Summary

Autonomous swarm exploration is an important
problem, having applications in space exploration
& search and rescue, among others. Being able to
coordinate groups of robots to explore unknown
areas with unknown layouts and obstacles in an
efficient manner is difficult, and requires novel solu-
tions in both algorithm and communication design.
Many algorithms using various strategies, includ-
ing information gain, distance based, spiraling and
backtracking, and animal heuristics have been at-
tempted. We attempt a new direction, using human
heuristics, that being the intuitive and natural way
a human might chose to explore an area.

Similarly to Spiraling and Selected Backtracking
(SSB), one of our algorithms, named Minotaur, spi-
rals around the edge of rooms, and then continues
to explore that same room until every part of it
has been seen. As it explored around the edges of
a room, it marks the doorways it finds, or what
constitutes for doorways in environments that are
not entirely room-like, and notes these doorways
as being unexplored. On finishing the exploration
of the room it is in, the robot will then move to
the nearest doorway that can be accessed from
within its current room, if available. If there are no
unexplored doorways in the room, it will go to the
nearest unexplored doorway anywhere on the map,
and continue its exploration efforts from there.

Thus, it will explore the map room by room, going
to the nearest unexplored area whenever available.
This reduces redundant movement by ensuring that
all rooms are finished before the robot leaves them,
avoiding the problem of having to go back to pre-
vious sections to finish exploration of smaller areas
that were missed the first time around. The sim-
plicity of the spiral movement, and this reduction
of redundancy, are the primary drivers of the speed
increase that is seen over previous exploration algo-
rithms.

All of this is the case for just a single robot exploring
an environment, and is fully capable of explor-
ing complex environments. When multiple robots
are used to explore environments collaboratively,
the robots move in much the same way, spiraling
around the edges of the rooms and marking door-
ways. As they do this, they regularly share their
maps with each other, allowing for more efficient
exploration, as robots can walk side by side, one
exploring along the wall, the others exploring fur-
ther toward the center of the room.

This behavior is emergent from the nature of the
algorithm, and has not been specifically designed
or made to happen. Further, as doorways are dis-
covered, an auction begins, where robots in the
room send their distance to the new doorway, and
half of the available robots leave to explore the
adjacent room, leaving the other half to finish the
current exploration. This causes the robots to split
up further, and earlier, allowing for more parallel
exploration.

All of this has been implemented in the MAES
simulator, running on Unity, and experimenting
extensively with various configuration of settings,
on a large variety of maps of different sizes. For
comparison, the same experiments have been run
with The Next Frontier (TNF) algorithm, an infor-
mation gain frontier focused algorithm, as well as
another of our algorithms, a greedy algorithm with
map sharing capabilities called Greed. The results
show a large improvement over TNF on all but the
smallest maps, where TNF moves quite efficiently to
unseen areas in direct reach of it. The speed increase
on all other maps is large, with Minotaur being
upwards of 2 to 4 times faster in nearly all cases.

The Greed algorithm, on the other hand, is in
many cases just as fast or even slightly faster than
Minotaur. The complexity of maps, with a generous
exploration requirement to finish allows the sim-

plicity of Greed, especially with the emergent be-
havior created by communication, to be very fast. In
some maps, particularly large and more open maps,
and with line of sight communication, Minotaur is
faster, owing to the speed of the wall following
and the efficiency of the central spiraling and the
lack of redundancy since corners are covered more
consistently than Greed can manage.

With these positive results, the Minotaur algorithm
has proven itself useful in exploration efforts, in
accordance to the simulations. While more testing
and experimentation is always useful, especially on

real robots in real environments, we believe that
the Minotaur algorithm is functional and applica-
ble for use in real world scenarios, as a fast and
efficient method of autonomously exploring areas
using multiple robots, with the Greed algorithm
providing a simplified alternative with very similar
speed when using few robots.

The code is released open-source on https://github.
com/Molitany/MAES with the experiments and
implementation of other algorithms. A demo can
be seen here https://youtu.be/ginVm46Ezd0.

https://github.com/Molitany/MAES
https://github.com/Molitany/MAES
https://youtu.be/gjnVm46Ezd0

§ Spiralling Human Heuristics Exploration

with doorway detection
The Minotaur Exploration Algorithm

Rasmus Borrisholt Schmidt, Andreas Sebastian Serensen, Thor Beregaard

Software/Datalogi, cs-24-ds-10-04, 2024

AALBORG UNIVERSITY
STUDENT REPORT

Software
Aalborg University
https:/ /www.aau.dk/

Title:

Spiraling Human Heuristics Exploration with
doorway detection - The Minotaur Exploration Al-
gorithm

Project:

Master thesis

Project period:
January 2024 - June 2024

Project group:
cs-24-ds-10-04

Participants:

Rasmus Borrisholt Schmidt
Andreas Sebastian Serensen
Thor Beregaard

Supervisor:

Michele Albano
Page Numbers: 16

Date of Completion:
May 31, 2024

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the authors.

Abstract

Exploration of unknown environments is im-
portant for the versatility of autonomous robot
swarm systems. The faster they can fully explore
an area, the faster a coordinated plan can be
made, or points of interest found. This has appli-
cations in fields like space exploration and search
and rescue.

Previous algorithms have often focused on fron-
tier based, or nature-inspired heuristics. We
present a human-heuristics based exploration al-
gorithm, Minotaur, that enables simple and effi-
cient exploration of static buildings.

The algorithm follows walls to discover rooms
and doorways, after which it follows the previ-
ously explored area as marked on a SLAM map.
On finishing exploration of a room, robots con-
tinue through the nearest unexplored doorway.
Multiple robots share these maps and doorways,
and can communicate to split up during their
exploration efforts to reduce redundant explo-
ration, while enabling fast exploration through
both designed and emergent behavior.
Comparative experiments have been run in the
MAES simulator, comparing with both TNF and
a greedy approach. These show an improvement
over the previous algorithms, particularly when
the algorithms are limited in their communica-
tion.

Minotaur spends about 1/2 to 1/4 of the time
to explore a map compared to TNF, while being
slightly faster than Greed in some cases. There is
a clear trend for more agents to further improve
the speed of Minotaur in comparison to Greed,
showing the applicability of Minotaur in systems
using a large amount of robots.

Contents
I Introduction

II Related Work

II-A MAES
1I-B CME
II-C INF
II-D SSB
II-E Human Heuristics

II Methods
III-A Minotaur Algorithm
I11-B Greed algorithm

IV Design & Implementation

IV-A Spiraling implementation
IV-B Doorway implementation
IvV-C Deadlock prevention

V Experiments

VI Results
VI-A Minotaur Slowdowns

VII Conclusion

VIII Future Work

VIII-A Testing on cave maps
VIII-B Real Robots
VII-C Testing against more algorithms . .
VIII-D Extend to 3 Dimensions

VIII-E Minotaur in heterogeneous swarms
Bibliography
Appendices

Appendix A: Testing
A-A Unit tests

Appendix B: Development Process

Appendix C: Experimental Data

N NN = ==

AN W N

O o O &

10
10

14

14
14
14
14
14
15

15

I. Introduction

Robot exploration is a common problem in swarm
robotics, with applications in search & rescue, fire-
fighting, emergency response, and space- and un-
dersea exploration. [1] Much work has been pro-
posed regarding various exploration algorithms to
solve this issue, some inspired by animals [2] [3]
[4] [5], some using frontier exploration [6] [7] [8],
and some using various mathematical concepts [9]
[10]. Many of these rely on unrealistic expectations
like global communication or a fully discrete en-
vironment [11]. Furthermore, some over-complicate
the issue, and introduce systems that can result in
occasional deadlocks because of issues with the way
decisions are made on the map, and a lack of fall-
back options.

