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Summary

This project is based on experiences from our P9 project Fuzzy Security, which explored the
application of fuzzing techniques for enhancing cyber resilience and software robustness in
general. In this context, fuzz testing on Go code provided by the company DEIF was conducted.
From these experiences, investigations into property-based testing for the Go programming
language started, leading us to explore trace properties, hyperproperties [6], and contractual
design as well as how these concepts can be used to reason about the correctness of a program.
Advancing into the domain of hyperproperties allows us to utilise, relative to trace properties,
more expressive powers, as it includes quantifiers over sets of traces. This is essential for
expressing some important properties such as non-interference.

One way to specify properties is through contracts, as presented in the Eiffel programming
language, which introduced the concept of Design-By-Contract [7]. However, during our re-
search, we found the only available tools for specifying contracts in Go to be gocontracts [28]
and dbc4go [3]. These tools allow the developer to express properties in the form of pre- and
post-conditions in contracts, written as comments above functions. These comments are then
parsed and instrumented in the function body as run-time assertion checks. However, we believe
the use of contracts can be further expanded with hyperproperties.

We propose a tool called DropShadow, which extends the use of contracts in the Go pro-
gramming language with hyperproperties. We introduce automatic test case generation derived
from contracts by annotating functions with comments specifying properties. Using a Drop-
Shadow syntax, we enable developers to express both trace- and some reducible hyperproper-
ties, which are then tested. Instead of specifying properties directly in the test cases (following
the typical Arrange, Act, Assert structure), properties are expressed in the contracts and injected
directly into the function body. This approach differs from existing property-based testing tools
in Go, where the properties are specified in the test cases themselves. DropShadow in short
comprises of: 1) parsing of annotated functions 2) extraction of annotations into contracts 3)
injection of these contracts into source code 4) generation of tests based on these contracts and
5) evaluation of these tests.

The main contribution of this project is the DropShadow tool, which is presumably the first
tool designed to integrate contractual design alongside automatic test generation tailored to the
Go programming language. Furthermore, DropShadow incorporates contracts encompassing
hyperproperties, thus enhancing its capability to express security properties over multiple traces.
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Chapter 1

Introduction

In the field of software engineering, there is a continuous search for methodologies to enhance
the robustness and reliability of software systems. Amidst these endeavours, hyperproperties
emerge as a crucial concept, particularly useful in defining some security policies, since they
provide a formalisation for specifying and reasoning about the relationships between multiple
execution traces of a system [6]. With it, properties such as non-interference, ensuring high-
security operations do not influence or interfere with low-security operations, can be expressed.
This principle is not merely theoretical but is widely applied in practical scenarios, such as in
critical infrastructure, financial, and healthcare systems, where security and data integrity are
paramount.

An example of this is The Heartbleed bug [34], a bug where low inputs, in the form of
heartbeat requests, should only result in low outputs. However, a problem arose due to missing
input validation, leading to the leakage of private sensitive information being transmitted to
the requester, which could be a private key [26]. This case highlights a real occurrence of
interference bugs; however, due to its nature, a single trace could lead to its discovery by using
address sanitisers in conjunction with, e.g., OSS-Fuzz [27]. Be that as it may, not all leaks are
caused by reading memory outside bounds. Incorrect branching can also result in a low output
being assigned a high value.

The motivation behind this project is partially rooted in some of the limitations of traditional
unit testing and property-based testing frameworks encountered, as well as the formalisation
of functional specifications in software development. Unit testing, while effective for testing
individual units of code under some predetermined conditions, can fail to capture complex in-
teraction patterns or unexpected input combinations occurring in real-world scenarios. It might
be the case, that a unit-tested function interacts with other components in unspecified ways,
but still yields a satisfactory result. Instead, functional specifications in the form of contracts
written as documentation can capture incorrect usages and be used to generate tests. The prob-
lems are not least contingent on concepts like the pesticide paradox (diminishing effectiveness
of test cases over time) as well as bias and blind spots (the tendency for developers to write
tests, that conform to the expected behaviour of the code) [18]. Property-based testing might
accommodate some of these limitations by utilising an approach for checking properties across
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CHAPTER 1. INTRODUCTION

a broad range of inputs (often through the generation of (pseudo) random inputs).
Contractual design of functions often only concerns the relation between inputs and outputs.

Many tools already exist for contractual specification of functions in their documentation as well
as for property-based testing, some of which are gocontracts, QuickCheck [4], Hypothesis [23],
among others. To our knowledge, however, no tool for contractual design supporting some
hyperproperties over the universal quantification of two pairs of traces with automatic test case
generation exists - not least for the Go language. Thereby, manual effort is required to extend
the function to call itself twice to perform hypertesting [21].

Our main contribution is the tool DropShadow, which implements contractual specification
of functions with automatic test generation of both trace- and hyperproperties. To support it,
a wide range of input generators are provided with a general interface enabling developers to
extend its capabilities. We solve some general problems in which other tools are hindered, such
as multiple return statements and how hyperproperties can be defined as contractual obligations.
To support our work, we present how assertions, trace properties, and hyperproperties inter-
relate, and how sequential self-composition can be applied in some circumstances. We also
present general patterns we have identified concerning the use of contractual design.
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Chapter 2

Theory

This chapter seeks to lay the foundation for understanding some of the essential concepts and
theories that underpin our project. It begins with an exploration of programming with assertions,
a technique that integrates explicit statements about program states to ensure correctness. We
then delve into trace properties and hyperproperties, which encompass properties of sets of
computations traces, offering a broader perspective on system behaviours. Finally, we examine
sequential self-composition, which is an approach to reduce a subset of hyperproperties to trace
properties.

2.1 Programming With Assertions

In this section, we focus on how it is possible to articulate important program properties. For
many programming languages, they can be expressed through the use of assertions [25]. An
assertion is often a Boolean-valued function over the state space, which is usually expressed as
a logical proposition using the program’s variables. Such a proposition could look like this:

x+ y > 3

which may or may not be satisfied by a given state of the program during execution. For
instance, if both x and y equal 4, the assertion is satisfied, whereas this is not the case if both
variables equal 1.

An assertion failure typically implies an undesired program state, in which case an immedi-
ate termination of the program (often accompanied by an error message indicating the location
of the failure) can be triggered. These precautions can help identify bugs and other inexpedien-
cies by highlighting, where the program’s actual state deviates from the expected one defined
by the assertion.

2.1.1 Pre- and Post-conditions

However, assertions alone are not sufficient to arrive at a satisfactory expression of program
correctness. While they do serve to confirm individual properties at particular points, they do
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2.1. PROGRAMMING WITH ASSERTIONS CHAPTER 2. THEORY

not address the entirety of a program’s execution or its interactions with external components.
We need to look at the properties of a program fragment (i.e. a function) with respect to the
assertions, that are satisfied before and after execution of that fragment [25]. Therefore, two
kinds of assertions must come into play:

• Pre-conditions: propositions assumed to be satisfied by the caller before the given frag-
ment of code is executed.

• Post-conditions: propositions expected to be satisfied by the callee after the given frag-
ment of code is executed.

In other words, a program fragment C is said to be correct with respect to a certain pre-
condition P, and a certain post-condition Q, if and only if for all states satisfying P a state is
produced satisfying Q. This can be formally expressed as the Hoare triple [25]:

{P}C{Q} (2.1)

In other words - it is the responsibility of the environment to ensure, that a program fragment
is only executed when that fragment’s pre-condition is met. In turn, the fragment is obligated to
fulfil the post-condition.

To put it in context: specifying pre- and post-conditions is like a contract between the
environment (caller) and the program fragment (callee). The pre-condition obligates the envi-
ronment, and the post-condition obligates the program [25]. If the environment does not fulfil
its part of the deal, the program may do what it likes. On the other hand, if the pre-condition is
satisfied and the program fails to ensure the post-condition, the program is deemed incorrect.

It is important to notice, that program correctness is only a relative concept according to
Meyer [25]; there is no such thing as an intrinsically correct or incorrect program. It only
makes sense to talk about the correctness of a program with respect to a certain specification
given by a set of pre- and post-conditions. Or, as Malloy and Voas state: ”The program is
correct if its implementation is consistent with the assertions.” [24]

2.1.2 Example

Assertions in programming serve as explicit checkpoints, allowing developers to enforce ex-
pected conditions or invariants. They are thus powerful tools for improving software quality by
explicitly stating conditions, that must hold true at specific points in the execution. Assertions
can not only help a programmer read the code and understand the valid/invalid flow of informa-
tion through it, but they can also help the program detect its defects. When an assertion fails,
it signals a discrepancy between the expected and actual program state, effectively identifying
a potential defect within the program’s logic or state. This characteristic led Rosenblum to call
programs with assertions ”self-checking programs” [32].
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2.2. TRACE PROPERTIES CHAPTER 2. THEORY

1 func BMO(low, high int) int {

2 if high < 0 {

3 panic("pre-condition violated")

4 }

5 intermediary := 0

6 if high % 2 == 0 {

7 intermediary = 271

8 }

9 result := low

10 result += intermediary

11 if result < 0 {

12 panic("post-condition violated")

13 }

14 return result

15 }

Listing 2.1: Example of using assertions in the code.

Listing 2.1 shows an example of using panics in Go. Go does not directly support assertions,
however - panics can be used to communicate an exceptional violation (like exceptions in other
languages). The BMO function receives two parameters low and high and returns one value.
In this example, we see how assertions are used to check the pre- and post-conditions of the
function, hence ensuring the validity of the information flowing into as well as out of BMO.

In line 2 the pre-condition is checked to ensure the input variable high is positive as ex-
pected by the function. If this is not the case, a panic is raised, informing about the failed
pre-condition. Likewise, in line 11 we see an assertion checking the post-condition of, which
in this case ensures, that the result is positive. Again, if this does not hold true, a panic is raised
informing about the failed post-condition.

2.2 Trace Properties

As described in the previous section, assertions are used to describe propositions (in the lan-
guage of the program), thus denoting the validity of the program’s state. This works on a
snapshot - a state captured at the location of the assertion. However, these assertions do not
consider the previous ones or how the execution got to them. To accommodate this problem,
trace properties will be presented following the notations in [6].

An atomic proposition is a basic, indivisible statement in logic, that expresses a fact or a
condition without any further decomposition. It is deemed atomic, since it cannot be broken
down into simpler statements and is either true or false, without any ambiguity or need for
further interpretation.

To define programs and how we describe states and their corresponding atomic propositions,
we use a Kripke structure, which is a transition system with a labelling function. Let a system,

10



2.2. TRACE PROPERTIES CHAPTER 2. THEORY

or program, be modelled as a non-empty set of infinite traces from a Kripke structure K =

(S, s0, δ,AP, L). S is the set of states, s0 is the initial state, δ : S → P(S) the transition
function which for any state has a transition, AP the atomic propositions, and L : S → P(AP)
labelling a state with its corresponding atomic propositions. A path in this structure is an infinite
sequence of states [5].

With this, let the set of all atomic propositions in a state be expressed as Σ = P(AP). In
relation to actual programs, the finite traces, which are the executions that terminate, are defined
as Ψfin. The infinite traces Ψinf are the executions, which do not terminate.

Ψfin
∆
= Σ∗

Ψinf
∆
= Σω

Ψ
∆
= Ψfin ∪Ψinf

where Σ∗ is the Kleene star operation performed on Σ, creating the set of all traces with a finite
length, and Σω is the traces with infinite length. All traces Ψ are then the union of both the
finite and infinite traces, where the finite traces are made infinite by stuttering, or repeating, the
final state of the execution of the program. This is necessary as the Kripke structure contains
only infinite and possible traces, since its transition function always has a transition, which
we, for stuttering, require to not transition to another state. With this, we can define a trace
t as an infinite sequence of states t = s0s1... where si ∈ Σ, i ∈ N0. However, for brevity,
we consider traces as a sequence of atomic proposition as if the labelling function has been
applied to all states; with the exception, of when we strictly mention that traces are a sequence
of states. Relevant later, in the context of sequential self-composition, is the concatenation of
traces, which is done with a finite trace t and potentially infinite trace t′ is denoted as tt′.

t[i]
∆
= si

t[: i]
∆
= s0s1 · · · si

t[i :]
∆
= sisi+1 · · ·

Using traces we can now define trace properties: a proposition over a set of traces allowing for
the categorisation of valid and invalid traces. Like state assertions, which can allow multiple
concrete states to be acceptable, a trace property can also allow multiple traces to be acceptable.
The set of traces T that satisfy the trace property P is denoted as T |= P if and only if all
the traces in T are in P . Another way of looking at it is stating, that T is all the traces of the
implementation, and P is those of the specification. The implementation only implements P if
and only if all traces in the implementation are in the specification.

T |= P
∆
= T ⊆ P

The trace property, or a set of traces satisfying a property, is part of a universe. This universe
P is the set of all possible infinite traces, which is the powerset of all infinite traces. The only
trace property that fully encompasses the universe is one that is satisfied for all infinite traces.

P ∆
= P(Ψinf )
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2.2. TRACE PROPERTIES CHAPTER 2. THEORY

With traces and trace properties defined, we will now present a way of expressing trace proper-
ties with the use of Linear Temporal Logic.

2.2.1 Linear Temporal Logic

One way of formally writing trace properties is using Linear Temporal Logic (LTL) [31]. ”Lin-
ear” refers to reasoning over a sequential order of the propositions in the trace and ”Temporal”
to a progression in discrete time, that allows the expression of different points or indices of
a trace. LTL enables expressing trace properties for non-branching systems. That is systems
where the future behaviour is solely determined by the current state. Below, a version of the
grammar and semantics is presented, where ψ denotes the production rule of LTL and ap an
atomic proposition [17, 9].

ψ := ap|¬ψ|ψ1 ∧ ψ2|Xψ|ψ1 ∪ ψ2 (2.2)

t |= ap if ap ∈ t[0] (2.3)

t |= ¬ψ if t��|=ψ (2.4)

t |= ψ1 ∧ ψ2 if t |= ψ1 and t |= ψ2 (2.5)

t |= Xψ if t[1 :] |= ψ (2.6)

t |= ψ1Uψ2 if ∃i ≥ 0. t[i :] |= ψ2 and ∀0 ≤ j < i. t[j] |= ψ1 (2.7)

For example, Equation 2.6 means, that the trace t must satisfy the trace property ψ at the
neXt index t[1 :] immediately following the current one, and Equation 2.7 means that the trace
t to satisfy ψ1Uψ2, ψ1 must hold Until ψ2 holds.

An example of these rules can be seen in Figure 2.1 and Figure 2.2. In this and future
examples, we have taken the liberty to write {ψ} as the set of atomic propositions for ψ to hold
at a given time within a trace. This disregards, that ψ is not necessarily an atomic proposition;
it is done for conciseness and as a simplification. Alternatively, {¬ψ} is the set of atomic
propositions for ψ not to hold.

t: . . .
{ψ}

Figure 2.1: An example of t |= Xψ where ψ is satisfied at the neXt index in the trace.

t: . . .
{ψ1,¬ψ2} {ψ1,¬ψ2}

i

{ψ2} {ψ2} {ψ2} {ψ2}

Figure 2.2: An example of t |= ψ1Uψ2 where ψ1 is satisifed Until i from which ψ2 is satisfied
indefinitely.
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2.2. TRACE PROPERTIES CHAPTER 2. THEORY

In addition to the previously defined semantic rules, we can deduce other operators [9].

ψ1 ∨ ψ2 ≡ ¬(¬ψ1 ∧ ¬ψ2) (2.8)

ψ1 =⇒ ψ2 ≡ ¬ψ1 ∨ ψ2 (2.9)

ψ1 ⇐⇒ ψ2 ≡ ψ1 =⇒ ψ2 ∧ ψ2 =⇒ ψ1 (2.10)

true ≡ ap ∨ ¬ap (2.11)

false ≡ ¬true (2.12)

ψ1Rψ2 ≡ ¬(¬ψ1U¬ψ2) (2.13)

Fψ ≡ trueUψ (2.14)

Gψ ≡ ¬F¬ψ (2.15)

An example of Equation 2.13, Equation 2.14, and Equation 2.15 can be seen in Figure 2.3,
Figure 2.4, and Figure 2.5 respectively.

t1 : . . .

t2 : . . .

