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Association football, or soccer, is the world’s most popular sport, with significant financial stakes, such
as UEFA’s €2.9bn prize money in 2022. Data-driven decision-making, often referred to as “Moneyball,”
is increasingly applied in football for performance optimization, injury prevention, and talent
identification. In a low-scoring sport like football, where a single goal can dramatically change the
outcome of a match or season, optimizing set pieces, particularly corner kicks, is crucial. For example,
FC Midtjylland’s success in the 2014-2015 Danish Superliga was partly due to their effectiveness in
scoring from corner kicks, which accounted for 39% of their total goals that season. On average, set
pieces contribute 20-26% of total goals across European teams.

As data collection in football has become more advanced, machine learning has emerged as a valuable
tool for analyzing this data. This study focuses on automating the classification of corner kicks using
machine learning to assist coaches in making more informed decisions. By classifying corner kicks,
coaches can better understand the effectiveness of different types of corner kicks and improve both
offensive and defensive strategies.

This study investigates the classification of corner kicks in association football using machine learning.
Utilizing a dataset of 2132 corner kick situations recorded at 25 frames per second, the study extracts
eight distinct features to evaluate their effectiveness in classification tasks. Six types of corner kicks
were identified and annotated based on a coaching guide. The impact of upsampling the dataset was
also examined. The goal is to provide valuable insights for analysts and coaches by identifying the
most effective features and classification methods.

Key findings include:
• The Player Positions feature representation achieved a macro F1-score of 0.457 with the MLP

classifier.
• Some labels, like Arc and Skip header, were challenging to classify reliably.
• Classifiers struggled to distinguish between the labels Far post vs. Middle of goal and Skip header vs.

Front post.
• Upsampling improved the macro F1-scores for XGB and SVM classifiers but slightly worsened MLP

and RF classifiers’ performance.
• Post-upsampling, some labels like Far post and Skip header showed improved performance, while

others like Arc and Short performed worse.

The study concluded that the current data labelling is inadequate and suggests re-labelling by set piece
coaches. Future research should consider graph representations for graph classification of corner kick
set pieces, as graph representations have shown promising results for node classification tasks.
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Abstract— In association football, even a marginal advan-
tage can translate to a significant scoring advantage, often
determining the outcome of a match. This study investigates
the classification of set pieces using machine learning. We
specifically target corner kicks, to provide valuable insights
for analysts and coaches. Our research utilizes a dataset cap-
turing player and ball positions, recorded at a frequency of
25 frames per second, over 2132 corner kick situations. From
this dataset, we extract eight distinct features to evaluate
their effectiveness in classification tasks, either by them-
selves or in combination with other features. From a coach-
ing guide, we identified six different types of corner kicks,
which we have annotated the dataset with. The study also
investigates the impact of upsampling on this dataset. Our
analysis finds that our features and combination of features
lays a good foundation for future research into corner kick
classification.

I. Introduction

Association football, also known as soccer, is the world’s
most popular sport [1]. In 2022 the prize money given by
The Union of European Football Associations (UEFA), was
€2.9bn. For the Danish Superliga, prize money from UEFA
amounted to 34% of the total revenue reported by all UEFA
member clubs [2]. It is then no surprise, that an increasing
factor in association football is the idea of Moneyball—using
data-driven decisions for performance optimization, injury
prevention, and talent identification [3], [4], [5]. All of these
applications seek to enhance the competitive edge, both on
and off the pitch [6].

Association football is a sport characterized by its narrow
margins, largely due to its low-scoring nature. A single goal
can significantly sway the outcome of a match and conse-
quently shape an entire season [7]. An illustrative example is
Aalborg Boldklub’s (AaB) relegation in the 2022–2023 Dan-
ish Superliga, where they fell short by just one point. Had
they managed to score a goal in either of their final two
games, they would have avoided relegation [8].

A key part of association football that can be optimised
for goal scoring, is set pieces—A rehearsed tactic executed
immediately following a stoppage in play. Stoppages in play
occur in many ways, e.g. a corner kick is awarded to the at-
tacking team when the ball crosses the goal line, having last
been touched by a defending player, and without resulting

in a goal. A stoppage in play, like the corner kick, allows for
the teams to reset and execute a rehearsed tactic and gener-
ate high-quality goal-scoring chances. Set pieces provide an
opportunity for control in an otherwise dynamic game.

The potential impact of mastering set pieces, and in par-
ticular corner kicks, is significant. In the 2014–2015 season
of the Danish Superliga, FC Midtjylland won the league.
Their success has been, in part, attributed to their effective-
ness on corner kicks [9]. In total, they scored 25 goals, 39%
of their total goals, from corners alone. While the teams who
scored the second-most corners only scored 11 goals each.
On average across Europe, teams’ share of set piece goals is
between 20% and 26% of their total goals [10]. Additionally,
sources report that while the share of goals from set pieces
increases, the total number of goals scored increases as well.
Thus it is not a matter of redistributing the goals scored from
open play to set pieces [9].

In recent years, interest in optimising set pieces has
grown, with the top teams hiring set piece-specific
coaches[11]. Set piece coaches make informed decisions
about which set piece to execute and how to defend, largely
thanks to the increasing amount of data being gathered in
association football by using cameras at the stadium [12].
Player and ball locations on the pitch in the data are often
annotated with events, e.g. when corner kicks are taken, ei-
ther manually or automatically [13], [14]. As large amounts
of data become available, this leads to comprehensive and
insightful analyses that can provide an understanding of
sports dynamics and performance[15]. Machine learning, in
particular, plays a significant role in this field. For instance,
the machine learning models Random Forest and Logistic
Regression are being utilized to predict the likelihood of im-
minent injuries [16] and Graph Neural Networks are being
used to forecast which player will receive the ball during a
corner kick [17].

Automating the data analysis work of corner kick set
piece coaches through machine learning allows coaches to
focus more on coaching, and less on data analysis. By clas-
sifying similar corner kicks, the coach gets an overview of
which types of corner kicks are performed by a particular
team and it can be further used to identify which types of

1 of 13

mailto:aneshe19@student.aau.dk
mailto:cleth19@student.aau.dk
mailto:jgrege16@student.aau.dk


corner kicks are effective against certain teams. This infor-
mation can then be used to improve both offensive and de-
fensive strategies on corner kicks.

