 + |𝛽 |2 = 1 (1)

Measuring |𝑞0⟩ results in basis state |0⟩ with probability
|𝛼 |2 and results in basis state |1⟩ with probability |𝛽 |2.

A quantum state is the combined state of one or more qubits.
Since the quantum state may be in a superposition of each
combination of basis states, a quantum state has 2𝑛 amplitudes
for 𝑛 qubits. A quantum state can also be represented as a
state vector of its complex-valued amplitudes.

Example 1 (Quantum State). Consider a quantum state of 3
qubits, 𝑞0, 𝑞1, and 𝑞2. A state vector 𝛼 for such a state is:

𝛼 = [𝛼000, 𝛼001, ..., 𝛼111]T |𝛼 | = 2𝑛 (2)

which represent the linear combination of all the basis states:

|𝑞0𝑞1𝑞2⟩ = 𝛼000 |000⟩ + 𝛼001 |001⟩ + ... + 𝛼111 |111⟩ (3)

For this quantum state the probability of measuring |000⟩ is
|𝛼000 |2.

To accommodate computation, quantum gates (henceforth
gates), as well as measurements, are used to transform quantum
states. Measurements transform quantum states into classical
states, whereas gates transform quantum states into possibly
different quantum states. Gates may be applied to any number
of qubits. Each gate has an associated unitary matrix, describing
the transformation of the state vector. Gates being described by
unitary matrices means that the property of squared amplitudes
equating to probabilities is preserved when gates are applied. It
also means that the inverse of a gate is easily described as the
conjugate transposed matrix. Compared to general matrices,
it is always possible and potentially much faster to find the
inverse of the matrix of a quantum gate.

Given a quantum state consisting of a single qubit 𝑞0 in
basis state |0⟩, the Hadamard gate 𝐻 transforms the state into
a state of superposition. The matrix of the Hadamard gate is:

𝐻 =
1
√

2

[
1 1
1 −1

]
(4)

Example 2 (Quantum Gates). Using a quantum state of |𝑞0⟩ =
1 · |0⟩ +0 · |1⟩, the transformation of gate 𝐻 on the state results
in the following state vector:

𝐻 |𝑞𝑜⟩ =
1
√

2

[
1 1
1 −1

]
·
[
1
0

]
=

1
√

2

[
1
1

]
(5)

and written as a quantum state:

1
√

2

[
1
1

]
=

1
√

2
|0⟩ + 1

√
2
|1⟩ (6)

Since all quantum gates are represented by unitary matrices
for which there exist inverse matrices completely reversing
their transformations, no information is masked during quantum
computation. This is unlike classical computation where
operations are often not revertible, such as applying an 𝑜𝑟

gate where the original input values are not determinable by
the output of the gate.

While a single gate is sufficient to represent any quantum
algorithm disregarding the use of measurement, it is hardly
practical to manually construct unitary matrices to represent
exponentially large state vector transformations. As such, an
abstraction of a sequence of gates applied to some quantum
state, a quantum circuit (henceforth circuit), is needed. On
Figure 1 an example quantum circuit using three gates on two
qubits can be seen. Since gates are defined by matrices, any
sequence of gates corresponds to sequentially applying the
matrix representation of all the gates to the initial state vector.
A circuit is then just a description of some gates, which qubits
they act on, and the sequence in which they must be applied.

Fig. 1: Example of a quantum circuit consisting of two CNOT-gates
and one Hadamard gate. The circuit transforms quantum states with
two qubits.

Consider some circuit 𝐶 defined by the following gates:

𝐶 = 𝑔1, 𝑔2, ..., 𝑔 |𝐶 | (7)

The gates of the circuit can be represented by their ma-
trices. Note that the order of the gates is reversed as matrix
multiplication works from right to left:

𝑈𝐶 = 𝑈𝑔|𝐶 | · ... ·𝑈𝑔2 ·𝑈𝑔1 (8)

The application of the circuit onto the initial state vector 𝛼
is defined as (using matrix notation):

𝑈𝐶 · 𝛼 = 𝑈𝑔|𝐶 | · ... ·𝑈𝑔2 ·𝑈𝑔1 · 𝛼 (9)

Thus the application of a circuit to a state is the sequential
application of the gates to the state vector dictated by the
sequence the gates appear in the circuit.

When applying a gate applicable to state vectors of 𝑛 qubits
to a state vector representing 𝑛′ qubits with 2𝑛′ amplitudes,
where 𝑛 ≠ 𝑛′, an expansion on the state or the gate is required.
For the expansion of states, ancillary qubits may be used to
act only as intermediate results and discarded when done with
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Fig. 2: The circuit resulting from expanding the Hadamard gate 𝐻
using the tensor product on the circuit from Figure 1.

computation. To expand quantum gates, the tensor product
between the gate matrices and identity matrices can be used.
The tensor product is similarly used to combine quantum state
vectors and parallel gates.

Example 3. Consider the circuit in Figure 1. To combine
the Hadamard gate with either of the CNOT-gates, it must be
expanded. As such, an identity gate can be inserted in parallel
with the Hadamard gate. To compose the identity gate and
the Hadamard gate, the tensor product between the matrix
representation of the two gates can be computed. The resulting
circuit can be seen in Figure 2, and the matrix representation
of the tensor product can be seen here:

𝐻 ⊗ 𝐼 = 1
√

2

[
1 1
1 −1

]
⊗
[
1 0
0 1

]
=

1
√

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (10)

Computing the result of applying a circuit to a state on a
classical computer is referred to as quantum simulation, which
can significantly speed up quantum circuit equivalence checking
in the negative case while incurring only a small overhead to
the overall checking [3].

B. Quantum Circuit Equivalence

The ability to verify that two quantum circuits are func-
tionally equivalent, that is, for any input they yield the same
output, is a necessity when developing new algorithms and
optimisation schemes.

Since circuits are sequences of gates and matrices can
represent gates, every circuit can be represented by one matrix
capturing the combined effect of all constituent gates. Each
circuit being represented by one matrix also indicates that
it is possible to verify whether two circuits perform the
same transformations, simply by verifying that the matrices
representing the circuits are identical up to a global phase.

Definition 1 (Circuit Equivalence). Two circuits 𝐶 with 𝑛

qubits and 𝐶′ with 𝑛′ qubits and with matrix representation
𝑈𝐶 and 𝑈𝐶′ , respectively, are functionally equivalent, that is,
𝐶 = 𝐶′, iff 𝑛 = 𝑛′ and for some global phase 𝑒𝑖 𝜃 :

∃ 𝜃 ∈ [0, 2𝜋) . 𝑈𝐶 = 𝑒𝑖 𝜃 ·𝑈𝐶′ (11)

Unless the two circuits are trivially identical, the matrices
representing the circuits must be computed in their entireties
before equivalence checking can be performed. Since comput-
ing these matrices is expensive, the invertibility of circuits and
gates can be exploited.

Definition 2 (Circuit inverse). Given some circuit 𝐶 = 𝑐1 · 𝑐2 ·
... ·𝑐 |𝐶 | , then there exists gates 𝑐−1

1 ...𝑐−1
|𝐶 | such that ∀𝑖=1.. |𝐶 | (𝑐𝑖 ·

𝑐−1
𝑖

= 𝐼). Then the inverse of circuit 𝐶 is 𝐶−1 = 𝑐−1
|𝐶 | ·...·𝑐

−1
2 ·𝑐−1

1 .
Observe that:

𝐶 · 𝐶−1 = 𝑐1 · 𝑐2 · ... · 𝑐 |𝐶 | · 𝑐−1
|𝐶 | · ... · 𝑐

−1
2 · 𝑐−1

1

= 𝑐1 · 𝑐2 · ... · 𝑐 |𝐶 |−1 · 𝑐−1
|𝐶 |−1 · ... · 𝑐

−1
2 · 𝑐−1

1

= 𝑐1 · 𝑐−1
1 = 𝐼

(12)

If two circuits 𝐶1 and 𝐶2 are equivalent such that 𝐶1 = 𝐶2,
and since a circuit can be inverted as per Definition 2 such
that 𝐶2 ·𝐶−1

2 = 𝐼, then clearly it follows that 𝐶1 ·𝐶−1
2 = 𝐼. This

means that instead of having to check whether the matrices
for the two circuits agree on all values, one can construct a
combined circuit 𝐶1 · 𝐶−1

2 and check whether this circuit is
the identity. Constructing the combined circuit of one circuit
with the inverse of the other circuit to check for identity is
referred to as the combined circuit setup. Figure 3 shows an
example of a combined circuit, where the left circuit 𝐶1 is a
single SWAP-gate and the right circuit 𝐶2 is inverted into 𝐶−1

2 .

Fig. 3: Example of a combined circuit, where the left circuit is a
single SWAP-gate and the right is the inverse of three CNOT-gates
which also perform a SWAP operation.