{¬ψ1, ψ2} {¬ψ1, ψ2} {ψ1, ψ2}

{¬ψ1, ψ2} {¬ψ1, ψ2} {¬ψ1, ψ2} {¬ψ1, ψ2} {¬ψ1, ψ2} {¬ψ1, ψ2}

Figure 2.3: An example of t1 |= ψ1Rψ2 where ψ2 is satisfied until it is Released from which
point ψ1 is satisfied; and t2 |= ψ1Rψ2 where ψ2 is satisfied indefinitely.

t: . . .
{ψ}

Figure 2.4: An example of t |= Fψ where ψ is eventually (Finally) satisfied.

t: . . .
{ψ} {ψ} {ψ} {ψ} {ψ} {ψ}

Figure 2.5: An example of t |= Gψ where ψ is always (Globally) satisfied.

Next, we will apply Linear Temporal Logic (LTL) to describe a trace property of the function
from Listing 2.1.

2.2.2 Example

Consider the function from Listing 2.1: now we want to use this example to show, how trace
properties can be used to describe expected behaviour based on the inputs low and high and
output o. For a function to be callable, its pre-conditions must be met, in which case eventually
the post-conditions should be satisfied after the function’s execution. This can be described as
follows:

13



2.3. HYPERPROPERTIES CHAPTER 2. THEORY

• Region 1 (High is even): if the input high is greater than or equal to 0 and it is even, then
the output is low+ 271.

• Region 2 (High is odd): if the input high is greater than or equal to 0 and it is odd, then
the output is low+ 0.

• Provided the input high is always greater than or equal to 0, then the output will never be
negative. Therefore, the post-condition will never be violated.

The two first cases describe valid executions of the function from Listing 2.1. For each exe-
cution, we have given a shorthand: region 1 and region 2. We use these to encapsulate how
possible overlapping input sets describe a mapping to some output. This approach is similar to
partition testing; we can thus separate each region into its pre- and post-condition:

P1 = high ≥ 0 ∧ high mod 2 = 0 (2.16)

Q1 = output = low + 271 (2.17)

P2 = high ≥ 0 ∧ high mod 2 = 1 (2.18)

Q2 = output = low + 0 (2.19)

Region 1 is described by the pre-condition Equation 2.16 and post-condition Equation 2.17.
Region 2 is described by the pre-condition Equation 2.18 and post-condition Equation 2.19. The
pre-conditions are not atomic propositions but are instead composed of two atomic propositions.

We can see the trace property for Region 1 in Equation 2.20 and Region 2 in Equation 2.21.
They both describe how satisfying their pre-condition implies, that the post-condition is even-
tually satisfied.

reg1 = P1 =⇒ F (Q1) (2.20)

reg2 = P2 =⇒ F (Q2) (2.21)

Equation 2.22 describes the trace property for the function BMO in Listing 2.1. It describes
a trace property consisting of all traces satisfying at least one region’s pre-condition. For this
satisfied pre-condition, the corresponding region’s post-condition must be eventually satisfied.

ψ = (P1 ∨ P2) ∧ (reg1 ∧ reg2) (2.22)

Without (P1 ∨ P2), inputs not specified by at least one region would be in the trace.

2.3 Hyperproperties

In [6] trace properties are extended to hyperproperties, where each hyperproperty is a set of
sets of infinite traces or trace properties. A hyperproperty can then define a relation between
multiple trace properties. This is necessary to express e.g. non-interference and observational
determinism, which can not be checked on a single trace, as it requires the comparison of
different executions.
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All hyperproperties HP is the powerset of all trace properties P, which is the same as the
powerset of powerset of all infinite traces ψinf . The definition is as follows:

HP
∆
= P(P(Ψinf)) = P(P). (2.23)

Each element in the set HP is a hyperproperty H , which is a set of trace properties P.
Thereby, every trace property in a hyperproperty is an allowed system, that specifies which
executions must be possible.

T |= H
∆
= T ∈ H (2.24)

That is, the set T of traces satisfies hyperproperty H , denoted as T |= H , if and only if, the
trace property T is in H . It looks similar to trace properties, however, the main difference is,
that trace properties require T to be ⊆ of P while hyperproperties require T to be ∈ H .

2.3.1 HyperLTL

After having defined hyperproperties, a closer look will now be taken on Hyperproperties Linear
Temporal Logic (HyperLTL), which is a language used to formulate hyperproperties. Unlike
LTL, which expresses properties of single execution traces over time, HyperLTL allows the
specification of properties across multiple traces by introducing quantifiers. This capability
makes it well-suited for expressing properties such as non-interference, as well as other proper-
ties involving correlations between different execution paths or system behaviours [6].

In the context of HyperLTL, quantifiers allow for the specification of properties, that must
hold for all possible combinations of traces or some combination of these, enabling the expres-
sion of complex inter-trace properties. The syntax of HyperLTL can be defined by the following
grammar [5]:

Υ ::=∃π.Υ | ∀π.Υ | ψ (2.25)

ψ :=apπ | ¬ψ |ψ1 ∧ ψ2 |Xψ |ψ1Uψ2 (2.26)

where π ∈ V is a trace variable, and V is an infinite supply of trace variables π1, π2, π3,
... ∃ (existential quantifier) applied on π, suggests that there is at least one trace for which the
predicate holds true, while ∀ (universal quantifier) indicates that the predicate following is true
for all traces. Equation 2.25 thus shows, that HyperLTL extends LTL by introducing quantifi-
cation over traces, enabling the expression of properties across multiple traces, allowing the
expressivity required for some information-flow properties like non-interference. In addition,
Equation 2.26 is extended such that the atomic proposition ap refers to a trace π.

The validity of HyperLTL formulas is written Π |=T Υ, where T is the set of traces. The
trace assignment as a partial function maps trace variables to traces Π : V → Ψ, where Ψ is the
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set of all traces and, Π[π → t] denotes that π is mapped to t:

Π |=T ∃π.Υ if ∃t ∈ T : Π[π 7→ t] |=T Υ (2.27)

Π |=T ∀π.Υ if ∀t ∈ T : Π[π 7→ t] |=T Υ (2.28)

Π |=T ap
π if ap ∈ Π(π)[0] (2.29)

Π |=T ψ1 ∧ ψ2 if Π |=T ψ1 and Π |=T ψ2 (2.30)

Π |=T Xψ if Π[1 :] |=T ψ (2.31)

Π |=T ψ1Uψ2 if ∃i ≥ 0 s.t. Π[i :] |=T ψ2 and ∀j < i,Π[j :] |=T ψ1 (2.32)

For instance, the second rule (Equation 2.28) describes the semantics of universal quantification
over traces, and can be read as follows: Π |=T ∀π.Υ means that for the trace assignment Π and
a set of traces T the formula ∀π.Υ is satisfied if for every trace t in T , the formula Υ is satisfied
when a unique π is mapped to t in Π. Put in simpler terms, this rule ensures, that the property
described by Υ must hold for every individual trace in the set T , thereby defining a property of
the system, that applies universally across all possible executions of behaviours captured by T .
Π[n :] denotes the trace assignment Π where each π maps Π to the trace Π(π)[n :]. [5]

Similarly, the fourth rule (Equation 2.30) expresses the semantics of the logical conjunction
(AND) operator within the context of HyperLTL, applied to the formulas ψ1 and ψ2. It can be
read as follows: for a set of traces T and a given trace assignment Π, the formula that ψ1 and
ψ2 are true is satisfied if it is the case, that ψ1 is satisfied, and ψ2 is satisfied under that trace
assignment.

In [5], syntactic sugars for comparing traces have been defined. With a set of atomic propo-
sitions AP , π[0] =AP π′[0] ≡

∧
ap∈AP ap

π ↔ apπ
′ , meaning comparing a common set of

atomic propositions AP between two traces (π and π′) in the initial state is done by check-
ing whether the atomic propositions in AP are all equal. In addition, we have π =AP π′ ≡
G(π[0] =AP π

′[0]).
In Section 2.2 we covered trace properties, wherein additional operators, such as Globally

(G), were defined with logical equivalence. The previous equations for hyperproperties’ se-
mantics cover the same fundamental operators as trace properties. For this reason, we apply the
same logical equivalences on hyperproperties to define the same operators, given that an atomic
proposition ap now applies to π as shown in Equation 2.26.

With the syntax and semantics for HyperLTL defined, we can now formulate the previously
mentioned hyperproperties (non-interference and observational determinism) in this temporal
logic.

Non-interference is a property which states, that for any computation traces, if all inputs, ex-
cept for high-security inputs, are identical across the traces at all time, the outputs must also
remain indistinguishable at all times [10]. Given a concrete execution of a program, inputs
and outputs have concrete valuations, then we can construct two sets of atomic propositions
describing their equality. IL is the atomic propositions over the low inputs, and O the atomic
propositions over the outputs. This can be expressed as:
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∀π.∀π′.π =IL π
′ ⇒ π =O π

′ (2.33)

where π and π′ represent two arbitrary computation traces, and H is the high-security inputs
whose influence on the low-security output o is being examined. The universal quantifiers ∀π
and ∀π′ signify, that the statement must hold for every possible pair of traces.

Observational Determinism: Expressing observational determinism in HyperLTL involves
stating, that for every pair of traces observed under identical conditions, the outcomes must be
the same [9]. An example of observational determinism can be found in the field of software
testing, where a program should consistently produce the same outcomes when the same test
conditions are applied. Given I is the atomic propositions over all inputs. This can be capture
with the following HyperLTL formula [9]:

∀π.∀π′.π =O π
′ ⇒ π =I π

′ (2.34)

This formula ensures, if two traces produce the same outputs throughout their execution, then
their inputs must have been identical at all points in time.

2.3.2 Example

In Section 2.2.2 we argued how the trace property of the function BMO from Section 2.1.2 could
be defined. Now, we would like to see if there is interference between the low output and the
high input, as well as observational determinism. For that, we cannot use the aforementioned
trace property.

Non-interference: we define the set of inputs I = {low, high} and high inputsH = {high}.
Then we must search for two executions with varying high inputs and different outputs. If that
is the case, then we have interference where information flows from a high input to a low
output. By looking at the function in Listing 2.1 we can see that the value of intermediary
is dependent on the value of the input high. We can then prove interference by these two
executions BMO(0, 0) with output 271 and BMO(0, 1) with output 0.

Observational determinism: with the same inputs I we can observe non-deterministic be-
haviour by looking at a function’s input and outputs across two executions. By manual inspec-
tion of the code for BMO, we see that its definition is inherently deterministic, and therefore we
cannot find a counter-example for observational determinism.

The function BMO is observationally deterministic but contrary to its name, it does exbibit
interference. We showed testing for interference can be done by executing BMO twice and com-
paring the outputs. In the following section, we will go into more detail about how and why this
works.
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2.4 Sequential Self-Composition

HyperLTL is a general language used to express hyperproperties. By focusing on functions with
terminating traces, we can consider a subset of hyperproperties, described by finite executions.
By using trace concatenation, we can then combine the two finite traces into one trace. This
allows us to consider one finite trace, in contrast to two individual finite traces, consequently
reducing a hyperproperty to a trace property.

The common Arrange-Act-Assert paradigm assumes a pre-condition is satisfied after exe-
cuting the Arrange step, some functionality is performed in Act, and the expected post-condition
is asserted in the Assert step. This process involves a single execution of Act and essentially
functions as a trace property. By extending this approach, we can append another execution of
Act, which depends on yet a new Arrange step. Consequently, this necessitates a new Assert
step, which now considers the input-output relation from both Act steps. This results in a new
Arrange-Act-Arrange’-Act’-Assert’ structure.

Formally, this approach is a sequential self-composition of a program P , where P ′ denotes
P with all variables renamed (primed), to ensure uniqueness. P ;P ′ is the sequential execution
of P followed by P ′. As an example, let P be a declaration and an assignment, where the value
returned from the function BMO is assigned to o, such that o := BMO(l, h). Correspondingly,
P ′ would be o’ := BMO(l’, h’). The composition results in a program that first executes
BMO(l, h) followed by BMO(l’, h’). Later this will be presented in regard to Listing 2.1 [6]

However, the variables must be uniquely declared and assigned appropriately to the spec-
ified relation. Therefore, we consider the program P as both the Arrange-Act parts and P ′

as Arrange’-Act’. Important for hyperproperties is the ability to describe how inputs relate to
each other. The primed inputs might be identical to, modified versions of, completely different
from, or partially related to the original inputs. The Arrange’ is responsible for defining this
relationship.

Consider again the example o := BMO(l, h) and o’ := BMO(l’, h’). Suppose we want
the inputs to be related as follows: l = random, h = random, l’ = l and h’ = random. The
assertion would then be o = o’. Written as a test case, this would follow an Arrange-Act-
Arrange’-Act’-Assert’ structure, seen in Listing 2.2.

1 l, h := random, random

2 o := NI(l, h)

3 l’, h’ := l, ranodm

4 o’ := NI(l’, h’)

5 assert o = o’

Listing 2.2: A test case where sequential self-composition is used to reduce non-interference to
a trace eproperty. It follows the structure of Arrange-Act-Arrange’-Act’-Assert’.

18



2.4. SEQUENTIAL SELF-COMPOSITION CHAPTER 2. THEORY

Figure 2.6 shows a representation of sequential self-composition by concatenating two
traces together.

out := NI(l, h)

t1:

t2:

(a) Two separate executions, or traces t1

and t2, of NI .

out := NI(l, h)

out’ := NI(l’, h’)

t:

(b) Two separate executions of NI with se-
quential self-composition concatenating
the two traces together to one.

Figure 2.6: Non-interference reduced to a trace property using sequential self-composition of
the function NI (See Listing 2.1) where the inputs and outputs are renamed to unique identifiers
by priming them.

By concatenating two traces into one, we can utilise trace properties to check certain hyper-
properties. However, some hyperproperties may require more than two traces. In such cases, we
follow the same procedure, appending additional primes to create unique identifiers and execut-
ing the function a third, fourth or more times. For sequential self-composition to work, several
practical assumptions are necessary: the executions of the sequential functions must operate on
the same initial state, all concurrent executions that could interfere with future self-composed
executions must be completed, and primed variables should guarantee uniqueness.

Earlier, assertions were described as a language construct used to express function contracts.
These contracts can formalise pre-and post-conditions, which fundamentally are trace proper-
ties. However, not all properties can be expressed with one trace (non-interference requires at
least two, for example). In practice, testing hyperproperties is challenging, but sequential self-
composition can reduce some hyperproperties to trace properties. This allows us to use trace
properties to express e.g. non-interference. In the following chapter, the tool DropShadow will
be presented by applying the theory in practice.
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Chapter 3

DropShadow

In this chapter, we are going to present our tool DropShadow1 written in Go. Figure 3.1 de-
picts the overall workflow. We will first summarise the main components and explain the steps
involved; then, in the following sections, the details will be covered.

Checks

Tests

Generators

Test ResultContractsFile
Parse

Inject

Generate

Run Tests

Figure 3.1: The flow of DropShadow where each square is an object or component. First,
we have a ”File” including functions and contracts, which are parsed. These contracts are in-
jected into the functions corresponding to the pre-, post-condition, and hyperproperty ”Checks”.
Based on the same contracts, property-based ”Tests” are generated with corresponding termi-
nation criteria. Both the checks and tests require ”Generators” responsible for input generation
and inclusion checks. When the ”Checks” have been injected and the ”Tests” are generated, we
run the tests and receive a ”Test Result”.