To classify corner kick set pieces, we use tracking data
from both players and the ball captured during corner kicks
in the Danish Superliga. We bound the corner kick situation,
to be one second before the kick itself, and either two sec-
onds after the kick, or one second after a teammate touches
the ball, whichever occurs first.

For the classification of corner kick set pieces, we identify
six different types of corner kicks used in play. We label our
dataset manually according to the six types. This labelled
data is the ground truth and used for training our machine
learning models. The tracking data is used to extract features
that feed into four different classifiers: Multi-Layer Percep-
trons, Support Vector Machines, Random Forest, and XG-
Boost. We compare the classifiers’ performance for different
feature representations.

In summary, our main contribution is in the analysis and
evaluation of which features perform the best when used for
the classification of types of corner kicks, which leads to a
concrete problem formulation of:

Using player and ball tracking data from corner kicks,
what is the feature representation that leads to the
best-performing model for classifying corner kick set
pieces in association football with off-the-shelf ma-
chine learning classifiers, as evaluated by F1-scoring?

The rest of the paper is structured as follows. First, we in-
troduce prerequisites for understanding the rest of the pa-
per. Then we provide an account of the related works in the
field of machine learning and set piece analysis. Hereafter,
we detail our methodology and feature representations. This
is followed by the experiments section, where we evaluate
and discuss the performance of the proposed classifiers. Fi-
nally, we summarize our findings and touch on relevant fu-
ture work.

II. Preliminary

A. Raw corner kick data

Our dataset comprises two separate sources, in total cov-
ering 451 matches from the Danish Superliga in the seasons
2021–2022, 2022–2023 and 2023–"2024" (up to September 
2023). Aalborg Boldklub provided this dataset.

The primary data source is tracking data captured at 25
frames per second by six cameras positioned around the sta-
dium. This data yields a coordinate (x, y, z) location on the
pitch for each player and the ball. Additionally, the data con-
tains information identifying each player and which team is

controlling the ball, but we leave this data unused. Thus, a
corner kick corresponds to the locations of all 22 players on
the pitch, as well as the ball for a given interval of frames.

The secondary data source is how we identify when a
corner kick occurs. It contains events annotated on the rel-
evant frame of the tracking data. Thus an annotation relates
to exactly one frame of a given match. These events include
actions that influence the game’s progress, such as being
awarded a corner kick or events that the data provider uses
for delimiting events, such as end of corner kick.

In summary, the data constituting a corner kick is all track-
ing frames in the interval from the frame where a start of
corner kick-event is recorded to the frame where a end of cor-
ner kick-event is recorded.

B. Processing corner kicks

It occurs that corner kick events are reported erroneously.
There are frames which are annotated as a corner kick when
upon inspection the ball is still in open play, or, a free kick
has been awarded during the corner kick. These corner kicks
are considered invalid and will be disregarded.

The football pitch is symmetrical along its x- and y-axis,
with the centre of the pitch as the origin. Leveraging this
symmetry, we convert corner kicks from all corners of the
pitch to a single designated corner (bottom-left corner). This
simplifies the learning process for the model, as we posit that
the specific corner of execution does not change the ground
truth of a set piece.

C. Labelled dataset

To enable a later classification task, we record the ground
truth of a set piece, which corresponds to the type of corner
kick routine. In total six distinct types of corner kicks have
been identified in the problem domain through a corner kick
coaching guide [18]. We label our dataset according to this
coaching guide. Note that we decided not to include the Di-
rect Score Corner since it is exceedingly rare. See Figure 1
for an illustration of the labels. In total, the labelled dataset
consists of 2132 corner kicks.

Table 1 shows the distribution of labels in the dataset. The
labelled dataset is imbalanced, as evidenced by the high vari-
ability between labels, with the least frequent label Arc hav-
ing a share of 2.53% of the dataset, while the largest share
of 32.08% is of the Front post label.

III. Related Works

Data-driven decision-making systems for association
football focus on a specific subset of the game, ie. clustering
of corner kicks, automated tagging of events and predicting
the likelihood of scoring from a specific situation.
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a) Arc b) Far post c) Front post

d) Middle of goal e) Short f) Skip header

Figure 1: Zones relevant for labelling a set piece
One or more players must make runs into or within the areas marked on
the images for it to be labelled accordingly. If more than one area has some

runs into them, the ball’s position is used as a tiebreaker.

Early work in the field of association football corner kick
analysis focused on notational analysis for characterising
corner kicks. Including, the way the ball curves on the kick,
the number of attacking players involved as well as the type
of defensive strategy deployed by the defensive team has
been studied [19]–[23].

Using notational analysis Power P. et al. [20] highlight
that goals from corners are more often scored from the sec-
ond ball (having been touched by a teammate) than from
the ball delivery itself. Our work is situated in this vein, of
attempting to gain an advantage by exploiting tracking data
and implementing a data-driven system for the classification
of set pieces.

Recently, Shaw L., Gopaladesikan S. [24] identified a key
factor for classifying corner kick routines as being a set of
rehearsed, simultaneous, coordinated runs that players ex-
ecute to improve the scoring opportunity. These runs are
called Co-occurring Player Runs.

Table 1: The distribution of labels in our dataset of 2132 corner kicks.

Label Count Share

Arc 54 2.53%

Far post 326 15.29%

Front post 684 32.08%

Middle of goal 529 24.81%

Short 242 11.35%

Skip header 297 13.93%

The authors deployed Gaussian Mixture Models (GMMs) to
discover zones where players start and end their runs, which
can characterize the attacking teams’ behaviour during a set
piece. These zones are used to represent Co-occurring Player
Runs. Their method represents each set piece using the po-
sitions of the attacking players’ locations at the start of the
set piece and the end of the set piece.

Shaw L., Gopaladesikan S. down-sample each set piece to
two frames. The first frame occurs two seconds before the
corner kick is executed, and the second frame occurs either
one second after the first teammate touches the ball or two
seconds after the corner is taken, whichever occurs first.
These are the frames from the set piece that is used in their
feature representation. Their dataset consists of tracking-
and event data comparable to our dataset. Our work differs
on two points. Firstly, our method is designed for classifica-
tion as opposed to clustering, and secondly, we explore other
feature representations.