In a bid to remedy this issue, we propose the
Minotaur exploration algorithm, a human heuristic
based algorithm. Inspired by common ideas for ex-
ploring mazes, such as keeping to the right wall, it
further expands to groups of robots with an efficient
communication scheme that keep the robots apart
to avoid redundancy.

The robot explores along the nearest wall, at a little
less than their maximum vision range, detecting
doorways on the way. If there are multiple robots,
half of the robots in the room will enter the
discovered doorway, and explore from there,
spreading throughout the map. When an explored
area is seen, robots follow the explored area
similarly to the initial following of the walls. The
robots continuously communicate their maps and
marked doorways, to limit redundant movements.
When a robot finishes the exploration of a room,
it moves to the nearest unexplored doorway that
can be reached without passing another doorway,
and thereby entering a new room. If there is no
such doorway, the robot moves through the nearest
unexplored doorway, even if it has to move through
a previously explored doorway.

The code is released open-source, and is available
at https://github.com/Molitany/MAES

The paper is organized as follows: section II
describe the related works, section III details the
methods used and the specifics of the algorithm
and pseudocode. section IV shows the design
as written in the simulator and implementation
details. In section V the experiments are described,
and their data is presented and discussed in
section VI, while section VII will conclude on the
paper and section VIII provides suggestions and
ideas for future work.

II. Related Work

A. MAES

Multi Agent Exploration Simulator (MAES) [12] is
a swarm robot simulator similar to Gazebo [13]
and ARGOS [14], given that they can be used for
exploration algorithms and have ROS2 [15] support.
The benefit of using MAES is that it does not require
a lot of the overhead that the others have. Without
having to focus on details, the algorithms can take
full focus.

Further, MAES has the support for creating trans-
mission models dependent on distance and walls
passed through, while also supporting attenuation
based communication. MAES utilizes the Unity en-
gine for visualization and generation of the maps,
as well as handling the robots and creating tem-
plates for the simulation.

B. CME

One of the backbones of robot exploration is Co-
ordinated multi-robot exploration (CME), often re-
ferred to as Near-Frontier Exploration (NFE). [6]
It is a simple frontier-based algorithm that sets
values to the occupancy grid, with the cost to each
cell being the distance of the robot to the cell.
It also uses a utility factor, where the robot will

https://github.com/Molitany/MAES

consider the destination of other robots and choose
its destination away from others destination. CME
is the basis point for MinPos [7] that in turn is the
comparison of The Next Frontier.

C. TNF

The Next Frontier (TNF) [8], is an exploration
algorithm designed to use information gain and
distance cost as a basis for autonomous swarm ex-
ploration. It is inspired by MinPos. [7] TNF utilizes
two parameters, an alpha and beta value, where
alpha prioritizes frontiers further away and beta
prioritizes frontiers closer to the agent. The alpha
and beta values ratio decides which frontier to
prioritize, this being the distance factor.
Furthermore, the information factor creates a win-
dow around cells and uses the occupancy grid to
see if there are new places to explore, assigning
a value to each tile of the occupancy grid. Lastly,
there is the coordination factor which creates a
negative wavefront from nearby robots, and lowers
the possible information gain of frontiers near them,
causing the robots to split up further. These three
factors get combined into the utility factor for each
tile. The tile with the highest utility factor is the one
the robot moves to.

D. SSB

Spiraling and Selective Backtracking (SSB) [16], is a
modified coverage algorithm of BSA-CM [17] [18],
using spiraling patterns. With expectations of global
communication and discrete grid-based movement,
SSB spirals through known areas and updates other
robots of the covered space and the nearby uncov-
ered tiles it reserves for backtracking.

The backtracking is used to find new uncovered
areas to spiral out from, and uses an auction mech-
anism to decide which robot should go to each
backtracking point. If no backtracking point is avail-
able, or if the robot did not win any auction for a

cs-24-ds-10-04

backtracking point, an auction is instead done for
the nearest unvisited point. As the robot spirals and
creates backtacking points, it reserves the points of
the spiral and backtacking, and broadcasts them to
other robots, limiting their movement in an attempt
to reduce redundant movement.

E. Human Heuristics

These previous algorithms are generally based on a
specific idea of exploration, or finding the greatest
gain. These are very mathematically focused, but
another approach is to instead attempt a more
intuitive approach, and explore in a way that makes
sense to humans, with a simple idea of the priorities
that should be used, and then following those. This
is the idea of human heuristics, using the ideas of
humans to aid in exploration. Human heuristics are
used in various tasks in robotics [19] [20].

An example of human heuristics is An Efficient
Robot Exploration Method Based on Heuristics Bi-
ased Sampling [21]. They utilize computer vision
with human heuristics to detect where doors are
to separate rooms apart. Furthermore, it prioritizes
finishing exploring the current room before pro-
ceeding to the next.

In our case, the exploration heuristic means explor-
ing the environment one room at a time, noting
down the exits for later, and then simply going to
the closest unexplored exit when the current room
is fully explored. Since no knowledge of future
rooms is known, simply going to the closest one
is the fastest known choice to explore more.

II1. Methods

Here we will describe the main contributions of this
paper: The Minotaur algorithm, with detailed ex-
planations and pseudocode, and the derived Greed
algorithm.

Page 2 of 16

A. Minotaur Algorithm

To explain the algorithm, we will initially go over a
constrained version for a system with only a single
robot. This will be expanded to show the full multi
robot behavior, with smaller black-box functionality
around doorways that are then described in their
own sections, all together creating the full algo-
rithm. These sections are described as follows:

Single Robot Behaviour Handles the base behav-
ior and complete exploration capabilities of a
robot exploring alone

Multi Robot Behaviour Handles base behavior,
communication and cooperation to allow for
multiple robots to explore areas together

Doorway Detection A subsystem used by both
Single Robot Behavior and Multi Robot Behav-
ior to detect and mark doorways, to enable ef-
ficient movement between rooms, and locality
prioritization

Doorway auction Subsystem used by the multi
robot exploration that handles the communi-
cation about newly discovered doorways and
the auction that happens to negotiate sending
robots through the doorway to explore multi-
ple rooms at once.

1) Single robot
The single robot algorithm fully explores areas
without using communication or sending other
robots through doorways. It explores along the wall
nearest to the insertion point when there is one,
otherwise it will move until it finds a wall, following
it along bends and turns, marking doorways that fit
the parameters.
After covering all walls in a room, it will explore
the center of the room in a spiral pattern, until
everything is explored. If it is, then it will enter
the nearest unexplored doorway in the room, and
continue the exploration from there, returning to
unexplored doorways in previous rooms if none can
be found in the new room.

cs-24-ds-10-04

Optimizing the order of doorways further beyond
taking the closest is not possible, as nothing more is
known about the map than what the robot has seen.
The pseudocode for the single robot exploration can
be seen in Algorithm 1.