Generators: DropShadow uses a composable architecture that allows for complex and custom
generation of inputs. Its contracts, which are annotated as function documentation, are used to
specify the valid inputs. Pre-conditions on the inputs are inclusion checks in the generator, and
post-conditions are assertions. The contracts are written as correct Go code in the contracts,
provided the generators are inserted with the ”pkg.” prefix.
Parse: DropShadow utilise Go’s native parser, go/parser, to parse Go source files containing
the contracts. The parsing results in an Abstract Syntax Tree (AST), which is then traversed
using Go’s native AST, go/ast, to build actual instances of the contracts specified in the source
file. The results from parsing a file are the actual contracts associated with annotated functions,

1The name DropShadow originates from a visual interpretation of contracts as drop shadows for the functions.
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including all metadata.
Checks: When the contracts of a source file have been constructed, DropShadow injects code
according to the specifications of the contracts. The original signature of the function is pre-
served to ensure correct linking for callers. The injection of the contract is performed by adding
nodes to the AST, which are responsible for all the logic of trace- and hyperproperties, as well
as handling certain intricacies.
Tests: When contracts have been injected into the associated functions, DropShadow then
constructs a test file containing generated property-based test cases as specified by the con-
tracts. Post-conditions, in contrast to pre-conditions, are optional, and only contracts with post-
conditions will have a corresponding test generated. DropShadow then automatically handles
the execution of the generated test cases. After this, the test file is deleted and the source file is
reverted to its original state.

With this summary of DropShadow the following sections will dive into each component
and describe the design in more detail as well as describe how the theory introduced throughout
the report has been implemented and applied practically.

3.1 Input Generation

Input generation is very useful for testing hyperproperties and a cornerstone of property-based
testing, a methodology that shifts the focus from testing specific instances to general properties.
Go already has a native fuzzer supporting some types, but not all, to be generated automati-
cally [14]. Our contribution in this regard is a suite of generators for more types and custom
types, as well as ways to work with arrays adhering to their generation requirements.

QuickCheck [4] is a well-known tool in the space of property-based testing, and Drop-
Shadow’s input generation is similar in many ways - not least due to the minimalistic ap-
proach (what QuickCheck calls test data generators is called input generators in DropShadow).
The main difference between the implementations is DropShadow’s inclusion checking, which
QuickCheck does not enforce all generators to have. DropShadow requires inclusion checks,
as the generators are used to check pre-conditions, whereas QuickCheck only uses them for
generational purposes without the function’s contractual obligations on the inputs. Thereby,
they do not aim for self-checking programs, but rather to randomly test properties of functions.
Like QuickCheck, DropShadow allows the custom creation of generators such that users can
control the generation of inputs. DropShadow also supports the Any generator, which is similar
to Arbritary in QuickCheck.

In traditional unit testing, developers write tests for predetermined inputs and check the
correctness of the outputs - usually structured like Arrange, Act, and Assert. This method,
while useful, is limited by the developer’s ability to anticipate problematic inputs, edge cases
and boundary values while considering positive and negative test cases. Property-based testing
addresses this limitation by defining properties, and general rules a function or system should
adhere to, and then automatically generate inputs.
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The efficacy of property-based testing hinges on the ability to produce a comprehensive set
of test inputs, spanning the property’s input space, without wasting resources generating inputs
outside of it. DropShadow introduces the concept of generators to define, among other things,
the input space for generation. Multiple generators can be used to specify a property reflecting
a region of the input space (see Section 3.2). Existing property-based testing tools aim to enable
developers to utilise the fuzzer and simply skip inputs outside the property, which in some cases
is very inefficient. In addition, not all types are supported, creating a significant challenge for
users who need to convert the fuzz input into the required type.

1 type Generator[T any] interface {

2 Contains(value T) bool

3 NextValue() T

4 }

Listing 3.1: The interface required for all generators.

In Listing 3.1 the interface required by all generators is presented. This simple interface
enables generation and inclusion checks. Without this, the input generation required for testing
hyperproperties and test case generation would be difficult. It allows for custom generators
made by users, numeric intervals, array generation, and much more.

1 type SizedGenerator[T any] interface {

2 Generator[T]

3 Size() uint64

4 }

Listing 3.2: The interface required for all sized generators.

At times, it is desirable to combine regions which, otherwise, only express a single partition
to instead express a set of regions. DropShadow supports combining some generators through
the use of DisjointUnion. However, to not favour some inputs more than others we require
the generators to have a notion of size corresponding to the amount of different values it can
generate. In Listing 3.2 the interface definition for these generators can be seen. Fundamentally
they simply extend Generator with a function Size. This function returns, as a uint64, the
number of values it can distinctly generate. For user-defined sized generators they might find
cases where the definition of size in some way is altered to a more general notion of weight. This
would allow custom distributions over multiple generators. The way DisjointUnion works is
by returning a sized generator composed of multiple sized generators. The total size is then the
summation of all sizes. Sampling is then done by weighted random over the sized generators,
and an inclusion check is performed by just finding one generator able to generate the value.

3.1.1 Numeric Intervals

The usage of numbers is often an essential requirement for most software. For this reason, Drop-
Shadow supports a wide range of generators representing numeric intervals. Fundamentally, an
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interval is just a min and max value of a generic numeric type and two booleans describing the
ends as either open (exclusive) or closed (inclusive). For instance, a fully closed generator over
some number can be constructed with the use of Inclusive, and Exclusive for fully opened
generators. In addition, it can be more expressive to describe bounds which range from one
point and continue to the extreme in one direction. To support this we have LT (<), LE (≤), GT
(>), and GE (≥).

1 type NumericInterval[T Number] struct {

2 min T

3 max T

4 openMin bool

5 openMax bool

6 }

Listing 3.3: The NumericInterval struct representing a range of numeric values in
DropShadow.

In Listing 3.3, the struct for the numeric intervals is presented. This struct implements the
SizedGenerator interface to be considered a valid sized generator. To do so, the numeric
intervals have both a generator function (NextValue), inclusion check (Contains), and size
(Size). The Contains method defined on NumericalInterval checks if a given value falls
within the interval, taking into account whether the ends are open or closed (Listing 3.4).

1 func (interval *NumericInterval[T]) Contains(value T) bool {

2 if !interval.openMin && !interval.openMax {

3 return value >= interval.min && value <= interval.max

4 }

5 ...

6 }

Listing 3.4: Excerpt from the Contains method.
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1 func (interval *NumericInterval[T]) NextValue() (value T) {

2 switch any(value).(type) {

3 case float64:

4 value = T(Float64InRange(float64(interval.min), float64(interval.max)))

5 case int:

6 min, max := interval.integerBounds()

7 value = T(SignedInRange(int(min), int(max)))

8 ...

9 }

10

11 if !interval.Contains(value) {

12 return interval.NextValue()

13 }

14 return value

15 }

Listing 3.5: Excerpt from the NextValue method.

The NextValue method generates a pseudo-random value within the interval, catering to
the different supported numeric types. In Listing 3.5 our generation of float64 and int can
be seen. To generate the values, the global rand instance is used from the rand package by the
functions Float64InRange and SignedInRange. For floats, we over-approximate the interval
assuming both ends are closed. This can be problematic for partially or completely open inter-
vals. However, the function makes an inclusion check on the generated value and if false is
returned, a new value is generated until one is found, that falls within the specification.

3.1.2 Array Generation

Arrays are often used in software as sequences or collections of elements. However, its genera-
tion is much more complex than numeric intervals. First, one should be able to generate an array
of any underlying type, which also implies multidimensional arrays. Second, the construction
of array elements should, in some cases, have access to the previous elements. Essentially, this
would allow for the construction of sorted arrays.

Go already has a native fuzzer, but it is severely restricted by its ability to only generate
one-dimensional byte arrays. To resolve this issue, we have constructed two generic genera-
tors which can be extended by the users. The first generator generates all values from a separate
generator, without considering the previous generated elements. The second generates elements
based on preceding elements through the step function. Both are not sized, making Disjoin-

tUnion over these array generators infeasible. This restriction originates from the size growth
of arrays, which can quickly become very large. In the cases where sized generators of arrays
are required, users must create a custom generator for it.
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1 type ArrayGenerator[S ~[]E, E any] struct {

2 factory Generator[E]

3 configuration ArraysConfiguration

4 }

Listing 3.6: The ArrayGenerator generator.

In Listing 3.6 we see the generator for an array where all elements are created from fac-

tory generator. The configuration contains metadata for the construction of the array, such
as bounds (which itself is also a generator). To support the configuration of arrays we have
utilised the configuration pattern, which follows the open-closed principle, ensuring an extensi-
ble configuration for arrays, that allows for further addition. An inclusion check of an array is
performed by checking each element to see if the generator has been able to generate it.

1 type ArrayStepGenerator[S ~[]E, E any] struct {

2 step func(array S, index int) Generator[E]

3 configuration ArraysConfiguration

4 }

Listing 3.7: The ArrayStepGenerator generator.

In Listing 3.7, the generator for what we call a step generator can be seen. The generator
requires a step function which deterministically creates a generator for the array elements
provided the previous elements in the current state of the array (it has to be deterministic as it
is also used for inclusion checks). This generator is useful in cases where a sorted array should
be generated.

The step function takes an index of the current element of the array, from which the factory
can consider all previous elements. Calling step yields a generator, which in turn generates the
preceding element. Inclusion is done by checking, provided the current array from the index,
the returned generator includes the next element.

3.1.3 Any Generation

Some functions should be able to accept all inputs. But some inputs, when generating them,
can yield incredibly large objects. For example, consider a generator designed for arrays with
an unconstrained length; such a generator could potentially produce an array as large as the
maximum value of an int32. Moreover - functions might accept all numeric values of a specific
type. To facilitate this, the AnyNumber function is used. It creates a closed interval bounded by
the minimum and maximum values of the specified numeric type.

1 func AnyNumber[T Number]() *NumericInterval[T] {

2 return Inclusive[T](MinOf[T](), MaxOf[T]())

3 }

Listing 3.8: The AnyNumber generator.

25



3.2. CONTRACT CHAPTER 3. DROPSHADOW

The AnyGenerator is a special unsized generator which returns true for all inclusion
checks but panics when attempting to generate a value. The reason for this is, that construc-
tion of any objects (objects implementing interface{}) can only be done for its zero value.
We believe the zero value does not necessarily fit well with the generator’s name. A generator
like AnyGenerator, which returns true for all inclusion checks and cannot generate a value,
is useful for cases where one needs a catch-all pre-condition. Another argument for its need
is, that not all regions should have a test case; the generation of arbitrary arrays, for example,
can yield very large arrays. Essentially, Any supports a general usage pattern we identified for
DropShadow.

1 func Any[T any]() *AnyGenerator[T] {

2 return &AnyGenerator[T]{}

3 }

Listing 3.9: The Any generator.

To ensure every type required by users can be generated, users can create their own genera-
tors and call Custom with the generator as a parameter. DropShadow has the requirement that
all pre-conditions are functions from the pkg package returning a generator. Therefore, to sup-
port custom generators (a function that essentially just returns the passed generator to Custom),
this function seems like the only approach for user-defined generators.

1 func Custom[T any, G Generator[T]](generator G) G {

2 return generator

3 }

Listing 3.10: The Custom generator.

In conclusion, input generation is a pivotal feature of DropShadow, driving the tool’s ability
to perform property-based testing, hence uncovering potential issues that might not be evident
with traditional example-based testing and fuzz testing. By allowing developers to specify in-
put regions, DropShadow ensures that a wide array of inputs is automatically generated and
tested, fostering confidence in the reliability and correctness of Go programs. However, the
effectiveness of this approach hinges on the careful definition of regions by the developer. In-
correctly specified regions could either miss critical test cases or generate irrelevant inputs, thus
impacting the thoroughness and efficiency of tests.

3.2 Contract

A contract in DropShadow allows a developer to write specifications for a function to describe
its behaviour. Contracts can be used to check compliance with the function’s pre- and post-
conditions. This is done through an automatic process, where assertions are derived from the
contract and arbitrary data is generated to match the specification to conduct property-based
testing as well as testing for hyperproperties. In addition to this, our separation of specifications
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into (potentially overlapping) named regions enables future work regarding debugging the path
to a failed contract just by following a sequence of sets of region names. Through named
regions, developers can abstract potentially complex region logic into everyday language.

In Listing 3.11 a contract can be seen. This contract is formulated with Go code in the
function’s documentation. Using Go reduces the mental overhead of the developer when writing
contracts and also enables a more straightforward conversion between them and the property-
based tests derived from them.

1 // region: Red

2 // config: 200s, 100it

3 // assume: x = Inclusive[int](1, 3)

4 // assume: y = Interval[int](1, 6, true, false)

5 // expect: ret == "red"

6 // hyper:

7 // assume: x_p = x

8 // assume: y_p = y

9 // expect: ret_p == ret

10 // region: Green

11 // config: 200s, 100it

12 // assume: x = Inclusive[int](7, 8)

13 // assume: y = Inclusive[int](6, 8)

14 // expect: ret == "green"

15 func Rectangle(x, y int) string {

16 if x >= 1 && x <= 3 && y > 1 && y <= 6 {

17 return "red"

18 }

19 if x >= 7 && x <= 8 && y >= 6 && y <= 8 {

20 return "green"

21 }

22 panic("Unknown rectangle")

23 }

Listing 3.11: A function Rectangle with two named regions - one including a hyperproperty
returning what color the rectangle should be. In the red region y uses the Interval function
with true and false. true makes the lower bound open and false the upper bound closed.

The DropShadow contract is composed of one or more regions, which are specified using
the keyword region followed by an optional region name. A region must have a pre-condition
(assume), for each of its formal parameters, which yields a generator. An arbitrary amount
of post-conditions (expect) is allowed. The order of the assumes is significant as the actual
parameters are inserted in that order, resulting in the first assume being the first parameter. If
the contract has no post-condition, then no test will be generated.

Each region can have at most one hyperproperty defined by the hyper keyword. The struc-
ture of the hyperproperty is not entirely the same as region. The pre-conditions of a hyperprop-
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erty must be a value and not a generator. The post-condition for hyperproperties is formulated
the same way as with region. In addition, config is used to specify test execution termination
criteria, which can either be a specific time and/or specific iterations (invocations) of the test
target. In the following, we will describe the components of a DropShadow contract.

assume and expect both have a left-hand side (lhs) and right-hand side (rhs) centred from
the equal sign. With assume in region, the lhs is the identifier of the formal parameter and the
rhs is the function from pkg that is called, yielding a generator. The function’s valid inputs are
then the set of all regions which pass the generators’ inclusion check. Only if an input is in no
region will the pre-condition fail.

With expect, there is no lhs or rhs. Everything after the colon is the boolean expression,
tested when checking the post-condition for all regions of which the inputs are a part. If it results
in any one of the post-conditions being false, there is a breach of contract. Regarding hyper-
properties, assume has primed (. . . p) variables for parameters. Here, the actual parameters of
the invocation returning the primed return value are the sequence, the assumes are specified in
- there is no correlation between the identifiers of primed parameters and the identifiers of the
function. Only the order of the assumes determines the placement of the actual parameters.

3.2.1 Region

The contract in Listing 3.11 shows an example of a contract containing two regions named
red and green. A region in the DropShadow contract describes an area in the input space.
It specifies the allowed area, in which the generators generate values. A visualisation of the
regions specified in Listing 3.11 can be seen in Figure 3.2.

x

y

1 3 7 8

1

6

8

Red

Green

o

+

Figure 3.2: 2 regions red, and green. Green is fully closed, and red is closed on x but half open
on y. ”o” is on (3, 1) and not included in red as it is open. ”+” is on (7, 6) and included in green.

The function in Listing 3.11 has two parameters, x and y. Each of the two regions are
drawn with the color corresponding to the region’s name and expect. For simplicity, we chose
numeric typed parameters. However, more complex and user defined types can be used.
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The format of contracts in DropShadow has been presented as well as our approach to input
generation with the use of generators. However, there are notable drawbacks to writing contracts
in function documentation, that ought to be mentioned. First of all, The source files may appear
cluttered due to overlapping specifications. Additionally, there is a learning curve involved, and
finally a specific, necessary generator might be required, which could be difficult to implement.

3.3 Parsing

In [15] the grammar for Go is presented in a variant of Extended Backus-Naur Form, where
the empty string is omitted and iteration constructs can be used. In Listing 3.12 the grammar
for DropShadow’s contracts is shown. To parse Go and retrieve the functions’ documentation,
we used their open-source parser and AST struct. Our parsing does not concern the parsing of
Go itself, only the contracts. Using the same variant, we have described the contract grammar
below. Comments in Go are lexical constructs without a production we can extend. There are
two types of comments: line comments which start with ”//” and stop at the end of the line,
and general comments which start with ”/*” and stop at the first subsequent ”*/”. Our contracts
are constructed by a sequence of line comments as per the godoc best practices of function and
method documentation [13].

