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poses a method to mitigate concept drift by
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from U2Net [1] and Gunnar Farnebäck opti-
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tion and disproportionally penalized by finding
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qualitative evidence showing that the proposed
method can find pedestrians with a higher con-
fidence in big and small scales which affects the
proposed method negatively for non-annotated
pedestrians. Further work is needed to identify
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if the proposed method has mitigated concept
drift.
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Introduction And Motivation
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Computer vision is a common field of research and is widely utilized in many social
and industrial contexts, spanning from surveillance and hobby drones, to robot con-
trol and cosmetic image filters. In industry particularly, detection-related methods
are widespread and object detection is a centrepiece of a wide range of applications
such as human-computer interaction, automated surveillance, and many more [4].
Taking an object detection model outside the confines of a perfect-world assump-
tion, and into the real world has often shown a significant drop in performance,
especially because conditions change over time [4]–[7]. This change in conditions is
called concept drift.

Concept drift itself is the root of many problems for systems not explicitly built to
counter it. The concept may change over time, for a variety of reasons. To combat
some of the problems associated with changing light conditions and visibility, research
in the Thermal InfraRed (TIR) domain has been ongoing for a while. TIR has also
made it easier to comply with the European General Data Protection Regulations
(GDPR), due to the loss of facial details in the TIR domain. There has been ongoing
research on using TIR instead of the usual VIsual-optical Spectrum (VIS) for this
purpose [6], [8]–[10]. There have been researched multi-modal systems that use both
TIR and VIS images [9], [10], and TIR images alone [7]–[9]. Both methods have
their positives and negatives. While the multi-modal systems might be easier to get
great performance and cover for the possible concept drift in TIR images it has the
downside of being more expensive implementation-wise and data-wise and also still
having the problem of not complying with GDPR inherently. With the use of TIR
images only, the positives are that it inherently complies with GDPR laws and it is
cheaper to implement as there is no need for VIS images.

This however comes with the downside that there has not been done much research
on getting great performance in real-world scenarios especially over time as the ap-
pearance of the scene changes, causing concept drift [6]. This problem mostly lies in
using qualitative thermography, where the image shows the relative difference of IR
radiation in the Field Of View (FOV ). If quantitative thermography were to be used
the changing temperature could be modelled, and mitigated with a few downsides
such as visual artefacts.
Quantitative thermography, therefore, could be seen as a solution, but the technology
to construct such a device is substantially more complicated. For many tasks, the
absolute temperature readings are redundant for the purpose of the camera. These
reasons therefore do not justify the cost of using quantitative thermography, making
qualitative thermography much more common in deployed systems [7].

With these facts, the problem can be described as such:

Thermal infrared images from qualitative thermography are subject to
the problem of concept drift, wherein the appearance of the scene and
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object(s) changes depending on the season, time of day, and weather con-
ditions. These factors limit the potential of downstream computer vision
algorithms, as they were often not intended to deal with this drift in the
concept.

In this work, a preprocessing methodology was proposed by adapting the original
TIR image to a more complex image that has stacked the output from a saliency
map model and optical flow to mitigate concept drift. These preprocessed images are
then used for pedestrian detection using YOLOv5 [3]. The Long-term Thermal Drift
(LTD) dataset is used to train and evaluate the performance of the proposed model
against the baseline. The pipeline for the preprocessed method is described and
the outcome of using it has been discussed. Results of the proposed method show
that there isn’t any significant improvement in concept drift against the baseline,
however further ablation studies have shown that this might be because the proposed
method has superior detection ability. In the ablation study, it has been shown
that LTD dataset isn’t fully annotated in all frames and the proposed method is
disproportionally penalized for finding pedestrians who are not annotated. It shows
that there might be merit in adapting the original domain to a more complex domain
to mitigate concept drift, but further research should be acutely aware of the missing
annotations.



Chapter 2

Background

This chapter explains some background knowledge needed for this masters the-
sis

4
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2.1 Thermal Imaging And Their Characteristics

This section will cover how thermal imaging systems work, describing thermal radi-
ation and how the technology uses these to get an image.

2.1.1 Thermal Radiation

Infrared radiation is also often called thermal radiation [11] and is an electromagnetic
radiation that lies between the VIS and microwaves and has some peculiar charac-
teristics that make them suitable for several technical applications. These techni-
cal applications include contactless temperature measurement, night vision, thermal
isolation of buildings, the temperature distribution of combustion processes etc. All
objects emit thermal radiation with a temperature above 0K and are dependent on
their wavelength and determined by their temperature [11], [12].

The spectral range of infrared is commonly divided into 5 subdivisions which can be
seen from table 2.1

Subdivision Wavelength
Near-infrared (NIR) 0.75-1.4µm
Short-wavelength infrared (SWIR) 1.4-4µm
Mid-wavelength infrared (MWIR) 3-8µm
Long-wavelength infrared (LWIR) 8-15µm
Far infrared (FIR) 15-1000µm

Table 2.1: The subdivision of the infrared spectral range [13]

Objects in the temperature range of 190K to 1000K emit radiation in the Mid-
wavelength infrared (MWIR) and Long-wavelength infrared (LWIR) spectral range,
and are often referred to as TIR [11], where at ambient temperature (∼294K) the
infrared maximum is 10µm [12]. The subdivision for thermal cameras are however
different as some wavelengths are absorbed by molecules in the atmosphere and the
transmittance rate is lowered which can be seen in figure 2.1
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Figure 2.1: The typical transmittance rate in the atmosphere during summer in central Europe
[12]

Due to low transmittance rates in some wavelengths, the spectral range for a thermal
camera is further subdivided into the ranges shown in table 2.2

Subdivision Wavelength
Short-wave 0.7-1.4µm
Mid-wave 3-5µm
Long-wave 8-14µm

Table 2.2: The subdivision of the infrared spectral range for a typical thermal camera [11]

2.1.2 Thermal Cameras

Thermal cameras operate relatively similarly to VIS cameras, the difference lies in
that instead of taking in light as electromagnetic radiation it takes in infrared [14].
They both pass a lens system and other optical components such as the sensor before
forming an image, here also both systems use a Focal Plane Array (FPA) as the sensor
[11], [14]. The difference however changes much of how the imaging system should
work and these differences are [14]:

1. Infrared is thermally radiated whereas an VIS imaging reflects the scattered
light that is going to be captured.
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2. The sensor for the imaging system must work within the infrared spectrum and
transmit it. Therefore the optical materials needed are usually not made from
glass but from semiconductors.

3. The detectors are not silicon-based as it is for a VIS system. Depending on
the wavelength that is needed for the imaging system the materials are chosen
from multiple types and materials with different techniques including cooled
photo-electron as well as uncooled thermal detectors.

4. The pixel signal is not spectral filtered, meaning that the images are monochrome.
With the use of image processing the image can either be shown as greyscale
or false color images.

5. There are multiple temperature sensors within a quantitative infrared camera
which with additional parameters input from the user such as the emissivity,
ambient temperature, object distance, and relative humidity and with some
calibration allows evaluation of the signal.

There are generally 2 main detector types used for thermal cameras, these being
photon detectors and thermal detectors [11], [14]. Photon detectors convert the
absorbed electromagnetic radiation directly into an electrical signal by the use of a
positive-negative (p-n) junction, which is a method that allows electric current to only
pass in one direction. This is done by having 2 semiconductors where one is positively
charged with excess holes and the other negatively charged with excess electrons.
This property can then be used to have the photon make electron-hole pairs which
give an electrical signal. A p-n junction is a fundamental part of semiconductors and
is how LED emits light, and the opposite with a photon detector. Thermal cameras
however convert the absorbed radiation into thermal energy which causes a rise in
temperature in the detector. Here the temperature-dependent electrical resistance
in a bolometer is one of the most common forms used [11], [14].

A photon detector works in the MWIR range making the thermal contrast high
which makes it very sensitive to small differences in temperatures. A photon detec-
tor also allows for a higher frame rate than thermal detectors. The biggest drawback
of photon detectors is the need for them to be cooled to below 77K. With these
requirements, there is a higher need for service and maintenance of the system mak-
ing it much more expensive than thermal detectors [11]. Thermal detectors on the
other hand work in LWIR range and mainly have two different detector types, these
being ferroelectric detectors and microbolometers. Microbolometers have a higher
temperature sensitivity, with the added advantage of also having a smaller pixel size
allowing a higher spatial resolution. These make microbolometers have the largest
market share [11].
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2.2 Concept Drift

This section will cover what the concept drift problem is, how it is challenging in
different fields, and where concept drift is seen.

Many data-driven systems that in some way want to predict a future value have
a challenge that this prediction might not be accurate. This is further exacerbated
when the data is ever-changing over time. This means that the system used to predict
the future value might become less accurate as time passes and eventually not work
at all. In machine learning, data mining and predictive analytics these changes in the
data distribution that might happen over time are called concept drift[5]. In other
fields like pattern recognition and signal processing, it is known as covariate shift or
non-stationarity respectively [5].

In stochastic processes, there are stationary processes whose unconditional joint prob-
ability does not change over time. This means that the change over time does not
alter the mean but remains constant however long that time is. This is how most
standard data mining and machine learning algorithmic techniques have been re-
searched and developed over time by assuming that the data is Independent and
Identically Distributed (IID) [5]. An example of assuming data is IID could be that
a qualitative TIR image showing a human in winter will be shown the same in sum-
mer even with changing conditions in the scene. This assumption is false as the
temperature of a human might remain identical, but the temperature in the scene in
which the image is taken has changed and therefore so has the image. This can be
shown by figure 2.2 from the LTD dataset [6].

Figure 2.2: Examples of the data found in the LTD dataset, which shows for the day and night
rows from left to right the changes for the data in February, March, April, June and August. The
third row shows changes based on weather conditions and human activity [6].
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To further define concept drift take the example of a data stream {(x0, y0), ..., (xi, yi),
..., (xt, yt)} being collected until time t, and where xi is the input and yi is the output.
The data (xt, yt) follows a joint probability distribution pti(x, y) where the concept
is defined at time t. Concept drift can thus be defined by the eq 2.1 [15]:

pti(x, y) ̸= pti+n(x, y) (2.1)

Where the eq 2.1 shows that if the concept at any time ti does not equal the concept
at time ti+n then concept drift must have occurred. On the flip side if they both
equal each other then the same concept exists at different times.

Based on changes in the joint probabilities concept drift can be categorized into three
classes [15]:

1. Class prior concept drift: pti(y) ̸= pti+n(y)

2. Virtual concept drift: pti(x|y) ̸= pti+n(x|y)

3. Real concept drift: pti(y|x) ̸= pti+n(y|x)

For this project real concept drift will be focused on as the output prediction is condi-
tioned on the input image, where a human in winter appears bright and through the
change in seasonal time a human appears dark in summer or vice versa. This project
will try to solve how the concept drift can be mitigated so these joint probabilities
will be close together or ideally the same.

2.3 Domain Adaptation

This section covers the core principles and terminologies of domain adaptation.

Domain adaptation and domain translation are often used interchangeably. For clar-
ity, domain translation will refer to any alteration attempting to imitate an existing
domain, while domain adaptation will not attempt to conform to an existing domain
directly. This includes methods in which the adapted domain could be shifted to a
known domain afterwards.

Domain adaptation is the process of adapting data from the original domain to a
desired target domain[16]. in the simplest form, it may be amplification of chosen
features, such as brightness, or contrast in an image. Domain adaptation encom-
passes many methods of various complexity but is best known for their relevance in
Artificial Inteligence (AI ). Learning models are often highly susceptible to concept
drift or lack sufficient data in the target domain for training. For both of these cases,
domain adaptation can help mitigate the problem. Domain adaptation methods can
be classified on many different properties, some of which are covered here.[17]
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2.3.1 Homogeneity & Heterogeneity

A domain adaptation implementation can be classified based on the difference be-
tween the source domain and the target domain. A Homogeneous domain adaptation
method is any method in which the source domain shares many properties and fea-
tures with the target domain. Examples of this are image-to-image methods, such
as camera filters and edge detection. Heterogeneous domain adaptation methods
encompass all methods in which the target domain is significantly different from
the source domain. These are more loosely defined, as the adaptation can still be
in the same general domain, such as an image-to-image method, but can also be
more abstract methods such as text-to-image, speech-to-text or similar. Heteroge-
neous methods are typically harder to develop, due to the added complexity and
abstraction. Many heterogeneous methods are AI based, due to the complexity of
the models being nearly impossible to achieve with handmade methods.

2.3.2 One- And Multi-step

Domain adaptation methods can be developed with intermediary domains. these
domains are often used to simplify the method, by separating it into multiple steps,
a "multi-step" model. The appeal of this lies in the potential for the procedure
to be modular and more explainable, as the output of each state can be observed.
Alternatively, one-step models can be used, which are commonly found in simpler
methods or runtime-optimized implementations. These translate directly from the
source domain to the target domain.

2.3.3 Supervision

As domain adaptation tasks are often based on AI , the data needed for training comes
with various properties regarding labelling. A fully labelled dataset is considered
supervised. If the labelling is only partial, it is considered semi-supervised. This
affects the usable methods for training. Furthermore, there is also weakly supervised
supervision where part of the labels are incorrect. This is very troublesome, as it
will drastically affect the accuracy of the AI . Lastly, there is unsupervised, which
is for data without labels. While hard to use, this is sometimes a better case than
weakly supervised. It requires unique solutions and can be very time-consuming to
train.