While there is no immediate advantage in using the combined
circuit setup as opposed to checking whether the matrix repre-
sentations of two circuit are equivalent, there is a possibility
of exploiting the fact that gates from one circuit are negated
by gates from the inverse of the other circuit. By cleverly
performing matrix multiplication on gates from both circuits
such that the intermediate results become identity matrices,
the final equivalence checking can be significantly sped up.
Additionally, the combined circuit can with the use of other
data structures also reduce the representation of intermediate
results. Both of these effects are later observed.

C. Tensors

Tensors are another way to represent individual gates as a
more general version of matrices. Tensors generalise matrices
by having any number of dimensions rather than simply rows
and columns. Each dimension has an index variable, resulting
in an index vector. Each specific index vector thus corresponds
to an element in the tensor. Figure 5 shows a tensor with its
indices.
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Fig. 5: Example of a three-dimensional tensor with corresponding
indices 𝑖, 𝑗 , and 𝑘 .

Tensors can also represent quantum states. In this case, the
tensors will have an index for each qubit in the quantum state.
For the tensors used here, each index of the tensors has two
possible values, one for each of the two basis states of a qubit.
As both quantum states and the matrices of quantum gates
consist of complex values, the elements of the tensors used here
are complex values. Tensors are thus limited here to the form
𝑇−→I ∈ C2|

−→I |
, with

−→I being the vector of index variables. For
vectors, lowercase symbols will be used to denote a specific
vector of index values, for example,

−→
i ∈ {1, 2} |

−→I | .

Example 4. Consider the tensor 𝑇𝑖, 𝑗 ,𝑘 depicted in Figure 6.
Then 𝑇0,0,0 is a valid entry in 𝑇𝑖, 𝑗 ,𝑘 .

Tensors are often depicted as either vectors when dealing
with quantum states or matrices when the tensors represent
gates. As shown in Figure 6 the placement of elements is
determined by the indices. It can also be seen that rows and
columns are interchangeable as they are purely illustrative and
do not hold any meaning for the tensor.

Fig. 6: A tensor depicted as a column vector and as a matrix showing
how indices correspond to the position of the elements.

D. Tensor Networks

Just as gates can be combined into quantum circuits so
can tensors be combined into tensor networks to represent
those circuits. A tensor network is a graph structure where
the vertices represent tensors. An edge in the tensor network
connects tensors if they share an index. The same index can
therefore only be shared by two tensors, and the words edges
and indices are used interchangeably in the context of tensor
networks. Since circuits contain inputs and outputs which are
only partially connected until a state vector is supplied, the
tensor network also has similar input and output indices. These
input and output indices are then only connected to one tensor
and are referred to as outer edges.

Definition 3 (Tensor Network). A tensor network is an
undirected graph 𝐺 = (𝑉, 𝐸, 𝐸𝑜𝑢𝑡𝑒𝑟 , 𝑆), where 𝑉 ⊂ ⋃

𝑚∈N C
2𝑚

is the set of tensors that make up the vertices, 𝑆 is the set of
index variables, 𝐸 ⊂ 𝑉 × 𝑉 × 2𝑆 is a set of inner edges and
𝐸𝑜𝑢𝑡𝑒𝑟 ⊂ 𝑉 × 2𝑆 is a set of outer edges. Each edge includes a
set of index variables.

Example 5 (Tensor Network). Consider a tensor network
as illustrated in Figure 4 on the left. The tensor network is
defined by the four-tuple 𝐺𝑒𝑥 = (𝑉, 𝐸, 𝐸𝑜𝑢𝑡𝑒𝑟𝑆). The tensor
network 𝐺𝑒𝑥 initially consists of three tensors such that 𝑉 =

{ 𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐻𝑔ℎ, 𝐶𝑋ℎ𝑖𝑘𝑙 }. The index set 𝑆 of the tensor network
is determined by the possible index variables of all tensors in
the tensor network, here 𝑆 = { 𝑓 , 𝑔, ℎ, 𝑖, 𝑗 , 𝑘, 𝑙 } as also seen
by the edges in the figure. The input and output edges, here
called outer edges 𝐸𝑜𝑢𝑡𝑒𝑟 , of a tensor network are the edges
that only attach to one tensor, that is, 𝐸𝑜𝑢𝑡𝑒𝑟 ⊂ 𝑉 × 2𝑆 . The
inner edges are then the remaining edges that attach to two
tensors, such that 𝐸𝑖𝑛𝑛𝑒𝑟 ⊂ 𝑉 ×𝑉 × 2𝑆 . For the tensor network
in question:

𝐸𝑜𝑢𝑡𝑒𝑟 = { (𝐶𝑋 𝑓 𝑔 𝑗𝑘 , { 𝑓 }), (𝐶𝑋 𝑓 𝑔 𝑗𝑘 , { 𝑗}),
(𝐶𝑋ℎ𝑖𝑘𝑙 , {𝑖}), (𝐶𝑋ℎ𝑖𝑘𝑙 , {𝑙}) }

(13)

𝐸𝑖𝑛𝑛𝑒𝑟 = { (𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐻𝑔ℎ, {𝑔}), (𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {𝑘}),
(𝐻𝑔ℎ, 𝐶𝑋ℎ𝑖𝑘𝑙 , {ℎ}) }

(14)

To simplify the tensor networks, multiple edges between
two tensors are combined into a single edge. This is possible
since an edge represents two tensors sharing some indices, and
having two such edges simply means that the tensors share
the union of indices of the two edges. This simplification is
assumed for all tensor networks going forward.

Similarly to how the gate matrices can be combined into
a matrix representation of a circuit, the tensors of the tensor

Fig. 4: The tensor network (left) of the small circuit in Figure 1 being contracted into a single tensor (right). The edges between the tensors
are labelled with the sets of indices shared by the tensors.
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network can be combined into a single tensor representing
the same circuit. The operation used for combining tensors is
contraction which generalises matrix multiplication. The opera-
tion multiplies the elements of each tensor with corresponding
index values together while summing out shared indices.

Definition 4 (Tensor Contraction). Let 𝑆−→I ,−→H and 𝑇−→J ,−→H be
tensors with their index vectors split into their shared index
variables in the vector

−→H and their unique index variables in
the vectors

−→I and
−→J , respectively. The combined tensor is

denoted 𝑅−→I ,−→J .

𝑅−→
i ,
−→
j =

∑︁
−→x ∈{1,2} |

−→H |

𝑆−→i ,−→x · 𝑇−→j ,−→x (15)

Example 6 (Tensor Contraction). The first contraction illus-
trated in Figure 4 computes the tensor 𝐾 𝑓 ℎ 𝑗𝑘 from the tensors
𝐶𝑋 𝑓 𝑔 𝑗𝑘 and 𝐻𝑔ℎ.

𝐾 𝑓 ℎ 𝑗𝑘 =
∑︁

𝑥∈{1,2}
𝐶𝑋 𝑓 𝑥 𝑗𝑘 · 𝐻𝑥ℎ (16)

Example 7 (Tensor Contraction). The second contraction
illustrated in Figure 4 computes the tensor 𝑅 𝑓 𝑖 𝑗𝑙 from the
tensors 𝐾 𝑓 ℎ 𝑗𝑘 and 𝐶𝑋ℎ𝑖𝑘𝑙 .

𝑅 𝑓 𝑖 𝑗𝑙 =
∑︁

𝑥,𝑦∈{1,2}
𝐾 𝑓 𝑥 𝑗𝑦 · 𝐶𝑋𝑥𝑖𝑦𝑙 (17)

E. Contraction Planning

To use tensor networks for quantum circuit equivalence
checking, it is possible to construct a tensor network based
on the combined circuit setup as seen in Definition 3. The
resulting tensor network thus represents identity if and only if
the two circuits initially used to construct the combined circuit
are equivalent. To check whether the tensor network represents
the identity matrix, all edges excluding outer edges can be
contracted. The tensor network resulting from contracting all
inner edges should thus be a tensor representing the identity
with 𝑛 input and 𝑛 output indices, where 𝑛 is the number of
qubits in the combined circuit.

A contraction plan describes in which order tensors should
be contracted until only a single tensor representing the entire
tensor network is left. While tensors sharing no indices may
be contracted, the height of the result of a contraction is
determined by the number of unique indices in the two tensors.
For this reason, as well as simplifying what constitutes a
valid contraction plan, only tensors with shared indices may be
contracted according to some contraction plan. Since tensors are
now limited to sharing indices to be candidates for contraction,
a contraction plan may instead be described by edges. As
such, each step of a contraction plan indicates an edge, and
thereby some shared indices between two tensors, which must
be contracted. The resulting graph then removes the contracted
edge, and the two tensors that are contracted are substituted
with the result of their contraction.