1 Contract = ( Obligations | Region ) { Region } .

2 Region = "//" "region:" [ identifier { identifier } ] Obligations .

3 Obligations = { Assume | Expect | Config } [ Hyper ] .

4 Config = "//" "config:" Termination { "," Termination } .

5 Termination = ( Expression "it" ) | ( Expression "s" ) .

6 Hyper = "//" "hyper:" { Assume | Expect } .

7 Assume = "//" "assume:" Expression .

8 Expect = "//" "expect:" Expression .

Listing 3.12: EBNF for DropShadow contracts.

Within our grammar, we have inserted ”//” to denote the start of the line comment and all
productions starting with it, assuming it ends at the end of the line as defined by line comments
in Go. From the ”//” to the following string, such as ”hyper”, there can be arbitrarily much
whitespace, which is accounted for by separating the two strings. In Go’s specification, func-
tion documentation is not a part of its grammar, but it is required to immediately precede the
function definition2. However, the resulting AST node for a function definition does include
the documentation. Our parser essentially works on each line comment of the documentation,
checking what prefix it begins with: ”region:”, ”hyper:”, ”assume:”, or ”expect:”. Based on this
prefix, we then know what production to parse. In the case of ”Termination” we split on the
separator and check the suffixes. From the specification, it is also possible for a region or hyper
to have no assumption or expectation. Even though this is possible, it is not necessarily useful.

2https://go.dev/ref/spec#Function_types
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The following is a brief textual presentation of the grammar.

• Expect: the post-condition with a Go ”Expression”. Its grammar can be found in the cited
source.

• Assume: the pre-condition with a Go ”Expression”.

• Hyper: the pre- and post-conditions for a hyperproperty.

• Termination: a termination criterion is either an expression evaluating a number for the
number of iterations or seconds.

• Config: the configuration of the termination criteria for the region’s generated test.

• Obligations: the pre-conditions (assumes), and the post-conditions (expectations) fol-
lowed by an optional hyperproperty.

• Region: named or not by one or more identifiers, followed by the region’s obligations.
The ”identifier” rule refers to Go’s own identifier. If multiple identifiers are present then
they are combined with ” ” making them a valid Go identifier which can be used to
construct the identifiers for their respective tests.

• Contract: the full function documentation with either an explicit region specific or just
contractual obligations. This is followed by zero or more regions.

In summary, the grammar is more formally specified for the contracts. We have presented
our parsing approach as well as textual descriptions. We will now continue to contract injection
which concerns processing the parsed contracts and inserting them into the function.

3.4 Contract Injection

So far, contracts as well as regions have been presented. Now we will cover the injection
of checks. This injection moves the contractual specification into the function, which forces
callers to comply with the callee’s contract. In this section, we will cover the implementation
details and complexities.

In general, the approach works on the AST of the contract-annotated function. First, the
function is taken and declared as a function named wrap within itself; second, we inject the
region checks; third, the post-condition checks; fourth, the hyperproperty test is injected. At
last, a new return statement is inserted, which returns the value from calling wrap. In addition
to this, we also have to ensure all required packages are imported, e.g. pkg with the generators.
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3.4.1 Wrap

Several challenges are solved by wrapping the function and declaring it within itself. If not,
injecting post-conditions and hyperproperty tests would be more complex with multiple return
statements. We could have used the defer functionality in Go to call the required logic right
before each return statement. However, by wrapping the function, we separate the scopes, gen-
erally making it simpler to programmatically generate variable identifiers which do not collide
with others. Most likely, wrapping the function introduces some performance overhead, but we
view this as insignificant in most situations. Moreover, by wrapping we can create the variable
ret for the returned value of wrap, which can be referenced in the contracts. Without this,
we would require named returns, as implemented by other solutions. However, this approach
would also alter how programmers write their functions.

1 func Rectangle(x, y int) string {

2 ...

3 wrap := func(x, y int) string {

4 if x >= 1 && x <= 3 && y > 1 && y <= 6 {

5 return "red"

6 }

7 if x >= 7 && x <= 8 && y >= 6 && y <= 8 {

8 return "green"

9 }

10 panic("Unknown rectangle")

11 }

12 ret := wrap(x, y)

13 ...

14 return ret

15 }

Listing 3.13: Wrapping of the Rectangle function into wrap.

Wrapping the function is a simple yet very effective way to solve the challenges inherent in
contract injection. In Listing 3.13 we can see an example, where the wrap is declared with the
same original signature and body. Beneath it, ret is declared to be the returned value of wrap
called. Notice how the function signature remains unchanged. This ensures the same callers
can still call the function.

3.4.2 Assume

To ensure all calls to a function complies with the contractual specification, inputs are initially
checked against the pre-conditions. As previously mentioned, the assumptions are calls to func-
tions in pkg returning a generator. Lines 2-5 in Listing 3.14 display the generators for the input
arguments x and y, which are the specified assumes in the contract. The letter s is used as an
appended suffix to distinguish between the generators and their region. These generators de-
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fine the allowed range, the input argument is allowed to be within. With DropShadow being
a proof-of-concept we expect this approach to be sufficient. However, for functions with, e.g.,
the formal parameters x int, xs []int the appending of s’s to the parameter names would
cause problems.

1 func Rectangle(x, y int) string {

2 xs := pkg.Inclusive[int](1, 3)

3 ys := pkg.Interval[int](1, 6, true, false)

4 xss := pkg.Inclusive[int](7, 8)

5 yss := pkg.Inclusive[int](6, 8)

6

7 fRegion := func(x, y int) []int {

8 ret := make([]int, 0)

9 if xs.Contains(x) && ys.Contains(y) {

10 ret = append(ret, 0)

11 }

12 if xss.Contains(x) && yss.Contains(y) {

13 ret = append(ret, 1)

14 }

15 return ret

16 }

17

18 regions := fRegion(x, y)

19 if len(regions) == 0 {

20 os.Exit(1)

21 }

22 ...

23 }

Listing 3.14: The code inserted by DropShadow to account for assumes in a contract.

Lines 7-16 show the function fRegion used to determine which regions the parameters
would fall into, manifested by the inclusion checks on the generators (lines 9 and 12). fRegion
returns an integer array of all the indices of the regions. Even though this function is only used
on line 18 and hence could be inlined, our way of organising it keeps the logic separated.

On line 19, an emptiness check is performed on the region set. The absence of regions
indicates the input values are not in any allowed area. Thus, a violation of the contract has
occurred (the pre-conditions are not met) and an os.Exit(1) is hence invoked in line 20. This
will terminate the execution of the function.

3.4.3 Expect

Once the wrapped function body has been executed to obtain the resulting value ret, and the in-
put has been validated against the assumes, we must check the result against the post-condition
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specified in expect. Hence, the expect needs to be inserted as assertions in the code. These
expects can be different from region to region - therefore, we must match the post-condition
with the correct region. To account for this, we make use of a switch statement with a case
for every such region. This structure can be seen in Listing 3.15, which is the code inserted by
DropShadow to implement the expects defined in Listing 3.11. Using this structure, we can add
more cases as the number of regions grows in the contract.

1 func Rectangle(x, y int) string {

2 ...

3 for _, region := range regions {

4 switch region {

5 case 0:

6 if !(ret == "red") {

7 os.Exit(1)

8 }

9 case 1:

10 if !(ret == "green") {

11 os.Exit(1)

12 }

13 }

14 }

15 ...

16 }

Listing 3.15: The injected assertions by DropShadow which accounts for the expects defined in
contracts.

An expect is formulated as a boolean expression in Go code and can thus be negated
and inserted directly into an if-statement to check for violations. As the number of expects
increases within a region, more if-statements are added. As is the case with assumes, an
expect-violation also invokes os.Exit(1).

3.4.4 Hyper

For contracts involving hyperproperties, we utilise sequential self-composition to reduce them.
The result of DropShadow injecting the hyperproperty in Listing 3.11 can be seen in List-
ing 3.16. Similar to expect, a hyperproperty can be defined for each region. So, we employ a
similar structure to expect, using switch cases to effectively manage various regions. However,
in this example, only one hyperproperty has been specified in the Red region. Crucially, another
challenge addressed by wrapping is, that it allows us to invoke it when testing the hyperprop-
erty. Note the assumptions and expectations are treated as expressions without creating a new
generator.
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1 func Rectangle(x, y int) string {

2 ...

3 for _, region := range regions {

4 switch region {

5 case 0:

6 x_p := x

7 y_p := y

8 ret_p := wrap(x_p, y_p)

9 if !(ret_p == ret) {

10 os.Exit(1)

11 }

12 }

13 }

14 return ret

15 }

Listing 3.16: The code inserted by DropShadow to check for hyperproperties.

The primed input variables in lines 6-7 are used for the second execution of the program
to obtain another execution trace. As the original body of the function is encapsulated in the
wrap function, we can thus execute the wrap function once again - now with the primed input
variables. With two different execution traces of the wrap function, the results can then be
asserted, as can be seen in line 9.

3.5 Test Generation

The test generation phase in DropShadow involves the creation of test cases for the functions
which have specified contracts made by the developer. DropShadow’s test generation mecha-
nism operates post the contract injection phase, where Go functions are already augmented with
contract-based assertions. Utilising these injected contracts, DropShadow fabricates a dedicated
test file containing a series of test cases, where a case is created for each region specified in a
contract.

These test cases run the functions to conduct the property-based testing. Since the re-
sponsibility for handling breaches of contract is managed within the function under test itself,
DropShadow adopts an Arrange-Act structure. This contrasts with the traditional Arrange-Act-
Assert approach, where assertions are made in the test case. In other words, one can view a test
case in DropShadow more as a driver to run the function under test.

The construction of test cases is segmented into the following steps:

• Generator initialisation: for each pre-condition within a contract region, a correspond-
ing input generator is initialised. These generators are tasked with producing diverse
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input values conforming to the assumptions stated in the contract.

• Test execution criteria: the test framework creates execution criteria based on the con-
tract’s termination specifications, which can be time-based, iteration-based, or a combina-
tion of both. In case no conditions have been specified, DropShadow will use the default
settings, which run the tests for 10 seconds with unlimited iterations.

• Function invocation: the target function is invoked with inputs created by the generators.
This creation is the Arrange, and the invocation is the Act.

Applying these steps on the contract of the Rectangle function specified in Listing 3.11 will
result in the generation of two test cases, as two regions are specified within the contract. As an
example Listing 3.17 shows one of the generated test cases.

1 func Test_Rectangle_Red_Property(t *testing.T) {

2 xGenerator := pkg.Inclusive[int](1, 3)

3 yGenerator := pkg.Interval[int](1, 6, true, false)

4 iterations, iterationLimit := 0, 100

5 startTime, timeLimit := time.Now(), 200*time.Second

6 for {

7 x := xGenerator.NextValue()

8 y := yGenerator.NextValue()

9 Rectangle(x, y)

10 iterations++

11 if iterations >= iterationLimit {

12 return

13 }

14 if time.Since(startTime) >= timeLimit {

15 return

16 }

17 }

18 }

Listing 3.17: The automatically generated test case for the Red region.

Notice how the test case does not contain assertions to evaluate the test case, which is
usually done by asserting the function’s output against an expected one, as seen in the Arrange-
Act-Assert paradigm. Furthermore, the test case does not contain mechanisms to fail the test
case. The test case will only end its execution either when the termination conditions are met,
or if the function under test encounters a breach of contract based on the input provided by the
test case. In this case, the function invokes an os.exit(1), as explained in earlier sections. In
Section 5.1 we will discuss the implications and alternatives to this approach.
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Chapter 4

Evaluation

In this chapter, we will present an evaluation of DropShadow with a focus on showing the ca-
pabilities of contracts, trace properties, and hyperproperties. First, we will compare how the
contracts in DropShadow are written with the tool gocontracts, and how our contracts support
property-based testing. Second, we will show that both DropShadow and gocontracts can de-
scribe trace properties.

4.1 Contracts

When comparing the contracts between DropShadow and gocontracts we will look at how pre-
and post-conditions are formulated. When the two approaches have been presented, we will
consider how a developer would utilise the contracts. By that, we show how the structure of
DropShadow’s contracts is sufficient to support the automatic generation of property-based tests
whereas gocontracts are not. To find suitable tools for Go to compare DropShadow with, we
looked on GitHub for projects under ”dbc”, and ”design by contract” topics as well as similar
searches in the same domain. In descending order of GitHub stars, we have identified the fol-
lowing projects to name a few: pact-go [12], Parquery’s gocontracts [28], grpc-go-contracts [20]
and dbc4go [3].

What we found was that most projects are Application Programming Interfaces (APIs) for
writing assertions or formulating pre- and post-conditions as assertions in the code. Only Par-
query’s gocontracts and dbc4go enabled users to write contracts in the documentation for func-
tions and inject them. Since this injection of contracts is of central importance in DropShadow,
we will mainly centre our evaluation around comparing DropShadow and gocontracts. The
other tools mostly resemble APIs for programming with assertion. This can be used for man-
ual testing of hyperproperties, but rather we are interested in the automatisation. In short, the
tool’s focuses are: first, pact-go is a contract testing tool aimed towards microservice-oriented
architectures with RESTfull HTTP APIs [12]. Second, Parquery’s gocontracts supports con-
tractual design for Go with pre- and post-conditions and distinguishes between in testing and in
production contracts [28]. Third, grpc-go-contracts wraps around GRPC checking the requests
for pre-conditions and the responses for post-conditions [20]. Fourth, dbc4go like gocontracts
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enables contractual specification in function documentation which is inserted in the code [3].
From this, we can see that Parquery’s gocontracts and dbc4go are the only ones support

contracts as documentation. The main difference between the two is that dbc4go supports in-
variants and @import to specify additional required imports used in the contract. However,
gocontracts implementation of preamble makes it a better fit for showing another approach of
doing sequential self-composition, which is another reason for focusing on it.

For now, the comparison will focus on the Absolute function. This function, a simple yet
fundamental operation, provides a good basis for illustrating the differences in expressiveness,
flexibility, and syntactical requirements of the two tools (see Listing 4.1 and Listing 4.2). These
aspects were chosen because we found them to be the most comparatively unique and effectual
for their users. But, before diving into these aspects we will describe the two examples in more
detail to highlight distinctions and capabilities.

1 // region: Zero

2 // config: 1it

3 // assume: value = Constant[float64](0)

4 // expect: ret == 0

5 // region: Negative values

6 // config: 10s

7 // assume: value = LT[float64](0)

8 // expect: ret == -value

9 // region: Positive values

10 // config: 10s

11 // assume: value = GT[float64](0)

12 // expect: ret == value

13 // region: All

14 // config: 100it

15 // assume: value = AnyNumber[float64]()

16 // expect: ret >= 0

17 func Absolute(value float64) float64 {

18 if value < 0 {

19 return -value

20 }

21 return value

22 }

Listing 4.1: Contract for Absolute expressed with DropShadow.

In Listing 4.1 four regions are defined Zero, Negative values, Positive values, and
All. The injected contract can be seen in Listing A.1. The Zero region has a config with
1it meaning that its generated test will only be run once. Whereas All is run 100 times and
Negative values is run for 10 seconds.
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1 // Absolute ensures:

2 // * value < 0 && result == -value

3 // * value > 0 && result == value

4 // * value == 0 && result == 0

5 // * result >= 0

6 func Absolute(value float64) (result float64) {

7 if value < 0 {

8 result = -value

9 } else {

10 result = value

11 }

12 return

13 }

Listing 4.2: Contract for Absolute expressed with gocontracts.

In Listing 4.2 the same four regions have been specified with gocontracts. The injected
contracts can be seen in Listing A.3. We have found the following distinctions between Drop-
Shadow and gocontracts:

• gocontracts interpret functions with no pre-condition to accept every input. If there are
pre-conditions then gocontracts support a ”require” block. On the other hand, Drop-
Shadow requires all parameters to be specified with an assume in all regions. This ensures
a generator for each parameter can be constructed for the property-based tests.