The latest developments in the field come from Wang Z. et
al., which focuses on receiver prediction, shot attempt pre-
diction, and tactical adjustment recommendations for cor-
ner kicks. They conceptualize a corner kick as a fully con-
nected graph, where each node is a player, and edges indi-
cate whether two nodes are teammates or opponents [17].
Each node is annotated with features like x- and y-coordi-
nates, velocity, and the player’s height and weight. Their
model is a deep graph attention neural network employing
geometric deep learning techniques. They augment each
corner kick by generating symmetric transformations by re-
flecting each corner kick across the x-, y- and both axes, thus
each corner kick is replicated four times in the data. In con-
trast, we reflect every corner to the bottom left corner (see
Section II.B).

They show that the model can generate tactical adjust-
ment recommendations which coaches are unable to dis-
tinguish from human recommendations, and in most in-
stances, the coaches prefer the model recommendations to
human-made alternatives. Our work differs on two points,
in purpose and method; 1) we classify corner kick routines
as a whole, while they focus on identifying particular situa-
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tions within a corner kick (i.e. shot and receiver prediction),
and, 2) we compare multiple different classifiers as well as
utilise different feature representations.

Overall, our research aligns with Shaw L., Gopaladesikan S.
as well as Wang Z. et al., as we employ a comparable dataset.
Similarly, we apply machine learning classifiers to derive in-
sights into corner kick routines. Our contribution diverges
from these prior studies as we concentrate on classifying
corner kick set pieces. To our knowledge, we are the first to
attempt corner kick set piece classification. Specifically, we
construct corner kick embeddings using diverse feature rep-
resentations.

IV. Method

In this section, we explain our approach to classifying cor-
ner kick set pieces, according to the labels presented in Sec-
tion II.C. In particular, we focus on feature representations
for corner kick set pieces based on spatio-temporal data.

A. Corner kick labelling

As our dataset was not labelled initially, we had to obtain
the labels by other means. For this, we implemented a sim-
ple web application, which allows a user to inspect a 2D
animation of a randomly selected set piece. The animations
showed the locations and movement of the offence, the de-
fence and the ball. The user could label a set piece with one
of the labels in Figure 1 or mark it Invalid i.e. the set piece is
malformed or erroneous. An erroneous corner kick is when
the ball is not recorded correctly or there is no stoppage in
play. We also exclude all corner kicks that occur when there
are less than 11 attacking players (e.g. when one or more
players from the attacking team have been brandished a red
card).

Furthermore, when in doubt, the user can skip a partic-
ular set piece. Each set piece is between 3 and 4 seconds,
hence considerable effort has been spent on the labelling
process. The labelling process has been carried out internally
on a best-effort basis. We are aware of potential discrepan-
cies between users due to the subjectivity of the labelling
process. Additionally, labelling is challenging as some pair-
ings of labels can be difficult to discriminate between. For
instance, in Figure 1, the Skip header label (f) overlaps the
Front post label (c) and Middle of goal label (d).

This is a clear limitation of our work. As we did not have
access to professional coaches during the labelling process,
we have not been able to rectify our labels. Nonetheless, we
posit that our labelling effort is sufficiently accurate to study
the effectiveness of feature representations.

B. Representing set pieces

Recall that the goal is to classify the type of a given set
piece. Besides utilising the labels mentioned earlier, another
important aspect is how the set piece under consideration is
represented to the classifiers. In particular, each set piece is
represented by a feature vector. A feature vector can encode
a set piece to a numerical representation. We explore multi-
ple feature representations and quantify their performance
in the classification task via the F1-score. See Section IV.D
for an explanation of F1-scores.

Both Wang Z. et al. and Shaw L., Gopaladesikan S. per-
form down-sampling on corner kicks, and calculate their
features from one and two frames respectively. We argue
that the timing of events is crucial for accurately classifying
corner kicks, given that analysts rely on video footage to
recognize corner kick patterns in their daily analysis. Fur-
thermore, both Wang Z. et al. and Shaw L., Gopaladesikan
S. demonstrate some level of success in extracting features
from specific frames, indicating the presence of valuable in-
formation at specific moments during set pieces.

Therefore, the objective is to select a set of frames that are
representative of a set piece. Shaw L., Gopaladesikan S. iden-
tify the start and the end of a corner kick, as mentioned in
Section III.

Wang Z. et al. use a singular frame, i.e. the frame where
the corner kick is taken. This leads us to choose three frames,
merging the frames used by Wang Z. et al. and Shaw L.,
Gopaladesikan S. We use these frames for feature calcula-
tion, making all of our features employ down-sampling.

In the following, the engineered features are presented. Note
that we also implement the CPR feature representation from
Shaw L., Gopaladesikan S. for comparison. We split our fea-
ture representation into three categories: 1) Position-based,
2) Distance-based, and 3) Zone-based features. The first fea-
tures are the most basic and naive features. They employ a
minimum of feature engineering and use the player and ball
positions directly in the representations. Second are the dis-
tance-based features, which encode the relations of attack-
ing players and the ball using Euclidean distance. Finally,
the zone-based features seek to encode spatial locality by
considering the players’ positions to emergent zones.

The features are presented in isolation, however, we hy-
pothesize that some features encode specific aspects of a cor-
ner kick better than others. Therefore, we also explore com-
binations of features during the experiments.

1) Position-based feature representations :
Player Positions denote the feature representation, which

consists of the player locations at a single given frame for
each set piece. Thus the feature vector has 22 entries, corre-
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sponding to the x- and y-coordinates of all 11 players of the
attacking team.

Player Positions = [𝑥1, 𝑥2, …, 𝑥11, 𝑦1, 𝑦2, …, 𝑦11] (1)

Similarly, Ball Position denotes the feature representation,
which consists of the ball location at a single given frame
per set piece. Thus the feature vector has two entries, corre-
sponding to the x- and y-coordinate of the ball.

Ball Position = [𝑥, 𝑦] (2)

The features mentioned above, are computed using a sin-
gle frame of the set piece. This down-sampling means that
the usefulness of the information encoded in the feature is
highly dependent on how descriptive the selected frame is
for the set piece. In the Heatmap feature representation, we
ameliorate this concern of selecting a single frame, by using
all frames of a set piece to compute a heatmap of their move-
ments in the final third of the pitch.