Considering the graph definition of tensor networks in
Definition 3, a contraction plan or contraction path (used
interchangeably) can be described formally as:

Definition 5 (Contraction Plan). A contraction plan Π on
an initial tensor network 𝐺 (0) = (𝑉 (0) , 𝐸 (0) , 𝐸𝑜𝑢𝑡𝑒𝑟 , 𝑆) is an
ordered list of steps 𝜋𝑖 ∈ Π for 1 ≤ 𝑖 ≤ |Π |, 𝜋𝑖 ∈ 𝐸 (𝑖) .
Performing the last step in the contraction plan 𝜋 |Π | results in
the final graph 𝐺 ( |Π | ) = (𝑉 ( |Π | ) , 𝐸 ( |Π | ) , 𝑆), which consists of
a single tensor representing the entire initial tensor network.
As such, |𝑉 ( |Π | ) | = 1 and 𝐸 ( |Π | ) = ∅. A contraction plan
on a tensor network 𝐺 = (𝑉, 𝐸, 𝐸𝑜𝑢𝑡𝑒𝑟 , 𝑆) has a length of
|Π | = |𝑉 | − 1.

Example 8 (Contraction Planning). Consider the tensor
network used in Example 5. Figure 4 shows a valid contraction
plan for the tensor network. Since the tensor network initially
consists of three tensors, the length of a plan on this tensor
network is always |Π | = |𝑉 |−1 = 2. The plan shown in Figure 4
is: Π = [(𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐻𝑔ℎ, {𝑔}), (𝐾 𝑓 ℎ 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {ℎ, 𝑘})], which
is one of three valid plans. The first step of the plan is
𝜋1 = (𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐻𝑔ℎ, {𝑔}). The result of the first contraction
is a new tensor 𝐾 𝑓 ℎ 𝑗𝑘 as described by Definition 4. The
updated graph 𝐺 (1) = (𝑉 (1) , 𝐸 (1) , 𝑆). The graph is updated to
encapsulate the contraction such that 𝑉 (1) = { 𝐶𝑋ℎ𝑖𝑘𝑙 , 𝐾 𝑓 ℎ 𝑗𝑘 }
and 𝐸 (1) = { (𝐾 𝑓 ℎ 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {ℎ, 𝑘}) }. Performing the second
step of the plan 𝑝𝑖2 = (𝐾 𝑓 ℎ 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {ℎ, 𝑘}) results in a new
graph 𝐺 (2) = (𝑉 (2) , 𝐸 (2) , 𝐸𝑜𝑢𝑡𝑒𝑟 , 𝑆) with a single tensor such
that 𝑉 (2) = { 𝑅 𝑓 𝑖 𝑗𝑙 } and no remaining inner edges such that
𝐸 (2) = ∅.

Since each step in the contraction plan mutates the graph,
a mechanism for properly updating the graph to reflect the
changes of the contraction is required. A contraction combines
two tensors into a new one. The edges attached to the two
contracted tensors that are not involved in the contraction must
be changed such that they attach to the new tensor instead.
The edge on which the contraction occurs based on can simply
be removed.

For the edges, another consideration must be taken. Consider
the case where two tensors 𝑣1 and 𝑣2 in tensor network 𝐺 =

(𝑉, 𝐸, 𝑆) each have an edge connected to some tensor 𝑣𝑠ℎ𝑎𝑟𝑒𝑑 ,
such that (𝑣1, 𝑣𝑠ℎ𝑎𝑟𝑒𝑑 , 𝐽1) ∈ 𝐸 and (𝑣2, 𝑣𝑠ℎ𝑎𝑟𝑒𝑑 , 𝐽2) ∈ 𝐸 . Then
when the two tensors are contracted over edge (𝑣1, 𝑣2, 𝐽)
resulting in tensor 𝑣, each of the edges connected to 𝑣1 and
𝑣2 should be updated to use 𝑣 such that (𝑣1, 𝑣𝑠ℎ𝑎𝑟𝑒𝑑 , 𝐽1) →
(𝑣, 𝑣𝑠ℎ𝑎𝑟𝑒𝑑 , 𝐽1) and (𝑣2, 𝑣𝑠ℎ𝑎𝑟𝑒𝑑 , 𝐽2) → (𝑣, 𝑣𝑠ℎ𝑎𝑟𝑒𝑑 , 𝐽2). Since
tensor networks assume that at most one edge exists between
any pair of tensors, the combination of updated edges connect-
ing the same tensors must occur as part of the graph update.

Definition 6 (Graph Update). A contraction 𝜋𝑖 = (𝑣1, 𝑣2, 𝐽)
with shared indices 𝐽 ∈ 2𝑆 such that (𝑣1, 𝑣2, 𝐽) ∈ 𝐸 (𝑖−1)

performed on the graph 𝐺 (𝑖−1) produces a new graph 𝐺 (𝑖) =
(𝑉 (𝑖) , 𝐸 (𝑖) , 𝑆), where 𝑉 (𝑖) = {𝑣} ∪𝑉 (𝑖−1) \ {𝑣1, 𝑣2} such that 𝑣
is the result of performing tensor contraction on tensors 𝑣1, 𝑣2.
Edges are updated according to Definition 7.



MASTER THESIS COMPUTER SCIENCE AALBORG UNIVERSITY MAY 2024 7

Definition 7 (Graph Edges Update). Using Definition 6, the
updated graph is 𝐺 (𝑖) = (𝑉 (𝑖) , 𝐸 (𝑖) , 𝑆). A vertex 𝑣 is part of
an edge 𝑒, if: ∃𝑣′∈𝑉,𝐽⊂𝑆 . 𝑒 = (𝑣, 𝑣′, 𝐽) ∨ 𝑒 = (𝑣′, 𝑣, 𝐽). A set
of indices 𝐽 is part of an edge if there exist vertices 𝑣′ and 𝑣′′,
such that 𝑒 = (𝑣′, 𝑣′′, 𝐽) ∈ 𝐸 . The updated edges are given by:

𝐸
(𝑖−1)
𝑜𝑙𝑑

= { 𝑒 | 𝑒 ∈ 𝐸 (𝑖−1) ∧ (𝑣1 ∈ 𝑒 ∨ 𝑣2 ∈ 𝑒) } (18)

𝐸
(𝑖−1)
𝑢𝑝𝑑

= { (𝑣, 𝑣𝑡 , 𝐽) | 𝑒 ∈ 𝐸 (𝑖−1)
𝑜𝑙𝑑

, 𝐽 ∈ 𝑒,
𝑣𝑡 ∈ 𝑒, 𝑣𝑡 ∉ {𝑣1, 𝑣2} }

(19)

𝐸
(𝑖−1)
𝑛𝑒𝑤 = { (𝑣𝑘 , 𝑣𝑚, 𝐽) | 𝑒 ∈ 𝐸 (𝑖−1)

𝑢𝑝𝑑
, 𝑣𝑘 , 𝑣𝑚 ∈ 𝑒,

𝑣𝑘 ≠ 𝑣𝑚, 𝐽 = { 𝜄 | 𝜖 ∈ 𝐸 (𝑖−1)
𝑢𝑝𝑑

, 𝜖 = (𝑣𝑘 , 𝑣𝑚, 𝜄) } }
(20)

𝐸 (𝑖) = 𝐸 (𝑖−1)
𝑛𝑒𝑤 ∪ 𝐸 (𝑖−1) \ 𝐸 (𝑖−1)

𝑜𝑙𝑑
(21)

Example 9 (Graph Update). Consider again the tensor network
used in Example 5 and depicted in Figure 4, with the first
contraction step 𝜋0 as used in Example 8. After performing
the contraction of (𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐻𝑔ℎ, {𝑔}), a new graph 𝐺 (1) =

(𝑉 (1) , 𝐸 (1) , 𝑆), where the edges 𝐸 (1) are updated according
to Definition 7:

𝐸
(0)
𝑜𝑙𝑑

= { (𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐻𝑔ℎ, {𝑔}),
(𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {𝑘}), (𝐻𝑔ℎ, 𝐶𝑋ℎ𝑖𝑘𝑙 , {ℎ}) }

(22)

𝐸
(0)
𝑢𝑝𝑑

= { (𝐾 𝑓 ℎ 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {𝑘}), (𝐾 𝑓 ℎ 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {ℎ}) } (23)

𝐸
(0)
𝑛𝑒𝑤 = { (𝐾 𝑓 ℎ 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {ℎ, 𝑘}) } (24)

Since 𝐸 (0) = 𝐸 (0)
𝑜𝑙𝑑

:

𝐸 (1) = { (𝐾 𝑓 ℎ 𝑗𝑘 , 𝐶𝑋ℎ𝑖𝑘𝑙 , {ℎ, 𝑘}) } (25)

For any contraction plan, it is important to note that the
length of the plan is different from the initial number of edges.
This is a consequence of the graph update step where several
new edges connected to the same vertices are created. These
edges are combined by taking the union of their indices. After
updating the graph there will always be at most one edge
between any pair of vertices in the graph.

F. Contraction Heuristics

Using tensors instead of matrices to represent gates and
circuits gives many more options in which order to combine
them. In the general case, it is NP-hard to find the optimal
contraction plan [14]. Heuristics are therefore employed to find
contraction plans within a reasonable time frame.