• DropShadow requires the pre-conditions to be generators from pkg, whereas gocontracts
only requires a boolean expression to describe input validity. Generating inputs for func-
tions in DropShadow is done by calling a function on the generator for the parameter.
gocontracts, on the other hand, would require some additional work on filtering invalid
inputs and generating values. Additionally, DropShadow supports the construction of
arrays. Whereas gocontracts would find even more difficulty writing tests with random
arrays as even the built-in fuzzer (go-fuzzer) does not support the construction of such
types. In addition, DropShadow can be extended to custom types where users can define
generators for structs and such by composing existing generators.

These distinctions clearly show how the tools are meant for different things but with the
same contractual approach.

Expressivenes and clarity: DropShadow utilises a region-based approach to define the input
space for testing. Each region, such as Zero, Negative values, and Positive values, is ex-
plicitly declared with assumptions about input values and expectations for the function’s output.
gocontracts, on the other hand, use a more concise syntax to express pre- and post-conditions
within a single comment block. The conditions are written in an assertion-like style, focusing
on the relationship between inputs (value) and the named return variable (result).
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Flexibility in test configuration: DropShadow’s contracts allow for fine-tuned test configura-
tions within each region, using directives like config to specify test termination criteria. This
level of control is beneficial for tailoring the testing process to different scenarios, such as al-
locating more resources to critical or complex regions. gocontracts does not include an explicit
mechanism for such configurations within the contract syntax, simply because this tool does not
generate and evaluate test cases.

Function syntax and return values: DropShadow’s approach does not require named return
variables in the function definition, as it wraps the function under test and captures its return
value in a variable named ret (The primed return value is stored in ret p). This means that
developers do not need to alter the function signature solely for testing purposes, but do have
to remember them when writing the contracts. In contrast, gocontracts require named return
variables for the contract to reference the function’s output correctly (the result variable).

In conclusion, DropShadow offers a detailed and configurable approach to defining test prop-
erties and regions, which can be particularly beneficial for comprehensive testing scenarios.
gocontracts provides a concise and straightforward way to express function contracts, favour-
ing simplicity and readability - especially in a simple case such as the Absolute function.

4.2 Trace Properties

In this section, we will evaluate DropShadow’s approach to property-based testing focusing on
trace properties - a single execution. Unlike existing tools such as go/quick [16], rapid [30], and
gopter [22], which requires the developer to manually write test cases, DropShadow automates
this process by generating test cases from the contract specifications. We chose to compare
these tools as they represent a popular choice among developers and go/quick which is a part
of the standard library. The evaluation will focus on the effort required for test case creation,
how well inputs are covered, and how test cases are structured to handle different properties
across the tools.

We will use the GetDiscount function seen in Listing 4.3 to evaluate the tools. This func-
tion was chosen due to its many possible paths of execution. The nature of which, requires a
thorough contractual specification for the function. It takes two integer parameters, a postal
code and a month, and then returns an integer representing a discount. The function is designed
to check for three properties:

• A validity property, which ensures all input outside the valid postal code and month ranges
return a default value

• A seasonal property, which ensures certain postal codes receive a specific discount during
summer months.
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• A constant activity property, which ensures certain postal codes always return the same
discount regardless of the month.

Danish postal codes typically range from 1000 to 9999 but for simplicity, we will not ac-
count for special and non-existing postal codes within this range.

1 func GetDiscount(postalCode int, month int) int {

2 if postalCode < 1000 || postalCode > 9999 || month < 1 || month > 12 {

3 return 0

4 }

5 switch {

6 case postalCode >= 1000 && postalCode <= 1999:

7 return 20 // Constant discount in core city area

8 case postalCode >= 2000 && postalCode <= 3899:

9 return 10 // default

10 case postalCode >= 3900 && postalCode <= 3999:

11 if month >= 6 && month <= 8 {

12 return 40 // Summer discount

13 }

14 return 10

15 case postalCode >= 4000 && postalCode <= 9999:

16 return 10

17 default:

18 return 0

19 }

20 }

Listing 4.3: Function used for conducting property-based testing.

Seen on line 2 is the valid Danish postal code and month range check. The switch statement
on line 5 determines the different discounts based on the ranges of postal codes and months.
We want to see how the different tools for property-based testing handle these discounts as they
depend on both postal codes and months, essentially dividing the input space of valid inputs.

To show the differences in the structure of the test cases and their complexity, examples of
test cases created using the tools go/quick, rapid, and gopter are provided in Appendix B. The
examples follow the arrange, act, assert structure and highlight the manual effort required in
defining the generators and properties for the test cases. Common for these tools is, that the
properties of the function under test are expressed in the test cases rather than the function.
They follow the pattern of defining the property to be tested, specifying the inputs within it,
and then invoking the function under test to determine whether it is fulfilled. This could lead to
maintainability issues, as each of the test cases would have to be rewritten in case the function
under test is refactored and properties altered.

To understand how test cases are written using go/quick, consider Listing 4.4 which shows
the test of the validity property. An anonymous function is defined on line 2, returning a boolean
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which is stored in the property variable to indicate whether the property is fulfilled. Within the
body of the anonymous function, the function under test is invoked and the property specified.
The actual result is then evaluated against the expected one, which can be seen on lines 5 and 7.
With the property defined, the test is run on line 18 by invoking quick.check() with the property
and a configuration defined on line 10. By default go/quick runs for 1000 iterations, but this is
configurable. quick.check() calls property repeatedly, with arbitrary values for each argument
passed to the function under test (GetDiscount). To communicate a violation of the property,
t.Error() function from the go/testing library can be used.

1 func TestSeasonalDiscountPropertyQuick(t *testing.T) {

2 property := func(month, postalCode int) bool {

3 discount := GetDiscountOtherTools(postalCode, month)

4 if month >= 6 && month <= 8 {

5 return discount == 40 // Summer discount

6 }

7 return discount == 10

8 }

9

10 config := &quick.Config{

11 MaxCount: 1000,

12 Values: func(v []reflect.Value, r *rand.Rand) {

13 v[0] = reflect.ValueOf(1 + r.Intn(12)) // Month: [1; 12]

14 v[1] = reflect.ValueOf(3900 + r.Intn(100)) // Postal code: [3900; 3999]

15 },

16 }

17

18 if err := quick.Check(property, config); err != nil {

19 t.Error("Failed seasonal discount test:", err)

20 }

21 }

Listing 4.4: A go/quick test case for the seasonal discount property.

When writing test cases using rapid, the rapid.Check() function encapsulates the whole
test and is used to execute the property test seen in Listing 4.5. The first parameter is a pointer
to testing.T which allows rapid to integrate with the standard Go testing library. The second
parameter is the anonymous function, which defines the test and properties specified. On line 3

and 4 rapid.IntRange is used to define integer ranges for the generators. By invoking Draw(),
rapid will randomly produce values from the generator which fall within the specified range.
The function under test is invoked on line 7 with the produced values, and the property is
evaluated on line 9. The rapid.Check() fails the current test in case it encounters a panic or a
call to t.Fatalf() (line 10) or similar calls from the standard testing library.
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1 func TestSeasonalDiscountPropertyRapid(t *testing.T) {

2 rapid.Check(t, func(t *rapid.T) {

3 postalCode := rapid.IntRange(3900, 3999).Draw(t, "postalCode")

4 month := rapid.IntRange(1, 12).Draw(t, "month")

5 isSummer := month >= 6 && month <= 8

6

7 discount := GetDiscount(postalCode, month)

8

9 if (isSummer && discount != 40) || (!isSummer && discount != 10) {

10 t.Fatalf("Seasonal discount property violation")

11 }

12 })

13 }

Listing 4.5: A rapid test case for the seasonal discount property.

A property test written in gopter can be seen in Listing 4.6, where in line 2 gopter.NewProperties()
such a test is created. It is parameterised with the default settings, but it can also be con-
figured. The property definition is defined on line 4, where a name is added to the test; the
prop.ForAll() specifies the property which should hold for all values generated by the gen-
erators. It takes an anonymous function (line 5) and two generators as arguments (line 12 and
13). Similar to go/quick and rapid, the anonymous function is used to specify the logic for the
property test, which invokes the function under test and evaluates the specified property. More-
over, the generator of gopter can specify ranges as seen in rapid, which restricts the generator
to only produce values within a given range. To communicate property violations, gopter also
utilises the standard testing library like the other tools. However, this is abstracted away from
the developer and is handled within the gopter library.
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1 func TestSeasonalDiscountPropertyGopter(t *testing.T) {

2 properties := gopter.NewProperties(gopter.DefaultTestParameters())

3

4 properties.Property("Seasonal discount property", prop.ForAll(

5 func(postalCode int, month int) bool {

6 discount := GetDiscountOtherTools(postalCode, month)

7 if month >= 6 && month <= 8 { // Summer discount

8 return discount == 40

9 }

10 return discount == 10

11 },

12 gen.IntRange(3900, 3999),

13 gen.IntRange(1, 12),

14 ))

15

16 properties.TestingRun(t)

17 }

Listing 4.6: A gopter test case for the seasonal discount property.

From the examined tools we see, that the effort required to express the function specification
is not just specifying input ranges - some setting up is also required. At first glance, go/quick
might be the simplest to understand. However, its generational methods can be very inefficient,
which is visible in the filtration of inputs. In contrast, the other tools can express more complex
generators allowing for ranges to be specified: for example, gopter and quick uses reflection
in their generators, whereas DropShadow uses parameterised types only introduced in the later
version of Go (v. 1.18).

All the tools are similar in how tests are written - higher-order function encapsulating the
test and in some way, either a boolean or calling a function announces whether a test failed.
However, they differ much more in how they generate values. Quick and Gopter allows users
to specify custom generators per parameter of the test function. Both heavily rely on reflection
for runtime-type conversions. Rapid has moved the generation into the test and relies on type
parameterisation on their generator eliminating the need to wrap generated values into a rel-

fect.Value. All have simplified their generation to cast the signed and unsigned integers to
the largest version int64 and uint64 to support types with a single generator type. Potentially
the narrowing is negligible but for longer runs and large sets of inputs, it might not.

In contrast to the other tools, DropShadow abstracts away the properties expressed in the
test cases as well as the process of setting up these cases into the contract itself. This enables
an approach where the developer interacts with the test cases through the contracts, which in
turn automatically creates the test cases. Additionally, people interested in understanding the
function do not have to analyse fragmented test cases but can settle for looking at the contract.
This could simplify the test creation process but also enhance maintainability. In Listing 4.7 a
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contract of the GetDiscount function can be seen, which specifies its properties. The automat-
ically generated test cases generated from the contract can be found in Listing B.4.

1 // region: valid_property

2 // assume: postalCode = DisjointUnion[int](pkg.LT(1000), pkg.GT(9999))

3 // assume: month = DisjointUnion[int](pkg.LT(1), pkg.GT(12))

4 // expect: ret == 0

5 // region: constant_discount

6 // assume: postalCode = Inclusive[int](1000, 1999)

7 // assume: month = Inclusive[int](1, 12)

8 // expect: ret == 20

9 // region: seasonal_discount

10 // assume: postalCode = Inclusive[int](3900, 3999)

11 // assume: month = Inclusive[int](6, 8)

12 // expect: ret == 40

13 // region: seasonal_default

14 // assume: postalCode = Inclusive[int](3900, 3999)

15 // assume: month = DisjointUnion[int](pkg.Inclusive(1, 5), pkg.Inclusive(9,

12))

16 // expect: ret == 10

17 // region: default_discount

18 // assume: postalCode = DisjointUnion[int](pkg.Inclusive(2000, 3899),

pkg.Inclusive(4000, 9999))

19 // assume: month = Inclusive[int](1, 12)

20 // expect: ret == 10

21 func GetDiscount(postalCode int, month int) int {

22 ...

23 }

Listing 4.7: Contract for the GetDiscount function expressed with DropShadow.

The properties of the GetDiscount function are expressed by 5 regions. Notice how some
regions use DisjointUnion over multiple generators. Essentially, this allows the merge of
multiple equivalent partitions, thus greatly reducing the contract size, which otherwise would
have several regions to describe a single equivalent partition. The contract size problem can to
some degree also be seen as similar to the path explosion problem, since branching code often
defines new partitions.
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1 func Test_GetDiscount_seasonal_discount_Property(t *testing.T) {

2 postalCodeGenerator := pkg.Inclusive[int](3900, 3999)

3 monthGenerator := pkg.Inclusive[int](6, 8)

4 startTime, timeLimit := time.Now(), 10*time.Second

5 for {

6 postalCode := postalCodeGenerator.NextValue()

7 month := monthGenerator.NextValue()

8 GetDiscount1(postalCode, month)

9 if time.Since(startTime) >= timeLimit {

10 return

11 }

12 }

13 }

Listing 4.8: An automatically generated test case by DropShadow for the GetDiscount

function which checks the seasonal discount property.

Through the DropShadow pipeline, the functions under test are injected with their contracts
containing the properties, which are expressed through run-time assertion checks directly in the
function. The GetDiscount function which has been instrumented with the contract can be
seen in Listing B.5. As such the structure of the DropShadow test case is simple, following the
arrange, act structure. This can be seen in Listing 4.8 which shows one of these automatically
generated test cases. Essentially, the test cases’ only purpose is to invoke the function under test
with different data from the generators to evaluate the run-time assertions. This is in contrast to
the other tools mentioned, where the test cases are used to express the properties of the functions
and contain the checks to see if these are fulfilled.

To further simplify the DropShadow test cases, the configurations of function invocations
and time limits can be abstracted away as seen in the other tools. By doing so we can reduce
the test cases to simply contain the generators and the function invocation, which is similar to
go/quick.

4.2.1 Chaining Contracts

DropShadow’s approach to instrument contracts directly within the Go source code not only
facilitates the checking of individual functions against their specified behaviours but also allows
for testing whether the caller functions follow the specification of the callee functions. This
inherently gives DropShadow the ability to check for contractual adherence across multiple
function calls, which can give the effect of a chain. This effect is a byproduct of using contracts
in the manner DropShadow does. To show an example of this consider Listing 4.9.

45



4.2. TRACE PROPERTIES CHAPTER 4. EVALUATION

1 // region: Zero

2 // assume: value = Constant[float64](0)

3 // expect: ret == 0

4 // region: Positive

5 // assume: value = GT[float64](0)

6 // expect: ret > 0

7 func Sqrt(value float64) float64 {

8 return math.Sqrt(value)

9 }

10

11 // region: BothPos

12 // assume: a = Inclusive[float64](1, 1000)

13 // assume: b = Inclusive[float64](1, 1000)

14 // expect: ret > 0

15 func Pythagoras(a, b float64) float64 {

16 return Sqrt(a*a + b*b)

17 }

Listing 4.9: Example of caller (Pythagoras) and callee (Sqrt) functions with DropShadow
contracts.

Here we see the caller function Pythagoras and the callee function Sqrt. In the contract
for Sqrt it is evident, that only an input value equal to or greater than zero is accepted. This
makes good sense since taking the square root of a non-zero number is not well-defined in real
analysis. In case these expectations are met, the contract promises to return a value equal to
or greater than zero, respectively. In Pythagoras’ contract, we specify that only positive input
values (a and b) are accepted since it does not make sense to calculate the hypotenuse of a
triangle, that has any side with a value that is not greater than zero.

When the DropShadow pipeline is invoked, the functions will be instrumented with their
contracts, where run-time assertion checks are used to determine whether they adhere to their
contract. Moreover, test cases for both functions are automatically generated and executed.
What happens is both the Pythagoras and Sqrt functions both have their test cases. However,
as Sqrt is a callee function of Pythagoras, the instrumented Sqrt function is tested in 2
different settings, its own generated test cases and in the test cases of Pythagoras. This is
beneficial as it allows us to test the Sqrt function in isolation, with inputs directly from the
generator, where the expected behaviour of the property can be checked. Furthermore, it allows
us to check when the function is used as a callee, where the input flows differently from a
higher-level function, and as such allows us to check for contract violation use. This example
shows a single link in the chain, however one can imagine a more complex program, where
more functions are involved.