Algorithm 1 Minotaur Algorithm (Single)

1: Input

2: Visual range:
sensors

3: Initialize the Minotaur

: Check for nearby walls or explored areas in

visual range

: while No walls or explored areas are found do
Move forward

end while

: while Map is not explored do
while Unexplored area is reachable without

passing doorways do

10: if Doorway found then

11: Store the doorways, stay in the room
and continue exploring along next wall

12: end if

Radius of robot

'S

O NN @

13: if Wall or explored area in visual range
&& unexplored area ahead then

14: Follow wall or explored area counter-
clockwise at max visual range

15: else

16: Move to the nearest unexplored area
without passing doorways

17: end if

18: end while

19: if Unexplored doorway accessible without
passing other doorways then

20: Move through the nearest unexplored
doorway within room

21: else

22: Move through the nearest unexplored
doorway

23: end if

24: end while

2) Multiple robots

The methodology for multiple robots is very similar
to the single robot, though with more steps required
to make efficient use of all the robots. Following
Algorithm 2 half of the robots (rounded down) ex-

Page 3 of 16

Algorithm 2 Minotaur Algorithm (Multi)

1: Input
Visual range: Radius of robot

sensors

3: Half move to local right, rest to local left

4: while No walls are found do

5: Continue moving in given direction

6: Broadcast map, including walls, explored
area, doorways and robot locations

7: end while

8: Half of group go clockwise, half counter-
clockwise

9: while Map not explored do

10: while Unexplored area is reachable without
passing doorways do

11: Broadcast map, including walls, explored
area, doorways and robot locations

12: if Doorway found (Algorithm 3) then

13: Store and handle doorway (Algo-
rithm 4)

14: Half of doorway group go clockwise,
half counter-clockwise

15: end if

16: if Wall or explored area in visual range
&& unexplored area ahead then

17: Follow wall or explored area counter-
clockwise at max visual range

18: else

19: Go to the nearest unexplored area
without passing a doorway

20: end if

21: end while

22: if Unexplored doorways exists then

23: Cross nearest unexplored doorway

24: else

25: Go to the nearest unexplored area

26: end if
27: end while

plore around the rooms in one direction, the others
in the other direction, to quicker find doorways.

As they do this, and while they do anything, they
broadcast their slam-map and any found doorways
for other robots to add to their own maps. On
finding a doorway, the robot marks it, and starts
an auction with all the robots it can communicate
with. They respond with a bid for entering the

cs-24-ds-10-04

doorway, equal to the distance of their path to that
doorway, so long as they can get there without
passing another doorway. This ensures that no robot
spends time moving to a doorway far away, and that
all room that have started being explored also get
finished. This is further described in Algorithm 4.
Some of this is inspired by SSB [16], particularly the
spiraling movement, and the auction mechanism to
decide which robot goes to important locations.

3) Doorway detection

When the robots see a wall, they will check if it is
possible that it contains a door. This depends on
whether there is a single wall or multiple walls. If
there is a single wall, then when the robot finds a
gap in the wall, it will continue along the direction
of the wall as far as the door width parameter.

If there are multiple walls, then the robot will create
intersection points between the walls as infinite
lines. If these intersection points have been seen,
are non-solid, and wide enough to make a doorway,
then it is a door.

@ e O

(o) s

Figure 1: Base cases for the doorways

The different possibilities for potential doorways
can be seen on Figure 1. Where the first case is a
single wall, so the robot continues across the wall
until it sees it continue. In the second case there is
a door in the corner separating two rooms, where
in the third case there is not. The fourth case is a
hallway where the walls will never intersect.

Page 4 of 16

Algorithm 3 Doorway detection

—_

: Input
2: Visual range:
sensors
3: Doorway width:
is
4: Output
Doorway
doorways found or nothing

: if Wall ends/stops then

move forward doorway width

if Wall continues after doorway width then
Mark doorway and direction seen from

10: end if

11: end if

12: if Two walls in vision area then

13: Store the wall points

14: Continue vision range forward

15: Store the new wall points

16: Create lines along wall direction between the
points

17: if Lines intersect && distance between wall
points greater than robot size then

18: Find intersection point of lines

19: Move towards intersection point until it
is explored

20: Create line segments between wall points
and intersection point

21: if Robot size of line segments combined
length is open then

22: Mark doorway and direction door-
ways seen from

23: end if

24: end if

25: end if

26: if any doorways "seen" from both sides ||
doorway passed through then

27: Mark doorway as explored

28: end if

Radius of robot

How large a door

Collection of

9

o *® N

Lastly, there is a doorway at the fifth case where
two separate intersection points will be created, de-
pending on the approached direction. Algorithm 3
covers all of these cases.

Doorway detection is likely to be highly dependent
on the implementation environment, but similar
issues should appear in most map representations.

cs-24-ds-10-04

4) Doorway auction

When there are multiple robots that are able to
communicate with each other, they should be smart
about how they spread out. When a robot, Alice,
finds a door that has two robots, Bob and Charlie, in
their communication range, Alice should send out
a "doorway found" message, and if Bob and Charlie
receive the message, and are able to reach that
door without passing through another doorway,
then they respond with their distance to that door.
Afterward, Alice tells the half of the respondents
who have the lowest bid to proceed through that
door with Alice. If only Bob answers the doorway
found message, then Alice will go through the
door alone, leaving Bob to finalize the previous
room. However, if neither Bob nor Charlie sends
an acknowledgment, that means that Alice is alone
in the room and Alice will then finalize the room
by themselves. This is formalized in Algorithm 4.

Algorithm 4 Doorway auction

1: Communicate doorway location
2: if Receiving robot can reach the doorway on the
same side without passing any doorway then
Receiving robots give ACK and distance
end if
. if Half of Available > 1 then
Command other robots to follow through
doorway
: else if Half of Available == 1 then
Move through doorway
9: else
10: Pass Doorway and continue exploring room
11: end if

D Gk @

® N

Algorithm 4 is also visually explained on Figure 2,
where green areas are unexplored, the colored dots
are robots, and the dashed lines are communica-
tion lines, with their color signifying whether they
respond with an ACK (green) or NACK (red). On
Figure 2 Pink finds a door and communicates to the
other robots in range. Cyan will be able to go to the
room.

Page 5 of 16

Figure 2: Communication scenario for Algorithm 4

Yellow cannot get to the door Pink is communicat-
ing about without passing another doorway, and
therefore replies with a NACK.

While Red technically can get to the door, it does
not know this, as the area between is unexplored.
From its perspective, it would have to backtrack
through multiple doorways to reach Pink, and it
therefore also replies with a NACK.

This ensures that the robots split up, but still prior-
itize fully exploring rooms. If the robots can always
expect previous rooms to have been explored, they
can leave rooms and mark the doorways explored
without issue. They can then continue exploring
along the unknown path, reducing redundancy and
improving parallel exploration capabilities.

B. Greed algorithm

When the Minotaur has no nearby unseen areas, or
unexplored doorways to go through, it will move
to the nearest unexplored tile anywhere on the map
and continue exploration from there.

This feature has been extracted into its own al-
gorithm, creating a greedy algorithm that always
moves to the nearest unexplored tile, and still com-
municates and shares its map with other robots.

cs-24-ds-10-04

This is similar to CME, but instead of being frontier-
based like CME [6], and only sharing locations, the
greedy algorithm works on the nearest unseen tile,
and shares the whole map, allowing more parallel
exploration, while still being very simple.

Due to its greedy nature, we have simply called
it Greed. Being a greedy algorithm, it is expected
to perform quite well, and perhaps be faster than
Minotaur in some cases, especially with few robots
since it does not have the limitations on its baseline
movement that is imposed on Minotaur to make
it follow walls. The difference is likely to be mi-
nor, since Minotaur should get an advantage by
avoiding some redundancy, and be faster with more
robots because of the auction system of multiple
robots. Experimental results showing this can be
seen in section VL

IV. Design & Implementation

A. Spiraling implementation

Unseen | Open Solid

Figure 3: Representations of the different tile statuses

The implementation of spiraling in the MAES simu-
lator relies on the overlaid grids on the SLAM map
that the robot creates during runtime and uses to
navigate. Each tile on this grid can have one of three
states, Open, Unseen and Solid, as can be seen in
Figure 3.