2.3.4 Common Implementation Approaches

When developing a domain adaptation method, there are various common approaches.
The most common, and practical is to look for domain invariant features, ie. any-
thing that is consistent between both the source and target domain. If an AI can
learn these features, it can translate them to the target domain. These are critical
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for many unsupervised methods, as it is the only consistency available to it. Another
common approach is GAN models, in which the generator attempts to translate from
source to target domain, and the discriminator compares the output of the generator
with a data element already in the target domain. It attempts to guess the correct
one and evaluates how certain it is. This is then fed back to the generator such that
it can learn from the mistakes it made.

2.4 Summary

Concept drift is a challenge that comes up in many data-driven systems in some way
when it wants to predict a future value from previous data. This is especially the
case in machine/deep learning systems because they have assumed the data to be
IID, which means that the concept doesn’t change over time. This project will focus
on real concept drift as the concept of a person changes based on the seasons because
of how thermal cameras operate. Thermal cameras operate similarly to VIS where
they pass a lens system and use FPA as the sensor. The difference between how
a VIS and a TIR camera works makes it so that concept drift appears differently
between the systems. The characteristic of thermal cameras, which enables them to
operate effectively in low-light conditions by utilizing the infrared spectrum, renders
them superior for capturing nighttime images. However, their reliance on this spec-
trum means that variations in temperature within the scene can pose a challenge,
particularly if the appearance of objects is expected to remain static. This is how
concept drift is a challenge for thermal cameras. One way to mitigate this is to use
domain adaptation, which for clarification in this work refers to adapting data from
the original domain to another domain eg. amplifying chosen features.



Chapter 3

Related Works

This chapter describes pre-existing works of relevance to the project. Since many
solutions for object detection include domain adaptation, the chapter will be split
into two sections. This will be object detection in TIR without domain adaptation
and domain adaptation in the context of VIS and TIR.

12
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3.1 Object Detection

Object detection is one of the most widely used downstream tasks for TIR images.
A major focus of object detection lies in its application for pedestrian detection,
as well as for identifying related objects such as bicycles and cars. One reason for
this emphasis on pedestrians is their integral role in security, tracking, emergency
response, and video surveillance, both in private and public settings. Pedestrian
detection is also where many of the problems for concept drift arise as the thermal
radiation from pedestrians doesn’t change daily or seasonally over time while the
relative temperature in the scene changes.

3.1.1 Object Detection In Thermal Imagery

Object detection for TIR can be divided into two categories: the first involves object
detection solely using TIR images, while the second entails object detection using
both TIR and VIS images this is often called multispectral object detection.

Multispectral Object Detection

König et al. [18] presented a multi-spectral Region Proposal Network (RPN ) that
uses a pre-trained VGG-16 [19], where these proposals are then evaluated using a
boosted decision trees classifier to reduce potential false positive detection. This
effectively fused the information from the two spectra.
Guan et al. [20] and C. Li et al. [21] both introduced a multi-spectral model that is
illumination-aware and they proposed an illumination-aware weighting mechanism to
adaptively weight the confidences from the two modalities to merge them. Following
the illumination-aware model C. Li et al. [22] also introduced a unified Convolutional
Neural Network (CNN ) fusion architecture that consists of a multi-spectral RPN and
a following multi-spectral classification network to improve performance.
R. Li et al. [23] proposed a multi-spectral cross-modal pedestrian detector that
used data from VIS and TIR to enhance performance by maintaining the unique
characteristics of both modalities while extracting and supplementing homogeneous
features from each other.

Thermal Images Only Object Detection

Galarza-Bravo et al. [24] presented an architecture based on Faster R-CNN using
two independent RPN focusing on near or far-away pedestrians. Chen et al. [25]
introduced an attention-guided encoder-decoder CNN to generate multi-scale fea-
tures and an attention module to re-weight them. Dai et al. [26] proposed a model
dubbed TIRNet which is comprised of a Customized Single Shot Detector (SSD)
with a Residual Branch (RB)
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Cao et al. [27] improved upon RefineDet by designing a dual-pass fusion block to
fuse features from different levels and a channel-wise enhance module that assigns
different weights to different channels.
Patel et al. [28] employed a more computationally efficient object detector for night-
time images using a Depthwise Deep Convolutional Neural Network and improved
accuracy using Tversky and Intersection over Union (IoU ) as loss functions.
Heo et al. [29] proposed an adaptive boolean-map-based saliency that created clearer
silhouettes which was used to boost the features of pedestrians based on the season.
Ghose et al. [30] further researched saliency maps using deep learning where they
augmented thermal images with saliency maps of pedestrians and used them as an
attention mechanism.

Summary

While multi-spectral doesn’t directly mitigate concept drift in the thermal domain
it does however sidestep it by having the possibility to use the visual domain. This
however has the downside of being more expensive implementation-wise and data-
wise while also not complying with GDPR laws. There may be some promise in
possibly using saliency maps to mitigate concept drift as it creates a new domain
in which pedestrians can be highlighted. Exemplified by the implementation of Heo
et al. [29] where saliency maps were used to boost the features depending on the
season. However, the implementation is done with an algorithm so it might be
useful to explore this with a deep learning model. There seems to however be a
lack of studies that focus on mitigating concept drift in the thermal domain directly,
especially long term. This is a motivating factor to research how to mitigate concept
drift for pedestrian detection in the thermal domain.

3.2 Domain Adaptation And Translation

Based on the shortcomings presented above, many domain adaptation and translation
methods exist in an attempt to mitigate concept drift, and improve overall accuracy.
This section will cover a variety of domain adaptations, not limited to VIS and TIR,
to highlight the extent of existing methods, and unaddressed concept drifts

3.2.1 Domain Adaptation And Translation In Thermal Imagery

Kieu et al. [31] did preliminary work on the performance of common pedestrian
detection methods for VIS data, when adapted to utilize TIR data. The performance
surpassed the original in bad weather and lighting conditions and matched them
under ideal conditions. Following this, Kieu et al. [32] expanded on their work, by
further modifying the training data, by adding day/night metadata, obtained from
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a classifier, further improving performance. Finally, Kieu et al. [33] proceeded to
develop a least-squares GAN-based method to generate TIR data from VIS data,
achieving state-of-the-art performance.

Munir et al. [34] implemented a method to do domain adaptation, using style con-
sistency. They found that low-level features provided better performance for object
detection tasks.
Akkaya et al. [35] proposed a method to achieve domain adaptation, without image
pairs for the source and target domains, utilizing an adversarial network to make a
general model for both domains, with state-of-the-art performance.
Zoetgnande et al. [36] proposed a combination of optical flow, a domain classifier,
an activity recognition classifier and an I3D-based feature extractor to make a gen-
eralized representation between VIS and TIR for video. Their findings show good
potential for this methodology
Johansen et al. [7] attempted to condition and guide two object detectors to become
weather-aware to increase the performance of the object detectors in the thermal
domain. The results showed that such an approach may not necessarily be ideal.

3.2.2 General Domain Adaptation And Translation

Lou et al. [37] proposed a cross-domain object detection, utilizing data from Syn-
thetic Aperture Radar (SAR) and VIS , the result is a significant improvement for
SAR-based methods, as the VIS provides additional context to the 3D data from the
radar. Li et al. [38] proposed utilizing auto-encoders to learn a general representa-
tion of an object in many similar source domains, to address overfitting. The results
show a general representation which works on most similar domains, at state-of-the-
art performance.
Murez et al. [39] proposed a method where the source and target domain are mapped
to an intermediary domain, in which they are indistinguishable. The method can
then map back to either domain, resulting in a generalized representation of both
domains. The performance is state of the art.
Zhou et al. [40] proposed an alternative approach to do cross-domain object detec-
tion. The method is based on a student-teacher model.

Summary

Overall, previous works have shown that TIR is a viable domain for vision tasks, and
with the advantage of obscured identifying features, it is more suited to comply with
GDPR. The works have shown extensive exploration of various methods and forms
of concept drift. Consistent for all these works is the relatively short timescale for
their solutions, with only a few reaching beyond day/night, making them susceptible
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to long-term drift from conditions such as seasonal temperatures and weather. This
paper will be centred around this void in the existing research and will be utilizing
methods inspired by previous works.



Chapter 4

Problem Statement
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Concept drift is a challenging problem in many fields, which is also the case for ob-
ject detection where e.g. the concept of a person can change depending on occlusion
or the thermal signature for thermal images. A way to mitigate concept drift is to
use domain adaptation, which adapts the data from the original domain to another
domain eg. by amplifying chosen features. Doing this can mitigate concept drift
found in the representation. With prior knowledge gained from how related works in
chapter 3 has tried to solve problems related to concept drift by employing different
methods like saliency maps [29], [30], channel weighing [27], or using domain adapta-
tion methods that changes the domain of the image by combining different domains
like optical flow [36]. With this knowledge together with the background knowledge
2 concept drift in thermal images may be mitigated by extracting information from
the original domain and adapting it to a more complex domain. This leads to the
following problem statement:

Can seasonal concept drift in thermal images be mitigated by adapting the
original domain to a complex representation for pedestrian detection

The hypothesis for this is that by creating a more complex domain from the original
by employing different methods it might be possible to mitigate concept drift by
introducing new features that aren’t found by the object detector.



Chapter 5

Technical Analysis

This chapter explains the dataset used in this work, as well as information about
different methods and models that can be used to create new domains for the im-
age.

19
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5.1 Dataset

This section will describe the dataset used for this work.

5.1.1 LTD-TIR

The LTD TIR data [6] consists of 2-minute clips with a resolution of 288 × 384
selected every 30 minutes in a day for 8 months for a total of 298 hours. The starting
point of the data is May 2020 until September 2020 with a second part from January
2021 up to May 2021. The footage was recorded on the harbor front in Aalborg,
Denmark with the approximate longitude and latitude coordinates given as (9.9217,
57.0488) [6]. The camera used to capture the image is a Hikvision DS-2TD2235-25/50
thermal camera which captures LWIR saved in the mp4 format as 8-bit uncalibrated
grayscale. All footage is stationary and is taken from a birdseye view position, as
this dataset focuses on long-term drift, and therefore attempts to eliminate other
factors. An example of images can be seen in figure 5.1. The dataset is populated
with extensive metadata, covering GPS position, time of day, temperature, humidity,
rain, wind direction, wind speed, sun radiation and sunshine hours. The publically
available dataset can be found here. For this work, an extended dataset was shared
by the supervisor which consists of 844638 annotated TIR images split into a train,
test, and validation set.

Figure 5.1: Example images the original LTD paper [6]

https://www.kaggle.com/ivannikolov/longterm-thermal-drift-dataset
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5.2 Saliency Maps

This section will cover what saliency maps are, and how they are used as well as
discuss PiCANet, R3Net, and U2Net which are of interest.

A saliency map is an image that maps the importance of pixels for the human visual
system, the goal of a saliency map is to display the pixels in an image that a person
pays attention to. This is usually done with a greyscale image where the brightness
of the image is proportional to the attentional priority when viewing a scene. The
idea of saliency maps has then been adopted as a sort of biomimicry which mimics
how the human visual system efficiently processes important information from the
visual world [41], [42]. To create saliency maps there have been proposed many
different saliency detection methods which can improve the efficiency of computer
vision systems and have shown results in image segmentation, object recognition,
visual tracking, gaze estimation, action recognition, etc [42]. An example of saliency
maps from the DUT-Omron dataset [43] can be seen in figure 5.2.

Figure 5.2: (a) Sample image from the DUT-Omron dataset [43]. (b) Ground truth for eye fixation
prediction. Each white spot is an eye fixation position for a participant in a free-viewing experiment.
(c) Saliency map by a state-of-the-art method for eye fixation prediction [44]. (d) Ground truth for
salient region detection. (e) The saliency map using Saliency Detection via Absorbing Markov Chain
[45]

5.2.1 PiCANet

PiCANet by Liu et al. [46] is one of the models used by Ghose et al. [30] as an
attention mechanism and improved the performance for pedestrian detection using
only thermal images. PiCANet is a pixel-wise contextual attention network which
generates an attention map for each pixel which corresponds to its relevance in its
region. This is done by using two pixel-wise attention modes, which are [46]:

• Global attention: generates attention over the whole feature map
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• Local attention: generates attention on a local region centred around the cor-
responding pixel

Figure 5.3: (a) The architecture for global PiCANet. (b) Illustration of the detailed global at-
tending operation. (c) The architecture for the local PiCANet. (d) Illustration of the detailed local
attending operation [46]

The PiCANet for global attention can be seen in figure 5.3(a), it works by using a
ReNet model [47] seen in the orange dashed box which originally uses 4 recurrent
Neural Network (RNN )s to sweep horizontally and vertically in both directions to
get the global context. In the PiCANet implementation, however, they use a bidirec-
tional Long Short-Term Memory (LSTM ). First, they concatenate both horizontal
directions and then concatenate both vertical directions, resulting in a pixel being
able to memorize the context of the horizontal and vertical axis. By doing these
sweeps and blending the contexts from the four directions the information of each
pixel is propagated to all other pixels thus obtaining global context. This blended
feature map is transformed into D channels with a vanilla convolutional layer, where
D = W × H [46]. The attained feature vector for each pixel is then used in the global
attending operation seen in figure 5.3(b), where it first is normalized via a softmax
function to generate the global attention weight aw,h and finally the features at all
locations are weighted summed with the global attention weights to get the contex-
tual feature Fatt The PiCANet for local attention can be seen in figure 5.3(c), where
instead of using ReNet to get the local feature map. The architecture instead uses
several convolutional layers on the feature map on the local neighbouring context
centred at the pixel. It then follows the same pattern as the global attention Pi-
CANet making a feature vector, normalizing via a softmax, and making a weighted
sum. However, the difference is that instead of doing it on a global scale it does it
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locally denoted by a line over the variable in figure 5.3c and d [46].