This chaining approach allows us to be more confident about the high-level behaviour of
individual functions than is typically the case with standard, isolated unit testing. In this ex-
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ample, it could be argued, that both the Zero and Positive regions in Sqrt’s contract are
superfluous since this function implicitly benefits from Pythagoras’ contract, which states that
only positive input values are allowed. However - there is no guarantee, that Pythagoras is the
only function calling Sqrt - now or in future versions of the program. Therefore, even though
some checks might seem unnecessary at the current moment, the thorough and consistent use of
contracts can help ensure, that each program component functions correctly both individually
and in combination with others. This can act as a safeguard enabling developers to enhance
and extend the codebase with more confidence in the future since the contracts will provide
immediate feedback on potential violations.

It is worth noting, that the automatic enforcement of pre- and post-conditions when using
a tool like DropShadow introduces a spin on the traditional notion of defensive programming
and Defense in Depth. The usual way of handling potential errors and abnormal inputs, where
the programmer has to handle these cases in the code explicitly, can be somewhat delegated
to the contracts since the tool will inject the checks itself. Moreover, using contracts in this
way also offers the capability to disable the injected checks in the production environment,
if deemed necessary. This flexibility facilitates a more dynamic and adaptable approach to
defensive programming accommodating different needs without compromising the integrity of
the software.

4.3 Hyperproperties

In this section, we will extend the Pythagoras example from the previous section to show,
how DropShadow can be used to check for a hyperproperty. Pythagoras essentially returns
the length of the hypotenuse of a triangle with catheti lengths a and b (see Listing 4.9). This
calculation must be commutative, that is - the hypotenuse must have the same length if the
catheti swap their respective lengths (change names, in effect).

Since commutativity is a symmetric relation, we can use the above-mentioned example to
show, how DropShadow can be used to check for such a property. Checking a hyperproperty
requires comparing the outcomes of two different executions so that the order of operations does
not affect the final result. Listing 4.10 shows how the contract for Pythagoras has been updated
to check for the commutativity property when calculating the hypotenuse of a given, right-angle
triangle. The contract and implementation of Sqrt remains the same as in Listing 4.9.
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1 // region: BothPos

2 // assume: a = Inclusive[float64](1, 1000)

3 // assume: b = Inclusive[float64](1, 1000)

4 // expect: ret > 0

5 // hyper:

6 // assume: a_p = b

7 // assume: b_p = a

8 // expect: ret_p == ret

9 func Pythagoras(a, b float64) float64 {

10 return Sqrt(a*a + b*b)

11 }

Listing 4.10: A Pythagoras function with a DropShadow contract specifying the commutativity
property.

In lines 6-7 within the hyper part of Pytahgoras’ contract, we see how a p gets assigned
the value of b and b p the value of a, whereafter the equality of the two executions’ return values
gets asserted in line 8. Hence - if this assertion passes, we can conclude that the commutativ-
ity property of Pythagoras is upheld. The Pythagoras function which has been instrumented
with the contract can be seen in Listing C.1, and the corresponding generated tests in Listing C.2

Listing 4.11 shows another example, where the commutativity property is violated. By
a glance, one should expect the property to hold since incrementing a number, and thereby
changing it, should create an inequality between the two values. However, due to degrading
precision arising from dealing with the very large floating-point numbers seen in lines 1-2, one
would find that it does not hold.

1 // assume: a = Constant[float64](16777216000000000000)

2 // assume: b = Constant[float64](16777216000000000000)

3 // expect: true

4 // hyper:

5 // assume: a_p = a

6 // assume: b_p = b+1

7 // expect: ret != ret_p

8 func add(a, b float64) float64 {

9 return a + b

10 }

Listing 4.11: A function with a DropShadow contract violating the commutativity property.

In other words - when we increment b by 1 in line 6, this small change is not reflected in the
value stored in b p due to precision limits. Consequently - the addition a + b yields the same
result as a + (b+1), thus violating the check in line 7. To sum up - the failure to uphold the
commutativity property in this example stems from the limitations in the floating point precision
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of large numbers in computer arithmetic. The add function instrumented with the contract can
be seen in Listing C.3, and the corresponding generated tests in Listing C.4

4.3.1 gocontracts

Even though the gocontracts tool also enables design-by-contract in Go, it is worth noting, that if
developers using this tool wish to test hyperproperties, such checks must be implemented man-
ually, in contrast to DropShadow where this is implemented automatically by using sequential
self-composition. In Listing 4.12 we see how sequential self-composition can be implemented
through gocontracts. Notice it is a separate function named PytSelfComp, which invokes the
original Pythagoras function. In gocontracts preambles can be used to define code snippets
which will be inserted between the pre-conditions and the actual implementation. One might
think sequential self-composition could simply be accomplished by invoking the Pythagoras

function in the preamble of its contract, similar to DropShadow. However, this recursive call
causes an infinite loop. Thus, a separate function is necessary.

1 // PytSelfComp preamble:

2 // * a_p := b

3 // * b_p := a

4 // * ret_p := Pythagoras(a_p, b_p)

5 // PytSelfComp ensures:

6 // * ret == ret_p

7 func PytSelfComp(a, b float64) float64 {

8 a_p := b

9 b_p := a

10 ret_p := Pythagoras(a_p, b_p)

11

12 ret := Pythagoras(a, b)

13

14 defer func() {

15 if !(ret == ret_p) {

16 panic("ret == ret_p violated")

17 }

18 }()

19 return ret

20 }

Listing 4.12: Sequential self-composition example using gocontracts for the Pythagoras
function.

With this approach, it is not the original the Pythagoras function which has a gocontract
defined and is instrumented, but rather the separate function PytSelfComp. Following this
approach prevents contracts from being chained, as we will have to define a separate function
to test the original function.
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Chapter 5

Discussion

In this chapter, we take a critical look at the limitations encountered in our study, thus engaging
in a discussion elucidating the implications of these shortcomings. These reflections are aimed
at understanding the impact of the limitations of our results and exploring potential strategies
for addressing them in future. By analysing the constraints of our methodologies and findings,
we aim to provide an understanding of the areas, where enhancements and further investigations
could be beneficial.

5.1 os.Exit(1)

One of the challenges in DropShadow relates to the information and communication between
the test cases and the functions under test once a violation has been found. As the assertions are
inserted in the function and not the test cases, obtaining information about a test case execution
becomes challenging. Different mechanisms can be employed to signal contract violations,
each with its drawbacks. In this section, we will explore different approaches.

Currently DropShadow employs os.Exit(1) to signal test failures, and while this method
is straightforward, it may not be the best approach for managing test failures. This is due to the
immediate and abrupt termination of the test suite. As a result, this prevents the execution of
other test cases, which could potentially contain violations. Furthermore, as the context is lost,
we have no information about the execution of the function and the generated inputs. Hence we
cannot determine whether a violation of a pre-condition, post-condition or hyperproperty has
occurred in a given test case.

One alternative is utilising Go’s error-handling paradigm. Errors can provide a more con-
trolled way of signalling test failures, allowing for the propagation of detailed and custom error
messages. Following this approach, we can create a custom error to indicate a contract viola-
tion. This allows the test case to simply check whether the function under test returns such an
error. However, relying on errors necessitates, in some cases, altering the signature of the func-
tion under test to return an error. For instance, imagine the function: func Foo() int. If we
rely on Go’s error-handling mechanisms to communicate contract violations, it would require
an alteration of the function signature to: func Foo() (int, error). This error would have
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to propagate throughout the whole program, as every use of this function would also have to
implement the error, to comply with the updated signature and not cause compilation errors.
This might be seen as a cumbersome and intrusive practice and may not align with the original
design of the code. Furthermore, this approach might also complicate the test code, requiring
additional checks and handling of error values. Additionally, if a function already returns an
error, a callee might inadvertently treat a violation error like any other error that the function
typically returns. It is a common paradigm in Go to just check if an error is not nil and have
the same case for all errors.

Using panics is another alternative. They can signal a test failure more dramatically than
regular error handling and work like exceptions in other languages. However, they carry the
drawback of potentially originating from deeper layers of the code, making it challenging to
discern whether the panic was intended for violation signalling or resulted from an actual error
in the code.

Probably, the most preferred approach, but maybe also the most difficult one, is in some way
to provide a *testing.T reference to the function under test. Thereby, the violations can be
integrated seamlessly with Go’s testing framework, enabling the use of built-in functions like
t.FailNow and t.Errorf to report test failures. This approach maintains the execution flow,
allowing multiple test cases to run and report independently, thus preserving the continuity of
the test suite and facilitating a comprehensive evaluation of the codebase under test. However,
in practice the references must be passed without altering the function signatures and also be
thread-safe, accommodating scenarios where multiple tests run concurrently. One could force
all testing to be done sequentially and share a global reference. However, we suspect the perfor-
mance decline would be significant in most development settings and most likely will in a way
break some code. Since the focus of the project was to demonstrate the feasibility of including
hyperproperties in contracts, we leave this challenge up to future works. It does not disprove
hyperproperties’ use in contracts but rather is a limitation to the process of testing.

5.2 State

In Section 2.4 we presented sequential self-composition. In it, we described the requirement
of states being the same for every subsequent call in the composition. There are multiple ways
of looking at the strictness of this requirement. Therefore, in this section, we will present the
potential implications relative to DropShadow.

If the various invocations altered the state of the program, and it is not reset, then, in case
of a contract breach, we would not know if it was the actual parameters which caused it, or if
it was the sequence of calls. In the case of testing, we might not care too much, since we just
want to know if there was a breach. So this requirement might not be strictly necessary.

In cases, where the state is required to be reset before a sequential composed call, the so-
lution can be to record the state before the first call and set the state to this value before the
second (provided that no pointers are involved as new instances should then be created of the
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underlying object). However, DropShadow applies sequential self-composition in the function
under test, and since the contracts only enable descriptions of input parameters, it is insufficient
to describe state resetting. A solution to this would simply be to add a parameter to the function
under test describing the state, that must apply. However, this would result in breaking callers
to the function, as the signature is required to change.

Extending the contract thus seems like the only approach which can support state resetting.
However, as mentioned earlier, we only care for breaches. If it was the sequence of invocations,
that caused a breach, then we still found one, which makes us argue, that state resetting is not a
strict requirement. But how should we present breaches, that do not limit themselves to involve
input/output pairs? Let’s say, that all tests (including various runs of the same sequentially self-
composed function under test) are run sequentially and they all extend each other. Conceptually,
it is the same thing as taking all tests and putting them in sequence in one function. Now, with
all tests combined into one, we can store the full trace from start to end as an example of a
potential breach. But this composition only considers one permutation, and therefore we would
have to alter the sequence of composed tests within it to cover all possible permutations. An
optimisation could be to just look at the function which changes the shared state (between tests).
However, it can still explode very quickly.

In conclusion, there are several approaches to looking at breaches, depending on whether
state reset is used or not. Without reset, we must consider the sequence of test calls, which
requires all permutations to be tested. With reset, we can with variable control without consid-
ering the previous calls. With all this in mind, DropShadow’s main focus lies on introducing
contractual design with hyperproperties, and the expressivity they introduce into the code.

5.3 Input Distributions

An important aspect of generating inputs is often what distribution over the inputs should be
applied, which in other words is an attempt to tackle how more interesting inputs should be
prioritised (those which uncover new or interesting areas of a program, or some which can be
more error-prone like boundary values). Often programmers are off by one when indexing an
array, or they might have forgotten a division by 0 check or nil pointer checks. DropShadow
attempts to uniformly generate inputs within its standard provided generators. These generators,
even the numeric ones, do not consider the concept of boundary values.
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1 // assume: a = AnyNumber[int]()

2 // assume: b = AnyNumber[int]()

3 // expect: ret >= 0

4 // config: 100000it

5 func AbsDiv(a, b int) int {

6 result := a / b

7 if result < 0 {

8 result = -result

9 }

10 return result

11 }

Listing 5.1: Division with an absolute result containing two errors related to division by zero
and negation of int minimum invalidating its contract.

In Listing 5.1 we have a function AbsDiv dividing two numbers and returning the absolute
value. The inputs can be any int including both extremes, and the result should always be
positive.

One of the challenges with using DropShadow contracts is, that they are only as good as
the developer’s understanding of the program being written. As an example of this, consider
Listing 5.1 again. The programmer has set out to write a function, that returns the absolute
value of a given integer division, and the contract rightfully reflects, that for any combination
of a and b, the number returned should be 0 or positive.

However, the programmer lacks the insight that there are a few values, that cause AbsDiv

to behave unintentionally. First of all, if b has the value 0, we see the classic division-by-zero
error in line 6, in which case AbsDiv does not return an integer greater than or equal to zero as
the contract promises; instead a panic is thrown. Secondly, if a has the value a=INT MIN and
b has the value −1, negating result in line 8 will result in an integer overflow, in which case
result will wrap around to the value a=INT MIN again, causing AbsDiv to return a negative
value. Like before, this is a breach of the contract.

As can also be seen in line 4 of Listing 5.1, the contract is specified to run the test 1000
times. When considering the range of values an e.g. 64-bit integer can hold, this number of
iterations is insufficient to likely reveal the problematic values mentioned earlier. Thus, the
programmer should be aware not to fall for any sensation of false security, the use of contracts
might wrongfully convey. The specification of contracts does not guarantee any code correct-
ness, and neither will the test cases generated based on these contracts be sure to catch any
problematic behaviour.

Listing 5.2 reflects a contract, that takes into account the issues highlighted above. In this
new contract, we see how a is now assumed to only take on values greater than INT MIN and b

all values different than 0.
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1 // assume: a = GT[int](math.MinInt)

2 // assume: b = DisjointUnion[int](pkg.LT(0), pkg.GT(0))

3 // expect: ret >= 0

4 // config: 1000it

5 func AbsDiv(a, b int) int {

6 ...

7 }

Listing 5.2: Corrected division with absolute result where the pre-conditions now rejects the
previous errors.

The two only apparent approaches which aim to alleviate the above-mentioned problem
in the contracts are: first, construct smaller regions focusing on boundary values. The user
can, e.g., construct a DisjointUnion over the boundaries and then set the test duration to a
satisfactory amount. Second, custom generators prioritising the generation of boundary values
can be implemented. Considering Listing 5.1, boundary value analysis should consider all
combinations of pairs of boundary values.

When DropShadow generates tests, the inputs are generated independently. In other words,
the generation of one parameter does not influence the generation of another, and they are not
generated as sets of parameters. Thereby, the approach to test generation won’t fully support
boundary value analysis. A potential solution to this would be a 2-step test. First, the product
of interesting inputs from all generators is tested (for those without interesting inputs, a random
one is chosen). Second, we randomly test the target. Random testing is still useful as it ex-
ercises the developers’ assumptions of the implementation in potentially unexpected ways. In
the case of Listing 5.1, interesting inputs could be a=INT MIN and b=1. Considering the pair of
interesting inputs, it can be faster to catch the overflow caused by -INT MIN in line 8.

One way to find the problematic values we have just encountered would be to use a verifi-
cation technique such as symbolic execution. With this technique, potential code issues within
the code can be systematically and automatically explored, without the need for relying on test
cases to capture them. Symbolic execution would involve analysing AbsDiv by treating inputs
as symbolic variables rather than concrete values. This allows for the exploration of the paths,
the program can take depending on the conditions applied to these symbolic inputs. By do-
ing so, it can comprehensively evaluate which paths lead to errors like the division-by-zero or
integer overflow discussed above.

A constraint solver can then be employed to determine the specific values, that cause the
unexpected behaviour - as long as the contracts in some way include the unexpected. In the
case with AbsDiv, this solver should identify 0 as a problematic value for b as well as a=INT -

MIN and −1 problematic values for a and b respectively.
Shown is the importance of generating inputs in a way that prioritises certain values. Bound-

ary values might prove very useful, but for DropShadow, it can be difficult to generate such pa-
rameters at random, and architectural design changes are required to integrate them sufficiently.
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To alleviate this issue DropShadow, allows custom generators where users can implement their
distributions. However, even with custom generators and correct definitions of contracts, does
not eliminate the problem, that is, contract quality is dependent on how well the developer wrote
them. The following will in general cover some aspects of contract quality.

5.4 Quality of Contracts and Performance

The contracts written with DropShadow allow any boolean expression for the ”expect” attribute.
However, this does not necessarily mean all expressions are equally insightful. Consider ex-
pect: true: an expectation of not asserting on any output value would only capture crashes
- like fuzzing. Consider a function which should never crash, then this expectation would be
useful together with an any generator. However, in many other cases, the contracts in general
heavily rely on the degree of domain knowledge, the programmer can express.