While following the wall on the initial exploration
of a room, it looks for solid tiles within its vision
range. The robot then creates lines along these solid
tiles that are continuing in the same direction, e.g.
there can be a line that continues in front of and
behind the robot. It decides which wall to follow by

Page 6 of 16

.De,;o

Unexplored ney; Explored
7 C,
<Unseen area o, Ul %(\%w area
<. <Unseen os
— Unseen Movement vecto
Moveme ‘
- Edge vector
e
Open N
Edge vector | ;{"S'c’” ob
ange
<0Open
Vision |
ob <«0Open
Range
& _

Wall 3¢

7.

o

Figure 5: Figure showing a robot following an explored area by
- utilizing an edge point and creating a perpendicular vector from
- o it to describe the movement vector.

Figure 4: Figure showing a valid wall due to having an unseen
where there presumably is a wall with edges and movement
vector based upon those edges.

checking if there are any unseen tiles in the line’s
direction where the wall might continue. If there
are none, it has already explored that wall.

When the robot has multiple candidate walls, it will
prioritize moving in the same direction that it is al-
ready moving. The robot will get the furthest points
it can see on the walls and make a perpendicular
vector in a forwards direction, pointing where it
has to move to next. This has been illustrated on
Figure 4.

If the wall stops, or turns away from the robot
without having a doorway, the robot will initially
lose track of it, but then see the turn and create a
new line, before following that around the bend.
When reaching the end of a confined area, like a
dead-end in a hallway, the robot will return to the
last seen area with unexplored tiles and continue

cs-24-ds-10-04

the spiraling pattern from there, allowing smooth
spiraling of complex layouts.

On completing the first lap around the edge of the
room, the robot will then start to spiral around
the edge of the previously explored area. This is
tricky, since as opposed to walls, edges between
explored and unexplored areas disappear when the
unexplored area in question is explored. Therefore,
the robot must use the fact that the explored area is
already in its SLAM map, to look ahead beyond its
own vision range and follow the edge there. A grid
2 tiles larger than its vision range in all directions
is used for this, following the edge similarly to
how the walls are followed. This is illustrated on
Figure 5.

If the robot is no longer surrounded by any unseen
tiles, it will move greedily towards the nearest
unseen tile in the map, found by searching the map
in a spiral pattern around the robot using a flood fill
algorithm. This allows the robot to fill in all holes
in the map automatically at the end of the spiral, if

Page 7 of 16

Wall Wall
& e
%%6 %G Gﬁ{'
‘ 74
£
Vision /,
/ Range
Movement vector

Vision
Range Wall wall

Figure 6: Doorway detection when seeing multiple walls. The left shows the state on detection of a potential door, and the right

shows the state after moving to check intersection point.

any such holes were to occur.

Having finished the exploration of a room, the
robot is now ready to enter the nearest unexplored
doorway and continue the exploration.

B. Doorway implementation

While the robot is moving to any destination, it
checks for doorways, unless it is moving towards
an intersection point or to a doorway that is already
found. These exceptions make sure that it does not
keep computing the same intersection point.

For a doorway with a single wall, as seen on
Figure 7, the robot sees that the next tile of the
wall is an open tile. When this happens, the robot
will add a distance equal to the doorway width
parameter to its next movement. The robot will then
be standing at the end of the movement vector and

cs-24-ds-10-04

will be able to see if the wall continues, and if
so, creates an intersection point between the walls.
Then it checks if that is a valid door, according to
the set parameters.

If there are two or more walls, the robot looks for
an intersection point between those, as can be seen
on Figure 6. When the intersection point is in the
unseen, as is likely to happen, the robot will go to
explore the intersection point. After the robot has
moved to see the point, it takes the closest points
to the intersection from the two walls that created it,
as can be seen on the two edge points on the right
state of Figure 6. With those two points, the robot
checks if they create a valid doorway, by once again
creating a central point and checking if the distance
corresponds with the doorway width parameter.
When the robot finds a valid doorway, it will check

Page 8 of 16

Wall
-
Movement vector
Dpen|
E Y
Corner move o
vector 4ec
N
Vision ce
obo
Range
Wall

Figure 7: Doorway detection when seeing a single wall.

if it already had the doorway in memory. It does
this by taking every tile the doorway is created from
and checking along that line, in the direction from
the robot to the door, tile by tile for the whole wall
width. Should any of the tiles coincide with another
doorway’s tile, then it is the same doorway and the
doorway is marked as explored, as it has been seen
from both sides.

C. Deadlock prevention

We have added deadlock prevention as a failsafe for
the robots. This is to make sure that no matter what,
the robots will always complete their simulations.
The deadlock prevention is triggered after 25 ticks
(2.5 seconds) of the robot not moving. After dead-
lock prevention is triggered, the robot will store
it’s current waypoint and try to greed out of its
location by going to the nearest unexplored tile in
the room. If there is no unexplored tile in the room,

cs-24-ds-10-04

then the nearest unexplored doorway, and if that is
not available either, then the nearest unexplored tile
anywhere on the map. Should the waypoint be the
same, it will go to a nearby open tile and try again
until it becomes unstuck.

V. Experiments

To determine the performance of Minotaur, we
conduct a series of experiments to compare Mino-
taur with TNF, as well as Greed, as defined in
subsection III-B. Each of the experiment are run on
maps of sizes 50 by 50, 75 by 75, and 100 by 100,
with 100 of each map size within each experiment
case. Each algorithm is tested with three different
types of communication enabled, namely, global
communication, material communication, and line
of sight (LOS) only communication. Furthermore,
the experiments also consist of varying amounts of
robots, namely 1, 3, 5, 7, and 9, running the same
algorithm. The robots are also tested with spawning
at a random point together, as well as spawning at
separate random points. Each combination of these
parameters are tested.!

These parameters are chosen to see the effect of
an increasing amount of robots on the exploration
speed on various maps sizes. On top of this, the
different forms of communication are chosen to see
if there is a noticeable impact on the different algo-
rithm with global communication when compared
to the more realistic communication through mate-
rials or line of sight only communication. Finally,
the different spawn positions are chosen to see the
potential impact of a single insertion point, and
comparing it to situations where multiple insertion
points are available.

With the use of Unity scenes for every experiment
type, all experiments can be easily reproduced by
building the project with the individual scene that
is intended to be tested. Since the experiment can

1Experiment code can be found at https://github.com/
Molitany /MAES/tree/experiments

Page 9 of 16

https://github.com/Molitany/MAES/tree/experiments
https://github.com/Molitany/MAES/tree/experiments

Parameter Value(s)
Timeout in Ticks 36000 (1 hour)
Vision range 7

. Global, Material,
Communication

and line of sight
1,3,5,7, and 9
50x50, 75x75,

Amount of robots

Map sizes and 100x100
Maps per size 100
Minotaur,
Algorithms Greed,
and TNF
Door width 2

TNF parameters alpha: 1, beta: 10
Randomly together,

and randomly separate

Spawn positions

Table I: Table describing the various experiment parameters.

take a long time, checks have also been put in place
that allow for execution to be interrupted during the
experiments, and restarted, with the seed returning
to the same position it was previously, without
having to rerun previously finished experiments.
Hardware specification of the experiment running
machines are not mentioned, as they are fully
independent of the experiment results. The only
measurement taken is the amount of ticks taken to
complete an exploration, and the only impact on
this that the performance of the CPU running it
has, is the computation time. All experiments are
run on Windows machines.