Cotengra [8] is a tool that provides contraction plan heuristics
intended for use in tensor networks. Of the provided heuristics
Random Greedy and Betweenness are found to perform best
within the context of the article. Random Greedy samples
multiple times and selects the best plan according to the sum of
the expected amount of floating point operations of the entire
plan. Betweenness is deterministic and uses graph communities
to resolve the contractions sharing many indices first.

G. Tensor Decision Diagrams

When combining gate representations into a single repre-
sentation of an entire circuit using either matrices or tensors,
the amount of space required is exponential in the number of
qubits in the circuit. It is therefore infeasible to handle even
modestly sized circuits on a classical computer. To make this
possible, redundancies in those representations can be exploited
to make more efficient data structures.

For tensors one such data structure is a Tensor Decision
Diagram, also called a TDD.

Definition 8 (Tensor Decision Diagram, adapted from [12]). A
Tensor Decision Diagram, is a directed, rooted, acyclic graph
𝐹 = (𝑊,Ξ, 𝑖𝑛𝑑𝑒𝑥, 𝑤𝑔) over a set of indices 𝑆. The graph
consists of a set of nodes 𝑊 , a set of edges Ξ, a global weight
𝑤𝑔 ∈ C for the incoming edge to the root node, and the function
𝑖𝑛𝑑𝑒𝑥, which are defined as follows:

• 𝑊 = 𝑊𝑁 ∪ {𝑤𝑇 } , where 𝑊𝑁 is a set of non-terminal
nodes, and 𝑣𝑇 is the single terminal node of the graph.

• Ξ ⊆ 𝑊𝑁 ×𝑊 × C × { 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ }. Edges therefore point
from a non-terminal node to a node, it has a complex
weight, and is either a low or high edge. Each node in
𝑊𝑁 has exactly one outgoing low edge and one outgoing
high edge.

• The function 𝑖𝑛𝑑𝑒𝑥 : 𝑊𝑁 → 𝑆 assigns an index from the
index set to each non-terminal node.

All TDDs are assumed to be ordered, normalised, and
reduced, as defined in [12]. TDDs being ordered means that
indices have a predefined total order, and all non-terminal nodes
in a TDD therefore have a partial order based on the indices
that they are mapped to by the 𝑖𝑛𝑑𝑒𝑥 function. TDDs being
normalised means that low edges are limited to values of 0 and
1, and all edges with a 0 weight point to the terminal node 𝑊𝑇 .
TDDs being reduced means that there are no duplicated nodes.
From these properties, it follows that the TDDs are canonical,
meaning that there is a unique TDD for every tensor and index
ordering.

Figure 7 shows the TDDs of the tensors 𝐶𝑋 𝑓 𝑔 𝑗𝑘 , 𝐻𝑔ℎ, and
𝐾 𝑓 ℎ 𝑗𝑘 . The TDD of 𝐾 𝑓 ℎ 𝑗𝑘 is the result of the contraction
between the other two TDDs, which represent the controlled
not gate and the Hadamard gate respectively.

The size of a TDD is the number of nodes it contains
including the terminal node. For the TDDs depicted in Figure
7, the sizes are from left to right: 8, 3, and 7, respectively.

III. METHOD

The following sections introduce a neural network model for
predicting the size of TDDs and different ways to utilise such
a model to create contraction plans. This includes contraction
heuristics that work before contraction begins and heuristics
that are used to find plans during contraction. After that, two
handcrafted heuristics are introduced, one which computes
actual contraction and greedily chooses the smallest available,
and another which distributes contractions throughout the tensor
network.
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Fig. 7: The TDDs in the first contraction in Figure 4.

A. TDD Prediction Model

TDDs reduce the required space during the contraction
process. In some cases, including for the identity, the space
required is linear as opposed to exponential in the number of
qubits. It is nevertheless difficult to fully utilise this potential
to reduce representations, as the sizes of the TDDs are not
known, and cannot be trivially computed when constructing
contraction plans. As of writing this thesis, only performing the
contraction itself allows for computing the size of the resulting
TDD.

A feed-forward neural network model can be constructed
to predict the size of a TDD resulting from the contraction
of other TDDs. With a model predicting the resulting size of
a contraction, one can perform more informed choices when
choosing between contractions. Such a model can thus be
used to make contraction plans that may better utilise the
TDDs potential to reduce the required space. The model takes
information from two TDDs and predicts the size of the TDD
that is created after they have been contracted.

As TDDs cannot be directly passed to the neural networks,
metadata is extracted in the form of floating-point numbers.
For the model introduced here, the information given as input
to the model from the two input TDDs is:

• The sizes of the constituent TDDs.
• The number of indices of the constituent TDDs.
• The number of gates, of each type in a fixed set of gates

the constituent TDDs are constructed from.
• The number of shared indices between the two constituent

TDDs.
The model uses a set of 13 gate types. Hence there are

15 floating point numbers given for each TDD and a single
number given for the shared indices. Therefore, there are three
different input sources, as shown on the left side of Figure 8.
The total size of the input to the model is thus 31 values.

The model is designed such that the ordering of the two
TDDs is inconsequential since TDD contraction is commutative.
To achieve this the vectors from the TDDs go through the same
linear layer 𝐿𝑖𝑛. The number of shared indices goes through the

Fig. 8: The structure of the TDD size prediction model.

linear layer 𝐿𝑠 , and finally, all three embeddings are summed
to one vector embedding.

The main body of the model consists of a block that is
repeated multiple times, determined by a hyperparameter 𝑑𝑒𝑝𝑡ℎ.
The block has a skip connection that adds the initial embedding
vector of each iteration to the final embedding. The block then
has a dropout layer 𝐷, with an associated hyperparameter for
the dropout rate. Each iteration uses a different linear layer
𝐿𝑖 followed by a non-linear activation function 𝑅𝑒𝐿𝑈. The
final step of the model is the linear layer 𝐿𝑜𝑢𝑡 , which turns
the embedding vector into the single-valued size prediction.

Definition 9 (TDD Prediction model). The TDD prediction
model is a function that takes two TDDs from the vertices 𝑉
of a tensor network and some amount of shared indices. The
function returns a real-valued 𝑙𝑜𝑔2 prediction of the size of
the TDD given by contracting the two input TDDs.

𝑡 𝑝𝑚 : 𝑉 ×𝑉 × N→ R+ (26)

𝑙𝑜𝑔2 (𝑠) |𝐽 | 𝐻 𝐶𝑁𝑂𝑇 ... 𝑇

𝐶𝑋 𝑓 𝑔 𝑗𝑘 3 4 0 1 ... 0

𝐻𝑔ℎ 1.58 2 1 0 ... 0

𝐶𝑋ℎ𝑖𝑘𝑙 3 4 0 1 ... 0

𝐾 𝑓 ℎ 𝑗𝑘 2.81 4 1 1 ... 0

𝑅 𝑓 𝑖 𝑗𝑙 3 4 1 2 ... 0

Table 1: Examples of the data extracted from TDDs. 𝑠 is the size of
the TDD, |𝐽 | is the number of indices in the TDD, and gates, here
with the actual gate names, indicate the number of each of the 13
previously mentioned gates that are in the TDDs.

Example 10 (TDD Prediction model input). Table 1 shows
the information given to the model for the TDDs of the tensors
in Figure 4 and Figure 7.

B. Greedy Prediction Heuristic

The simplest way to utilise the prediction model is to use it
in a greedy heuristic.

Definition 10 (Greedy Prediction Heuristic). Given an ini-
tial tensor network 𝐺 = (𝑉 (0) , 𝐸 (0) , 𝐸𝑜𝑢𝑡𝑒𝑟 , 𝑆) and a TDD
prediction model 𝑡 𝑝𝑚, the steps of the plan 𝜋𝑖 ∈ Π is given
as:

𝜋𝑖 = argmin
(𝑣1 ,𝑣2 ,𝐽 ) ∈𝐸 (𝑖)

𝑡 𝑝𝑚(𝑣1, 𝑣2, |𝐽 |) (27)

This heuristic can be used in various ways depending on
whether predictions are based on actual contracted TDDs or
previous predictions. It is shown in Example 10 how it is
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possible to use size predictions as input to the model. The
model uses the sizes, the number of indices, and the number
of each gate type for each TDD. For index sets 𝐽 and 𝐽′ the
index set of the new TDD is (𝐽 ∪ 𝐽′) \ (𝐽 ∩ 𝐽′), as this is
the side effect of Definition 7 from Section II-E. As such, the
number of gates can be added together. Therefore only the
sizes of the TDDs depend on the contraction and the predicted
value can be used instead.

C. Windowed-N Heuristic

The Windowed-N heuristic uses the greedy prediction heuris-
tic from Definition 10 and interleaves planning and contraction
in discrete and equally sized segments called windows. Instead
of always planning all steps, each window is planned fully
before all the steps of the window are contracted. This process
of planning and contracting a window is repeated until the entire
circuit has been contracted. The Greedy Prediction heuristic
from Section III-B may also be described as a Windowed-N
heuristic but with a window size of the length of the entire
plan. As such, the Greedy Prediction heuristic is referred to as
Windowed-Max henceforth.