DropShadow supports only universal quantification over two traces, provided that the func-
tion under test can be sequentially self-composed. This restriction limits the hyperproperties,
which can be expressed and thereby tested. More universal quantifiers would be possible by first
altering the grammar and then the injection to call the wrapped function more times with new
primed variables. Considering the necessity of more traces and alternating quantifiers (hyper-
properties as a mixture of quantifiers) how necessary are these to express properties relevant to
the user? Our focus has been mostly on observational determinism and non-interference, which
do not require alternating quantifiers. Especially from a security standpoint, these two are in-
teresting. But also, monotonicity and symmetrical relations such as the commutative property
can be expressed with only two traces. However, the transitivity property for example cannot.

As presented earlier, the current configuration of DropShadow parses Go source files, and
then instrument functions with their contracts, after which a test file is generated and executed.
When the testing has concluded, the test file is deleted and the source file reverted to its orig-
inal state. This configuration leads to the question of where the responsibility lies, once the
source file is reverted to its original, without the run-time assertion checks. If we consider the
gocontracts tool, their approach is to keep the run-time assertions in the code, which is also
possible in DropShadow by configuring the pipeline. However, this could pose performance
issues, as DropShadow instrument plenty of code to check contract adherence. In addition to
performance, if the contract simply does not reflect reality by e.g. disallowing some sensor
input values, then system failure would occur, potentially rendering the system unusable. This
begs the question of contracts in production and development.
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Chapter 6

Related work

In this section, we will focus our discussion on related work which covers the same areas and
utilises the same techniques as DropShadow and techniques which aim to improve the effi-
ciency of testing properties and hyperproperties. DropShadow, can be seen as a tool combining
contractual design of software as well as a trace- and hyperproperty-based testing tool, with the
entire focus on finding counterexamples by concrete executions of the program. In addition, we
will present some related work concerning the verification techniques.

6.1 Contract-Driven Testing

Testing of programs based on contracts has already been studied, and several tools exist for
generating unit tests from these contracts. Contract-driven testing, introduced in [1], explains
contracts can be used to derive test cases. As contracts can be checked at run time, makes
them suitable for testing. Various approaches utilise contracts for unit test generation, such as
Praspel [8] for PHP and JSContest [19] for JavaScript.

Most interestingly is the tool Praspel, which shares many functionalities and techniques
with DropShadow. It introduces Design-by-Contract in PHP and is adapted to test generation.
They use contracts to instrument the source with runtime assertion checks and generation of test
data. Moreover, both DropShadow and Praspel describe multiple explicit behaviours, allowing
for more complex expressions of properties. These are known as Behavioral clause in Praspel
and region in DropShadow. However, we differ at two levels. First, Praspel relies on exceptions
to communicate contract violations and allow the contract to specify expected exceptions. This
is possible as exceptions in PHP can have different types, enabling Praspel to utilise custom
exceptions. As discussed earlier, improving contract violation is a future work area for Drop-
Shadow. Second, our approach involves parsing files and searching for functions with defined
contracts. We then perform the necessary actions to conduct runtime assertion checking and
automatically generate concrete test cases using the Go testing library. In contrast, Praspel does
not generate actual instances of test cases but instead relies on an algorithm, which takes a
set of functions to be tested as a parameter. The algorithm then checks contract violations for
each function. Leveraging the testing library provides DropShadow with distinct advantages.
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Each of the DropShadow test cases can be executed individually, which also provides immedi-
ate feedback on the test results without the need to run the whole test suite. Moreover, we can
utilise customised testing strategies.

6.2 Property-Based Testing

QuickCheck [4] is a foundational, property-based testing tool initially developed for the Haskell
programming language, emphasising (pseudo) randomised test data generation to validate the
properties of a program. It automatically generates test cases attempting to falsify asserted,
high-level properties about a function. In comparison, DropShadow also adopts property-based
testing but extends QuickCheck’s methodology by introducing contract-based testing in the Go
programming language. Like DropShadow uses the notion of a region to bound the input space
in which random input is generated, QuickCheck also offers this possibility by allowing the
programmer to implement custom generators to constrain the random values generated. Another
notable tool for property-based testing, that draws inspiration from Quickcheck, is Hypothesis
for the Python programming language [23]. Like QuickCheck, this tool generates test cases to
try and falsify properties of functions using randomised inputs as well as introduce usability
enhancing features like generating complex data structures and the ability to ”shrink” failing
test cases to simpler forms. In comparison, DropShadow also allows for the testing of complex,
custom data types - however, this feature is contingent on the programmer’s willingness to
code the generator from scratch. Finally, Hypothesis makes a point of being easily extensible,
resulting in the existence of third-party extensions, like hypothesis-networkx and hypothesis-
bio, for specific research applications.

6.3 Hypertests

Property-based tests are well established and have an arsenal of tool support to back the auto-
matic development of property tests. On the other hand, Hypertests which are tests for finite
trace hyperproperties requiring a finite amount of traces to produce a counterexample, do not
meet demands in tooling [21].

A framework for developing tests for hyperproperties has been defined in [29]. In it, a cov-
erage metric is defined as the proportion of tested input pairs potentially generating different
outputs, computed by analysing the program’s Control Flow Graph (CFG). One drawback is
the necessity of the code to perform static analysis on the source code. Often, trace property
testing tools utilise code coverage, which is a metric describing the proportion of a program that
has been executed. In contrast, code coverage can be retrieved by grey-box methods whereas
construction of a CFG is whitebox. Also in [29], multiple procedures for various ways of
testing hyerproperties are presented. Both, hypertesting, like DropShadow and fuzzing of hy-
perproperties. The main difference is fuzzing continues based on a ”budget” and success is not
determined by coverage but by violations observed before exhausting the budget. DropShadow

57



6.4. SYMBOLIC EXECUTION CHAPTER 6. RELATED WORK

looks more like a fuzzer because it lacks the coverage metric.
LeakFuzzer, is a hyperfuzzer, that is a fuzzer with the capability of comparing multiple

executions against each other. Leakfuzzer, [2], extends AFL++, [11], and enables the fuzzing of
the non-interference hyperproperty. LeakFuzzer, has segmented input into a public and private
part and assumes the output to always be public. After each execution, it stores the hashes of the
secret input and public output and compares them with previous executions sharing the same
public input but differing secret inputs. This defers the sequential execution which DropShadow
has immediately for the primed version. LeakFuzzer reduces the amount of redundant calls by
ensuring that an invocation won’t happen twice with the cost of more memory. However, it does
not have the detailed capability, like DropShadow, to describe relations between the inputs and
outputs.

6.4 Symbolic Execution

The result from running the tests generated by DropShadow, is potential counterexamples for
both trace and hyperproperties. Most likely, the tests won’t have covered the full specification
and thereby won’t be a proof. Instead, verification techniques can be employed to provide
guarantees.

In [21] the desire for automated generation of tests for hyperproperties is mentioned. Drop-
Shadow supports this based on the contracts but relies on concrete execution of the function un-
der test. Symbolic execution alleviates the need for concrete executions by exploring programs
and assigning symbolic values to variables. However, large systems can become so complex
symbolic execution becomes infeasible in practice. To alleviate this, an approach combining
the two called concolic execution can be used. An example is the fuzzer Driller which uses
the result of symbolic execution to generate new and interesting inputs [33]. Provided con-
tracts are assumed to be correct for a function: then symbolic execution can be pre-constrained,
like Driller, to the pre-conditions from a region with a hyperproperty. Therefore, the focus on
proving a single hyperproperty can be limited to the area where the region is handled.

By taking a hyperproperty like we have presented for non-interference, and using sequential
self-composition to construct a new program. It would be possible to use symbolic execution
to look for assertion violations. However, this requires sufficient tooling for the language in
question. In our case, we are focused on the Go language which is still in its infancy. This
heavily shows from the lack of verification tools of the Go source code, which to our knowledge
for example lacks symbolic execution tools.
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Conclusion

With the development of DropShadow, we have undertaken a challenge to enhance the Go
programming environment by embedding contractual design of function specifications. The
core objective was to enable developers to specify contractual obligations that would allow the
automatic generation and testing of trace properties as well as some hyperproperties. The class
of hyperproperties supported by DropShadow enables the testing of common security properties
such as non-interference.

We found a lack of contractual design tools through documentation in Go, and to our knowl-
edge none exists in any other language, that directly supports hyperproperties. The primary
achievement of DropShadow is to show how contracts can be integrated into Go and be used
to express hyperproperties, which are reducible through sequential self-composition. The in-
tegration into Go is partly presented as an extension of the grammar definition of Go itself.
Everything from the injection of the contracts and automatic test generation is done by Drop-
Shadow with the information provided in the contracts. Our implementation of this tool solves
several fundamental problems encountered with the extension of hyperproperties, such as the
reduction technique. Additionally, the generation of primitive and composite custom types are
supported by DropShadow, thus allowing developers to specify generators for all possible types
as well as custom generation distributions.

We have explored and shown how the contracts can be used to automatically test several
trace properties as well as hyperproperties. We have provided several examples, showing how
the region design of contracts are expressed as logical check (which resembles partition test-
ing). Furthermore, we have analysed the tool usage patterns and found a general approach (any
generation) to ensure a complete contract accounting for all inputs.

The hyperproperties supported by DropShadow only include the ones, which can be reduced
through sequential self-composition, with non-interference being an example. But the question
remains, whether all relevant security-related properties or more generally: whether all useful
hyperproperties lie within that class. DropShadow can be extended to handle sequential self-
composition of more than two traces, but whether there is a necessity to do so is unknown.

The biggest issue we see with DropShadow is the lack of readability in the contracts. The
tool should be user-friendly enough such that developers could and would want to use it. With
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the less readable, yet expressive, contracts this might not always be the case.
We have presented several challenges which are still open, such as handling the presenta-

tion of counterexamples, as well as reporting failures. Furthermore, we have also presented an
explosion problem relating to the state reset requirement in sequential self-composition. Addi-
tional work can be done on more termination criteria. When a breach of contract is found, and
state reset is in place, input reduction might be desirable.

We have presented some related work, which all describe these approaches. Furthermore,
the use of contracts to produce documentation as well as to improve the speed of symbolic
execution by directly substituting invocations of functions with their contracts can be looked
into, but to our knowledge, no symbolic execution tool is available for Go. By viewing hy-
perproperties as a test comprising multiple observations with variable control, we can change
our perception of input generation away from a naive approach wanting to test everything to an
approach focusing on the interaction between variables.

The insights gained from the development and use of DropShadow underscore the poten-
tial for similar methodologies to be adapted and applied in other programming environments.
Looking toward the future, the principles and techniques implemented by DropShadow could
inspire new tools, that prioritise the testing of security properties.
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Appendix A

Evaluation: Absolute

1 func Absolute(value float64) float64 {

2 values := pkg.Constant[float64](0)

3 valuess := pkg.LT[float64](0)

4 valuesss := pkg.GT[float64](0)

5 valuessss := pkg.AnyNumber[float64]()

6 fRegion := func(value float64) []int {

7 ret := make([]int, 0)

8 if values.Contains(value) {

9 ret = append(ret, 0)

10 }

11 if valuess.Contains(value) {

12 ret = append(ret, 1)

13 }

14 if valuesss.Contains(value) {

15 ret = append(ret, 2)

16 }

17 if valuessss.Contains(value) {

18 ret = append(ret, 3)

19 }

20 return ret

21 }

22 regions := fRegion(value)

23 if len(regions) == 0 {

24 os.Exit(1)

25 }

26 wrap := func(value float64) float64 {

27 if value < 0 {

28 return -value

29 }

30 return value

31 }
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APPENDIX A. EVALUATION: ABSOLUTE

32 ret := wrap(value)

33 for _, region := range regions {

34 switch region {

35 case 0:

36 if !(ret == 0) {

37 os.Exit(1)

38 }

39 case 1:

40 if !(ret == -value) {

41 os.Exit(1)

42 }

43 case 2:

44 if !(ret == value) {

45 os.Exit(1)

46 }

47 case 3:

48 if !(ret >= 0) {

49 os.Exit(1)

50 }

51 }

52 }

53 return ret

54 }

Listing A.1: The Absolute function with DropShadow injected contracts.

1 func Test_Absolute_Zero_Property(t *testing.T) {

2 valueGenerator := pkg.Constant[float64](0)

3 iterations, iterationLimit := 0, 1

4 startTime, timeLimit := time.Now(), 10*time.Second

5 for {

6 value := valueGenerator.NextValue()

7 Absolute(value)

8 iterations++

9 if iterations >= iterationLimit {

10 return

11 }

12 if time.Since(startTime) >= timeLimit {

13 return

14 }

15 }

16 }

17 func Test_Absolute_Negative_values_Property(t *testing.T) {

18 valueGenerator := pkg.LT[float64](0)
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19 startTime, timeLimit := time.Now(), 10*time.Second

20 for {

21 value := valueGenerator.NextValue()

22 Absolute(value)

23 if time.Since(startTime) >= timeLimit {

24 return

25 }

26 }

27 }

28 func Test_Absolute_Positive_values_Property(t *testing.T) {

29 valueGenerator := pkg.GT[float64](0)

30 startTime, timeLimit := time.Now(), 10*time.Second

31 for {

32 value := valueGenerator.NextValue()

33 Absolute(value)

34 if time.Since(startTime) >= timeLimit {

35 return

36 }

37 }

38 }

39 func Test_Absolute_All_Property(t *testing.T) {

40 valueGenerator := pkg.AnyNumber[float64]()

41 iterations, iterationLimit := 0, 100

42 startTime, timeLimit := time.Now(), 10*time.Second

43 for {

44 value := valueGenerator.NextValue()

45 Absolute(value)

46 iterations++

47 if iterations >= iterationLimit {

48 return

49 }

50 if time.Since(startTime) >= timeLimit {

51 return

52 }

53 }

54 }

Listing A.2: Test cases that has been automatically generated by DropShadow for the Absolute
function.
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1 func Absolute(value float64) (result float64) {

2 // Post-condition

3 defer func() {

4 if !(value < 0 && result == -value || value >= 0 && result == value) {

5 panic("Violated: value < 0 && result == -value || value >= 0 && result

== value")

6 }

7 }()

8

9 result = math.Abs(value)

10 return

11 }

Listing A.3: The Aboslute function with contracts injected by the gocontracts tool.
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Evaluation: GetDiscount

1 func TestValidityPropertyRapid(t *testing.T) {

2 rapid.Check(t, func(t *rapid.T) {

3 postalCode := rapid.Int().Draw(t, "postalCode")

4 month := rapid.Int().Draw(t, "month")

5 isValid := postalCode >= 1000 && postalCode <= 9999 && month >= 1 && month

<= 12

6

7 result := GetDiscountOtherTools(postalCode, month)

8

9 if !isValid && result != 0 || isValid && result == 0 {

10 t.Fatalf("Expected 0 for invalid inputs")

11 }

12 })

13 }

14

15 func TestConstantDiscountPropertyRapid(t *testing.T) {

16 rapid.Check(t, func(t *rapid.T) {

17 postalCode := rapid.IntRange(1000, 1999).Draw(t, "postalCode")

18 month := rapid.IntRange(1, 12).Draw(t, "month")

19

20 result := GetDiscountOtherTools(postalCode, month)

21

22 if result != 20 {

23 t.Fatalf("Constant discount property violation")

24 }

25 })

26 }

27

28 func TestSeasonalDiscountPropertyRapid(t *testing.T) {

29 rapid.Check(t, func(t *rapid.T) {

30 postalCode := rapid.IntRange(3900, 3999).Draw(t, "postalCode")
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31 month := rapid.IntRange(1, 12).Draw(t, "month")

32 isSummer := month >= 6 && month <= 8

33

34 result := GetDiscountOtherTools(postalCode, month)

35

36 if (isSummer && result != 40) || (!isSummer && result != 10) {

37 t.Fatalf("Seasonal discount property violation")

38 }

39 })

40 }

41

42 func TestDefaultDiscountPropertyRapid(t *testing.T) {

43 rapid.Check(t, func(t *rapid.T) {

44 postalCode := rapid.IntRange(2000, 9999).Draw(t, "postalCode")

45 month := rapid.IntRange(1, 12).Draw(t, "month")

46

47 isValid := (postalCode >= 2000 && postalCode <= 3899) || (postalCode >=

4000 && postalCode <= 9999) && month >= 1 && month <= 12

48 result := GetDiscountOtherTools(postalCode, month)

49

50 if isValid && result != 10 {

51 t.Fatalf("Default discount property violation")

52 }

53 })

54 }

Listing B.1: Manually written property-based test cases using the rapid tool for the GetDiscount
function.