VI. Results

As can be seen in the graphs on Figure 10 and
Figure 11, the Minotaur algorithm is much faster
than TNF in all but a very small set of cases, and
comparable, if a little slower than Greed when not
using line of sight communication, or with few
robots. One-on-one Greed is faster than Minotaur,
but this is not too surprising, as Minotaur cannot
use its auctions to split up and gain an advantage
if alone, an aspect that is further examined in
subsection VI-A.

cs-24-ds-10-04

With global- and material-based communication,
the robots can communicate enough that they all
split into what can amount to a series of one-on-
ones between the algorithms, where again, Greed
wins.

With LOS communication, Minotaur can use its auc-
tioning more efficiently since it is already limited to
the room, and Greed does not gain an advantage
from being able to communicate constantly, allow-
ing the Minotaur to pull ahead. This is good for the
Minotaur’s prospects as an algorithm, since LOS is
the worst-case communication scheme.

Greed was expected to be very fast, with Minotaur
hopefully coming out on top in a few cases. Com-
plex maps would benefit from the earlier splitting
that the auction system in Minotaur allows for, and
from the backtracking avoidance Minotaur has by
fully exploring rooms.

Greed, however, appears to inherit many of the
emergent attributes of Minotaur, like exploring
rooms in lines along each other. Greed generally
moves quickly through the environment without
"wasting" time on some details that end up taking a
large amount of time for the Minotaur, as described
in subsection VI-A. This causes Greed to edge out
the Minotaur on some communication schemes or
with few robots, though only very slightly, and both
are still much faster than TNE

Further results about the comparison with other al-
gorithms can be inferred from previous experiments
run by other authors, as TNF was compared favor-
ably with MinPos [7], which was in turn compared
favorably with CME [6]. This indicates that both
Minotaur and the Greed version are faster than all
these previous algorithms by a large margin.

A. Minotaur Slowdowns

On Figure 8 the behavior of Minotaur and Greed
when moving into a corner can be seen. Greed
simply moves along the corner, finding the closest
area, and moving there. Minotaur instead comes

Page 10 of 16

Ma

Mg

"\,

(M2

(G

Wall
|

Figure 8: Minotaur exploring slower due to attempted doorway
detection in a corner

upon the corner, and when it sees the opposing wall
of the corner, needs to check if there is a doorway.
This causes it to move to M, much further toward
the wall than Greed ever does, before returning and
continuing its following of the wall. Over a large
map, with many corners, this causes a slowdown.

For Figure 9 the cases are similar, except there
is actually a doorway. The Greed algorithm once
again moves simply, and just enters the doorway,
exploring new space all the while. The Minotaur
once again sees the opposing wall, and moves to
M to see if there is a doorway. When the doorway
is detected, it moves away to M3 to continue along

cs-24-ds-10-04

Wall

@\A_Gx

162

Wall

Figure 9: Minotaur exploring slower due to multiple doorway
detection

the wall, marking the doorway. It then sees the
wall from a different angle, and creates a separate
intersection point, and moves to explore it, moving
to My. The robot discovers a doorway it has already
seen, dismisses it, and only then continues explor-
ing the room. These wasted movements all cause
slowdown, providing Greed an advantage in direct
exploration speed.

As can be seen on the Table II the Minotaur algo-
rithm is the fastest algorithm when utilizing 5, 7,
and 9 robots when the communication style is line
of sight. Furthermore, on Table III with the same
communication but spawning together results in

Page 11 of 16

T

36,000 S — |

10,000

Tick

—— greed-size-100-LOS-robots-1-spawnapart
—— greed-size-100-LOS-robots-3-spawnapart
1,000 —— greed-size-100-LOS-robots-5-spawnapart —
—— greed-size-100-LOS-robots-7-spawnapart
greed-size-100-LOS-robots-9-spawnapart
tnf-size-100-LOS-robots-1-spawnapart

T

tnf-size-100-LOS-robots-3-spawnapart
tnf-size-100-LOS-robots-5-spawnapart
tnf-size-100-LOS-robots-7-spawnapart
tnf-size-100-LOS-robots-9-spawnapart
- - - minotaur-size-100-LOS-robots-1-spawnapart
- - - minotaur-size-100-LOS-robots-3-spawnapart
- - - minotaur-size-100-LOS-robots-5-spawnapart
- - - minotaur-size-100-LOS-robots-7-spawnapart
minotaur-size-100-LOS-robots-9-spawnapart

100 | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100 110

Figure 10: Cactus plot over the various strategies with the configuration that uses a map size of 100, using LOS for communication,
and spawning apart.

cs-24-ds-10-04 Page 12 of 16

36,000 . S— |

T

10,000

Tick

—— greed-size-100-material-robots-1-spawnapart
—— greed-size-100-material-robots-3-spawnapart
1,000 —— greed-size-100-material-robots-5-spawnapart -
—— greed-size-100-material-robots-7-spawnapart

T

greed-size-100-material-robots-9-spawnapart
tnf-size-100-material-robots-1-spawnapart
tnf-size-100-material-robots-3-spawnapart
tnf-size-100-material-robots-5-spawnapart
tnf-size-100-material-robots-7-spawnapart
tnf-size-100-material-robots-9-spawnapart
- - - minotaur-size-100-material-robots-1-spawnapart
- - - minotaur-size-100-material-robots-3-spawnapart
- - - minotaur-size-100-material-robots-5-spawnapart
- - - minotaur-size-100-material-robots-7-spawnapart
minotaur-size-100-material-robots-9-spawnapart

100 | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100 110

Figure 11: Cactus plot over the various strategies with the configuration that uses a map size of 100, using material for
communication, and spawning apart.

cs-24-ds-10-04 Page 13 of 16

Minotaur being the fastest with 7 and 9 robots. As
mentioned, this is likely because the Greed robots
are faster individually, but the more robots using
the Minotaur algorithm, the greater the advantage
they get from the doorway detection and auction
mechanisms. This is further shown on Figure 10.
A notable result is that if the robots spawn apart
from each other, such as in a situation with multiple
possible insertion points during search and rescue
operations, the exploration gets significantly faster.
This effect is increased with the amount of robots, as
they will immediately be able to effectively spread
out and explore a larger area.

VII. Conclusion

We have created an efficient exploration algorithm
based on human heuristics, that can fully explore
unknown areas very quickly. The algorithm uses
simple ideas of wall following, following explored
areas, fully exploring rooms before leaving, and
exploring doorways.

To that, it adds an auction mechanism that causes
robots to split up when new doorways are dis-
covered to reduce redundant exploration as much
as possible, while exploring more in parallel, to
avoid many robots spending time down deep dead
ends. When no nearby doorways or unexplored
areas are available, it falls back to a single greedy
movement, going to the nearest unexplored tile.
This aspect has been extracted and used to create
the Greed algorithm, that retains the map-sharing
of the Minotaur.

Comparisons have been made with The Next Fron-
tier (TNF), and the extracted Greed algorithm.
Minotaur is 2 to 4 times faster than TNF while being
comparable with Greed. Particularly when using
line of sight communication, Minotaur outperforms
Greed as the amount of robots increase. This is
especially visible when 9 robots spawns together,
in which case Minotaur is 5.6% faster than Greed.

cs-24-ds-10-04

In general, the more robots are added, the better
Minotaur is compared to Greed, but both are al-
ways far better than TNF. With detailed pseudocode
and simple concepts, Minotaur should be imple-
mentable in a real world system. Minotaur is useful
for exploration of environments in the cases where
communication is limited to line of sight or where
many robots are used. Greed can be used with
small robot groups, or when better communication
is available, to great effect.