A heatmap is usually depicted as a grid, where a colour
gradient is used to indicate higher values, or heat, in a cell.
Our heatmap comprises of cells, where the heat level reflects
how many player positions have been recorded in that area,
during the set piece.

Heatmap :
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⎥
⎥
⎥
⎤

(3)

Here, 𝐻m,n represents the heat level in the cell (𝑚, 𝑛).
When 𝑘 players spend 𝑡 frames in a cell, it accumulates a
heat value of 𝑘 ∗ 𝑡 for that cell.

The heatmap is an image, which we pass to a convolu-
tional autoencoder (CAE), for Figure  2, it is evident that
most of the bins have a value of zero, which makes every
representation of a heatmap more alike than they are differ-
ent.

An autoencoder learns the features that are most signifi-
cant for the task of reconstruction, as described in Appen-
dix D. The latent layer of the autoencoder would therefore
be the latent variables that best describe the heatmap, which
we believe is a better foundation for classification.

The CAE is useful for obtaining a more compressed rep-
resentation of the input (here the heatmap of a set piece).
The CAE’s learning objective is to reconstruct the input in
the presence of an information bottleneck resulting in an
approximated, reconstructed output [25]. The latent repre-
sentation is the encoding of the input, which is used as the
feature vector for the downstream classification task. See
Appendix D for details on CAE in general, see Appendix E
for the specific configuration of the CAE used.

Figure 2: Heatmap
The heatmap consists of 42 × 30 bins, with a heat value between 0 and 1.

The heat is higher where the red colour is less transparent.

See Appendix F for examples of the reconstructed output
from our CAE.

Figure 2 showcases how the movement of three players
would be recorded in the heatmap feature representation.
The heatmap comprises 42 × 30 bins distributed evenly
across the final third of the pitch. The squares where the red
colour is less transparent are areas that players have occu-
pied the most.

Note that the heatmap also results in downsampling,
however, it is not dependent on how descriptive the selected
frame of a set piece is, as opposed to Player Positions, Ball
Positions and the features proposed by Wang Z. et al. and
Shaw L., Gopaladesikan S..

2) Distance-based feature representations :
Similarly to Wang Z. et al., we posit that the dynamic rela-

tions between players are important for a set piece. To model
these relations we employ three Euclidean distance-based
features. The intuition is to model the relations by the dis-
tance between players, the ball or to specific points of inter-
est in the final third.

Figure  3 shows examples of the features that are calcu-
lated using Euclidean distance.

Pairwise Players is intended to capture information on the
players’ locations relative to each other without relying on
coordinate positions. This corresponds to the upper triangle
of a distance matrix, based on all members of the offensive
team. Pairwise Players calculation is shown in equation (4),
where 𝑑 is the Euclidian distance function between two play-
ers 𝑖 and 𝑗.

Pairwise Players = [𝑑𝑖,𝑗 ∣ 1 ≤ 𝑖 < 𝑗 ≤ 11] (4)

We order the elements in the feature vector from the low-
est x-coordinate to the highest.
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a) Pairwise Players b) Ball to players c) Informed Points

Figure 3: Distance-based features
a) consists of the pairwise distance between all players. b) consists of the
distance from the ball to each of the players. c) consists of six points placed
in the final third. Red dots indicate players, the green dot is the ball and the

dotted lines are distances.

Intuitively, the goalkeeper of the attacking team is then
the last element of the feature vector, regardless of the cor-
ner kick. The underlying assumption for this ordering is that
the closer to the opposing team’s goal a player is, the more
important they are. This feature does not take into account
where on the pitch the players are located, as it only consid-
ers the relations between the players themselves.

Ball to players is intended to capture the relation between
players’ positions and the ball’s position. It is calculated as
each player’s distance to the ball. The Ball to players calcu-
lation is shown in equation (5), where 𝑑 is the Euclidian dis-
tance between the ball position ball and player 𝑖.

Ball to players = [𝑑ball,𝑖 | 1 ≤ 𝑖 ≤ 11] (5)

Informed Points is intended to capture where in the final
third players are located in relation to points placed accord-
ing to the areas significant in the coaching guide, which we
used for labelling (see Figure 1).

For each point, we sum up all players’ distances to that
point. This produces six values, which make up the feature.

3) Zone-based feature representations: The classes depicted
in Figure 1 indicate zones of importance per label. We posit
that using the raw positional data to derive zones allows an
efficient spatial encoding while providing a closer match to
how humans identify set piece types.

While the distance-based features encode spatiality via
the distance between points, the zone-based feature repre-
sentations encode spatiality via frequency counts of players
per zone. Thus the goal is to identify how many and which
zones to count the frequencies for.

Figure 4: Players in Gaussians
This feature computes the probability that each player originates from a
specific Gaussian. It does this for each Gaussian. For this example, the fea-
ture vector has three elements, corresponding to one for each Gaussian

process in the model.

We use GMMs to identify zones. This achieves two things;
1) Allows us to discover emergent zones from the data, and,
2) instead of relying on simple frequencies, GMMs provide
a probabilistic representation of each zone. This means we
can determine the likelihood that a player belongs to each
zone. This probabilistic approach accurately captures situ-
ations where a player might be near the edges of multiple
zones, reflecting that players can simultaneously belong to
or be influenced by more than one zone.

Figure  4 showcases an example with three players and
three Gaussians. Each player has some probability of orig-
inating from each of the Gaussians. The probabilities are
summed up to produce the feature vector, which consists of
a sum of probabilities per Gaussian.

Additionally, we reimplement part of the feature repre-
sentation proposed by Shaw L., Gopaladesikan S. for com-
parison. As briefly mentioned in Section III, they model a
set piece using the location that players run from and the lo-
cation they run to. To be able to represent the many possible
runs, they want to find larger areas of the final third of the
pitch, where players frequently start the run and other areas
where players end their runs. To obtain these areas, or zones,
they employ a GMM fitted on every player’s location at the
start of the set pieces and another GMM fitted on every play-
ers’s end locations. They make use of the GMM’s weights to
calculate the probability that a player has made each of the
available runs - from an initial zone to a target zone. For de-
tails on GMMs in gerneral see Appendix C.