1 func TestValidityPropertyGopter(t *testing.T) {

2 properties := gopter.NewProperties(nil)

3

4 properties.Property("Validity property", prop.ForAll(

5 func(postalCode int, month int) bool {

6 result := GetDiscountOtherTools(postalCode, month)

7 isValid := postalCode >= 1000 && postalCode <= 9999 && month >= 1 &&

month <= 12

8 if !isValid {

9 return result == 0

10 }

11 return result != 0

12 },

13 gen.Int(),

14 gen.Int(),
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15 ))

16

17 properties.TestingRun(t)

18 }

19

20 func TestSeasonalDiscountPropertyGopter(t *testing.T) {

21 properties := gopter.NewProperties(nil)

22

23 properties.Property("Seasonal discount property", prop.ForAll(

24 func(postalCode int, month int) bool {

25 result := GetDiscountOtherTools(postalCode, month)

26 isSummer := month >= 6 && month <= 8

27 if postalCode >= 3900 && postalCode <= 3999 {

28 if isSummer {

29 return result == 40

30 }

31 return result == 10

32 }

33 return true

34 },

35 gen.IntRange(3900, 3999),

36 gen.IntRange(1, 12),

37 ))

38

39 properties.TestingRun(t)

40 }

41

42 func TestConstantDiscountPropertyGopter(t *testing.T) {

43 properties := gopter.NewProperties(nil)

44

45 properties.Property("Constant discount property", prop.ForAll(

46 func(postalCode int, month int) bool {

47 result := GetDiscountOtherTools(postalCode, month)

48 return postalCode >= 1000 && postalCode <= 1999 && result == 20

49 },

50 gen.IntRange(1000, 1999),

51 gen.IntRange(1, 12),

52 ))

53

54 properties.TestingRun(t)

55 }

56

57 func TestDefaultPropertyGopter(t *testing.T) {
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58 properties := gopter.NewProperties(nil)

59

60 properties.Property("Default discount property", prop.ForAll(

61 func(postalCode int, month int) bool {

62 result := GetDiscountOtherTools(postalCode, month)

63 isValid := (postalCode >= 2000 && postalCode <= 3899) || (postalCode >=

4000 && postalCode <= 9999) && month >= 1 && month <= 12

64 if isValid {

65 return result == 10

66 }

67 return true

68 },

69 gen.IntRange(2000, 9999),

70 gen.IntRange(1, 12),

71 ))

72

73 properties.TestingRun(t)

74 }

Listing B.2: Manually written property-based test cases using the gopter tool for the
GetDiscount function.

1 func TestValidityPropertyQuick(t *testing.T) {

2 property := func(month, postalCode int) bool {

3 result := GetDiscountOtherTools(postalCode, month)

4

5 isValid := postalCode >= 1000 && postalCode <= 9999 && month >= 1 && month

<= 12

6

7 if !isValid {

8 return result == 0

9 }

10 return result != 0

11 }

12

13 config := &quick.Config{ MaxCount: 1000 }

14

15 if err := quick.Check(property, config); err != nil {

16 t.Error("Failed validity test:", err)

17 }

18 }

19

20 func TestSeasonalDiscountPropertyQuick(t *testing.T) {

21 property := func(month, postalCode int) bool {
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22 discount := GetDiscountOtherTools(postalCode, month)

23 if month >= 6 && month <= 8 {

24 return discount == 40 // Summer discount

25 }

26 return discount == 10

27 }

28

29 config := &quick.Config{

30 MaxCount: 1000,

31 Values: func(v []reflect.Value, r *rand.Rand) {

32 v[0] = reflect.ValueOf(1 + r.Intn(12)) // Month: [1; 12]

33 v[1] = reflect.ValueOf(3900 + r.Intn(100)) // Postal code: [3900; 3999]

34 },

35 }

36

37 if err := quick.Check(property, config); err != nil {

38 t.Error("Failed seasonal discount test:", err)

39 }

40 }

41

42 func TestConstantDiscountPropertyQuick(t *testing.T) {

43 property := func(month, postalCode int) bool {

44 if postalCode >= 1000 && postalCode <= 1999 {

45 return GetDiscountOtherTools(postalCode, month) == 20

46 }

47 return true

48 }

49

50 config := &quick.Config{

51 MaxCount: 1000,

52 Values: func(v []reflect.Value, r *rand.Rand) {

53 v[0] = reflect.ValueOf(1 + r.Intn(12)) // Month: [1; 12]

54 v[1] = reflect.ValueOf(1000 + r.Intn(1000)) // Postal code: [1000; 1999]

55 },

56 }

57

58 if err := quick.Check(property, config); err != nil {

59 t.Error("Failed constant discount test:", err)

60 }

61 }

62

63 func TestDefaultPropertyQuick(t *testing.T) {

64 property := func(month, postalCode int) bool {
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65 if (postalCode >= 2000 && postalCode <= 3899) || (postalCode >= 4000 &&

postalCode <= 9999) && month >= 1 && month <= 12 {

66 return GetDiscountOtherTools(postalCode, month) == 10

67 }

68 return true

69 }

70

71 config := &quick.Config{

72 MaxCount: 1000,

73 Values: func(v []reflect.Value, r *rand.Rand) {

74 v[0] = reflect.ValueOf(1 + r.Intn(12)) // Month: [1; 12]

75 v[1] = reflect.ValueOf(1000 + r.Intn(1000)) // Postal code: [2000; 9999]

76 },

77 }

78

79 if err := quick.Check(property, config); err != nil {

80 t.Error("Failed default discount test:", err)

81 }

82 }

Listing B.3: Manually written property-based test cases using the go/quick tool for the
GetDiscount function.

1 func Test_GetDiscount_valid_property_Property(t *testing.T) {

2 postalCodeGenerator := pkg.DisjointUnion[int](pkg.LT[int](1000),

pkg.GT[int](9999))

3 monthGenerator := pkg.DisjointUnion[int](pkg.LT[int](1), pkg.GT[int](12))

4 startTime, timeLimit := time.Now(), 10*time.Second

5 for {

6 postalCode := postalCodeGenerator.NextValue()

7 month := monthGenerator.NextValue()

8 GetDiscount(postalCode, month)

9 if time.Since(startTime) >= timeLimit {

10 return

11 }

12 }

13 }

14 func Test_GetDiscount_constant_discount_Property(t *testing.T) {

15 postalCodeGenerator := pkg.Inclusive[int](1000, 1999)

16 monthGenerator := pkg.Inclusive[int](1, 12)

17 startTime, timeLimit := time.Now(), 10*time.Second

18 for {

19 postalCode := postalCodeGenerator.NextValue()

20 month := monthGenerator.NextValue()
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21 GetDiscount(postalCode, month)

22 if time.Since(startTime) >= timeLimit {

23 return

24 }

25 }

26 }

27 func Test_GetDiscount_seasonal_discount_Property(t *testing.T) {

28 postalCodeGenerator := pkg.Inclusive[int](3900, 3999)

29 monthGenerator := pkg.Inclusive[int](6, 8)

30 startTime, timeLimit := time.Now(), 10*time.Second

31 for {

32 postalCode := postalCodeGenerator.NextValue()

33 month := monthGenerator.NextValue()

34 GetDiscount(postalCode, month)

35 if time.Since(startTime) >= timeLimit {

36 return

37 }

38 }

39 }

40 func Test_GetDiscount_seasonal_default_Property(t *testing.T) {

41 postalCodeGenerator := pkg.Inclusive[int](3900, 3999)

42 monthGenerator := pkg.DisjointUnion[int](pkg.Inclusive[int](1, 5),

pkg.Inclusive[int](9, 12))

43 startTime, timeLimit := time.Now(), 10*time.Second

44 for {

45 postalCode := postalCodeGenerator.NextValue()

46 month := monthGenerator.NextValue()

47 GetDiscount(postalCode, month)

48 if time.Since(startTime) >= timeLimit {

49 return

50 }

51 }

52 }

53 func Test_GetDiscount_default_discount_Property(t *testing.T) {

54 postalCodeGenerator := pkg.DisjointUnion[int](pkg.Inclusive[int](2000,

3899), pkg.Inclusive[int](4000, 9999))

55 monthGenerator := pkg.Inclusive[int](1, 12)

56 startTime, timeLimit := time.Now(), 10*time.Second

57 for {

58 postalCode := postalCodeGenerator.NextValue()

59 month := monthGenerator.NextValue()

60 GetDiscount(postalCode, month)

61 if time.Since(startTime) >= timeLimit {
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62 return

63 }

64 }

65 }

Listing B.4: The automatically generated test cases by DropShadow for the GetDiscount
function.

1 func GetDiscount(postalCode int, month int) int {

2 postalCodes := pkg.DisjointUnion[int](pkg.LT[int](1000), pkg.GT[int](9999))

3 months := pkg.DisjointUnion[int](pkg.LT[int](1), pkg.GT[int](12))

4 postalCodess := pkg.Inclusive[int](1000, 1999)

5 monthss := pkg.Inclusive[int](1, 12)

6 postalCodesss := pkg.Inclusive[int](3900, 3999)

7 monthsss := pkg.Inclusive[int](6, 8)

8 postalCodessss := pkg.Inclusive[int](3900, 3999)

9 monthssss := pkg.DisjointUnion[int](pkg.Inclusive[int](1, 5),

pkg.Inclusive[int](9, 12))

10 postalCodesssss := pkg.DisjointUnion[int](pkg.Inclusive[int](2000, 3899),

pkg.Inclusive[int](4000, 9999))

11 monthsssss := pkg.Inclusive[int](1, 12)

12 fRegion := func(postalCode int, month int) []int {

13 ret := make([]int, 0)

14 if postalCodes.Contains(postalCode) && months.Contains(month) {

15 ret = append(ret, 0)

16 }

17 if postalCodess.Contains(postalCode) && monthss.Contains(month) {

18 ret = append(ret, 1)

19 }

20 if postalCodesss.Contains(postalCode) && monthsss.Contains(month) {

21 ret = append(ret, 2)

22 }

23 if postalCodessss.Contains(postalCode) && monthssss.Contains(month) {

24 ret = append(ret, 3)

25 }

26 if postalCodesssss.Contains(postalCode) && monthsssss.Contains(month) {

27 ret = append(ret, 4)

28 }

29 return ret

30 }

31 regions := fRegion(postalCode, month)

32 if len(regions) == 0 {

33 os.Exit(1)

34 }
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35 wrap := func(postalCode int, month int) int {

36 if postalCode < 1000 || postalCode > 9999 || month < 1 || month > 12 {

37 return 0

38 }

39 switch {

40 case postalCode >= 1000 && postalCode <= 1999:

41 return 20

42 case postalCode >= 2000 && postalCode <= 3899:

43 return 10

44 case postalCode >= 3900 && postalCode <= 3999:

45 if month >= 6 && month <= 8 {

46 return 40

47 }

48 return 10

49 case postalCode >= 4000 && postalCode <= 9999:

50 return 10

51 default:

52 return 0

53 }

54 }

55 ret := wrap(postalCode, month)

56 for _, region := range regions {

57 switch region {

58 case 0:

59 if !(ret == 0) {

60 os.Exit(1)

61 }

62 case 1:

63 if !(ret == 20) {

64 os.Exit(1)

65 }

66 case 2:

67 if !(ret == 40) {

68 os.Exit(1)

69 }

70 case 3:

71 if !(ret == 10) {

72 os.Exit(1)

73 }

74 case 4:

75 if !(ret == 10) {

76 os.Exit(1)

77 }
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78 }

79 }

80 return ret

81 }

Listing B.5: The GetDiscount function which has been instrumented with the DropShadow
contract.
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Appendix C

Evaluation: Hyperproperties

1 func Pythagoras(a, b float64) float64 {

2 as := pkg.Inclusive[float64](1, 1000)

3 bs := pkg.Inclusive[float64](1, 1000)

4 fRegion := func(a, b float64) []int {

5 ret := make([]int, 0)

6 if as.Contains(a) && bs.Contains(b) {

7 ret = append(ret, 0)

8 }

9 return ret

10 }

11 regions := fRegion(a, b)

12 if len(regions) == 0 {

13 os.Exit(1)

14 }

15 wrap := func(a, b float64) float64 {

16 return Sqrt(a*a + b*b)

17 }

18 ret := wrap(a, b)

19 for _, region := range regions {

20 switch region {

21 case 0:

22 if !(ret > 0) {

23 os.Exit(1)

24 }

25 }

26 }

27 for _, region := range regions {

28 switch region {

29 case 0:

30 a_p := b

31 b_p := a
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32 ret_p := wrap(a_p, b_p)

33 if !(ret_p == ret) {

34 os.Exit(1)

35 }

36 }

37 }

38 return ret

39 }

Listing C.1: DropShadow injected contract for Pythagoras.

1 func Test_Sqrt_Zero_Property(t *testing.T) {

2 valueGenerator := pkg.Constant[float64](0)

3 startTime, timeLimit := time.Now(), 10*time.Second

4 for {

5 value := valueGenerator.NextValue()

6 Sqrt(value)

7 if time.Since(startTime) >= timeLimit {

8 return

9 }

10 }

11 }

12 func Test_Sqrt_Positive_Property(t *testing.T) {

13 valueGenerator := pkg.GT[float64](0)

14 startTime, timeLimit := time.Now(), 10*time.Second

15 for {

16 value := valueGenerator.NextValue()

17 Sqrt(value)

18 if time.Since(startTime) >= timeLimit {

19 return

20 }

21 }

22 }

23 func Test_Pythagoras_BothPos_Property(t *testing.T) {

24 aGenerator := pkg.Inclusive[float64](1, 1000)

25 bGenerator := pkg.Inclusive[float64](1, 1000)

26 startTime, timeLimit := time.Now(), 10*time.Second

27 for {

28 a := aGenerator.NextValue()

29 b := bGenerator.NextValue()

30 Pythagoras(a, b)

31 if time.Since(startTime) >= timeLimit {

32 return

33 }
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34 }

35 }

Listing C.2: The automatically generated test cases by DropShadow for the Sqrt and Pythagoras
functions.

1 func add(a, b float64) float64 {

2 as := pkg.Constant[float64](16777216000000000000)

3 bs := pkg.Constant[float64](16777216000000000000)

4 fRegion := func(a, b float64) []int {

5 ret := make([]int, 0)

6 if as.Contains(a) && bs.Contains(b) {

7 ret = append(ret, 0)

8 }

9 return ret

10 }

11 regions := fRegion(a, b)

12 if len(regions) == 0 {

13 os.Exit(1)

14 }

15 wrap := func(a, b float64) float64 {

16 return a + b

17 }

18 ret := wrap(a, b)

19 for _, region := range regions {

20 switch region {

21 case 0:

22 if !(true) {

23 os.Exit(1)

24 }

25 }

26 }

27 for _, region := range regions {

28 switch region {

29 case 0:

30 a_p := a

31 b_p := b + 1

32 ret_p := wrap(a_p, b_p)

33 if !(ret != ret_p) {

34 os.Exit(1)

35 }

36 }

37 }

38 return ret
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39 }

Listing C.3: The Add function instrumented with its contract.

1 func Test_add_Property(t *testing.T) {

2 aGenerator := pkg.Constant[float64](16777216000000000000)

3 bGenerator := pkg.Constant[float64](16777216000000000000)

4 startTime, timeLimit := time.Now(), 10*time.Second

5 for {

6 a := aGenerator.NextValue()

7 b := bGenerator.NextValue()

8 add(a, b)

9 if time.Since(startTime) >= timeLimit {

10 return

11 }

12 }

13 }

Listing C.4: The Add function instrumented with its DropShadow contract.
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