VIII. Future Work

A. Testing on cave maps

This implementation of the Minotaur algorithm has
only been tested on building maps, as the algorithm
was designed around common building features. It
would also be valuable to perform an experiment
to see if the algorithm performs well on cave maps.

B. Real Robots

While the algorithm shows promising results in the
MAES simulator, implementing the system on real
robots, and testing them on areas created in the
real world would likely present unique challenges
and show the applicability in the real world. With
realistic SLAM maps, sensors and communication,
the algorithm may perform differently.

C. Testing against more algorithms

We have tested against TNF and Greed, and have
good results compared with them. Testing with
other algorithms, and making more comparisons
with different methodologies, would provide a
clearer idea as to the Minotaur algorithm’s effi-
ciency.

D. Extend to 3 Dimensions

While 2D ground based exploration is useful, with
many robots still being on the ground with wheels

Page 14 of 16

or legs, expanding to 3 dimensions would allow the
algorithm to be used with aerial drones, mapping
out far more complex spaces. This would likely
require a different understanding of the SLAM
map, and possibly of the notion of exploration, and
the grazing of the robots would be much more
important to ensure fast exploration, especially if
the space is very large compared with the visual
range of the robots.

E. Minotaur in heterogeneous swarms

Many current exploration efforts are focused on
exploration with multiple types of robots, so-called
heterogeneous swarms, like airborne- and ground-
based robots. [22] Mixing the capabilities of mul-
tiple drones, and testing environment exploration
with different kinds of movement and obstacle
avoidance abilities would be an excellent proof of
viability for real life exploration efforts.

Bibliography

[1] J. P. Queralta, J. Taipalmaa, B. Can Pullinen,
et al., “Collaborative multi-robot search and
rescue: Planning, coordination, perception,
and active vision,” eng, IEEE access, vol. 8,
pp- 191617-191 643, 2020, 15SN: 2169-3536.

[2] G Nicola, N Pedrocchi, S Mutti, P Magnoni,
and M Beschi, “Optimal task positioning in
multi-robot cells, using nested meta-heuristic
swarm algorithms,” Procedia CIRP, vol. 72,
pp- 386-391, 2018.

[3] F Gul, I. Mir, W. Rahiman, and T. U. Is-
lam, “Novel implementation of multi-robot
space exploration utilizing coordinated multi-
robot exploration and frequency modified
whale optimization algorithm,” IEEE Access,
vol. 9, pp. 22774-22787, 2021. por: 10.1109/
ACCESS.2021.3055852.

cs-24-ds-10-04

[4]

[5]

(6]

[7]

(8]

[9]

(10]

F. Gul, I. Mir, S. Mir, and L. Abualigah,
“Multi-agent robotics system with whale opti-
mizer as a multi-objective problem,” Journal of
Ambient Intelligence and Humanized Computing,
vol. 14, no. 7, pp. 9637-9649, 2023.

E Gul, I. Mir, and S. Mir, “Aquila optimizer
with parallel computing strategy for efficient
environment exploration,” Journal of Ambient
Intelligence and Humanized Computing, vol. 14,
no. 4, pp. 4175-4190, 2023.

W. Burgard, M. Moors, C. Stachniss, and F.
Schneider, “Coordinated multi-robot explo-
ration,” IEEE Transactions on Robotics, vol. 21,
no. 3, pp. 376-386, 2005. por: 10.1109/TRO.
2004.839232.

A. Bautin, O. Simonin, and F. Charpillet,
“Minpos: A novel frontier allocation algo-
rithm for multi-robot exploration,” in Intelli-
gent Robotics and Applications: 5th International
Conference, ICIRA 2012, Montreal, Canada, Oc-
tober 3-5, 2012, Proceedings, Part 11 5, Springer,
2012, pp. 496-508.

R. G. Colares and L. Chaimowicz, “The next
frontier: Combining information gain and dis-
tance cost for decentralized multi-robot explo-
ration,” in Proceedings of the 31st Annual ACM
Symposium on Applied Computing, Pisa, Italy,
April 4-8, 2016, S. Ossowski, Ed., ACM, 2016,
pp. 268-274. por: 10.1145/2851613.2851706.
[Online]. Available: https://doi.org/10.1145/
2851613.2851706.

S. Mirjalili, “Sca: A sine cosine algorithm for
solving optimization problems,” Knowledge-
based systems, vol. 96, pp. 120-133, 2016.

J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in Proceedings of ICNN’95 -
International Conference on Neural Networks,
vol. 4, 1995, 1942-1948 vol.4. por: 10.1109 /
ICNN.1995.488968.

E. Beck, B.-S. Shin, S. Wang, T. Wiedemann, D.
Shutin, and A. Dekorsy, “Swarm exploration

Page 15 of 16

https://doi.org/10.1109/ACCESS.2021.3055852
https://doi.org/10.1109/ACCESS.2021.3055852
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1145/2851613.2851706
https://doi.org/10.1145/2851613.2851706
https://doi.org/10.1145/2851613.2851706
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968

[12]

[13]

[14]

[15]

[16]

[17]

and communications: A first step towards
mutually-aware integration by probabilistic
learning,” Electronics, vol. 12, no. 8, 2023, 1ssN:
2079-9292. por: 10.3390/ electronics12081908.
[Online]. Available: https://www.mdpi.com/
2079-9292/12/8/1908.

M. Z. Andreasen, P. I. Holler, M. K. Jensen,
and M. Albano, “MAES: a ROS 2-compatible
simulation tool for exploration and coverage
algorithms,” Artif. Life Robotics, vol. 28, no. 4,
pp- 757-770, 2023. por: 10.1007 /S10015-023-
00895-7. [Online]. Available: https://doi.org/
10.1007 /s10015-023-00895-7.

N. Koenig and A. Howard, “Design and use
paradigms for gazebo, an open-source multi-
robot simulator,” in 2004 IEEE/RS] Interna-
tional Conference on Intelligent Robots and Sys-
tems (IROS) (IEEE Cat. No.04CH37566), vol. 3,
2004, 2149-2154 vol.3. por: 10.1109 / IROS.
2004.1389727.

C. Pinciroli, V. Trianni, R. O’Grady, et al.,
“ARGoS: A modular, parallel, multi-engine
simulator for multi-robot systems,” Swarm
Intelligence, vol. 6, no. 4, pp. 271-295, 2012.
S. Macenski, T. Foote, B. P. Gerkey, C.
Lalancette, and W. Woodall, “Robot operating
system 2: Design, architecture, and uses in
the wild,” Sci. Robotics, vol. 7, no. 66, 2022.
por: 10.1126 /SCIROBOTICS.ABM6074. [On-
line]. Available: https:/ /doi.org/10.1126/
scirobotics.abm6074.

A. Gautam, A. Richhariya, V. S. Shekhawat,
and S. Mohan, “Experimental evaluation
of multi-robot online terrain coverage ap-
proach,” in 2018 IEEE International Conference
on Robotics and Biomimetics (ROBIO), 2018,
pp- 1183-1189. por: 10.1109 / ROBIO.2018.
8665196.

E. Gerlein and E. Gonzélez, “Multirobot co-
operative model applied to coverage of un-

cs-24-ds-10-04

(18]

(21]

known regions,” Multi-Robot Systems, Trends
and Development, pp. 109-130, 2011.