The feature vector representing Co-occurring Player Runs
denoted as CPR, is defined as:

CPR = [𝑥0, 𝑥1, …, 𝑥a-1, 𝑥𝑎] (6)
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Where 𝑎 is the number of pairs in the cartesian product of
the set of initial zones and the set of target zones. The value
of any 𝑥 is given by:

𝑥𝑎 = ∑
𝑁𝑝

𝑝=1
𝑃𝑝(InitialZone𝑅𝑎

)𝑃𝑝(TargetZone𝑅𝑎
) (7)

Upon reviewing the above Equation (7), which is from the
appendix of L. Shaw and S. Gopaladesikan. We are not con-
vinced that the probabilities are independent as the equation
claims. It seems only logical that the probability of where
you end up is heavily dependent on where you came from.

In Equation (7), 𝑁𝑝 is the number of players, 
𝑃𝑝(InitialZone𝑅𝑎

) represents the probability that player 𝑝
started in the initial zone of run 𝑅𝑎, and 𝑃𝑝(TargetZone𝑅𝑎

)
represents the probability that player 𝑝 ended in the target
zone of run 𝑅𝑎. The initial and target zones are defined from
the centres and covariances of the Gaussians in the GMM.
We determine the likelihood of a player’s position, given the
settings of each Gaussian distribution.

L. Shaw and S. Gopaladesikan further use Non-Negative
Matrix Factorization to compose a set of runs, that used in
combination, best explain the distinct types of corner kick
set pieces. With this basic set of runs, they can easily find
corner kick set pieces that are similar to each other.
Table 2 shows all the proposed feature representations for
identifying set pieces.

C. Classifiers

We explore multiple classifiers to quantify the performance
of the feature representations. We use Multi Layer Percep-
tron (MLP), Support Vector Machine (SVM), Random For-
est (RF) and Extreme Gradient Boosting (XGB) classifiers.
The RF and SVM classifiers are implemented in the Python
library scikit-learn [26], while the MLP classifer is imple-
mented using the keras library [27] and the XGB classifier
is implemented using the XGBoost Python Library [28].

D. Evaluation

We evaluate the feature representations using the down-
stream classification task. For each of the representations,
we record the performance using the macro and micro F1-
score.

F1-score is a commonly used evaluation metric within
machine learning. It considers two important metrics used
in machine learning; Recall and Precision. Recall is the ra-
tio of true positive predictions to the total actual positives.
Precision is the ratio of true positive predictions to the total
predicted positives.

These might seem very similar, but in fact, measure dif-
ferent things.

Table 2: Features for representing a set piece. In Appendix A, visual aids for
each feature are provided.

Feature Type Explanation

Pairwise Players Frame Pairwise distances between
attacking players

Ball to players Frame Distance from the ball to each
player

Informed Points Frame Six points are placed in the
final third at interesting loca-
tions. For each point we sum
all the players’ distances to it

Players in Gaussians Frame As explained in Section IV.B.3

Ball Positions Frame (x, y)-position of the ball

Player Positions Frame (x, y)-positions of the players
on the offensive team

Co-occurring Player Runs [24] Global As explained in Section IV.B.3

Heatmap Global As explained in Section IV.B.3

Recall measures how many of the actual positive in-
stances are correctly predicted while precision measures
how many of the predicted positive instances are actually
positive. Both are described in equation (8).

⎩{
⎨
{⎧ Recall = True Positives

True Positives + False Negatives

Precision = True Positives
True Positives + False Positives⎭}

⎬
}⎫

(8)

The F1-score is calculated as the harmonic mean of the
recall and precision as described in equation (9). Micro F1-
score is based on the binary classification of a single label,
while macro refers to the average of all micro F1-scores.

F1-Score = 2 ×
Precision × Recall
Precision + Recall (9)

V. Experiments

We quantify our findings through experiments. Below we
describe the experimental setting and present the tuned clas-
sifiers. Additionally, we present and discuss the experimen-
tal results.

A. Experimental Setting

The classifiers are trained individually, using an NVIDIA
GeForce RTX 3060 GPU. The data is shuffled and split into
an 80:20 ratio for training and evaluation. We explicitly seed
the randomness of all experiments to ensure reproducibility.
We employ a 5-fold cross-validation during hyperparameter
tuning. We use Bayesian Optimization (BayesSearchCV) for
hyperparameter tuning. All the classifiers have an equal tun-
ing budget. Each model is tuned per experiment using the
search spaces found in Appendix B.
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Table 3: Macro F1-scores for all feature representations per classifier. Bold
indicates highest mean value for the classifier.

Feature SVM RF MLP XGB

Pairwise
Players

0.2343±0.02 0.2886±0.03 0.3338±0.04 0.2283±0.03

Ball to play-
ers

0.2502±0.04 0.3824±0.01 0.3753±0.1 0.2123±0.01

Informed
Points

0.4051±0.02 0.3512±0.03 0.4286±0.09 0.3435±0.07

Players in
Gaussians

0.3972±0.03 0.3971±0.01 0.4325±0.04 0.2952±0.04

Ball Posi-
tions

0.24±0.02 0.4145±0.03 0.4442±0.05 0.3879±0.03

Player Posi-
tions

0.3159±0.02 0.4028±0.06 0.457±0.08 0.4166±0.03

Co-occur-
ring Player

Runs

0.3471±0.05 0.3431±0.03 0.3729±0.02 0.3671±0.07

Heatmap 0.0799±0.01 0.0982±0.02 0.0799±0.01 0.1037±0.03

We report our results from five replications (each using
a different seeded randomness), as 𝑎 ± 𝑏, where 𝑎 is the
mean observation of the evaluation scores, and 𝑏 is the error
bounds - calculated as the standard deviation.

B. Experimental Results

The individual results of the feature representations are
presented in Table 3 via the macro F1-scores.

It is noteworthy that Player Positions performs the best
in both the MLP and the XGB classifier. Additionally, the
Informed Points and Ball Positions feature representations
perform the best for the SVM and RF classifiers respectively.
The Heatmap feature performs significantly worse than any
other feature. No configuration achieves what we believe
would be satisfying performance (F1-score > 0.7).

To investigate the cause for the lackluster macro F1-scores
we inspect the micro F1-scores of the classifiers. In Table 4
the micro F1-scores of the highest scoring feature represen-
tation per classifier from Table 3 are shown.

It is evident that the classifiers struggle with the Arc and
Skip header labels in particular. Meanwhile, Short and Front
post achieve significantly better scores.