9
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Fig. 9: Two different heuristics, Windowed-5 and Windowed-Max,
applied to some tensor network with the entire plan being of length 15.
The green box signifies planning, the blue box signifies contraction,
and the greyed-out numbers indicate the completed steps of the
contraction plan.

Figure 9 shows the general approach to the Windowed-N
heuristic, here Windowed-5 and Windowed-Max, respectively.
The heuristics in Figure 9 are applied to some circuits for which
the entire plan is 15 steps. For the Windowed-5 heuristic, it
can be seen that it initially plans five steps. Then, it contracts
these five planned steps, updates the tensor network graph with
the actual sizes as opposed to the predicted sizes, and then
plans the next five steps. This continues until all steps are
planned and contracted. For Windowed-Max, the same occurs,
but since the window size is the total length of the plan, there
is always only one window.

By adjusting the window size it is possible to ascertain
whether the Windowed-N heuristic becomes prone to enter
a destructive feedback loop for certain window sizes. A

destructive feedback loop is where slightly wrong predictions
cause even more wrong future predictions until the final
prediction of the resulting TDD is completely different from
its actual size.

D. Tree Search

The greedy contraction plans are made for the planning to
be as fast as possible, while still using the model, by always
making the best immediate choice. While the greedy approach
may be fast, having heuristics that focus on finding better plans
using more time is also relevant. One way to look for better
plans is to consider multiple contraction plans made with some
stochastic variant of the greedy prediction heuristic. While
the planning time for such an approach increases compared
to the greedy prediction heuristic, it may enable equivalence
checking for more difficult circuits. The tree search approach
utilises the developed neural network model for prediction,
which allows it to make full plans before contraction begins.
Thus, as in the Windowed-Max heuristic, all predictions made
by the neural network model are based on the predictions made
in the previous step.

The tree search contraction planning heuristic is based on
Monte Carlo tree search. The idea is to look at the search tree
of possible contractions and have it be expanded by consecutive
contraction plans. The search tree is thus made up of nodes
representing tensor networks that have undergone some amount
of contractions. Outgoing edges from a node in the search tree
are thus the contractions that are possible on the tensor network
represented by that node.

Traversing the search tree from the root to a leaf is called
a sample. The final plan is then the best-performing sample.
Multiple samples can be explored by introducing randomness
into the choice of which contraction is done at each step
of the sample. The randomness is introduced by giving each
possible contraction a weight in a probability distribution based
on available information. Such information may include the
immediate prediction for that contraction, the largest predicted
size in previous samples using that edge, and the sum of
predicted sizes seen on previous samples through that edge.
This is done by repeatedly planning to the end and then
collected information is back-propagated through the tree.
Because each sample functions as a contraction plan, the tree
search can be given a set amount of planning time and then
return the best sample once the time is up.

By decorating the tree with information from the end of
the plan, the idea is to use this information in the subsequent
samples. Each sample would place information on the nodes
it traverses in the tree to adjust the probability of including
those nodes in future samples. The probability is determined
by a weight function which gives a positive real number 𝑤𝑒
for each possible contraction over an edge 𝑒. The probability
is then given by normalising the weights of the considered
contractions as shown in Equation 28.

𝑃(𝑒, 𝐸 (𝑖) ) = 𝑤𝑒∑
𝑒′∈𝐸 (𝑖) 𝑤𝑒′

(28)

The simplest and only weight function considered here is
the greedy weight function. Similarly to the greedy prediction
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contraction plan, it uses the immediate expected size of the
contraction. It is used as a negative exponent which functions
as a softmax, so that larger predicted sizes result in smaller
weights.

Definition 11 (Greedy Weight Function). Based on the edge
𝑒 from the set of edges 𝐸 , a TDD prediction model 𝑡 𝑝𝑚, and
a parameter 𝛼 ∈ R+.

𝑤(𝑒, 𝑡 𝑝𝑚) = 𝛼−𝑡 𝑝𝑚(𝑣1 ,𝑣2 , |𝐽 | )

𝑤ℎ𝑒𝑟𝑒 𝑒 = (𝑣1, 𝑣2, 𝐽)
(29)

Finally, once all samples have been computed one of them
is chosen as the contraction plan based on a sample metric.
The two sample metrics considered are max and sum which
aggregate over the predicted sizes of the contractions of the
plan.

Definition 12 (Sample Metric Max and Sum). Given a set of
samples 𝑍 the sample metrics sum and max choose a sample
Π𝑠𝑢𝑚 and Π𝑚𝑎𝑥 respectively as contraction plans.

Π𝑠𝑢𝑚 = argmin
Π𝑖∈𝑍

∑︁
(𝑣1 ,𝑣2 ,𝐽 ) ∈Π𝑖

𝑡 𝑝𝑚(𝑣1, 𝑣2, |𝐽 |) (30)

Π𝑚𝑎𝑥 = argmin
Π𝑖∈𝑍

max
(𝑣1 ,𝑣2 ,𝐽 ) ∈Π𝑖

𝑡 𝑝𝑚(𝑣1, 𝑣2, |𝐽 |) (31)

E. Lookahead Contraction Planning Heuristic

The Windowed heuristic suffers mainly from inaccurate
predictions resulting in worse plans. To resolve some of the
issues regarding this, a heuristic can be designed that substitutes
the prediction of the resulting size with the actual result by
performing the contraction. As such, each step of the plan is
determined in a greedy fashion by which actual contraction
yields the smallest resulting TDD.

F. EMIT Heuristic

The Excitable Medium Interpretation of Tensor Network
Contraction (EMIT) heuristic is inspired by physical excitable
media; in particular, the refractory time. Refractory time refers
to a period of time wherein a physical object does not react to
stimuli, meaning that repeated events cannot occur at a rate
faster than the refractory time. To apply such an idea to tensor
network contractions, each tensor in the tensor network may
be seen as having its own refractory time wherein it cannot be
contracted.

The effect of such a refractory time for tensors is that
the contractions are spread throughout the tensor network
as opposed to being bunched up. Assuming that the size of
TDDs grows faster than linear with the number of contractions,
spreading out contractions between TDDs would reduce the
overall sizes compared to repeatedly contracting the same
TDDs.

The EMIT heuristic needs to make sure that after two TDDs
have been contracted, the resulting TDD is not used again until
all other TDDs have been involved in some contraction. In
practice, this can be done by putting all tensor network edges
into a queue and contracting over one edge at a time. The
remaining edges that are attached to the resulting TDD are
then moved to the back of the queue.

G. Contraction Heuristic Overview

This section introduces four different contraction planning
heuristics in addition to the two cotengra contraction heuristics
introduced in Section II-F.

NN-based Handcrafted
Windowed-N Lookahead
Tree Search EMIT

Table 2: Overview of the different contraction planning heuristics
introduced in Section III.

Table 2 shows which heuristics use neural network models
and which do not. The principles behind each of them are
outlined in the following:

• Windowed-N: Using the TDD size prediction model to
make predictions and choose the smallest one in discrete
windows.

• Tree Search: A weight function based on the TDD size
prediction model is used for probabilities to make multiple
possible plans.

• Look-ahead: Performing all available contractions and
proceeding with the one that yields the smallest result.

• EMIT: Tensor network edges are added to a queue
after each contraction to have contractions spread out
throughout the tensor network.

IV. RESULTS

To compare the efficiency of the proposed methods, several
experiments are performed on well-known quantum circuits
from a third-party benchmarking tool, MQT.BENCH [18]. The
different methods are compared in terms of the time it takes
to perform planning and contraction during quantum circuit
equivalence checking on the selected circuits. Equivalence
checking may fail if the space requirements of the contractions
are exceeded, or if the equivalence result contradicts the ground
truth. For all experiments, the space limit is naturally enforced
by the computational power available. Failing by the wrong
result is caused by implementation issues later discussed.

First, this section discusses the setup used for experimen-
tation. Second, a comparison between the proof-of-concept
Python implementation and the new C++ implementation is
performed. Third, models are trained and evaluated, and then
different models varying in the type of training data used
are subsequently evaluated using the Windowed-N heuristic.
Fourth, a comparison between the Windowed-N heuristic where
the window size is varied is performed. Fifth, the tree search
method is evaluated using different sample metrics. Sixth,
the Lookahead heuristic is evaluated and compared to the
Windowed-1 heuristic to see the effect of using actual sizes
instead of predictions. Finally, the best heuristics, including
the EMIT heuristic, are compared against the state-of-the-
art equivalence checking tool Quantum Circuit Equivalence
Checker from Munich Toolkit (QCEC) [3].
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A. Experimental Setup

The implementation for the proposed methods is divided
into a Python repository and a C++ repository. As shown
in Figure 10, the C++ repository is mainly responsible for
contractions and the planning heuristics that are used during
contraction. Since some of the proposed contraction plan
heuristics are implemented only in Python, the C++ repository
is compiled into a library file, which is then loaded and run by
Python. This allows Python-based planning heuristics to still
utilise the faster contractions provided by the C++ repository.
Contractions of TDDs in both Python and C++ are based on
the implementations found at Veriqc/TDD and Veriqc/TDD C,
respectively. The implementations developed for this thesis can
be found at Simonbolsen/P10 and ChBLA/TDDLinux for the
Python and C++ implementations, respectively.