A U-Net [48] architecture is used to integrate the PiCANets hierarchically for salient
object detection which can be seen in figure 5.4(a). In this U-Net, they use VGG-16
[19] as the backbone and the encoder of the U-Net is a Fully Convolutional Network
(FCN ). The decoder for the network uses the idea of skip connections in U-Net
but also embeds the global and local PiCANets. Since the global PiCANet requires
an input feature map to have a fixed size it has therefore been fixed to 224 × 224
[46].

Figure 5.4: (a) The PiCANet U-Net architecture for saliency object detection with the VGG
16-layer backbone. It only shows the skip-connected encoder layers of the VGG network. "C"
means convolution and D* means decoding module. The spatial sizes are marked above the cuboids
representing the feature maps. (b) Illustration that represents the attended decoding module. Eni

denotes a convolutional feature map from the encoder module and Dec* denotes a decoding feature
map. F i denotes a fusion feature map while F i

att denotes the attended contextual feature map. "Up"
denotes upsampling [46].

Figure 5.4(b) shows the attended decoding module, where the decoding feature map is
generated by fusing an intermediate encoder feature map with the preceding decoding
feature map. This is done by upsampling the preceding decoding feature map using a
deconvolutional layer with bilinear interpolation and then concatenating it with the
encoder feature map before using a convolutional and Rectified Linear Unit (ReLU )
layer. With the fused feature map, a global or local PiCANet is used to obtain
the attended feature map and then it is concatenated with the fused feature map.
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To create the decoded feature map the concatenated attended feature and fused
feature map are fused by using a convolutional, batch normalization, and ReLU
layer [46].

5.2.2 R3Net

R3Net [49] is the other model used by Ghose et al. [30]. It uses a Residual Refinement
Block (RRB) to learn the residuals between the ground truth and the saliency map
at each recurrent step. Alternatively, it uses a recurrent residual refinement network
(R3Net), which employs a series of RRBs to refine the saliency maps utilizing low-
level and high-level features progressively.

The R3Net as seen in figure 5.5 starts with using ResNeXt [50] as the feature ex-
traction network that produces a set of feature maps with low-level and high-level
semantic information at different scales. The low-level semantic information extracts
the fine structures of salient regions, while the high-level semantic information ex-
tracts the salient objects. The first three feature maps are then upsampled and
concatenated to form the low-level integrated features denoted as L and the 4th and
5th layers are upsampled and concatenated to form the high-level integrated features
denoted as H [49].

Figure 5.5: Illustration of the R3Net architecture. The feature maps at the first 3 layers are
upsampled and concatenated to generate low-level integrated features denoted as L. The feature
maps at the last 2 layers are upsampled and concatenated to form the high-level integrated features
denoted as H. The initial saliency map is generated using H, which is then sequentially refined by
the RRB [49].

The network first predicts an initial saliency map denoted as S0 from the high-
integrated features capturing the locations of salient objects, but neglecting fine
detail. This initial saliency map is then refined using the residuals from the L ob-
tained by using a feature fusing network that consists of 3 convolution layers and
3 Parametric Rectified Linear Unit (PReLU ) activation functions. This refinement
of the initial saliency map S0 results in the saliency map S1 which contains a large
number of non-saliency cues introducing non-salient regions into S1. S1 is therefore
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further refined by using the residuals from the H similar to how the residuals from
the L were used to refine S0. The refinement of S1 using the residuals from H elim-
inates non-saliency details that are not located in the semantic salient regions. To
further refine the saliency prediction multiple sequences of RRBs that alternatively
incorporate L and H several times to get the final saliency map [49].

5.2.3 U2Net

U2Net [1] is a state-of-the-art salient object detector inspired and built upon U-Net
[48] and does not need a backbone. It uses ReSidual U-blocks (RSU ) to increase the
contextual information from different scales and the depth of the whole architecture
without significantly increasing the computational cost.

The structure of the RSU is inspired by U-Nnet, which can be seen in figure 5.6
where L is the number of layers in the encoder, Cin and Cout denote the input and
output channels and M denotes the number of channels in the internal layers of RSU
[1].

Figure 5.6: The structure of the U-block RSU for U2Net [1]

The RSU mainly consists of three components these being:

1. An input convolution layer

2. A U-Net-like symmetric encoder-decoder structure

3. A residual connection

The input convolution layer is a plain convolution for local feature extraction and
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transforms the input feature map to an intermediate feature map F1(x) with the
output channel Cout. The U-net-like encoder-decoder structure with a height of L

takes the intermediate feature map as its input and learns to extract and encode
the multi-scale contextual information U(F1(x)). U represents the U-Net structure
shown in figure RSU , and a larger amount of layers in the RSU results in more
pooling operations, a larger range of receptive fields, and richer local and global
features. Finally, the residual connection fuses the local features extracted from the
input convolution layer together with the multi-scale features from the U-Net-like
encoder-decoder structure by summation F1(x) + U(F1(x)) [1].

The main architecture for U2Net uses a two-level nested U-structure where the top
level is a big U-structure that consists of 11 stages filled by RSU s as the bottom
level of the U-structure. The main architecture of U2Net can be seen in figure 5.7
[1].

Figure 5.7: The main architecture of U2Net. The main design is the architecture like U-Net [48],
where each stage for the encoder and decoder uses the U2Nets RSU [1]

As illustrated in figure 5.7 the main architecture of U2Net consists of 3 parts these
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being:

1. A six stage encoder

2. A five stage decoder

3. Saliency fusion module attached to the decoder stages and the last encoder
stage

The encoder stages 1-4 uses RSU -7, RSU -6, RSU -5, and RSU -4 where the numbers
denote the layers in the RSU s. The layers are configured according to the spatial
resolution of the input feature maps, and therefore the encoder stages 5 and 6 are
configured differently. The RSU for the encoder stages 5 and 6 are configured dif-
ferently because the resolution of the feature maps in them is relatively low and
therefore further downsampling them leads to contextual loss. For this reason, the
encoder stages 5 and 6 are configured to use RSU -4F, where "F" denotes that the
RSU is dilated and that pooling and upsampling operations are replaced with dilated
convolutions. This results in intermediate feature maps of RSU -4F having the same
resolution as its input feature maps [1].

The decoder stages are symmetrical with the decoder stages with respect to encoder
6. This means that the decoder stages 1-4 uses the same RSU s as the encoder stages
1-4, and the decoder stage 5 uses RSU -4F. Each decoder stage also takes the output
of the concatenation between the upsampled feature maps from the previous stage
and those from its symmetrical encoder stage as its input [1].

The saliency fusion module is used to generate saliency probability maps. This is
done by first generating side output saliency probability maps Sstage

side for all stages by
using 3 × 3 convolution layer and a sigmoid function. The logits of the side output
saliency maps are then upsampled to the input image size before fusing them with a
concatenation operation followed by a 1 × 1 convolution layer and a sigmoid function
to generate the final saliency probability map Sfuse [1]. U2Net [1] is a supervised
model that tries to minimize the sum of all side output saliency probability maps
which can be seen in figure 5.7. This is done using binary cross-entropy between the
predicted side output saliency probability maps and the ground truth mask.

5.2.4 Performance Evaluation

The performance of the models discussed can be seen in table 5.1 and 5.2 for several
evaluation methods and datasets. All the discussed models have an emphasis on
finding salient objects by differentiating them using global and local feature infor-
mation. The evaluation metrics seen in table 5.1 and 5.2 are the maxFβ-score, Mean
Absolute Error (MAE), weighted F ω

β -score, Structure-measure (Sm).

The maxFβ-score evaluates the precision and recall of the system, where the β has
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been set to 0.3 weighing precision more than recall and the maximum is reported.
The MAE denotes the average per-pixel difference between a predicted saliency map
and its ground truth mask. The weighted F ω

β -score is complementary to the maxFβ-
score for overcoming unfair comparison. The Sm is the structure similarity of the
predicted non-binary saliency map and the ground truth [1].

DUT-OMRON DUTS-TE HKU-IS
Method maxFβ MAE F ω

β Sm maxFβ MAE F ω
β Sm maxFβ MAE F ω

β Sm

PiCANet 0.794 0.068 0.691 0.826 0.851 0.054 0.747 0.851 0.921 0.042 0.847 0.906
R3Net 0.795 0.063 0.728 0.817 0.828 0.058 0.763 0.817 0.915 0.036 0.877 0.895
U2Net 0.823 0.054 0.757 0.847 0.873 0.044 0.804 0.861 0.935 0.031 0.890 0.916

Table 5.1: Comparison between PiCANet, R3Net, U2Net on DUT-OMRON,DUTS-TE, and HKU-
IS in terms of maxFβ-score (↑), MAE(↓), weighted F ω

β -score(↑), and Sm(↑). Red, Green, and Blue
indicate the best, second, and worst performance [1].

ECSSD PASCAL-S SOD
Method maxFβ MAE F ω

β Sm maxFβ MAE F ω
β Sm maxFβ MAE F ω

β Sm

PiCANet 0.931 0.046 0.865 0.914 0.856 0.078 0.772 0.848 0.854 0.103 0.722 0.789
R3Net 0.934 0.040 0.902 0.910 0.834 0.092 0.761 0.807 0.850 0.125 0.735 0.759
U2Net 0.951 0.033 0.910 0.928 0.859 0.074 0.797 0.844 0.861 0.108 0.748 0.786

Table 5.2: Comparison between PiCANet, R3Net, U2Net on ECSSD, PASCAL-S, and SOD in
terms of maxFβ-score (↑), MAE(↓), weighted F ω

β -score(↑), and Sm(↑). Red, Green, and Blue
indicate the best, second, and worst performance [1].

Table 5.1 and 5.2 show that U2Net is the best-performing model in nearly all met-
rics. Therefore U2Net will hence be used to create a new domain as part of our
solution.

5.3 Preliminary Saliency Maps Expirements

For this work, a preliminary experiment was conducted to compare the outputs from
U2Net [1] and PiCANet [46]. This is to evaluate the difference between the two
models. The saliency map output from PiCANet has a changed size and aspect
ratio which can be seen in figure 5.8. There is quite a difference in the output when
comparing the output from PiCANet against the output from U2Net using the same
image which can be seen in figure 5.9. While both used the bounding box as a mask
for training, U2Net has a saliency map which resembles a bounding box, whereas
PiCANet more closely tries to make a mask around the detected pedestrian. There
might be some merit in using PiCANet instead, but for this work, U2Net will continue
to be used as the performance was superior as mentioned previously in the previous
section 5.2.4.
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Figure 5.8: The saliency map obtained by Pi-
CANet

Figure 5.9: The saliency map obtained by U2Net

5.4 Optical Flow

5.4.1 Lucas-Kanade

The Lucas-Kanade method is perhaps the most rudimentary optical flow method and
a great introduction to their concept. It is built to detect movement based on small
patches of features, attempting to match that same patch to nearby pixels in the next
frame, using linear equations. This method relies on planar motion, and as such, may
struggle with complex movement of 3D objects[51]. The method itself is not perfect,
and as such, more than one region may match the feature it is attempting to locate.
In this case, it will attempt to minimize the difference between the frames, as it is
built with smaller motion in mind. In some cases, other optimization methods may
apply. It is common for Lucas-Kanade to be implemented in a pyramidal structure,
meaning the implementation will be run with different window sizes, such that both
big and small features are tracked [52]. This is to ensure that the desired motion
is detected independent of size. Based on the nature of how Lucas-Kanade is built,
The computation time should increase quadratically, as the search window does, to
accommodate the expected deviation. Because of this, along with the existence of
better performing models, Lucas Kanade is not preferred for most tasks.

5.4.2 Gunnar Farnebäck

The Gunnar Farnebâck method is an addition to existing optical flow models, meant
to improve performance. The model itself is based on a very simple principle, named
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pattern recognition. It observes the motion of objects, or groups of objects, in the
optical flow over the entire frame, and attempts to predict their movement pattern.
This is done by attempting to fit their movement to a polynomial, from which it can
extrapolate an expected position [2]. this polynomial Will be continuously optimized
as long as the tracked element is present, and is often very close to the ground truth,
after having had the option to observe for a few frames. While this in and of itself is
not able to do optical flow, it is useful for improving the accuracy of tracking, as well
as optimizing runtime, as optical flow methods may narrow their search to a much
smaller region than otherwise. It is worth mentioning, that as the Gunnar Farnebâck
method relies on polynomials, it can model very complex movement patterns if need
be.

5.4.3 CNN Based Methods

CNN-based optical flow models are A step up from traditional methods, utilizing
neural networks to predict motion between frames. They utilize handcrafted features,
trained features or a mixture of the two, to learn hierarchical features, attempting
to learn complex patterns in the data. Many methods, such as FlowNet [53] and
RAFT [54] utilize this technology, as it has achieved higher accuracy and efficiency
compared to traditional methods. It is important to note that many models require a
ground truth to effectively train optical flow, to avoid the model learning something
else.