The configurations of classifier and feature representa-
tions that achieve the highest micro mean F1-scores, per la-
bel, are shown in Table 5.

Table 5 illustrates that no specific configuration can ade-
quately capture all of the ground truth labels. However, it is
still interesting Player Positions, Informed Points and Play-
ers in Gaussians - respectively a Position-, a Distance- and
a Zone-based feature representation, can all compete in per-
formance.

Table 4: Micro F1-scores from the best performing configurations of Table 3.
Bold indicates highest score per label.

Label SVM RF MLP XGB

Arc 0±0 0±0 0.2607±0.36 0±0

Far post 0.5175±0.09 0.5078±0.16 0.478±0.19 0.4013±0.15

Front post 0.6092±0.05 0.6068±0.07 0.5676±0.11 0.6106±0.06

Middle of
goal

0.4854±0.06 0.4709±0.11 0.4245±0.04 0.4756±0.06

Short 0.8186±0.04 0.8954±0.07 0.8748±0.1 0.9236±0.05

Skip header 0±0 0.0063±0.03 0.1363±0.14 0.0886±0.06

Table 5: Micro F1-scores of the combination of classifier and feature.

Label Configuration F1-score

Arc MLP w. Player Positions 0.2607±0.36

Far post SVM w. Informed Points 0.5175±0.09

Front post XGB w. Player Positions 0.6106±0.06

Middle of goal SVM w. Informed Points 0.4854±0.06

Short XGB w. Player Positions 0.9236±0.05

Skip header MLP w. Players in Gaussians 0.2483±0.19

C. Confusion matrices

Figure 5 shows the confusion matrix for predictions made
by the best performing configuration (MLP + Player Posi-
tions, from Table 3). We note that Short is identified reliably.
The confusion matrix indicates that when the classifier pre-
dicts Far post we are likely to be mistakenly identifying Mid-
dle of goal, while predictions for Middle of goal are confused
with both Far post and Front post. Additionally, predictions
for Front post are often confused with Skip header. Finally,
Skip header is rarely predicted, and when it is, most of the
time it is mistaken with Front post.

Overall, the classifiers are unable to distinguish Far post,
Front post, and Middle of goal reliably. In particular, Middle
of goal seems to confuse the classifier. As a final note, there
is an argument to be made that the label Skip header is a
variation of the label Front post, where the ball simply was
delivered too short and therefore a player had to head it into
the goal area.

We propose two avenues for ameliorating these shortcom-
ings. 1) Combining the features that achieve the highest mi-
cro F1-scores could aid the classification task, and, 2) bal-
ancing the dataset by upsampling, such that each class is
evenly represented during training.

More research into this is needed.
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Figure 5: Confusion matrix of classifications made by the MLP using the
Player Positions feature.

D. Combinations of features

The features we combine are chosen based on Table 5. The
combination of features is done by concatenating the indi-
vidual feature vectors per sample.

No classifier achieves better macro F1-scores using the
combined features. Therefore we omit the micro F1-scores.
We hypothesize that rather than aid the classifiers, the fea-
tures making up the combination seem to somewhat cancel
each other out. Intuitively, while a single feature achieves
a high micro F1-score for Arc, it might achieve poor perfor-
mance on all other labels, thus limiting the classifier, rather
than enhancing it.

E. Balanced dataset upsampling

As shown in Table 1 the dataset is highly imbalanced. In
this section, we examine the impact of balancing the dataset
compared to the original, unbalanced dataset.

We balance the dataset through the SMOTE algorithm.
SMOTE works by selecting a random data point in the
dataset and generating new data that is situated along the
line that goes through the chosen point and one of its near-
est neighbours. This process is carried out iteratively until
the classes are balanced [29].

The macro F1-scores of applying SMOTE on the dataset is
shown in Table 7 alongside the original F1-score for the orig-
inal dataset. We only consider the best performing classifier
configurations from Table 3. Upsampling of our dataset gen-
erally improves performance across all classifiers except the
MLP.

We take the micro F1-scores into account to further quan-
tify our findings.

Table 6: Macro F1-scores for the combination of features that achieve the
highest micro F1-scores (Player Positions, Informed Points and Players in

Gaussians)

Feature SVM RF MLP XGB

Best feature
per label

0.3471±0.05 0.3431±0.03 0.3729±0.02 0.3671±0.07

Table 7: Results of oversampling through SMOTE algorithm compared to
the original results as reported in Table 3. Using the Player Positions feature

representation

Dataset SVM RF MLP XGB

Original 0.3159±0.02 0.4028±0.06 0.457±0.08 0.4166±0.03

Upsample 0.3948±0.05 0.4529±0.02 0.4433±0.05 0.4667±0.03

Table 8: Per label F1-score results of upsampling through SMOTE algorithm
compared to the original results as reported in Table 4

Ground Truth Class Upsampled Original

Arc 0.2121±0.11 0.2607±0.36

Far post 0.5092±0.16 0.478±0.19

Front post 0.4046±0.14 0.5676±0.11

Middle of goal 0.3357±0.13 0.4245±0.04

Short 0.8653±0.08 0.8748±0.1

Skip header 0.333±0.11 0.1363±0.14

The micro F1-scores of the best performing configuration,
based on the original dataset (MLP + Player Positions) is
shown in Table 8 comparing the original performance with
the upsampled performance.

In Table 8, we see that Arc, Front post, Middle of goal and
Short performance is lower, while Far post and Skip header
are higher. Additionally, note that the standard deviation of
Arc is significantly lower for the upsampled configuration,
meanwhile, the reverse is true for Middle of goal.

In Figure 6 the confusion matrix for the MLP + Player Po-
sitions configuration is shown.

It is evident, that predicting Arc has become more preva-
lent compared to Figure 5, however, this is now confused
with Middle of goal, which explains the drop in micro F1-
score seen in Table 8. Previously, when predicting Front post
it was often mistaken with Skip header, now the inverse
is true; predicting Skip header is now often mistaken with
Front post. On the other hand, Far post is now more reliably
predicted, and only to a lesser extent confused with Middle
of goal, and rarely with Front post.

In general, the results of upsampling the dataset is incon-
clusive. The upsampling boosts the XGB and SVM classifiers
while impairing the MLP and RF classifiers.