Control

Python C++

Cotengra

Python 
Contraction

Tree Search

C++ 
Contraction

EMIT

Windowed-N

Lookahead

Identity
Checking

Identity
Checking

Planning

Contraction

Identity
Checking

Fig. 10: Overview of the implementation and how the contraction
planning heuristics are distributed between Python and C++. It is also
shown how the Windowed and Lookahead heuristics are used during
contraction.

To ensure comparable results with other research performed
on the same topic of quantum circuit equivalence checking,
the benchmark tool MQT.BENCH [18] is used. MQT.BENCH
implements several established quantum circuits of varying
difficulty and size. Additionally, the RandomEqv circuit is
used, which is a random circuit where the number of gates is
sampled from Gaussian distribution and gates are uniformly
chosen from 12 different gates. Table 3 shows the circuits
used as benchmarks. The provided circuits are scalable with
regard to the number of qubits. This allows comparison of
the same circuit but for an increasing number of qubits to
estimate the complexities of the methods. MQT.BENCH also
provides compilers such that the circuits can be expressed at
four different abstraction levels. These abstraction levels are
algorithmic, target-independent, target-dependent native gates,
and target-dependent mapped, as ordered from most to least
abstract.

For equivalence checking, two circuits are needed. Since
these should be equivalent, the two circuits represent the same
quantum algorithm but at different abstraction levels. We select
the algorithmic layer and the target-dependent native gates
layer for the evaluation.

Simple Circuits Advanced Circuits

DJ QFTEntangled
GHZ RandomEqv
GraphState RealAmpRandom

WState

Table 3: The benchmark circuits used for the experiments from
MQT.BENCH. They are split into Simple Circuits and Advanced
Circuits based on a stark difference in the number of qubits it is
possible to scale the circuits to.

For a baseline comparison of contraction planning, the state-
of-the-art tensor network contraction planning tool Cotengra [8]
is used. Particularly, the two contraction planning heuristics
Random-Greedy and Betweenness supplied by Cotengra are
used, as these seemingly are the best performing of the Cotengra
methods for the setup used in this thesis. Additionally the
heuristics discussed in Section III are also used.

All experiments are run using Python 3.9, CUDA 12.1,
and C++17 on Ubuntu 20.04. The computer used has 20
GB available memory, an AMD Ryzen 5 1600 CPU, and
an NVIDIA GeForce GTX 1060 6GB graphics card.

B. Comparing Python and C++ Implementations

As to increase the performance of the contraction part of
the equivalence checking method, a C++ implementation is
developed based on a pre-existing repository by Hong et. al [12].
The C++ implementation is evaluated and compared to the
Python implementation to ascertain how much faster it is.

To properly evaluate the difference between Python and C++
regarding contraction, the same setup is used for both. The
Betweenness heuristic is used for both Python and C++ as it
is deterministic.

Fig. 11: Comparison of the total time spent on contracting all TDDs of
the circuit in a log-scale between the Python and C++ implementations
on DJ, GHZ, and GraphState. The evaluation starts at 6 qubits and
goes up to 256 qubits with 10 qubit steps.

As seen in Figure 11, the C++ implementation is consistently
faster at contracting than the Python implementation. For DJ
the C++ implementation is 3-5 times faster, for GHZ C++ is
consistently 10 times faster than the Python implementation,

https://github.com/Veriqc/TDD
https://github.com/Veriqc/TDD_C
https://github.com/Simonbolsen/P10
https://github.com/ChBLA/TDDLinux
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Fig. 12: Comparison of contraction time in a log-scale between
the Python and C++ implementations on WState, QFTEntangled,
RandomEqv, and RealAmpRandom. The evaluation starts at 3 qubits
and goes up to 17 qubits for WState, 11 qubits for QFTEntangled
and RandomEqv, and 7 qubits on RealAmpRandom.

and for GraphState the C++ implementation is 10-100 times
faster than the Python implementation.

In Figure 12, the contraction times in a log-scale for WState,
QFTEntangled, RandomEqv, and RealAmpRandom can be
seen. While the C++ implementation is still typically faster,
there is a lot more variance in the contraction times compared
to the results in Figure 11. The C++ implementation appears
to be between 3-100 times faster depending on the number of
qubits and the circuit in question.

Finally, it can be seen from the results in Figures 11 and 12
that the C++ implementation provides a speed-up by a factor
of 3-10 for most circuits and, for a select few, upwards of a
100 times speed-up. Consequently, the C++ implementation of
TDD contractions is used for the remaining experiments.

C. Tensor Prediction Model

Training a model to predict the size of TDDs resulting
from contraction requires training data with the actual sizes
of the resulting TDDs. To obtain the training data and prevent
overfitting on the benchmark circuits, random circuits are
constructed and are contracted with the Random-Greedy
Cotengra heuristic. Every contraction is then recorded and
compiled into a dataset with the format used by the model,
see Section III-A.

The random circuits the dataset is made from are constructed
with 8 to 20 qubits and a few hundred additional circuits with
up to 50 qubits. For each circuit, the amount of gates used
is sampled from a Gaussian distribution. Then each gate is
sampled from 12 different gates and placed on a uniformly
chosen qubit. The gates are biased towards 2-qubit gates so
that all qubits remain connected.

In total, there are 15, 685, 055 contractions generated from
the random circuits of which the dataset consists of the
2, 660, 957 unique data points. The dataset is split into a 10%
validation set and a 90% training set.

Hyper Parameters Values

Depth 10
Embedding Size 64
Learning Rate −2.9
Dropout Rate 1.59 · 10−3

Table 4: Hyperparameters for the TDD prediction models.

The variations of the tensor prediction models are trained
with the Adam optimiser, the mean squared error loss function,
a batch size of 2048, and an early stopping mechanism
after 20 epochs without improvement. Table 4 shows the
hyperparameters used for the models unless something else is
stated. The hyperparameters were tuned on the validation data.

During training, learning rate decay is used. As seen in
equation 32, the learning rate tends towards 10−2.9 as the
number of elapsed epochs increases.

𝑙𝑟𝑑𝑒𝑐𝑎𝑦 (𝑙𝑟, epoch) = 10𝑙𝑟+𝑎

where 𝑎 =
20

25 + epoch2 (32)

Figure 13 shows how the amount of training data used
impacts the validation loss. The model approaches a validation
loss of 1. As loss is measured as mean squared error and all
predicted TDD sizes are on a 𝑙𝑜𝑔2 scale, the error on TDD
size predictions is a factor of two. It is also seen that the
variation in validation loss decreases dramatically between the
three runs as the amount of data increases. This shows that
the models trained on the full dataset are consistent in their
training. The full dataset is also what is used hereafter unless
explicitly stated otherwise.

Fig. 13: Validation loss of the tensor prediction model by the amount
of training data. Three runs are shown for each amount of data. The
entire validation set is used for each run.

Figure 14 compares the predictions of the best-performing
run from Figure 13 to their actual sizes. From this, it is clear
that even if the circuits are constructed with up to 20 qubits,
most contractions will be between smaller TDDs. Note that
the maximum log size of a TDD is its number of indices.
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Fig. 14: The predicted sizes by the actual size on validation data
using the best-performing model on the entire dataset.

D. Evaluation of Different Model Types

The Windowed-Max contraction planning heuristic initially
introduced in Section III-B, must be evaluated using the models
described in Section III-A and trained in Section IV-C. From
Section IV-C it is shown that the accuracy of the predictions
is on average off by a factor of two. Further, since the training
and validation data consists of both contractions which results
in larger and smaller TDDs than the operands, the final models
are also trained to predict both. However, when paired with
a greedy heuristic, accuracy in the prediction of large TDD
sizes may become less valuable, as the smaller predictions are
always prioritised.

The models evaluated here are different in the data that is
used to train them. Three variations of the model are introduced
here, where two of them has a bias towards being better at
predicting contractions that result in smaller TDDs. While the
overall amount of data decreases, the removed data may simply
reduce the accuracy where it is needed. As such, four models
are trained and evaluated with the Windowed-Max heuristic.
One model uses all data for training referred to as normal.
Another uses only contractions where the resulting size is less
than the smallest of the two TDDs contracted referred to as
biased. The third model uses all contractions where the size
of the resulting TDD is less than or equal to twice the size
of either of the two TDDs used for contraction referred to as
relaxed. The fourth model, reduced, is trained on a uniform
subset of the entire dataset with the same amount of data used
by relaxed.