5.4.4 Summary

All three methods provide potential gains and consequences. Lucas Kanade benefits
from its simplicity and is unlikely to suffer much from concept drift. Despite this, it
is expected to underperform in comparison to others. Gunnar Farnebäck is expected
to perform better overall, due to the prediction of movement, but is expected to
fall short of CNN-based methods, by a noticeable margin. CNN-based methods are
expected to outperform all other methods but may require specific training data,
which may not always be feasible to obtain.

5.5 Object Detection Models

This section will cover the object detection model architectures Faster R-CNN and
YOLOv5 which were used in the paper Seasons in Drift: A Long-Term Thermal
Imaging Dataset for Studying Concept Drift [6] that published the baseline dataset
LTD.
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5.5.1 Faster R-CNN

Faster R-CNN [55] is a two-stage model object detector and the architecture is built
with its own RPN and uses the classification head from Fast R-CNN [56].

The authors for Faster R-CNN [55] explored utilizing the Zeiler and Fergus model
[57], in conjunction with VGG-16 [19] for the RPN . Since VGG-16 was the best-
performing model the explanation of the RPN will be based on that. To generate
the region proposals a small network with a sliding window with a spatial resolution
of n × n (n=3) is slid over the convolutional feature map output from the last con-
volution layer in VGG-16. Each sliding window is mapped to a lower-dimensional
feature which is 512 dimensions for VGG-16 and then activated with ReLU . The
feature obtained from this is then fed into two fully connected layers which are
the box-regression layer and the box-classification layer which can be seen in figure
5.10

Figure 5.10: The region proposal network for Faster R-CNN. Edited to show that VGG-16 has
512 dimensions [55]

As seen in figure 5.10 at each sliding-windows location the RPN simultaneously
predicts multiple region proposals, where the maximum number of proposals for each
location is denoted as k. The k proposals are parameterized relative to k reference
boxes called anchors, where an anchor is centred at the sliding window and associated
with a scale and aspect ratio. By default, the 3 scales and 3 aspect ratios are used
resulting in k = 9 anchors at each sliding position. The box-regression layer encodes
the coordinates for k anchor boxes and outputs 4k coordinates, and the classification
layer estimates the probability of each proposal having an object or no object with
its output being 2k scores. The RPN has WHk anchors in total for a feature map
size of W × H.
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With the proposed regions from RPN the Fast R-CNN [56] detector uses those
proposed regions as an attention mechanism. The full architecture of Faster R-CNN
[55] can be seen in figure 5.11

Figure 5.11: Faster R-CNN unified network with its RPN and Fast R-CNN classifier head [55]

The Fast R-CNN [56] classification head works by taking the proposed regions from
the RPN into a Region Of Interest (ROI ) pooling layer. The pooling layer uses
max pooling to get features inside the ROI converted into a small feature map. The
output from the pooling layer gets fed into a sequence of fully connected layers that
branch into an object classifier that uses softmax and a bounding box regressor that
outputs the location of the bounding box. The architecture for the Fast R-CNN can
be seen in figure 5.12, where the classification head used by Faster R-CNN is inside
the grey box call ROI feature vector.
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Figure 5.12: Full architecture for the Fast R-CNN network. The grey box on the right shows the
part being used for the classifier head for Faster R-CNN [56]

5.5.2 You Only Look Once

YOLOv5 [3] is the other model used in Seasons in Drift: A Long-Term Thermal
Imaging Dataset for Studying Concept Drift [6] which was compared against Faster
R-CNN. There are no official papers for YOLOv5 [3] so this section will cover the
original YOLO [58] architecture and the improvements upon it until YOLOv5.

5.5.2.1 YOLO

YOLO was developed by Redmon et al. [58] and is a one-stage detector, unlike
Faster R-CNN [55], a two-stage detector. This is done by framing object detection
as a regression problem instead of a classification problem, and as a consequence
makes the model faster than Faster R-CNN with a small reduction in performance.
This also makes it possible to use YOLO [58] for semantic segmentation. YOLO
uses features from the entire image to predict each bounding box and does this also
across all classes for an image simultaneously. It divides the input image into a grid
with size S × S seen in figure 5.13, where a cell takes responsibility for an object
if the centre falls within it. Each grid cell then predicts B bounding boxes and
confidence scores, where the confidence reflects how accurate the bounding box may
be and if it contains an object. Each bounding box has 5 predictions: x, y, w, h, and
confidence, where (x, y) are coordinates that represent the centre of the bounding
box relative to the bounds of the grid cell. w and h represent the width and height
relative to the whole image, and confidence prediction represents the IoU between
the predicted box and ground truth box. Each grid cell also predicts only 1 class
of C conditional class probabilities regardless of the number of boxes B. Where the
class is conditioned on the grid cell containing an object.
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Figure 5.13: The full model for YOLO, where it divides the image into an S × S grid and for each
cell predicts B bounding boxes and C class probabilities that are then used together for the final
prediction [58]. These predictions are encoded as an S × S × (B ∗ 5 + C) tensor

The network architecture is inspired by GoogLeNet [59], and has 24 convolutional
layers followed by 2 fully connected layers. The first layer is a 7 × 7 convolutional layer
followed by a max pool layer, where then this is repeated with 3 × 3 convolutional
layer followed by a max pool layer. The change from GoogLeNet is that instead
of using the inception modules YOLO uses 1 × 1 convolutional layer followed by a
3 × 3 convolutional layer which can be seen in figure 5.14. The final output of the
architecture is a S × S × (B ∗ 5 + C) tensor with predictions.

Figure 5.14: The architecture used for YOLO with a total of 24 convolutional layers [58]
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5.5.2.2 YOLOv2

YOLO9000, also known as YOLOv2 [60], made some significant improvements to the
YOLO architecture which resulted in increasing the mean Average Precision (mAP)
while also increasing speed. It introduced batch normalization on all convolutional
layers, which improved convergence and acted as a regularizer that combatted overfit-
ting. The fully connected layers were removed and instead had a fully convolutional
architecture called Darknet-19 which can be seen in figure 5.15. With the removal
of fully connected layers, YOLOv2 instead uses the idea of anchor boxes to predict
the bounding boxes like in Faster R-CNN [55]. Although this decreases the mAP
slightly from 69.5 to 69.2 it increases the number of bounding box predictions from
98 to over a thousand and increases recall from 81% to 88%. Instead of the anchor
boxes being handpicked YOLOv2 uses dimension clusters, where the priors are picked
automatically using k-means clustering on the training set bounding boxes.

Figure 5.15: The improved backbone used in YOLOv2 Darknet-19, where the last layers with fully
connected layers were removed for a full convolutional network [60]

YOLOv2, like YOLO, also predicts the location of the bounding box directly, instead
of predicting offsets like other anchor box solutions it predicts the coordinates relative
to the location of the grid cell. All the improvement for YOLOv2 is summarized in
figure 5.16
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Figure 5.16: The different improvements made in YOLOv2 and the impact they had on increasing
mAP [60]

5.5.2.3 YOLOv3

YOLOv3 [61] made incremental improvement upon YOLOv2 [60], increasing the
network size and sacrificing speed, but still being faster than other solutions. It was
improved by predicting an objectness score, which only assigns one bounding box
for each ground truth object using logistic regression. This is done by the output
being 1 if it overlaps the ground truth object by more than any other bounding
box prior, and for everything else, it is 0. Redmon and Farhadi also changed loss
supervision so that if a bounding box prior is not assigned to a ground truth object
then it does not incur loss for coordinate or class predictions, but only for objectness.
The class predictions were also changed from softmax to using binary cross-entropy,
which made the model multilabel so that overlapping labels like woman and person
can be predicted in the same bounding box. Using the idea from Feature Pyramid
Networks [62], YOLOv3 [61] also predicts boxes at three different scales, and changed
the k-means clustering to use three prior boxes on all three scales. The backbone of
the network was also changed from darknet-19 to darknet-53 which instead of having
19 convolutions has 53, but also now included residual connections as seen in figure
5.17.
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Figure 5.17: The illustration shows the improved backbone design of Darknet-53, which increased
the convolutional layers from 19 to 53 and integrated residual layers [61]

5.5.2.4 YOLOv4

YOLOv4 was developed by Bochkovskiy et al.[63]. There were substantial improve-
ments over YOLOv3 [61], two of which were integrating what was called "bag of spe-
cials" and "bag of freebies". Bag of specials are plugin modules and post-processing
methods which increase the inference cost by a small amount but significantly im-
prove the accuracy of object detection, and bag of freebies are offline training strate-
gies such as data augmentation. The methods from bag of freebies and specials were
integrated into the backbone and detector head. The model introduced two new
bag of freebies, this being mosaic data augmentation and Self-Adversarial Training
(SAT ). Mosaic data augmentation mixes four training images, which allows the
detection of objects outside their normal context by "stitching" a part of the four
images into one image. SAT is also a data augmentation technique which operates
in two stages. In the first stage, the neural network makes an adversarial attack on
the input image to create a deception that there are no objects in the image. In the
second stage, the network is trained to detect an object on that image in the normal
way. Using SAT makes the model more robust. An additional improvement was
also made by using genetic algorithms to select the optimal hyperparameters. The
models’ architecture can be seen in figure 5.18
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Figure 5.18: The full YOLOv4 architecture. It shows the different modules used as bag of freebies
and bag of specials, these include CSP: cross-stage partial connection, CMB: Convolution + Batch
Normalization + Mish activation, CBL: Convolution + Batch Normalization + Leaky ReLU, UP:
upsampling, SPP: Spatial Pyramid Pooling, and PANet: Path Aggregation Network [64]

5.5.2.5 YOLOv5

Lastly, YOLOv5 [3] was released by Ultralytics a couple of months after YOLOv4
[63]. There wasn’t much of a difference in the architecture, but instead, it was
developed using Pytorch instead of Darknet. YOLOv5 is also open source, actively
maintained, and easy to use, train, and deploy. It has 5 models with varying sizes so
that it can be deployed in mobile to cloud devices. It also incorporates an algorithm
called AutoAnchor, which is a pre-training tool that checks and adjusts anchor boxes
to see if they fit the dataset and training settings. The AutoAnchor applies a k-means
function to the dataset labels and generates initial conditions for a genetic evolution
algorithm which evolves over generations to get the best-fit [64]. The architecture
for YOLOv5L can be seen in figure 5.19
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Figure 5.19: Shows the structure of the YOLOv5L. The structure of YOLOv5 consists of three
main parts. This is the backbone CSP-Darknet53 like in YOLOv4 [63], the neck that connects the
backbone and head with Spatial Pyramid Pooling Fusion (SPPF) and Cross-Stage Partial connection
and Path Aggregation Network (CSP-PAN), and the head which is the one used in YOLOv3 [3],
[61]

5.5.3 Performance Evaluation

The baseline performance of the models for the LTD [6] dataset can be seen in figure
5.3. While there is merit in using a two-stage detector as the conventional thought
is that they are more accurate than a one-stage detector. However, since YOLO [58]
has been well-maintained and updated it has over time become better than Faster
R-CNN. The evaluation metrics for table 5.3 is mAP50, and as can be seen from the
table YOLOv5 is more precise than Faster R-CNN on all accounts. Therefore the
object detection model used for the downstream task will be YOLOv5.
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Test
Method Train Jan. Apr. Aug.

Feb 100 0.7930 0.4860 0.4830YOLOv5 Feb. 100 + Mar. 100 0.8690 0.6640 0.6110
Feb 100 0.6400 0.2560 0.3180Faster R-CNN Feb. 100 + Mar. 100 0.6990 0.3910 0.3380

Table 5.3: Results showing mAP50 (↑) across every frame in the Seasons in Drift: A Long-Term
Thermal Imaging Dataset for Studying Concept Drift paper. The method is the object detection
model used, train is data from which month and how many frames, and test results for different
months [6].

5.6 Evaluation Metrics

This section will cover the evaluation metrics used to measure object detection perfor-
mance. Commonly the metric used for this is mAP, but to calculate this, precision,
recall, and IoU need to be explained first.

5.6.1 Intersection Over Union

The IoU measures how much a predicted bounding box overlaps the ground truth
with a value between 0 and 1. If the prediction is perfect and the bounding box
overlaps it completely the value is one and if the prediction doesn’t overlap at all
the value is 0. The value is calculated by taking the ratio for the area where the
bounding boxes intersect and the area of the union for the two bounding boxes. The
IoU can be used as a threshold together with the class labels for object detection
which determines what can be a True Positive (TP), False Positive (FP), False
Negative (FN ), or True Negative (TN ) [65]. A prediction would be a TP when the
IoU is above thresholds and it was the correct class label, it would be FN when it
is the correct label but the IoU is less than the threshold. A TN would then be not
doing a prediction when there is nothing, and a FP would be having an IoU above
the threshold with the incorrect label.

5.6.2 Precision And Recall

Recall, also known as sensitivity, is the same as the true positive rate, which measures
the proportion of real positives that are predicted as positives as seen in eq. 5.1
[66]

Recall =
TP

TP + FN
(5.1)

In itself, recall isn’t highly regarded for object detection as the focus is more on how
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precise the classifier is [66]. To get how precise the detection is precision can be used,
where precision measures the proportion of predicted positives that are positives as
seen in eq. 5.2

Precision =
TP

TP + FP
(5.2)

While precision might be more desirable recall is still an important aspect so Average
Precision (AP) can be used instead. As the name might suggest AP is not the average
of precision but is the area under the precision and recall curve [30], [65].