E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra,
and C. Bustacara, “Bsa: A complete coverage
algorithm,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Au-
tomation, 2005, pp. 2040-2044. por: 10.1109/
ROBOT.2005.1570413.

G. Bekey, H. Liu, R. Tomovic, and W. Karplus,
“Knowledge-based control of grasping in
robot hands using heuristics from human mo-
tor skills,” IEEE Transactions on Robotics and
Automation, vol. 9, no. 6, pp. 709-722, 1993.
por: 10.1109/70.265915.

C. Tijus, E. Zibetti, V. Besson, et al., “Hu-
man heuristics for a team of mobile robots,”
in 2007 IEEE International Conference on Re-
search, Innovation and Vision for the Future,
2007, pp. 122-129. por: 10.1109 / RIVF.2007.
369145.

J. Liu, Y. Lv, Y. Yuan, W. Chi, G. Chen, and L.
Sun, “An efficient robot exploration method
based on heuristics biased sampling,” IEEE
Transactions on Industrial Electronics, vol. 70,
no. 7, pp. 7102-7112, 2023. por: 10.1109/TIE.
2022.3203762.

J. V.-V. Gerwen, K. Geebelen, J]. Wan, W.
Joseph, J. Hoebeke, and E. De Poorter, “In-
door drone positioning: Accuracy and cost
trade-off for sensor fusion,” IEEE Transactions
on Vehicular Technology, vol. 71, no. 1, pp. 961-
974, 2022. por: 10.1109/TVT.2021.3129917.

Page 16 of 16

https://doi.org/10.3390/electronics12081908
https://www.mdpi.com/2079-9292/12/8/1908
https://www.mdpi.com/2079-9292/12/8/1908
https://doi.org/10.1007/S10015-023-00895-7
https://doi.org/10.1007/S10015-023-00895-7
https://doi.org/10.1007/s10015-023-00895-7
https://doi.org/10.1007/s10015-023-00895-7
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1126/SCIROBOTICS.ABM6074
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/ROBIO.2018.8665196
https://doi.org/10.1109/ROBIO.2018.8665196
https://doi.org/10.1109/ROBOT.2005.1570413
https://doi.org/10.1109/ROBOT.2005.1570413
https://doi.org/10.1109/70.265915
https://doi.org/10.1109/RIVF.2007.369145
https://doi.org/10.1109/RIVF.2007.369145
https://doi.org/10.1109/TIE.2022.3203762
https://doi.org/10.1109/TIE.2022.3203762
https://doi.org/10.1109/TVT.2021.3129917

Figure 12: The movement and doorway testing maps

Appendix A
Testing

For the testing we have implemented a testing strategy, where we do continuous manual testing of both
individual new features and the system as a whole at every iteration, to ensure changes are not breaking
any system. This is supported by Unit testing where applicable.

We used the Unity testing suite, as well as tests on custom maps, to ensure that behavior like wall and
door movement is consistent across different development stages. This strategy was necessary because of
the specific design of MAES limiting the applicability of common unit and integration tests, as well as
the novel nature of the algorithm and surrounding systems requiring very abstract testing.
Furthermore, a small change in the settings will produce a completely different result because of the
complexity of the system. The effect of this was reduced to some extent by the testing procedures, but
the chaotic nature of it necessitated a large amount of manual, structured testing.

A. Unit tests
MAES already had some unit tests already defined, those being;:

¢ ROS TCP connection

+ Movement tests: rotation and forward movement

¢ General communication tests: including distance travelled, wall distance travelled, and transmission
success rate

We have previously introduced more unit tests for the material communication. These encapsulate both
the general communication tests and testing the attenuation result of various cases to ensure that the
attenuation is calculated correctly. Furthermore, we have created doorway detection tests for the Minotaur
exploration algorithm, where a Minotaur will go through some bitmaps created specifically for the tests.
The maps are:

¢ A blank map with a border.

e A map with a door near the border separating two rooms.

e A map with a door in the middle separating two rooms.

o A map with a hallway separated by a door near the starting location.
They are also visualized in Figure 12. While these maps were being run, the execution of the algorithm
can be checked to ensure that it follows walls, seen areas, cover corners, and greed to the correct tile.
In all of MAES there is a total of 99 unit tests with 15.6% code coverage and 13% method coverage.
This low percentage is in part due to the packages imported into MAES not having code coverage, and
partly due to the algorithms being hard to unit test, as they are incredibly complex systems where a

single change to a variable can completely change the execution. This means unit tests with set goals are
problematic. However, the base movement parts, moving forward and rotating, are covered as well as the
communication part using TestAlgorithms, which are very basic algorithms.

Appendix B
Development Process

We agreed initially to very regular meetings about the current development process, and the process of
the project, especially taking previous experience into account. At the same time, we agreed to meet for
work every day, rather than focus on a work-from-home style, as we had also had previous bad experience
with that. All design work was done collaboratively, often with one or two members having the base idea,
and workshopping it among everyone to work out the problems, often ending up with a mix of various
ideas from everyone, ensuring even contributions.

We agreed to do pair programming when developing most features, since bugs were a large problem in
the MAES system, and having more eyes on things was useful, though full extreme programming was
deemed unnecessary for the process, with the limited scope and team size. We had weekly meetings with
our supervisor, giving invaluable direction and advice for the project, creating pseudo-sprints to work
from based on the feedback from these meetings.

Minotaur Project

Analyss

Figure 13: Initial Gantt chart of the project

Early on, we agreed on important features, like testing strategy and expectations, and created an early
expected timeline in the form of a Gantt chart. This plan was followed somewhat closely in the early
phases of the project, though, as expected, the actual process ended up somewhat different.

As the final stretch of the project approached, we created another timeline for the final 8 weeks, with
weekly objectives, to ensure we stayed within scope and that the work would be done in a timely manner
to allow for possible corrections. This timeline was followed almost exactly all the way until the hand-in.
The only changes were finishing some aspects unexpectedly quickly, allowing more time for polishing
other aspects.

Minotaur Project Projotstart 01022024

Figure 14: Final Gantt chart of the project

Before the final 8 weeks, we used a Kanban board to keep ourselves organized, with tasks that had their
own sub-tasks as checkboxes. The Kanban board had the standard columns of: Backlog, sprint, in progress,
in review, done, and dropped. This was done to keep track of the current progress as well as planning
for the future with what was more essential than others. Tasks were added at semiregular meetings for
that purpose, and assigned based on similarity to other currently assigned tasks, with occasional swaps
to ensure everyone had a full understanding of the whole project.

When we started the project, we were annoyed by the state of MAES and how there seemingly was no
global standard for the code and structure. This led us to follow the Common C# code conventions as our
coding style, which can be found at https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/
coding-style/coding-conventions. We did not refactor all of MAES to follow the standard, as it was deemed
a time-consuming task with few results for the project, though all features that we changed, added or
refactored were written within the coding standards.

As opposed to previous projects, this one was much smoother and nicer to work on, largely because of
our insistence that we meet up at the university every day instead of working from home. This massively
increased motivation and enjoyment from the process, and allowed us to work with more coherence, and
communicate more. This led to a better adherence to schedules and plans, better designs and ideas, and
better implementation understood by all, as communication was constant and spirits were high.
Looking at the original Gantt Chart and the updated one, we can clearly see that we massively
underestimated the amount of work the implementation would be. Working with already existing software
presents a large amount of issues to work through when creating one’s own implementation that does
not quite adhere to the methods supplied by said software.