Regardless of configuration, no classifier achieves satisfy-
ing results (F1-score >0.7).
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Figure 6: Confusion matrix of classifications made by the MLP using the
Player Positions feature after upsampling.

VI. Recommendations and Conclusions

Based on tracking- and event data we engineered eight
corner kick feature representations. In particular, we em-
ploy GMMs and CAEs in the feature engineering process.
Additionally, we quantify the performance of the feature
representations in the downstream corner kick classification
task. We train four classifiers; Random Forest, eXtreme Gra-
dient Boost, Support Vector Machine and Multi-Layer Per-
ceptron for the classification task.

We study the impact on performance of balancing the
dataset via SMOTE in relation to the four classifiers. Addi-
tionally, we explore the effects of combining feature repre-
sentations based on their micro F1-score performance.

The Player Positions feature representation achieves a
macro F1-score of 0.457 ± 0.08 for MLP classifier.

Additionally, we quantify the per-label performance by
the micro F1-scores. The experiments show that the Arc
and Skip header labels cannot reliably be classified with our
feature representations(micro F1-score: 0.2607 ± 0.36 and 
0.1363 ± 0.14, respectively). Generally, the classifiers are un-
able to clearly distinguish Far post from Middle of goal, Mid-
dle of goal from Front post, and Skip header from Front post
as shown in Figure 5.

Through upsampling, we show that the XGB and SVM
classifiers achieve significantly better macro F1-score com-
pared to the original dataset, while the MLP and RF classi-
fiers perform slightly worse.

Furthermore, the labels Far post and Skip header also
show better performance after upsampling. Conversely, Arc,
and Short perform slightly worse, while Front post and Mid-
dle of goal perform considerably worse after upsampling.

It is evident that our data labelling is lacking and if pos-
sible should be redone by set piece coaches, in the future.

Whether the labels themselves are inherently ambiguous or
the labelling process itself is the source of error is unclear.

Furthermore, due to time constraints, we have not at-
tempted to replicate or build upon the graph representations
proposed in Wang Z. et al.. However, future work studying
graph representations of corner kick set pieces for graph
classification seems promising.
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Appendix

A. Feature illustrations

This section contains an illustration of the feature Co-oc-
curring Player Runs on a football pitch. The illustration is a
top-down view of the final third, in which the set piece is ex-
ecuted. The ball is kicked from the bottom-left corner, which
is marked with a red circle for clarity.

Figure 7 showcases the CPR feature re-implemented from
L. Shaw and S. Gopaladesikan [24].

a) Initial zones b) Final zones c) Unique runs
Figure 7: Co-occurring Player Runs

All the runs that players execute simultaneously, that originate from one
initial zone to a final zone. Red dots indicate players and coloured ellipses
indicate Gaussian processes. In c) the dotted ellipses are initial zones and
the coloured ellipses are final zones. The arrows indicate the run that a

player has made.

B. Hyperparameter search spaces

Below, the search spaces for the hyper-parameter tuning
are shown per Table 9, Table 10, Table 11, and Table 12 re-
spectively RF, SVM, MLP, and XGB.

Table 9: RF Hyper-parameter search space

Parameter Values

n_estimators 10, 110, …, …, 910, 1010

criterion ‘gini’, ‘entropy’, ‘log_loss’

max_depth 10, 20, …, 90, 100, None

min_samples_split 2, 5, 10

min_samples_leaf 1, 2, 4

max_features ‘log2’, ‘sqrt’

bootstrap True, False

class_weight ‘balanced’, ‘balanced_subsample’, None
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Table 10: SVM Hyper-parameter search space

Parameter Values

C 0.05, 0.10, …, 0.95, 1

kernel ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’

gamma ‘scale’, ‘auto’

class_weight ‘balanced’, None

Table 11: MLP Hyper-parameter search space

Parameter Values

learning_rate 0.0001, 0.0002, …, 0.049,0.50

batch_size 64, 128, 256

optimizer SGD, Adam, RMSprop, Nadam

n_layers 1, …, 5

n_units 4, 8, …, 20, 24

kernel_init ‘glorot_normal’, ‘he_normal’, ‘he_uniform’, ‘glorot_uni-
form’

activation ‘relu’, ‘selu’

dropout 0.0,0.1, …, 0.6,0.7

normalizer True, False

Table 12: XGBoost Hyper-parameter search space

Parameter Values

n_estimators 10, 110, …, 1010

max_depth 3, 4, …, 9, 10

grow_policy ‘lossguide’, ‘depthwise’

learning_rate 0.1, 0.2, 0.3,0.4 0.5

tree_method ‘approx’

gamma 0.0, 0.1, …, 0.9, 1.0

min_child_weight 0.0, 0.1, …, 0.9, 1.0

subsample 0.0, 0.2, …, 0.8, 1.0

colsample_bytree 0.0, 0.2, …, 0.8, 1.0

colsample_bylevel 0.0,0.2, …, 0.8, 1.0

colsample_bynode 0.0,0.2, …, 0.8, 1.0

objective ‘multi:softmax’

num_class 6

C. Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a model that de-
scribes some set of data as if it were to be calculated from
some set of Gaussian processes. GMMs try to maximise 
𝑃(𝑋 | 𝜋, 𝜇, Σ), where 𝑥 is the data to be fitted, 𝜋 is the prob-
abilities of originating from each Gaussian process, 𝜇 are the
means (centre) of the Gaussians, Σ is the covariance matrix
for the Gaussians to be fitted. To put it in simpler terms: Max-
imise the likelihood of generating dataset 𝑋 from 𝐾 Gauss-
ian processes given some parameters. The aforementioned
formula is expanded in equation (10)

𝑃(𝑋 | 𝜋, 𝜇, Σ) = Π
𝑁

𝑛=1
[ Σ

𝐾

𝑘=1
𝜋𝑘𝒩(𝑋𝑛 | 𝜇𝑘, Σ𝑘)] (10)

To put equation (10) into words, the probability of gener-
ating the dataset given some parameters is the product of the
sums of the likelihood of the data being generated by each
Gaussian, where 𝑁  is the number of points of data and 𝐾 is
the amount of gaussian components.