5.6.3 Mean Average Precision

The precision and recall curve can be made by plotting the precision against recall
for different IoU thresholds [65]. The negative relationship between precision and
recall, where a higher FN is a lower FP and vice versa, makes it so that the curve
ideally has a 90° angle where precision and recall is 1. The average precision can be
calculated by the eq. 5.3

AP =
∫ 1

0
P (R)dR ≈ 1

n

1∑
0.0

P (R) (5.3)

where P (R) is the measured precision and recall at a certain IoU threshold and
n is how many increment steps there are from 0.0 to 1 which determine the IoU
threshold.

The mAP can then be calculated for each class by taking the average of AP across
all relevant classes as seen in eq. 5.4

mAP =
1
k

k∑
i

APi (5.4)

where k is the number of classes that are in consideration and i is the index. To
calculate mAP50 would mean to get the AP where the increment steps start at 0.5
IoU and using eq. 5.4 if there is multiple classes. More recent papers use mAP in
the COCO context, this is defined as mAP0.50:0.95 which means to take the average
of all mAP starting from 0.5 to 0.95 with increments of 0.05 [67].
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6.1 Design

The design is inspired by the approach of Zoetgnande et al. [36]. Their experiments
with combining various representations of the data are the inspiration point for this
work’s design. They successfully created a generalized representation between RGB
and TIR. Based on this, it may be feasible to utilize this technique to generalize
across seasonal drift. To be able to test the efficacy of many representations, the de-
sign is made with the intention for the representations to be easily swapped. Beyond
the representations, the design should be static, for the purpose of consistency to give
fair testing conditions. The design was decided to be a YOLOv5-based model [3],
where the input consists of three gray scale representations, merged into a 3-channel
image, imitating RGB. This approach was chosen based on the great performance
of YOLOv5 and advice from its developers, discouraging any attempts to alter the
number of channels in YOLOv5 from the default 3.

Figure 6.1: An illustration of the fundamental pipeline. Takes 3 representations and merges them
to a pseudo-RGB image for training YOLOv5.

The fundamental pipeline shows the simplest form of the design. It simplifies the
representations to a data input. These representations can take many forms, from a
blurred image to the output of an AI model. The only requirement for a representa-
tion is for it to contain features relevant to the original image. This is achieved by
building the representations from it, and evaluating their contribution later. From
the extensive list of options, this project will focus on U2Net for its superior per-
formance mentioned in section 5.2.4 and Gunnar Farnebäck Optical Flow for its
simplicity. As such, an extended pipeline can be seen in figure 6.2. To maintain the
original information, it was decided that a minimum of one representation should
always be the source data, to maintain the original image data and contextual infor-
mation.
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Figure 6.2: An extended pipeline example, utilizing U2Net, Gunnar Farnebäck optical flow and
the LTD-TIR dataset to provide 3 representations for YOLOv5.

The extended pipeline shows what a pipeline could look like. For the actual imple-
mentation, relevant representations will follow a pipeline that can be inserted for the
implementation, as an input for one of the representations. In figure 6.3 the main
pipeline can be seen in its final form.

Figure 6.3: Complete flowchart of the modular design. The flowchart loops repeatedly over all
images, feeding them to the YOLOv5 training.
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7.1 Optical Flow Tests

A preliminary experiment was done to evaluate which optical flow model would be
most beneficial to achieve the best performance. To evaluate this, a selection of
models were selected and evaluated, based on visual inspection. The tested models
were Lucas Kanade [51], [52], Gunnar Farnebäck [2], [51] and RAFT [54]. Lucas
Kanade was selected for its ease of use, and simplicity. Gunnar Farnebäck for its
expected great performance as an entirely algorithmic model, and RAFT which is
considered to be one of the better CNN-based optical flow implementations.

When observing the output of Lucas Kanade, we see little to no useful information.
It is simply not able to find relevant features when tested on some of our data.

As can be seen, the detected flow looks like noise and is not expected to be useful
for the project.

When testing on Gunnar Farnebäck, the flow seems to follow objects in motion
correctly. The result is rather good, despite a substantial halo being present.

Figure 7.1: An example of a Gunnar Farnebäck model output, generated from our data

It can be seen that all humans in the sample image are detected. While this isn’t
consistent between all tested images, it is more likely to see them than not.

The RAFT implementation was run on a pre-trained model, as it is supervised,
and would require the ground truth to train. Despite this, good performance was
expected. The outcome was that RAFT either performs astoundingly well or returns
what can only be described as a noise texture.
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Figure 7.2: An example of a Raft model output, generated from our data

As can be seen, in one image, the flow effectively marks the pedestrian perfectly, for
those detected. In images 2 and 3 however, we can see raft locating everything and
nothing respectively.

Considering the inconsistency of RAFT in this case, Gunnar Farnebäck was chosen
as the preferred option.

7.2 Data Split

The extended LTD data is already split in a train, test, and validation set. For this
work, these were filtered into their respective months complying with set splits. This
will make it easier to train and test the data more granularly for the U2Net [1] and
YOLOv5 [3]. As this work will focus on seasonal drift all the data for September is
used as a test as there is a small number of samples for September and no samples
for October and November. The number of images for the data split can be seen in
table 7.1.
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Extended LTD-TIR

Train Test Val
Total 749195 49430 46013
Jan 84905 5798 4699
Feb 98414 6479 5658
Mar 124902 8966 7487
Apr 125306 7949 8561
May 75952 4913 4720
Jun 106081 7036 6707
Jul 33708 2163 2180
Aug 99388 6006 6001
Sep 0 659 0
Oct 0 0 0
Nov 0 0 0
Dec 0 0 0

Table 7.1: The total number of images split in train, test, and validation set and their respective
months

7.3 Hardware And Software

All training and inference were done on AI Cloud where the hardware and software
used can be seen below:

Hardware:

• RAM: 64GB

• GPU: NVIDIA L40S

• Rest: Depends on AI Cloud allocation. See AI Cloud documentation

Software:

• Ubuntu 20.04.6 LTS

• Containr build from an Anaconda 3 .yaml file:

– Python 3.11.0

– Anaconda 3 24.1.2

∗ Pytorch 2.2.2

∗ OpenCV 4.9.0.80

∗ Numpy 1.24.3

https://aicloud-docs.claaudia.aau.dk/
https://aicloud-docs.claaudia.aau.dk/
https://github.com/DeiC-HPC/cotainr
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∗ See .yaml file in appendix A.1

7.4 Data Preprocessing And Training

This section describes the data preprocessing, using the designed pipeline, needed
to make the pseudo-RGB image and how it is obtained for the training process of
U2Net [1] and YOLOv5 [3] models.

7.4.1 Training U2Net

Since U2Net [1] is a model that needs masks for an image and the LTD dataset has
no masks that can be used for ground truth. This work instead will procure the
masks using the bounding boxes from the annotated classes including pedestrians.
Only the bounding boxes for pedestrians were used to make the masks and the masks
were also filled as can be seen in figure 7.3 with the original image from May can be
seen in figure 7.4

Figure 7.3: The procured pedestrian masks from
the bounding boxes which are used as ground
truth for training U2Net.

Figure 7.4: The original image from the ex-
tended LTD dataset. The image is from May.

Three versions of a U2Net model were trained, referred to as the: winter, spring, and
summer models. Each model is retrained following the original implementation on
the data specific to its respective season for 10 epochs with a learning rate of 1e-4
and a batch size of 64. The final output after 10 epochs for the spring model can be
seen in figure 7.5
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Figure 7.5: The final output saliency map for the spring model

As shown in figure 7.5 the saliency map obtained from the trained model resembles
bounding boxes. The difference between the outputs from the winter, spring, and
summer models and what they highlight in the original image can be seen in figure
7.6. The expected output is that the models highlight the pedestrians that were
annotated in the masks seen in figure 7.3. The output instead shows that all three
models missed the pedestrian that was occluded at the top left of the image. It can
also be seen that the winter model only highlights two pedestrians from the ground
truth and the spring and summer models highlight all pedestrians in the centre of
the image. However, the summer model has some FP. The underperformance of the
winter model can be caused by its overfitting for winter samples.
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(a) (b)

(c)

Figure 7.6: The saliency maps obtained from the U2Net models superposed on top of the original
image. (a) The output from the winter model. (b) The output from the spring model. (c) The
output from the summer model

7.4.2 Training YOLOv5

As described in section 6.1 the model presented in this work makes a pseudo RGB
image. This is done by preprocessing the data using the pipeline shown in figure
6.2, where the blue channel is the output from U2Net used as a mask for the original
image, the green channel is the source, and the red channel is the output from optical
flow used as a mask. An example of an image using the summer U2Net model can
be seen in figure 7.7
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Figure 7.7: The preprocessed image made using the pipeline in this work for the summer U2Net
model.

This preprocessing is done for all 3 U2Net models so that there is a total of 4 datasets
with different variations, these being the original, preprocessed winter U2Net, prepro-
cessed spring U2Net, and preprocessed summer U2Net. The extended LTD dataset
also has a different annotation format whereas YOLO uses the COCO annotation
format. The change in annotation can be seen here:

• id, class, topx, topy, bottomx, bottomy, is crowded?
↓

• class, normalized centre x, normalized centre y, normalized width, normalized
height

Three baseline models were also trained each having the data for their respective
seasons winter, spring, and summer which will be used to compare against the models
using the preprocessed data.

To train the YOLOv5 model the train file was used from the Ultralytics YOLOv5
repository [3]. The pre-trained weights from yolov5x were used with the Adam [68]
optimizer and a batch size of 187. The models were all trained for 50 epochs with the
hyperparameters used being based on the ’hyp.scratch-high.yaml’ file. The changes
made for the hyperparameters are:

• lr0: 1e-4

• Box loss gain: 1e-2

• Objectness loss gain: 0.4

• Objectness binary cross entropy loss positive weight: 0.6

• Number of anchors: 9
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• perspective: 1e-3

• mixup: 0.2

The hyperparameters were obtained using individual sweeps and the full .yaml file
can be seen in appendix A.2. The image size was set to 384 with the "–img 384"
argument and the "–rect" argument was also used. An example of the full terminal
argument can be seen in listing 1

python train.py --rect --img 384 --epochs 50 --data Harborfront_summer.yaml
--batch-size 187 --name Summer_baseline --optimizer Adam --weights yolov5x.pt
--hyp data/hyps/hyp.mine-scratch_v3.yaml --device 0

↪→

↪→

Listing 1: Linux terminal argument to run train.py

An example of images with annotations is saved by default by YOLOv5. An example
of this can be seen in figure 7.8

Figure 7.8: Train batch saved by YOLOv5 with annotations
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YOLOv5 also saves different plots on the Weights and Biases website if the library is
available, this was used to automatically plot the losses and metrics to a workspace
which can be seen here. The naming scheme used for the models is "Season_model
type". The preprocessed models have been called U2OF, which stands for U2Net
Optical Flow.

The validation box loss gain can be seen in figure 7.9. With a closer inspection, it can
be seen that the models made for this work start with a lower loss, but the baseline
catches up and has a lower loss at the end.

Figure 7.9: The validation box loss plot for the trained baseline and preprocessed models

The validation objectness loss can be seen in figure 7.10, which seems to not change
much.

https://wandb.ai/team-kazim/YOLOv5
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Figure 7.10: The objectness loss plot for the trained baseline and preprocessed models

The precision plot of the models can be seen in figure 7.11, where the models with the
preprocessed data seem to be lower. However, this change seems to be because of the
tradeoff being from an increase in recall seen in the recall plot in figure 7.12.

Figure 7.11: The precision plot for the trained baseline and preprocessed models
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Figure 7.12: The recall plot for the trained baseline and preprocessed models

After 50 epochs the precision and recall values for each model’s own validation set
can be seen in table 7.2

Winter baseline Winter U2OF Spring baseline Spring U2OF Summer baseline Summer U2OF

Precision 0.889 0.859 0.835 0.814 0.815 0.802
Recall 0.683 0.724 0.631 0.651 0.617 0.644

Table 7.2: Precision and recall values for each models own validation set after 50 epochs

Table 7.2 shows that all the preprocessed models seem to have around a 3% increase
in recall with the tradeoff being a 3% decrease in precision for all except the summer
U2OF, which is on par with the baseline.
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Expirement procedure

This chapter describes the experiments and the procedure for how the experiments
were conducted using the trained models mentioned in section 7.4.2.
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Six main experiments were conducted to find the performance between the different
seasons. Three of these were experiments on the baseline models for each season, and
the other three were experiments using the proposed U2OF model for each season.
Each model was tested on all months for a more granular measurement, which was
done using the original implementation of "val.py" in the Ultralytics YOLOv5 [3]
repository. The argument "–task test" was used to use the test set for each month,
and all images were set to a size of 384 using the "–img 384" argument. A batch size
of 187 was also used to make it consistent with how the model was trained, but this
shouldn’t change the results for inference. An example of the full terminal argument
for the U2OF spring can be seen in listing 2

val.py --task test --img 384 --weights runs/train/Spring_U2OF/weights/last.pt
--batch-size 187 --device 0 --project runs/test/spring_U2OF --data
Harborfront_Januar_spring_U2OF.yaml --name Januar

↪→

↪→

Listing 2: Linux terminal argument to run val.py

To change the models the "–weights" argument can be changed to the path of the
desired model checkpoint. The project folder it is saved under can be changed with
the "–project" argument and the name of the test can be changed with the "–name"
argument (This work used "Januar" which is Danish for January).