Beyond that, quite a few fields in the original plan never ended up being implemented, like the variable
resolution or support for ablation testing of the algorithm. With a smaller idea of scope initially, we might
have been able to better plan out the project, though the iterative nature of development means that course
corrections like this are nearly inevitable. One can also see that we were able to complete more work in
parallel towards the end of the project than we initially assumed, something that would also be useful to
remember in the future.

https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

Appendix C
Experimental Data

Strategy Average Ticks | Successes | Timeouts | Success Rate | Fastest Success (Ticks) | Slowest Success (Ticks)
greed-size-100-LOS-robots-1-spawnapart 11,559.60 100.0 0.0 1.0 8,900 13,650.00
greed-size-100-LOS-robots-3-spawnapart 6,931.50 100.0 0.0 1.0 4,430 11,160.00
greed-size-100-LOS-robots-5-spawnapart 4,536.80 100.0 0.0 1.0 2,660 7,160.00
greed-size-100-LOS-robots-7-spawnapart 3,398.77 100.0 0.0 1.0 1,860 5,287.00
greed-size-100-LOS-robots-9-spawnapart 2,573.77 100.0 0.0 1.0 1,460 4,620.00

tnf-size-100-LOS-robots-1-spawnapart 20,321.60 84.0 16.0 0.84 13,560 22,820.00
tnf-size-100-LOS-robots-3-spawnapart 14,408.50 94.0 6.0 0.94 6,100 28,210.00
tnf-size-100-LOS-robots-5-spawnapart 12,391.40 92.0 8.0 0.92 4,470 29,820.00
tnf-size-100-LOS-robots-7-spawnapart 11,281.20 93.0 7.0 0.93 3,920 29,520.00
tnf-size-100-LOS-robots-9-spawnapart 10,927.70 94.0 6.0 0.94 2,800 34,950.00
minotaur-size-100-LOS-robots-1-spawnapart 12,705.70 100.0 0.0 1.0 7,590 17,130.00
minotaur-size-100-LOS-robots-3-spawnapart 7,854.40 100.0 0.0 1.0 4,550 13,650.00
minotaur-size-100-LOS-robots-5-spawnapart 4,334.00 100.0 0.0 1.0 2,210 6,310.00
minotaur-size-100-LOS-robots-7-spawnapart 3,229.70 100.0 0.0 1.0 1,660 6,150.00
minotaur-size-100-LOS-robots-9-spawnapart 2,530.30 100.0 0.0 1.0 1,330 3,930.00

Table II: Table over the various strategies with the configuration that uses a map size of 100, using LOS for communication, and
spawning apart.

Strategy Average Ticks | Successes | Timeouts | Success Rate | Fastest Success (Ticks) | Slowest Success (Ticks)
greed-size-100-LOS-robots-1-spawntogether 11,415.00 100.0 0.0 1.0 8,910 14,060
greed-size-100-LOS-robots-3-spawntogether 7,307.80 100.0 0.0 1.0 4,920 10,750
greed-size-100-LOS-robots-5-spawntogether 4,676.20 100.0 0.0 1.0 2,840 6,560
greed-size-100-LOS-robots-7-spawntogether 3,898.80 100.0 0.0 1.0 2,600 6,190
greed-size-100-LOS-robots-9-spawntogether 3,454.60 100.0 0.0 1.0 1,940 5,810

tnf-size-100-LOS-robots-1-spawntogether 18,950.10 94.0 6.0 0.94 13,560 32,910
tnf-size-100-LOS-robots-3-spawntogether 14,613.10 96.0 4.0 0.96 7,440 24,540
tnf-size-100-LOS-robots-5-spawntogether 12,358.20 98.0 2.0 0.98 6,660 26,950
tnf-size-100-LOS-robots-7-spawntogether 11,142.80 100.0 0.0 1.0 4,950 33,010
tnf-size-100-LOS-robots-9-spawntogether 13,242.10 94.0 6.0 0.94 5,050 29,330
minotaur-size-100-LOS-robots-1-spawntogether 12,892.50 100.0 0.0 1.0 8,420 17,510
minotaur-size-100-LOS-robots-3-spawntogether 7,617.80 100.0 0.0 1.0 4,250 13,530
minotaur-size-100-LOS-robots-5-spawntogether 4,738.80 100.0 0.0 1.0 3,150 6,910
minotaur-size-100-LOS-robots-7-spawntogether 3,770.30 100.0 0.0 1.0 2,440 6,040
minotaur-size-100-LOS-robots-9-spawntogether 3,261.20 100.0 0.0 1.0 1,930 4,770

Table III: Table over the various strategies with the configuration that uses a map size of 100, using LOS for communication, and
spawning together.

Strategy Average Ticks | Successes | Timeouts | Success Rate | Fastest Success (Ticks) | Slowest Success (Ticks)
greed-size-100-material-robots-1-spawnapart 11,559.60 100.0 0.0 1.0 8,900 13,650.00
greed-size-100-material-robots-3-spawnapart 5,357.30 100.0 0.0 1.0 3,590 8,010.00
greed-size-100-material-robots-5-spawnapart 3,417.70 100.0 0.0 1.0 1,920 6,200.00
greed-size-100-material-robots-7-spawnapart 2,552.37 100.0 0.0 1.0 1,510 4,760.00
greed-size-100-material-robots-9-spawnapart 2,217.30 100.0 0.0 1.0 1,400 3,559.00

tnf-size-100-material-robots-1-spawnapart 20,321.60 84.0 16.0 0.84 13,560 22,820.00
tnf-size-100-material-robots-3-spawnapart 14,633.50 94.0 6.0 0.94 5,010 32,340.00
tnf-size-100-material-robots-5-spawnapart 12,921.50 90.0 10.0 0.9 4,880 33,200.00
tnf-size-100-material-robots-7-spawnapart 10,790.30 93.0 7.0 0.93 3,910 30,090.00
tnf-size-100-material-robots-9-spawnapart 9,743.70 94.0 6.0 0.94 2,680 35,750.00
minotaur-size-100-material-robots-1-spawnapart 13,231.90 99.0 1.0 0.99 9,070 17,520.00
minotaur-size-100-material-robots-3-spawnapart 5,769.60 100.0 0.0 1.0 3,220 12,230.00
minotaur-size-100-material-robots-5-spawnapart 3,762.80 100.0 0.0 1.0 2,090 6,020.00
minotaur-size-100-material-robots-7-spawnapart 2,632.70 100.0 0.0 1.0 1,530 4,270.00
minotaur-size-100-material-robots-9-spawnapart 2,325.95 100.0 0.0 1.0 1,290 5,075.00

Table IV: Table over the various strategies with the configuration that uses a map size of 100, using material for communication,
and spawning apart.

	Front page
	Front page
	Titlepage
	Contents
	I Introduction
	II Related Work
	II-A MAES
	II-B CME
	II-C TNF
	II-D SSB
	II-E Human Heuristics

	III Methods
	III-A Minotaur Algorithm
	III-B Greed algorithm

	IV Design & Implementation
	IV-A Spiraling implementation
	IV-B Doorway implementation
	IV-C Deadlock prevention

	V Experiments
	VI Results
	VI-A Minotaur Slowdowns

	VII Conclusion
	VIII Future Work
	VIII-A Testing on cave maps
	VIII-B Real Robots
	VIII-C Testing against more algorithms
	VIII-D Extend to 3 Dimensions
	VIII-E Minotaur in heterogeneous swarms

	Bibliography
	Appendices
	Appendix A: Testing
	A-A Unit tests

	Appendix B: Development Process
	Appendix C: Experimental Data