This maximisation of probability can be found by using
an algorithm called Expectation-Maximization, or EM for
short. EM works by first guessing some initial parameters
for the 𝑘 Gaussian processes. These initial parameters are
then used for the E-step where the posterior probability is
calculated. Then the just calculated posterior is used to up-
date the Gaussian process parameters in the M-step. The E
and M steps are then repeated until convergence.

The E-step for Gaussian mixture models is shown in
Equation (12), where a probability matrix is calculated based
on some prior probability, resulting in a posterior probabil-
ity, that can then be used to update the parameters of the
Gaussian processes in the M-step.

𝑍𝑛𝑘 = {1 if 𝑋𝑛 in class 𝑘
0 if not

} (11)

𝛾(𝑍𝑛𝑘) = 𝑃(𝑍𝑛𝑘 = 1 | 𝑋𝑛) (12)

In the M-step of the EM algorithm, the posterior probabil-
ity calculated in the E-step is used to update the parameters
shown in equation (13), which are all derived from equation
(10).

⎩{
{{
{⎨
{{
{{
⎧

𝜇𝑘 = 1
𝑁𝑘

Σ
𝑁

𝑛=1
𝛾(𝑍𝑛𝑘)𝑥𝑛

Σ𝑘 = 1
𝑁𝑘

Σ
𝑁

𝑛=1
𝛾(𝑍𝑛𝑘)(𝑥𝑛 − 𝜇𝑘)2

𝜋𝑘 = 1
𝑁 Σ

𝑁

𝑛=1
1 ⋅ 𝑍𝑛𝑘

⎭}
}}
}⎬
}}
}}
⎫

(13)

I) Deriving gamma from bayes formula:
Bayes formula is denoted as such: 𝑃(𝐵|𝐴) = 𝑃(𝐴∣𝐵)𝑃(𝐵)

𝑃(𝐴) .
If we expand the Bayesian formula with respect to the
Gaussian Mixture Model goal of finding the posterior prob-
ability of whether an observation 𝑋𝑛 is in class 𝑘 (this being
denoted as 𝑃(𝑍𝑛𝑘 = 1 | 𝑋𝑛)), we find that the bayesian for-
mula is denoted in equation (14)

𝑃(𝑋𝑛 | 𝑍𝑛𝑘 = 1)𝑃(𝑍𝑘 = 1)

Σ
𝐾

𝑗=1
𝑃(𝑍𝑛𝑗 = 1)𝑃(𝑋𝑛 | 𝑍𝑛𝑗 = 1) (14)

As shown in equation (14), the posterior probability of an
observation being in class 𝑘 is 𝑃(𝑋𝑛 | 𝑍𝑛𝑘 = 1), or the prob-
ability of 𝑋𝑛 being generated given that it was generated
from the gaussian process belonging to 𝑘, times 𝑃(𝑍𝑘 =
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1) being the probability that any observation is in class k,
that term is then divided by the sum of the probability of
being generated by all gaussian processes, being the divisor
in equation (14). By using Bayes rule, we can surmise that
equation (14) results in 𝑃(𝑍𝑛𝑘 = 1 | 𝑋𝑛).

D. Convolutional Autoencoder

We employ a convolutional autoencoder for non-linear
dimensionality reduction. It is evident that using the raw
heatmaps as input for the classifiers, risk provoking the curse
of dimensionality, given the heatmap resolution (42 × 30)
gives rise to a feature vector of length 1260. Considering we
have 2132 labelled corner kicks, it seems excessive to have
half as many features per set piece as the total amount of
set pieces. The Convolutional Autoencoder (CAE) is a deep
learning model based on an autoencoder architecture [30].

An autoencoder is a type of neural network, and the ob-
jective is to learn a latent representation (called Z or Code)
which allows for the accurate reconstruction (decoding) of
the original input. The two main parts of an autoencoder are
the encoder and decoder. The encoder maps the input data
to a lower-dimensional latent space, and the decoder recon-
structs the original data from this latent representation [31].

The primary objective of an autoencoder is to minimize
the reconstruction loss, which measures the difference be-
tween the input data and its reconstruction. This is typically
achieved by minimizing the binary cross entropy (BCE) be-
tween the original and reconstructed data. In general, an
autoencoder introduces an information bottleneck to enforce
dimensionality reduction. The information bottleneck is
achieved by setting the dimension of the hidden layer to be
strictly lower than the dimensions of the input layer. An au-
toencoder with a lower dimension in the hidden layers than
the input layer is said to be undercomplete [31].

While traditional autoencoders work well with flat, vec-
torized data, they struggle with image data where spatial
hierarchies are crucial. Convolutional autoencoders (CAEs)
address this by incorporating convolutional layers into the
encoder and decoder networks [30], [32].

In a CAE, the encoder consists of convolutional layers
that apply a series of filters (kernels) to the input image,
producing feature maps. These convolutional layers are typ-
ically followed by pooling layers that reduce the spatial di-
mensions of the feature maps, promoting translational in-
variance and reducing computational complexity [33].

For instance, consider an input image of size 𝑁 × 𝑀 .
A convolutional layer with 𝐾 filters, each of size 𝑘 × 𝑘,
slides these filters over the input image, generating 𝐾feature
maps. If 𝑁 > 𝑘 and 𝑀 > 𝑘, the convolution operation re-
sults in feature maps that retain the spatial hierarchy of the
input image while reducing its dimensionality.

Table 13: CAE hyperparameter configuration

Parameter Values

optimizer Adam

learning_rate 0.001

kernel (3,3)

pooling size (2,2)

pooling_type max

epochs 1000

loss binary_crossentropy

batch_size 128

n_layers 1

n_units 8

activation relu

output_activation sigmoid

The latent representation of a CAE captures the most
salient features of the input image. This compressed latent
representation is then passed to the decoder for reconstruc-
tion.

The decoder in a CAE performs the inverse operations of
the encoder. It uses transpose convolutions (also known as
deconvolutions) to upsample the latent representation back
to the original image size. The goal is to reconstruct the in-
put image from the compressed feature maps by minimizing
the BCE loss [30].

The heatmap lends itself nicely to CAEs as the represen-
tation, since in essence, it is an image.

E. CAE configuration

The CAE employed as part of the heatmap feature repre-
sentation is configured as seen in Table 13.

F. CAE Reconstruction

Figure 8: Final (1000 epochs) CAE reconstruction
Top is the input image, bottom is the reconstructed output.
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