The expectation for these experiments is that U2OF show an improved performance
in the seasons where the model isn’t trained against the baseline. This means that
ie. the U2OF winter model performs better than the baseline between March and
September.
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9.1 Evaluation Of Experiments

9.1.1 Baselines

The baselines serve as proof of seasonal concept drift, as well as a comparison for
subsequent tests.

Figure 9.1: mAP0.50 distribution of baselines as a function of time of year.

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.736 0.704 0.691 0.682 0.561 0.707 0.673 0.708 0.709
Baseline 3ch - Spring 0.777 0.762 0.747 0.723 0.588 0.654 0.654 0.675 0.661
Baseline 3ch - Winter 0.791 0.767 0.695 0.465 0.263 0.264 0.232 0.480 0.666

Table 9.1: mAP0.50 results for baseline models on the test set

The table 9.1 shows the performance of the three baselines across the dataset. The
difference in performance can also be seen in figure A.1. As expected, the winter
baseline outperforms the others during the winter months, the spring baseline dur-
ing the spring months, and the summer baseline during the summer months. The
winter baseline significantly underperforms during the summer months, showing the
clear presence of concept drift. Overall, the spring baseline is the best performing,
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though the summer baseline is close in comparison. It can be observed that a major
performance dip happens in May, which is a recurring trend and will be addressed
later.

mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.399 0.344 0.330 0.318 0.238 0.323 0.303 0.343 0.309
Baseline 3ch - Spring 0.441 0.387 0.371 0.347 0.254 0.304 0.290 0.322 0.306
Baseline 3ch - Winter 0.462 0.403 0.351 0.228 0.123 0.126 0.102 0.244 0.286

Table 9.2: COCO mAP results for the baseline models

The table 9.2 contains the COCO mAP for the baselines. In combination with Table
9.1, it can be seen that the winter baseline performs better than the other baselines
relative to their performance in the COCO mAP. This suggests that the IoU scores
used to threshold what is considered a detection are higher in January for the winter
baseline compared to the other baselines.

9.1.2 U2OF Test Results

Our implementation is compared to the relevant baseline, for the different tested
models.

9.1.2.1 U2OF Summer Performance

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.736 0.704 0.691 0.682 0.561 0.707 0.673 0.708 0.709
U2OF - Summer 0.728 0.698 0.682 0.641 0.537 0.691 0.676 0.702 0.700

Table 9.3: mAP0.50 results for U2OF trained on summer data compared to the baseline model

Table 9.3 shows that the U2OF underperforms with as much as 0.041, in April, and
to a lesser degree for the rest of the months. It outperforms by 0.003 in July but is
otherwise unremarkable.

mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.399 0.344 0.330 0.318 0.238 0.323 0.303 0.343 0.309
U2OF - Summer 0.410 0.353 0.334 0.307 0.225 0.323 0.296 0.341 0.298

Table 9.4: COCO mAP results for U2OF trained on summer data compared to the baseline model
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The table 9.4 shows that the U2OF summer measurements have better COCO mAP
scores. This suggests that the predictions made in these months have a better IoU
score.

9.1.2.2 U2OF Spring Performance

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Spring 0.777 0.762 0.747 0.723 0.588 0.654 0.654 0.675 0.661
U2OF - Spring 0.757 0.752 0.753 0.716 0.593 0.641 0.632 0.651 0.492

Table 9.5: mAP0.50 results for U2OF trained on spring data compared to the baseline model

The U2OF spring measurements found in table 9.5 show similar results to the summer
variant. In this instance, the model outperforms the baseline during March and
May, by 0.006 and 0.005 respectively. It is also seen that the model substantially
underperforms during September.

mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Spring 0.441 0.387 0.371 0.347 0.254 0.304 0.290 0.322 0.306
U2OF - Spring 0.444 0.394 0.387 0.360 0.258 0.305 0.282 0.321 0.230

Table 9.6: COCO mAP results for U2OF trained on summer data compared to the baseline model

Observing table 9.6 it can be seen that the U2OF spring model outperforms the
baseline from January to June, suggesting that it has better IoU scores than the
baseline for these months.

9.1.2.3 U2OF Winter Performance

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Winter 0.791 0.767 0.695 0.465 0.263 0.264 0.232 0.480 0.666
U2OF - Winter 0.786 0.766 0.668 0.458 0.236 0.241 0.201 0.459 0.545

Table 9.7: mAP0.50 results for U2OF trained on winter data compared to the baseline model

In table 9.7 we see a unilateral decrease in performance, especially in September,
reaching a difference of 0.169. It is expected that the winter performance to be lower
than others, but not for all months, compared to the baseline.
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mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Winter 0.462 0.403 0.351 0.228 0.123 0.126 0.102 0.244 0.286
U2OF - Winter 0.460 0.404 0.332 0.223 0.106 0.112 0.086 0.228 0.270

Table 9.8: COCO mAP results for U2OF trained on winter data compared to the baseline model

Table 9.8 that the gap between the U2OF winter model is smaller compared to
mAP50.

9.2 Ablation Studies

Based on the shortcomings of the original test results, additional ablation studies
were conducted to better understand them.

9.2.1 Baseline Channel Ablation

Baseline channel ablations were done to test the change in performance using less
than 3 channels. This was done by changing the line 836 inside the "dataloaders.py"
from the code shown in listing 3 to the code shown in listing 4

img = img.transpose((2, 0, 1))[::-1]

Listing 3: Line of code inside the dataloaders.py from the ultralytics YOLOv5 repository [3]

(B, G, R) = cv2.split(img)
zeroes = np.zeros(img.shape[:2], dtype="uint8")
img = cv2.merge([zeroes, G, zeroes])
img = img.transpose(2, 0, 1)

Listing 4: Changed code in dataloaders.py from the ultralytics YOLOv5 repository [3]

The continuous overlap of our U2OF models with the baseline suggests our U2Net
and optical flow being comparable to 2 channels which are a duplicate of the source.
To quantify what this amounts to, ablation studies were conducted, in which the
baseline was stripped on one and two channels, by inputting a zero matrix in their
place, effectively disabling them.
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mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.736 0.704 0.691 0.682 0.561 0.707 0.673 0.708 0.709
Baseline 2ch - Summer 0.736 0.701 0.685 0.685 0.556 0.709 0.678 0.705 0.679
Baseline 1ch - Summer 0.735 0.706 0.688 0.680 0.550 0.713 0.669 0.710 0.697

Table 9.9: mAP0.50 results for the reducing channel numbers compared to 3 channel baseline model
for baseline models trained on summer data

As can be seen in table 9.9 the difference between one, two and three channels of the
source image is negligible. This suggests additional source images provide little to
no benefit. The result for COCO mAP can be seen in table 9.10.

mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.399 0.344 0.330 0.318 0.238 0.323 0.303 0.343 0.309
Baseline 2ch - Summer 0.398 0.344 0.331 0.323 0.239 0.326 0.306 0.343 0.311
Baseline 1ch - Summer 0.389 0.337 0.321 0.309 0.230 0.320 0.296 0.336 0.309

Table 9.10: COCO mAP results for the reducing channel numbers compared to 3 channel baseline
model for baseline models trained on summer data

Observing table 9.10 we again see little tangible benefit, with a slight decrease in 1
channel performance.

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Winter 0.791 0.767 0.695 0.465 0.263 0.264 0.232 0.480 0.666
Baseline 2ch - Winter 0.787 0.765 0.694 0.488 0.281 0.280 0.236 0.494 0.709
Baseline 1ch - Winter 0.789 0.764 0.688 0.472 0.285 0.274 0.234 0.465 0.687

Table 9.11: mAP0.50 results for the reducing channel numbers compared to 3 channel baseline
model for baseline models trained on winter data

When observing the one, two, and three-channel variants of the winter baseline
in table 9.11, no substantial difference is found in January and February. It is
noteworthy that the 3-channel baseline appears to be overfitting slightly and therefore
has a lower performance outside the months it was trained on. The result for COCO
mAP can be seen in table 9.12.



9.2. Ablation Studies 65

mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Winter 0.462 0.403 0.351 0.228 0.123 0.126 0.102 0.244 0.286
Baseline 2ch - Winter 0.460 0.401 0.347 0.236 0.130 0.130 0.102 0.251 0.316
Baseline 1ch - Winter 0.462 0.401 0.346 0.230 0.129 0.127 0.101 0.234 0.300

Table 9.12: COCO mAP results for the reducing channel numbers compared to 3 channel baseline
model for baseline models trained on winter data

Table 9.12 shows that the 3-channel winter baseline has a slight edge for the first three
months and worse performance outside these supporting previous findings.

9.2.2 Alternative baseline ablation

An ablation was done for the baseline with a more varying amount of data. Here
the training set for February, May, and July was used to train the model. These
months were chosen based on them having the worst performance in their seasons.
The expected result of this study is that the performance of the model in the months
it is trained on is increased while also mitigating performance lost to concept drift.
The result between all baselines and the model with February, May, and July data
can be seen in table 9.13

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Winter 0.791 0.767 0.695 0.465 0.263 0.264 0.232 0.480 0.666
Baseline 3ch - Spring 0.777 0.762 0.747 0.723 0.588 0.654 0.654 0.675 0.661
Baseline 3ch - Summer 0.736 0.704 0.691 0.682 0.561 0.707 0.673 0.708 0.709
Baseline 3ch - Feb+May+Jul 0.774 0.762 0.737 0.690 0.574 0.653 0.654 0.670 0.681

Table 9.13: mAP0.50 results for using varied data

In table 9.13 the performance for the varied baseline is mediocre, never being worst
or best for any month. It can also be seen that performance for February, May, and
July didn’t increase as hypothesized. This might suggest that the data was too varied
and the model couldn’t get a correct fit. It might also suggest that the problems from
May were amplified. The result for COCO mAP can be seen in table 9.14.
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mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Winter 0.462 0.403 0.351 0.228 0.123 0.126 0.102 0.244 0.286
Baseline 3ch - Spring 0.441 0.387 0.371 0.347 0.254 0.304 0.290 0.322 0.306
Baseline 3ch - Summer 0.399 0.344 0.330 0.318 0.238 0.323 0.303 0.343 0.309
Baseline 3ch - Feb+May+Jul 0.430 0.384 0.353 0.321 0.243 0.293 0.278 0.317 0.308

Table 9.14: COCO mAP results for using varied data

As seen in table 9.14 the performance for the varied baseline can again be observed
to yield mediocre performance across the board, supporting previous findings.

9.2.3 U2Net Ablation

To understand the performance impact of U2Net, various configurations were tested
to see performance yields.

The measurements in table 9.15 show the result of using only the U2Net output as
the secondary channel. This was then compared to the 2-channel baseline.

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 2ch - Summer 0.736 0.701 0.685 0.685 0.556 0.709 0.678 0.705 0.679
U2 - Summer 0.724 0.697 0.677 0.641 0.527 0.688 0.672 0.703 0.681

Table 9.15: mAP0.50 results for U2 trained on summer data compared to the baseline model

As seen in table 9.15 the overall performance is worse, only beating the baseline for
September, by 0.002, and being outperformed in April by 0.044. This might suggest
that U2Net does not impact the performance of pedestrian detection positively. The
result for COCO mAP can be seen in table 9.16.

mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 2ch - Summer 0.398 0.344 0.331 0.323 0.239 0.326 0.306 0.343 0.311
U2 - Summer 0.404 0.350 0.330 0.303 0.221 0.319 0.295 0.338 0.299

Table 9.16: COCO mAP results for U2 trained on summer data compared to the baseline model

In table 9.16 it can be seen that the U2Net model outperforms the baseline in winter
months, suggesting better IoU scores for those months. For some months the gap
has widened, proving that the performance of the model has shifted away from those
months, focusing the high IoU scores on the winter months.
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An additional experiment was also conducted where a copy of the U2Net channel
was used as a third channel. The mAP0.50 results can be seen in table 9.17

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.736 0.704 0.691 0.682 0.561 0.707 0.673 0.708 0.709
U2x2 - Summer 0.726 0.701 0.680 0.644 0.536 0.694 0.669 0.704 0.676

Table 9.17: mAP0.50 results for U2x2 trained on summer data compared to the baseline model

As seen in table 9.17 there is a minor increase in performance for the first half of the
data, when compared to 9.15, and a subsequent drop in some later months. When
compared to the baseline, the performance is inferior for all months. The result for
COCO mAP can be seen in table 9.18.

mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.399 0.344 0.330 0.318 0.238 0.323 0.303 0.343 0.309
U2x2 - Summer 0.413 0.358 0.338 0.309 0.229 0.325 0.297 0.344 0.299

Table 9.18: COCO mAP results for U2x2 trained on summer data compared to the baseline model

In table 9.18 it can be observed that the model outperforms the baseline in January,
February, March, June and August, showing better IoU scores for most months.