Figure 15 shows the performance of Windowed-Max using
each of the three model types on the GHZ, DJ, and GraphState
circuits. From the results, reduced is outperformed by the other
models. Further, it appears that the biased model type is slightly
outperformed by the other two which are almost equally good.
The reduced model is trained on the same amount of data as
relaxed, but relaxed performs significantly better. As the only
difference between normal and reduced is the amount of data
they are trained on, it indicates that it may be advantageous

Fig. 15: Comparison of Greedy Prediction using normal, biased,
relaxed, and reduced models on circuits GHZ, DJ, and GraphState.

to bias the training data towards predictions of contractions
towards contractions yielding smaller results. However, to better
see the potential of the relaxed model type, significantly more
training data of that type is required.

For the purposes of the remaining experiments, the normal
model type is used as it performs slightly better than relaxed.

E. Tree Search

The experiments regarding tree search are presented in two
steps. First, the hyperparameter of the weight function is tuned.
Second, it is shown that the sample metrics from Definition 12
cannot be used to pick the best samples, and that tree search
therefore is not viable in its current form.

Tree search makes several samples and chooses the contrac-
tions in these samples based on probability distribution from
a weight function. The greedy weight function in Definition
11 has a parameter 𝛼 which controls how much weight to
assign to contractions based on the predicted size. The impact
of 𝛼 is shown in Figure 16 where it is demonstrated that the
sample metrics and the amount of time spent on making several
samples do not have an impact. The tree search heuristic is
given some amount of time to produce samples and will finish
the current sample when it runs out of time. In Figure 16
the runs that are given one second to plan produce a single
sample and those that are given 60 seconds produce 9 samples
to chose from. The two methods of choosing samples use the
sum and maximum of the predictions on chosen contractions
in the samples.

As the 𝛼 value increases, the sampling with the greedy
weight function comes closer to Windowed-Max and becomes
more deterministic. The increased randomness in runs with
lower 𝛼 values increases the variation between the samples.
Figure 16 shows that having several samples does not seem to
decrease contraction time, no matter how much variation there
is between the samples.

Because having several samples does not improve contraction
time, we conclude that the sample metrics are unable to pick
the correct samples. Figure 17 shows the two sample metrics,
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Fig. 16: The contraction time by the parameter 𝛼 of the greedy weight
function for three different versions of tree search. Evaluated on the
DJ circuit with 128 qubits.

Fig. 17: The contraction time by the sample metrics. Both metrics
are from the same contractions. As the metrics are on different scales
they are both visualised with their smallest value at 0% and their
largest value at 100%.

sum and max for 40 repeats of the same setup, with a single
sample each, 𝛼 = 2.0, and DJ with 128 qubits. It can be seen
that the sample metrics cannot be used to choose between
samples as they are independent of the contraction time.

Therefore, we find that the tree search heuristic for the cur-
rent model has no advantage over the other greedy heuristics.

F. Windowed-N Heuristics

As the Windowed-N heuristic varies how often the graph is
updated with actual values, it is relevant to evaluate what impact
it has on contraction speed. As such, the effect that window
size has on the time spent both contracting and planning is
evaluated. Here, the window sizes 1, 5, 20, and Max are used,
where Max is the length of the entire contraction plan.

Figure 18 shows the Windowed-N heuristic on the GHZ,
DJ, and GraphState circuits with different window sizes.

Fig. 18: Comparison on contraction time for the Windowed-N heuristic
on circuits GHZ, DJ, and GraphState with window sizes of 1, 5, 20,
and Max.

Fig. 19: Comparison on planning time for the Windowed-N heuristic
on circuits GHZ, DJ, and GraphState with window sizes of 1, 5, 20,
and Max.

Intuition suggests that the contraction time should increase
with the window size since more predictions rely on possibly
inaccurate previous predictions. However, as seen in Figure
18, there is no significant difference in contraction time for
the three window sizes 1, 5, and 20. Additionally, it appears,
counter-intuitively, that the Windowed-Max, which relies on
most previous predictions, performs the best with regards to
contraction time. As seen in Figure 19 there also appears to
be no significant difference in the planning time, ultimately
meaning that, for the window sizes used, the window sizes of
1, 5, and 20 perform similarly, and that the Windowed-Max
performs the best.

G. Lookahead

The alternative to using neural networks to predict the sizes
of the TDDs resulting from contraction is to compute the
TDDs and measure their sizes. This heuristic is referred to
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Fig. 20: Comparison of contraction time for Windowed-1 and
Lookahead on circuits DJ, GHZ, and GraphState on a log scale.

Fig. 21: Comparison of planning time for Windowed-1 and Lookahead
on circuits DJ, GHZ, and GraphState.

as Lookahead in Section III-E, as it computes all currently
available contractions and then greedily chooses the smallest.
The main concern for such a heuristic is the potentially
exponential cost of computing some contraction that could
otherwise have been avoided. The immediate benefits of such
a heuristic are that the actual sizes of contractions are known
and contractions on many TDDs can be performed fast, as
observed during previous experiments.

In Figure 20 the results of Lookahead and Windowed-1 are
shown with regards to the total contraction time. Windowed-1
is selected for comparison as it is the heuristic most similar to
Lookahead. The difference between Lookahed and Windowed-
1 is that Lookahead contracts the TDDs and measures them,
whereas Windowed-1 uses the TDD size prediction model. As
can be seen, the Lookahead heuristic consistently outperforms
the Windowed-1 heuristic, with roughly the same speed-up
achievable on each of the shown circuits.

Since Lookahead may suffer from exponentially difficult
contractions during planning, Figure 21 shows the time spent

Fig. 22: Comparison in sum of planning and contraction time for
EMIT, Cotengra Betweenness, and Cotengra Random-Greedy on
circuits GHZ, DJ, and GraphState.

planning for the same runs as Figure 20. Again, Lookahead
outperforms Windowed-1, especially so for larger circuits.
The potentially exponential contractions do not appear to
impede the Lookahead heuristic during planning. Similar
results are achieved for circuits WState, QFTEntangled, and
RealAmpRandom.

H. Comparison with State-Of-The-Art

Given the increased performance both from using a faster
implementation of contraction and also improving contraction
paths, it is instructive to compare the best performing runs
from the previous work with the now best performing methods.
Additionally, QCEC is included in the comparison, as it
represents the current state-of-the-art. However, to make the
results comparable, QCEC is configured such that it does not
perform optimisations and reductions using methods such as
ZX-calculus. It therefore only relies on its QDD-based checker.
Notably, QCEC does not itself report data on the time resources
of the equivalence checking, and there is no measurable way
to determine how much time is spent planning, contracting, or
on miscellaneous tasks. As such, the entire time QCEC spends
equivalence checking is recorded. The methods developed for
this thesis consider only time spent planning and contracting, as
these are the measurements that are being optimised. As such,
a direct comparison between QCEC and the other methods
may underestimate the performance of QCEC.

Figure 22 shows the performance on the combined time spent
planning and contracting on circuits GHZ, DJ, and GraphState
between EMIT and the two cotengra heuristics, Betweenness
and Random-Greedy. EMIT performs significantly better than
both cotengra heuristics, often 10 times better and for DJ with
many qubits more than 100 times better. Similar results are
achieved on the advanced circuits, which clearly shows that
EMIT is significantly better than the cotengra heuristics.

Figure 23 shows the performance of equivalence checking for
Lookahead, EMIT, and QCEC on DJ, GHZ, and GraphState
circuits. The QCEC outperforms Lookahead and EMIT on
DJ and GHZ, but fails to surpass 116 qubits on GraphState,
where both Lookahead and EMIT manage 256 qubits with no
problems. For GHZ it appears that EMIT performs better
than QCEC on circuits with more qubits, but since the
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Fig. 23: Comparison of the best performing heuristic against QCEC
in regards to the sum of contraction time and planning time on circuits
GHZ, DJ, and GraphState.

Fig. 24: Comparison of the best performing heuristic against QCEC
in regards to the sum of contraction time and planning time on circuits
WState, QFTEntangled, RandomEqv, and RealAmpRandom.

time measurement for QCEC potentially includes several
miscellaneous tasks, it is likely not entirely accurate. However,
EMIT does appear to scale better than QCEC, so the difference
may become more noticeable on much larger circuits. The
results show that EMIT is about 10 times faster than Lookahead,
which is mainly attributed to faster planning time.

Figure 24 shows the performance of equivalence checking
for Lookahead, EMIT, and QCEC on WState, QFTEntangled,
RandomEqv, and RealAmpRandome circuits. Compared to
Figure 23, the results are more inconsistent; however, it still
appears that QCEC is the best followed by EMIT. Lookahead
is worse than either except on QFTEntangled where it beats
EMIT by scaling to a higher number of qubits.

Since the methods appear to scale well on DJ, GHZ, and
GraphState, the limitations of the number of qubits are also
evaluated. It appears that the developed method, no matter
the heuristic, cannot exceed 667 qubits on GHZ, 266 qubits
on DJ, and 416 qubits on GraphState due to memory issues
when creating tensor networks. QCEC manages to exceed 2500
qubits for both GHZ and DJ, but as also seen earlier, does not
exceed 116 qubits on GraphState.