9.2.4 Optical Flow Ablation

Additional ablation studies were done using optical flow as the only channel to show
the impact it has on performance. The mAP0.50 results can be seen in 9.19.

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 2ch - Summer 0.736 0.701 0.685 0.685 0.556 0.709 0.678 0.705 0.679
OF - Summer 0.749 0.725 0.706 0.685 0.561 0.705 0.672 0.706 0.712

Table 9.19: mAP0.50 results for OF trained on summer data compared to the baseline model

In table 9.19 it can be seen that the model meets or exceeds the performance of the
baseline for all months but June and July. This improvement is of substantial size.
The result for COCO mAP can be seen in table 9.20
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mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 2ch - Summer 0.398 0.344 0.331 0.323 0.239 0.326 0.306 0.343 0.311
OF - Summer 0.410 0.356 0.338 0.320 0.234 0.322 0.294 0.339 0.319

Table 9.20: COCO mAP results for OF trained on summer data compared to the baseline model

when looking at table 9.20 it can be seen that the performance is slightly shifted in
favor of winter months, being surpassed in summer months.

Using 2 channels for optical flow was also studied the results for mAP0.50 can be seen
in table 9.21

mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.736 0.704 0.691 0.682 0.561 0.707 0.673 0.708 0.709
OFx2 - Summer 0.757 0.732 0.714 0.688 0.558 0.709 0.672 0.708 0.705

Table 9.21: mAP0.50 results for OFx2 trained on summer data compared to the baseline model

When comparing table 9.21 with table 9.19, we see a bigger improvement, for most
months, but a drop in May. When looking at the baseline it outperforms the model
in May, July and September but by the slightest margin.

mAP0.50:0.95

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline 3ch - Summer 0.399 0.344 0.330 0.318 0.238 0.323 0.303 0.343 0.309
OFx2 - Summer 0.405 0.354 0.337 0.318 0.230 0.322 0.292 0.338 0.307

Table 9.22: COCO mAP results for OFx2 trained on summer data compared to the baseline model

When observing the COCO mAP in table 9.22 we again see the winter-shifted dis-
tribution from the optical flow model, seen previously.

9.2.5 YOLOv5 Confidence Ablation

The confidence parameter of YOLOv5 has a default value of 0.001. This is a very
low value, resulting in anything detected in the slightest is considered a find. This
parameter was swept to see its influence on the results.
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Figure 9.2: Graph showing the confidence to precision relation of the baseline and U2OF

Baseline Confidence parameter - mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
Baseline Conf 0.001 0.736 0.704 0.691 0.682 0.561 0.707 0.673 0.708 0.709
Baseline Conf 0.1 0.766 0.738 0.731 0.716 0.599 0.736 0.702 0.730 0.736
Baseline Conf 0.2 0.776 0.748 0.742 0.726 0.613 0.746 0.713 0.740 0.745
Baseline Conf 0.3 0.781 0.754 0.748 0.733 0.623 0.753 0.721 0.747 0.749
Baseline Conf 0.4 0.787 0.760 0.755 0.739 0.633 0.757 0.726 0.752 0.749
Baseline Conf 0.5 0.789 0.765 0.759 0.739 0.637 0.751 0.724 0.752 0.743
Baseline Conf 0.6 0.771 0.750 0.744 0.723 0.619 0.719 0.699 0.726 0.743
Baseline Conf 0.7 0.728 0.712 0.701 0.673 0.583 0.654 0.640 0.670 0.707
Baseline Conf 0.8 0.626 0.624 0.602 0.568 0.514 0.558 0.540 0.576 0.625
Baseline Conf 0.9 0.500 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000

Table 9.23: Baseline mAP0.50 as a function of confidence parameter and time of year

When observing table 9.23 it can be seen that the best baseline performance is
achieved with a confidence parameter of 0.4 or 0.5, depending on whether winter
or summer months are prioritized. This can be used to optimize further for perfor-
mance.
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Baseline Confidence parameter - mAP0.50

Jan Feb Mar Apr May Jun Jul Aug Sep
U2OF Conf 0.001 0.728 0.698 0.682 0.641 0.537 0.691 0.676 0.702 0.700
U2OF Conf 0.1 0.757 0.730 0.724 0.683 0.575 0.720 0.702 0.725 0.736
U2OF Conf 0.2 0.766 0.740 0.735 0.695 0.589 0.729 0.713 0.734 0.744
U2OF Conf 0.3 0.772 0.747 0.743 0.704 0.600 0.736 0.719 0.739 0.750
U2OF Conf 0.4 0.778 0.755 0.752 0.716 0.612 0.743 0.725 0.746 0.751
U2OF Conf 0.5 0.783 0.762 0.759 0.721 0.617 0.742 0.724 0.744 0.746
U2OF Conf 0.6 0.769 0.753 0.747 0.712 0.607 0.720 0.708 0.724 0.743
U2OF Conf 0.7 0.736 0.725 0.712 0.681 0.578 0.674 0.670 0.678 0.735
U2OF Conf 0.8 0.649 0.646 0.622 0.591 0.526 0.575 0.572 0.590 0.665
U2OF Conf 0.9 0.451 0.500 0.455 0.500 0.125 0.500 0.500 0.500 0.500

Table 9.24: U2OF mAP0.50 as a function of confidence parameter and time of year

When comparing table 9.24 to table 9.23, we see that the difference is mostly consis-
tent with the performance difference observed in the original U2OF models, showing
this may not be useful for mitigating concept drift.

U2OF Confidence parameter - Precision

Jan Feb Mar Apr May Jun Jul Aug Sep
U2OF Conf 0.001 0.832 0.825 0.844 0.794 0.690 0.808 0.775 0.795 0.716
U2OF Conf 0.1 0.832 0.825 0.844 0.794 0.690 0.808 0.775 0.795 0.716
U2OF Conf 0.2 0.832 0.825 0.844 0.794 0.690 0.808 0.775 0.795 0.716
U2OF Conf 0.3 0.832 0.825 0.844 0.794 0.690 0.808 0.775 0.795 0.716
U2OF Conf 0.4 0.832 0.825 0.844 0.794 0.690 0.808 0.775 0.795 0.716
U2OF Conf 0.5 0.820 0.805 0.837 0.793 0.698 0.825 0.794 0.804 0.716
U2OF Conf 0.6 0.872 0.865 0.886 0.848 0.750 0.876 0.862 0.862 0.732
U2OF Conf 0.7 0.928 0.923 0.926 0.909 0.803 0.922 0.929 0.917 0.798
U2OF Conf 0.8 0.982 0.983 0.976 0.966 0.892 0.963 0.980 0.965 0.982
U2OF Conf 0.9 0.900 1.000 0.909 1.000 0.250 1.000 1.000 1.000 1.000

Table 9.25: U2OF precision as a function of confidence parameter and time of year

Observing the table 9.25, an anomaly can be observed for 0.9 confidence in May.

9.2.6 May clip ablation

An additional ablation was done after the discovered results from the confidence
ablation. This ablation study focuses on a single clip in May because the confidence
result shown in table 9.25 was outside the expectation. With a confidence of 0.9,
the expected precision should be either 0 or 0.9 and above, but unexpectedly the
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results show that the precision is 0.250 which means that the model only got 1 out
of 4 detections as TP. The ablation study was done on clip 16 for May 1st and the
results can be seen in table 9.26

Precision Recall mAP0.50 mAP0.50:0.95

Baseline 0.885 0.790 0.875 0.423
U2OF 0.756 0.811 0.833 0.448

Table 9.26: The result metrics for May 1st, clip 16

The results from table 9.26 show that the precision and mAP0.50 is significantly worse
in the proposed model whereas the recall and mAP0.50:0.95 is slightly better. Saved
predictions and the corresponding labels can be seen in figure 9.3 these can be seen
in higher resolution in A.4
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(a) (b)

(c)

Figure 9.3: The saved batches by the YOLOv5 model for May 1st clip 16. (a) The batch prediction
saved by YOLOv5 for the proposed models. (b) The batch predictions saved for the baseline. (c)
The ground truth labels for the image batches

Figure 9.3 shows that the baseline and the proposed model find pedestrians who are
not labelled, but it also shows that the proposed model finds pedestrians who are not
labelled in higher quantity and also finds pedestrians with higher confidence. This
disproportionally affects the results for the proposed model negatively, which might
suggest that the actual performance of the proposed model exceeds the baseline
performance.

Figure 9.4 depicts the discrepancy between the baseline detection and the U2OF
detection. It can be seen that the U2OF detects multiple people in the back, which
the baseline does not. These people are not annotated, and as such are considered
errors in the metric, despite superior detection.
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(a) (b)

Figure 9.4: Detection comparison for (a) baseline (b) U2OF
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Discussion

This study aimed to determine whether seasonal concept drift in thermal images
can be mitigated by adapting the original domain to a complex representation for
pedestrian detection. The results of this work have found that while the method
demonstrated minimal overall performance improvement in initial tests, further ex-
aminations revealed that the dataset used for testing contained significant annotation
errors. Specifically, the proposed implementation successfully detected pedestrians
that were not annotated in the dataset, highlighting the dataset’s shortcomings rather
than the ineffectiveness of our approach. The reliance on a faulty dataset has im-
pacted the validity of our results. The minimal improvement may be a consequence
of this annotation error, but could also be a result of negligible improvement. It
is at this time not possible to evaluate quantitatively the performance of the solu-
tion, without correcting or replacing the dataset. It is however possible to partially
evaluate the solution, based on trends. We have the continuous trend of optical
flow models having improved performance in winter on COCO mAP measurements,
when compared to mAP0.50, showing that optical flow has improved the IoU scores
for winter measurement, and has generally improved other measurements as well.
This does eliminate some concept drift, as the models for the ablation studies were
run on summer-based models. A similar result was seen in the COCO mAP re-
lated to the U2Net ablation studies, albeit without the overall performance provided
by optical flow. Overall our research suggests that this approach may be viable,
as the results show relatively good performance, despite being penalized for better
performance.

This work ultimately proves that the approach to mitigating concept drift is vi-
able, as it has shown the ability to detect people, which the baseline cannot in the
same frames. The upper limitations of our method cannot be evaluated without a
completely annotated dataset but are expected to be an overall improvement.
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The errors in the dataset could pose problems for existing research based on it, as
their results may in some cases be invalidated, and their findings along with it.

Future research should be acutely aware of the shortcomings of the dataset, and
attempt to rectify or mitigate them in their research. The method has room for
further testing, with various representations, to figure out if others may yield better
performance overall. It would also be of interest to experiment with other models
than YOLOv5, to see how the methodology affects them differently.



Chapter 11

Conclusion

The goal of this work was to mitigate concept drift in thermal images, utilizing
complex representations. Our work has proven to be able to mitigate some concept
drift, when going from summer to winter, but ultimately cannot show its full potential
due to missing annotations in the dataset. The results highlight the shortcomings of
the dataset and some of the nuances of the implementation. It shows the importance
of quality and consistency in datasets. Future work should focus on acquiring a
more complete dataset, before revisiting this approach and extending the list of
tested representations, to find potentially better representations.
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A.1 Anaconda environment

name: Name
channels:

- pytorch
- nvidia
- conda-forge
- defaults

dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=2_gnu
- alsa-lib=1.2.8=h166bdaf_0
- aom=3.5.0=h27087fc_0
- appdirs=1.4.4=pyhd3eb1b0_0
- attr=2.5.1=h166bdaf_1
- blas=1.0=mkl
- blosc=1.21.3=h6a678d5_0
- bottleneck=1.3.7=py311hf4808d0_0
- brotli=1.0.9=h5eee18b_7
- brotli-bin=1.0.9=h5eee18b_7
- brotli-python=1.0.9=py311h6a678d5_7
- brunsli=0.1=h2531618_0
- bzip2=1.0.8=h5eee18b_5
- c-ares=1.19.1=h5eee18b_0
- ca-certificates=2024.3.11=h06a4308_0
- cairo=1.16.0=ha61ee94_1014
- certifi=2024.2.2=py311h06a4308_0
- cfitsio=3.470=h5893167_7
- charls=2.2.0=h2531618_0
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- click=8.1.7=py311h06a4308_0
- contourpy=1.2.0=py311hdb19cb5_0
- cuda-cudart=12.1.105=0
- cuda-cupti=12.1.105=0
- cuda-libraries=12.1.0=0
- cuda-nvrtc=12.1.105=0
- cuda-nvtx=12.1.105=0
- cuda-opencl=12.4.127=0
- cuda-runtime=12.1.0=0
- cycler=0.11.0=pyhd3eb1b0_0
- dav1d=1.2.1=h5eee18b_0
- dbus=1.13.18=hb2f20db_0
- docker-pycreds=0.4.0=pyhd3eb1b0_0
- expat=2.5.0=h6a678d5_0
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- ffmpeg=5.1.2=gpl_h8dda1f0_106
- fftw=3.3.10=nompi_hc118613_108
- filelock=3.13.1=py311h06a4308_0
- font-ttf-dejavu-sans-mono=2.37=hd3eb1b0_0
- font-ttf-inconsolata=2.001=hcb22688_0
- font-ttf-source-code-pro=2.030=hd3eb1b0_0
- font-ttf-ubuntu=0.83=h8b1ccd4_0
- fontconfig=2.14.2=h14ed4e7_0
- fonts-anaconda=1=h8fa9717_0
- fonts-conda-ecosystem=1=hd3eb1b0_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freeglut=3.2.2=h9c3ff4c_1
- freetype=2.12.1=h4a9f257_0
- fsspec=2023.10.0=py311h06a4308_0
- gettext=0.22.5=h59595ed_2
- gettext-tools=0.22.5=h59595ed_2
- giflib=5.2.1=h5eee18b_3
- gitdb=4.0.7=pyhd3eb1b0_0
- gitpython=3.1.37=py311h06a4308_0
- glib=2.78.4=h6a678d5_0
- glib-tools=2.78.4=h6a678d5_0
- gmp=6.2.1=h295c915_3
- gmpy2=2.1.2=py311hc9b5ff0_0
- gnutls=3.7.9=hb077bed_0
- graphite2=1.3.14=h295c915_1
- gst-plugins-base=1.22.0=h4243ec0_2
- gstreamer=1.22.0=h25f0c4b_2
- gstreamer-orc=0.4.38=hd590300_0
- harfbuzz=6.0.0=h8e241bc_0
- hdf5=1.14.0=nompi_hb72d44e_103
- icu=70.1=h27087fc_0
- idna=3.4=py311h06a4308_0
- imagecodecs=2023.1.23=py311h8105a5c_0
- imageio=2.33.1=py311h06a4308_0
- intel-openmp=2023.1.0=hdb19cb5_46306
- jack=1.9.22=h11f4161_0
- jasper=2.0.33=h0ff4b12_1
- jinja2=3.1.3=py311h06a4308_0
- joblib=1.2.0=py311h06a4308_0
- jpeg=9e=h5eee18b_1
- jxrlib=1.1=h7b6447c_2
- kiwisolver=1.4.4=py311h6a678d5_0
- krb5=1.20.1=h143b758_1
- lame=3.100=h7b6447c_0
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- lazy_loader=0.3=py311h06a4308_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- lerc=3.0=h295c915_0
- libaec=1.1.3=h59595ed_0
- libasprintf=0.22.5=h661eb56_2
- libasprintf-devel=0.22.5=h661eb56_2
- libavif=0.11.1=h8182462_2
- libblas=3.9.0=1_h86c2bf4_netlib
- libbrotlicommon=1.0.9=h5eee18b_7
- libbrotlidec=1.0.9=h5eee18b_7
- libbrotlienc=1.0.9=h5eee18b_7
- libcap=2.66=ha37c62d_0
- libcblas=3.9.0=5_h92ddd45_netlib
- libclang=15.0.7=default_h127d8a8_5
- libclang13=15.0.7=default_h5d6823c_5
- libcublas=12.1.0.26=0
- libcufft=11.0.2.4=0
- libcufile=1.9.1.3=0
- libcups=2.3.3=h36d4200_3
- libcurand=10.3.5.147=0
- libcurl=8.5.0=h251f7ec_0
- libcusolver=11.4.4.55=0
- libcusparse=12.0.2.55=0
- libdb=6.2.32=h6a678d5_1
- libdeflate=1.17=h5eee18b_1
- libdrm=2.4.120=hd590300_0
- libedit=3.1.20230828=h5eee18b_0
- libev=4.33=h7f8727e_1
- libevent=2.1.10=h28343ad_4
- libffi=3.4.4=h6a678d5_0
- libflac=1.4.3=h59595ed_0
- libgcc-ng=13.2.0=h807b86a_5
- libgcrypt=1.10.3=hd590300_0
- libgettextpo=0.22.5=h59595ed_2
- libgettextpo-devel=0.22.5=h59595ed_2
- libgfortran-ng=13.2.0=h69a702a_5
- libgfortran5=13.2.0=ha4646dd_5
- libglib=2.78.4=hdc74915_0
- libglu=9.0.0=hf484d3e_1
- libgomp=13.2.0=h807b86a_5
- libgpg-error=1.48=h71f35ed_0
- libiconv=1.17=hd590300_2
- libidn2=2.3.4=h5eee18b_0
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- libjpeg-turbo=2.0.0=h9bf148f_0
- liblapack=3.9.0=5_h92ddd45_netlib
- liblapacke=3.9.0=5_h92ddd45_netlib
- libllvm15=15.0.7=hadd5161_1
- libnghttp2=1.57.0=h2d74bed_0
- libnpp=12.0.2.50=0
- libnsl=2.0.0=h5eee18b_0
- libnvjitlink=12.1.105=0
- libnvjpeg=12.1.1.14=0
- libogg=1.3.5=h27cfd23_1
- libopencv=4.7.0=py311h7a0761e_1
- libopus=1.3.1=h7b6447c_0
- libpciaccess=0.18=hd590300_0
- libpng=1.6.39=h5eee18b_0
- libpq=15.2=hb675445_0
- libprotobuf=3.21.12=hfc55251_2
- libsndfile=1.2.2=hc60ed4a_1
- libsqlite=3.45.2=h2797004_0
- libssh2=1.10.0=hdbd6064_2
- libstdcxx-ng=13.2.0=h7e041cc_5
- libsystemd0=252=h2a991cd_0
- libtasn1=4.19.0=h5eee18b_0
- libtiff=4.5.1=h6a678d5_0
- libtool=2.4.7=h27087fc_0
- libudev1=253=h0b41bf4_0
- libunistring=0.9.10=h27cfd23_0
- libuuid=2.38.1=h0b41bf4_0
- libva=2.18.0=h0b41bf4_0
- libvorbis=1.3.7=h7b6447c_0
- libvpx=1.11.0=h295c915_0
- libwebp-base=1.3.2=h5eee18b_0
- libxcb=1.13=h1bed415_1
- libxkbcommon=1.5.0=h79f4944_1
- libxml2=2.10.3=hca2bb57_4
- libzlib=1.2.13=hd590300_5
- libzopfli=1.0.3=he6710b0_0
- lightning-utilities=0.9.0=py311h06a4308_0
- llvm-openmp=14.0.6=h9e868ea_0
- lz4-c=1.9.4=h6a678d5_0
- markupsafe=2.1.3=py311h5eee18b_0
- matplotlib=3.8.4=py311h06a4308_0
- matplotlib-base=3.8.4=py311ha02d727_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py311h5eee18b_1
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- mkl_fft=1.3.8=py311h5eee18b_0
- mkl_random=1.2.4=py311hdb19cb5_0
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpg123=1.32.6=h59595ed_0
- mpmath=1.3.0=py311h06a4308_0
- munkres=1.1.4=py_0
- mysql-common=8.0.32=ha901b37_0
- mysql-libs=8.0.32=hd7da12d_0
- ncurses=6.4=h6a678d5_0
- nettle=3.9.1=h7ab15ed_0
- networkx=3.1=py311h06a4308_0
- nspr=4.35=h6a678d5_0
- nss=3.89.1=h6a678d5_0
- numexpr=2.8.7=py311h65dcdc2_0
- numpy=1.24.3=py311h08b1b3b_1
- numpy-base=1.24.3=py311hf175353_1
- openh264=2.3.1=hcb278e6_2
- openjpeg=2.4.0=h3ad879b_0
- openssl=3.0.13=h7f8727e_0
- p11-kit=0.24.1=hc5aa10d_0
- packaging=23.2=py311h06a4308_0
- pandas=2.2.1=py311ha02d727_0
- pathtools=0.1.2=pyhd3eb1b0_1
- pcre2=10.42=hebb0a14_0
- pillow=10.2.0=py311h5eee18b_0
- pip=23.3.1=py311h06a4308_0
- pixman=0.40.0=h7f8727e_1
- ply=3.11=py311h06a4308_0
- protobuf=4.21.12=py311hcafe171_0
- psutil=5.9.0=py311h5eee18b_0
- pulseaudio=16.1=ha8d29e2_1
- py-opencv=4.7.0=py311h781c19f_1
- pyparsing=3.0.9=py311h06a4308_0
- pyqt=5.15.10=py311h6a678d5_0
- pyqt5-sip=12.13.0=py311h5eee18b_0
- pysocks=1.7.1=py311h06a4308_0
- python=3.11.0=he550d4f_1_cpython
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-tzdata=2023.3=pyhd3eb1b0_0
- python_abi=3.11=4_cp311
- pytorch=2.2.2=py3.11_cuda12.1_cudnn8.9.2_0
- pytorch-cuda=12.1=ha16c6d3_5
- pytorch-lightning=2.0.3=py311h06a4308_0
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- pytorch-mutex=1.0=cuda
- pytz=2023.3.post1=py311h06a4308_0
- pyyaml=6.0.1=py311h5eee18b_0
- qt-main=5.15.8=h5d23da1_6
- readline=8.2=h5eee18b_0
- requests=2.31.0=py311h06a4308_1
- scikit-image=0.22.0=py311ha02d727_0
- scikit-learn=1.3.0=py311ha02d727_1
- scipy=1.12.0=py311h08b1b3b_0
- sentry-sdk=1.9.0=py311h06a4308_0
- setproctitle=1.2.2=py311h5eee18b_0
- setuptools=68.2.2=py311h06a4308_0
- sip=6.7.12=py311h6a678d5_0
- six=1.16.0=pyhd3eb1b0_1
- smmap=4.0.0=pyhd3eb1b0_0
- snappy=1.1.10=h6a678d5_1
- sqlite=3.41.2=h5eee18b_0
- svt-av1=1.4.1=hcb278e6_0
- sympy=1.12=py311h06a4308_0
- tbb=2021.8.0=hdb19cb5_0
- tensorboardx=2.6.2.2=pyhd8ed1ab_0
- threadpoolctl=2.2.0=pyh0d69192_0
- tifffile=2023.4.12=py311h06a4308_0
- tk=8.6.12=h1ccaba5_0
- torchaudio=2.2.2=py311_cu121
- torchmetrics=1.1.2=py311h06a4308_0
- torchtriton=2.2.0=py311
- torchvision=0.17.2=py311_cu121
- tornado=6.3.3=py311h5eee18b_0
- tqdm=4.65.0=py311h92b7b1e_0
- typing-extensions=4.9.0=py311h06a4308_1
- typing_extensions=4.9.0=py311h06a4308_1
- tzdata=2024a=h04d1e81_0
- urllib3=2.1.0=py311h06a4308_1
- wandb=0.16.5=pyhd8ed1ab_0
- wheel=0.41.2=py311h06a4308_0
- x264=1!164.3095=h166bdaf_2
- x265=3.5=h924138e_3
- xcb-util=0.4.0=h516909a_0
- xcb-util-image=0.4.0=h166bdaf_0
- xcb-util-keysyms=0.4.0=h516909a_0
- xcb-util-renderutil=0.3.9=h166bdaf_0
- xcb-util-wm=0.4.1=h516909a_0
- xkeyboard-config=2.38=h0b41bf4_0
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- xorg-fixesproto=5.0=h7f98852_1002
- xorg-inputproto=2.3.2=h7f98852_1002
- xorg-kbproto=1.0.7=h7f98852_1002
- xorg-libice=1.1.1=hd590300_0
- xorg-libsm=1.2.4=h7391055_0
- xorg-libx11=1.8.4=h0b41bf4_0
- xorg-libxau=1.0.11=hd590300_0
- xorg-libxext=1.3.4=h0b41bf4_2
- xorg-libxfixes=5.0.3=h7f98852_1004
- xorg-libxi=1.7.10=h7f98852_0
- xorg-libxrender=0.9.10=h7f98852_1003
- xorg-renderproto=0.11.1=h7f98852_1002
- xorg-xextproto=7.3.0=h0b41bf4_1003
- xorg-xproto=7.0.31=h27cfd23_1007
- xz=5.4.6=h5eee18b_0
- yaml=0.2.5=h7b6447c_0
- zfp=1.0.0=h6a678d5_0
- zlib=1.2.13=hd590300_5
- zstd=1.5.5=hc292b87_0

prefix: path

Listing 5: Anaconda3 environment
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A.2 YOLOv5 hyperparameters

# YOLOv5 by Ultralytics, AGPL-3.0 license
# Hyperparameters for high-augmentation COCO training from scratch
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img

1280 --epochs 300↪→

# See tutorials for hyperparameter evolution
https://github.com/ultralytics/yolov5#tutorials↪→

lr0: 0.0001 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.01 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 9 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.001 # image perspective (+/- fraction), range 0-0.001
flipud: 0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.2 # image mixup (probability)
copy_paste: 0.1 # segment copy-paste (probability)

Listing 6: Anaconda3 environment
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A.3 Result visualizations

A.3.1 Baselines

Figure A.1: mAP0.50 distribution of baselines as a function of time of year.
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Figure A.2: mAP0.50:0.95 distribution of baselines as a function of time of year.

A.3.2 U2OF

Figure A.3: TBD
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Figure A.4: TBD

Figure A.5: TBD
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Figure A.6: TBD

Figure A.7: TBD
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Figure A.8: TBD

A.3.3 Channels

Figure A.9: TBD
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Figure A.10: TBD

Figure A.11: TBD
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Figure A.12: TBD

A.3.4 U2Net

Figure A.13: TBD
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Figure A.14: TBD

Figure A.15: TBD
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Figure A.16: TBD

A.3.5 Optical Flow

Figure A.17: TBD
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Figure A.18: TBD

Figure A.19: TBD
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Figure A.20: TBD
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A.4 May clip

Figure A.21: Enter Caption
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Figure A.22: Enter Caption
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Figure A.23: Enter Caption
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