V. DISCUSSION

Several aspects pertaining to the results of the previous
Section IV are worth further discussion. These particularly
involve the training and performance of the neural network
models and the performance of the contractions. As these
aspects affect the overall performance of the evaluated methods,
addressing these may result in increased performance or a more
stable method.

A. Float Precision in TDD Contractions

The current C++ implementation used for contraction suffers
from floating point inaccuracy during contraction of TDDs. This
sometimes leads to incorrect results regarding the final TDD, as
some of the weights are not perfectly 0 or 1, but rather slightly
different. While this constitutes an implementation deficiency
and is not directly related to the methodology, it does affect
the results. Particularly, the circuits that use random parameters
for gates and many gates per qubit are affected by this, as the
inaccuracies propagate when contracting.

While the implementation allows the precision of floating
point operations to be specified regarding TDD contraction, no
one amount of precision works best for all circuits. As such,
different precision is required for different circuits, and often
one must try several to get the correct precision where the
correct result is yielded. For the purposes of evaluating the
heuristics, it is not detrimental, as it is known that the circuits
are equivalent and any result not agreeing with such can be
discarded. It does, however, mean that for some methods, there
are circuits that cannot be evaluated, as they consistently fail to
be proven equivalent due to no precision fitting those circuits.

Fig. 25: A TDD depicting the potential effects of imprecision regarding
floating point operations when contracting circuits. The TDD would
be identity if the 1.32 · 10−12 weight was correctly evaluated to 0.

Figure 25 shows a typical result (scaled down) of floating
point issues with regards to the resulting TDD of contraction
of two equivalent circuits. As can be seen, if the edge denoted
with a weight of 1.32 · 10−12 was instead 0, the TDD depicted
would be identity.
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Finally, the degree to which floating point issues affect the
contractions of a circuit appears to be connected to the path, as
some heuristics are more affected than others. It is not known
why some paths are more prone to floating point issues, but
finding and fixing the root cause for this may significantly
improve the stability of the contraction implementation.

B. Issues Regarding Data Generation

To train the neural network models, a significant amount of
data is needed. As the data needed must be contracted between
two TDDs with information on the resulting TDD for evaluation
purposes, actual contractions must be performed. In order for
the model to be able to predict accurately, it must be trained on
a large sample of TDD contractions. TDD contractions are not
only dependent on the circuit used but also on the contraction
plan used on said circuit. Given the strict need for performing
actual contractions in order to generate proper data for training,
there is a limit to the scale of the TDDs that can be generated
data for. Since TDDs scale exponentially in the worst case,
there is a computational limit with regards to the resources for
how large the resulting TDDs can be.

To further complicate the generation of proper training data,
both circuits and heuristics must be chosen, such that there is
as little overfitting for the circuits and heuristics used during
experimentation as possible. While the heuristic has some
bearing on the data generation, it is ultimately judged to not
be as important to keep different as the circuit, since enough
variation of the circuit should remove possible overfitting from
the heuristic. Since using any of the circuits also used for the
experiments may bias the models towards performing unjustly
well on some circuits, random equivalent circuits are used
for data generation. Though using random equivalent circuits
should remove any bias towards some circuits, it does mean
that the qubit limitation for circuits that can be contracted
is reduced, as the random equivalent circuits are difficult to
perform equivalence checking for.

The main issue with regards to not being able to increase
the number of qubits for the circuits for which data generation
is based on, is that the TDD structures are often very different
between the easier circuits with more qubits and the harder
circuits for which fewer qubits are possible. For easier circuits
with more qubits, the TDDs are typically tall but slim and with
many indices; both shared and not. The harder circuits with
fewer qubits are typically the opposite, where the TDDs are
wider in structure with fewer both shared and non-shared
indices. This effect is illustrated in Figure 26, where the
structure of the two portrayed TDDs are very different. Note
that the width of a TDD can be exponential in the height in
the worst case.

C. Neural Network Models

For the heuristics that rely on predictions to generate a valid
path, we trained and evaluated several neural network models
using different architectures and different amounts of data.
While several models are trained with varying structure, depth,
and data amounts, there are still unexplored models that may
perform better than the models used for experimentation.

1

1

Fig. 26: Depiction of a tall but slim TDD and a small but wide
TDD, respectively. The taller TDDs are more likely to occur during
contraction of circuits with more qubits, while the wider TDDs are
more likely to occur during contraction on more difficult circuits
which have fewer qubits.

The models used for experimentation are based on one
configuration of inputs extracted from the TDDs which are
to be contracted. Specifically, the gates, indices, and sizes of
the two TDDs are used along with the number of indices they
share. While this input format does prove to work, as seen
from the experiments, it fails to include information such as
gate parameters, TDD structure, and where in the TDDs the
shared indices are located. All this information may improve the
predictive power of the models if sufficient data is generated.

1) Parameterised Gates: Some circuits contain parame-
terised gates and the neural network model does not con-
sider these parameters when making predictions. Since the
parameters are real values and vastly change the effect of
gates depending on the actual value, the size of the resulting
contraction may vary greatly depending on the parameters used.
Consider for example the quantum gate 𝑅𝑥 (𝜃) which specifies
rotation around the x-axis. For two different parameters, the
transformation of the gate completely changes, as seen by:

𝑅𝑥 (0) =
[
1 0
0 1

]
, 𝑅𝑥 (𝜋) =

[
0 −𝑖
−𝑖 0

]
(33)

In the data on which the model is trained only a single value
is used for each parameter, meaning that all parameterised gates
of the same type are equivalent in the dataset. Some generality
is therefore lost compared to actual quantum circuits.

2) Expanding the Model: The main way to improve the
model is to give it more information about the TDDs and the
gates they are made up of. This information includes both the
position of shared indices in the TDDs and the parameters
of parameterised gates. The difficulty of expanding the model
to accommodate these is that they both consist of a variable
amount of information. In contrast to the current input vectors
of constant size, to use the additional data the model would
have to be able to take any number of shared indices positions
and any number of gate parameters.

3) Graph Neural Network: Initially, a graph neural network
was designed and trained to emulate a planning heuristic by
taking the structure of the tensor networks as input. This was
done with the eventual goal of using reinforcement learning to
go beyond existing heuristics. This approach was not pursued
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further as it was found that training and prediction were far
too slow to be viable.

Using graph neural networks on the graph structure of
TDDs may also make it possible to make more accurate size
predictions. This would likely also be considerably slower than
the current prediction model and it would not be possible to use
it for predicting further than one step ahead of contraction.

VI. CONCLUSION

This thesis looked at a quantum circuit equivalence checking
method using tensor network contraction plans with Tensor De-
cision Diagrams (TDDs). The thesis was built upon a previous
work of the same authors and further investigates the effects of
contraction plans for equivalence checking using TDDs. Where
the previous work used simple and pre-existing heuristics to
provide a proof-of-concept of the equivalence checking method,
this work focused on developing new contraction planning
heuristics. Previously regarded contraction planning heuristics
were not tailored to work well with TDDs, as there were no
considerations toward the sizes of the intermediate TDDs during
contraction. More practically, the previous experimentation was
done with a lacking implementation which greatly decreased
the performance of the then proposed methodology.

In this thesis, we addressed the reservations about the
previous paper. A new implementation was used, showing
between 3 and 100 times speed-up of TDD contractions. Neural
network models were designed and trained to predict the size
of a TDD resulting from a contraction. The trained models
often predicted within a factor of two of the correct sizes but
were seemingly not complex enough to predict when TDDs
become smaller by contraction. Despite the neural network
models lacking in predictive accuracy, the Windowed heuristics,
which utilises a prediction model to make greedy choices, was
comparable to state-of-the-art contraction planning heuristics
when doing equivalence checking using TDDs. Compared to the
existing cotengra heuristics it is found that our model-based and
handcrafted heuristics are faster. The EMIT heuristic combined
with the new C++ implementation has vastly improved the
equivalence checking method of TDD contraction and made it
competitive with the state-of-the-art equivalence checking tool
QCEC.

A. Future Work

While the neural network heuristics do perform similarly
to the best cotengra heuristics for equivalence checking using
TDDs, there is still much potential to further improve on both
the models and the heuristics. Currently, the neural network
models appear to be incapable of accurately predicting TDDs
where the operands are both larger.

One way to potentially increase the predictive power of
the neural network model is to include more information
regarding contractions. Adding additional information such
as the positions of the shared indices and the parameters of
parameterised gates may provide the necessary information for
improving accuracy.

Another aspect of the thesis that may be worth investigating
further is the current floating point imprecision, which, for
some circuits, results in wrongful results. One approach may
be to extend the TDD formalism with intervals as opposed
to the current floating point values. Such intervals may allow
some uncertainty to be represented both from noisy quantum
gates and floating point imprecision in any implementation.

The queue heuristic also has unexplored potential in how
tensor network edges are added to the queue. Currently, these
edges are added indiscriminately and their order comes down
to implementation. Alternatively, mechanisms could be used
to favour TDDs with fewer indices.
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